This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Zero-sum Stochastic Differential Games of Impulse Versus Continuous Control by FBSDEs111This work was supported by the Swedish Energy Agency through grant number 48405-1

Magnus Perninge222M. Perninge is with the Department of Physics and Electrical Engineering, Linnaeus University, Växjö, Sweden. e-mail: [email protected].
Abstract

We consider a stochastic differential game in the context of forward-backward stochastic differential equations, where one player implements an impulse control while the opponent controls the system continuously. Utilizing the notion of “backward semigroups” we first prove the dynamic programming principle (DPP) for a truncated version of the problem in a straightforward manner. Relying on a uniform convergence argument then enables us to show the DPP for the general setting. In particular, this avoids technical constraints imposed in previous works dealing with the same problem. Moreover, our approach allows us to consider impulse costs that depend on the present value of the state process in addition to unbounded coefficients.

Using the dynamic programming principle we deduce that the upper and lower value functions are both solutions (in viscosity sense) to the same Hamilton-Jacobi-Bellman-Isaacs obstacle problem. By showing uniqueness of solutions to this partial differential inequality we conclude that the game has a value.

1 Introduction

The history of differential games is almost as long as the history of modern optimal control theory and traces back to the seminal work by Isaacs [16]. To counter the unrealistic idea that one of the players have to give up their control to the opponent, Elliot and Kalton introduced the notion of strategies defined as non-anticipating maps from the opponents set of controls to the players own controls [10]. Assuming that one player plays a strategy while the opponent plays a classical control, Evans and Souganidis [11] used the theory of viscosity solutions to find a representation of the upper and lower value functions in deterministic differential games as solutions to Hamilton-Jacobi-Bellman-Isaacs (HJBI) equations. Using a discrete time approximation technique, this was later translated to the stochastic setting by Flemming and Souganidis [12]. The natural terminology for these games being zero-sum stochastic differential games (SDGs). Using the theory of backward stochastic differential equations (BSDEs), in particular the notion of backward semigroups, Buckdahn and Li [4] simplified the arguments and further extended the results in [12] to cost functionals defined in terms of BSDEs.

Just as stochastic control was extended to various types of controls in the latter half of the previous century (notably to controls of impulse type in [3]), so has stochastic differential games. Tang and Hou [21] considered the setting of two-player, zero-sum SDGs where both players play switching controls (a particular type of impulse control). Their result was later extended by Djehiche et. al. [7, 8] to incorporate stochastic switching-costs. In the context of general impulse controls, Cosso [5] considered a zero-sum game where both players play impulse controls. By adapting the theory developed in [4], L. Zhang recently extended these results to cost functionals defined by BSDEs [23].

In the present work we will be dealing with SDGs where one player plays an impulse control while the opponent plays a continuous control. This type of game problems have previously be considered by Azimzadeh [1] for linear expectations and when the intervention costs are deterministic and by Bayraktar et. al. [2] when the impulse control is of switching type. We follow the path described above where the cost functional is defined in terms of the solution to a BSDE and introduce the lower value function

V(t,x):=essinfαS𝒜tSesssupu𝒰tJ(t,x;u,αS(u))\displaystyle V_{-}(t,x):=\mathop{\rm{ess}\inf}_{\alpha^{S}\in\mathcal{A}^{S}_{t}}\mathop{\rm{ess}\sup}_{u\in\mathcal{U}_{t}}J(t,x;u,\alpha^{S}(u))

and the upper value function

V+(t,x):=esssupuS𝒰tSessinfα𝒜tJ(t,x;uS(α),α)\displaystyle V_{+}(t,x):=\mathop{\rm{ess}\sup}_{u^{S}\in\mathcal{U}^{S}_{t}}\mathop{\rm{ess}\inf}_{\alpha\in\mathcal{A}_{t}}J(t,x;u^{S}(\alpha),\alpha)

with J(t,x;u,α):=Ytt,x;u,αJ(t,x;u,\alpha):=Y^{t,x;u,\alpha}_{t}, where the pair (Yt,x;u,α,Zt,x;u,α)(Y^{t,x;u,\alpha},Z^{t,x;u,\alpha}) solves the non-standard BSDE

Yst,x;u,α\displaystyle Y^{t,x;u,\alpha}_{s} =ψ(XTt,x;u,α)+sTf(r,Xrt,x;u,α,Yrt,x;u,α,Zrt,x;u,α,αr)𝑑r\displaystyle=\psi(X^{t,x;u,\alpha}_{T})+\int_{s}^{T}f(r,X^{t,x;u,\alpha}_{r},Y^{t,x;u,\alpha}_{r},Z^{t,x;u,\alpha}_{r},\alpha_{r})dr
sTZrt,x;u,α𝑑WrΞT+t,x;u,α+Ξst,x;u,α.\displaystyle\quad-\int_{s}^{T}Z^{t,x;u,\alpha}_{r}dW_{r}-\Xi^{t,x;u,\alpha}_{T+}+\Xi^{t,x;u,\alpha}_{s}. (1.1)

In the above definitions, 𝒰\mathcal{U} (resp. 𝒜\mathcal{A}) and 𝒰S\mathcal{U}^{S} (resp. 𝒜S\mathcal{A}^{S}) represent the set of impulse (resp. continuous) controls and their corresponding non-anticipative strategies. The generic member of 𝒰\mathcal{U} will be denoted by u:=(τi,βi)1iNu:=(\tau_{i},\beta_{i})_{1\leq i\leq N} where τi\tau_{i} is the time of the ithi^{\rm th} intervention and βi\beta_{i} is the corresponding impulse, taking values in the compact set UU. Moreover, the impulse cost process Ξ\Xi is defined as

Ξst,x;u,α:=j=1N𝟙[τj<s](τj,Xτjt,x;[u]j1,α,βj),\displaystyle\Xi^{t,x;u,\alpha}_{s}:=\sum_{j=1}^{N}\mathbbm{1}_{[\tau_{j}<s]}\ell(\tau_{j},X^{t,x;[u]_{j-1},\alpha}_{\tau_{j}},\beta_{j}), (1.2)

where [u]j:=(τi,βi)1iNj[u]_{j}:=(\tau_{i},\beta_{i})_{1\leq i\leq N\wedge j} and Xt,x;u,αX^{t,x;u,\alpha} solves the impulsively and continuously controlled SDE

Xst,x;u,α\displaystyle X^{t,x;u,\alpha}_{s} =x+tsa(r,Xrt,x;u,α,αr)𝑑r+tsσ(r,Xrt,x;u,α,αr)𝑑Wr\displaystyle=x+\int_{t}^{s}a(r,X^{t,x;u,\alpha}_{r},\alpha_{r})dr+\int_{t}^{s}\sigma(r,X^{t,x;u,\alpha}_{r},\alpha_{r})dW_{r} (1.3)

for s[t,τ1)s\in[t,\tau_{1}) and

Xst,x;u,α\displaystyle X^{t,x;u,\alpha}_{s} =Γ(τjt,Xτjtt,x;[u]j1,α,βj)+τjtsa(r,Xrt,x;u,α,αr)𝑑r+τjtsσ(r,Xrt,x;u,α,αr)𝑑Wr,\displaystyle=\Gamma(\tau_{j}\vee t,X^{t,x;[u]_{j-1},\alpha}_{\tau_{j}\vee t},\beta_{j})+\int_{\tau_{j}\vee t}^{s}a(r,X^{t,x;u,\alpha}_{r},\alpha_{r})dr+\int_{\tau_{j}\vee t}^{s}\sigma(r,X^{t,x;u,\alpha}_{r},\alpha_{r})dW_{r}, (1.4)

whenever s[τj,τj+1)s\in[\tau_{j},\tau_{j+1}) with τN+1:=\tau_{N+1}:=\infty.

We show that VV_{-} and V+V_{+} are both viscosity solutions to the Hamilton-Jacobi-Bellman-Isaacs quasi-variational inequality (HJBI-QVI)

{min{v(t,x)v(t,x),vt(t,x)infαAH(t,x,v(t,x),Dv(t,x),D2v(t,x),α)}=0,(t,x)[0,T)×dv(T,x)=ψ(x),\displaystyle\begin{cases}\min\{v(t,x)-\mathcal{M}v(t,x),-v_{t}(t,x)-\inf_{\alpha\in A}H(t,x,v(t,x),Dv(t,x),D^{2}v(t,x),\alpha)\}=0,\\ \quad\forall(t,x)\in[0,T)\times\mathbb{R}^{d}\\ v(T,x)=\psi(x),\end{cases} (1.5)

where v(t,x):=supbU{v(t,Γ(t,x,b))(t,x,b)}\mathcal{M}v(t,x):=\sup_{b\in U}\{v(t,\Gamma(t,x,b))-\ell(t,x,b)\} and

H(t,x,y,p,X,α):=pa(t,x,α)+12Tr[σσ(t,x,α)X]+f(t,x,y,pσ(t,x,α),α).\displaystyle H(t,x,y,p,X,\alpha):=p\cdot a(t,x,\alpha)+\frac{1}{2}{\rm Tr}[\sigma\sigma^{\top}(t,x,\alpha)X]+f(t,x,y,p^{\top}\sigma(t,x,\alpha),\alpha).

We then move on to prove that (1.5) admits at most one solution, leading to the main contribution of the paper, namely the conclusion that the game has a value, i.e. that VV+V_{-}\equiv V_{+}.

As in most previous works on stochastic differential games involving impulse controls, the main technical difficulty we face is showing continuity of the upper and lower value functions in the time variable. In previous works such as [21, 5, 22] continuity is simplified by assuming that the intervention costs do not depend on the state and are non-increasing in time. In [1] the assumption of non-increasing intervention costs is replaced by one where the impulse player commits to, at the start of the game, limit to a fixed number of q0q\geq 0 impulses (where qq can be chosen arbitrarily large) in addition to assuming that impulses can only be made at rational times.

In the present work we take a completely different approach to the above mentioned articles, where we first show continuity under a truncation and then show that the truncated value functions converge uniformly to the true value functions on compact sets.

The paper is organized as follows. In the next section we give some preliminary definitions and describe the by now well established theory of viscosity solutions to partial differential equations (PDEs) as well as the notion of backward semigroups. Then, in Section 3 we give some preliminary estimates on the solutions to the non-standard BSDE in (1.1). Section 4 is devoted to showing that dynamic programming principles hold for the lower and upper value functions. The proof that the lower and upper value functions are both solutions in viscosity sense to the same HJBI-QVI, that is (1.5), is given in Section 5 while the uniqueness proof is postponed to Section 6.

2 Preliminaries

We let (Ω,,)(\Omega,\mathcal{F},\mathbb{P}) be a complete probability space on which lives a dd-dimensional Brownian motion WW. We denote by 𝔽:=(t)0tT\mathbb{F}:=(\mathcal{F}_{t})_{0\leq t\leq T} the augmented natural filtration of WW.

Throughout, we will use the following notation:

  • 𝒫𝔽\mathcal{P}_{\mathbb{F}} is the σ\sigma-algebra of 𝔽\mathbb{F}-progressively measurable subsets of [0,T]×Ω[0,T]\times\Omega.

  • For p1p\geq 1, we let 𝒮p\mathcal{S}^{p} be the set of all \mathbb{R}-valued, 𝒫𝔽\mathcal{P}_{\mathbb{F}}-measurable càglàd processes (Zt:t[0,T])(Z_{t}:t\in[0,T]) such that Z𝒮p:=𝔼[supt[0,T]|Zt|p]<\|Z\|_{\mathcal{S}^{p}}:=\mathbb{E}\big{[}\sup_{t\in[0,T]}|Z_{t}|^{p}\big{]}<\infty and we let 𝒮cp\mathcal{S}^{p}_{c} be the subset of processes that are continuous.

  • We let p\mathcal{H}^{p} denote the set of all d\mathbb{R}^{d}-valued 𝒫𝔽\mathcal{P}_{\mathbb{F}}-measurable processes (Zt:t[0,T])(Z_{t}:t\in[0,T]) such that Zp:=𝔼[(0T|Zt|2𝑑t)p/2]1/p<\|Z\|_{\mathcal{H}^{p}}:=\mathbb{E}\big{[}\big{(}\int_{0}^{T}|Z_{t}|^{2}dt\big{)}^{p/2}\big{]}^{1/p}<\infty.

  • We let 𝒯\mathcal{T} be the set of all 𝔽\mathbb{F}-stopping times and for each η𝒯\eta\in\mathcal{T} we let 𝒯η\mathcal{T}_{\eta} be the corresponding subsets of stopping times τ\tau such that τη\tau\geq\eta, \mathbb{P}-a.s.

  • We let 𝒜\mathcal{A} be the set of all AA-valued processes α2\alpha\in\mathcal{H}^{2} where AA is a compact set.

  • We let 𝒰\mathcal{U} be the set of all u=(τj,βj)1jNu=(\tau_{j},\beta_{j})_{1\leq j\leq N}, where (τj)j=1N(\tau_{j})_{j=1}^{N} is a non-decreasing sequence of 𝔽\mathbb{F}-stopping times and βj\beta_{j} is a τj\mathcal{F}_{\tau_{j}}-measurable r.v. taking values in UU, such that ΞTt,x;u,αL2(Ω,T,)\Xi^{t,x;u,\alpha}_{T}\in L^{2}(\Omega,\mathcal{F}_{T},\mathbb{P}) for all α𝒜\alpha\in\mathcal{A}.

  • For stopping times η¯η¯\underline{\eta}\leq\bar{\eta} we let 𝒰η¯,η¯\mathcal{U}_{\underline{\eta},\bar{\eta}} be the subset of 𝒰\mathcal{U} with η¯τjη¯\underline{\eta}\leq\tau_{j}\leq\bar{\eta}, \mathbb{P}-a.s. for j=1,,Nj=1,\ldots,N. Similarly, we let 𝒜η¯,η¯\mathcal{A}_{\underline{\eta},\bar{\eta}}, be the restriction of 𝒜\mathcal{A} to all α:Ω×[η¯,η¯]A\alpha:\Omega\times[\underline{\eta},\bar{\eta}]\to A. When η¯=T\bar{\eta}=T we use the shorthands 𝒰η¯\mathcal{U}_{\underline{\eta}} and 𝒜η¯\mathcal{A}_{\underline{\eta}}.

  • For any u𝒰u\in\mathcal{U}, we let [u]j:=(τi,βi)1iNj[u]_{j}:=(\tau_{i},\beta_{i})_{1\leq i\leq N\wedge j}. Moreover, we introduce N(s):=max{j0:τjs}N(s):=\max\{j\geq 0:\tau_{j}\leq s\} and let us:=[u]N(s)u_{s}:=[u]_{N(s)} and us:=(τj,βj)N(s)+1jNu^{s}:=(\tau_{j},\beta_{j})_{N(s)+1\leq j\leq N}.

  • We let Πpg\Pi_{pg} denote the set of all functions φ:[0,T]×n\varphi:[0,T]\times\mathbb{R}^{n}\to\mathbb{R} that are of polynomial growth in xx, i.e. there are constants C,ρ>0C,\rho>0 such that |φ(t,x)|C(1+|x|ρ)|\varphi(t,x)|\leq C(1+|x|^{\rho}) for all (t,x)[0,T]×n(t,x)\in[0,T]\times\mathbb{R}^{n}.

We also mention that, unless otherwise specified, all inequalities between random variables are to be interpreted in the \mathbb{P}-a.s. sense.

Definition 2.1.

We introduce that notion of non-anticipative strategies defined as all maps uS:𝒜𝒰u^{S}:\mathcal{A}\to\mathcal{U} for which (uS(α))s=(uS(α~))s(u^{S}(\alpha))_{s}=(u^{S}(\tilde{\alpha}))_{s} whenever αr=α~r\alpha_{r}=\tilde{\alpha}_{r}, dλ×dd\lambda\times d\mathbb{P}-a.e. on [0,s]×Ω[0,s]\times\Omega (resp. αS:𝒰𝒜\alpha^{S}:\mathcal{U}\to\mathcal{A} for which (αS(u))s=(αS(u~))s(\alpha^{S}(u))_{s}=(\alpha^{S}(\tilde{u}))_{s} whenever u~s=us\tilde{u}_{s}=u_{s}, \mathbb{P}-a.s.). We denote by 𝒰S\mathcal{U}^{S} (resp. 𝒜S\mathcal{A}^{S}) the set of non-anticipative strategies.

Moreover, we define the restrictions to an interval [η¯,η¯][\underline{\eta},\bar{\eta}] denoted 𝒰η¯,η¯S\mathcal{U}^{S}_{\underline{\eta},\bar{\eta}} (resp. 𝒜η¯,η¯S\mathcal{A}^{S}_{\underline{\eta},\bar{\eta}}) as all non-anticipative maps uS:𝒜η¯,η¯𝒰η¯,η¯u^{S}:\mathcal{A}_{\underline{\eta},\bar{\eta}}\to\mathcal{U}_{\underline{\eta},\bar{\eta}} (resp. αS:𝒰η¯,η¯𝒜η¯,η¯\alpha^{S}:\mathcal{U}_{\underline{\eta},\bar{\eta}}\to\mathcal{A}_{\underline{\eta},\bar{\eta}}).

Definition 2.2.

We will rely heavily on approximation schemes where we limit the number of interventions in the impulse control. To this extent we let 𝒰k:={u𝒰:Nk,a.s.}\mathcal{U}^{k}:=\{u\in\mathcal{U}:N\leq k,\,\mathbb{P}-{\rm a.s.}\} for k0k\geq 0 and let 𝒰S,k\mathcal{U}^{S,k} be the corresponding set of non-anticipative strategies uS:𝒜𝒰ku^{S}:\mathcal{A}\to\mathcal{U}^{k}.

Definition 2.3.

We introduce the concatenation of impulse controls \oplus as

(τj,βj)1jN(τ~j,β~j)1jN~:=((τ1,β1),,(τN,βN),(τ~1τN,β~1),,(τ~N~τN,βN))\displaystyle(\tau_{j},\beta_{j})_{1\leq j\leq N}\oplus(\tilde{\tau}_{j},\tilde{\beta}_{j})_{1\leq j\leq\tilde{N}}:=((\tau_{1},\beta_{1}),\ldots,(\tau_{N},\beta_{N}),(\tilde{\tau}_{1}\vee\tau_{N},\tilde{\beta}_{1}),\ldots,(\tilde{\tau}_{\tilde{N}}\vee\tau_{N},\beta_{N}))

and note that for each η𝒯\eta\in\mathcal{T} we have the decomposition u=uηuηu=u_{\eta}\oplus u^{\eta}.

Similarly, when 0tsT0\leq t\leq s\leq T we let the concatenation of α𝒜t,s\alpha\in\mathcal{A}_{t,s} and α~𝒜s\tilde{\alpha}\in\mathcal{A}_{s} at ss be defined as

(αsα~)r:=𝟙[t,s)(r)αr+𝟙[s,T](r)α~r\displaystyle(\alpha\oplus_{s}\tilde{\alpha})_{r}:=\mathbbm{1}_{[t,s)}(r)\alpha_{r}+\mathbbm{1}_{[s,T]}(r)\tilde{\alpha}_{r}

for all r[t,T]r\in[t,T].

Throughout, we make the following assumptions on the parameters in the cost functional where C>0C>0 and ρ>0\rho>0 are fixed constants:

Assumption 2.4.
  1. i)

    We assume that f:[0,T]×n××d×Af:[0,T]\times\mathbb{R}^{n}\times\mathbb{R}\times\mathbb{R}^{d}\times A is Borel measurable, of polynomial growth in xx, i.e. there is a C>0C>0 and a ρ0\rho\geq 0 such that

    |f(t,x,0,0,α)|C(1+|x|ρ)\displaystyle|f(t,x,0,0,\alpha)|\leq C(1+|x|^{\rho})

    for all αA\alpha\in A, and that there is a constant kf>0k_{f}>0 such that for any t[0,T]t\in[0,T], x,xnx,x^{\prime}\in\mathbb{R}^{n}, y,yy,y^{\prime}\in\mathbb{R}, z,zdz,z^{\prime}\in\mathbb{R}^{d} and αA\alpha\in A we have

    |f(t,x,y,z,α)f(t,x,y,z,α)|\displaystyle|f(t,x^{\prime},y^{\prime},z^{\prime},\alpha)-f(t,x,y,z,\alpha)| kf((1+|x|ρ+|x|ρ)|xx|+|yy|+|zz|).\displaystyle\leq k_{f}((1+|x|^{\rho}+|x^{\prime}|^{\rho})|x^{\prime}-x|+|y^{\prime}-y|+|z^{\prime}-z|).

    Moreover, we assume that f(t,x,y,z,)f(t,x,y,z,\cdot) is continuous for all (t,x,y,z)[0,T]×n××d(t,x,y,z)\in[0,T]\times\mathbb{R}^{n}\times\mathbb{R}\times\mathbb{R}^{d}\to\mathbb{R}.

  2. ii)

    The terminal reward ψ:n\psi:\mathbb{R}^{n}\to\mathbb{R} satisfies the growth condition

    |ψ(x)|C(1+|x|ρ)\displaystyle|\psi(x)|\leq C(1+|x|^{\rho})

    for all xnx\in\mathbb{R}^{n}, and the following local Lipschitz criterion

    |ψ(x)ψ(x)|C(1+|x|ρ+|x|ρ)|xx|.\displaystyle|\psi(x)-\psi(x^{\prime})|\leq C(1+|x|^{\rho}+|x^{\prime}|^{\rho})|x-x^{\prime}|.
  3. iii)

    The intervention cost :[0,T]×n×U+\ell:[0,T]\times\mathbb{R}^{n}\times U\to\mathbb{R}_{+} is jointly continuous in (t,x,b)(t,x,b), bounded from below, i.e.

    (t,x,b)δ>0,\displaystyle\ell(t,x,b)\geq\delta>0,

    locally Lipschitz in xx and locally Hölder continuous in tt, in particular, we assume that

    |(t,x,b)(t,x,b)|C(1+|x|ρ+|x|ρ)(|xx|+|tt|ς),\displaystyle|\ell(t,x,b)-\ell(t^{\prime},x^{\prime},b)|\leq C(1+|x^{\prime}|^{\rho}+|x|^{\rho})(|x-x^{\prime}|+|t^{\prime}-t|^{\varsigma}),

    for some ς>0\varsigma>0.

  4. iv)

    For each (x,b)n×U(x,b)\in\mathbb{R}^{n}\times U we have

    ψ(x)>ψ(Γ(T,x,b))(t,x,b).\displaystyle\psi(x)>\psi(\Gamma(T,x,b))-\ell(t,x,b).
Remark 2.5.

Note in particular that Assumption 2.4.iv implies that the lower and upper value functions defined in the introduction satisfies V(T,x)=V+(T,x)=ψ(T,x)V_{-}(T,x)=V_{+}(T,x)=\psi(T,x) for all xnx\in\mathbb{R}^{n}.

Moreover, we make the following assumptions on the coefficients of the controlled forward SDE:

Assumption 2.6.

For any t,t[0,T]t,t^{\prime}\in[0,T], bUb\in U, αA\alpha\in A and x,xnx,x^{\prime}\in\mathbb{R}^{n} we have:

  1. i)

    The function Γ:[0,T]×n×Ud\Gamma:[0,T]\times\mathbb{R}^{n}\times U\to\mathbb{R}^{d} is jointly continuous and satisfies

    |Γ(t,x,b)Γ(t,x,b)|\displaystyle|\Gamma(t,x,b)-\Gamma(t^{\prime},x^{\prime},b)| kΓ(|xx|+|tt|ς(1+|x|+|x|))\displaystyle\leq k_{\Gamma}(|x^{\prime}-x|+|t^{\prime}-t|^{\varsigma}(1+|x|+|x^{\prime}|))

    and the growth condition

    |Γ(t,x,b)|KΓ|x|.\displaystyle|\Gamma(t,x,b)|\leq K_{\Gamma}\vee|x|. (2.1)

    for some constants kΓ,KΓ>0k_{\Gamma},K_{\Gamma}>0 and ς>0\varsigma>0.

  2. ii)

    The coefficients a:[0,T]×n×Ana:[0,T]\times\mathbb{R}^{n}\times A\to\mathbb{R}^{n} and σ:[0,T]×n×An×d\sigma:[0,T]\times\mathbb{R}^{n}\times A\to\mathbb{R}^{n\times d} are jointly continuous and satisfy the growth condition

    |a(t,x,α)|+|σ(t,x,α)|\displaystyle|a(t,x,\alpha)|+|\sigma(t,x,\alpha)| C(1+|x|),\displaystyle\leq C(1+|x|),

    and the Lipschitz continuity

    |a(t,x,α)a(t,x,α)|+|σ(t,x,α)σ(t,x,α)|\displaystyle|a(t,x,\alpha)-a(t,x^{\prime},\alpha)|+|\sigma(t,x,\alpha)-\sigma(t,x^{\prime},\alpha)| C|xx|.\displaystyle\leq C|x^{\prime}-x|.

2.1 Viscosity solutions

We define the upper, vv^{*}, and lower, vv_{*} semi-continuous envelope of a function vv as

v(t,x):=lim sup(t,x)(t,x),t<Tv(t,x)andv(t,x):=lim inf(t,x)(t,x),t<Tv(t,x)\displaystyle v^{*}(t,x):=\limsup_{(t^{\prime},x^{\prime})\to(t,x),\,t^{\prime}<T}v(t^{\prime},x^{\prime})\quad{\rm and}\quad v_{*}(t,x):=\liminf_{(t^{\prime},x^{\prime})\to(t,x),\,t^{\prime}<T}v(t^{\prime},x^{\prime})

Next we introduce the notion of a viscosity solution using the limiting parabolic superjet J¯+v\bar{J}^{+}v and subjet J¯v\bar{J}^{-}v of a function vv (see pp. 9-10 of [6] for a definition):

Definition 2.7.

Let vv be a locally bounded l.s.c. (resp. u.s.c.) function from [0,T]×n[0,T]\times\mathbb{R}^{n} to \mathbb{R}. Then,

  1. a)

    It is referred to as a viscosity supersolution (resp. subsolution) to (1.5) if:

    1. i)

      v(T,x)ψ(x)v(T,x)\geq\psi(x) (resp. v(T,x)ψ(x)v(T,x)\leq\psi(x))

    2. ii)

      For any (t,x)[0,T)×d(t,x)\in[0,T)\times\mathbb{R}^{d} and (p,q,X)J¯v(t,x)(p,q,X)\in\bar{J}^{-}v(t,x) (resp. J+v(t,x)J^{+}v(t,x)) we have

      min{\displaystyle\min\Big{\{} v(t,x)v(t,x),pinfαAH(t,x,v(t,x),q,X,a)}0\displaystyle v(t,x)-\mathcal{M}v(t,x),-p-\inf_{\alpha\in A}H(t,x,v(t,x),q,X,a)\Big{\}}\geq 0

      (resp.

      min{\displaystyle\min\Big{\{} v(t,x)v(t,x),pinfαAH(t,x,v(t,x),q,X,a)}0).\displaystyle v(t,x)-\mathcal{M}v(t,x),-p-\inf_{\alpha\in A}H(t,x,v(t,x),q,X,a)\Big{\}}\leq 0).
  2. b)

    It is referred to as a viscosity solution if it is both a supersolution and a subsolution.

We will sometimes use the following equivalent definition of viscosity supersolutions (resp. subsolutions):

Definition 2.8.

A l.s.c. (resp. u.s.c.) function vv is a viscosity supersolution (subsolution) to (1.5) if v(T,x)ψ(x)v(T,x)\geq\psi(x) (resp. ψ(x)\leq\psi(x)) and whenever φCl,b3([0,T]×d)\varphi\in C^{3}_{l,b}([0,T]\times\mathbb{R}^{d}\to\mathbb{R}) is such that φ(t,x)=v(t,x)\varphi(t,x)=v(t,x) and φv\varphi-v has a local maximum (resp. minimum) at (t,x)(t,x), then

min{\displaystyle\min\big{\{} v(t,x)v(t,x),φt(t,x)infαAH(t,x,v(t,x),Dφ(t,x),D2φ(t,x),a)}0(0).\displaystyle v(t,x)-\mathcal{M}v(t,x),-\varphi_{t}(t,x)-\inf_{\alpha\in A}H(t,x,v(t,x),D\varphi(t,x),D^{2}\varphi(t,x),a)\big{\}}\geq 0\>(\leq 0).
Remark 2.9.

Cl,b3C^{3}_{l,b} denotes the set of real-valued functions that are continuously differentiable up to third order and whose derivatives of order one to three are bounded

2.2 Backward semigroups

For (t,x)[0,T]×n(t,x)\in[0,T]\times\mathbb{R}^{n} we let h[0,Tt]h\in[0,T-t] and assume that ηL2(Ω,t+h,)\eta\in L^{2}(\Omega,\mathcal{F}_{t+h},\mathbb{P}). For all (u,α)𝒰t,t+h×𝒜t,t+h(u,\alpha)\in\mathcal{U}_{t,t+h}\times\mathcal{A}_{t,t+h} we then define (see [17])

Gt,t+ht,x;u,α[η]:=𝒴t,\displaystyle G_{t,t+h}^{t,x;u,\alpha}[\eta]:=\mathcal{Y}_{t}, (2.2)

where (𝒴,𝒵)𝒮2×2(\mathcal{Y},\mathcal{Z})\in\mathcal{S}^{2}\times\mathcal{H}^{2} is the unique solution333From now on we assume that any referred to uniqueness of solutions to a BSDE is uniqueness in 𝒮2×2\mathcal{S}^{2}\times\mathcal{H}^{2} and therefore refrain from referring to the space. to

𝒴s\displaystyle\mathcal{Y}_{s} =η+st+hf(r,Xrt,x;u,α,𝒴r,𝒵r)𝑑rst+h𝒵r𝑑WrΞ(t+h)+t,x;u,α+Ξst,x;u,α.\displaystyle=\eta+\int_{s}^{t+h}f(r,X^{t,x;u,\alpha}_{r},\mathcal{Y}_{r},\mathcal{Z}_{r})dr-\int_{s}^{t+h}\mathcal{Z}_{r}dW_{r}-\Xi^{t,x;u,\alpha}_{(t+h)+}+\Xi^{t,x;u,\alpha}_{s}.

The so defined family of operators Gt,x;u,αG^{t,x;u,\alpha} is referred to as the backward semigroup related to the BSDE.

We note that by the uniqueness of solutions to (1.1) (see the next section) we have that

Gt,Tt,x;u,α[ψ(XTt,x;u,α)]=Gt,t+ht,x;ut+h,α[Yt+ht+h,Xt+ht,x;ut+h,α;ut+h,α].\displaystyle G_{t,T}^{t,x;u,\alpha}[\psi(X^{t,x;u,\alpha}_{T})]=G_{t,t+h}^{t,x;u_{t+h},\alpha}[Y^{t+h,X^{t,x;u_{t+h},\alpha}_{t+h};u^{t+h},\alpha}_{t+h}]. (2.3)

We refer to (2.3) as the semigroup property of GG.

3 Forward- Backward SDEs with impulses

In this section we consider the non-standard BSDE in (1.1). Impulsively controlled BSDEs in the non-Markovian framework were treated in [19], while BSDEs related to switching problems have been treated in [15, 14, 13].

Considering first the forward SDE, we get by repeated use of standard results for SDEs (see e.g. Chapter 5 in [20]) that (1.3)-(1.4) admits a unique solution Xt,x;u,αX^{t,x;u,\alpha} for any (u,α)𝒰×𝒜(u,\alpha)\in\mathcal{U}\times\mathcal{A} since N<N<\infty, \mathbb{P}-a.s. Now, any solution of (1.1) can be written Yst,x;u,α=Y~st,x;u,α+Ξst,x;u,αY^{t,x;u,\alpha}_{s}=\tilde{Y}^{t,x;u,\alpha}_{s}+\Xi^{t,x;u,\alpha}_{s}, where (Y~t,x;u,α,Z~t,x;u,α)𝒮c2×(\tilde{Y}^{t,x;u,\alpha},\tilde{Z}^{t,x;u,\alpha})\in\mathcal{S}^{2}_{c}\times\mathcal{H} solves the standard BSDE

Y~st,x;u,α\displaystyle\tilde{Y}^{t,x;u,\alpha}_{s} =ψ(XTt,x;u,α)ΞT+t,x;u,α+sTf(r,Xrt,x;u,α,Y~rt,x;u,α+Ξrt,x;u,α,Z~rt,x;u,α)𝑑rsTZ~rt,x;u,α𝑑Wr.\displaystyle=\psi(X^{t,x;u,\alpha}_{T})-\Xi^{t,x;u,\alpha}_{T+}+\int_{s}^{T}f(r,X^{t,x;u,\alpha}_{r},\tilde{Y}^{t,x;u,\alpha}_{r}+\Xi^{t,x;u,\alpha}_{r},\tilde{Z}^{t,x;u,\alpha}_{r})dr-\int_{s}^{T}\tilde{Z}^{t,x;u,\alpha}_{r}dW_{r}. (3.1)

By standard results we find that (3.1) admits a unique solution whenever ΞT+t,x;u,αL2(Ω,)\Xi^{t,x;u,\alpha}_{T+}\in L^{2}(\Omega,\mathbb{P}) and f(,Xt,x;u,α,0,0)2f(\cdot,X^{t,x;u,\alpha}_{\cdot},0,0)\in\mathcal{H}^{2}. By a moment estimate given in the next section we are able to conclude that (1.1) admits a unique solution whenever (u,α)𝒰×𝒜(u,\alpha)\in\mathcal{U}\times\mathcal{A}.

3.1 Estimates for the controlled diffusion process

Proposition 3.1.

For each p1p\geq 1, there is a C>0C>0 such that

𝔼[sups[ζ,T]|Xst,x;u,α|p|ζ]C(1+|Xζt,x;u,α|p),\displaystyle\mathbb{E}\Big{[}\sup_{s\in[\zeta,T]}|X^{t,x;u,\alpha}_{s}|^{p}\Big{|}\mathcal{F}_{\zeta}\Big{]}\leq C(1+|X^{t,x;u,\alpha}_{\zeta}|^{p}), (3.2)

\mathbb{P}-a.s. for all (t,ζ,x,u,α)[0,T]2×n×𝒰×𝒜(t,\zeta,x,u,\alpha)\in[0,T]^{2}\times\mathbb{R}^{n}\times\mathcal{U}\times\mathcal{A}.

Proof. We use the shorthand Xj:=Xt,x;[u]j,αX^{j}:=X^{t,x;[u]_{j},\alpha}. By Assumption 2.6.(i) we get for s[τj,T]s\in[\tau_{j},T], using integration by parts, that

|Xsj|2\displaystyle|X^{j}_{s}|^{2} =|Xτjj|2+2τj+sXrj𝑑Xrj+τj+sd[Xj,Xj]r\displaystyle=|X^{j}_{\tau_{j}}|^{2}+2\int_{\tau_{j}+}^{s}X^{j}_{r}dX^{j}_{r}+\int_{\tau_{j}+}^{s}d[X^{j},X^{j}]_{r}
KΓ2|Xτjj1|2+2τj+sXrj𝑑Xrj+τj+sd[Xj,Xj]r.\displaystyle\leq K^{2}_{\Gamma}\vee|X^{{j-1}}_{\tau_{j}}|^{2}+2\int_{\tau_{j}+}^{s}X^{j}_{r}dX^{j}_{r}+\int_{\tau_{j}+}^{s}d[X^{j},X^{j}]_{r}.

We note that if |Xsj|>KΓ|X^{j}_{s}|>K_{\Gamma} and |Xrj|KΓ|X^{j}_{r}|\leq K_{\Gamma} for some r[ζ,s)r\in[\zeta,s) then there is a largest time θ<s\theta<s such that |Xθj|KΓ|X^{j}_{\theta}|\leq K_{\Gamma}. This means that during the interval (θ,s](\theta,s] interventions will not increase the magnitude |Xj||X^{j}|. By induction we find that

|Xsj|2\displaystyle|X^{j}_{s}|^{2} |Xζj|2KΓ2+i=0j{2θ(τ~i+)sτ~i+1Xri𝑑Xri+θ(τ~i+)sτ~i+1d[Xi,Xi]r}\displaystyle\leq|X^{j}_{\zeta}|^{2}\vee K_{\Gamma}^{2}+\sum_{i=0}^{j}\Big{\{}2\int_{\theta\vee(\tilde{\tau}_{i}+)}^{s\wedge\tilde{\tau}_{i+1}}X^{i}_{r}dX^{i}_{r}+\int_{\theta\vee(\tilde{\tau}_{i}+)}^{s\wedge\tilde{\tau}_{i+1}}d[X^{i},X^{i}]_{r}\Big{\}} (3.3)

for all s[t,T]s\in[t,T], where θ:=sup{r0:|Xru|KΓ}ζ\theta:=\sup\{r\geq 0:|X^{u}_{r}|\leq K_{\Gamma}\}\vee\zeta, τ~0+=0\tilde{\tau}_{0}+=0, τ~i=τi\tilde{\tau}_{i}=\tau_{i} for i=1,,ji=1,\ldots,j and τ~j+1=\tilde{\tau}_{j+1}=\infty.

Now, since XiX^{i} and XjX^{j} coincide on [0,τi+1j+1)[0,\tau_{i+1\wedge j+1}) we have

i=0jθτ~i+sτ~i+1Xri𝑑Xri\displaystyle\sum_{i=0}^{j}\int_{\theta\vee\tilde{\tau}_{i}+}^{s\wedge\tilde{\tau}_{i+1}}X^{i}_{r}dX^{i}_{r} =θsXrja(r,Xrj,αr)𝑑r+θsXrjσ(r,Xrj,αr)𝑑Wr,\displaystyle=\int_{\theta}^{s}X^{j}_{r}a(r,X^{j}_{r},\alpha_{r})dr+\int_{\theta}^{s}X^{j}_{r}\sigma(r,X^{j}_{r},\alpha_{r})dW_{r},

and

i=0jθτ~i+sτ~i+1d[Xi,Xi]r\displaystyle\sum_{i=0}^{j}\int_{\theta\vee\tilde{\tau}_{i}+}^{s\wedge\tilde{\tau}_{i+1}}d[X^{i},X^{i}]_{r} =θsσ2(r,Xrj,αr)𝑑r.\displaystyle=\int_{\theta}^{s}\sigma^{2}(r,X^{j}_{r},\alpha_{r})dr.

Inserted in (3.3) this gives

|Xsj|2\displaystyle|X^{j}_{s}|^{2} |Xζj|2KΓ2+θs(2Xsja(r,Xrj,αr)+σ2(r,Xrj,αr))𝑑r+2θsXrjσ(r,Xrj,αr)𝑑Wr\displaystyle\leq|X^{j}_{\zeta}|^{2}\vee K_{\Gamma}^{2}+\int_{\theta}^{s}(2X^{j}_{s}a(r,X^{j}_{r},\alpha_{r})+\sigma^{2}(r,X^{j}_{r},\alpha_{r}))dr+2\int_{\theta}^{s}X^{j}_{r}\sigma(r,X^{j}_{r},\alpha_{r})dW_{r}
|Xζj|2+C(1+ζs|Xrj|2𝑑r+supv[ζ,s]|ζvXrjσ(r,Xrj)𝑑Wr|).\displaystyle\leq|X^{j}_{\zeta}|^{2}+C\Big{(}1+\int_{\zeta}^{s}|X^{j}_{r}|^{2}dr+\sup_{v\in[\zeta,s]}\Big{|}\int_{\zeta}^{v}X^{j}_{r}\sigma(r,X^{j}_{r})dW_{r}\Big{|}\Big{)}.

The Burkholder-Davis-Gundy inequality now gives that for p2p\geq 2,

𝔼[supr[ζ,s]|Xrj|p|ζ]|Xζj|p+C(1+𝔼[ζs|Xri|p𝑑r+(ζs|Xrj|4𝑑r)p/4])\displaystyle\mathbb{E}\Big{[}\sup_{r\in[\zeta,s]}|X^{j}_{r}|^{p}\Big{|}\mathcal{F}_{\zeta}\Big{]}\leq|X^{j}_{\zeta}|^{p}+C\big{(}1+\mathbb{E}\Big{[}\int_{\zeta}^{s}|X^{i}_{r}|^{p}dr+\big{(}\int_{\zeta}^{s}|X^{j}_{r}|^{4}dr\big{)}^{p/4}\Big{]}\big{)}

and Grönwall’s lemma gives that for p4p\geq 4,

𝔼[sups[ζ,T]|Xsj|p|ζ]\displaystyle\mathbb{E}\Big{[}\sup_{s\in[\zeta,T]}|X^{j}_{s}|^{p}\big{|}\mathcal{F}_{\zeta}\Big{]} C(1+|Xζj|p),\displaystyle\leq C(1+|X^{j}_{\zeta}|^{p}), (3.4)

\mathbb{P}-a.s., where the constant C=C(T,p)C=C(T,p) does not depend on uu, α\alpha or jj and (3.2) follows by letting jj\to\infty on both sides and using Fatou’s lemma. The result for general p1p\geq 1 follows by Jensen’s inequality.∎

As mentioned above, inequality (3.2) guarantees existence of a unique solution to the BSDE (1.1). We will also need the following stability property.

Proposition 3.2.

For each k0k\geq 0 and p1p\geq 1, there is a C0C\geq 0 such that

𝔼[sups[t,T]|Xst,x;u,αXst,x;u,α|p|t]C(|xx|p+(1+|x|p)|tt|p(ς1/2)),\displaystyle\mathbb{E}\Big{[}\sup_{s\in[t^{\prime},T]}|X^{t,x;u,\alpha}_{s}-X^{t^{\prime},x^{\prime};u,\alpha}_{s}|^{p}\Big{|}\mathcal{F}_{t}\Big{]}\leq C(|x-x^{\prime}|^{p}+(1+|x|^{p})|t^{\prime}-t|^{p(\varsigma\wedge 1/2)}),

\mathbb{P}-a.s. for all (t,t,x,x)[0,T]2×2n(t,t^{\prime},x,x^{\prime})\in[0,T]^{2}\times\mathbb{R}^{2n}, with ttt^{\prime}\geq t, and all (u,α)𝒰k×𝒜(u,\alpha)\in\mathcal{U}^{k}\times\mathcal{A}.

Proof. To simplify notation we let Xj:=Xt,x;[u]j,αX^{j}:=X^{t,x;[u]_{j},\alpha} and Xj:=Xt,x;[u]j,αX^{{}^{\prime}j}:=X^{t^{\prime},x^{\prime};[u]_{j},\alpha} for j=0,,kj=0,\ldots,k. Moreover, we let δXj:=XjXj\delta X^{j}:=X^{j}-X^{{}^{\prime}j} and set δX:=δXk\delta X:=\delta X^{k}. Define κ:=max{j0:τjt}0\kappa:=\max\{j\geq 0:\tau_{j}\leq t^{\prime}\}\vee 0, then if κ=0\kappa=0 we have |δXt|=|δXt0||\delta X_{t^{\prime}}|=|\delta X^{0}_{t^{\prime}}|, where for any value of κ\kappa,

|δXt0|=|Xtt,x;u,αx|.\displaystyle|\delta X^{0}_{t^{\prime}}|=|X^{t,x;u,\alpha}_{t^{\prime}}-x^{\prime}|.

When κ>0\kappa>0 we get for j=1,,κj=1,\ldots,\kappa,

|δXtj|\displaystyle|\delta X^{j}_{t^{\prime}}| kΓ(|δXtj1|+|Xtj1Xτjj1|+|tt|ς(1+|Xτjj1|+|Xtj1|))\displaystyle\leq k_{\Gamma}(|\delta X^{{j-1}}_{t^{\prime}}|+|X^{{j-1}}_{t^{\prime}}-X^{{j-1}}_{\tau_{j}}|+|t^{\prime}-t|^{\varsigma}(1+|X^{{j-1}}_{\tau_{j}}|+|X^{{}^{\prime}{j-1}}_{t^{\prime}}|))

By induction we find that

|δXtκ|\displaystyle|\delta X^{\kappa}_{t^{\prime}}| j=1κkΓκ+1j(|Xtj1Xτjj1|+|tt|ς(1+sups[t,t]|Xsj1|+|Xtj1|)).\displaystyle\leq\sum_{j=1}^{\kappa}k_{\Gamma}^{\kappa+1-j}(|X^{{j-1}}_{t^{\prime}}-X^{{j-1}}_{\tau_{j}}|+|t^{\prime}-t|^{\varsigma}(1+\sup_{s\in[t,t^{\prime}]}|X^{{j-1}}_{s}|+|X^{{}^{\prime}{j-1}}_{t^{\prime}}|)).

Now, since

|Xtj1Xτjj1|τjt|a(r,Xrj1,αr)|𝑑r+|τjtσ(r,Xrj1,αr)𝑑Ws|,\displaystyle|X^{{j-1}}_{t^{\prime}}-X^{{j-1}}_{\tau_{j}}|\leq\int_{\tau_{j}}^{t^{\prime}}|a(r,X^{j-1}_{r},\alpha_{r})|dr+\Big{|}\int_{\tau_{j}}^{t^{\prime}}\sigma(r,X^{j-1}_{r},\alpha_{r})dW_{s}\Big{|},

Proposition 3.4 gives that

𝔼[|Xtj1Xτjj1|p|t]C(1+|x|p)|tt|p/2.\displaystyle\mathbb{E}\big{[}|X^{j-1}_{t^{\prime}}-X^{j-1}_{\tau_{j}}|^{p}\big{|}\mathcal{F}_{t}\big{]}\leq C(1+|x|^{p})|t^{\prime}-t|^{p/2}.

Similarly,

𝔼[|Xtt,x;u,αx|p|t]C(|xx|p+(1+|x|p)|tt|p/2)\displaystyle\mathbb{E}\big{[}|X^{t,x;u,\alpha}_{t^{\prime}}-x^{\prime}|^{p}\big{|}\mathcal{F}_{t}\big{]}\leq C(|x-x^{\prime}|^{p}+(1+|x|^{p})|t^{\prime}-t|^{p/2})

and we find that

𝔼[|δXt|p|t]C(|xx|p+(1+|x|p)|tt|p(ς1/2)).\displaystyle\mathbb{E}\big{[}|\delta X_{t^{\prime}}|^{p}\big{|}\mathcal{F}_{t}\big{]}\leq C(|x-x^{\prime}|^{p}+(1+|x|^{p})|t^{\prime}-t|^{p(\varsigma\wedge 1/2)}).

Moreover, we note that for jκj\geq\kappa and sτjs\geq\tau_{j} (with τ0:=t\tau_{0}:=t^{\prime}),

|δXsj|\displaystyle|\delta X^{j}_{s}| (1kΓ)|δXτjj|+τjs|a(r,Xrj,αr)a(r,Xrj,αr)|𝑑r\displaystyle\leq(1\vee k_{\Gamma})|\delta X^{j}_{\tau_{j}}|+\int_{\tau_{j}}^{s}|a(r,X^{j}_{r},\alpha_{r})-a(r,X^{{}^{\prime}j}_{r},\alpha_{r})|dr
+|ts(σ(r,Xrj,αr)σ(r,Xrj,αr)dWr|\displaystyle\quad+\Big{|}\int_{t^{\prime}}^{s}(\sigma(r,X^{j}_{r},\alpha_{r})-\sigma(r,X^{{}^{\prime}j}_{r},\alpha_{r})dW_{r}\Big{|}

and the Burkholder-Davis-Gundy inequality gives for p2p\geq 2 we have

𝔼[supr[τj,s]|δXrj|p]\displaystyle\mathbb{E}\Big{[}\sup_{r\in[\tau_{j},s]}|\delta X^{j}_{r}|^{p}\Big{]} C𝔼[|δXτjj|p+(τjs|a(r,Xrj,αr)a(r,Xrj,αr)|dr)p\displaystyle\leq C\mathbb{E}\Big{[}|\delta X^{j}_{\tau_{j}}|^{p}+\Big{(}\int_{\tau_{j}}^{s}|a(r,X^{j}_{r},\alpha_{r})-a(r,X^{{}^{\prime}j}_{r},\alpha_{r})|dr\Big{)}^{p}
+(τjs|σ(r,Xrj,αr)σ(r,Xrj,αr)|2dr)p/2]\displaystyle+\Big{(}\int_{\tau_{j}}^{s}|\sigma(r,X^{{}^{\prime}j}_{r},\alpha_{r})-\sigma(r,X^{j}_{r},\alpha_{r})|^{2}dr\Big{)}^{p/2}\Big{]}
C𝔼[|δXτjj|p+(τjs|δXrj|2𝑑r)p/2].\displaystyle\leq C\mathbb{E}\Big{[}|\delta X^{j}_{\tau_{j}}|^{p}+\big{(}\int_{\tau_{j}}^{s}|\delta X^{j}_{r}|^{2}dr\big{)}^{p/2}\Big{]}.

The Lipschitz conditions on the coefficients combined with Grönwall’s lemma then implies that

𝔼[supr[τj,T]|δXrj|p]\displaystyle\mathbb{E}\Big{[}\sup_{r\in[\tau_{j},T]}|\delta X^{j}_{r}|^{p}\Big{]} C𝔼[|δXτjj|p].\displaystyle\leq C\mathbb{E}\Big{[}|\delta X^{j}_{\tau_{j}}|^{p}\Big{]}.

Now, since |δXτll|kΓ|δXτll1||\delta X^{l}_{\tau_{l}}|\leq k_{\Gamma}|\delta X^{l-1}_{\tau_{l}}| for l=κ+1,,Nl=\kappa+1,\ldots,N the result follows by induction.∎

3.2 Estimates for the BSDE

For (t,x)[0,T]×n(t,x)\in[0,T]\times\mathbb{R}^{n} and (u,α)𝒰×𝒜(u,\alpha)\in\mathcal{U}\times\mathcal{A} we let (Yˇt,x;u,α,Zˇt,x;u,α)(\check{Y}^{t,x;u,\alpha},\check{Z}^{t,x;u,\alpha}) be the unique solution to the following standard BSDE

Yˇst,x;u,α=ψ(XTt,x;u,α)+sTf(r,Xrt,x;u,α,Yˇrt,x;u,α,Zˇrt,x;u,α)𝑑rsTZˇrt,x;u,α𝑑Wr.\displaystyle\check{Y}_{s}^{t,x;u,\alpha}=\psi(X^{t,x;u,\alpha}_{T})+\int_{s}^{T}f(r,X^{t,x;u,\alpha}_{r},\check{Y}^{t,x;u,\alpha}_{r},\check{Z}^{t,x;u,\alpha}_{r})dr-\int_{s}^{T}\check{Z}^{t,x;u,\alpha}_{r}dW_{r}. (3.5)

Combining classical results (see e.g. [9]) with Proposition 3.1, we have

𝔼[sups[t,T]|Yˇst,x;u,α|2+tT|Zˇst,x;u,α|2𝑑s|t]\displaystyle\mathbb{E}\Big{[}\sup_{s\in[t,T]}|\check{Y}_{s}^{t,x;u,\alpha}|^{2}+\int_{t}^{T}|\check{Z}^{t,x;u,\alpha}_{s}|^{2}ds\Big{|}\mathcal{F}_{t}\Big{]}
C𝔼[|ψ(XTt,x;u,α)|2+tT|f(r,Xrt,x;u,α,0,0,αr)|2𝑑r|t]C(1+|x|2ρ),\displaystyle\leq C\mathbb{E}\Big{[}|\psi(X^{t,x;u,\alpha}_{T})|^{2}+\int_{t}^{T}|f(r,X^{t,x;u,\alpha}_{r},0,0,\alpha_{r})|^{2}dr\Big{|}\mathcal{F}_{t}\Big{]}\leq C(1+|x|^{2\rho}), (3.6)

\mathbb{P}-a.s. for all (u,α)𝒰×𝒜(u,\alpha)\in\mathcal{U}\times\mathcal{A}.

We have the following straightforward generalization of the standard comparison principle:

Lemma 3.3.

(Comparison principle) If f^\hat{f} satisfies Assumption 2.4, and G^t,x;u,α\hat{G}^{t,x;u,\alpha} is defined as Gt,x;u,αG^{t,x;u,\alpha} but with driver f^\hat{f} instead of ff, then if f(t,x,y,z,α)f^(t,x,y,z,α)f(t,x,y,z,\alpha)\leq\hat{f}(t,x,y,z,\alpha) for all (t,x,y,z,α)[0,T]×d××d×U(t,x,y,z,\alpha)\in[0,T]\times\mathbb{R}^{d}\times\mathbb{R}\times\mathbb{R}^{d}\times U, we have Gs,rt,x;u,α[η]G^s,rt,x;u,α[η^]G_{s,r}^{t,x;u,\alpha}[\eta]\leq\hat{G}_{s,r}^{t,x;u,\alpha}[\hat{\eta}], \mathbb{P}-a.s. for each tsrTt\leq s\leq r\leq T whenever η,η^L2(Ω,s,)\eta,\hat{\eta}\in L^{2}(\Omega,\mathcal{F}_{s},\mathbb{P}) are such that ηη^\eta\leq\hat{\eta}, \mathbb{P}-a.s.

Proof. This follows immediately from the standard comparison principle (see Theorem 2.2 in [9]).∎

Using the comparison principle we easily deduce the following moment estimates:

Proposition 3.4.

We have,

esssupα𝒜|esssupu𝒰Ytt,x;u,α|C(1+|x|ρ),a.s.\displaystyle\mathop{\rm{ess}\sup}_{\alpha\in\mathcal{A}}|\mathop{\rm{ess}\sup}_{u\in\mathcal{U}}Y^{t,x;u,\alpha}_{t}|\leq C(1+|x|^{\rho}),\qquad\mathbb{P}-{\rm a.s.} (3.7)

and for each k0k\geq 0, there is a C>0C>0 such that

𝔼[sups[t,T]|Yst,x;u,α|2+tT|Zst,x;u,α|2𝑑s|t]C(1+|x|2ρ),\displaystyle\mathbb{E}\Big{[}\sup_{s\in[t,T]}|Y^{t,x;u,\alpha}_{s}|^{2}+\int_{t}^{T}|Z^{t,x;u,\alpha}_{s}|^{2}ds\Big{|}\mathcal{F}_{t}\Big{]}\leq C(1+|x|^{2\rho}), (3.8)

\mathbb{P}-a.s. for all (t,x,u,α)[0,T]×n×𝒰k×𝒜(t,x,u,\alpha)\in[0,T]\times\mathbb{R}^{n}\times\mathcal{U}^{k}\times\mathcal{A}.

Proof. The first statement follows by repeated application of the comparison principle which gives that Yˇtt,x;,αesssupu𝒰Ytt,x;u,αesssupu𝒰Yˇtt,x;u,α\check{Y}^{t,x;\emptyset,\alpha}_{t}\leq\mathop{\rm{ess}\sup}_{u\in\mathcal{U}}Y^{t,x;u,\alpha}_{t}\leq\mathop{\rm{ess}\sup}_{u\in\mathcal{U}}\check{Y}^{t,x;u,\alpha}_{t} and using (3.6).

The second statement follows by noting that for fixed k0k\geq 0, there is a C>0C>0 such that

𝔼[|ΞT+t,x;u,α|2]\displaystyle\mathbb{E}[|\Xi^{t,x;u,\alpha}_{T+}|^{2}] C(1+𝔼[sups[t,T]|Xst,x;u,α|2ρ])C(1+|x|2ρ)\displaystyle\leq C(1+\mathbb{E}[\sup_{s\in[t,T]}|X^{t,x;u,\alpha}_{s}|^{2\rho}])\leq C(1+|x|^{2\rho})

for all (u,α)𝒰k×𝒜(u,\alpha)\in\mathcal{U}^{k}\times\mathcal{A}.∎

Proposition 3.5.

For each k0k\geq 0, there is a C>0C>0 such that

|𝔼[Ytt,x;u,αYtt,x;u,α]|C(1+|x|ρ+1+|x|ρ+1)(|xx|+|tt|ς1/2),\displaystyle|\mathbb{E}\big{[}Y^{t^{\prime},x^{\prime};u,\alpha}_{t^{\prime}}-Y^{t,x;u,\alpha}_{t}\big{]}|\leq C(1+|x|^{\rho+1}+|x^{\prime}|^{\rho+1})(|x^{\prime}-x|+|t^{\prime}-t|^{\varsigma\wedge 1/2}), (3.9)

\mathbb{P}-a.s. for all (t,x),(t,x)[0,T]×n(t,x),(t^{\prime},x^{\prime})\in[0,T]\times\mathbb{R}^{n} with ttt\leq t^{\prime} and all u𝒰ku\in\mathcal{U}^{k} and α𝒜\alpha\in\mathcal{A}.

Proof. To simplify notation, we let X:=Xt,x;u,αX:=X^{t,x;u,\alpha} and X:=Xt,x;u,αX^{\prime}:=X^{t^{\prime},x^{\prime};u,\alpha} and set (Y,Z):=(Yt,x;u,α,Zt,x;u,α)(Y,Z):=(Y^{t,x;u,\alpha},Z^{t,x;u,\alpha}) and (Y,Z):=(Yt,x;u,α,Zt,x;u,α)(Y^{\prime},Z^{\prime}):=(Y^{t^{\prime},x^{\prime};u,\alpha},Z^{t^{\prime},x^{\prime};u,\alpha}). By defining δY:=YYt\delta Y:=Y-Y^{\prime}_{\cdot\vee t^{\prime}} and δZ:=Z𝟙[t]Z\delta Z:=Z-\mathbbm{1}_{[\cdot\geq t^{\prime}]}Z^{\prime} we have for s[t,T]s\in[t,T] that

δYs\displaystyle\delta Y_{s} =ψ(XT)ψ(XT)+sT(f(r,Xr,Yr,Zr,αr)f(r,Xr,Yr,Zr,αr))𝑑r\displaystyle=\psi(X_{T})-\psi(X^{\prime}_{T})+\int_{s}^{T}(f(r,X_{r},Y_{r},Z_{r},\alpha_{r})-f(r,X^{\prime}_{r},Y^{\prime}_{r},Z^{\prime}_{r},\alpha_{r}))dr
sTδZr𝑑Wrj=1N(𝟙[τjs](τj,Xτjj1,βj)𝟙[τjts](τjt,Xτjtj1,βj)),\displaystyle\quad-\int_{s}^{T}\delta Z_{r}dW_{r}-\sum_{j=1}^{N}(\mathbbm{1}_{[\tau_{j}\geq s]}\ell(\tau_{j},X^{j-1}_{\tau_{j}},\beta_{j})-\mathbbm{1}_{[\tau_{j}\vee t^{\prime}\geq s]}\ell(\tau_{j}\vee t^{\prime},X^{{}^{\prime}j-1}_{\tau_{j}\vee t^{\prime}},\beta_{j})),

with Xj:=Xt,x;[u]j,αX^{j}:=X^{t,x;[u]_{j},\alpha} and Xj:=Xt,x;[u]j,αX^{{}^{\prime}j}:=X^{t^{\prime},x^{\prime};[u]_{j},\alpha}. We now introduce the processes (ζ1(s))s[t,T](\zeta_{1}(s))_{s\in[t,T]} and (ζ2(s))s[t,T](\zeta_{2}(s))_{s\in[t,T]} defined as444Throughout, we use the convention that 000=0\frac{0}{0}0=0

ζ1(s):=f(s,Xs,Ys,Zs,αs)f(s,Xs,𝟙[st]Ys,Zs,αs)Ys𝟙[st]Ys𝟙[Ys𝟙[st]Ys]\displaystyle\zeta_{1}(s):=\frac{f(s,X_{s},Y_{s},Z_{s},\alpha_{s})-f(s,X_{s},\mathbbm{1}_{[s\geq t^{\prime}]}Y^{\prime}_{s},Z_{s},\alpha_{s})}{Y_{s}-\mathbbm{1}_{[s\geq t^{\prime}]}Y^{\prime}_{s}}\mathbbm{1}_{[Y_{s}\neq\mathbbm{1}_{[s\geq t^{\prime}]}Y^{\prime}_{s}]}

and

ζ2(s):=f(s,Xs,𝟙[st]Ys,Zs,αs)f(s,Xs,𝟙[st]Ys,𝟙[st]Zs,αs)|Zs𝟙[st]Zs|2(Zs𝟙[st]Zs).\displaystyle\zeta_{2}(s):=\frac{f(s,X_{s},\mathbbm{1}_{[s\geq t^{\prime}]}Y^{\prime}_{s},Z_{s},\alpha_{s})-f(s,X_{s},\mathbbm{1}_{[s\geq t^{\prime}]}Y^{\prime}_{s},\mathbbm{1}_{[s\geq t^{\prime}]}Z^{\prime}_{s},\alpha_{s})}{|Z_{s}-\mathbbm{1}_{[s\geq t^{\prime}]}Z^{\prime}_{s}|^{2}}(Z_{s}-\mathbbm{1}_{[s\geq t^{\prime}]}Z^{\prime}_{s})^{\top}.

We then have by the Lipschitz continuity of ff that |ζ1(s)||ζ2(s)|kf|\zeta_{1}(s)|\vee|\zeta_{2}(s)|\leq k_{f}. Using Ito’s formula we find that

δYs\displaystyle\delta Y_{s} =Rs,T(ψ(XT)ψ(XT))+sTRs,r(f(r,Xr,𝟙[rt]Yr,𝟙[rt]Zr,αr)𝟙[rt]f(r,Xr,Yr,Zr,αr))𝑑r\displaystyle=R_{s,T}(\psi(X_{T})-\psi(X^{\prime}_{T}))+\int_{s}^{T}R_{s,r}(f(r,X_{r},\mathbbm{1}_{[r\geq t^{\prime}]}Y^{\prime}_{r},\mathbbm{1}_{[r\geq t^{\prime}]}Z^{\prime}_{r},\alpha_{r})-\mathbbm{1}_{[r\geq t^{\prime}]}f(r,X^{\prime}_{r},Y^{\prime}_{r},Z^{\prime}_{r},\alpha_{r}))dr
sTRs,rδZr𝑑Wrj=1N(𝟙[τjs]Rs,τj(τj,Xτjj1,βj)𝟙[τjts]Rs,τjt(τjt,Xτjtj1,βj))\displaystyle\quad-\int_{s}^{T}R_{s,r}\delta Z_{r}dW_{r}-\sum_{j=1}^{N}(\mathbbm{1}_{[\tau_{j}\geq s]}R_{s,\tau_{j}}\ell(\tau_{j},X^{j-1}_{\tau_{j}},\beta_{j})-\mathbbm{1}_{[\tau_{j}\vee t^{\prime}\geq s]}R_{s,\tau_{j}\vee t^{\prime}}\ell(\tau_{j}\vee t^{\prime},X^{{}^{\prime}j-1}_{\tau_{j}\vee t^{\prime}},\beta_{j}))

with Rs,r:=esr(ζ1(v)12|ζ2(v)|2)𝑑v+12srζ2u(v)𝑑WvR_{s,r}:=e^{\int_{s}^{r}(\zeta_{1}(v)-\frac{1}{2}|\zeta_{2}(v)|^{2})dv+\frac{1}{2}\int_{s}^{r}\zeta^{u}_{2}(v)dW_{v}}. Taking expectations on both sides yields

|𝔼[δYt]|\displaystyle|\mathbb{E}\big{[}\delta Y_{t}\big{]}| C𝔼[Rt,T(1+|XT|ρ+|XT|ρ)|XTXT|+ttRt,r(1+|Xr|ρ)dr\displaystyle\leq C\mathbb{E}\Big{[}R_{t,T}(1+|X_{T}|^{\rho}+|X^{\prime}_{T}|^{\rho})|X^{\prime}_{T}-X_{T}|+\int_{t}^{t^{\prime}}R_{t,r}(1+|X_{r}|^{\rho})dr
+tTRt,r(1+|Xr|ρ+|Xr|ρ)|XrXr|𝑑r\displaystyle\quad+\int_{t^{\prime}}^{T}R_{t,r}(1+|X_{r}|^{\rho}+|X^{\prime}_{r}|^{\rho})|X^{\prime}_{r}-X_{r}|dr
+j=1NRt,τj|(τj,Xτjj1,βj)Rτj,τjt(τjt,Xτjtj1,βj)|].\displaystyle\quad+\sum_{j=1}^{N}R_{t,\tau_{j}}|\ell(\tau_{j},X^{j-1}_{\tau_{j}},\beta_{j})-R_{\tau_{j},\tau_{j}\vee t^{\prime}}\ell(\tau_{j}\vee t^{\prime},X^{{}^{\prime}j-1}_{\tau_{j}\vee t^{\prime}},\beta_{j})|\Big{]}.

Now,

𝔼[Rt,T(1+|XT|ρ+|XT|ρ)|XTXT|+ttRt,r(1+|Xr|ρ)𝑑r+tTRt,r(1+|Xr|ρ+|Xr|ρ)|XrXr|𝑑r]\displaystyle\mathbb{E}\Big{[}R_{t,T}(1+|X_{T}|^{\rho}+|X^{\prime}_{T}|^{\rho})|X^{\prime}_{T}-X_{T}|+\int_{t}^{t^{\prime}}R_{t,r}(1+|X_{r}|^{\rho})dr+\int_{t^{\prime}}^{T}R_{t,r}(1+|X_{r}|^{\rho}+|X^{\prime}_{r}|^{\rho})|X^{\prime}_{r}-X_{r}|dr\Big{]}
C𝔼[sups[t,T]|Rt,s|2]1/2𝔼[(tt)tt(1+|Xr|2ρ)𝑑r+supr[t,T](1+|Xr|2ρ+|Xr|2ρ)|XrXr|2]1/2\displaystyle\leq C\mathbb{E}\Big{[}\sup_{s\in[t,T]}|R_{t,s}|^{2}\Big{]}^{1/2}\mathbb{E}\Big{[}(t^{\prime}-t)\int_{t}^{t^{\prime}}(1+|X_{r}|^{2\rho})dr+\sup_{r\in[t^{\prime},T]}(1+|X_{r}|^{2\rho}+|X^{\prime}_{r}|^{2\rho})|X^{\prime}_{r}-X_{r}|^{2}\Big{]}^{1/2}
C(|tt|+𝔼[supr[t,T](1+|Xr|4ρ+|Xr|4ρ)]1/4𝔼[supr[t,T]|XrXr|4]1/4)\displaystyle\leq C(|t^{\prime}-t|+\mathbb{E}\Big{[}\sup_{r\in[t^{\prime},T]}(1+|X_{r}|^{4\rho}+|X^{\prime}_{r}|^{4\rho})\Big{]}^{1/4}\mathbb{E}\Big{[}\sup_{r\in[t^{\prime},T]}|X^{\prime}_{r}-X_{r}|^{4}\Big{]}^{1/4})
C(1+|x|ρ+|x|ρ)(|xx|+(1+|x|)|tt|ς1/2)\displaystyle\leq C(1+|x|^{\rho}+|x^{\prime}|^{\rho})(|x-x^{\prime}|+(1+|x|)|t^{\prime}-t|^{\varsigma\wedge 1/2})

where we have used Proposition 3.2 to reach the last inequality. Moreover,

𝔼[j=1NRt,τj|(τj,Xτjj1,βj)Rτj,τjt(τjt,Xτjtj1,βj)|]\displaystyle\mathbb{E}\Big{[}\sum_{j=1}^{N}R_{t,\tau_{j}}|\ell(\tau_{j},X^{j-1}_{\tau_{j}},\beta_{j})-R_{\tau_{j},\tau_{j}\vee t^{\prime}}\ell(\tau_{j}\vee t^{\prime},X^{{}^{\prime}j-1}_{\tau_{j}\vee t^{\prime}},\beta_{j})|\Big{]}
𝔼[j=1NRt,τj((1+Rτj,τjt)|(τj,Xτjj1,βj)(τjt,Xτjtj1,βj)|\displaystyle\leq\mathbb{E}\Big{[}\sum_{j=1}^{N}R_{t,\tau_{j}}\big{(}(1+R_{\tau_{j},\tau_{j}\vee t^{\prime}})|\ell(\tau_{j},X^{j-1}_{\tau_{j}},\beta_{j})-\ell(\tau_{j}\vee t^{\prime},X^{{}^{\prime}j-1}_{\tau_{j}\vee t^{\prime}},\beta_{j})|
+|1Rτj,τjt|((τj,Xτjj1,βj)+(τjt,Xτjtj1,βj)))]\displaystyle\quad+|1-R_{\tau_{j},\tau_{j}\vee t^{\prime}}|(\ell(\tau_{j},X^{j-1}_{\tau_{j}},\beta_{j})+\ell(\tau_{j}\vee t^{\prime},X^{{}^{\prime}j-1}_{\tau_{j}\vee t^{\prime}},\beta_{j}))\big{)}\Big{]}
Ck𝔼[sups[t,T]|Rt,s|2]1/2(𝔼[supr[t,T](1+|Xr|2ρ+|Xr|2ρ)(|XrtXr|2+|tt|2ς)]1/2\displaystyle\leq Ck\mathbb{E}\Big{[}\sup_{s\in[t,T]}|R_{t,s}|^{2}\Big{]}^{1/2}\Big{(}\mathbb{E}\Big{[}\sup_{r\in[t,T]}(1+|X_{r}|^{2\rho}+|X^{\prime}_{r}|^{2\rho})(|X^{\prime}_{r\vee t^{\prime}}-X_{r}|^{2}+|t^{\prime}-t|^{2\varsigma})\Big{]}^{1/2}
+𝔼[supr[t,t]|1Rt,r|2(1+|Xr|2ρ)]1/2\displaystyle\quad+\mathbb{E}\Big{[}\sup_{r\in[t,t^{\prime}]}|1-R_{t,r}|^{2}(1+|X_{r}|^{2\rho})\Big{]}^{1/2}
Ck(1+|x|ρ+|x|ρ)(|xx|+(1+|x|)|tt|ς1/2).\displaystyle\leq Ck(1+|x|^{\rho}+|x^{\prime}|^{\rho})(|x^{\prime}-x|+(1+|x|)|t^{\prime}-t|^{\varsigma\wedge 1/2}).

Combining the above inequalities, the assertion follows.∎

The above proof immediately gives the following stability result:

Corollary 3.6.

(Stability) If f^\hat{f} satisfies Assumption 2.4, and G^t,x;u,α\hat{G}^{t,x;u,\alpha} is defined as Gt,x;u,αG^{t,x;u,\alpha} with driver f^\hat{f} instead of ff, then there is a C>0C>0 such that

|G^t,st,x;u,α[η^]Gt,st,x;u,α[η]|C𝔼[|η^η|2+ts|f^(r,Xr,𝒴r,𝒵r,αr)f(r,Xr,𝒴r,𝒵r,αr)|2𝑑r|t]1/2,\displaystyle|\hat{G}_{t,s}^{t,x;u,\alpha}[\hat{\eta}]-G_{t,s}^{t,x;u,\alpha}[\eta]|\leq C\mathbb{E}\Big{[}|\hat{\eta}-\eta|^{2}+\int_{t}^{s}|\hat{f}(r,X_{r},\mathcal{Y}_{r},\mathcal{Z}_{r},\alpha_{r})-f(r,X_{r},\mathcal{Y}_{r},\mathcal{Z}_{r},\alpha_{r})|^{2}dr\Big{|}\mathcal{F}_{t}\Big{]}^{1/2},

\mathbb{P}-a.s. for all s[t,T]s\in[t,T] and η,η^L2(Ω,s,)\eta,\hat{\eta}\in L^{2}(\Omega,\mathcal{F}_{s},\mathbb{P}).

4 Dynamic programming principles

In this section we show that VV_{-} and V+V_{+} are jointly continuous (deterministic) functions that satisfy the dynamic programming relations

V(t,x)=essinfαS𝒜t,t+hSesssupu𝒰t,t+hGt,t+ht,x;u,αS(u)[V(t+h,Xt+ht,x;u,αS(u))]\displaystyle V_{-}(t,x)=\mathop{\rm{ess}\inf}_{\alpha^{S}\in\mathcal{A}^{S}_{t,t+h}}\mathop{\rm{ess}\sup}_{u\in\mathcal{U}_{t,t+h}}G_{t,t+h}^{t,x;u,\alpha^{S}(u)}[V_{-}(t+h,X^{t,x;u,\alpha^{S}(u)}_{t+h})] (4.1)

and

V+(t,x)=esssupuS𝒰t,t+hSessinfα𝒜t,t+hGt,t+ht,x;uS(α),α[V+(t+h,Xt+ht,x;uS(α),α)],\displaystyle V_{+}(t,x)=\mathop{\rm{ess}\sup}_{u^{S}\in\mathcal{U}^{S}_{t,t+h}}\mathop{\rm{ess}\inf}_{\alpha\in\mathcal{A}_{t,t+h}}G_{t,t+h}^{t,x;u^{S}(\alpha),\alpha}[V_{+}(t+h,X^{t,x;u^{S}(\alpha),\alpha}_{t+h})], (4.2)

for t[0,T]t\in[0,T] and h[0,Tt]h\in[0,T-t].

Proposition 4.1.

For every (t,x)[0,T]×n(t,x)\in[0,T]\times\mathbb{R}^{n} we have V(t,x)=𝔼[V(t,x)]V_{-}(t,x)=\mathbb{E}[V_{-}(t,x)] and V+(t,x)=𝔼[V+(t,x)]V_{+}(t,x)=\mathbb{E}[V_{+}(t,x)], \mathbb{P}-a.s.

Proof. This follows by repeating the steps in the proof of Proposition 4.1 in [4].∎

We can thus pick the deterministic versions to represent VV_{-} and V+V_{+}. As mentioned in the introduction, the main technical difficult that we encounter appears when trying to show continuity of the upper and lower value functions in the time variable. The reason for this is that the constant CC in Proposition 3.5 depends on kk and tends to infinity as kk tends to infinity. We resolve this issue by first considering the upper and lower value functions under an imposed restriction on the number of interventions in the impulse control. Relying on a uniform convergence result will then give us continuity of VV_{-} and V+V_{+}.

4.1 A DPP with limited number of impulses

We introduce the truncated value functions

Vk(t,x):=essinfαS𝒜tSesssupu𝒰tkJ(t,x;u,αS(u))\displaystyle V_{-}^{k}(t,x):=\mathop{\rm{ess}\inf}_{\alpha^{S}\in\mathcal{A}^{S}_{t}}\mathop{\rm{ess}\sup}_{u\in\mathcal{U}^{k}_{t}}J(t,x;u,\alpha^{S}(u))

and

V+k(t,x):=esssupuS𝒰tS,kessinfα𝒜tJ(t,x;uS(α),α)\displaystyle V_{+}^{k}(t,x):=\mathop{\rm{ess}\sup}_{u^{S}\in\mathcal{U}^{S,k}_{t}}\mathop{\rm{ess}\inf}_{\alpha\in\mathcal{A}_{t}}J(t,x;u^{S}(\alpha),\alpha)

for k0k\geq 0. Similarly to VV_{-} and V+V_{+} we have:

Lemma 4.2.

For every (t,x)[0,T]×n(t,x)\in[0,T]\times\mathbb{R}^{n} and k0k\geq 0 we have Vk(t,x)=𝔼[Vk(t,x)]V_{-}^{k}(t,x)=\mathbb{E}[V_{-}^{k}(t,x)] and V+k(t,x)=𝔼[V+k(t,x)]V_{+}^{k}(t,x)=\mathbb{E}[V_{+}^{k}(t,x)], \mathbb{P}-a.s.

Combined with the estimates of the previous section this gives the following estimates:

Proposition 4.3.

For each k0k\geq 0, there is a C>0C>0 such that

|Vk(t,x)Vk(t,x)|+|V+k(t,x)V+k(t,x)|C(1+|x|ρ+1+|x|ρ+1)(|xx|+|tt|ς1/2),\displaystyle|V_{-}^{k}(t,x)-V_{-}^{k}(t^{\prime},x^{\prime})|+|V_{+}^{k}(t,x)-V_{+}^{k}(t,x^{\prime})|\leq C(1+|x|^{\rho+1}+|x|^{\rho+1})(|x^{\prime}-x|+|t-t^{\prime}|^{\varsigma\wedge 1/2}), (4.3)

for all (t,x),(t,x)[0,T]×n(t,x),(t^{\prime},x^{\prime})\in[0,T]\times\mathbb{R}^{n}. Moreover, there is a C>0C>0 such that

|Vk(t,x)|+|V+k(t,x)|C(1+|x|ρ)\displaystyle|V_{-}^{k}(t,x)|+|V_{+}^{k}(t,x)|\leq C(1+|x|^{\rho})

for all k0k\geq 0 and (t,x)[0,T]×n(t,x)\in[0,T]\times\mathbb{R}^{n}.

Proof. Since

Vk(t,x)=essinfαS𝒜Sesssupu𝒰kYt,x;u,αS(u),\displaystyle V_{-}^{k}(t,x)=\mathop{\rm{ess}\inf}_{\alpha^{S}\in\mathcal{A}^{S}}\mathop{\rm{ess}\sup}_{u\in\mathcal{U}^{k}}Y^{t,x;u,\alpha^{S}(u)},

we have

Vk(t,x)Vk(t,x)\displaystyle V_{-}^{k}(t,x)-V_{-}^{k}(t^{\prime},x^{\prime}) =essinfαS𝒜Sesssupu𝒰kYtt,x;u,αS(u)essinfαS𝒜Sesssupu𝒰kYtt,x;u,αS(u)\displaystyle=\mathop{\rm{ess}\inf}_{\alpha^{S}\in\mathcal{A}^{S}}\mathop{\rm{ess}\sup}_{u\in\mathcal{U}^{k}}Y^{t,x;u,\alpha^{S}(u)}_{t}-\mathop{\rm{ess}\inf}_{\alpha^{S}\in\mathcal{A}^{S}}\mathop{\rm{ess}\sup}_{u\in\mathcal{U}^{k}}Y^{t^{\prime},x^{\prime};u,\alpha^{S}(u)}_{t^{\prime}}
esssupαS𝒜S{esssupu𝒰kYtt,x;u,αS(u)esssupu𝒰kYtt,x;u,αS(u)}\displaystyle\leq\mathop{\rm{ess}\sup}_{\alpha^{S}\in\mathcal{A}^{S}}\{\mathop{\rm{ess}\sup}_{u\in\mathcal{U}^{k}}Y^{t,x;u,\alpha^{S}(u)}_{t}-\mathop{\rm{ess}\sup}_{u\in\mathcal{U}^{k}}Y^{t^{\prime},x^{\prime};u,\alpha^{S}(u)}_{t^{\prime}}\}
esssupα𝒜esssupu𝒰k{Ytt,x;u,αYtt,x;u,α}\displaystyle\leq\mathop{\rm{ess}\sup}_{\alpha\in\mathcal{A}}\mathop{\rm{ess}\sup}_{u\in\mathcal{U}^{k}}\{Y^{t,x;u,\alpha}_{t}-Y^{t^{\prime},x^{\prime};u,\alpha}_{t^{\prime}}\}
Ytt,x;uϵ,αϵYtt,x;uϵ,αϵ+ϵ\displaystyle\leq Y^{t,x;u_{\epsilon},\alpha_{\epsilon}}_{t}-Y^{t^{\prime},x^{\prime};u_{\epsilon},\alpha_{\epsilon}}_{t^{\prime}}+\epsilon

for each ϵ>0\epsilon>0 and some (uϵ,αϵ)𝒰k×𝒜(u_{\epsilon},\alpha_{\epsilon})\in\mathcal{U}^{k}\times\mathcal{A}. We also see that the same relation holds for V+kV_{+}^{k}. Taking expectation on both sides and using that VkV_{-}^{k} and V+kV_{+}^{k} are deterministic, the first inequality follows by Proposition 3.5 since ϵ>0\epsilon>0 was arbitrary.

The second inequality is an immediate consequence of Proposition 3.4.∎

Turning now to the dynamic programming principles, that will be obtained by applying arguments similar to those in Section 4 of [4], we have:

Proposition 4.4.

For each k0k\geq 0 and any t[0,T]t\in[0,T], h[0,Tt]h\in[0,T-t] and xnx\in\mathbb{R}^{n} we have

Vk(t,x)=essinfαS𝒜t,t+hSesssupu𝒰t,t+hkGt,t+ht,x;u,αS(u)[VkN(t+h,Xt+ht,x;u,αS(u))]\displaystyle V_{-}^{k}(t,x)=\mathop{\rm{ess}\inf}_{\alpha^{S}\in\mathcal{A}^{S}_{t,t+h}}\mathop{\rm{ess}\sup}_{u\in\mathcal{U}^{k}_{t,t+h}}G_{t,t+h}^{t,x;u,\alpha^{S}(u)}[V_{-}^{k-N}(t+h,X^{t,x;u,\alpha^{S}(u)}_{t+h})] (4.4)

and

V+k(t,x)=esssupuS𝒰t,t+hS,kessinfα𝒜t,t+hGt,t+ht,x;uS(α),α[V+kN(t+h,Xt+ht,x;uS(α),α)].\displaystyle V_{+}^{k}(t,x)=\mathop{\rm{ess}\sup}_{u^{S}\in\mathcal{U}^{S,k}_{t,t+h}}\mathop{\rm{ess}\inf}_{\alpha\in\mathcal{A}_{t,t+h}}G_{t,t+h}^{t,x;u^{S}(\alpha),\alpha}[V_{+}^{k-N}(t+h,X^{t,x;u^{S}(\alpha),\alpha}_{t+h})]. (4.5)
Remark 4.5.

At first glance the DPP for V+V_{+} may seem counter-intuitive as, on the right-hand side, α\alpha could take two different values at time t+ht+h (one under GG and the other in V+kN(t+h,)V_{+}^{k-N}(t+h,\cdot)) and thus trigger two different reactions from the impulse controller at time t+ht+h. However, by the definition of a non-anticipative strategy, uS(α)=uS(α~)u^{S}(\alpha)=u^{S}(\tilde{\alpha}) whenever α=α~\alpha=\tilde{\alpha}, d×dλd\mathbb{P}\times d\lambda-a.s. and an arbitrary choice of αt+h\alpha_{t+h} will not influence the overall value.

Proof. The proof (which is only given for the lower value function VkV_{-}^{k} as the arguments for V+kV_{+}^{k} are identical) will be carried out over a sequence of lemmata where

V,hk(t,x):=essinfαS𝒜t,t+hSesssupu𝒰t,t+hkGt,t+ht,x;u,αS(u)[VkN(t+h,Xt+ht,x;u,αS(u))].\displaystyle V_{-,h}^{k}(t,x):=\mathop{\rm{ess}\inf}_{\alpha^{S}\in\mathcal{A}^{S}_{t,t+h}}\mathop{\rm{ess}\sup}_{u\in\mathcal{U}^{k}_{t,t+h}}G_{t,t+h}^{t,x;u,\alpha^{S}(u)}[V_{-}^{k-N}(t+h,X^{t,x;u,\alpha^{S}(u)}_{t+h})].
Lemma 4.6.

V,hkV_{-,h}^{k} can be chosen to be deterministic.

Proof. Again, this follows by repeating the steps in the proof of Proposition 4.1 in [4].∎

Lemma 4.7.

V,hk(t,x)Vk(t,x)V_{-,h}^{k}(t,x)\leq V_{-}^{k}(t,x).

Proof. We begin by picking an arbitrary αS𝒜tS\alpha^{S}\in\mathcal{A}^{S}_{t} and note that we can define the restriction, α1S\alpha_{1}^{S}, of αS\alpha^{S} to 𝒜t,t+hS\mathcal{A}^{S}_{t,t+h} as

α1S(u1):=αS(u1)|[t,t+h],u1𝒰t,t+h.\displaystyle\alpha^{S}_{1}(u_{1}):=\alpha^{S}(u_{1})\big{|}_{[t,t+h]},\qquad\forall u_{1}\in\mathcal{U}_{t,t+h}.

We fix ϵ>0\epsilon>0 and have by a pasting property555We can paste together two controls u1,u2𝒰sku_{1},u_{2}\in\mathcal{U}^{k}_{s} on sets B1sB_{1}\in\mathcal{F}_{s} and B2=B1cB_{2}=B_{1}^{c} by setting u=𝟙B1u1+𝟙B2u2𝒰sku=\mathbbm{1}_{B_{1}}u_{1}+\mathbbm{1}_{B_{2}}u_{2}\in\mathcal{U}^{k}_{s} and get by uniqueness of solutions to our BSDE that Gs,rt,x;u,α[η]=𝟙B1Gs,rt,x;u1,α[η]+𝟙B2Gs,rt,x;u2,α[η]G_{s,r}^{t,x;u,\alpha}[\eta]=\mathbbm{1}_{B_{1}}G_{s,r}^{t,x;u_{1},\alpha}[\eta]+\mathbbm{1}_{B_{2}}G_{s,r}^{t,x;u_{2},\alpha}[\eta]. that there is a u1ϵ=(τj1,ϵ,βj1,ϵ)1jN1ϵ𝒰t,t+hku^{\epsilon}_{1}=(\tau^{1,\epsilon}_{j},\beta^{1,\epsilon}_{j})_{1\leq j\leq N^{\epsilon}_{1}}\in\mathcal{U}^{k}_{t,t+h} such that

V,hk(t,x)\displaystyle V_{-,h}^{k}(t,x) esssupu𝒰t,t+hkGt,t+ht,x;u,α1(u)[VkN(t+h,Xt+ht,x;u1,α1(u1))]\displaystyle\leq\mathop{\rm{ess}\sup}_{u\in\mathcal{U}^{k}_{t,t+h}}G_{t,t+h}^{t,x;u,\alpha_{1}(u)}[V_{-}^{k-N}(t+h,X^{t,x;u_{1},\alpha_{1}(u_{1})}_{t+h})]
Gt,t+ht,x;u1ϵ,α1(u1ϵ)[VkN1ϵ(t+h,Xt+ht,x;u1ϵ,α1(u1ϵ))]+ϵ.\displaystyle\leq G_{t,t+h}^{t,x;u^{\epsilon}_{1},\alpha_{1}(u^{\epsilon}_{1})}[V_{-}^{k-N^{\epsilon}_{1}}(t+h,X^{t,x;u^{\epsilon}_{1},\alpha_{1}(u^{\epsilon}_{1})}_{t+h})]+\epsilon.

Now, given u1ϵu^{\epsilon}_{1} we can define the restriction, α2S\alpha^{S}_{2}, of αS\alpha^{S} to 𝒜t+h\mathcal{A}_{t+h} as

α2S(u2):=αS(u1ϵu2)|[t+h,T],u2𝒰t+h.\displaystyle\alpha^{S}_{2}(u_{2}):=\alpha^{S}(u_{1}^{\epsilon}\oplus u_{2})\big{|}_{[t+h,T]},\qquad\forall u_{2}\in\mathcal{U}_{t+h}.

We let (𝒪i)i1(n)(\mathcal{O}_{i})_{i\geq 1}\subset\mathcal{B}(\mathbb{R}^{n}) be a partition of n\mathbb{R}^{n} such that (1+supx𝒪i|x|ρ)diam(𝒪i)ϵ(1+\sup_{x\in\mathcal{O}_{i}}|x|^{\rho}){\rm diam}(\mathcal{O}_{i})\leq\epsilon, then by Proposition 4.3 there is a C>0C>0 such that |V(t+h,x)V(t+h,x)|Cϵ|V_{-}(t+h,x)-V_{-}(t+h,x^{\prime})|\leq C\epsilon for all i1i\geq 1 and x,x𝒪ix,x^{\prime}\in\mathcal{O}_{i}. We pick xi𝒪ix_{i}\in\mathcal{O}_{i} and have by the same pasting property as above that there is for each i1i\geq 1 and j{0,,k}j\in\{0,\ldots,k\}, a u2,i,jϵ𝒰t+hju^{\epsilon}_{2,i,j}\in\mathcal{U}_{t+h}^{j} such that

Vj(t+h,xi)\displaystyle V_{-}^{j}(t+h,x_{i}) J(t+h,xi,u2,i,jϵ,α2S(u2,i,jϵ))+ϵ.\displaystyle\leq J(t+h,x_{i},u^{\epsilon}_{2,i,j},\alpha^{S}_{2}(u^{\epsilon}_{2,i,j}))+\epsilon.

Consequently,

VkN1ϵ(t+h,Xt+ht,x;u1ϵ,α1S(u1ϵ))i1𝟙[Xt+ht,x;u1ϵ,α1S(u1ϵ)𝒪i]VkN1ϵ(t+h,xi)+Cϵ\displaystyle V_{-}^{k-N^{\epsilon}_{1}}(t+h,X^{t,x;u^{\epsilon}_{1},\alpha_{1}^{S}(u^{\epsilon}_{1})}_{t+h})\leq\sum_{i\geq 1}\mathbbm{1}_{[X^{t,x;u^{\epsilon}_{1},\alpha_{1}^{S}(u^{\epsilon}_{1})}_{t+h}\in\mathcal{O}_{i}]}V_{-}^{k-N^{\epsilon}_{1}}(t+h,x_{i})+C\epsilon
i1j=0k𝟙[kN1ϵ=j]𝟙[Xt+ht,x;u1ϵ,α1S(u1ϵ)𝒪i]J(t+h,xi,u2,i,jϵ,α2S(u2,i,jϵ))+Cϵ\displaystyle\leq\sum_{i\geq 1}\sum_{j=0}^{k}\mathbbm{1}_{[k-N^{\epsilon}_{1}=j]}\mathbbm{1}_{[X^{t,x;u^{\epsilon}_{1},\alpha_{1}^{S}(u^{\epsilon}_{1})}_{t+h}\in\mathcal{O}_{i}]}J(t+h,x_{i},u^{\epsilon}_{2,i,j},\alpha^{S}_{2}(u^{\epsilon}_{2,i,j}))+C\epsilon
i1j=0k𝟙[kN1ϵ=j]𝟙[Xt+ht,x;u1ϵ,α1S(u1ϵ)𝒪i]J(t+h,Xt+ht,x;u1ϵ,α1S(u1ϵ),u2,i,jϵ,αS(uϵ))+Cϵ,\displaystyle\leq\sum_{i\geq 1}\sum_{j=0}^{k}\mathbbm{1}_{[k-N^{\epsilon}_{1}=j]}\mathbbm{1}_{[X^{t,x;u^{\epsilon}_{1},\alpha_{1}^{S}(u^{\epsilon}_{1})}_{t+h}\in\mathcal{O}_{i}]}J(t+h,X^{t,x;u_{1}^{\epsilon},\alpha_{1}^{S}(u_{1}^{\epsilon})}_{t+h},u^{\epsilon}_{2,i,j},\alpha^{S}(u^{\epsilon}))+C\epsilon,

with

uϵ:=u1ϵi1j=0k𝟙[kN1ϵ=j]𝟙Xt+ht,x;u1ϵ,α1S(u1ϵ)𝒪i]u2,i,j.\displaystyle u^{\epsilon}:=u_{1}^{\epsilon}\oplus\sum_{i\geq 1}\sum_{j=0}^{k}\mathbbm{1}_{[k-N^{\epsilon}_{1}=j]}\mathbbm{1}_{X^{t,x;u_{1}^{\epsilon},\alpha_{1}^{S}(u_{1}^{\epsilon})}_{t+h}\in\mathcal{O}_{i}]}u_{2,i,j}.

Using first comparison and then the stability property for BSDEs we find that

V,hk(t,x)\displaystyle V_{-,h}^{k}(t,x) Gt,t+ht,x;u1ϵ,α1S(u1ϵ)[i1j=0k𝟙[kN1ϵ=j]𝟙[Xt+ht,x;u1ϵ,α1S(u1ϵ)𝒪i]J(t+h,Xt+ht,x;u1ϵ,α1S(u1ϵ),u2,i,jϵ,αS(uϵ))+Cϵ]\displaystyle\leq G_{t,t+h}^{t,x;u^{\epsilon}_{1},\alpha_{1}^{S}(u^{\epsilon}_{1})}[\sum_{i\geq 1}\sum_{j=0}^{k}\mathbbm{1}_{[k-N^{\epsilon}_{1}=j]}\mathbbm{1}_{[X^{t,x;u^{\epsilon}_{1},\alpha_{1}^{S}(u^{\epsilon}_{1})}_{t+h}\in\mathcal{O}_{i}]}J(t+h,X^{t,x;u_{1}^{\epsilon},\alpha_{1}^{S}(u_{1}^{\epsilon})}_{t+h},u^{\epsilon}_{2,i,j},\alpha^{S}(u^{\epsilon}))+C\epsilon]
J(t,x;uϵ,αS(uϵ))+Cϵ\displaystyle\leq J(t,x;u^{\epsilon},\alpha^{S}(u^{\epsilon}))+C\epsilon
esssupu𝒰kJ(t,x;uϵ,αS(u))+Cϵ,\displaystyle\leq\mathop{\rm{ess}\sup}_{u\in\mathcal{U}^{k}}J(t,x;u^{\epsilon},\alpha^{S}(u))+C\epsilon,

where C>0C>0 only depends on the coefficients of the BSDE. Now, as this holds for all αS𝒜tS\alpha^{S}\in\mathcal{A}^{S}_{t} we conclude that V,hk(t,x)Vk(t,x)+CϵV_{-,h}^{k}(t,x)\leq V_{-}^{k}(t,x)+C\epsilon, but ϵ>0\epsilon>0 was arbitrary and the result follows.∎

The opposite inequality and its proof are classical (see e.g. Proposition 1.10 in [12] and Proposition 3.1 in [21]) and we give the proof only for the sake of completeness.

Lemma 4.8.

Vk(t,x)V,hk(t,x)V_{-}^{k}(t,x)\leq V_{-,h}^{k}(t,x).

Proof. We again fix an ϵ>0\epsilon>0 and let (𝒪i)i1(\mathcal{O}_{i})_{i\geq 1} be defined as above. We pick an xi𝒪ix_{i}\in\mathcal{O}_{i} for each i1i\geq 1 and note that there is a α2,i,jS𝒜t+h,TS\alpha_{2,i,j}^{S}\in\mathcal{A}^{S}_{t+h,T} (see [4] Lemma 4.5) such that

Vj(t+h,xi)J(t+h,xi;u2,α2,i,jS(u2))ϵ,\displaystyle V_{-}^{j}(t+h,x_{i})\geq J(t+h,x_{i};u_{2},\alpha^{S}_{2,i,j}(u_{2}))-\epsilon,

for all u2𝒰t+hju_{2}\in\mathcal{U}^{j}_{t+h}. Moreover, there is an α1S𝒜t,t+hS\alpha^{S}_{1}\in\mathcal{A}_{t,t+h}^{S} such that

V,hk(t,x)Gt,t+ht,x;u1,α1S(u1)[VkN1(t+h,Xt+ht,x;u1,α1S(u1))]ϵ,\displaystyle V_{-,h}^{k}(t,x)\geq G_{t,t+h}^{t,x;u_{1},\alpha^{S}_{1}(u_{1})}[V_{-}^{k-N_{1}}(t+h,X^{t,x;u_{1},\alpha^{S}_{1}(u_{1})}_{t+h})]-\epsilon,

for all u1𝒰t,t+hku_{1}\in\mathcal{U}^{k}_{t,t+h}, where N1N_{1} is the number of interventions in u1u_{1}. Now, each u=(τi,βi)1iN𝒰tku=(\tau_{i},\beta_{i})_{1\leq i\leq N}\in\mathcal{U}^{k}_{t} can be uniquely decomposed as u=u1u2u=u_{1}\oplus u_{2} with u1𝒰t,t+hku_{1}\in\mathcal{U}^{k}_{t,t+h} (with N1:=max{j0:τjt+h}N_{1}:=\max\{j\geq 0:\tau_{j}\leq t+h\} interventions) and u2𝒰t+hku_{2}\in\mathcal{U}^{k}_{t+h} (with first intervention at τ12>t+h\tau^{2}_{1}>t+h). Then,

V,hk(t,x)\displaystyle V_{-,h}^{k}(t,x) Gt,t+ht,x;u1,α1S(u1)[VkN1(t+h,Xt+ht,x;u1,α1S(u1))]ϵ\displaystyle\geq G_{t,t+h}^{t,x;u_{1},\alpha^{S}_{1}(u_{1})}[V_{-}^{k-N_{1}}(t+h,X^{t,x;u_{1},\alpha^{S}_{1}(u_{1})}_{t+h})]-\epsilon
=Gt,t+ht,x;u1,α1S(u1)[j=0k𝟙[kN1=j]Vj(t+h,Xt+ht,x;u1,α1S(u1))]ϵ\displaystyle=G_{t,t+h}^{t,x;u_{1},\alpha^{S}_{1}(u_{1})}[\sum_{j=0}^{k}\mathbbm{1}_{[k-N_{1}=j]}V_{-}^{j}(t+h,X^{t,x;u_{1},\alpha^{S}_{1}(u_{1})}_{t+h})]-\epsilon
Gt,t+ht,x;u1,α1S(u1)[j=0k𝟙[kN1=j]i1𝟙[Xt+ht,x;u1,α1S(u1)𝒪i]Vj(t+h,xi)]Cϵ\displaystyle\geq G_{t,t+h}^{t,x;u_{1},\alpha^{S}_{1}(u_{1})}[\sum_{j=0}^{k}\mathbbm{1}_{[k-N_{1}=j]}\sum_{i\geq 1}\mathbbm{1}_{[X^{t,x;u_{1},\alpha^{S}_{1}(u_{1})}_{t+h}\in\mathcal{O}_{i}]}V_{-}^{j}(t+h,x_{i})]-C\epsilon
Gt,t+ht,x;u1,α1S(u1)[j=0k𝟙[kN1=j]i1𝟙[Xt+ht,x;u1,α1S(u1)𝒪i]J(t+h,xi;u2,α2,i,jS(u2))]Cϵ\displaystyle\geq G_{t,t+h}^{t,x;u_{1},\alpha^{S}_{1}(u_{1})}[\sum_{j=0}^{k}\mathbbm{1}_{[k-N_{1}=j]}\sum_{i\geq 1}\mathbbm{1}_{[X^{t,x;u_{1},\alpha^{S}_{1}(u_{1})}_{t+h}\in\mathcal{O}_{i}]}J(t+h,x_{i};u_{2},\alpha^{S}_{2,i,j}(u_{2}))]-C\epsilon
Gt,t+ht,x;u1,α1S(u1)[j=0k𝟙[kN1=j]i1𝟙[Xt+ht,x;u1,α1S(u1)𝒪i]J(t+h,Xt+ht,x;u1,αS(u1);u2,α2,i,jS(u))]Cϵ\displaystyle\geq G_{t,t+h}^{t,x;u_{1},\alpha^{S}_{1}(u_{1})}[\sum_{j=0}^{k}\mathbbm{1}_{[k-N_{1}=j]}\sum_{i\geq 1}\mathbbm{1}_{[X^{t,x;u_{1},\alpha^{S}_{1}(u_{1})}_{t+h}\in\mathcal{O}_{i}]}J(t+h,X^{t,x;u_{1},\alpha^{S}(u_{1})}_{t+h};u_{2},\alpha^{S}_{2,i,j}(u))]-C\epsilon
=J(t,x;u,α1S(u1)t+hα2S(u))Cϵ,\displaystyle=J(t,x;u,\alpha_{1}^{S}(u_{1})\oplus_{t+h}\alpha_{2}^{S}(u))-C\epsilon,

with

α2S(u):=j=0k𝟙[kN1=j]i1𝟙[Xt+ht,x;u1,α1S(u1)𝒪i]α2,i,jS(u2).\displaystyle\alpha_{2}^{S}(u):=\sum_{j=0}^{k}\mathbbm{1}_{[k-N_{1}=j]}\sum_{i\geq 1}\mathbbm{1}_{[X^{t,x;u_{1},\alpha^{S}_{1}(u_{1})}_{t+h}\in\mathcal{O}_{i}]}\alpha^{S}_{2,i,j}(u_{2}).

Since uαS(u):=uα1S(u1)t+hα2S(u)𝒜tSu\mapsto\alpha^{S}(u):=u\mapsto\alpha_{1}^{S}(u_{1})\oplus_{t+h}\alpha_{2}^{S}(u)\in\mathcal{A}^{S}_{t}, we conclude that V,hk(t,x)V(t,x)CϵV_{-,h}^{k}(t,x)\geq V_{-}(t,x)-C\epsilon, where C>0C>0 does not depend on ϵ>0\epsilon>0 which in turn was arbitrary and the result follows.∎

Similarly, letting V+,hkV_{+,h}^{k} denote the right-hand-side of (4.5), we find V+,hk(t,x)=V+k(t,x)V_{+,h}^{k}(t,x)=V_{+}^{k}(t,x) for each (t,x)[0,T]×n(t,x)\in[0,T]\times\mathbb{R}^{n} and the statement in Proposition 4.4 follows.∎

4.2 A DPP for the general case

We turn now to the general case where there is no restriction on the number of interventions in the impulse control. Before taking the limit as kk\to\infty in VkV_{-}^{k} and V+kV_{+}^{k}, we need to delimit the set of impulse controls:

Definition 4.9.

For (t,x)[0,T]×n(t,x)\in[0,T]\times\mathbb{R}^{n} and αS𝒜tS\alpha^{S}\in\mathcal{A}_{t}^{S} we let 𝒰¯t,x,αS\bar{\mathcal{U}}_{t,x,\alpha^{S}} be the set of all u𝒰tu\in\mathcal{U}_{t} such that Yst,x;u,αS(u)Yst,x;us,αS(us)Y^{t,x;u,\alpha^{S}(u)}_{s}\geq Y^{t,x;u_{-s},\alpha^{S}(u_{-s})}_{s}, \mathbb{P}-a.s., for all s[t,T]s\in[t,T].

Moreover, we let 𝒰¯t,xS,k\bar{\mathcal{U}}^{S,k}_{t,x} be the subset of all uS𝒰tS,ku^{S}\in\mathcal{U}^{S,k}_{t} such that for each α𝒜t\alpha\in\mathcal{A}_{t} and s[t,T]s\in[t,T],

essinfα~𝒜sYst,x;uS(αsα~),αsα~essinfα~𝒜sYst,x;(uS(α))s,αsα~\displaystyle\mathop{\rm{ess}\inf}_{\tilde{\alpha}\in\mathcal{A}_{s}}Y^{t,x;u^{S}(\alpha\oplus_{s}\tilde{\alpha}),\alpha\oplus_{s}\tilde{\alpha}}_{s}\geq\mathop{\rm{ess}\inf}_{\tilde{\alpha}\in\mathcal{A}_{s}}Y^{t,x;(u^{S}(\alpha))_{s-},\alpha\oplus_{s}\tilde{\alpha}}_{s}

\mathbb{P}-a.s.

Given an αS𝒜tS\alpha^{S}\in\mathcal{A}_{t}^{S} we note that the set 𝒰¯t,x,αS\bar{\mathcal{U}}_{t,x,\alpha^{S}} consists of all controls uu where it is never (on average) beneficial to abandon uu and stop intervening on the system for the remainder of the period. Similarly, 𝒰¯t,xS\bar{\mathcal{U}}^{S}_{t,x} is the set of strategies where, given that the opponent acts rationally, it will never be beneficial to abandon uu and stop intervening. The usefulness of the above definitions in our case lies in the fact that they allow us to bound the corresponding solution to (1.1) from below by an expression that does not involve intervention costs. In particular, we have whenever αS𝒜t\alpha^{S}\in\mathcal{A}_{t} and u𝒰¯t,x,αSu\in\bar{\mathcal{U}}_{t,x,\alpha^{S}}, that

Yst,x;u,αS(u)Yst,x;us,αS(us)essinfα~𝒜sYst,x;us,αS(us)sα~\displaystyle Y^{t,x;u,\alpha^{S}(u)}_{s}\geq Y^{t,x;u_{-s},\alpha^{S}(u_{-s})}_{s}\geq\mathop{\rm{ess}\inf}_{\tilde{\alpha}\in\mathcal{A}_{s}}Y^{t,x;u_{-s},\alpha^{S}(u_{-s})\oplus_{s}\tilde{\alpha}}_{s} (4.6)

for all s[t,T]s\in[t,T], and similarly when uS𝒰¯t,xS,ku^{S}\in\bar{\mathcal{U}}^{S,k}_{t,x} we have

Yst,x;uS(α),αessinfα~𝒜sYst,x;uS(αsα~),αsα~essinfα~𝒜sYst,x;(uS(α))s,αsα~\displaystyle Y^{t,x;u^{S}(\alpha),\alpha}_{s}\geq\mathop{\rm{ess}\inf}_{\tilde{\alpha}\in\mathcal{A}_{s}}Y^{t,x;u^{S}(\alpha\oplus_{s}\tilde{\alpha}),\alpha\oplus_{s}\tilde{\alpha}}_{s}\geq\mathop{\rm{ess}\inf}_{\tilde{\alpha}\in\mathcal{A}_{s}}Y^{t,x;(u^{S}(\alpha))_{s-},\alpha\oplus_{s}\tilde{\alpha}}_{s} (4.7)

for all α𝒜t\alpha\in\mathcal{A}_{t} and s[t,T]s\in[t,T].

The following lemma shows that these sets contain all relevant impulse controls and strategies, respectively.

Lemma 4.10.

We have

V(t,x)=essinfαS𝒜tSesssupu𝒰¯t,x,αSJ(t,x;u,αS(u))\displaystyle V_{-}(t,x)=\mathop{\rm{ess}\inf}_{\alpha^{S}\in\mathcal{A}^{S}_{t}}\mathop{\rm{ess}\sup}_{u\in\bar{\mathcal{U}}_{t,x,\alpha^{S}}}J(t,x;u,\alpha^{S}(u))

and

V+(t,x)=esssupuS𝒰¯t,xSessinfα𝒜tJ(t,x;uS(α),α).\displaystyle V_{+}(t,x)=\mathop{\rm{ess}\sup}_{u^{S}\in\bar{\mathcal{U}}^{S}_{t,x}}\mathop{\rm{ess}\inf}_{\alpha\in\mathcal{A}_{t}}J(t,x;u^{S}(\alpha),\alpha).

Proof. For any αS𝒜tS\alpha^{S}\in\mathcal{A}^{S}_{t} and arbitrary u𝒰t𝒰¯t,x,αSu\in\mathcal{U}_{t}\setminus\bar{\mathcal{U}}_{t,x,\alpha^{S}} we let

χ:=inf{st:Yst,x;u,αS(u)Yst,x;us,αS(us)}T.\displaystyle\chi:=\inf\big{\{}s\geq t:Y^{t,x;u,\alpha^{S}(u)}_{s}\leq Y^{t,x;u_{s-},\alpha^{S}(u_{s-})}_{s}\big{\}}\wedge T.

Assumption 2.4.iv implies that YTt,x;u,αS(u)YTt,x;uT,αS(uT)Y^{t,x;u,\alpha^{S}(u)}_{T}\leq Y^{t,x;u_{T-},\alpha^{S}(u_{T-})}_{T} and we get that with

B1:={ω:Yχt,x;u,αS(u)Yχt,x;uχ,αS(uχ)}χ\displaystyle B_{1}:=\{\omega:Y^{t,x;u,\alpha^{S}(u)}_{\chi}\leq Y^{t,x;u_{\chi-},\alpha^{S}(u_{\chi-})}_{\chi}\}\in\mathcal{F}_{\chi}

and

B2:={ω:Yχ+t,x;u,αS(u)Yχ+t,x;uχ,αS(uχ)}B1cχ,\displaystyle B_{2}:=\{\omega:Y^{t,x;u,\alpha^{S}(u)}_{\chi+}\leq Y^{t,x;u_{\chi},\alpha^{S}(u_{\chi})}_{\chi+}\}\cap B_{1}^{c}\in\mathcal{F}_{\chi},

the set (B1B2)c(B_{1}\cup B_{2})^{c} is \mathbb{P}-negligible.

Moreover, since

Yχ+t,x;u,αS(u)Yχt,x;u,αS(u)=Yχ+t,x;uχ,αS(uχ)Yχt,x;uχ,αS(uχ),\displaystyle Y^{t,x;u,\alpha^{S}(u)}_{\chi+}-Y^{t,x;u,\alpha^{S}(u)}_{\chi}=Y^{t,x;u_{\chi},\alpha^{S}(u_{\chi})}_{\chi+}-Y^{t,x;u_{\chi},\alpha^{S}(u_{\chi})}_{\chi},

it follows that on B2B_{2} we have Yχt,x;u,αS(u)Yχt,x;uχ,αS(uχ)Y^{t,x;u,\alpha^{S}(u)}_{\chi}\leq Y^{t,x;u_{\chi},\alpha^{S}(u_{\chi})}_{\chi} and we conclude that letting u~:=𝟙B1uχ+𝟙B2uχ\tilde{u}:=\mathbbm{1}_{B_{1}}u_{\chi-}+\mathbbm{1}_{B_{2}}u_{\chi} we have Yχt,x;u,αS(u)Yχt,x;u~,αS(u~)Y^{t,x;u,\alpha^{S}(u)}_{\chi}\leq Y^{t,x;\tilde{u},\alpha^{S}(\tilde{u})}_{\chi} \mathbb{P}-a.s. By comparison we thus find that Yst,x;u,αS(u)Yst,x;u~,αS(u~)Y^{t,x;u,\alpha^{S}(u)}_{s}\leq Y^{t,x;\tilde{u},\alpha^{S}(\tilde{u})}_{s}, \mathbb{P}-a.s. for all s[t,χ]s\in[t,\chi]. In particular, this gives that u~𝒰¯t,x,αS\tilde{u}\in\bar{\mathcal{U}}_{t,x,\alpha^{S}} and Ytt,x;u,αS(u)Ytt,x;u~,αS(u~)Y^{t,x;u,\alpha^{S}(u)}_{t}\leq Y^{t,x;\tilde{u},\alpha^{S}(\tilde{u})}_{t} from which we conclude that any u𝒰t𝒰¯t,x,αSu\in\mathcal{U}_{t}\setminus\bar{\mathcal{U}}_{t,x,\alpha^{S}} is dominated by an element of 𝒰¯t,x,αS\bar{\mathcal{U}}_{t,x,\alpha^{S}}. Since this holds for any αS𝒜tS\alpha^{S}\in\mathcal{A}^{S}_{t}, we have that

essinfαS𝒜tSesssupu𝒰tJ(t,x;u,αS(u))=essinfαS𝒜tSesssupu𝒰¯t,x,αSJ(t,x;u,αS(u)),\displaystyle\mathop{\rm{ess}\inf}_{\alpha^{S}\in\mathcal{A}^{S}_{t}}\mathop{\rm{ess}\sup}_{u\in\mathcal{U}_{t}}J(t,x;u,\alpha^{S}(u))=\mathop{\rm{ess}\inf}_{\alpha^{S}\in\mathcal{A}^{S}_{t}}\mathop{\rm{ess}\sup}_{u\in\bar{\mathcal{U}}_{t,x,\alpha^{S}}}J(t,x;u,\alpha^{S}(u)),

proving the first statement.

For the second statement we fix uS𝒰tS𝒰¯t,xSu^{S}\in\mathcal{U}_{t}^{S}\setminus\bar{\mathcal{U}}_{t,x}^{S} and α𝒜t\alpha\in\mathcal{A}_{t}. We then set u=(τi,βi)1iN:=uS(α)u=(\tau_{i},\beta_{i})_{1\leq i\leq N}:=u^{S}(\alpha) and let

N(α):=min{j0:essinfα~𝒜τjYτjt,x;uS(ατjα~),ατjα~essinfα~𝒜τjYτjt,x;[uS(α)]j1,ατjα~}.\displaystyle N(\alpha):=\min\Big{\{}j\geq 0:\mathop{\rm{ess}\inf}_{\tilde{\alpha}\in\mathcal{A}_{\tau_{j}}}Y^{t,x;u^{S}(\alpha\oplus_{\tau_{j}}\tilde{\alpha}),\alpha\oplus_{\tau_{j}}\tilde{\alpha}}_{\tau_{j}}\leq\mathop{\rm{ess}\inf}_{\tilde{\alpha}\in\mathcal{A}_{\tau_{j}}}Y^{t,x;[u^{S}(\alpha)]_{j-1},\alpha\oplus_{\tau_{j}}\tilde{\alpha}}_{\tau_{j}}\Big{\}}.

Furthermore, we define u~S𝒰tS\tilde{u}^{S}\in\mathcal{U}^{S}_{t} as u~S(α):=[uS(α)]N(α)1\tilde{u}^{S}(\alpha):=[u^{S}(\alpha)]_{N(\alpha)-1} and let χ(α):=τN(α)T\chi(\alpha):=\tau_{N(\alpha)}\wedge T. By definition we have

essinfα~𝒜χ(α)Yχ(α)t,x;uS(αχ(α)α~),αχ(α)α~essinfα~𝒜χ(α)Yχ(α)t,x;u~S(α),αχ(α)α~.\displaystyle\mathop{\rm{ess}\inf}_{\tilde{\alpha}\in\mathcal{A}_{\chi(\alpha)}}Y^{t,x;u^{S}(\alpha\oplus_{\chi(\alpha)}\tilde{\alpha}),\alpha\oplus_{\chi(\alpha)}\tilde{\alpha}}_{\chi(\alpha)}\leq\mathop{\rm{ess}\inf}_{\tilde{\alpha}\in\mathcal{A}_{\chi(\alpha)}}Y^{t,x;\tilde{u}^{S}(\alpha),\alpha\oplus_{\chi(\alpha)}\tilde{\alpha}}_{\chi(\alpha)}. (4.8)

For ϵ>0\epsilon>0 and s[t,T]s\in[t,T] we let 𝒜sϵ\mathcal{A}^{\epsilon}_{s} be the subset of all α^𝒜t\hat{\alpha}\in\mathcal{A}_{t} with α^=α\hat{\alpha}=\alpha on [t,s)[t,s) such that

essinfα~𝒜χ(α^)sYχ(α^)st,x;uS(α^χ(α^)sα~),α^χ(α^)sα~Yχ(α^)st,x;uS(α^),α^ϵ\displaystyle\mathop{\rm{ess}\inf}_{\tilde{\alpha}\in\mathcal{A}_{\chi(\hat{\alpha})\vee s}}Y^{t,x;u^{S}(\hat{\alpha}\oplus_{\chi(\hat{\alpha})\vee s}\tilde{\alpha}),\hat{\alpha}\oplus_{\chi(\hat{\alpha})\vee s}\tilde{\alpha}}_{\chi(\hat{\alpha})\vee s}\geq Y^{t,x;u^{S}(\hat{\alpha}),\hat{\alpha}}_{\chi(\hat{\alpha})\vee s}-\epsilon

and similarly let 𝒜~sϵ\tilde{\mathcal{A}}^{\epsilon}_{s} be the subset of all α^𝒜t\hat{\alpha}\in\mathcal{A}_{t} with α^=α\hat{\alpha}=\alpha on [t,s)[t,s) such that

essinfα~𝒜χ(α^)sYχ(α^)st,x;u~S(α^χ(α^)sα~),α^χ(α^)sα~Yχ(α^)st,x;u~S(α^),α^ϵ.\displaystyle\mathop{\rm{ess}\inf}_{\tilde{\alpha}\in\mathcal{A}_{\chi(\hat{\alpha})\vee s}}Y^{t,x;\tilde{u}^{S}(\hat{\alpha}\oplus_{\chi(\hat{\alpha})\vee s}\tilde{\alpha}),\hat{\alpha}\oplus_{\chi(\hat{\alpha})\vee s}\tilde{\alpha}}_{\chi(\hat{\alpha})\vee s}\geq Y^{t,x;\tilde{u}^{S}(\hat{\alpha}),\hat{\alpha}}_{\chi(\hat{\alpha})\vee s}-\epsilon.

Then, we can repeat the arguments in Lemma 4.7 to conclude that for all s[t,T]s\in[t,T], the sets 𝒜sϵ\mathcal{A}^{\epsilon}_{s} and 𝒜~sϵ\tilde{\mathcal{A}}^{\epsilon}_{s} are non-empty and comparison implies that

essinfα~𝒜sYst,x;uS(αsα~),αsα~=essinfα^𝒜sϵYst,x;uS(α^),α^\displaystyle\mathop{\rm{ess}\inf}_{\tilde{\alpha}\in\mathcal{A}_{s}}Y^{t,x;u^{S}(\alpha\oplus_{s}\tilde{\alpha}),\alpha\oplus_{s}\tilde{\alpha}}_{s}=\mathop{\rm{ess}\inf}_{\hat{\alpha}\in\mathcal{A}^{\epsilon}_{s}}Y^{t,x;u^{S}(\hat{\alpha}),\hat{\alpha}}_{s} (4.9)

and

essinfα^𝒜sYst,x;u~S(αsα^),αsα^=essinfα^𝒜~sϵYst,x;u~S(α^),α^.\displaystyle\mathop{\rm{ess}\inf}_{\hat{\alpha}\in\mathcal{A}_{s}}Y^{t,x;\tilde{u}^{S}(\alpha\oplus_{s}\hat{\alpha}),\alpha\oplus_{s}\hat{\alpha}}_{s}=\mathop{\rm{ess}\inf}_{\hat{\alpha}\in\tilde{\mathcal{A}}^{\epsilon}_{s}}Y^{t,x;\tilde{u}^{S}(\hat{\alpha}),\hat{\alpha}}_{s}. (4.10)

Moreover, for α^𝒜sϵ\hat{\alpha}\in\mathcal{A}^{\epsilon}_{s} and α~𝒜~sϵ\tilde{\alpha}\in\tilde{\mathcal{A}}^{\epsilon}_{s} with α^=α~\hat{\alpha}=\tilde{\alpha} on [t,χ(α^))[t,\chi(\hat{\alpha})) we have by (4.8), that

Yχ(α^)t,x;uS(α^),α^Yχ(α~)t,x;u~S(α~),α~+ϵ.\displaystyle Y^{t,x;u^{S}(\hat{\alpha}),\hat{\alpha}}_{\chi(\hat{\alpha})}\leq Y^{t,x;\tilde{u}^{S}(\tilde{\alpha}),\tilde{\alpha}}_{\chi(\tilde{\alpha})}+\epsilon.

and using comparison together with stability implies that

essinfα^𝒜sϵYst,x;uS(α^),α^essinfα^𝒜~sϵYst,x;u~S(α^),α^+Cϵ\displaystyle\mathop{\rm{ess}\inf}_{\hat{\alpha}\in\mathcal{A}^{\epsilon}_{s}}Y^{t,x;u^{S}(\hat{\alpha}),\hat{\alpha}}_{s}\leq\mathop{\rm{ess}\inf}_{\hat{\alpha}\in\tilde{\mathcal{A}}^{\epsilon}_{s}}Y^{t,x;\tilde{u}^{S}(\hat{\alpha}),\hat{\alpha}}_{s}+C\epsilon

for all s[t,χ(α)]s\in[t,\chi(\alpha)]. In particular, since ϵ>0\epsilon>0 was arbitrary, letting s=ts=t and using (4.9) and (4.10) gives that

essinfα𝒜tJ(t,x;uS(α),α)essinfα𝒜tJ(t,x;u~S(α),α)\displaystyle\mathop{\rm{ess}\inf}_{\alpha\in\mathcal{A}_{t}}J(t,x;u^{S}(\alpha),\alpha)\leq\mathop{\rm{ess}\inf}_{\alpha\in\mathcal{A}_{t}}J(t,x;\tilde{u}^{S}(\alpha),\alpha)

and we conclude that u~S\tilde{u}^{S} dominates uSu^{S}. On the other hand, by a similar argument we find that

essinfα~𝒜sYst,x;u~S(αsα~),αsα~essinfα~𝒜sYst,x;(uS(α))s,αsα~=essinfα~𝒜sYst,x;(u~S(α))s,αsα~\displaystyle\mathop{\rm{ess}\inf}_{\tilde{\alpha}\in\mathcal{A}_{s}}Y^{t,x;\tilde{u}^{S}(\alpha\oplus_{s}\tilde{\alpha}),\alpha\oplus_{s}\tilde{\alpha}}_{s}\geq\mathop{\rm{ess}\inf}_{\tilde{\alpha}\in\mathcal{A}_{s}}Y^{t,x;(u^{S}(\alpha))_{s-},\alpha\oplus_{s}\tilde{\alpha}}_{s}=\mathop{\rm{ess}\inf}_{\tilde{\alpha}\in\mathcal{A}_{s}}Y^{t,x;(\tilde{u}^{S}(\alpha))_{s-},\alpha\oplus_{s}\tilde{\alpha}}_{s}

for all s[t,χ(α)]s\in[t,\chi(\alpha)] and since (u~S(α))s=u~S(α)(\tilde{u}^{S}(\alpha))_{s-}=\tilde{u}^{S}(\alpha) on (χ(α),T](\chi(\alpha),T] we conclude that u~S𝒰¯t,xS\tilde{u}^{S}\in\bar{\mathcal{U}}^{S}_{t,x} and the assertion follows.∎

In particular, we may w.l.o.g. restrict our attention to impulse controls (resp. strategies) in Definition 4.9. The following result relates the number of interventions in these impulse controls and strategies to the magnitude of the initial value and is central in deriving continuity of VV_{-} and V+V_{+}.

Lemma 4.11.

There is a constant C>0C>0 such that

𝔼[N]C(1+|x|ρ)\displaystyle\mathbb{E}[N]\leq C(1+|x|^{\rho}) (4.11)

for all αS𝒜tS\alpha^{S}\in\mathcal{A}^{S}_{t} and u𝒰¯t,x,αSu\in\bar{\mathcal{U}}_{t,x,\alpha^{S}}. Moreover, (4.11) also holds for u=uS(α)u=u^{S}(\alpha) whenever uS𝒰¯t,xSu^{S}\in\bar{\mathcal{U}}^{S}_{t,x} and α𝒜t\alpha\in\mathcal{A}_{t}.

Proof. Both statements will follow by a similar argument and we set α:=αS(u)\alpha:=\alpha^{S}(u) (resp. u:=uS(α)u:=u^{S}(\alpha)). To simplify notation we let (X,Y,Z):=(Xt,x;u,α,Yt,x;u,α,Zt,x;u,α)(X,Y,Z):=(X^{t,x;u,\alpha},Y^{t,x;u,\alpha},Z^{t,x;u,\alpha}) and Xj=Xt,x;[u]j,αX^{j}=X^{t,x;[u]_{j},\alpha} and get that

Ys\displaystyle Y_{s} =ψ(XT)+sTf(r,Xr,Yr,Zr,αr)𝑑rsTZr𝑑Wrτjs(τj,Xτjj1,βj).\displaystyle=\psi(X_{T})+\int_{s}^{T}f(r,X_{r},Y_{r},Z_{r},\alpha_{r})dr-\int_{s}^{T}Z_{r}dW_{r}-\sum_{\tau_{j}\geq s}\ell(\tau_{j},X^{j-1}_{\tau_{j}},\beta_{j}).

Letting

ζ1u,α(s):=f(s,Xst,x;u,α,Yst,x;u,α,Zst,x;u,α,αs)f(s,Xst,x;u,α,0,Zst,x;u,α,αs)Yst,x;u,α𝟙[Ys0]\displaystyle\zeta^{u,\alpha}_{1}(s):=\frac{f(s,X^{t,x;u,\alpha}_{s},Y^{t,x;u,\alpha}_{s},Z^{t,x;u,\alpha}_{s},\alpha_{s})-f(s,X^{t,x;u,\alpha}_{s},0,Z^{t,x;u,\alpha}_{s},\alpha_{s})}{Y^{t,x;u,\alpha}_{s}}\mathbbm{1}_{[Y_{s}\neq 0]}

and

ζ2u,α(s):=f(s,Xst,x;u,α,0,Zst,x;u,α,αs)f(s,Xst,x;u,α,0,0,αs)|Zst,x;u,α|2(Zst,x;u,α)\displaystyle\zeta^{u,\alpha}_{2}(s):=\frac{f(s,X^{t,x;u,\alpha}_{s},0,Z^{t,x;u,\alpha}_{s},\alpha_{s})-f(s,X^{t,x;u,\alpha}_{s},0,0,\alpha_{s})}{|Z^{t,x;u,\alpha}_{s}|^{2}}(Z^{t,x;u,\alpha}_{s})^{\top}

we have by the Lipschitz continuity of ff that |ζ1u,α(s)||ζ2u,α(s)|kf|\zeta^{u,\alpha}_{1}(s)|\vee|\zeta^{u,\alpha}_{2}(s)|\leq k_{f}. Using Ito’s formula we find that

Ys\displaystyle Y_{s} =Rs,Tu,αψ(XT)+sTRs,ru,αf(r,Xr,0,0,αr)𝑑rsTRs,ru,αZr𝑑Wrj=1NRs,τju,α𝟙[τjs](τj,Xτjj1,βj)\displaystyle=R^{u,\alpha}_{s,T}\psi(X_{T})+\int_{s}^{T}R^{u,\alpha}_{s,r}f(r,X_{r},0,0,\alpha_{r})dr-\int_{s}^{T}R^{u,\alpha}_{s,r}Z_{r}dW_{r}-\sum_{j=1}^{N}R^{u,\alpha}_{s,\tau_{j}}\mathbbm{1}_{[\tau_{j}\geq s]}\ell(\tau_{j},X^{j-1}_{\tau_{j}},\beta_{j})

with Rs,ru,α:=esr(ζ1u,α(v)12|ζ2u,α(v)|2)𝑑v+12srζ2u,α(v)𝑑WvR^{u,\alpha}_{s,r}:=e^{\int_{s}^{r}(\zeta^{u,\alpha}_{1}(v)-\frac{1}{2}|\zeta^{u,\alpha}_{2}(v)|^{2})dv+\frac{1}{2}\int_{s}^{r}\zeta^{u,\alpha}_{2}(v)dW_{v}}. Since the intervention costs are positive, taking the conditional expectation on both sides gives

Ys\displaystyle Y_{s} 𝔼[Rs,Tu,αψ(XT)+sTRs,ru,αf(r,Xr,0,0,αr)𝑑r|s]\displaystyle\leq\mathbb{E}\Big{[}R^{u,\alpha}_{s,T}\psi(X_{T})+\int_{s}^{T}R^{u,\alpha}_{s,r}f(r,X_{r},0,0,\alpha_{r})dr\Big{|}\mathcal{F}_{s}\Big{]}
C(1+|Xs|ρ)\displaystyle\leq C(1+|X_{s}|^{\rho})

On the other hand, by (4.6) (resp. (4.7)) we have

Ys\displaystyle Y_{s} essinfα~𝒜s𝔼[Rs,Tus,αsα~ψ(XTt,x;us,αsα~)+sTRs,rus,αsα~f(r,Xrt,x;us,αsα~,0,0,αr)𝑑r|s]\displaystyle\geq\mathop{\rm{ess}\inf}_{\tilde{\alpha}\in\mathcal{A}_{s}}\mathbb{E}\Big{[}R^{u_{s-},\alpha\oplus_{s}\tilde{\alpha}}_{s,T}\psi(X^{t,x;u_{s-},\alpha\oplus_{s}\tilde{\alpha}}_{T})+\int_{s}^{T}R^{u_{s-},\alpha\oplus_{s}\tilde{\alpha}}_{s,r}f(r,X^{t,x;u_{s-},\alpha\oplus_{s}\tilde{\alpha}}_{r},0,0,\alpha_{r})dr\Big{|}\mathcal{F}_{s}\Big{]}
C(1+|Xst,x;us,α|ρ).\displaystyle\geq-C(1+|X^{t,x;u_{s-},\alpha}_{s}|^{\rho}).

Proposition 3.1 then gives

𝔼[sups[t,T]|Ys|2]\displaystyle\mathbb{E}\Big{[}\sup_{s\in[t,T]}|Y_{s}|^{2}\Big{]} C(1+|x|2ρ).\displaystyle\leq C(1+|x|^{2\rho}).

Next, we derive a bound on the 2\mathcal{H}^{2}-norm of ZZ. Applying Ito’s formula to |Ys|2|Y_{s}|^{2} we get

|Yt|2+tT|Zs|2𝑑s\displaystyle|Y_{t}|^{2}+\int_{t}^{T}|Z_{s}|^{2}ds =ψ2(XT)+tTYsf(s,Xs,Ys,Zs,αs)𝑑s2tTYsZs𝑑Ws\displaystyle=\psi^{2}(X_{T})+\int_{t}^{T}Y_{s}f(s,X_{s},Y_{s},Z_{s},\alpha_{s})ds-2\int_{t}^{T}Y_{s}Z_{s}dW_{s}
j=1N(2Yτjj1(τj,Xτjj1,βj)+2(τj,Xτjj1,βj)),\displaystyle\quad-\sum_{j=1}^{N}(2Y^{j-1}_{\tau_{j}}\ell(\tau_{j},X^{j-1}_{\tau_{j}},\beta_{j})+\ell^{2}(\tau_{j},X^{j-1}_{\tau_{j}},\beta_{j})), (4.12)

where Yj1Y^{j-1} is YY without the j1j-1 first intervention costs. Since the intervention costs are nonnegative, we have

j=1N(2Yτjj1(τj,Xτjj1,βj)+2(τj,Xτjj1,βj))\displaystyle-\sum_{j=1}^{N}(2Y^{j-1}_{\tau_{j}}\ell(\tau_{j},X^{j-1}_{\tau_{j}},\beta_{j})+\ell^{2}(\tau_{j},X^{j-1}_{\tau_{j}},\beta_{j})) 2sups[t,T]|Ys|j=1N(τj,Xτjj1,βj)\displaystyle\leq 2\sup_{s\in[t,T]}|Y_{s}|\sum_{j=1}^{N}\ell(\tau_{j},X^{j-1}_{\tau_{j}},\beta_{j})
κsups[t,T]|Ys|2+1κ(j=1N(τj,Xτjj1,βj))2\displaystyle\leq\kappa\sup_{s\in[t,T]}|Y_{s}|^{2}+\frac{1}{\kappa}\Big{(}\sum_{j=1}^{N}\ell(\tau_{j},X^{j-1}_{\tau_{j}},\beta_{j})\Big{)}^{2}

for any κ>0\kappa>0. Inserted in (4.12) and using the Lipschitz property of ff this gives

|Yt|2+tT|Zs|2𝑑s\displaystyle|Y_{t}|^{2}+\int_{t}^{T}|Z_{s}|^{2}ds ψ2(XT)+(C+κ)sups[t,T]|Ys|2+tT(|f(s,Xs,0,0,αs)|2+12|Zs|2)𝑑s\displaystyle\leq\psi^{2}(X_{T})+(C+\kappa)\sup_{s\in[t,T]}|Y_{s}|^{2}+\int_{t}^{T}(|f(s,X_{s},0,0,\alpha_{s})|^{2}+\frac{1}{2}|Z_{s}|^{2})ds
2tTYsZs𝑑Ws+1κ(j=1N(τj,Xτjj1,βj))2.\displaystyle\quad-2\int_{t}^{T}Y_{s}Z_{s}dW_{s}+\frac{1}{\kappa}\Big{(}\sum_{j=1}^{N}\ell(\tau_{j},X^{j-1}_{\tau_{j}},\beta_{j})\Big{)}^{2}.

Now, as u𝒰u\in\mathcal{U}, it follows that the stochastic integral is uniformly integrable and thus a martingale. To see this, note that the Burkholder-Davis-Gundy inequality gives

𝔼[sups[t,T]|tsYrZr𝑑Wr|]C𝔼[(tT|YsZs|2𝑑s)1/2]C𝔼[sups[t,T]|Ys|2+tT|Zs|2𝑑s].\displaystyle\mathbb{E}\Big{[}\sup_{s\in[t,T]}\Big{|}\int_{t}^{s}Y_{r}Z_{r}dW_{r}\Big{|}\Big{]}\leq C\mathbb{E}\Big{[}\Big{(}\int_{t}^{T}|Y_{s}Z_{s}|^{2}ds\Big{)}^{1/2}\Big{]}\leq C\mathbb{E}\Big{[}\sup_{s\in[t,T]}|Y_{s}|^{2}+\int_{t}^{T}|Z_{s}|^{2}ds\Big{]}.

Taking expectations on both sides thus gives

𝔼[tT|Zs|2𝑑s]\displaystyle\mathbb{E}\Big{[}\int_{t}^{T}|Z_{s}|^{2}ds\Big{]} C(1+κ)(1+|x|2ρ)+2κ𝔼[(j=1N(τj,Xτjj1,βj))2].\displaystyle\leq C(1+\kappa)(1+|x|^{2\rho})+\frac{2}{\kappa}\mathbb{E}\Big{[}\Big{(}\sum_{j=1}^{N}\ell(\tau_{j},X^{j-1}_{\tau_{j}},\beta_{j})\Big{)}^{2}\Big{]}.

Finally,

𝔼[N]\displaystyle\mathbb{E}[N] 1δ𝔼[(j=1N(τj,Xτjj1,βj))2]1/2\displaystyle\leq\frac{1}{\delta}\mathbb{E}\Big{[}\Big{(}\sum_{j=1}^{N}\ell(\tau_{j},X^{j-1}_{\tau_{j}},\beta_{j})\Big{)}^{2}\Big{]}^{1/2}

and

𝔼[(j=1N(τj,Xτjj1,βj))2]\displaystyle\mathbb{E}\Big{[}\Big{(}\sum_{j=1}^{N}\ell(\tau_{j},X^{j-1}_{\tau_{j}},\beta_{j})\Big{)}^{2}\Big{]} C𝔼[|Yt|2+|ψ(XT)|2+tT|f(r,Xr,Yr,Zr,αr)|2𝑑r+tT|Zr|2𝑑r]\displaystyle\leq C\mathbb{E}\Big{[}|Y_{t}|^{2}+|\psi(X_{T})|^{2}+\int_{t}^{T}|f(r,X_{r},Y_{r},Z_{r},\alpha_{r})|^{2}dr+\int_{t}^{T}|Z_{r}|^{2}dr\Big{]}
C𝔼[|ψ(XT)|2+sups[t,T]|Ys|2+tT(|f(s,Xs,0,0,αs)|2+|Zs|2)𝑑s]\displaystyle\leq C\mathbb{E}\Big{[}|\psi(X_{T})|^{2}+\sup_{s\in[t,T]}|Y_{s}|^{2}+\int_{t}^{T}(|f(s,X_{s},0,0,\alpha_{s})|^{2}+|Z_{s}|^{2})ds\Big{]}
C(1+κ)(1+|x|2ρ)+Cκ𝔼[(j=1N(τj,Xτjj1,βj))2]\displaystyle\leq C(1+\kappa)(1+|x|^{2\rho})+\frac{C}{\kappa}\mathbb{E}\Big{[}\Big{(}\sum_{j=1}^{N}\ell(\tau_{j},X^{j-1}_{\tau_{j}},\beta_{j})\Big{)}^{2}\Big{]}

from which (4.11) follows by choosing κ\kappa sufficiently large.∎

Lemma 4.12.

There is a C>0C>0 such that for all k1k\geq 1 we have

V(t,x)Vk(t,x)C(1+|x|2ρ)k\displaystyle V_{-}(t,x)-V_{-}^{k}(t,x)\leq\frac{C(1+|x|^{2\rho})}{\sqrt{k}}

for all (t,x)[0,T]×n(t,x)\in[0,T]\times\mathbb{R}^{n}. In particular, the sequence {Vk}k0\{V_{-}^{k}\}_{k\geq 0} converges to VV_{-}, uniformly on compact subsets of [0,T]×n[0,T]\times\mathbb{R}^{n}.

Proof. For each αS𝒜S\alpha^{S}\in\mathcal{A}^{S} and ϵ>0\epsilon>0 there is by Lemma 4.10 a uϵ=(τiϵ,βiϵ)1iNϵ𝒰¯t,x,αSu^{\epsilon}=(\tau_{i}^{\epsilon},\beta_{i}^{\epsilon})_{1\leq i\leq N^{\epsilon}}\in\bar{\mathcal{U}}_{t,x,\alpha^{S}} such that

esssupu𝒰tJ(t,x;u,αS(u))J(t,x;uϵ,αS(uϵ))+ϵ/2,\displaystyle\mathop{\rm{ess}\sup}_{u\in\mathcal{U}_{t}}J(t,x;u,\alpha^{S}(u))\leq J(t,x;u^{\epsilon},\alpha^{S}(u^{\epsilon}))+\epsilon/2, (4.13)

\mathbb{P}-a.s. Now, let (Y,Z)=(Yt,x;uϵ,αS(uϵ),Zt,x;uϵ,αS(uϵ))(Y,Z)=(Y^{{t,x;u^{\epsilon},\alpha^{S}(u^{\epsilon})}},Z^{{t,x;u^{\epsilon},\alpha^{S}(u^{\epsilon})}}) and for k0k\geq 0, set
(Y^,Z^)=(Yt,x;[uϵ]k,αS([uϵ]k),Yt,x;[uϵ]k,αS([uϵ]k))(\hat{Y},\hat{Z})=(Y^{{t,x;[u^{\epsilon}]_{k},\alpha^{S}([u^{\epsilon}]_{k})}},Y^{{t,x;[u^{\epsilon}]_{k},\alpha^{S}([u^{\epsilon}]_{k})}}), where we recall that [u]l[u]_{l} is the truncation of uu to the first ll interventions. As αS([uϵ]k)=αS(uϵ)\alpha^{S}([u^{\epsilon}]_{k})=\alpha^{S}(u^{\epsilon}) on [0,τk+1ϵ)[0,T][0,\tau^{\epsilon}_{k+1})\cap[0,T] we have, with X:=Xt,x;uϵ,αS(uϵ)X:=X^{t,x;u^{\epsilon},\alpha^{S}(u^{\epsilon})} and X^:=Xt,x;[uϵ]k,αS([uϵ]k)\hat{X}:=X^{t,x;[u^{\epsilon}]_{k},\alpha^{S}([u^{\epsilon}]_{k})}, that X^s=Xs\hat{X}_{s}=X_{s} for all s[0,τk+1ϵ)[0,T]s\in[0,\tau^{\epsilon}_{k+1})\cap[0,T]. Letting α:=αS(uϵ)\alpha:=\alpha^{S}(u^{\epsilon}) and α^:=αS([uϵ]k)\hat{\alpha}:=\alpha^{S}([u^{\epsilon}]_{k}), this gives

YtY^t\displaystyle Y_{t}-\hat{Y}_{t} =ψ(XT)ψ(X^T)+tT(f(s,Xs,Ys,Zs,αs)f(s,X^s,Y^s,Z^s,α^s))𝑑s\displaystyle=\psi(X_{T})-\psi(\hat{X}_{T})+\int_{t}^{T}(f(s,X_{s},Y_{s},Z_{s},\alpha_{s})-f(s,\hat{X}_{s},\hat{Y}_{s},\hat{Z}_{s},\hat{\alpha}_{s}))ds
tT(ZsZ^s)𝑑Ws+ΞT+t,x;[uϵ]k,αΞT+t,x;uϵ,αS(uϵ)\displaystyle\quad-\int_{t}^{T}(Z_{s}-\hat{Z}_{s})dW_{s}+\Xi^{t,x;[u^{\epsilon}]_{k},\alpha}_{T+}-\Xi^{t,x;u^{\epsilon},\alpha^{S}(u^{\epsilon})}_{T+}
𝟙[Nϵ>k](RT(ψ(XT)ψ(X^T))+tTRs(f(s,Xs,Ys,Zs,αs)f(s,X^s,Ys,Zs,α^s))𝑑s)\displaystyle\leq\mathbbm{1}_{[N^{\epsilon}>k]}\Big{(}R_{T}(\psi(X_{T})-\psi(\hat{X}_{T}))+\int_{t}^{T}R_{s}(f(s,X_{s},Y_{s},Z_{s},\alpha_{s})-f(s,\hat{X}_{s},Y_{s},Z_{s},\hat{\alpha}_{s}))ds\Big{)}
tTRs(ZsZ^s)𝑑Ws\displaystyle\quad-\int_{t}^{T}R_{s}(Z_{s}-\hat{Z}_{s})dW_{s}

for some Rs:=ets(ζ1(r)12|ζ2(r)|2)𝑑r+12tsζ2(r)𝑑WrR_{s}:=e^{\int_{t}^{s}(\zeta_{1}(r)-\frac{1}{2}|\zeta_{2}(r)|^{2})dr+\frac{1}{2}\int_{t}^{s}\zeta_{2}(r)dW_{r}}, with |ζ1(r)||ζ2(r)|kf|\zeta_{1}(r)|\vee|\zeta_{2}(r)|\leq k_{f}. Taking expectation on both sides and using the Cauchy-Schwartz inequality gives

𝔼[YtY^t]\displaystyle\mathbb{E}[Y_{t}-\hat{Y}_{t}] 𝔼[𝟙[Nϵ>k](RT(ψ(XT)ψ(X^T))+tTRs(f(s,Xs,Ys,Zs,αs)f(s,X^s,Ys,Zs,α^s))𝑑s)]\displaystyle\leq\mathbb{E}\Big{[}\mathbbm{1}_{[N^{\epsilon}>k]}\Big{(}R_{T}(\psi(X_{T})-\psi(\hat{X}_{T}))+\int_{t}^{T}R_{s}(f(s,X_{s},Y_{s},Z_{s},\alpha_{s})-f(s,\hat{X}_{s},Y_{s},Z_{s},\hat{\alpha}_{s}))ds\Big{)}\Big{]}
C(1+|x|ρ)𝔼[𝟙[Nϵ>k]]1/2.\displaystyle\leq C(1+|x|^{\rho})\mathbb{E}\big{[}\mathbbm{1}_{[N^{\epsilon}>k]}\big{]}^{1/2}.

Now, as uϵ𝒰¯t,x,αSu^{\epsilon}\in\bar{\mathcal{U}}_{t,x,\alpha^{S}}, Lemma 4.11 implies that

𝔼[𝟙[Nϵ>k]]C(1+|x|ρ)k.\displaystyle\mathbb{E}\big{[}\mathbbm{1}_{[N^{\epsilon}>k]}\big{]}\leq\frac{C(1+|x|^{\rho})}{k}.

Since αS\alpha^{S} was arbitrary we can pick αS𝒜t\alpha^{S}\in\mathcal{A}_{t} such that

Vk(t,x)esssupu𝒰tkJ(t,x;u,αS(u))ϵ/2\displaystyle V_{-}^{k}(t,x)\geq\mathop{\rm{ess}\sup}_{u\in\mathcal{U}^{k}_{t}}J(t,x;u,\alpha^{S}(u))-\epsilon/2

and we find that

V(t,x)Vk(t,x)\displaystyle V_{-}(t,x)-V_{-}^{k}(t,x) esssupu𝒰tJ(t,x;u,αS(u))esssupu𝒰tkJ(t,x;u,αS(u))+ϵ/2\displaystyle\leq\mathop{\rm{ess}\sup}_{u\in\mathcal{U}_{t}}J(t,x;u,\alpha^{S}(u))-\mathop{\rm{ess}\sup}_{u\in\mathcal{U}^{k}_{t}}J(t,x;u,\alpha^{S}(u))+\epsilon/2
J(t,x;uϵ,αS(uϵ))J(t,x;[uϵ]k,αS([uϵ]k))+ϵ\displaystyle\leq J(t,x;u^{\epsilon},\alpha^{S}(u^{\epsilon}))-J(t,x;[u^{\epsilon}]_{k},\alpha^{S}([u^{\epsilon}]_{k}))+\epsilon
C(1+|x|2ρ)k+ϵ\displaystyle\leq\frac{C(1+|x|^{2\rho})}{\sqrt{k}}+\epsilon

from which the desired inequality follows since ϵ>0\epsilon>0 was arbitrary. In particular, we find that VkV_{-}^{k} converges uniformly on sets where xx is bounded.∎

Theorem 4.13.

VV_{-} is continuous and satisfies (4.1)

Proof. Since the sequence {Vk}k0\{V_{-}^{k}\}_{k\geq 0} is non-decreasing, Lemma 4.12 implies that VkVV_{-}^{k}\nearrow V_{-} uniformly on compacts as kk\to\infty. Hence, VV_{-} is continuous.

It remains to show that VV_{-} satisfies (4.1). We have by (4.4) and comparison that

Vk(t,x)\displaystyle V_{-}^{k}(t,x) =essinfαS𝒜t,t+hSesssupu𝒰t,t+hkGt,t+ht,x;u,αS(u)[VkN(t+h,Xt+ht,x;u,αS(u))]\displaystyle=\mathop{\rm{ess}\inf}_{\alpha^{S}\in\mathcal{A}^{S}_{t,t+h}}\mathop{\rm{ess}\sup}_{u\in\mathcal{U}^{k}_{t,t+h}}G_{t,t+h}^{t,x;u,\alpha^{S}(u)}[V_{-}^{k-N}(t+h,X^{t,x;u,\alpha^{S}(u)}_{t+h})]
essinfαS𝒜t,t+hSesssupu𝒰t,t+hGt,t+ht,x;u,αS(u)[V(t+h,Xt+ht,x;u,αS(u))]=:V,h(t,x)\displaystyle\leq\mathop{\rm{ess}\inf}_{\alpha^{S}\in\mathcal{A}^{S}_{t,t+h}}\mathop{\rm{ess}\sup}_{u\in\mathcal{U}_{t,t+h}}G_{t,t+h}^{t,x;u,\alpha^{S}(u)}[V_{-}(t+h,X^{t,x;u,\alpha^{S}(u)}_{t+h})]=:V_{-,h}(t,x)

and it follows that VV,hV_{-}\leq V_{-,h}. On the other hand, for each ϵ>0\epsilon>0 and any αS𝒜S\alpha^{S}\in\mathcal{A}^{S} we can repeat the argument in Lemma 4.12 to find that there is a k0k\geq 0 such that

esssupu𝒰t,t+hGt,t+ht,x;u,αS(u)[V(t+h,Xt+ht,x;u,αS(u))]\displaystyle\mathop{\rm{ess}\sup}_{u\in\mathcal{U}_{t,t+h}}G_{t,t+h}^{t,x;u,\alpha^{S}(u)}[V_{-}(t+h,X^{t,x;u,\alpha^{S}(u)}_{t+h})] esssupu𝒰t,t+hkGt,t+ht,x;u,αS(u)[V(t+h,Xt+ht,x;u,αS(u))]+ϵ/2.\displaystyle\leq\mathop{\rm{ess}\sup}_{u\in\mathcal{U}^{k}_{t,t+h}}G_{t,t+h}^{t,x;u,\alpha^{S}(u)}[V_{-}(t+h,X^{t,x;u,\alpha^{S}(u)}_{t+h})]+\epsilon/2.

Moreover, for each (α,u)𝒜t×𝒰t(\alpha,u)\in\mathcal{A}_{t}\times\mathcal{U}_{t}, let (𝒴k,𝒵k)(\mathcal{Y}^{k},\mathcal{Z}^{k}) be the unique solution to

𝒴sk\displaystyle\mathcal{Y}^{k}_{s} =Vk(t+h,Xt+ht,x;u,α)+st+hf(r,Xrt,x;u,α,𝒴rk,𝒵rk,αr)𝑑r\displaystyle=V_{-}^{k}(t+h,X^{t,x;u,\alpha}_{t+h})+\int_{s}^{t+h}f(r,X^{t,x;u,\alpha}_{r},\mathcal{Y}^{k}_{r},\mathcal{Z}^{k}_{r},\alpha_{r})dr
st+h𝒵rk𝑑WrΞT+t,x;u,α+Ξst,x;u,α\displaystyle\quad-\int_{s}^{t+h}\mathcal{Z}^{k}_{r}dW_{r}-\Xi^{t,x;u,\alpha}_{T+}+\Xi^{t,x;u,\alpha}_{s}

while we assume that (𝒴,𝒵)(\mathcal{Y},\mathcal{Z}) satisfies

𝒴s\displaystyle\mathcal{Y}_{s} =V(t+h,Xt+ht,x;u,α)+st+hf(r,Xrt,x;u,α,𝒴r,𝒵r,αr)𝑑r\displaystyle=V_{-}(t+h,X^{t,x;u,\alpha}_{t+h})+\int_{s}^{t+h}f(r,X^{t,x;u,\alpha}_{r},\mathcal{Y}_{r},\mathcal{Z}_{r},\alpha_{r})dr
st+h𝒵r𝑑WrΞT+t,x;u,α+Ξst,x;u,α.\displaystyle\quad-\int_{s}^{t+h}\mathcal{Z}_{r}dW_{r}-\Xi^{t,x;u,\alpha}_{T+}+\Xi^{t,x;u,\alpha}_{s}.

Then 𝒴t𝒴tk\mathcal{Y}_{t}\geq\mathcal{Y}^{k}_{t} by comparison and

𝒴t𝒴tk\displaystyle\mathcal{Y}_{t}-\mathcal{Y}^{k}_{t} =𝔼[RT(V(t+h,Xt+ht,x;u,α)Vk(t+h,Xt+ht,x;u,α))]\displaystyle=\mathbb{E}\big{[}R_{T}(V_{-}(t+h,X^{t,x;u,\alpha}_{t+h})-V_{-}^{k}(t+h,X^{t,x;u,\alpha}_{t+h}))\big{]}
Ck𝔼[RT(1+|Xt+ht,x;u,α|2ρ)|t],\displaystyle\leq\frac{C}{\sqrt{k}}\mathbb{E}\big{[}R_{T}(1+|X^{t,x;u,\alpha}_{t+h}|^{2\rho})\big{|}\mathcal{F}_{t}\big{]}, (4.14)

with Rs:=ets(ζ1(r)12|ζ2(r)|2)𝑑r+12tsζ2(r)𝑑WrR_{s}:=e^{\int_{t}^{s}(\zeta_{1}(r)-\frac{1}{2}|\zeta_{2}(r)|^{2})dr+\frac{1}{2}\int_{t}^{s}\zeta_{2}(r)dW_{r}}, where |ζ1(r)||ζ2(r)|kf|\zeta_{1}(r)|\vee|\zeta_{2}(r)|\leq k_{f}. Since the right-hand side of the above inequality tends to 0 as kk\to\infty we conclude by taking the essential supremum over all (αS,u)𝒜t×𝒰t(\alpha^{S},u)\in\mathcal{A}_{t}\times\mathcal{U}_{t} that there is a kkk^{\prime}\geq k such that

esssupu𝒰t,t+hkGt,t+ht,x;u,αS(u)[V(t+h,Xt+ht,x;u,αS(u))]esssupu𝒰t,t+hkGt,t+ht,x;u,αS(uϵ)[Vk(t+h,Xt+ht,x;uϵ,αS(uϵ))]+ϵ/2.\displaystyle\mathop{\rm{ess}\sup}_{u\in\mathcal{U}^{k^{\prime}}_{t,t+h}}G_{t,t+h}^{t,x;u,\alpha^{S}(u)}[V_{-}(t+h,X^{t,x;u,\alpha^{S}(u)}_{t+h})]\leq\mathop{\rm{ess}\sup}_{u\in\mathcal{U}^{k^{\prime}}_{t,t+h}}G_{t,t+h}^{t,x;u,\alpha^{S}(u^{\epsilon})}[V_{-}^{k^{\prime}}(t+h,X^{t,x;u^{\epsilon},\alpha^{S}(u^{\epsilon})}_{t+h})]+\epsilon/2.

for each αS𝒜tS\alpha^{S}\in\mathcal{A}^{S}_{t}. We conclude that V,h(t,x)Vk(t,x)+ϵV(t,x)+ϵV_{-,h}(t,x)\leq V_{-}^{k^{\prime}}(t,x)+\epsilon\leq V_{-}(t,x)+\epsilon and since ϵ>0\epsilon>0 was arbitrary it follows that VV_{-} satisfies (4.1).∎

Lemma 4.14.

There is a constant C>0C>0 such that for all k1k\geq 1 we have

V+(t,x)V+k(t,x)C(1+|x|2ρ)k.\displaystyle V_{+}(t,x)-V_{+}^{k^{\prime}}(t,x)\leq\frac{C(1+|x|^{2\rho})}{\sqrt{k}}.

for all (t,x)[0,T]×n(t,x)\in[0,T]\times\mathbb{R}^{n}. In particular, the sequence {V+k}k0\{V_{+}^{k}\}_{k\geq 0} converges uniformly on compact subsets of [0,T]×n[0,T]\times\mathbb{R}^{n}.

Proof. For each ϵ>0\epsilon>0 there is a uϵ=(τiϵ,βiϵ)1iNϵ𝒰¯t,xSu^{\epsilon}=(\tau_{i}^{\epsilon},\beta_{i}^{\epsilon})_{1\leq i\leq N^{\epsilon}}\in\bar{\mathcal{U}}^{S}_{t,x} such that

esssupuS𝒰tSessinfα𝒜tJ(t,x;uS(α),α)essinfα𝒜tJ(t,x;uϵ(α),α)+ϵ,\displaystyle\mathop{\rm{ess}\sup}_{u^{S}\in\mathcal{U}^{S}_{t}}\mathop{\rm{ess}\inf}_{\alpha\in\mathcal{A}_{t}}J(t,x;u^{S}(\alpha),\alpha)\leq\mathop{\rm{ess}\inf}_{\alpha\in\mathcal{A}_{t}}J(t,x;u^{\epsilon}(\alpha),\alpha)+\epsilon,

\mathbb{P}-a.s. Then, for k0k\geq 0,

V+(t,x)V+k(t,x)\displaystyle V_{+}(t,x)-V_{+}^{k}(t,x) =esssupu𝒰tSessinfα𝒜tJ(t,x;u(α),α)esssupu𝒰tS,kessinfα𝒜tJ(t,x;u(α),α)\displaystyle=\mathop{\rm{ess}\sup}_{u\in\mathcal{U}^{S}_{t}}\mathop{\rm{ess}\inf}_{\alpha\in\mathcal{A}_{t}}J(t,x;u(\alpha),\alpha)-\mathop{\rm{ess}\sup}_{u\in\mathcal{U}^{S,k}_{t}}\mathop{\rm{ess}\inf}_{\alpha\in\mathcal{A}_{t}}J(t,x;u(\alpha),\alpha)
essinfα𝒜tJ(t,x;uϵ(α),α)essinfα𝒜tJ(t,x;[uϵ(α)]k,α)+ϵ\displaystyle\leq\mathop{\rm{ess}\inf}_{\alpha\in\mathcal{A}_{t}}J(t,x;u^{\epsilon}(\alpha),\alpha)-\mathop{\rm{ess}\inf}_{\alpha\in\mathcal{A}_{t}}J(t,x;[u^{\epsilon}(\alpha)]_{k},\alpha)+\epsilon
esssupα𝒜t{J(t,x;uϵ(α),α)J(t,x;[uϵ(α)]k,α)}+ϵ.\displaystyle\leq\mathop{\rm{ess}\sup}_{\alpha\in\mathcal{A}_{t}}\{J(t,x;u^{\epsilon}(\alpha),\alpha)-J(t,x;[u^{\epsilon}(\alpha)]_{k^{\prime}},\alpha)\}+\epsilon.

By arguing as in the proof of Lemma 4.12 the result now follows.∎

Theorem 4.15.

V+V_{+} is continuous and satisfies (4.2).

Proof. As above we find that V+kV+V_{+}^{k}\nearrow V_{+} uniformly on compacts and conclude that V+V_{+} is continuous.

We have again by comparison that

V+(t,x)esssupuS𝒰t,t+hSessinfα𝒜t,t+hGt,t+ht,x;uS(α),α[V+(t+h,Xt+ht,x;uS(α),α)]=:V+,h(t,x).\displaystyle V_{+}(t,x)\leq\mathop{\rm{ess}\sup}_{u^{S}\in\mathcal{U}^{S}_{t,t+h}}\mathop{\rm{ess}\inf}_{\alpha\in\mathcal{A}_{t,t+h}}G_{t,t+h}^{t,x;u^{S}(\alpha),\alpha}[V_{+}(t+h,X^{t,x;u^{S}(\alpha),\alpha}_{t+h})]=:V_{+,h}(t,x).

Moreover, for each ϵ>0\epsilon>0 there is a k0k\geq 0 such that

V+,h(t,x)esssupuS𝒰t,t+hS,kessinfα𝒜t,t+hGt,t+ht,x;uS(α),α[V+(t+h,Xt+ht,x;uS(α),α)]+ϵ/2.\displaystyle V_{+,h}(t,x)\leq\mathop{\rm{ess}\sup}_{u^{S}\in\mathcal{U}^{S,k}_{t,t+h}}\mathop{\rm{ess}\inf}_{\alpha\in\mathcal{A}_{t,t+h}}G_{t,t+h}^{t,x;u^{S}(\alpha),\alpha}[V_{+}(t+h,X^{t,x;u^{S}(\alpha),\alpha}_{t+h})]+\epsilon/2.

Finally, by (4.14) there is a kkk^{\prime}\geq k such that

esssupuS𝒰t,t+hS,kessinfα𝒜t,t+hGt,t+ht,x;uS(α),α[V+(t+h,Xt+ht,x;uS(α),α)]\displaystyle\mathop{\rm{ess}\sup}_{u^{S}\in\mathcal{U}^{S,k^{\prime}}_{t,t+h}}\mathop{\rm{ess}\inf}_{\alpha\in\mathcal{A}_{t,t+h}}G_{t,t+h}^{t,x;u^{S}(\alpha),\alpha}[V_{+}(t+h,X^{t,x;u^{S}(\alpha),\alpha}_{t+h})]
esssupuS𝒰t,t+hS,kessinfα𝒜t,t+hGt,t+ht,x;uS(α),α[V+k(t+h,Xt+ht,x;uS(α),α)]+ϵ/2\displaystyle\leq\mathop{\rm{ess}\sup}_{u^{S}\in\mathcal{U}^{S,k^{\prime}}_{t,t+h}}\mathop{\rm{ess}\inf}_{\alpha\in\mathcal{A}_{t,t+h}}G_{t,t+h}^{t,x;u^{S}(\alpha),\alpha}[V_{+}^{k^{\prime}}(t+h,X^{t,x;u^{S}(\alpha),\alpha}_{t+h})]+\epsilon/2

and we conclude that V+V_{+} satisfies (4.2).∎

5 The value functions as viscosity solutions to the HJBI-QVI

Our main motivation for deriving the dynamic programming relations in the previous section is that we wish to use them to prove that the upper and lower value functions are solutions, in viscosity sense, to the Hamilton-Jacobi-Bellman-Isaacs quasi-variational inequality (1.5).

Whenever V(t,x)>V(t,x)V_{-}(t,x)>\mathcal{M}V_{-}(t,x) (resp. V+(t,x)>V+(t,x)V_{+}(t,x)>\mathcal{M}V_{+}(t,x)) a simple application of the dynamic programming principle stipulates that it is suboptimal for the impulse controller to intervene on the system at time tt. One main ingredient when proving that VV_{-} (resp. V+V_{+}) is a viscosity solution to (1.5) is showing that if V(t,x)>V(t,x)V_{-}(t,x)>\mathcal{M}V_{-}(t,x) (resp. V+(t,x)>V+(t,x)V_{+}(t,x)>\mathcal{M}V_{+}(t,x)) then, on sufficiently small time intervals, we may (to a sufficient accuracy) assume that the impulse controller does not intervene on the system. As the probability that the state, when starting in xx at time tt, leaves any ball with a finite radius containing xx on a non-empty interval [t,t+h)[t,t+h) is positive, this results requires a slightly intricate analysis compared to the deterministic setting (something that was pointed out already in [21]). In the following sequence of lemmas we extend the results from [21] to the case when the cost functional is defined in terms of the solution to a BSDE.

The first lemma is given without proof as it follows immediately from the definitions:

Lemma 5.1.

Let u,v:[0,T]×nu,v:[0,T]\times\mathbb{R}^{n}\to\mathbb{R} be locally bounded functions. \mathcal{M} is monotone (if uvu\leq v pointwise, then uv\mathcal{M}u\leq\mathcal{M}v). Moreover, (u)\mathcal{M}(u_{*}) (resp. (u)\mathcal{M}(u^{*})) is l.s.c. (resp. u.s.c.).

In addition, rather than relying on the standard DPP from the previous section, formulated at deterministic times, we need the following “weak” DPP:

Lemma 5.2.

Assume that (t,x)[0,T]×n(t,x)\in[0,T]\times\mathbb{R}^{n} and h[0,Tt]h\in[0,T-t], then for any α𝒜t,t+h\alpha\in\mathcal{A}_{t,t+h} we have

V(t,x)esssupτ𝒯tGt,τt+ht,x;,α[𝟙[τt+h]V(τ,Xτt,x;,α)+𝟙[τ>t+h]V(t+h,Xt+ht,x;,α)]\displaystyle V_{-}(t,x)\leq\mathop{\rm{ess}\sup}_{\tau\in\mathcal{T}_{t}}G_{t,\tau\wedge t+h}^{t,x;\emptyset,\alpha}[\mathbbm{1}_{[\tau\leq t+h]}\mathcal{M}V_{-}(\tau,X^{t,x;\emptyset,\alpha}_{\tau})+\mathbbm{1}_{[\tau>t+h]}V_{-}(t+h,X^{t,x;\emptyset,\alpha}_{t+h})] (5.1)

and

V+(t,x)esssupτ𝒯tGt,τt+ht,x;,α[𝟙[τt+h]V+(τ,Xτt,x;,α)+𝟙[τ>t+h]V+(t+h,Xt+ht,x;,α)].\displaystyle V_{+}(t,x)\leq\mathop{\rm{ess}\sup}_{\tau\in\mathcal{T}_{t}}G_{t,\tau\wedge t+h}^{t,x;\emptyset,\alpha}[\mathbbm{1}_{[\tau\leq t+h]}\mathcal{M}V_{+}(\tau,X^{t,x;\emptyset,\alpha}_{\tau})+\mathbbm{1}_{[\tau>t+h]}V_{+}(t+h,X^{t,x;\emptyset,\alpha}_{t+h})]. (5.2)

Proof. For ϵ>0\epsilon>0 we let αS(u):=ατ1αS,ϵ(u)\alpha^{S}(u):=\alpha\oplus_{\tau_{1}}\alpha^{S,\epsilon}(u) for all u𝒰t,t+hu\in\mathcal{U}_{t,t+h}, where αS,ϵ𝒜t,t+h\alpha^{S,\epsilon}\in\mathcal{A}_{t,t+h} is such that666We can repeat the approximation routine from Lemma 4.8 to show that such a strategy exists.

𝟙[τ1t+h]V(τ1,Xτ1t,x;(τ1,β1),α)𝟙[τ1t+h]Gτ1,t+hτ1,Xτ1t,x;(τ1,β),α;[u]2:,αS,ϵ(u)[V(t+h,Xt+ht,x;u,αS(u))]ϵ,\displaystyle\mathbbm{1}_{[\tau_{1}\leq t+h]}V_{-}(\tau_{1},X^{t,x;(\tau_{1},\beta_{1}),\alpha}_{\tau_{1}})\geq\mathbbm{1}_{[\tau_{1}\leq t+h]}G_{\tau_{1},t+h}^{\tau_{1},X^{t,x;(\tau_{1},\beta),\alpha}_{\tau_{1}};[u]_{2:},\alpha^{S,\epsilon}(u)}[V_{-}(t+h,X^{t,x;u,\alpha^{S}(u)}_{t+h})]-\epsilon, (5.3)

\mathbb{P}-a.s., for all u𝒰t,t+hu\in\mathcal{U}_{t,t+h}, where [u]2::=(τi,βi)2iN[u]_{2:}:=(\tau_{i},\beta_{i})_{2\leq i\leq N}. Then αS𝒜t,t+h\alpha^{S}\in\mathcal{A}_{t,t+h} and there is a uϵ:=(τiϵ,βiϵ)1iNϵ𝒰t,t+hu^{\epsilon}:=(\tau_{i}^{\epsilon},\beta_{i}^{\epsilon})_{1\leq i\leq N^{\epsilon}}\in\mathcal{U}_{t,t+h} such that

V(t,x)Gt,t+ht,x;uϵ,αS(uϵ)[V(t+h,Xt+ht,x;uϵ,αS(uϵ))]+ϵ.\displaystyle V_{-}(t,x)\leq G_{t,t+h}^{t,x;u^{\epsilon},\alpha^{S}(u^{\epsilon})}[V_{-}(t+h,X^{t,x;u^{\epsilon},\alpha^{S}(u^{\epsilon})}_{t+h})]+\epsilon.

On the other hand, the semi-group property of GG along with (5.3) and comparison gives that

Gt,t+ht,x;uϵ,αS(uϵ)[V(t+h,Xt+ht,x;uϵ,αS(uϵ))]\displaystyle G_{t,t+h}^{t,x;u^{\epsilon},\alpha^{S}(u^{\epsilon})}[V_{-}(t+h,X^{t,x;u^{\epsilon},\alpha^{S}(u^{\epsilon})}_{t+h})]
=Gt,τ1ϵt+ht,x;(τ1ϵ,β1ϵ),αS(uϵ)[Gτ1ϵt+h,t+hτ1ϵ,Xτ1ϵt,x;(τ1ϵ,β1ϵ),α;[uϵ]2:,αS(uϵ)[V(t+h,Xt+ht,x;uϵ,αS(uϵ))]]\displaystyle=G_{t,\tau^{\epsilon}_{1}\wedge t+h}^{t,x;(\tau^{\epsilon}_{1},\beta^{\epsilon}_{1}),\alpha^{S}(u^{\epsilon})}[G_{\tau^{\epsilon}_{1}\wedge t+h,t+h}^{\tau^{\epsilon}_{1},X^{t,x;(\tau^{\epsilon}_{1},\beta^{\epsilon}_{1}),\alpha}_{\tau^{\epsilon}_{1}};[u^{\epsilon}]_{2:},\alpha^{S}(u^{\epsilon})}[V_{-}(t+h,X^{t,x;u^{\epsilon},\alpha^{S}(u^{\epsilon})}_{t+h})]]
Gt,τ1ϵt+ht,x;,α[V(τ1ϵt+h,Xτ1ϵt+ht,x;(τ1ϵ,β1ϵ),α)𝟙[τ1ϵt+h](τ1ϵ,Xτ1ϵt,x;,α,β1ϵ)+ϵ]\displaystyle\leq G_{t,\tau^{\epsilon}_{1}\wedge t+h}^{t,x;\emptyset,\alpha}[V_{-}(\tau^{\epsilon}_{1}\wedge t+h,X^{t,x;(\tau^{\epsilon}_{1},\beta^{\epsilon}_{1}),\alpha}_{\tau^{\epsilon}_{1}\wedge t+h})-\mathbbm{1}_{[\tau^{\epsilon}_{1}\leq t+h]}\ell(\tau^{\epsilon}_{1},X^{t,x;\emptyset,\alpha}_{\tau^{\epsilon}_{1}},\beta^{\epsilon}_{1})+\epsilon]
Gt,τ1ϵt+ht,x;,α[𝟙[τ1ϵt+h]V(τ1ϵ,Xτ1ϵt,x;,α)+𝟙[τ1ϵ>t+h]V(τ1ϵ,Xτ1ϵt,x;,α)]+Cϵ.\displaystyle\leq G_{t,\tau_{1}^{\epsilon}\wedge t+h}^{t,x;\emptyset,\alpha}[\mathbbm{1}_{[\tau_{1}^{\epsilon}\leq t+h]}\mathcal{M}V_{-}(\tau^{\epsilon}_{1},X^{t,x;\emptyset,\alpha}_{\tau^{\epsilon}_{1}})+\mathbbm{1}_{[\tau_{1}^{\epsilon}>t+h]}V_{-}(\tau^{\epsilon}_{1},X^{t,x;\emptyset,\alpha}_{\tau^{\epsilon}_{1}})]+C\epsilon.

Since ϵ>0\epsilon>0 was arbitrary the first inequality follows by taking the essential supremum over all τ1ϵ𝒯\tau_{1}^{\epsilon}\in\mathcal{T}.

Concerning the second inequality we have that for each ϵ>0\epsilon>0, there is a uϵS𝒰t,t+hSu^{S}_{\epsilon}\in\mathcal{U}^{S}_{t,t+h} such that

V+(t,x)Gt,t+ht,x;uϵS(α~),α~[V+(t+h,Xt+ht,x;uϵS(α~),α~)]+ϵ\displaystyle V_{+}(t,x)\leq G_{t,t+h}^{t,x;u^{S}_{\epsilon}(\tilde{\alpha}),\tilde{\alpha}}[V_{+}(t+h,X^{t,x;u^{S}_{\epsilon}(\tilde{\alpha}),\tilde{\alpha}}_{t+h})]+\epsilon

for all α~𝒜t,t+h\tilde{\alpha}\in\mathcal{A}_{t,t+h}. With (τ1ϵ,β1ϵ)=[uϵS(α)]1(\tau^{\epsilon}_{1},\beta^{\epsilon}_{1})=[u^{S}_{\epsilon}(\alpha)]_{1} (assuming that τ1ϵ=\tau^{\epsilon}_{1}=\infty when uϵS(α)u^{S}_{\epsilon}(\alpha) does not contain interventions) we let αϵ𝒜τ1ϵ,t+h\alpha^{\epsilon}\in\mathcal{A}_{\tau^{\epsilon}_{1},t+h} be such that

𝟙[τ1ϵt+h]V+(τ1ϵ,Xτ1ϵt,x;(τ1ϵ,β1ϵ),α)𝟙[τ1ϵt+h]Gτ1ϵ,t+hτ1ϵ,Xτ1ϵt,x;(τ1ϵ,β1ϵ),α;[uϵS(αϵ)]2:,αϵ[V+(t+h,Xt+ht,x;uϵS(αϵ),α)]ϵ.\displaystyle\mathbbm{1}_{[\tau_{1}^{\epsilon}\leq t+h]}V_{+}(\tau^{\epsilon}_{1},X^{t,x;(\tau^{\epsilon}_{1},\beta^{\epsilon}_{1}),\alpha}_{\tau^{\epsilon}_{1}})\geq\mathbbm{1}_{[\tau_{1}^{\epsilon}\leq t+h]}G_{\tau^{\epsilon}_{1},t+h}^{\tau^{\epsilon}_{1},X^{t,x;(\tau^{\epsilon}_{1},\beta^{\epsilon}_{1}),\alpha}_{\tau^{\epsilon}_{1}};[u^{S}_{\epsilon}(\alpha^{\epsilon})]_{2:},\alpha^{\epsilon}}[V_{+}(t+h,X^{t,x;u^{S}_{\epsilon}(\alpha^{\epsilon}),\alpha}_{t+h})]-\epsilon.

Applying the continuous control ατ1ϵαϵ\alpha\oplus_{\tau^{\epsilon}_{1}}\alpha^{\epsilon} (see Remark 4.5 concerning the value at the point of concatenation) and using the semi-group property of GG (as above) now leads to the second inequality.∎

Lemma 5.3.

Let (t,x)[t,T)×n(t,x)\in[t,T)\times\mathbb{R}^{n} be such that V(t,x)>V(t,x)V_{-}(t,x)>\mathcal{M}V_{-}(t,x) then there is a C>0C>0 and an h(0,Tt]h^{\prime}\in(0,T-t] such that

V(t,x)essinfα𝒜t,t+hGt,t+ht,x;,α[V(t+h,Xt+ht,x;,α)]+Ch3/2\displaystyle V_{-}(t,x)\leq\mathop{\rm{ess}\inf}_{\alpha\in\mathcal{A}_{t,t+h}}G_{t,t+h}^{t,x;\emptyset,\alpha}[V_{-}(t+h,X^{t,x;\emptyset,\alpha}_{t+h})]+Ch^{3/2}

for all h[0,h]h\in[0,h^{\prime}].

Proof. Since VV_{-} is continuous, Lemma 5.1 implies that so is V\mathcal{M}V_{-}. There is thus a h′′>0h^{\prime\prime}>0 and an ϵ>0\epsilon>0 such that

inf(t,x)[t,t+h′′]×B¯ϵ(x)V(t,x)sup(t,x)[t,t+h′′]×B¯ϵ(x)V(t,x)+ϵ,\displaystyle\inf_{(t^{\prime},x^{\prime})\in[t,t+h^{\prime\prime}]\times\bar{B}_{\epsilon}(x)}V_{-}(t^{\prime},x^{\prime})\geq\sup_{(t^{\prime},x^{\prime})\in[t,t+h^{\prime\prime}]\times\bar{B}_{\epsilon}(x)}\mathcal{M}V_{-}(t^{\prime},x^{\prime})+\epsilon,

with B¯ϵ(x):={xn:|xx|ϵ}\bar{B}_{\epsilon}(x):=\{x^{\prime}\in\mathbb{R}^{n}:|x^{\prime}-x|\leq\epsilon\}.

For each α𝒜t,t+h\alpha\in\mathcal{A}_{t,t+h} we have, with X:=Xt,x;,αX:=X^{t,x;\emptyset,\alpha}, for p2p\geq 2 that

𝔼[sups[t,t+h]|Xsx|p|t]\displaystyle\mathbb{E}\Big{[}\sup_{s\in[t,t+h]}|X_{s}-x|^{p}\Big{|}\mathcal{F}_{t}\Big{]} C𝔼[(tt+h|a(s,Xst,x)|𝑑s)p+(tt+h|σ(s,Xs)|2𝑑s)p/2|t]\displaystyle\leq C\mathbb{E}\Big{[}(\int_{t}^{t+h}|a(s,X^{t,x}_{s})|ds)^{p}+(\int_{t}^{t+h}|\sigma(s,X_{s})|^{2}ds)^{p/2}\Big{|}\mathcal{F}_{t}\Big{]}
Chp/2(1+𝔼[sups[t,t+h]|Xs|p|t])\displaystyle\leq Ch^{p/2}(1+\mathbb{E}\Big{[}\sup_{s\in[t,t+h]}|X_{s}|^{p}\Big{|}\mathcal{F}_{t}\Big{]})
Chp/2(1+|x|p),\displaystyle\leq Ch^{p/2}(1+|x|^{p}), (5.4)

\mathbb{P}-a.s. We introduce the stopping time

η:=inf{st:XsBϵ(x)}\displaystyle\eta:=\inf\big{\{}s\geq t:X_{s}\notin B_{\epsilon}(x)\big{\}}

(with inf=\inf\emptyset=\infty) and get that

𝔼[𝟙[ηt+h]|t]ϵp𝔼[sups[t,t+h]|Xsx|p|t]\displaystyle\mathbb{E}\big{[}\mathbbm{1}_{[\eta\leq t+h]}\big{|}\mathcal{F}_{t}\big{]}\epsilon^{p}\leq\mathbb{E}\Big{[}\sup_{s\in[t,t+h]}|X_{s}-x|^{p}\Big{|}\mathcal{F}_{t}\Big{]} Chp/2(1+|x|p),\displaystyle\leq Ch^{p/2}(1+|x|^{p}),

\mathbb{P}-a.s. Choosing p=6p=6 gives

𝔼[𝟙[ηt+h]|t]ϵ6Ch3(1+|x|6),\displaystyle\mathbb{E}\big{[}\mathbbm{1}_{[\eta\leq t+h]}\big{|}\mathcal{F}_{t}\big{]}\leq\epsilon^{-6}Ch^{3}(1+|x|^{6}),

\mathbb{P}-a.s. Using this inequality we will show that there is a C>0C>0 such that for some h(0,h′′]h^{\prime}\in(0,h^{\prime\prime}] and all h[0,h]h\in[0,h^{\prime}] we have

esssupτ𝒯tGt,τt+ht,x;,α[𝟙[τt+h]V(τ,Xτ)+𝟙[τ>t+h]V(t+h,Xt+h)]Gt,t+ht,x;,α[V(t+h,Xt+h)]+Ch3/2\displaystyle\mathop{\rm{ess}\sup}_{\tau\in\mathcal{T}_{t}}G_{t,\tau\wedge t+h}^{t,x;\emptyset,\alpha}[\mathbbm{1}_{[\tau\leq t+h]}\mathcal{M}V_{-}(\tau,X_{\tau})+\mathbbm{1}_{[\tau>t+h]}V_{-}(t+h,X_{t+h})]\leq G_{t,t+h}^{t,x;\emptyset,\alpha}[V_{-}(t+h,X_{t+h})]+Ch^{3/2}

for all α𝒜t,t+h\alpha\in\mathcal{A}_{t,t+h} from which the result of this lemma follows by Lemma 5.2. For any τ𝒯t\tau\in\mathcal{T}_{t}, let (𝒴1,𝒵1)(\mathcal{Y}^{1},\mathcal{Z}^{1}) be the unique solution to

𝒴s1\displaystyle\mathcal{Y}^{1}_{s} =𝟙[τt+h]V(τ,Xτ)+𝟙[τ>t+h]V(t+h,Xt+h)\displaystyle=\mathbbm{1}_{[\tau\leq t+h]}\mathcal{M}V_{-}(\tau,X_{\tau})+\mathbbm{1}_{[\tau>t+h]}V_{-}(t+h,X_{t+h})
+sτt+hf(r,Xr,𝒴r1,𝒵r1,αr)𝑑rsτt+h𝒵r1𝑑Wr.\displaystyle\quad+\int_{s}^{\tau\wedge t+h}f(r,X_{r},\mathcal{Y}^{1}_{r},\mathcal{Z}^{1}_{r},\alpha_{r})dr-\int_{s}^{\tau\wedge t+h}\mathcal{Z}^{1}_{r}dW_{r}.

with X:=Xt,x;,αX:=X^{t,x;\emptyset,\alpha} and let (𝒴2,𝒵2)(\mathcal{Y}^{2},\mathcal{Z}^{2}) solve

𝒴s2\displaystyle\mathcal{Y}^{2}_{s} =V(t+h,Xt+h)+st+hf(r,Xr,𝒴r2,𝒵r2,αr)𝑑rst+h𝒵r2𝑑Wr.\displaystyle=V_{-}(t+h,X_{t+h})+\int_{s}^{t+h}f(r,X_{r},\mathcal{Y}^{2}_{r},\mathcal{Z}^{2}_{r},\alpha_{r})dr-\int_{s}^{t+h}\mathcal{Z}^{2}_{r}dW_{r}.

Then, with

ζ1(s):=f(s,Xs,𝒴s2,𝒵s2,αs)f(s,Xs,𝟙[sτ]𝒴s1,𝒵s2,αs)𝒴s2𝒴s1𝟙[𝒴s2𝟙[sτ]𝒴s1]\displaystyle\zeta_{1}(s):=\frac{f(s,X_{s},\mathcal{Y}^{2}_{s},\mathcal{Z}^{2}_{s},\alpha_{s})-f(s,X_{s},\mathbbm{1}_{[s\leq\tau]}\mathcal{Y}^{1}_{s},\mathcal{Z}^{2}_{s},\alpha_{s})}{\mathcal{Y}^{2}_{s}-\mathcal{Y}^{1}_{s}}\mathbbm{1}_{[\mathcal{Y}^{2}_{s}\neq\mathbbm{1}_{[s\leq\tau]}\mathcal{Y}^{1}_{s}]} (5.5)

and

ζ2(s):=f(s,Xs,𝟙[sτ]𝒴s1,𝒵s2,αs)f(s,Xs,𝟙[sτ]𝒴s1,𝟙[sτ]𝒵s1,αs)|𝒵s2𝟙[sτ]𝒵s1|2(𝒵s2𝟙[sτ]𝒵s1)\displaystyle\zeta_{2}(s):=\frac{f(s,X_{s},\mathbbm{1}_{[s\leq\tau]}\mathcal{Y}^{1}_{s},\mathcal{Z}^{2}_{s},\alpha_{s})-f(s,X_{s},\mathbbm{1}_{[s\leq\tau]}\mathcal{Y}^{1}_{s},\mathbbm{1}_{[s\leq\tau]}\mathcal{Z}^{1}_{s},\alpha_{s})}{|\mathcal{Z}^{2}_{s}-\mathbbm{1}_{[s\leq\tau]}\mathcal{Z}^{1}_{s}|^{2}}(\mathcal{Z}^{2}_{s}-\mathbbm{1}_{[s\leq\tau]}\mathcal{Z}^{1}_{s})^{\top} (5.6)

we have by the Lipschitz continuity of ff that |ζ1(s)||ζ2(s)|kf|\zeta_{1}(s)|\vee|\zeta_{2}(s)|\leq k_{f}. Then, with

Mr,s:=ers(ζ1(v)12|ζ2(v)|2)𝑑v+12rsζ2(v)𝑑Wv=:ersζ1(v)𝑑vM~r,s,\displaystyle M_{r,s}:=e^{\int_{r}^{s}(\zeta_{1}(v)-\frac{1}{2}|\zeta_{2}(v)|^{2})dv+\frac{1}{2}\int_{r}^{s}\zeta_{2}(v)dW_{v}}=:e^{\int_{r}^{s}\zeta_{1}(v)dv}\tilde{M}_{r,s},

we have

𝒴t1𝒴t2\displaystyle\mathcal{Y}^{1}_{t}-\mathcal{Y}^{2}_{t} =𝔼[𝟙[τ<t+h]{Mt,τ(V(τ,Xτ)Mτ,t+hV(t+h,Xt+h))τt+hMt,sf(s,Xs,0,0)𝑑s}|t]\displaystyle=\mathbb{E}\Big{[}\mathbbm{1}_{[\tau<t+h]}\Big{\{}M_{t,\tau}(\mathcal{M}V_{-}(\tau,X_{\tau})-M_{\tau,t+h}V_{-}(t+h,X_{t+h}))-\int_{\tau}^{t+h}M_{t,s}f(s,X_{s},0,0)ds\Big{\}}\Big{|}\mathcal{F}_{t}\Big{]}
=Λ1(h)+Λ2(h),\displaystyle=\Lambda_{1}(h)+\Lambda_{2}(h),

where

Λ1(h):\displaystyle\Lambda_{1}(h):\! =𝔼[𝟙[η<t+h]𝟙[τ<t+h]{Mt,τ(V(τ,Xτ)Mτ,t+hV(t+h,Xt+h))\displaystyle\!=\mathbb{E}\Big{[}\mathbbm{1}_{[\eta<t+h]}\mathbbm{1}_{[\tau<t+h]}\Big{\{}M_{t,\tau}(\mathcal{M}V_{-}(\tau,X_{\tau})-M_{\tau,t+h}V_{-}(t+h,X_{t+h}))
τt+hMt,sf(s,Xs,0,0)ds}|t]\displaystyle\quad-\int_{\tau}^{t+h}M_{t,s}f(s,X_{s},0,0)ds\Big{\}}\Big{|}\mathcal{F}_{t}\Big{]}
C𝔼[𝟙[η<t+h]]1/2𝔼[|Mt,τV(τ,Xτt,x;,α)|2+|Mt,t+hV(t+h,Xt+h)|2\displaystyle\leq C\mathbb{E}\big{[}\mathbbm{1}_{[\eta<t+h]}\big{]}^{1/2}\mathbb{E}\Big{[}|M_{t,\tau}\mathcal{M}V_{-}(\tau,X^{t,x;\emptyset,\alpha}_{\tau})|^{2}+|M_{t,t+h}V_{-}(t+h,X_{t+h})|^{2}
+τt+h|Mt,sf(s,Xs,0,0)|2ds|t]1/2\displaystyle\quad+\int_{\tau}^{t+h}|M_{t,s}f(s,X_{s},0,0)|^{2}ds\Big{|}\mathcal{F}_{t}\Big{]}^{1/2}
C(1+|x|ρ)h3/2\displaystyle\leq C(1+|x|^{\rho})h^{3/2}

and

Λ2(h):\displaystyle\Lambda_{2}(h):\! =𝔼[𝟙[ηt+h]𝟙[τ<t+h]{Mt,τ(V(τ,Xτ)Mτ,t+hV(t+h,Xt+h))\displaystyle\!=\mathbb{E}\Big{[}\mathbbm{1}_{[\eta\geq t+h]}\mathbbm{1}_{[\tau<t+h]}\Big{\{}M_{t,\tau}(\mathcal{M}V_{-}(\tau,X_{\tau})-M_{\tau,t+h}V_{-}(t+h,X_{t+h}))
τt+hMt,sf(s,Xs,0,0)ds}|t]\displaystyle\quad-\int_{\tau}^{t+h}M_{t,s}f(s,X_{s},0,0)ds\Big{\}}\Big{|}\mathcal{F}_{t}\Big{]}
𝔼[𝟙[ηt+h]𝟙[τ<t+h]{Mt,τ(V(τ,Xτ)V(t+h,Xt+h)+(1Mτ,t+h)V(t+h,Xt+h))\displaystyle\leq\mathbb{E}\Big{[}\mathbbm{1}_{[\eta\geq t+h]}\mathbbm{1}_{[\tau<t+h]}\Big{\{}M_{t,\tau}(\mathcal{M}V_{-}(\tau,X_{\tau})-V_{-}(t+h,X_{t+h})+(1-M_{\tau,t+h})V_{-}(t+h,X_{t+h}))
+C(1+|x|ρ)τt+hMt,sds}|t]\displaystyle\quad+C(1+|x|^{\rho})\int_{\tau}^{t+h}M_{t,s}ds\Big{\}}\Big{|}\mathcal{F}_{t}\Big{]}
𝔼[𝟙[ηt+h]𝟙[τ<t+h]{ϵMt,τ+(Mt,t+hMt,τ+τt+hMt,s𝑑s)C(1+|x|ρ)}|t],\displaystyle\leq\mathbb{E}\Big{[}\mathbbm{1}_{[\eta\geq t+h]}\mathbbm{1}_{[\tau<t+h]}\Big{\{}-\epsilon M_{t,\tau}+(M_{t,t+h}-M_{t,\tau}+\int_{\tau}^{t+h}M_{t,s}ds)C(1+|x|^{\rho})\Big{\}}\Big{|}\mathcal{F}_{t}\Big{]},

where we have used the polynomial growth of VV_{-} and V\mathcal{M}V_{-} together with the fact that sups[t,t+h]|Xs||x|+ϵ\sup_{s\in[t,t+h]}|X_{s}|\leq|x|+\epsilon on {ω:ηt+h}\{\omega:\eta\geq t+h\}. We can now get rid of 𝟙[ηt+h]\mathbbm{1}_{[\eta\geq t+h]} and use the martingale property of M~\tilde{M} to find that

Λ2(h)\displaystyle\Lambda_{2}(h) 𝔼[𝟙[τ<t+h]{ϵMt,τ+(Mt,t+hMt,τ+τt+hMt,s𝑑s)C(1+|x|ρ)}|t]+C(1+|x|ρ)h3/2\displaystyle\leq\mathbb{E}\Big{[}\mathbbm{1}_{[\tau<t+h]}\Big{\{}-\epsilon M_{t,\tau}+(M_{t,t+h}-M_{t,\tau}+\int_{\tau}^{t+h}M_{t,s}ds)C(1+|x|^{\rho})\Big{\}}\Big{|}\mathcal{F}_{t}\Big{]}+C(1+|x|^{\rho})h^{3/2}
𝔼[𝟙[τ<t+h]etτζ1(r)𝑑rM~t,t+h{ϵ+C(1+|x|ρ)(ekfh1+hekfh)}|t]+C(1+|x|ρ)h3/2\displaystyle\leq\mathbb{E}\Big{[}\mathbbm{1}_{[\tau<t+h]}e^{\int_{t}^{\tau}\zeta_{1}(r)dr}\tilde{M}_{t,t+h}\Big{\{}-\epsilon+C(1+|x|^{\rho})(e^{k_{f}h}-1+he^{k_{f}h})\Big{\}}\Big{|}\mathcal{F}_{t}\Big{]}+C(1+|x|^{\rho})h^{3/2}
C(1+|x|ρ)h3/2\displaystyle\leq C(1+|x|^{\rho})h^{3/2}

whenever h>0h>0 is small enough that ϵ+C(1+|x|ρ)(ekfh1+hekfh)0-\epsilon+C(1+|x|^{\rho})(e^{k_{f}h}-1+he^{k_{f}h})\leq 0. Combined, this gives that there is a h[0,h′′]h^{\prime}\in[0,h^{\prime\prime}] such that whenever h[0,h]h\in[0,h^{\prime}] we have 𝒴t1𝒴t2C(1+|x|ρ)h3/2\mathcal{Y}^{1}_{t}-\mathcal{Y}^{2}_{t}\leq C(1+|x|^{\rho})h^{3/2}. Since τ\tau and α\alpha were arbitrary the assertion follows.∎

Lemma 5.4.

Let (t,x)[t,T)×n(t,x)\in[t,T)\times\mathbb{R}^{n} be such that V+(t,x)>V+(t,x)V_{+}(t,x)>\mathcal{M}V_{+}(t,x) then there is a C>0C>0 and an h(0,Tt]h^{\prime}\in(0,T-t] such that

V+(t,x)essinfα𝒜t,t+hGt,t+ht,x;,α[V+(t+h,Xt+ht,x;,α)]+Ch3/2\displaystyle V_{+}(t,x)\leq\mathop{\rm{ess}\inf}_{\alpha\in\mathcal{A}_{t,t+h}}G_{t,t+h}^{t,x;\emptyset,\alpha}[V_{+}(t+h,X^{t,x;\emptyset,\alpha}_{t+h})]+Ch^{3/2}

for all h[0,h)h\in[0,h^{\prime}).

Proof. As in the proof of the above lemma, there is a h′′>0h^{\prime\prime}>0 and an ϵ>0\epsilon>0 such that

inf(t,x)[t,t+h′′]×B¯ϵ(x)V+(t,x)sup(t,x)[t,t+h′′]×B¯ϵ(x)V+(t,x)+ϵ,\displaystyle\inf_{(t^{\prime},x^{\prime})\in[t,t+h^{\prime\prime}]\times\bar{B}_{\epsilon}(x)}V_{+}(t^{\prime},x^{\prime})\geq\sup_{(t^{\prime},x^{\prime})\in[t,t+h^{\prime\prime}]\times\bar{B}_{\epsilon}(x)}\mathcal{M}V_{+}(t^{\prime},x^{\prime})+\epsilon,

We can thus repeat the steps in the previous lemma to conclude that there is a C>0C>0 such that

esssupτ𝒯tGt,τt+ht,x;,α[𝟙[τt+h]V+(τ,Xτ)+𝟙[τ>t+h]V+(t+h,Xt+h)]Gt,t+ht,x;,α[V+(t+h,Xt+h)]+Ch3/2\displaystyle\mathop{\rm{ess}\sup}_{\tau\in\mathcal{T}_{t}}G_{t,\tau\wedge t+h}^{t,x;\emptyset,\alpha}[\mathbbm{1}_{[\tau\leq t+h]}\mathcal{M}V_{+}(\tau,X_{\tau})+\mathbbm{1}_{[\tau>t+h]}V_{+}(t+h,X_{t+h})]\leq G_{t,t+h}^{t,x;\emptyset,\alpha}[V_{+}(t+h,X_{t+h})]+Ch^{3/2}

for all α𝒜t,t+h\alpha\in\mathcal{A}_{t,t+h} and h[0,h]h\in[0,h^{\prime}] for some h(0,h′′]h^{\prime}\in(0,h^{\prime\prime}]. The lemma then follows by applying the second inequality in Lemma 5.2.∎

We now fix (t,x)[0,T)×n(t,x)\in[0,T)\times\mathbb{R}^{n}, h(0,Tt]h\in(0,T-t] and φCl,b3\varphi\in C^{3}_{l,b}. Following the standard procedure to go from a DPP to a quasi-variational inequality when dealing with a controlled FBSDE (see e.g. [18]) we introduce the BSDEs

Ys1,α=st+hF(r,Xrt,x;,α,Yr1,α,Zr1,α,αr)𝑑rst+hZr1,α𝑑Wr\displaystyle Y^{1,\alpha}_{s}=\int_{s}^{t+h}F(r,X^{t,x;\emptyset,\alpha}_{r},Y^{1,\alpha}_{r},Z^{1,\alpha}_{r},\alpha_{r})dr-\int_{s}^{t+h}Z^{1,\alpha}_{r}dW_{r}

and

Ys2,α=st+hF(r,x,Yr2,α,Zr2,α,αr)𝑑rst+hZr2,α𝑑Wr,\displaystyle Y^{2,\alpha}_{s}=\int_{s}^{t+h}F(r,x,Y^{2,\alpha}_{r},Z^{2,\alpha}_{r},\alpha_{r})dr-\int_{s}^{t+h}Z^{2,\alpha}_{r}dW_{r}, (5.7)

with

F(s,x,y,z,α)\displaystyle F(s,x,y,z,\alpha) :=sφ(s,x)+12Tr{σσ(s,x,α)Dx2φ(s,x)}+(Dxφ(s,x))b(s,x,α)\displaystyle:=\frac{\partial}{\partial s}\varphi(s,x)+\frac{1}{2}{\rm Tr}\{\sigma\sigma^{\top}(s,x,\alpha)D^{2}_{x}\varphi(s,x)\}+(D_{x}\varphi(s,x))b(s,x,\alpha)
+f(s,x,φ(s,x)+y,(Dxφ(s,x))σ(s,x,α)+z,α).\displaystyle\quad+f(s,x,\varphi(s,x)+y,(D_{x}\varphi(s,x))\sigma(s,x,\alpha)+z,\alpha).
Remark 5.5.

It is easy to check that the driver FF satisfies Assumption 2.4.i from which we conclude that the above BSDEs both admit unique solutions.

In particular, we note that uu is a viscosity supersolution (subsolution) of (1.5) if u(T,x)()ψ(T,x)u(T,x)\geq(\leq)\psi(T,x), u(t,x)u(t,x)u(t,x)\geq\mathcal{M}u(t,x) and infαAF(t,x,0,0,α)0\inf_{\alpha\in A}F(t,x,0,0,\alpha)\leq 0 (0\geq 0) on 𝒟C(u):={(t,x):u(t,x)>u(t,x)}\mathcal{D}_{C}(u):=\{(t,x):u(t,x)>\mathcal{M}u(t,x)\} whenever φCl,b3\varphi\in C^{3}_{l,b} is such that u(t,x)=φ(t,x)u(t,x)=\varphi(t,x) and u(t,x)φ(t,x)u(t,x)-\varphi(t,x) attains a local minimum (maximum) at (t,x)(t,x).

Note that the only reason that (5.7) is stochastic comes from the fact that α\alpha is a stochastic control. In regard to Hamiltonian minimization it seems natural to introduce the following ordinary differential equation (ODE)

Ys0=st+hinfαAF(s,x,Ys0,0,α)ds.\displaystyle Y^{0}_{s}=\int_{s}^{t+h}\inf_{\alpha\in A}F(s,x,Y^{0}_{s},0,\alpha)ds.

We have the following auxiliary lemma, that summarize the results in Lemma 5.1 and Lemma 5.3 of [4].

Lemma 5.6.

For every α𝒜t,t+h\alpha\in\mathcal{A}_{t,t+h} and s[t,t+h]s\in[t,t+h] we have

Ys1,α=Gs,t+ht,x;,α[φ(t+h,Xt+ht,x;,α)]φ(s,Xst,x;,α),a.s.\displaystyle Y^{1,\alpha}_{s}=G^{t,x;\emptyset,\alpha}_{s,t+h}[\varphi(t+h,X^{t,x;\emptyset,\alpha}_{t+h})]-\varphi(s,X^{t,x;\emptyset,\alpha}_{s}),\qquad\mathbb{P}-{\rm a.s.} (5.8)

Also, we have that

Yt0=essinfα𝒜t,t+hYt2,α,a.s.\displaystyle Y^{0}_{t}=\mathop{\rm{ess}\inf}_{\alpha\in\mathcal{A}_{t,t+h}}Y^{2,\alpha}_{t},\qquad\mathbb{P}-{\rm a.s.} (5.9)

Proof. The first property follows from the definition of GG and Ito’s formula applied to φ(s,Xst,x;,α)\varphi(s,X^{t,x;\emptyset,\alpha}_{s}). The second result is immediate from the comparison principle of BSDEs.∎

We now give a sequence of lemmata that will help us show that VV_{-} is a viscosity solution to (1.5).

Lemma 5.7.

We have

|Yt1,αYt2,α|Ch3/2,a.s.\displaystyle|Y^{1,\alpha}_{t}-Y^{2,\alpha}_{t}|\leq Ch^{3/2},\qquad\mathbb{P}-{\rm a.s.}

Proof. Note that

|Yt1,αYt2,α|\displaystyle|Y^{1,\alpha}_{t}-Y^{2,\alpha}_{t}| 𝔼[tt+h|F(s,Xst,x;,α,Ys1,α,Zs1,α,αs)F(s,x,Ys2,α,Zs2,α,αs)|𝑑s|t]\displaystyle\leq\mathbb{E}\Big{[}\int_{t}^{t+h}|F(s,X^{t,x;\emptyset,\alpha}_{s},Y^{1,\alpha}_{s},Z^{1,\alpha}_{s},\alpha_{s})-F(s,x,Y^{2,\alpha}_{s},Z^{2,\alpha}_{s},\alpha_{s})|ds\Big{|}\mathcal{F}_{t}\Big{]}
C𝔼[tt+h((1+|x|ρ+|Xst,x;,α|ρ)|Xst,x;,αx|+|Ys1,αYs2,α|+|Zs1,αZs2,α|)𝑑s|t].\displaystyle\leq C\mathbb{E}\Big{[}\int_{t}^{t+h}((1+|x|^{\rho}+|X^{t,x;\emptyset,\alpha}_{s}|^{\rho})|X^{t,x;\emptyset,\alpha}_{s}-x|+|Y^{1,\alpha}_{s}-Y^{2,\alpha}_{s}|+|Z^{1,\alpha}_{s}-Z^{2,\alpha}_{s}|)ds\Big{|}\mathcal{F}_{t}\Big{]}.

Concerning the first term on the right-hand side we have

𝔼[tt+h(1+|x|ρ+|Xst,x;,α|ρ)|Xst,x;,αx|𝑑s|t]\displaystyle\mathbb{E}\Big{[}\int_{t}^{t+h}(1+|x|^{\rho}+|X^{t,x;\emptyset,\alpha}_{s}|^{\rho})|X^{t,x;\emptyset,\alpha}_{s}-x|ds\Big{|}\mathcal{F}_{t}\Big{]} C𝔼[sups[t,t+h]|Xst,x;,αx|2|t]1/2h\displaystyle\leq C\mathbb{E}\Big{[}\sup_{s\in[t,t+h]}|X^{t,x;\emptyset,\alpha}_{s}-x|^{2}\Big{|}\mathcal{F}_{t}\Big{]}^{1/2}h
Ch3/2\displaystyle\leq Ch^{3/2}

For the remaining terms,

𝔼[tt+h(|Ys1,αYs2,α|+|Zs1,αZs2,α|)𝑑s|t]\displaystyle\mathbb{E}\Big{[}\int_{t}^{t+h}(|Y^{1,\alpha}_{s}-Y^{2,\alpha}_{s}|+|Z^{1,\alpha}_{s}-Z^{2,\alpha}_{s}|)ds\Big{|}\mathcal{F}_{t}\Big{]}
2𝔼[tt+h(|Ys1,αYs2,α|2+|Zs1,αZs2,α|2)𝑑s|t]1/2h1/2\displaystyle\leq\sqrt{2}\mathbb{E}\Big{[}\int_{t}^{t+h}(|Y^{1,\alpha}_{s}-Y^{2,\alpha}_{s}|^{2}+|Z^{1,\alpha}_{s}-Z^{2,\alpha}_{s}|^{2})ds\Big{|}\mathcal{F}_{t}\Big{]}^{1/2}h^{1/2}

and classically we have

𝔼[tt+h|Ys1,αYs2,α|2+|Zs1,αZs2,α|2)ds|t]\displaystyle\mathbb{E}\Big{[}\int_{t}^{t+h}|Y^{1,\alpha}_{s}-Y^{2,\alpha}_{s}|^{2}+|Z^{1,\alpha}_{s}-Z^{2,\alpha}_{s}|^{2})ds\Big{|}\mathcal{F}_{t}\Big{]}
C𝔼[tt+h|F(s,Xst,x;,α,Ys1,α,Zs1,α,αs)F(s,x,Ys1,α,Zs1,α,αs)|2𝑑s|t]\displaystyle\leq C\mathbb{E}\Big{[}\int_{t}^{t+h}|F(s,X^{t,x;\emptyset,\alpha}_{s},Y^{1,\alpha}_{s},Z^{1,\alpha}_{s},\alpha_{s})-F(s,x,Y^{1,\alpha}_{s},Z^{1,\alpha}_{s},\alpha_{s})|^{2}ds\Big{|}\mathcal{F}_{t}\Big{]}
C𝔼[tt+h(1+|x|ρ+|Xst,x;,α|2ρ)|Xst,x;,αx|2𝑑s|t]\displaystyle\leq C\mathbb{E}\Big{[}\int_{t}^{t+h}(1+|x|^{\rho}+|X^{t,x;\emptyset,\alpha}_{s}|^{2\rho})|X^{t,x;\emptyset,\alpha}_{s}-x|^{2}ds\Big{|}\mathcal{F}_{t}\Big{]}
Ch2.\displaystyle\leq Ch^{2}.

Combining the above estimates the desired results follows.∎

Lemma 5.8.

There is a C>0C>0 such that

tt+h|Ys0|𝑑sCh3/2.\displaystyle\int_{t}^{t+h}|Y^{0}_{s}|ds\leq Ch^{3/2}.

for each t[0,T]t\in[0,T] and h[0,Tt]h\in[0,T-t].

Proof. Grönwall’s inequality gives that

sups[t,t+h]|Ys0,α|Ch\displaystyle\sup_{s\in[t,t+h]}|Y^{0,\alpha}_{s}|\leq Ch

and we conclude that tt+h|Ys0,α|𝑑shsups[t,t+h]|Ys0,α|Ch2\int_{t}^{t+h}|Y^{0,\alpha}_{s}|ds\leq h\sup_{s\in[t,t+h]}|Y^{0,\alpha}_{s}|\leq Ch^{2}. ∎

Lemma 5.9.

Assume that φΠpg\varphi\in\Pi_{pg} is such that φV\varphi-V_{-} has a local maximum at (t,x)(t,x) where φ(t,x)=V(t,x)\varphi(t,x)=V_{-}(t,x). Then, there are constants C,h>0C,h^{\prime}>0 such that

Gt,t+ht,x;,α[V(t+h,Xt+ht,x;,α)]Gt,t+ht,x;,α[φ(t+h,Xt+ht,x;,α)]Ch3/2\displaystyle G_{t,t+h}^{t,x;\emptyset,\alpha}[V_{-}(t+h,X^{t,x;\emptyset,\alpha}_{t+h})]\geq G_{t,t+h}^{t,x;\emptyset,\alpha}[\varphi(t+h,X^{t,x;\emptyset,\alpha}_{t+h})]-Ch^{3/2}

for all h[0,(Tt)h]h\in[0,(T-t)\wedge h^{\prime}] and α𝒜t,t+h\alpha\in\mathcal{A}_{t,t+h}.

Proof. Since φV\varphi-V_{-} has a local maximum at (t,x)(t,x) there are constants ϵ,h>0\epsilon,h^{\prime}>0 and a h>0h^{\prime}>0 such that V(t,x)φ(t,x)V_{-}(t^{\prime},x^{\prime})\geq\varphi(t^{\prime},x^{\prime}) for all (t,x)[t,t+hT]×B¯ϵ(x)(t^{\prime},x^{\prime})\in[t,t+h^{\prime}\wedge T]\times\bar{B}_{\epsilon}(x). Now, let

η:=inf{st:Xt,x;,αBϵ(x)}\displaystyle\eta:=\inf\{s\geq t:X^{t,x;\emptyset,\alpha}\notin B_{\epsilon}(x)\}

and note from the proof of Lemma 5.3 that 𝔼[𝟙[ηt+h]|t]Ch3\mathbb{E}[\mathbbm{1}_{[\eta\leq t+h]}|\mathcal{F}_{t}]\leq Ch^{3}, \mathbb{P}-a.s. Assume that h[0,Tt]h\in[0,T-t] and let (𝒴1,𝒵1)(\mathcal{Y}^{1},\mathcal{Z}^{1}) be the unique solution to

𝒴s1\displaystyle\mathcal{Y}^{1}_{s} =V(t+h,Xt+ht,x;,α)+st+hf(r,Xrt,x;,α,𝒴r1,𝒵r1,αr)𝑑rst+h𝒵r1𝑑Wr.\displaystyle=V_{-}(t+h,X^{t,x;\emptyset,\alpha}_{t+h})+\int_{s}^{t+h}f(r,X^{t,x;\emptyset,\alpha}_{r},\mathcal{Y}^{1}_{r},\mathcal{Z}^{1}_{r},\alpha_{r})dr-\int_{s}^{t+h}\mathcal{Z}^{1}_{r}dW_{r}.

and assume that (𝒴2,𝒵2)(\mathcal{Y}^{2},\mathcal{Z}^{2}) satisfies

𝒴s2\displaystyle\mathcal{Y}^{2}_{s} =φ(t+h,Xt+ht,x;,α)+st+hf(r,Xrt,x;,α,𝒴r2,𝒵r2,αr)𝑑rst+h𝒵r2𝑑Wr.\displaystyle=\varphi(t+h,X^{t,x;\emptyset,\alpha}_{t+h})+\int_{s}^{t+h}f(r,X^{t,x;\emptyset,\alpha}_{r},\mathcal{Y}^{2}_{r},\mathcal{Z}^{2}_{r},\alpha_{r})dr-\int_{s}^{t+h}\mathcal{Z}^{2}_{r}dW_{r}.

Then, with

Ms:=ets(ζ1(r)12ζ22(r))𝑑r+12tsζ2(r)𝑑Wr,\displaystyle M_{s}:=e^{\int_{t}^{s}(\zeta_{1}(r)-\frac{1}{2}\zeta_{2}^{2}(r))dr+\frac{1}{2}\int_{t}^{s}\zeta_{2}(r)dW_{r}},

where ζ1\zeta_{1} and ζ2\zeta_{2} are given by (5.5)-(5.6). By comparison we have

𝒴t2𝒴t1\displaystyle\mathcal{Y}^{2}_{t}-\mathcal{Y}^{1}_{t} 𝔼[𝟙[ηt+h]Mt+h(φ(t+h,Xt+ht,x;,α)V(t+h,Xt+ht,x;,α))|t]\displaystyle\leq\mathbb{E}\big{[}\mathbbm{1}_{[\eta\leq t+h]}M_{t+h}(\varphi(t+h,X^{t,x;\emptyset,\alpha}_{t+h})-V_{-}(t+h,X^{t,x;\emptyset,\alpha}_{t+h}))\big{|}\mathcal{F}_{t}\big{]}
2𝔼[𝟙[ηt+h]|t]1/2𝔼[Mt+h2(|φ(t+h,Xt+ht,x;,α)|2+|V(t+h,Xt+ht,x;,α)|2)|t]1/2\displaystyle\leq\sqrt{2}\mathbb{E}\big{[}\mathbbm{1}_{[\eta\leq t+h]}\big{|}\mathcal{F}_{t}\big{]}^{1/2}\mathbb{E}\big{[}M_{t+h}^{2}(|\varphi(t+h,X^{t,x;\emptyset,\alpha}_{t+h})|^{2}+|V_{-}(t+h,X^{t,x;\emptyset,\alpha}_{t+h})|^{2})\big{|}\mathcal{F}_{t}\big{]}^{1/2}
Ch3/2\displaystyle\leq Ch^{3/2}

and the result follows.∎

Theorem 5.10.

VV_{-} is a viscosity solution to (1.5).

Proof. To begin with we clearly have that V(T,x)=ψ(x)V_{-}(T,x)=\psi(x) for all xnx\in\mathbb{R}^{n} (see Remark 2.5). We first show that VV_{-} is a viscosity supersolution. For this, we fix (t,x)[0,T]×n(t,x)\in[0,T]\times\mathbb{R}^{n} and assume that φ\varphi is such that φV\varphi-V_{-} has a local maximum at (t,x)(t,x), where φ(t,x)=V(t,x)\varphi(t,x)=V_{-}(t,x).

If (t,x)𝒟C(V)(t,x)\in\mathcal{D}_{C}(V_{-}) we have by the DPP that

φ(t,x)=V(t,x)\displaystyle\varphi(t,x)=V_{-}(t,x) =essinfαS𝒜t,t+hSesssupu𝒰t,t+hkGt,t+ht,x;u,αS(u)[V(t+h,Xt+ht,x;u,αS(u))]\displaystyle=\mathop{\rm{ess}\inf}_{\alpha^{S}\in\mathcal{A}^{S}_{t,t+h}}\mathop{\rm{ess}\sup}_{u\in\mathcal{U}^{k}_{t,t+h}}G_{t,t+h}^{t,x;u,\alpha^{S}(u)}[V_{-}(t+h,X^{t,x;u,\alpha^{S}(u)}_{t+h})]
essinfα𝒜t,t+hGt,t+ht,x;,α[V(t+h,Xt+ht,x;,α)]\displaystyle\geq\mathop{\rm{ess}\inf}_{\alpha\in\mathcal{A}_{t,t+h}}G_{t,t+h}^{t,x;\emptyset,\alpha}[V_{-}(t+h,X^{t,x;\emptyset,\alpha}_{t+h})]

On the other hand by Lemma 5.9 we have for h>0h>0 sufficiently small that

Gt,t+ht,x;,α[φ(t+h,Xt+ht,x;,α)]Gt,t+ht,x;,α[V(t+h,Xt+ht,x;,α)]+Ch3/2.\displaystyle G_{t,t+h}^{t,x;\emptyset,\alpha}[\varphi(t+h,X^{t,x;\emptyset,\alpha}_{t+h})]\leq G_{t,t+h}^{t,x;\emptyset,\alpha}[V_{-}(t+h,X^{t,x;\emptyset,\alpha}_{t+h})]+Ch^{3/2}.

Now, (5.8) gives

Yt1,αGt,t+ht,x;,α[V(t+h,Xt+ht,x;,α)]φ(t,x)+Ch3/2.\displaystyle Y^{1,\alpha}_{t}\leq G_{t,t+h}^{t,x;\emptyset,\alpha}[V_{-}(t+h,X^{t,x;\emptyset,\alpha}_{t+h})]-\varphi(t,x)+Ch^{3/2}.

Combined this gives

essinfα𝒜t,t+hYt1,αCh3/2.\displaystyle\mathop{\rm{ess}\inf}_{\alpha\in\mathcal{A}_{t,t+h}}Y^{1,\alpha}_{t}\leq Ch^{3/2}.

In particular, by Lemma 5.7 and (5.9) this implies that

Yt0=essinfα𝒜t,t+hYt2,αCh3/2.\displaystyle Y^{0}_{t}=\mathop{\rm{ess}\inf}_{\alpha\in\mathcal{A}_{t,t+h}}Y^{2,\alpha}_{t}\leq Ch^{3/2}.

Hence, limh0h1Yt00\lim_{h\to 0}h^{-1}Y^{0}_{t}\leq 0 and we conclude by Lemma 5.8 that

0\displaystyle 0 limh0h1tt+hinfαAF(s,x,Ys0,0,α)ds\displaystyle\geq\lim_{h\to 0}h^{-1}\int_{t}^{t+h}\inf_{\alpha\in A}F(s,x,Y^{0}_{s},0,\alpha)ds
limh0h1tt+hinfαA(F(s,x,0,0,α)C|Ys0|)ds\displaystyle\geq\lim_{h\to 0}h^{-1}\int_{t}^{t+h}\inf_{\alpha\in A}(F(s,x,0,0,\alpha)-C|Y^{0}_{s}|)ds
=limh0h1tt+hinfαAF(s,x,0,0,α)ds\displaystyle=\lim_{h\to 0}h^{-1}\int_{t}^{t+h}\inf_{\alpha\in A}F(s,x,0,0,\alpha)ds

and by continuity of infαAF(,x,0,0,α)\inf_{\alpha\in A}F(\cdot,x,0,0,\alpha) it follows that

infαAF(t,x,0,0,α)0.\displaystyle\inf_{\alpha\in A}F(t,x,0,0,\alpha)\leq 0.

Assume instead that (t,x)𝒟S(V):=([0,T]×n)𝒟C(V)(t,x)\in\mathcal{D}_{S}(V_{-}):=([0,T]\times\mathbb{R}^{n})\setminus\mathcal{D}_{C}(V_{-}), then V(t,x)=V(t,x)V_{-}(t,x)=\mathcal{M}V_{-}(t,x) and we conclude that VV_{-} is a viscosity supersolution.

We turn now to the subsolution property. We fix (t,x)[0,T]×n(t,x)\in[0,T]\times\mathbb{R}^{n} and assume that φ\varphi is such that φV\varphi-V_{-} has a local minimum at (t,x)(t,x), where φ(t,x)=V(t,x)\varphi(t,x)=V_{-}(t,x). If (t,x)𝒟C(V)(t,x)\in\mathcal{D}_{C}(V_{-}) we have by the DPP and Lemma 5.3 that, whenever h>0h>0 is sufficiently small,

φ(t,x)=V(t,x)\displaystyle\varphi(t,x)=V_{-}(t,x) =essinfαS𝒜t,t+hSesssupu𝒰t,t+hkGt,t+ht,x;u,αS(u)[V(t+h,Xt+ht,x;u,αS(u))]\displaystyle=\mathop{\rm{ess}\inf}_{\alpha^{S}\in\mathcal{A}^{S}_{t,t+h}}\mathop{\rm{ess}\sup}_{u\in\mathcal{U}^{k}_{t,t+h}}G_{t,t+h}^{t,x;u,\alpha^{S}(u)}[V_{-}(t+h,X^{t,x;u,\alpha^{S}(u)}_{t+h})]
essinfα𝒜t,t+hGt,t+ht,x;,α[V(t+h,Xt+ht,x;,α)]+Ch3/2\displaystyle\leq\mathop{\rm{ess}\inf}_{\alpha\in\mathcal{A}_{t,t+h}}G_{t,t+h}^{t,x;\emptyset,\alpha}[V_{-}(t+h,X^{t,x;\emptyset,\alpha}_{t+h})]+Ch^{3/2}

On the other hand repeating the argument in the proof of Lemma 5.9 gives that

Gt,t+ht,x;,α[V(t+h,Xt+ht,x;,α)]Gt,t+ht,x;,α[φ(t+h,Xt+ht,x;,α)]+Ch3/2\displaystyle G_{t,t+h}^{t,x;\emptyset,\alpha}[V_{-}(t+h,X^{t,x;\emptyset,\alpha}_{t+h})]\leq G_{t,t+h}^{t,x;\emptyset,\alpha}[\varphi(t+h,X^{t,x;\emptyset,\alpha}_{t+h})]+Ch^{3/2}

and we get that

Yt1,α\displaystyle-Y^{1,\alpha}_{t} =φ(t,x)Gt,t+ht,x;,αS()[φ(t+h,Xt+ht,x;,αS())]\displaystyle=\varphi(t,x)-G_{t,t+h}^{t,x;\emptyset,\alpha^{S}(\emptyset)}[\varphi(t+h,X^{t,x;\emptyset,\alpha^{S}(\emptyset)}_{t+h})]
Ch3/2,\displaystyle\leq Ch^{3/2},

i.e. Yt1,αCh3/2Y^{1,\alpha}_{t}\geq-Ch^{3/2}. Now, repeating the above argument we find that

infαAF(t,x,0,0,α)0.\displaystyle\inf_{\alpha\in A}F(t,x,0,0,\alpha)\geq 0.

Analogously we get when (t,x)𝒟S(V)(t,x)\in\mathcal{D}_{S}(V_{-}) then V(t,x)=φ(t,x)V_{-}(t,x)=\mathcal{M}\varphi(t,x) and we conclude that VV_{-} is a viscosity subsolution.∎

Remark 5.11.

By the same argument while using Lemma 5.4 instead of Lemma 5.3 we conclude that V+V_{+} is a viscosity solution to (1.5).

6 Uniqueness of viscosity solutions to the HJBI-QVI

To be able to conclude that the game has a value, i.e. that VV+V_{-}\equiv V_{+}, we will now show that (1.5) has at most one solution in the viscosity sense in Πpg\Pi_{pg}. We let

αφ(t,x):=j=1daj(t,x,α)xjφ(t,x)+12i,j=1d(σσ(t,x,α))i,j2xixjφ(t,x)\displaystyle\mathcal{L}^{\alpha}\varphi(t,x):=\sum_{j=1}^{d}a_{j}(t,x,\alpha)\frac{\partial}{\partial x_{j}}\varphi(t,x)+\frac{1}{2}\sum_{i,j=1}^{d}(\sigma\sigma^{\top}(t,x,\alpha))_{i,j}\frac{\partial^{2}}{\partial x_{i}\partial x_{j}}\varphi(t,x) (6.1)

and have that

H(t,x,v(t,x),Dv(t,x),D2v(t,x),α):=αv(t,x)+f(t,x,v(t,x),Dv(t,x)σ(t,x,α),α).\displaystyle H(t,x,v(t,x),Dv(t,x),D^{2}v(t,x),\alpha):=\mathcal{L}^{\alpha}v(t,x)+f(t,x,v(t,x),Dv(t,x)\cdot\sigma(t,x,\alpha),\alpha).

We will need the following lemma:

Lemma 6.1.

Let vv be a supersolution to (1.5) satisfying

(t,x)[0,T]×d,|v(t,x)|C(1+|x|2γ)\displaystyle\forall(t,x)\in[0,T]\times\mathbb{R}^{d},\quad|v(t,x)|\leq C(1+|x|^{2\gamma})

for some γ>0\gamma>0. Then there is a λ0>0\lambda_{0}>0 such that for any λ>λ0\lambda>\lambda_{0} and θ>0\theta>0, the function v+θeλt(1+((|x|KΓ)+)2γ+2)v+\theta e^{-\lambda t}(1+((|x|-K_{\Gamma})^{+})^{2\gamma+2}) is also a supersolution to (1.5).

Proof. With w:=v+θeλt(1+((|x|KΓ)+)2γ+2)w:=v+\theta e^{-\lambda t}(1+((|x|-K_{\Gamma})^{+})^{2\gamma+2}) we note that, since vv is a supersolution and θeλT(1+((|x|KΓ)+)2γ+2)0\theta e^{-\lambda T}(1+((|x|-K_{\Gamma})^{+})^{2\gamma+2})\geq 0, we have w(T,x)v(T,x)ψ(x)w(T,x)\geq v(T,x)\geq\psi(x) so that the terminal condition holds. Moreover, we have

w(t,x)supbU{w(t,Γ(t,x,b))(t,x,b)}\displaystyle w(t,x)-\sup_{b\in U}\{w(t,\Gamma(t,x,b))-\ell(t,x,b)\}
=v(t,x)+θeλt(1+((|x|KΓ)+)2γ+2)\displaystyle=v(t,x)+\theta e^{-\lambda t}(1+((|x|-K_{\Gamma})^{+})^{2\gamma+2})
supbU{v(t,Γ(t,x,b))+θeλt(1+((|Γ(t,x,b)|KΓ)+)2γ+2(t,x,b))}\displaystyle\quad-\sup_{b\in U}\{v(t,\Gamma(t,x,b))+\theta e^{-\lambda t}(1+((|\Gamma(t,x,b)|-K_{\Gamma})^{+})^{2\gamma+2}-\ell(t,x,b))\}
v(t,x)supbU{v(t,Γ(t,x,b))(t,x,b)}\displaystyle\geq v(t,x)-\sup_{b\in U}\{v(t,\Gamma(t,x,b))-\ell(t,x,b)\}
+θeλt{(1+((|x|KΓ)+)2γ+2)supbU(1+((|Γ(t,x,b)|KΓ)+)2γ+2)}.\displaystyle\quad+\theta e^{-\lambda t}\{(1+((|x|-K_{\Gamma})^{+})^{2\gamma+2})-\sup_{b\in U}(1+((|\Gamma(t,x,b)|-K_{\Gamma})^{+})^{2\gamma+2})\}.

Since vv is a supersolution, we have

v(t,x)supbU{v(t,Γ(t,x,b))(t,x,b)}0\displaystyle v(t,x)-\sup_{b\in U}\{v(t,\Gamma(t,x,b))-\ell(t,x,b)\}\geq 0

Now, either |x|KΓ|x|\leq K_{\Gamma} in which case it follows by (2.1) that |Γ(t,x,b)|KΓ|\Gamma(t,x,b)|\leq K_{\Gamma} or |x|>KΓ|x|>K_{\Gamma} and (2.1) gives that |Γ(t,x,b)||x||\Gamma(t,x,b)|\leq|x|. We conclude that

w(t,x)supbU{w(t,Γ(t,x,b))(t,x,b)}0.\displaystyle w(t,x)-\sup_{b\in U}\{w(t,\Gamma(t,x,b))-\ell(t,x,b)\}\geq 0.

Next, let φC1,2([0,T]×d)\varphi\in C^{1,2}([0,T]\times\mathbb{R}^{d}\to\mathbb{R}) be such that φw\varphi-w has a local maximum of 0 at (t0,x0)(t_{0},x_{0}) with t0<Tt_{0}<T. Then φ~(t,x):=φ(t,x)θeλt(1+((|x|KΓ)+)2γ+2)C1,2([0,T]×d)\tilde{\varphi}(t,x):=\varphi(t,x)-\theta e^{-\lambda t}(1+((|x|-K_{\Gamma})^{+})^{2\gamma+2})\in C^{1,2}([0,T]\times\mathbb{R}^{d}\to\mathbb{R}) and φ~v\tilde{\varphi}-v has a local maximum of 0 at (t0,x0)(t_{0},x_{0}). Since vv is a viscosity supersolution, we have

0\displaystyle 0 tφ~(t,x)infαAH(t,x,φ~(t,x),Dφ~(t,x),D2φ~(t,x),α)\displaystyle\leq-\partial_{t}\tilde{\varphi}(t,x)-\inf_{\alpha\in A}H(t,x,\tilde{\varphi}(t,x),D\tilde{\varphi}(t,x),D^{2}\tilde{\varphi}(t,x),\alpha)
=t(φ(t,x)θeλt(1+((|x|KΓ)+)2γ+2))infαA{α(φ(t,x)θeλt(1+((|x|KΓ)+)2γ+2))\displaystyle=-\partial_{t}(\varphi(t,x)-\theta e^{-\lambda t}(1+((|x|-K_{\Gamma})^{+})^{2\gamma+2}))-\inf_{\alpha\in A}\big{\{}\mathcal{L}^{\alpha}(\varphi(t,x)-\theta e^{-\lambda t}(1+((|x|-K_{\Gamma})^{+})^{2\gamma+2}))
+f(t,x,φ(t,x)θeλt(1+((|x|KΓ)+)2γ+2),σ(t,x)x(φ(t,x)θeλt(1+((|x|KΓ)+)2γ+2)),α)}\displaystyle\quad+f(t,x,\varphi(t,x)-\theta e^{-\lambda t}(1+((|x|-K_{\Gamma})^{+})^{2\gamma+2}),\sigma^{\top}(t,x)\nabla_{x}(\varphi(t,x)-\theta e^{-\lambda t}(1+((|x|-K_{\Gamma})^{+})^{2\gamma+2})),\alpha)\big{\}}
tφ(t,x)infαA{αφ(t,x)+f(t,x,φ(t,x),σ(t,x)xφ(t,x),α)}\displaystyle\leq-\partial_{t}\varphi(t,x)-\inf_{\alpha\in A}\big{\{}\mathcal{L}^{\alpha}\varphi(t,x)+f(t,x,\varphi(t,x),\sigma^{\top}(t,x)\nabla_{x}\varphi(t,x),\alpha)\big{\}}
θλeλt(1+((|x|KΓ)+)2γ+2)+supαAα{θeλt(1+((|x|KΓ)+)2γ+2)}\displaystyle\quad-\theta\lambda e^{-\lambda t}(1+((|x|-K_{\Gamma})^{+})^{2\gamma+2})+\sup_{\alpha\in A}\mathcal{L}^{\alpha}\{\theta e^{-\lambda t}(1+((|x|-K_{\Gamma})^{+})^{2\gamma+2})\}
+kfθeλt(1+((|x|KΓ)+)2γ+2+C(1+|x|)((|x|KΓ)+)2γ+1)\displaystyle\quad+k_{f}\theta e^{-\lambda t}(1+((|x|-K_{\Gamma})^{+})^{2\gamma+2}+C(1+|x|)((|x|-K_{\Gamma})^{+})^{2\gamma+1})

Consequently,

tφ(t,x)infαAα{φ(t,x)+f(t,x,φ(t,x),σ(t,x)xφ(t,x),α)}\displaystyle-\partial_{t}\varphi(t,x)-\inf_{\alpha\in A}\mathcal{L}^{\alpha}\{\varphi(t,x)+f(t,x,\varphi(t,x),\sigma^{\top}(t,x)\nabla_{x}\varphi(t,x),\alpha)\}
θeλt(λ(1+((|x|KΓ)+)2γ+2)C(1+|x|)((|x|KΓ)+)2γ+1C(1+|x|)2eλt((|x|KΓ)+)2γ\displaystyle\geq\theta e^{-\lambda t}\big{(}\lambda(1+((|x|-K_{\Gamma})^{+})^{2\gamma+2})-C(1+|x|)((|x|-K_{\Gamma})^{+})^{2\gamma+1}-C(1+|x|)^{2}e^{-\lambda t}((|x|-K_{\Gamma})^{+})^{2\gamma}
kf(1+((|x|KΓ)+)2γ+2+C(1+|x|)((|x|KΓ)+)2γ+1)),\displaystyle\quad-k_{f}(1+((|x|-K_{\Gamma})^{+})^{2\gamma+2}+C(1+|x|)((|x|-K_{\Gamma})^{+})^{2\gamma+1})\big{)},

where the right hand side is non-negative for all θ>0\theta>0 and all λ>λ0\lambda>\lambda_{0} for some λ0>0\lambda_{0}>0.∎

We have the following results the proof of which we omit since it is classical:

Lemma 6.2.

A locally bounded function v:[0,T]×dv:[0,T]\times\mathbb{R}^{d}\to\mathbb{R} is a viscosity supersolution (resp. subsolution) to (1.5) if and only if for every λ\lambda\in\mathbb{R}, v~(t,x):=eλtv(t,x)\tilde{v}(t,x):=e^{\lambda t}v(t,x) is a viscosity supersolution (resp. subsolution) to

{min{v~(t,x)supbU{v~(t,Γ(t,x,b))eλt(t,x,b)},v~t(t,x)+λv~(t,x)infαA{αv~(t,x)+eλtf(t,x,eλtv~(t,x),eλtσ(t,x)xv~(t,x),α)}}=0,(t,x)[0,T)×dv~(T,x)=eλTψ(x).\displaystyle\begin{cases}\min\big{\{}\tilde{v}(t,x)-\sup_{b\in U}\{\tilde{v}(t,\Gamma(t,x,b))-e^{\lambda t}\ell(t,x,b)\},-\tilde{v}_{t}(t,x)+\lambda\tilde{v}(t,x)-\inf_{\alpha\in A}\{\mathcal{L}^{\alpha}\tilde{v}(t,x)\\ +e^{\lambda t}f(t,x,e^{-\lambda t}\tilde{v}(t,x),e^{-\lambda t}\sigma^{\top}(t,x)\nabla_{x}\tilde{v}(t,x),\alpha)\}\big{\}}=0,\quad\forall(t,x)\in[0,T)\times\mathbb{R}^{d}\\ \tilde{v}(T,x)=e^{\lambda T}\psi(x).\end{cases} (6.2)
Remark 6.3.

Here, it is important to note that ~(t,x):=eλt(t,x)\tilde{\ell}(t,x):=e^{\lambda t}\ell(t,x), f~(t,x,y,z,α):=λy+eλtf(t,x,eλty,eλtz,α)\tilde{f}(t,x,y,z,\alpha):=-\lambda y\\ +e^{\lambda t}f(t,x,e^{-\lambda t}y,e^{-\lambda t}z,\alpha) and ψ~(x):=eλTψ(x)\tilde{\psi}(x):=e^{\lambda T}\psi(x) satisfy Assumption 2.4. In particular, this implies that Lemma 6.1 holds for supersolutions to (6.2) as well.

We have the following comparison result for viscosity solutions in Πpg\Pi_{pg}:

Proposition 6.4.

Let vv (resp. uu) be a supersolution (resp. subsolution) to (1.5). If u,vΠpgu,v\in\Pi_{pg}, then uvu\leq v.

Proof. First, we note that we only need to show that the statement holds for solutions to (6.2). We thus assume that vv (resp. uu) is a viscosity supersolution (resp. subsolution) to (6.2).

It is sufficient to show that

w(t,x)\displaystyle w(t,x) =wθ,λ(t,x):=v(t,x)θeλt(1+((|x|KΓ)+)2γ+2)\displaystyle=w^{\theta,\lambda}(t,x):=v(t,x)-\theta e^{-\lambda t}(1+((|x|-K_{\Gamma})^{+})^{2\gamma+2})
u(t,x)\displaystyle\geq u(t,x)

for all (t,x)[0,T]×d(t,x)\in[0,T]\times\mathbb{R}^{d} and any θ>0\theta>0. Then the result follows by taking the limit θ0\theta\to 0. Moreover, we know from Lemma 6.1 that there is a λ0>0\lambda_{0}>0 such that ww is a supersolution to (6.2) for each λλ0\lambda\geq\lambda_{0} and θ>0\theta>0.

By assumption, u,vΠpgu,v\in\Pi_{pg}, which implies that there are C>0C>0 and γ>0\gamma>0 such that

|v(t,x)|+|u(t,x)|C(1+|x|2γ).\displaystyle|v(t,x)|+|u(t,x)|\leq C(1+|x|^{2\gamma}).

Hence, for each λ,θ>0\lambda,\theta>0 there is a RKΓR\geq K_{\Gamma} such that

w(t,x)>u(t,x),(t,x)[0,T]×d,|x|>R.\displaystyle w(t,x)>u(t,x),\quad\forall(t,x)\in[0,T]\times\mathbb{R}^{d},\>|x|>R.

We search for a contradiction and assume that there is a (t0,x0)[0,T]×d(t_{0},x_{0})\in[0,T]\times\mathbb{R}^{d} such that v(t0,x0)>w(t0,x0)v(t_{0},x_{0})>w(t_{0},x_{0}). Then there is a point (t¯,x¯)[0,T)×BR(\bar{t},\bar{x})\in[0,T)\times B_{R} (the open unit ball of radius RR centered at 0) such that

max(t,x)[0,T]×d(u(t,x)w(t,x))\displaystyle\max_{(t,x)\in[0,T]\times\mathbb{R}^{d}}(u(t,x)-w(t,x)) =max(t,x)[0,T)×BR(u(t,x)w(t,x))\displaystyle=\max_{(t,x)\in[0,T)\times B_{R}}(u(t,x)-w(t,x))
=u(t¯,x¯)w(t¯,x¯)=η>0.\displaystyle=u(\bar{t},\bar{x})-w(\bar{t},\bar{x})=\eta>0.

We first show that there is at least one point (t,x)[0,T)×BR(t^{*},x^{*})\in[0,T)\times B_{R} such that

  1. a)

    u(t,x)w(t,x)=ηu(t^{*},x^{*})-w(t^{*},x^{*})=\eta and

  2. b)

    u(t,x)>supbU{u(t,Γ(t,x,b))~(t,b)}u(t^{*},x^{*})>\sup_{b\in U}\{u(t^{*},\Gamma(t^{*},x^{*},b))-\tilde{\ell}(t^{*},b)\}.

We again argue by contradiction and assume that u(t,x)=supbU{u(t,Γ(t,x,b))~(t,b)}u(t,x)=\sup_{b\in U}\{u(t,\Gamma(t,x,b))-\tilde{\ell}(t,b)\} for all (t,x)A:={(s,y)[0,T]×d:u(s,y)w(s,y)=η}(t,x)\in A:=\{(s,y)\in[0,T]\times\mathbb{R}^{d}:u(s,y)-w(s,y)=\eta\}. Indeed, as uu is u.s.c. and Γ\Gamma is continuous, there is a b1b_{1} such that

u(t¯,x¯)=supbU{u(t¯,Γ(t¯,x¯,b))~(t¯,b)}=u(t¯,Γ(t¯,x¯,b1))~(t¯,b1).\displaystyle u(\bar{t},\bar{x})=\sup_{b\in U}\{u(\bar{t},\Gamma(\bar{t},\bar{x},b))-\tilde{\ell}(\bar{t},b)\}=u(\bar{t},\Gamma(\bar{t},\bar{x},b_{1}))-\tilde{\ell}(\bar{t},b_{1}). (6.3)

Now, set x1=Γ(t¯,x¯,b1)x_{1}=\Gamma(\bar{t},\bar{x},b_{1}) and note that since

|Γ(t,x,b)|R,(t,x,b)[0,T]×B¯R×U,\displaystyle|\Gamma(t,x,b)|\leq R,\quad\forall(t,x,b)\in[0,T]\times\bar{B}_{R}\times U,

it follows that x1B¯Rx_{1}\in\bar{B}_{R}. Moreover, as ww is a supersolution it satisfies

w(t¯,x¯)(w(t¯,Γ(t¯,x¯,b1))~(t,x¯,b1))0\displaystyle w(\bar{t},\bar{x})-(w(\bar{t},\Gamma(\bar{t},\bar{x},b_{1}))-\tilde{\ell}(t,\bar{x},b_{1}))\geq 0

or

w(t¯,x1))w(t¯,x¯)~(t,x¯,b1)\displaystyle-w(\bar{t},x_{1}))\geq-w(\bar{t},\bar{x})-\tilde{\ell}(t,\bar{x},b_{1})

and we conclude from (6.3) that

u(t¯,x1)w(t¯,x1)\displaystyle u(\bar{t},x_{1})-w(\bar{t},x_{1}) u(t¯,x¯)+~(t¯,x¯,b1)(w(t¯,x¯)+~(t¯,x¯,b1))\displaystyle\geq u(\bar{t},\bar{x})+\tilde{\ell}(\bar{t},\bar{x},b_{1})-(w(\bar{t},\bar{x})+\tilde{\ell}(\bar{t},\bar{x},b_{1}))
=u(t¯,x¯)w(t¯,x¯)=η.\displaystyle=u(\bar{t},\bar{x})-w(\bar{t},\bar{x})=\eta.

Hence, (t¯,x1)A(\bar{t},x_{1})\in A and by our assumption it follows that there is a b2Ub_{2}\in U such that

u(t¯,x1)=u(t¯,Γ(t¯,x1,b2))~(t¯,b2)\displaystyle u(\bar{t},x_{1})=u(\bar{t},\Gamma(\bar{t},x_{1},b_{2}))-\tilde{\ell}(\bar{t},b_{2})

and a corresponding x2:=Γ(t¯,x1,b2)BRx_{2}:=\Gamma(\bar{t},x_{1},b_{2})\in B_{R}. Now, this process can be repeated indefinitely to find a sequence (xj,bj)j1(x_{j},b_{j})_{j\geq 1} in BR×UB_{R}\times U such that for any l0l\geq 0 we have

u(t¯,x¯)=u(t¯,xl)j=1l~(t¯,xj1,bj),\displaystyle u(\bar{t},\bar{x})=u(\bar{t},x_{l})-\sum_{j=1}^{l}\tilde{\ell}(\bar{t},x_{j-1},b_{j}),

with x0:=x¯x_{0}:=\bar{x}. Now, as ~(1eλT)δ>0\tilde{\ell}\geq(1\wedge e^{\lambda T})\delta>0 we get a contradiction by letting ll\to\infty while noting that |u(t,x)||u(t,x)| is bounded on [0,T]×B¯R[0,T]\times\bar{B}_{R}. We can thus pick a (t,x)[0,T)×BR(t^{*},x^{*})\in[0,T)\times B_{R} such that a) and b) above holds.

The remainder of the proof is similar to the proof of Proposition 4.1 in [13]. We assume without loss of generality that γ2\gamma\geq 2 and define

Φn(t,x,y):=u(t,x)w(t,x)φn(t,x,y),\displaystyle\Phi_{n}(t,x,y):=u(t,x)-w(t,x)-\varphi_{n}(t,x,y),

where

φn(t,x,y):=n2|xy|2γ+|xx|2+|yx|2+(tt)2.\displaystyle\varphi_{n}(t,x,y):=\frac{n}{2}|x-y|^{2\gamma}+|x-x^{*}|^{2}+|y-x^{*}|^{2}+(t-t^{*})^{2}.

Since uu is u.s.c. and ww is l.s.c. there is a (tn,xn,yn)[0,T]×B¯R×B¯R(t_{n},x_{n},y_{n})\in[0,T]\times\bar{B}_{R}\times\bar{B}_{R} (with B¯R\bar{B}_{R} the closure of BRB_{R}) such that

Φn(tn,xn,yn)=max(t,x,y)[0,T]×B¯R×B¯RΦn(t,x,y).\displaystyle\Phi_{n}(t_{n},x_{n},y_{n})=\max_{(t,x,y)\in[0,T]\times\bar{B}_{R}\times\bar{B}_{R}}\Phi_{n}(t,x,y).

Now, the inequality 2Φn(tn,xn,yn)Φn(tn,xn,xn)+Φn(tn,yn,yn)2\Phi_{n}(t_{n},x_{n},y_{n})\geq\Phi_{n}(t_{n},x_{n},x_{n})+\Phi_{n}(t_{n},y_{n},y_{n}) gives

n|xnyn|2γu(tn,xn)u(tn,yn)+w(tn,xn)w(tn,yn).\displaystyle n|x_{n}-y_{n}|^{2\gamma}\leq u(t_{n},x_{n})-u(t_{n},y_{n})+w(t_{n},x_{n})-w(t_{n},y_{n}).

Consequently, n|xnyn|2γn|x_{n}-y_{n}|^{2\gamma} is bounded (since uu and ww are bounded on [0,T]×B¯R×B¯R[0,T]\times\bar{B}_{R}\times\bar{B}_{R}) and |xnyn|0|x_{n}-y_{n}|\to 0 as nn\to\infty. We can, thus, extract subsequences nln_{l} such that (tnl,xnl,ynl)(t~,x~,x~)(t_{n_{l}},x_{n_{l}},y_{n_{l}})\to(\tilde{t},\tilde{x},\tilde{x}) as ll\to\infty. Since

u(t,x)w(t,x)Φn(tn,xn,yn)u(tn,xn)w(tn,yn),\displaystyle u(t^{*},x^{*})-w(t^{*},x^{*})\leq\Phi_{n}(t_{n},x_{n},y_{n})\leq u(t_{n},x_{n})-w(t_{n},y_{n}),

it follows that

u(t,x)w(t,x)\displaystyle u(t^{*},x^{*})-w(t^{*},x^{*}) lim supl{u(tnl,xnl)w(tnl,ynl)}\displaystyle\leq\limsup_{l\to\infty}\{u(t_{n_{l}},x_{n_{l}})-w(t_{n_{l}},y_{n_{l}})\}
u(t~,x~)w(t~,x~)\displaystyle\leq u(\tilde{t},\tilde{x})-w(\tilde{t},\tilde{x})

and as the righthand side is dominated by u(t,x)w(t,x)u(t^{*},x^{*})-w(t^{*},x^{*}) we conclude that

u(t~,x~)w(t~,x~)=u(t,x)w(t,x).\displaystyle u(\tilde{t},\tilde{x})-w(\tilde{t},\tilde{x})=u(t^{*},x^{*})-w(t^{*},x^{*}).

In particular, this gives that limlΦn(tnl,xnl,ynl)=u(t~,x~)w(t~,x~)\lim_{l\to\infty}\Phi_{n}(t_{n_{l}},x_{n_{l}},y_{n_{l}})=u(\tilde{t},\tilde{x})-w(\tilde{t},\tilde{x}) which implies that

lim suplnl|xnlynl|2γ=0\displaystyle\limsup_{l\to\infty}n_{l}|x_{n_{l}}-y_{n_{l}}|^{2\gamma}=0

and

(tnl,xnl,ynl)(t,x,x).\displaystyle(t_{n_{l}},x_{n_{l}},y_{n_{l}})\to(t^{*},x^{*},x^{*}).

We can extract a subsequence (n~l)l0(\tilde{n}_{l})_{l\geq 0} of (nl)l0(n_{l})_{l\geq 0} such that tn~l<Tt_{\tilde{n}_{l}}<T, |xn~l|<R|x_{\tilde{n}_{l}}|<R and

u(tn~l,xn~l)w(tn~l,xn~l)η2.\displaystyle u(t_{\tilde{n}_{l}},x_{\tilde{n}_{l}})-w(t_{\tilde{n}_{l}},x_{\tilde{n}_{l}})\geq\frac{\eta}{2}.

Moreover, since supbU{u(t,Γ(t,x,b))~(t,b)}\sup_{b\in U}\{u(t,\Gamma(t,x,b))-\tilde{\ell}(t,b)\} is u.s.c. (see Lemma 5.1) and u(tn~l,xn~l)u(t,x)u(t_{\tilde{n}_{l}},x_{\tilde{n}_{l}})\to u(t^{*},x^{*}) there is an l00l_{0}\geq 0 such that

u(tn~l,xn~l)supbU{u(tn~l,Γ(tn~l,xn~l,b))~(tn~l,b)}>0,\displaystyle u(t_{\tilde{n}_{l}},x_{\tilde{n}_{l}})-\sup_{b\in U}\{u(t_{\tilde{n}_{l}},\Gamma(t_{\tilde{n}_{l}},x_{\tilde{n}_{l}},b))-\tilde{\ell}(t_{\tilde{n}_{l}},b)\}>0,

for all ll0l\geq l_{0}. To simplify notation we will, from now on, denote (n~l)ll0(\tilde{n}_{l})_{l\geq l_{0}} simply by nn.

By Theorem 8.3 of [6] there are (pun,qun,Mun)J¯2,+u(tn,xn)(p^{u}_{n},q^{u}_{n},M^{u}_{n})\in\bar{J}^{2,+}u(t_{n},x_{n}) and (pwn,qwn,Mwn)J¯2,+w(tn,yn)(p^{w}_{n},q^{w}_{n},M^{w}_{n})\in\bar{J}^{2,+}w(t_{n},y_{n}) such that

{punpwn=tφn(tn,xn,yn)=2(tnt)qun=Dxφn(tn,xn,yn)=nγ(xy)|xy|2γ2+2(xx)qwn=Dyφn(tn,xn,yn)=nγ(xy)|xy|2γ22(yx)\displaystyle\begin{cases}p^{u}_{n}-p^{w}_{n}=\partial_{t}\varphi_{n}(t_{n},x_{n},y_{n})=2(t_{n}-t^{*})\\ q^{u}_{n}=D_{x}\varphi_{n}(t_{n},x_{n},y_{n})=n\gamma(x-y)|x-y|^{2\gamma-2}+2(x-x^{*})\\ q^{w}_{n}=-D_{y}\varphi_{n}(t_{n},x_{n},y_{n})=n\gamma(x-y)|x-y|^{2\gamma-2}-2(y-x^{*})\end{cases}

and for every ϵ>0\epsilon>0,

[Mnx00Mny]Bn(tn,xn,yn)+ϵBn2(tn,xn,yn),\displaystyle\left[\begin{array}[]{cc}M^{n}_{x}&0\\ 0&-M^{n}_{y}\end{array}\right]\leq B_{n}(t_{n},x_{n},y_{n})+\epsilon B_{n}^{2}(t_{n},x_{n},y_{n}),

where Bn(tn,xn,yn):=D2(x,y)φn(tn,xn,yn)B_{n}(t_{n},x_{n},y_{n}):=D^{2}_{(x,y)}\varphi_{n}(t_{n},x_{n},y_{n}). Now, we have

D2(x,y)φn(t,x,y)=[Dx2φn(t,x,y)D2yxφn(t,x,y)D2xyφn(t,x,y)Dy2φn(t,x,y)]=[nξ(x,y)+2Inξ(x,y)nξ(x,y)nξ(x,y)+2I]\displaystyle D^{2}_{(x,y)}\varphi_{n}(t,x,y)=\left[\begin{array}[]{cc}D_{x}^{2}\varphi_{n}(t,x,y)&D^{2}_{yx}\varphi_{n}(t,x,y)\\ D^{2}_{xy}\varphi_{n}(t,x,y)&D_{y}^{2}\varphi_{n}(t,x,y)\end{array}\right]=\left[\begin{array}[]{cc}n\xi(x,y)+2I&-n\xi(x,y)\\ -n\xi(x,y)&n\xi(x,y)+2I\end{array}\right]

where II is the identity-matrix of suitable dimension and

ξ(x,y):=γ|xy|2γ4{|xy|2I+2(γ1)(xy)(xy)}.\displaystyle\xi(x,y):=\gamma|x-y|^{2\gamma-4}\{|x-y|^{2}I+2(\gamma-1)(x-y)(x-y)^{\top}\}.

In particular, since xnx_{n} and yny_{n} are bounded, choosing ϵ:=1n\epsilon:=\frac{1}{n} gives that

B~n:=Bn(tn,xn,yn)+ϵBn2(tn,xn,yn)Cn|xnyn|2γ2[IIII]+CI.\displaystyle\tilde{B}_{n}:=B_{n}(t_{n},x_{n},y_{n})+\epsilon B_{n}^{2}(t_{n},x_{n},y_{n})\leq Cn|x_{n}-y_{n}|^{2\gamma-2}\left[\begin{array}[]{cc}I&-I\\ -I&I\end{array}\right]+CI. (6.6)

By the definition of viscosity supersolutions and subsolutions we have that

pun+λu(tn,xn)a(tn,xn,α)qun12Tr[σ(tn,xn,α)Munσ(tn,xn,α)]\displaystyle-p^{u}_{n}+\lambda u(t_{n},x_{n})-a^{\top}(t_{n},x_{n},\alpha)q^{u}_{n}-\frac{1}{2}{\rm Tr}[\sigma^{\top}(t_{n},x_{n},\alpha)M^{u}_{n}\sigma(t_{n},x_{n},\alpha)]
eλtnf(tn,xn,eλtnu(tn,xn),eλtnσ(tn,xn)qun,α)}0\displaystyle-e^{\lambda t_{n}}f(t_{n},x_{n},e^{-\lambda t_{n}}u(t_{n},x_{n}),e^{-\lambda t_{n}}\sigma^{\top}(t_{n},x_{n})q^{u}_{n},\alpha)\big{\}}\leq 0

for all αA\alpha\in A and

pwn+λw(tn,yn)infαA{a(tn,yn,α)qwn+12Tr[σ(tn,yn,α)Mwnσ(tn,yn,α)]\displaystyle-p^{w}_{n}+\lambda w(t_{n},y_{n})-\inf_{\alpha\in A}\big{\{}a^{\top}(t_{n},y_{n},\alpha)q^{w}_{n}+\frac{1}{2}{\rm Tr}[\sigma^{\top}(t_{n},y_{n},\alpha)M^{w}_{n}\sigma(t_{n},y_{n},\alpha)]
+eλtnf(tn,yn,eλtnw(tn,yn),eλtnσ(tn,xn)qwn,α)}0.\displaystyle+e^{\lambda t_{n}}f(t_{n},y_{n},e^{-\lambda t_{n}}w(t_{n},y_{n}),e^{-\lambda t_{n}}\sigma^{\top}(t_{n},x_{n})q^{w}_{n},\alpha)\big{\}}\geq 0.

Combined, this gives that

λ(u(tn,xn)w(tn,yn))\displaystyle\lambda(u(t_{n},x_{n})-w(t_{n},y_{n})) supαA{pun+a(tn,xn,α)qun+12Tr[σ(tn,xn,α)Munσ(tn,xn,α)]\displaystyle\leq\sup_{\alpha\in A}\big{\{}p^{u}_{n}+a^{\top}(t_{n},x_{n},\alpha)q^{u}_{n}+\frac{1}{2}{\rm Tr}[\sigma^{\top}(t_{n},x_{n},\alpha)M^{u}_{n}\sigma(t_{n},x_{n},\alpha)]
+eλtnf(tn,xn,eλtnu(tn,xn),eλtnσ(tn,xn)qun,α)\displaystyle+e^{\lambda t_{n}}f(t_{n},x_{n},e^{-\lambda t_{n}}u(t_{n},x_{n}),e^{-\lambda t_{n}}\sigma^{\top}(t_{n},x_{n})q^{u}_{n},\alpha)
pwna(tn,yn,α)qwn12Tr[σ(tn,yn,α)Mwnσ(tn,yn,α)]\displaystyle-p^{w}_{n}-a^{\top}(t_{n},y_{n},\alpha)q^{w}_{n}-\frac{1}{2}{\rm Tr}[\sigma^{\top}(t_{n},y_{n},\alpha)M^{w}_{n}\sigma(t_{n},y_{n},\alpha)]
eλtnf(tn,yn,eλtnw(tn,yn),eλtnσ(tn,xn)qwn,α)}\displaystyle-e^{\lambda t_{n}}f(t_{n},y_{n},e^{-\lambda t_{n}}w(t_{n},y_{n}),e^{-\lambda t_{n}}\sigma^{\top}(t_{n},x_{n})q^{w}_{n},\alpha)\big{\}}

Collecting terms we have that

punpwn\displaystyle p^{u}_{n}-p^{w}_{n} =2(tnt)\displaystyle=2(t_{n}-t^{*})

and since aa is Lipschitz continuous in xx and bounded on B¯R\bar{B}_{R}, we have

a(tn,xn,α)quna(tn,yn,α)qwn\displaystyle a^{\top}(t_{n},x_{n},\alpha)q^{u}_{n}-a^{\top}(t_{n},y_{n},\alpha)q^{w}_{n} (a(tn,xn,α)a(tn,yn,α))nγ(xnyn)|xnyn|2γ2\displaystyle\leq(a^{\top}(t_{n},x_{n},\alpha)-a^{\top}(t_{n},y_{n},\alpha))n\gamma(x_{n}-y_{n})|x_{n}-y_{n}|^{2\gamma-2}
+C(|xnx|+|ynx|)\displaystyle\quad+C(|x_{n}-x^{*}|+|y_{n}-x^{*}|)
C(n|xnyn|2γ+|xnx|+|ynx|),\displaystyle\leq C(n|x_{n}-y_{n}|^{2\gamma}+|x_{n}-x^{*}|+|y_{n}-x^{*}|),

where the right-hand side tends to 0 as nn\to\infty. Let sxs_{x} denote the ithi^{\rm th} column of σ(tn,xn,α)\sigma(t_{n},x_{n},\alpha) and let sys_{y} denote the ithi^{\rm th} column of σ(tn,yn,α)\sigma(t_{n},y_{n},\alpha) then by the Lipschitz continuity of σ\sigma and (6.6), we have

sxMunsxsyMwnsy\displaystyle s_{x}^{\top}M^{u}_{n}s_{x}-s_{y}^{\top}M^{w}_{n}s_{y} =[sxsy][Mun00Mwn][sxsy]\displaystyle=\left[\begin{array}[]{cc}s_{x}^{\top}&s_{y}^{\top}\end{array}\right]\left[\begin{array}[]{cc}M^{u}_{n}&0\\ 0&-M^{w}_{n}\end{array}\right]\left[\begin{array}[]{c}s_{x}\\ s_{y}\end{array}\right]
[sxsy]B~n[sxsy]\displaystyle\leq\left[\begin{array}[]{cc}s_{x}^{\top}&s_{y}^{\top}\end{array}\right]\tilde{B}_{n}\left[\begin{array}[]{c}s_{x}\\ s_{y}\end{array}\right]
C(n|xnyn|2γ+|xnyn|)\displaystyle\leq C(n|x_{n}-y_{n}|^{2\gamma}+|x_{n}-y_{n}|)

and we conclude that

lim supnsupαA12Tr[σ(tn,xn,α)Munσ(tn,xn,α)σ(tn,yn,α)Mwnσ(tn,yn,α)]0.\displaystyle\limsup_{n\to\infty}\sup_{\alpha\in A}\frac{1}{2}{\rm Tr}[\sigma^{\top}(t_{n},x_{n},\alpha)M^{u}_{n}\sigma(t_{n},x_{n},\alpha)-\sigma^{\top}(t_{n},y_{n},\alpha)M^{w}_{n}\sigma(t_{n},y_{n},\alpha)]\leq 0.

Finally, we have for some CR>0C_{R}>0 that

eλtnf(tn,xn,eλtnu(tn,xn),eλtnσ(tn,xn)qun,α)eλtnf(tn,yn,eλtnw(tn,yn),eλtnσ(tn,xn)qwn,α)\displaystyle e^{\lambda t_{n}}f(t_{n},x_{n},e^{-\lambda t_{n}}u(t_{n},x_{n}),e^{-\lambda t_{n}}\sigma^{\top}(t_{n},x_{n})q^{u}_{n},\alpha)-e^{\lambda t_{n}}f(t_{n},y_{n},e^{-\lambda t_{n}}w(t_{n},y_{n}),e^{-\lambda t_{n}}\sigma^{\top}(t_{n},x_{n})q^{w}_{n},\alpha)
kf(u(tn,xn)w(tn,yn))+CR(|xnyn|+|σ(tn,xn,α)qunσ(tn,xn,α)qwn|).\displaystyle\leq k_{f}(u(t_{n},x_{n})-w(t_{n},y_{n}))+C_{R}(|x_{n}-y_{n}|+|\sigma^{\top}(t_{n},x_{n},\alpha)q^{u}_{n}-\sigma^{\top}(t_{n},x_{n},\alpha)q^{w}_{n}|).

Repeating the above argument we get that the upper limit of the right-hand side when nn\to\infty is bounded by kf(u(tn,xn)w(tn,yn))k_{f}(u(t_{n},x_{n})-w(t_{n},y_{n})). Put together, this gives that

(λkf)lim supn(u(tn,xn)w(tn,yn))\displaystyle(\lambda-k_{f})\limsup_{n\to\infty}(u(t_{n},x_{n})-w(t_{n},y_{n})) 0\displaystyle\leq 0

a contradiction since λ\lambda\in\mathbb{R} was arbitrary.∎

References

  • [1] P. Azimzadeh. A zero-sum stochastic differential game with impulses,precommitment, and unrestricted cost functions. Appl Math Optim, 79:483–514, 2019.
  • [2] E. Bayraktar, A. Cosso, and H. Pham. Robust feedback switching control: dynamic programming and viscosity solutions. SIAM J. Control Optim., 54(5):2594–2628, 2016.
  • [3] A. Bensoussan and J.L. Lions. Impulse Control and Quasivariational inequalities. Gauthier-Villars, Montrouge, France, 1984.
  • [4] R. Buckdahn and J. Li. Stochastic differential games and viscosity solutions of hamilton-jacobi-bellman-isaacs equations. SIAM J. Control Optim, 47(1):444–475, 2008.
  • [5] A. Cosso. Stochastic differential games involving impulse controls and double-obstacle quasi-variational inequalities. SIAM J. Control Optim., 3(51):2102–2131, 2013.
  • [6] M. G. Crandall, H. Ishii, and P. L. Lions. User’s guide to viscosity solutions of second order partial differential equations. Bulletin of the American Mathematical Society, 27(1):1–67, 1992.
  • [7] B. Djehiche, S. Hamadéne, and M. Morlais. Viscosity solutions of systems of variational inequalities with interconnected bilateral obstacles. Funkcialaj Ekvacioj, 58(1):135–175, 2015.
  • [8] B. Djehiche, S. Hamadéne, M.-A. Morlais, and X. Zhao. On the equality of solutions of max-min and min-max systems of variational inequalities with interconnected bilateral obstacles. J. Math. Anal. Appl., 452:148–175, 2017.
  • [9] N. El Karoui, S. Peng, and M. C. Quenez. Backward stochastic differential equationsin finance. Math. Finance, 7(1):1–71, 1997.
  • [10] R. J. Elliott and N. J. Kalton. The existence of value in differential games. Number 126. Memoirs of the American Mathematical Society, Providence, Rhode Island, 1972.
  • [11] L. C. Evans and P. E. Souganidis. Differential games and representation formulasfor solutions of hamilton-jacobi-isaacs equations. Indiana Univ. Math. J., 33:773–797, 1984.
  • [12] W. H. Flemming and P. E. Souganidis. On the existence of value functions of two-player, zero-sum stochastic differential games. Indiana Univ. Math. J., 38:293–314, 1989.
  • [13] S. Hamadéne and M. A. Morlais. Viscosity solutions of systems of pdes with interconnected obstacles and switching problem. Appl Math Optim., 67:163–196, 2013.
  • [14] S. Hamadéne and J. Zhang. Switching problem and related system of reflected backward SDEs. Stochastic Process. Appl., 120(4):403–426, 2010.
  • [15] Y. Hu and S. Tang. Multi-dimensional BSDE with oblique reflection and optimal switching. Prob. Theory and Related Fields, 147(1-2):89–121, 2008.
  • [16] R. Isaacs. Differential games. A mathematical theory with applications to warfare andpursuit, control and optimization. John Wiley & Sons, Inc., New York-London-Sydney, 1965.
  • [17] J. Li and S. Peng. Stochastic optimization theory of backward stochastic differential equations with jumps and viscosity solutions ofhamilton-jacobi-bellman equations. Nonlinear Analysis, 70:1776–1796, 2009.
  • [18] J. Li and Q. Wei. Optimal control problems of fully coupled fbsdes and viscosity solutions of hamilton-jacobi-bellman equations. SIAM J. Control Optim, 52(3):1622–1662, 2014.
  • [19] M. Perninge. Finite horizon robust impulse control in a non-markovian framework and related systems of reflected bsdes. arXiv:2103.16272, 2021.
  • [20] P. Protter. Stochastic Integration and Differential Equations. Springer, Berlin, 2nd edition, 2004.
  • [21] S. Tang and Sh. Hou. Switching games of stochastic differential systems. SIAM J. Control Optim., 46(3):900–929, 2007.
  • [22] F. Zhang. Stochastic differential games involving impulse controls. ESAIM Control Optim. Calc. Var., 17(3):749–760, 2011.
  • [23] L. Zhang. A bsde approach to stochastic differential games involvingimpulse controls and hjbi equation. J Syst Sci Complex, 2021.