This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

**footnotetext: These authors contributed equally to the development of this work

Zero-field composite Fermi liquid in twisted semiconductor bilayers

Hart Goldman, Aidan P. Reddy, Nisarga Paul, and Liang Fu Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139
Abstract

Recent experiments have produced evidence for fractional quantum anomalous Hall (FQAH) states at zero magnetic field in the semiconductor moiré superlattice system ttMoTe2. Here we argue that a composite fermion description, already a unifying framework for the phenomenology of 2d electron gases at high magnetic fields, provides a similarly powerful perspective in this new context. To this end, we present exact diagonalization evidence for composite Fermi liquid states at zero magnetic field in ttMoTe2 at fillings n=12n=\frac{1}{2} and n=34n=\frac{3}{4}. We dub these non-Fermi liquid metals anomalous composite Fermi liquids (ACFLs), and we argue that they play a central organizing role in the FQAH phase diagram. We proceed to develop a long wavelength theory for this ACFL state that offers concrete experimental predictions upon doping the composite Fermi sea, including a Jain sequence of FQAH states and a new type of commensurability oscillations originating from the superlattice potential intrinsic to the system.

Introduction. Recently, signatures of fractional quantum anomalous Hall (FQAH) states at zero magnetic field have been observed by optical measurements on twisted bilayer MoTe2 (ttMoTe2) at fractional fillings of the moiré unit cell n=23n=\frac{2}{3} and 35\frac{3}{5} [1]. In a separate work, the charge gap of the putative FQAH state at n=23n=\frac{2}{3} was measured [2]. FQAH states in twisted homobilayers of transition metal dichalcogenides (TMD) were theoretically predicted as a consequence of topological moiré bands [3], spontaneous ferromagnetism, and strong correlations [4, 5, 6, 7]. These recent observations provide new motivation to explore the phenomenology and phase diagram of partially filled Chern bands in ttMoTe2 and beyond [8, 9].

Unlike Landau levels, Chern band systems can exhibit competition between incompressible FQAH states  [10, 11, 12, 13, 14, 15, 16, 17, 18] and more conventional broken symmetry phases enabled by the presence of a periodic lattice structure, such as charge ordered phases [19, 20, 21] and generalized Wigner crystals [22, 23, 24, 25], or conducting phases [26, 27, 28] like Fermi liquids and even superconductors. Exotic quantum critical phases have also been shown to appear in half-filled flat Chern bands [29]. As a result, the global phase diagram of partially filled Chern bands is potentially much richer than that of Landau levels, calling for systematic study.

In this work, we focus on the physics of twisted TMD bilayers at even-denominator filling factors, which have not yet received attention. We present numerical evidence from continuum model exact diagonalization (ED) calculations of gapless metallic states at filling factors n=12n=\frac{1}{2} and 34\frac{3}{4}. Remarkably, depending on the twist angle, two types of ferromagnetic metals with full spin/valley polarization are found. At larger twist angle, the ground state is a Fermi liquid. In contrast, at smaller twist angles where strong interaction effect induces odd-denominator FQAH states, we find non-Fermi liquid metals of composite fermions at n=12n=\frac{1}{2} and 34\frac{3}{4}. These states share features with the composite Fermi liquid (CFL) at high magnetic fields [30, 31], but are “enriched” by the underlying moiré superlattice. We dub these zero-field non-Fermi liquid states “anomalous composite Fermi liquids” (ACFLs).

Synonymously with the CFL phases in Landau level systems, we propose the ACFL as the parent state of the FQAH phase diagram at B=0B=0 [32, 33, 34]. Indeed, based on our ED study, we argue that the prominent FQAH states at n=23n=\frac{2}{3} and 35\frac{3}{5} in twisted TMD homobilayers are descendants of the ACFL state at n=12n=\frac{1}{2}. These states fall along a Jain sequence of FQAH states, which we show emerges by doping the ACFL.

Refer to caption
Figure 1: Zero-field and ferromagnetic Fermi liquid in semiconductor moiré bands. Low-lying spectrum as a function of many-body crystal momentum (see the Supplemental Material for elaboration) of the (a) half-filled LLL and (b) lowest moiré band at a twist angle θ=2\theta=2^{\circ} with a Coulomb interaction. Occupation numbers of the Bloch states averaged over the degenerate ground state manifolds (see main text), n(𝒌)iGSΨi|c𝒌c𝒌|Ψi/NGSn(\bm{k})\equiv\sum_{i\in GS}\bra{\Psi_{i}}c^{{\dagger}}_{\bm{k}}c_{\bm{k}}\ket{\Psi_{i}}/N_{GS}, are also shown. Full spin polarization is assumed in the LLL whereas all possible SzS_{z} sectors are considered in the moiré band. Analogous data at (c) θ=2\theta=2^{\circ}, n=34n=\frac{3}{4} and (d) θ=4.5\theta=4.5^{\circ}, n=12n=\frac{1}{2}. In each case the lowest 20 energy levels within each (𝒌,Sz)(\bm{k},S_{z}) sector are shown. In (b-d) a dielectric constant ϵ=10\epsilon=10 is used.

We further reveal the unique phenomenology of the ACFL state itself. Perhaps most strikingly, the ACFL resistivity and thermodynamic properties experience intrinsic commensurability oscillations as a function of density, ρe\rho_{e}, at B=0B=0. This behavior contrasts both with an ordinary Fermi liquid and a CFL in a Landau level [35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45]. Close to the ACFL state, we find the oscillations are periodic in 1/δρe1/\delta\rho_{e} and occur at large integers jj satisfying

1δρej+ϕkFQ,\displaystyle\frac{1}{\delta\rho_{e}}\propto\frac{j+\phi}{k_{F}\,Q}\,, (1)

where δρeρeρ¯\delta\rho_{e}\equiv\rho_{e}-\overline{\rho} is the doping density from half filling, QQ is the moiré superlattice wave vector, kF=4πρ¯k_{F}=\sqrt{4\pi\overline{\rho}} is the composite Fermi wave vector, and ϕ\phi is a phase shift. For the ACFL state at a particular even-denominator filling fraction such as n¯=12\overline{n}=\frac{1}{2}, kFk_{F} is proportional to QQ, meaning that the doping density, δρe\delta\rho_{e}, associated with the commensurability oscillation is inversely proportional to the moiré unit cell area. As a result, the corresponding filling fraction, n=n¯+δnn=\overline{n}+\delta n, is universal.

Eq. (1) is both a consequence of the attachment of flux to charge in the ACFL – which causes the composite fermions to feel an effective magnetic field upon doping – and the system’s intrinstic moiré potential. In contrast, commensurability oscillations in CFLs in Landau level systems require an externally supplied periodic potential. In addition to commensurability oscillations, a distinguishing feature of a CFL (at zero or finite field) is a large DC Hall angle, θH=arctan(σxy/σxx){\theta_{H}=\arctan(\sigma_{xy}/\sigma_{xx})}, which approaches π/2\pi/2 in the clean limit [30].

CFL phases are expected to exhibit non-Fermi liquid observable features, some of which may be accessible as new platforms are developed realizing the ACFL. For example, the thermodynamic entropy of the ACFL state can be measured from the change in chemical potential with temperature through a Maxwell relation  [46, 47]. In the clean limit, because gauge fluctuations lead to a logarithmic mass enhancement of composite fermions, the entropy of ACFL state should also be enhanced [48], s(T)/Tm(T)logT{s(T)/T\sim m_{*}(T)\sim\log T} [30], compared to the linear temperature dependence of an ordinary Fermi liquid, s(T)/T{s(T)/T\sim\,}constant. In systems where the electronic Coulomb interaction is screened by a nearby metallic gate, this enhancement becomes a power law, s(T)/TT1/3{s(T)/T\sim T^{-1/3}}.

Motivation. In ordinary Landau level quantum Hall systems, the existence of a CFL phase can be understood through flux attachment. At even-denominator filling ν=2πρe/B=12q{\nu=2\pi\rho_{e}/B=\frac{1}{2q}}, where qq is an integer, ρe\rho_{e} is the electron density, and BB is the external magnetic field, attaching 2q2q flux quanta to each electron completely screens the magnetic field, leading to an effective system of composite fermions in effective magnetic field b=B2q(2πρe)=0b_{*}=B-2q(2\pi\rho_{e})=0. As a result, the composite fermions form a Fermi surface strongly coupled to an emergent gauge field [30]. Upon doping away from ν=12q\nu=\frac{1}{2q}, the composite fermions feel a nonvanishing magnetic field and fill Landau levels, leading to the Jain sequence of observed fractional quantum Hall phases,

νJain\displaystyle\nu_{\mathrm{Jain}} =p2qp1,\displaystyle=\frac{p}{2q\,p-1}\,, (2)

where pp is the number of filled composite fermion Landau levels [32, 33].

A similar picture should be applicable to twisted TMD bilayers in the absence of a physical magnetic field, when (1) interactions spontaneously drive all carriers into the Chern band of one valley; (2) the Coulomb Hamiltonian projected to the Chern band sufficiently resembles that of the lowest Landau level (LLL); and (3) the band dispersion is small relative to the system’s characteristic interaction energy scale e2/(ϵaM)\sim e^{2}/(\epsilon a_{M}). When these conditions are satisfied, the problem can be approximately mapped to that of a partially filled Landau level. One might therefore expect that any of the quantum Hall phases in a Landau level at filling ν\nu should be possible in a flat C=1C=1 band at the same filling. The challenge is to find situations in which such physics succeeds over other phases that are not possible in Landau levels. Hence, once a material is known to exhibit the FQAH effect, it is natural to anticipate that other essential features of the fractional quantum Hall phase diagram also occur in the same material, such as the convergence of Jain sequence FQAH phases into a metallic CFL at half-filling.

Numerical evidence for ACFL. We now provide numerical evidence for the ACFL in ttMoTe2. The nontrivial layer pseudospin structure of this system’s Bloch wavefunctions endows its moiré bands with topological character [3]. In particular, the first moiré valence band in each valley has |C|=1|C|=1, with opposite signs in opposite valleys due to time-reversal symmetry. We study the continuum model of ttMoTe2 with Coulomb interaction U(r)=e2ϵrU(r)=\frac{e^{2}}{\epsilon r} projected to the lowest moiré band, using finite size ED with torus geometry [8]. Further details of the model and methodology are provided in the Supplemental Material.

To establish a benchmark for a CFL on a finite-size torus, we show the low-lying many-body spectrum of the half-filled LLL on a torus with 16 flux quanta in Fig. 1(a). Given our system geometry, the spectrum features 12 exactly degenerate ground states with 2 in each of 6 momentum sectors. The momentum quantum numbers of the degenerate ground states reflect the most compact possible composite Fermi sea configurations [14]. There are 6 such configurations – one composite fermion is accounted for by occupying the state at the center of the Brillouin zone, 6 more by occupying the set of closest points, and the final one by occupying any one of the 6 next closest points. The additional factor of 2 in the overall ground state degeneracy is enforced by the non-commuting center-of-mass magnetic translations  [49]. We also show the momentum space occupation numbers of electron Bloch states averaged over the ground state manifold. The Bloch state occupation is uniform despite the presence of a composite Fermi sea.

Next, in Fig. 1(b), we show the many-body spectrum of the θ=2\theta=2^{\circ} lowest ttMoTe2 band at filling n=12n=\frac{1}{2} on the corresponding 16-unit-cell torus across all possible Sz0S_{z}\geq 0 sectors. First, we observe that the lowest-lying states have Sz=Sz,max=4S_{z}=S_{z,\mathrm{max}}=4, indicating spontaneous, full spin/valley polarization. Moreover, these states have the same momentum quantum numbers as their partners in the LLL, providing evidence for a composite Fermi sea. The momentum space occupation numbers are nearly uniform as in the LLL, demonstrating that the system is not a ferromagnetic Fermi liquid. In Fig. 1(c), we show an ED spectrum at n=34n=\frac{3}{4} that exhibits full valley polarization and similarly resembles its partner in the LLL, which is shown in the Supplemental Material.

In Fig. 1(d), we contrast these findings with n=12n=\frac{1}{2} at a larger twist angle θ=4.5\theta=4.5^{\circ}. Here, the lowest-energy states are still fully spin/valley polarized, but their many-body momenta are those expected from simply occupying the moiré band Bloch states with lowest energy, indicating a Fermi liquid phase. Moreover, the Bloch state occupation numbers in Fig. 1(c) exhibit a sharp drop across the Fermi surface expected for non-interacting, spin-polarized holes.

Effective theory of the ACFL. With this motivation, we propose a long wavelength effective theory of the ACFL in a Chern band at half-filling, n=12n=\frac{1}{2},

ACFL\displaystyle\mathcal{L}_{\mathrm{ACFL}} =ψ[it+at+At+𝒱(𝒙)]ψ\displaystyle=\psi^{\dagger}\Big{[}i\partial_{t}+a_{t}+A_{t}+\mathcal{V}(\bm{x})\Big{]}\,\psi
12m|(ii+ai+Ai)ψ|2V(ρe)\displaystyle\qquad-\frac{1}{2m_{*}}\left|(i\partial_{i}+a_{i}+A_{i})\psi\right|^{2}-V(\rho_{e})
1214πεμνλaμνaλatρ¯.\displaystyle\qquad-\frac{1}{2}\frac{1}{4\pi}\,\varepsilon_{\mu\nu\lambda}\,a_{\mu}\partial_{\nu}a_{\lambda}-a_{t}\,\overline{\rho}\,. (3)

Here ψ\psi is the composite fermion field, mm_{*} is an effective mass; V(ρe)V(\rho_{e}) is the density-density interaction potential; aμ=(at,ax,ay){a_{\mu}=(a_{t},a_{x},a_{y})} is a fluctuating Chern-Simons statistical gauge field; and Aμ=(At,Ax,Ay){A_{\mu}=(A_{t},A_{x},A_{y})} is the background electromagnetic gauge field. We denote the value of the charge density at half filling by ρ¯\overline{\rho}, such that the charge per unit cell is n¯ρ¯×(unit cell area)=12{\overline{n}\equiv\overline{\rho}\times(\textrm{unit cell area})=\frac{1}{2}}. Importantly, although we focus on n=12n=\frac{1}{2} here, the theory for the ACFL at n=34n=\frac{3}{4} is easily obtained by attaching 44 flux quanta and acting with a particle-hole transformation (subtracting a filled C=1C=1 band). We expect its universal properties to be essentially the same as the ACFL at n=12n=\frac{1}{2}. In the Supplemental Material, we discuss how Eq. (Zero-field composite Fermi liquid in twisted semiconductor bilayers ) can be constructed from a parton mean field construction along similar lines to Ref. [27], which also considered ACFL type phases in flat Chern bands (we note here that the Supplemental Material also includes the additional Refs. [50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66]).

The theory in Eq. (Zero-field composite Fermi liquid in twisted semiconductor bilayers ) closely resembles the Halperin-Lee-Read (HLR) theory of half-filled Landau levels [30]. This is not surprising: the |C|=1|C|=1 Chern band in twisted TMD bilayers can be thought of as carrying an emergent magnetic flux of one flux quantum per unit cell, which arises from the skrymion lattice configuration of “Zeeman” field acting on the layer pseudospin  [3]. Nevertheless, there are two major differences with the standard HLR theory for a half-filled Landau level. The first is the final term, which alters the usual flux attachment constraint. Using the equation of motion for ata_{t},

ρe=ρ¯+1212π(×𝒂),\displaystyle\rho_{e}=\overline{\rho}+\frac{1}{2}\frac{1}{2\pi}(\bm{\nabla}\times\bm{a})\,, (4)

where we have used the fact that the physical electron density consides with that of the composite fermions, ρe=δACFL/δAt=ψψ{\rho_{e}=\delta\mathcal{L}_{\mathrm{ACFL}}/\delta A_{t}=\psi^{\dagger}\psi}, and boldface denotes spatial vectors. At half-filling of the Chern band, n=n¯=12n=\overline{n}=\frac{1}{2}, meaning that by Eq. (4) the gauge flux per unit cell must vanish, and the composite fermions form a Fermi surface (as above, we use nn to denote charge per unit cell).

The second difference is that Eq. (Zero-field composite Fermi liquid in twisted semiconductor bilayers ) includes the effect of the moiré superlattice, in the form of a periodic scalar potential,

𝒱(𝒙)=𝒱0n=13cos(𝑸n𝒙),\displaystyle\mathcal{V}(\bm{x})=\mathcal{V}_{0}\sum_{n=1}^{3}\cos\left(\bm{Q}_{n}\cdot\bm{x}\right)\,, (5)

where 𝑸n\bm{Q}_{n} are the moiré superlattice wave vectors (see Supplemental Material). The full scalar potential felt by the composite fermions is therefore 𝒱(𝒙)+At\mathcal{V}(\bm{x})+A_{t}, where AtA_{t} includes any additional probe fields. We will see that the presence of this term leads to commensurability oscillations which are unique to the ACFL.

Refer to caption
Figure 2: Jain sequence states at n=25n=\frac{2}{5}, 35\frac{3}{5}. (a) Low-lying spectrum of the LLL with Coulomb interaction on a torus with 30 flux quanta at ν=25\nu=\frac{2}{5} and 35\frac{3}{5}. (b) Corresponding data for the lowest moiré band at θ=2\theta=2^{\circ}, ϵ=10\epsilon=10. The moiré ground state manifold has the same momentum quantum numbers and approximate fivefold topological ground state degeneracy as the LLL. In each case the lowest 3 fully spin polarized states in each momentum sector are shown.

Although the theory in Eq. (Zero-field composite Fermi liquid in twisted semiconductor bilayers ) should correctly reproduce long wavelength, universal observable properties, we emphasize that this theory is not meant to completely incorporate microscopic details. For example, it does not give the correct algebra of density operators, nor does it incorporate the composite fermion dipole moment. Rather, we expect that should a complete, band-projected theory be constructed, then Eq. (Zero-field composite Fermi liquid in twisted semiconductor bilayers ) could be understood as its long wavelength limit. For recent efforts to develop band-projected composite fermion theories in the context of the LLL, see Refs. [67, 68, 69, 70].

FQAH sequence. Doping away from half-filling by tuning charge density or applied magnetic field causes the composite fermions to feel a net magnetic field and fill Landau levels. As a result, we can immediately predict a Jain sequence of FQAH states in ttMoTe2 corresponding to integer quantum Hall states of composite fermions. Like fractional Chern insulator states developed earlier [71, 16, 17, 18, 72], these FQAH phases are topological orders enriched with (super)lattice symmetry. Say that the composite fermions fill pp Landau levels,

νψ=2πψψb=p\displaystyle\nu_{\psi}=2\pi\frac{\langle\psi^{\dagger}\psi\rangle}{b_{*}}=p ,b=×(𝒂+𝑨),\displaystyle,\qquad b_{*}=\bm{\nabla}\times(\bm{a}+\bm{A})\,, (6)

where bb_{*} is the total magnetic field felt by the composite fermions. Combining the flux attachment constraint, Eq. (4), with Eq. (6), we can relate the electron density to the applied magnetic field, B=×𝑨{B=\bm{\nabla}\times\bm{A}},

ρe(B)\displaystyle\rho_{e}(B) =p2p1(2ρ¯B2π).\displaystyle=\frac{p}{2p-1}\left(2\overline{\rho}-\frac{B}{2\pi}\right)\,. (7)

The Streda formula then implies that one will measure Landau fans extending to B=0B=0, with slopes that fall on the Jain sequence (see Fig. 3),

dρedB=σxy=p2p1.\displaystyle\frac{d\rho_{e}}{dB}=\sigma_{xy}=-\frac{p}{2p-1}\,. (8)

For the FQAH sequence proximate to n=34n=\frac{3}{4}, one obtains FQAH states on the sequence, n=1p4p1n=1-\frac{p}{4p-1}.

It is instructive to multiply Eq. (7) on both sides by the superlattice unit cell area to obtain the simple expression,

n=p2p1(1nΦ),\displaystyle n=\frac{p}{2p-1}\left(1-n_{\Phi}\right)\,, (9)

where nΦn_{\Phi} is the flux per unit cell. The FQAH Jain sequence includes the observed state at filling 23\frac{2}{3} in ttMoTe2, which has also been studied numerically [8, 9]. In Fig. 2 we present ED evidence for additional Jain FQAH states in ttMoTe2 at n=25n=\frac{2}{5} and its particle-hole conjugate at n=35n=\frac{3}{5}.

Intrinsic commensurability oscillations at zero field. We now explore the host of phenomena arising from an interplay of flux attachment with the presence of the moiré superlattice potential. Indeed, due to the periodic modulation intrinsic to moiré materials, we find that both commensurability oscillations [73, 74, 75, 76, 77] and Hofstadter subgaps can be accessed by tuning density alone.

Refer to caption
Figure 3: Commensurability oscillations. Schematic of cyclotron orbits at special commensurate values. For j5j\geq 5, 12<ρe<35\frac{1}{2}<\rho_{e}<\frac{3}{5}.

Commensurability oscillations occur when the cyclotron radius and the modulation period are commensurate. More precisely, magnetoresistance minima and compressibility maxima are expected when a system in a spatially modulated potential with wave vector QQ satisfies the electronic flat band conditions,

2kFQ2=2π(j+ϕ),2k_{F}Q\,\ell^{2}=2\pi(j+\phi)\,, (10)

where jj is a positive integer, \ell is the effective magnetic length felt by the electric charges, and ϕ\phi is a phase shift. This condition is derived in the Supplemental Material from both perturbative and semiclassical approaches.

Again focusing on the n=12n=\frac{1}{2} ACFL, if the system is doped from half-filling by density, δρe=ρeρ¯\delta\rho_{e}=\rho_{e}-\overline{\rho}, the composite fermions feel a magnetic field b=4πδρeb_{*}=4\pi\,\delta\rho_{e} by the flux attachment constraint in Eq. (4). As in the HLR approach, the composite Fermi wave vector of the ACFL described by Eq. (Zero-field composite Fermi liquid in twisted semiconductor bilayers ) is set by the electric charge density, kF=4πρ¯{k_{F}=\sqrt{4\pi\overline{\rho}}}. We then find that commensurability oscillations occur at densities

δρe=kFQ(2π)21j+ϕ\delta\rho_{e}=\frac{k_{F}\,Q}{(2\pi)^{2}}\frac{1}{j+\phi} (11)

at large jj where δρe\delta\rho_{e} is small compared to ρ¯\overline{\rho}. For the n=1/2n=1/2 ACFL, we have kFQ=(4π3/2/34)/Ak_{F}Q=(4\pi^{3/2}/\sqrt[4]{3})/A (AA is the moiré unit cell area) so that the oscillations correspond to filling fractions, n=12+δn{n=\frac{1}{2}+\delta n}, where

δn=134π1j+ϕ0.43j+ϕ.\delta n=\frac{1}{\sqrt[4]{3}\sqrt{\pi}}\frac{1}{j+\phi}\approx\frac{0.43}{j+\phi}\,. (12)

Close to n=1/2n=1/2, the oscillations therefore have period Δ(1/δn)2.3\Delta(1/\delta n)\approx 2.3.

We emphasize that in the ACFL these commensurability oscillations occur in the absence of any external magnetic field. They coexist with SdH oscillations coming from filling integer Landau levels of composite fermions, which realize Jain states in a clean system. Additionally, tuning density and external field together allows full access of the magnetic spectrum of composite fermions near half-filling of the Chern band.

Discussion. Starting from a band-projected continuum model for ttMoTe2, we have presented exact diagonalization evidence for compressible, non-Fermi liquid states at zero magnetic field, which we dub the anomalous composite Fermi liquid. Much as in conventional fractional quantum Hall systems, we argue that the ACFL picture offers a powerful organizing perspective for understanding fractional quantum anomalous Hall states. Indeed, all of the states for which there currently exists theoretical or experimental evidence fall on the celebrated Jain sequence. We furthermore developed an effective theory capturing the universal properties of the ACFL offering concrete, observable signatures, including commensurability oscillations and Jain sequence FQAH states themselves.

Interestingly, in the recent experiment on ttMoTe2 [1], the coercive field is found to be enhanced at n=34n=\frac{3}{4}, in addition to n=23n=\frac{2}{3}. Unlike the n=23n=\frac{2}{3} state, which is incompressible, the n=34n=\frac{3}{4} state appears to be compressible. Our theory offers a potential explanation of the observed n=34n=\frac{3}{4} state as the ACFL.

Finally, the emergence of an ACFL state suggests the possibility of new quantum phase transitions not possible at finite field. For example, while our analysis here focuses on zero displacement field, it should be possible to induce a phase transition between ACFL and ferromagnetic Fermi liquid phases by tuning displacement field. Continuous transitions between CFLs and Fermi liquids have been proposed in the past [27, 28]. We leave study of such phase transitions to future work.

Note added. Recently, an independent work by Dong et al. [78] appeared, which has some overlapping conclusions with the present study.

Acknowledgements. We are grateful to Xiaodong Xu and Ady Stern for interesting discussions. HG also thanks Jennifer Cano, Mike Mulligan, Sri Raghu, T. Senthil, Raman Sohal, Alex Thomson, and Cenke Xu for conversations on related topics. This work was supported by the Air Force Office of Scientific Research (AFOSR) under award FA9550-22-1-0432 and the David and Lucile Packard Foundation. HG is supported by the Gordon and Betty Moore Foundation EPiQS Initiative through Grant No. GBMF8684 at the Massachusetts Institute of Technology. The authors acknowledge the MIT SuperCloud and Lincoln Laboratory Supercomputing Center for providing HPC resources that have contributed to the research results reported within this paper.

References

  • Cai et al. [2023] J. Cai, E. Anderson, C. Wang, X. Zhang, X. Liu, W. Holtzmann, Y. Zhang, F. Fan, T. Taniguchi, K. Watanabe, Y. Ran, T. Cao, L. Fu, D. Xiao, W. Yao, and X. Xu, Signatures of Fractional Quantum Anomalous Hall States in Twisted MoTe2, Nature 10.1038/s41586-023-06289-w (2023).
  • Zeng et al. [2023] Y. Zeng, Z. Xia, K. Kang, J. Zhu, P. Knüppel, C. Vaswani, K. Watanabe, T. Taniguchi, K. F. Mak, and J. Shan, Integer and fractional Chern insulators in twisted bilayer MoTe2 (2023), arXiv:2305.00973 [cond-mat.mes-hall] .
  • Wu et al. [2019] F. Wu, T. Lovorn, E. Tutuc, I. Martin, and A. H. MacDonald, Topological Insulators in Twisted Transition Metal Dichalcogenide Homobilayers, Phys. Rev. Lett. 122, 086402 (2019).
  • Devakul et al. [2021] T. Devakul, V. Crépel, Y. Zhang, and L. Fu, Magic in twisted transition metal dichalcogenide bilayers, Nature Communications 12, 6730 (2021).
  • Li et al. [2021a] H. Li, U. Kumar, K. Sun, and S.-Z. Lin, Spontaneous fractional chern insulators in transition metal dichalcogenide moiré superlattices, Phys. Rev. Res. 3, L032070 (2021a).
  • Crépel and Fu [2023] V. Crépel and L. Fu, Anomalous hall metal and fractional chern insulator in twisted transition metal dichalcogenides, Phys. Rev. B 107, L201109 (2023).
  • Morales-Durán et al. [2023] N. Morales-Durán, J. Wang, G. R. Schleder, M. Angeli, Z. Zhu, E. Kaxiras, C. Repellin, and J. Cano, Pressure–enhanced fractional chern insulators in moiré transition metal dichalcogenides along a magic line (2023), arXiv:2304.06669 [cond-mat.str-el] .
  • Reddy et al. [2023] A. P. Reddy, F. F. Alsallom, Y. Zhang, T. Devakul, and L. Fu, Fractional quantum anomalous Hall states in twisted bilayer MoTe2 and WSe2 (2023), arXiv:2304.12261 [cond-mat.mes-hall] .
  • Wang et al. [2023] C. Wang, X.-W. Zhang, X. Liu, Y. He, X. Xu, Y. Ran, T. Cao, and D. Xiao, Fractional chern insulator in twisted bilayer mote2 (2023), arXiv:2304.11864 [cond-mat.str-el] .
  • Repellin and Senthil [2020] C. Repellin and T. Senthil, Chern bands of twisted bilayer graphene: Fractional chern insulators and spin phase transition, Phys. Rev. Res. 2, 023238 (2020).
  • Abouelkomsan et al. [2020] A. Abouelkomsan, Z. Liu, and E. J. Bergholtz, Particle-hole duality, emergent fermi liquids, and fractional chern insulators in moiré flatbands, Phys. Rev. Lett. 124, 106803 (2020).
  • Ledwith et al. [2020] P. J. Ledwith, G. Tarnopolsky, E. Khalaf, and A. Vishwanath, Fractional chern insulator states in twisted bilayer graphene: An analytical approach, Phys. Rev. Res. 2, 023237 (2020).
  • Liu et al. [2021] Z. Liu, A. Abouelkomsan, and E. J. Bergholtz, Gate-tunable fractional chern insulators in twisted double bilayer graphene, Phys. Rev. Lett. 126, 026801 (2021).
  • Wang et al. [2021] J. Wang, J. Cano, A. J. Millis, Z. Liu, and B. Yang, Exact landau level description of geometry and interaction in a flatband, Phys. Rev. Lett. 127, 246403 (2021).
  • Parker et al. [2021] D. Parker, P. Ledwith, E. Khalaf, T. Soejima, J. Hauschild, Y. Xie, A. Pierce, M. P. Zaletel, A. Yacoby, and A. Vishwanath, Field-tuned and zero-field fractional chern insulators in magic angle graphene (2021), arXiv:2112.13837 [cond-mat.str-el] .
  • Neupert et al. [2011] T. Neupert, L. Santos, C. Chamon, and C. Mudry, Fractional quantum hall states at zero magnetic field, Phys. Rev. Lett. 106, 236804 (2011).
  • Sheng et al. [2011] D. N. Sheng, Z.-C. Gu, K. Sun, and L. Sheng, Fractional quantum hall effect in the absence of landau levels, Nature Communications 2, 389 (2011).
  • Regnault and Bernevig [2011] N. Regnault and B. A. Bernevig, Fractional chern insulator, Phys. Rev. X 1, 021014 (2011).
  • Kourtis and Daghofer [2014] S. Kourtis and M. Daghofer, Combined topological and landau order from strong correlations in chern bands, Phys. Rev. Lett. 113, 216404 (2014).
  • Kourtis [2018] S. Kourtis, Symmetry breaking and the fermionic fractional chern insulator in topologically trivial bands, Phys. Rev. B 97, 085108 (2018).
  • Sohal and Fradkin [2020] R. Sohal and E. Fradkin, Intertwined order in fractional chern insulators from finite-momentum pairing of composite fermions, Phys. Rev. B 101, 245154 (2020).
  • Regan et al. [2020] E. C. Regan, D. Wang, C. Jin, M. I. Bakti Utama, B. Gao, X. Wei, S. Zhao, W. Zhao, Z. Zhang, K. Yumigeta, M. Blei, J. D. Carlström, K. Watanabe, T. Taniguchi, S. Tongay, M. Crommie, A. Zettl, and F. Wang, Mott and generalized Wigner crystal states in WSe2/WS2 moirésuperlattices, Nature 579, 359 (2020).
  • Xu et al. [2020] Y. Xu, S. Liu, D. A. Rhodes, K. Watanabe, T. Taniguchi, J. Hone, V. Elser, K. F. Mak, and J. Shan, Correlated insulating states at fractional fillings of moirésuperlattices, Nature 587, 214 (2020).
  • Li et al. [2021b] H. Li, S. Li, E. C. Regan, D. Wang, W. Zhao, S. Kahn, K. Yumigeta, M. Blei, T. Taniguchi, K. Watanabe, S. Tongay, A. Zettl, M. F. Crommie, and F. Wang, Imaging two-dimensional generalized wigner crystals, Nature 597, 650 (2021b).
  • Dong et al. [2022] J. Dong, J. Wang, and L. Fu, Dirac electron under periodic magnetic field: Platform for fractional Chern insulator and generalized Wigner crystal, arXiv e-prints , arXiv:2208.10516 (2022)arXiv:2208.10516 [cond-mat.mes-hall] .
  • Barkeshli and McGreevy [2014] M. Barkeshli and J. McGreevy, Continuous transition between fractional quantum Hall and superfluid states, Phys. Rev. B 89, 235116 (2014)arXiv:1201.4393 [cond-mat.str-el] .
  • Barkeshli and McGreevy [2012] M. Barkeshli and J. McGreevy, Continuous transitions between composite fermi liquid and landau fermi liquid: A route to fractionalized mott insulators, Phys. Rev. B 86, 075136 (2012).
  • Zou and Chowdhury [2020] L. Zou and D. Chowdhury, Deconfined metal-insulator transitions in quantum hall bilayers, Phys. Rev. Res. 2, 032071 (2020).
  • Song et al. [2023] X.-Y. Song, H. Goldman, and L. Fu, Emergent qed3 from half-filled flat chern bands (2023), arXiv:2302.10169 [cond-mat.str-el] .
  • Halperin et al. [1993] B. I. Halperin, P. A. Lee, and N. Read, Theory of the half filled Landau level, Phys. Rev. B 47, 7312 (1993).
  • Halperin [2020] B. I. Halperin, The Half-Full Landau Level, in Fractional Quantum Hall Effects: New Developments (World Scientific, 2020) pp. 79–132.
  • Jain [1989a] J. K. Jain, Composite-fermion approach for the fractional quantum Hall effect, Phys. Rev. Lett. 63, 199 (1989a).
  • López and Fradkin [1991] A. López and E. Fradkin, Fractional quantum Hall effect and Chern-Simons gauge theories, Phys. Rev. B 44, 5246 (1991).
  • Kivelson et al. [1992] S. Kivelson, D.-H. Lee, and S.-C. Zhang, Global phase diagram in the quantum hall effect, Phys. Rev. B 46, 2223 (1992).
  • Smet et al. [1998] J. H. Smet, K. von Klitzing, D. Weiss, and W. Wegscheider, dc transport of composite fermions in weak periodic potentials, Phys. Rev. Lett. 80, 4538 (1998).
  • Smet et al. [1999] J. H. Smet, S. Jobst, K. von Klitzing, D. Weiss, W. Wegscheider, and V. Umansky, Commensurate composite fermions in weak periodic electrostatic potentials: Direct evidence of a periodic effective magnetic field, Phys. Rev. Lett. 83, 2620 (1999).
  • Willett et al. [1999] R. L. Willett, K. W. West, and L. N. Pfeiffer, Geometric resonance of composite fermion cyclotron orbits with a fictitious magnetic field modulation, Phys. Rev. Lett. 83, 2624 (1999).
  • Kamburov et al. [2012] D. Kamburov, M. Shayegan, L. N. Pfeiffer, K. W. West, and K. W. Baldwin, Commensurability oscillations of hole-flux composite fermions, Phys. Rev. Lett. 109, 236401 (2012).
  • Kamburov et al. [2014] D. Kamburov, Y. Liu, M. A. Mueed, M. Shayegan, L. N. Pfeiffer, K. W. West, and K. W. Baldwin, What determines the fermi wave vector of composite fermions?, Phys. Rev. Lett. 113, 196801 (2014).
  • Deng et al. [2016] H. Deng, Y. Liu, I. Jo, L. N. Pfeiffer, K. W. West, K. W. Baldwin, and M. Shayegan, Commensurability oscillations of composite fermions induced by the periodic potential of a wigner crystal, Phys. Rev. Lett. 117, 096601 (2016).
  • Wang et al. [2017] C. Wang, N. R. Cooper, B. I. Halperin, and A. Stern, Particle-hole symmetry in the fermion-chern-simons and dirac descriptions of a half-filled landau level, Phys. Rev. X 7, 031029 (2017).
  • Cheung et al. [2017] A. K. C. Cheung, S. Raghu, and M. Mulligan, Weiss oscillations and particle-hole symmetry at the half-filled Landau level, Phys. Rev. B 95, 235424 (2017).
  • Mitra and Mulligan [2019] A. Mitra and M. Mulligan, Fluctuations and magnetoresistance oscillations near the half-filled landau level, Phys. Rev. B 100, 165122 (2019).
  • Shayegan [2020] M. Shayegan, Probing composite fermions near half-filled landau levels, in Fractional Quantum Hall Effects: New Developments (World Scientific, 2020) pp. 133–181.
  • Lu et al. [2023] Y.-W. Lu, P. Kumar, and M. Mulligan, Weiss oscillations and galilei invariance (2023), arXiv:2302.14076 [cond-mat.str-el] .
  • Saito et al. [2021] Y. Saito, F. Yang, J. Ge, X. Liu, T. Taniguchi, K. Watanabe, J. I. A. Li, E. Berg, and A. F. Young, Isospin pomeranchuk effect in twisted bilayer graphene, Nature 592, 220 (2021).
  • Li et al. [2021c] T. Li, S. Jiang, L. Li, Y. Zhang, K. Kang, J. Zhu, K. Watanabe, T. Taniguchi, D. Chowdhury, L. Fu, J. Shan, and K. F. Mak, Continuous mott transition in semiconductor moirésuperlattices, Nature 597, 350 (2021c).
  • Sheng and Fu [2020] D. N. Sheng and L. Fu, Thermoelectric response and entropy of fractional quantum hall systems, Phys. Rev. B 101, 241101 (2020).
  • Haldane [1985] F. D. M. Haldane, Many-particle translational symmetries of two-dimensional electrons at rational landau-level filling, Phys. Rev. Lett. 55, 2095 (1985).
  • Wu et al. [2013] Y.-L. Wu, N. Regnault, and B. A. Bernevig, Bloch model wave functions and pseudopotentials for all fractional chern insulators, Physical review letters 110, 106802 (2013).
  • Bernevig and Regnault [2012] B. A. Bernevig and N. Regnault, Emergent many-body translational symmetries of abelian and non-abelian fractionally filled topological insulators, Physical Review B 85, 075128 (2012).
  • Jain [1989b] J. K. Jain, Incompressible quantum hall states, Phys. Rev. B 40, 8079 (1989b).
  • Wen [1992] X.-G. Wen, Theory of the edge states in fractional quantum Hall effects, Int. J. Mod. Phys. B 6, 1711 (1992).
  • Vaezi [2011] A. Vaezi, Fractional quantum hall effect at zero magnetic field (2011), arXiv:1105.0406 [cond-mat.str-el] .
  • Lu and Ran [2012] Y.-M. Lu and Y. Ran, Symmetry-protected fractional chern insulators and fractional topological insulators, Phys. Rev. B 85, 165134 (2012).
  • Sohal et al. [2018] R. Sohal, L. H. Santos, and E. Fradkin, Chern-simons composite fermion theory of fractional chern insulators, Phys. Rev. B 97, 125131 (2018).
  • MacDonald [1983] A. H. MacDonald, Landau-level subband structure of electrons on a square lattice, Phys. Rev. B 28, 6713 (1983).
  • Lu et al. [2020] Y.-M. Lu, Y. Ran, and M. Oshikawa, Filling-enforced constraint on the quantized hall conductivity on a periodic lattice, Annals of Physics 413, 168060 (2020).
  • Manjunath and Barkeshli [2021] N. Manjunath and M. Barkeshli, Crystalline gauge fields and quantized discrete geometric response for abelian topological phases with lattice symmetry, Phys. Rev. Res. 3, 013040 (2021).
  • Pippard [1962] A. B. Pippard, Quantization of coupled orbits in metals, Proc. R. Soc. London A - Math. Phys. Sci. 270, 1 (1962).
  • Pippard [1964] A. B. Pippard, Quantization of coupled orbits in metals II. The two-dimensional network, with special reference to the properties of zinc, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences 256, 317 (1964).
  • Girvin [1984] S. M. Girvin, Particle-hole symmetry in the anomalous quantum hall effect, Phys. Rev. B 29, 6012 (1984).
  • Son [2015] D. T. Son, Is the composite fermion a dirac particle?, Phys. Rev. X 5, 031027 (2015).
  • Goldman and Fradkin [2018] H. Goldman and E. Fradkin, Dirac Composite Fermions and Emergent Reflection Symmetry about Even Denominator Filling Fractions, Phys. Rev. B 98, 165137 (2018)arXiv:1808.09314 [cond-mat.str-el] .
  • Kumar et al. [2018] P. Kumar, M. Mulligan, and S. Raghu, Topological phase transition underpinning particle-hole symmetry in the Halperin-Lee-Read theory, Phys. Rev. B 98, 115105 (2018)arXiv:1805.06462 [cond-mat.str-el] .
  • Kumar et al. [2019] P. Kumar, M. Mulligan, and S. Raghu, Emergent reflection symmetry from nonrelativistic composite fermions, Phys. Rev. B 99, 205151 (2019).
  • Dong and Senthil [2020] Z. Dong and T. Senthil, Noncommutative field theory and composite Fermi liquids in some quantum Hall systems, Phys. Rev. B 102, 205126 (2020)arXiv:2006.01282 [cond-mat.str-el] .
  • Dong and Senthil [2022] Z. Dong and T. Senthil, Evolution between quantum hall and conducting phases: Simple models and some results, Phys. Rev. B 105, 085301 (2022).
  • Goldman and Senthil [2022] H. Goldman and T. Senthil, Lowest landau level theory of the bosonic jain states, Phys. Rev. B 105, 075130 (2022).
  • Predin et al. [2023] S. Predin, A. Knezević, and M. Milovanović, Dipole representation of half-filled landau level, Physical Review B 107, 155132 (2023).
  • Möller and Cooper [2009] G. Möller and N. R. Cooper, Composite fermion theory for bosonic quantum hall states on lattices, Phys. Rev. Lett. 103, 105303 (2009).
  • Tang et al. [2011] E. Tang, J.-W. Mei, and X.-G. Wen, High-temperature fractional quantum hall states, Phys. Rev. Lett. 106, 236802 (2011).
  • Weiss et al. [1989] D. Weiss, K. V. Klitzing, K. Ploog, and G. Weimann, Magnetoresistance Oscillations in a Two-Dimensional Electron Gas Induced by a Submicrometer Periodic Potential, Europhys. Lett. 8, 179 (1989).
  • Gerhardts et al. [1989] R. R. Gerhardts, D. Weiss, and K. v. Klitzing, Novel magnetoresistance oscillations in a periodically modulated two-dimensional electron gas, Phys. Rev. Lett. 62, 1173 (1989).
  • Winkler et al. [1989] R. W. Winkler, J. P. Kotthaus, and K. Ploog, Landau band conductivity in a two-dimensional electron system modulated by an artificial one-dimensional superlattice potential, Phys. Rev. Lett. 62, 1177 (1989).
  • Weiss [1990] D. Weiss, Magnetoquantum oscillations in a lateral superlattice, in Electronic Properties of Multilayers and Low-Dimensional Semiconductor Structures, edited by J. M. Chamberlain, L. Eaves, and J.-C. Portal (Springer US, Boston, MA, 1990) pp. 133–150.
  • Gerhardts [1996] R. R. Gerhardts, Quasiclassical calculation of magnetoresistance oscillations of a two-dimensional electron gas in spatially periodic magnetic and electrostatic fields, Phys. Rev. B 53, 11064 (1996).
  • Dong et al. [2023] J. Dong, J. Wang, P. J. Ledwith, A. Vishwanath, and D. E. Parker, Composite fermi liquid at zero magnetic field in twisted mote2 (2023), arXiv:2306.01719 [cond-mat.str-el] .