This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Wood fusion for magmal comonads

Ross Street 111The author gratefully acknowledges the support of Australian Research Council Discovery Grant DP190102432.
Centre of Australian Category Theory
Macquarie University, NSW 2109 Australia
<[email protected]>
Abstract

The goal is to show how a 1978 paper of Richard Wood on monoidal comonads and exponentiation relates to more recent publications such as Pastro et alia [29] and Bruguiéres et alia [6]. In the process, we mildly extend the ideas to procomonads in a magmal setting and suggest it also works for algebras for any club in the sense of Max Kelly [17, 18].

2010 Mathematics Subject Classification: 16E45; 16D90; 18A40
Key words and phrases: Hopf comonad; monoidal comonad; magmal category; procomonad.

1 Introduction

This paper began when I moved offices and uncovering Richard Wood’s paper [39] in which he considers a closed monad GG on a closed category 𝒞{\mathscr{C}}. He provides necessary and sufficient conditions for the natural promonoidal structure on the category 𝒞G{\mathscr{C}}^{G} of Eilenberg-Moore coalgebras for GG to be closed (that is, to be representable by an internal hom). He also provides necessary and sufficient conditions for 𝒞G{\mathscr{C}}^{G} to be closed in that way and for the underlying functor und:𝒞G𝒞\mathrm{und}:{\mathscr{C}}^{G}\to{\mathscr{C}} to be strong closed (that is, to preserve the internal hom).

The process involves morphisms

wυ,Z:=G[Y,Z]G2[GY,GZ][υ,1][Y,GZ]\displaystyle w_{\upsilon,Z}:=G[Y,Z]\xrightarrow{G^{\ell}_{2}}[GY,GZ]\xrightarrow{[\upsilon,1]}[Y,GZ] (1.1)

for Y𝜐GYY\xrightarrow{\upsilon}GY an object of 𝒞G{\mathscr{C}}^{G} and ZZ an object of 𝒞{\mathscr{C}}. Here I am denoting the closed structure on GG by G2G^{\ell}_{2} where the closed structure on 𝒞{\mathscr{C}} is what I think of as the “left” kind. These are what I will call Wood fusion morphisms.

An aim of the present paper is to relate Wood fusion to the fusion occurring in more recent papers such as [34, 6, 7, 28].

Like Wood, I will write for monoidal closed 𝒞{\mathscr{C}}. Actually, it became clear that the story applies to more general categorical structures. In particular, we could work with algebras 𝒞{\mathscr{C}} for a club in the sense of Kelly [17, 18]. It is about the functors providing the operations (such as binary tensor product), while the structural natural transformations (such as associativity constraints) and axioms thereon (such as the Mac Lane pentagon) carry over automatically to the constructions. However, rather than review the notion of club and to keep the notation simple, I have written for the case of magmal categories; that is, categories 𝒞{\mathscr{C}} equipped with a binary functorial operation 𝒞×𝒞𝒞{\mathscr{C}}\times{\mathscr{C}}\to{\mathscr{C}} which we still call and write as a tensor product. Indeed, as is our custom, we will be a little more general and work with hom 𝒱{\mathscr{V}}-enriched categories throughout.

The unification of the monad and comonad cases is achieved by working with a magmal procomonad Γ\Gamma on a magmal 𝒞{\mathscr{C}}.

Appendices on adjoint lifting theorems of [1, 12, 15, 16] are added to provide a perspective suggested by Richard Garner and Stephen Lack.

2 Magmal comonads and cloaks

We work with categories enriched in a suitably complete and cocomplete, symmetric, monoidal category 𝒱{\mathscr{V}} as base for enrichment (see Kelly [21]). The tensor of 𝒱{\mathscr{V}} is denoted by UVU\otimes V and the tensor unit by II. At times, we omit the prefix “𝒱{\mathscr{V}}-”, taking it for granted.

Definition 1.

A 𝒱{\mathscr{V}}-category 𝒞{\mathscr{C}} is magmal when it is equipped with a 𝒱{\mathscr{V}}-functor :𝒞𝒞𝒞\otimes:{\mathscr{C}}\otimes{\mathscr{C}}\to{\mathscr{C}} (this overworked notation, written as usual between the arguments). A 𝒱{\mathscr{V}}-functor S:𝒞𝒟S:{\mathscr{C}}\to{\mathscr{D}} between magmal 𝒱{\mathscr{V}}-categories is called magmal when it is equipped with a 𝒱{\mathscr{V}}-natural transformation S2S_{2} as in (2.2).

𝒞𝒞\textstyle{{\mathscr{C}}\otimes{\mathscr{C}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}SS\scriptstyle{S\otimes S}      \scriptstyle{\otimes}𝒞\textstyle{{\mathscr{C}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}S\scriptstyle{S}      S2\scriptstyle{S_{2}}𝒟𝒟\textstyle{{\mathscr{D}}\otimes{\mathscr{D}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}\scriptstyle{\otimes}𝒟\textstyle{\mathscr{D}} (2.2)

A 𝒱{\mathscr{V}}-natural transformation θ:ST:𝒞𝒟\theta:S\Rightarrow T:{\mathscr{C}}\to{\mathscr{D}} between magmal 𝒱{\mathscr{V}}-functors is called magmal when it satisfies the equation θCCS2;C,C=T2;SC,SC(θCθC)\theta_{C\otimes C^{\prime}}\circ S_{2;C,C^{\prime}}=T_{2;SC,SC^{\prime}}\circ(\theta_{C}\otimes\theta_{C^{\prime}}) for all C,C𝒞C,C^{\prime}\in{\mathscr{C}}. A comonad G=(G,ε,δ)G=(G,\varepsilon,\delta) is magmal when GG, ε:G1𝒞\varepsilon:G\Rightarrow 1_{{\mathscr{C}}} and δ:GGG\delta:G\Rightarrow G\circ G are all magmal.

Definition 2.

Suppose 𝒞{\mathscr{C}} is a magmal 𝒱{\mathscr{V}}-category and Y,Z𝒞Y,Z\in{\mathscr{C}}. We say ZZ is left cloaked by YY when there is an object [Y,Z]𝒞[Y,Z]\in{\mathscr{C}} and a morphism

evZY:[Y,Z]YZ\mathrm{ev}^{Y}_{Z}:[Y,Z]\otimes Y\to Z

such that the family

𝒞(X,[Y,Z])𝒞(XY,Z),{\mathscr{C}}(X,[Y,Z])\longrightarrow{\mathscr{C}}(X\otimes Y,Z)\ ,

𝒱{\mathscr{V}}-natural in XX obtained by the Yoneda Lemma, consists of isomorphisms. In the language of Appendix B, [Y,Z]=rif(Y,Z)[Y,Z]=\mathrm{rif}(-\otimes Y,Z) and evZY=εZY\mathrm{ev}^{Y}_{Z}=\varepsilon_{Z}^{-\otimes Y} in the 2-category 𝒱-Cat{\mathscr{V}}\text{-}\mathrm{Cat}. We say [Y,Z][Y,Z] is the left cloak of ZZ by YY; if these exist for all ZZ, we have the components

evZY:[Y,Z]YZ and veXY:X[Y,XY]\displaystyle\mathrm{ev}^{Y}_{Z}:[Y,Z]\otimes Y\to Z\ \text{ and }\ \mathrm{ve}_{X}^{Y}:X\to[Y,X\otimes Y]

of the counit and unit of an adjunction Y[Y,]-\otimes Y\dashv[Y,-]. If left cloaks [Y,Z][Y,Z] exist for all Y,Z𝒞Y,Z\in{\mathscr{C}}, we say 𝒞{\mathscr{C}} is left cloakal.

Proposition 1.

Suppose S:𝒞𝒟S:{\mathscr{C}}\to{\mathscr{D}} is a 𝒱{\mathscr{V}}-functor between magmal 𝒱{\mathscr{V}}-categories and Y𝒞Y\in{\mathscr{C}}. Suppose 𝒞{\mathscr{C}} admits left cloaks by YY and 𝒟{\mathscr{D}} admits left cloaks by SYSY. There is a bijection between families

S2;X,Y:SXSYS(XY)S_{2;X,Y}:SX\otimes SY\to S(X\otimes Y)

𝒱{\mathscr{V}}-natural in XX and families

S2;Y,Z:S[Y,Z][SY,SZ]S_{2;Y,Z}^{\ell}:S[Y,Z]\to[SY,SZ]

𝒱{\mathscr{V}}-natural in ZZ.

Proof.

This is an application of the mate bijection (in the sense of [20]) between 𝒱{\mathscr{V}}-natural (SY)SS2;,YS(Y)(-\otimes SY)\circ S\xrightarrow{S_{2;-,Y}}S\circ(-\otimes Y) and S[Y,]S2;Y,[SY,]SS\circ[Y,-]\xrightarrow{S_{2;Y,-}^{\ell}}[SY,-]\circ S under the adjunctions Y[Y,]-\otimes Y\dashv[Y,-] and SY[SY,]-\otimes SY\dashv[SY,-]. ∎

Obviously every monoidal category, functor, and natural transformation has an underlying magmal structure.

Let GG be a magmal comonad on a magmal 𝒱{\mathscr{V}}-category 𝒞{\mathscr{C}}. So we have 𝒱{\mathscr{V}}-natural families εX:GXX\varepsilon_{X}:GX\to X, δX:GXGGX\delta_{X}:GX\to GGX and G2;X,Y:GXGYG(XY)G_{2;X,Y}:GX\otimes GY\to G(X\otimes Y).

As for monoidal 𝒱{\mathscr{V}}-categories (see [39, 27, 26]), the category 𝒞G{\mathscr{C}}^{G} of Eilenberg-Moore G{G}-coalgebras becomes magmal with tensor product

(X𝜉GX)(Y𝜐GY)=(XYξυGXGYG2;X,YG(XY)).\displaystyle(X\xrightarrow{\xi}GX)\otimes(Y\xrightarrow{\upsilon}GY)=(X\otimes Y\xrightarrow{\xi\otimes\upsilon}GX\otimes GY\xrightarrow{G_{2;X,Y}}G(X\otimes Y))\ . (2.3)

This gives the construction of coalgebras for comonads (in the sense of [30]) in the 2-category Mag(𝒱-Cat)\mathrm{Mag}({\mathscr{V}}\text{-}\mathrm{Cat}) of magmal 𝒱{\mathscr{V}}-categories, magmal 𝒱{\mathscr{V}}-functors, and magmal 𝒱{\mathscr{V}}-natural transformations.

The following result is an application of Proposition 26 and yet we still give a direct proof within the present context.

Lemma 2.

Let GG be a magmal comonad on a magmal 𝒱{\mathscr{V}}-category 𝒞{\mathscr{C}}. Suppose cloaks [(Y,υ),(GZ,δZ)][(Y,\upsilon),(GZ,\delta_{Z})] and [(Y,υ),(G2Z,δGZ)][(Y,\upsilon),(G^{2}Z,\delta_{GZ})] exist in 𝒞G{\mathscr{C}}^{G} for the objects (Y,υ)(Y,\upsilon) and (Z,ζ)(Z,\zeta) of 𝒞G{\mathscr{C}}^{G}. Then the cloak [(Y,υ),(Z,ζ)][(Y,\upsilon),(Z,\zeta)] exists if and only if the parallel pair

(2.6)

has an equalizer (E,κ)𝑘[(Y,υ),(GZ,δZ)](E,\kappa)\xrightarrow{k}[(Y,\upsilon),(GZ,\delta_{Z})] in 𝒞G{\mathscr{C}}^{G}. If that holds, then

[(Y,υ),(Z,ζ)]=(E,κ)[(Y,\upsilon),(Z,\zeta)]=(E,\kappa)

and the counit ev(Z,ζ)(Y,υ)\mathrm{ev}^{(Y,\upsilon)}_{(Z,\zeta)} is determined by commutativity of the square (2.7).

(E,κ)(Y,υ)ev(Z,ζ)(Y,υ)k1(Z,ζ)ζ[(Y,υ),(GZ,δZ)](Y,υ)ev(GZ,δZ)(Y,υ)(GZ,δZ)\displaystyle\begin{aligned} \lx@xy@svg{\hbox{\raise 0.0pt\hbox{\kern 50.66989pt\hbox{\ignorespaces\ignorespaces\ignorespaces\hbox{\vtop{\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr&&\\&&\crcr}}}\ignorespaces{\hbox{\kern-30.96773pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{(E,\kappa)\otimes(Y,\upsilon)\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 60.47372pt\raise 6.15625pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-0.90625pt\hbox{$\scriptstyle{\mathrm{ev}^{(Y,\upsilon)}_{(Z,\zeta)}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 110.13974pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern-17.52814pt\raise-17.25pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.925pt\hbox{$\scriptstyle{k\otimes 1}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 0.0pt\raise-29.25pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 74.66989pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern 110.13974pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{(Z,\zeta)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 123.75224pt\raise-17.25pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.57501pt\hbox{$\scriptstyle{\zeta}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 123.75224pt\raise-29.25pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern-50.66989pt\raise-39.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{[(Y,\upsilon),(GZ,\delta_{Z})]\otimes(Y,\upsilon)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 67.58989pt\raise-45.19824pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-0.86426pt\hbox{$\scriptstyle{\mathrm{ev}^{(Y,\upsilon)}_{(GZ,\delta_{Z})}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 104.66989pt\raise-39.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 74.66989pt\raise-39.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern 104.66989pt\raise-39.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{(GZ,\delta_{Z})}$}}}}}}}\ignorespaces}}}}\ignorespaces\end{aligned} (2.7)
Proof.

We have the equalizer

(2.10)

in 𝒞G{\mathscr{C}}^{G}. The “only if” direction is then clear since right adjointness of the functor [(X,ξ),][(X,\xi),-] implies it preserves the equalizer (2.10). For the other direction, note that morphisms f:(A,α)(E,κ)f:(A,\alpha)\to(E,\kappa) are in bijection (via composition with kk) with morphisms g:(A,α)[(Y,υ),(GZ,δZ)]g:(A,\alpha)\to[(Y,\upsilon),(GZ,\delta_{Z})] such that [1,δZ]g=[1,Gζ]g[1,\delta_{Z}]\circ g=[1,G\zeta]\circ g and so with morphisms h:(A,α)(Y,υ)(GZ,δZ)h:(A,\alpha)\otimes(Y,\upsilon)\to(GZ,\delta_{Z}) such that δZh=Gζh\delta_{Z}\circ h=G\zeta\circ h. Using the equalizer (2.10), we see that (E,κ)(E,\kappa) is the stated cloak and that the last sentence of the lemma holds. ∎

The following lemma is essentially in [39].

Lemma 3.

Let GG be a magmal comonad on a magmal 𝒱{\mathscr{V}}-category 𝒞{\mathscr{C}}. Suppose the cloaks [Y,Z][Y,Z] and [GY,GZ][GY,GZ] exist in 𝒞{\mathscr{C}}. Then a cloak of the cofree object (GZ,δZ)(GZ,\delta_{Z}) by any object (Y,υ)(Y,\upsilon) in 𝒞G{\mathscr{C}}^{{G}} is given by the cofree object (G[Y,Z],δ[Y,Z])(G[Y,Z],\delta_{[Y,Z]}) with the composite

G[Y,Z]YG2ξ[GY,GZ]GYevGZGYGZ\displaystyle G[Y,Z]\otimes Y\xrightarrow{G^{\ell}_{2}\otimes\xi}[GY,GZ]\otimes GY\xrightarrow{\mathrm{ev}^{GY}_{GZ}}GZ

as ev(GZ,δZ)(Y,υ)\mathrm{ev}^{(Y,\upsilon)}_{(GZ,\delta_{Z})}.

Proof.

We have the chain of isomorphisms

𝒞G((A,α),(G[Y,Z],δ[Y,Z]))\displaystyle{\mathscr{C}}^{G}((A,\alpha),(G[Y,Z],\delta_{[Y,Z]}))
\displaystyle\cong 𝒞(A,[Y,Z])\displaystyle{\mathscr{C}}(A,[Y,Z])
\displaystyle\cong 𝒞(AY,Z)\displaystyle{\mathscr{C}}(A\otimes Y,Z)
\displaystyle\cong 𝒞G((AY,ϕ(αυ)),(GZ,δZ))\displaystyle{\mathscr{C}}^{G}((A\otimes Y,\phi(\alpha\otimes\upsilon)),(GZ,\delta_{Z}))
\displaystyle\cong 𝒞G((A,α)(Y,υ),(GZ,δZ))\displaystyle{\mathscr{C}}^{G}((A,\alpha)\otimes(Y,\upsilon),(GZ,\delta_{Z}))

which by Yoneda is induced by the evaluation morphism given by the clockwise path around the diagram (2.11).

G[Y,Z]YG2υδ[Y,Z]υ1υGG[Y,Z]GYG2Gε[Y,Z]1G(G[Y,Z]Y)G(ε[Y,Z]1)G[Y,Z]GYG2G21G([Y,Z]Y)GevZY[GY,GZ]GYevGZGYGZ\displaystyle\begin{aligned} \lx@xy@svg{\hbox{\raise 0.0pt\hbox{\kern 26.40688pt\hbox{\ignorespaces\ignorespaces\ignorespaces\hbox{\vtop{\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr&&&&\\&&&&\\&&&&\crcr}}}\ignorespaces{\hbox{\kern-26.40688pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{G[Y,Z]\otimes Y\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces{}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 36.16872pt\raise-43.1075pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-2.1975pt\hbox{$\scriptstyle{G^{\ell}_{2}\otimes\upsilon}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 99.66489pt\raise-68.25pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 40.85251pt\raise 6.3125pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.0625pt\hbox{$\scriptstyle{\delta_{[Y,Z]}\otimes\upsilon}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 80.40688pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 44.6333pt\raise-11.9575pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.7675pt\hbox{$\scriptstyle{1\otimes\upsilon}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 85.43027pt\raise-29.25pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces{\hbox{\lx@xy@drawline@}}{\hbox{\kern 50.40688pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern 80.40688pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{GG[Y,Z]\otimes GY\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 167.99641pt\raise 5.7325pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.5725pt\hbox{$\scriptstyle{G_{2}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 201.3731pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 113.88998pt\raise-17.25pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.0275pt\hbox{$\scriptstyle{G\varepsilon_{[Y,Z]}\otimes 1}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 113.88998pt\raise-29.25pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 171.3731pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern 201.3731pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{G(G[Y,Z]\otimes Y)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 234.81808pt\raise-19.5pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.2375pt\hbox{$\scriptstyle{G(\varepsilon_{[Y,Z]}\otimes 1)}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 234.81808pt\raise-29.25pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern-3.0pt\raise-39.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern 50.40688pt\raise-39.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern 83.94499pt\raise-39.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{G[Y,Z]\otimes GY\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 167.99641pt\raise-44.7325pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.5725pt\hbox{$\scriptstyle{G_{2}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 204.91121pt\raise-39.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 113.88998pt\raise-56.25pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-2.1975pt\hbox{$\scriptstyle{G^{\ell}_{2}\otimes 1}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 113.88998pt\raise-68.25pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 171.3731pt\raise-39.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern 204.91121pt\raise-39.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{G([Y,Z]\otimes Y)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 234.81808pt\raise-56.55pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.5375pt\hbox{$\scriptstyle{G\mathrm{ev}^{Y}_{Z}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 234.81808pt\raise-68.85002pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern-3.0pt\raise-78.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern 50.40688pt\raise-78.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern 80.40688pt\raise-78.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{[GY,GZ]\otimes GY\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 177.20691pt\raise-83.58624pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.35625pt\hbox{$\scriptstyle{\mathrm{ev}^{GY}_{GZ}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 224.88623pt\raise-78.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 171.3731pt\raise-78.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern 224.88623pt\raise-78.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{GZ}$}}}}}}}\ignorespaces}}}}\ignorespaces\end{aligned} (2.11)

Diagram (2.11) thus shows ev(GZ,δZ)(Y,υ)\mathrm{ev}^{(Y,\upsilon)}_{(GZ,\delta_{Z})} to be the composite stated in the lemma. ∎

3 Wood fusion morphisms

Notice that, if the cloak [Y,GZ][Y,GZ] exists, then the evaluation in Lemma 3 corresponds, under the universal property of cloaks, to the composite

wυ,Z:=G[Y,Z]G2[GY,GZ][υ,1][Y,GZ].\displaystyle w_{\upsilon,Z}:=G[Y,Z]\xrightarrow{G^{\ell}_{2}}[GY,GZ]\xrightarrow{[\upsilon,1]}[Y,GZ]\ . (3.12)
Definition 3.

The wυ,Zw_{\upsilon,Z} of (3.12) are called Wood GG-fusion morphisms.

Notice that the Wood fusion morphism for cofree coalgebras occurs in the construction of a new skew-closed structure using a closed comonad; see Proposition 3 of [36].

We will be interested in when the Wood fusion morphisms are invertible. As with ordinary fusion (recalled in Section 4), invertibility for an arbitrary GG-coalgebra follows from invertibility for cofree GG-coalgebras.

Proposition 4.

For a GG-coalgebra (Y,υ)(Y,\upsilon) and any object ZZ, the Wood fusion morphism wυ,Zw_{\upsilon,Z} is invertible if wδY,Zw_{\delta_{Y},Z} is invertible and wδGY,Zw_{\delta_{GY},Z} is an epimorphism.

Proof.

For any coalgebra (Z,ζ)(Z,\zeta), we have an equalizer of the form

(3.15)

which is preserved by all functors (that is, it is an absolute equalizer). It follows that the rows of (3.16) are coequalizers. The vertical morphisms give two composable morphisms of coequalizer diagrams (that is, the appropriate diagrams commute using naturality of G2G_{2}, and coassociativity properties of υ\upsilon and δ\delta).

G[G2Y,Z]G2G[δY,1]G[Gυ,1]G[GY,Z]G2G[υ,1]G[Y,Z]G2[G3Y,GZ][δGY,1][GδY,1][G2υ,1][G2Y,GZ][δY,1][Gυ,1][GY,GZ][υ,1][G2Y,GZ][δY,1][Gυ,1][GY,GZ][υ,1][Y,GZ]\displaystyle\begin{aligned} \lx@xy@svg{\hbox{\raise 0.0pt\hbox{\kern 22.92049pt\hbox{\ignorespaces\ignorespaces\ignorespaces\hbox{\vtop{\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr&&&&\\&&&&\\&&&&\crcr}}}\ignorespaces{\hbox{\kern-22.09248pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{G[G^{2}Y,Z]\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern-12.45337pt\raise-12.98209pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-2.1975pt\hbox{$\scriptstyle{G^{\ell}_{2}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 0.0pt\raise-20.71417pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 36.5708pt\raise 11.96246pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.575pt\hbox{$\scriptstyle{G[\delta_{Y},1]}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 77.3525pt\raise 5.81247pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 35.23723pt\raise 0.33752pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.575pt\hbox{$\scriptstyle{G[G\upsilon,1]}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 77.3525pt\raise-5.81247pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 46.09248pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern 77.3525pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{G[GY,Z]\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 98.18497pt\raise-12.98209pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-2.1975pt\hbox{$\scriptstyle{G^{\ell}_{2}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 98.18497pt\raise-20.71417pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 135.26888pt\raise 6.15pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.575pt\hbox{$\scriptstyle{G[\upsilon,1]}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 177.81557pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 144.27745pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern 177.81557pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{G[Y,Z]\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 195.10992pt\raise-13.49406pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-2.1975pt\hbox{$\scriptstyle{G^{\ell}_{2}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 195.10992pt\raise-21.73814pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern-22.09248pt\raise-31.48814pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{[G^{3}Y,GZ]\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern-22.92049pt\raise-44.47023pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.575pt\hbox{$\scriptstyle{[\delta_{GY},1]}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 0.0pt\raise-52.20232pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 36.5708pt\raise-19.52568pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.575pt\hbox{$\scriptstyle{[G\delta_{Y},1]}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 76.09248pt\raise-25.67567pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 36.81392pt\raise-30.78061pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.945pt\hbox{$\scriptstyle{[G^{2}\upsilon,1]}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 76.09248pt\raise-37.30061pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 46.09248pt\raise-31.48814pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern 76.09248pt\raise-31.48814pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{[G^{2}Y,GZ]\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 98.18497pt\raise-44.98221pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.575pt\hbox{$\scriptstyle{[\delta_{Y},1]}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 98.18497pt\raise-53.22629pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 135.26888pt\raise-25.33815pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.575pt\hbox{$\scriptstyle{[G\upsilon,1]}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 174.27745pt\raise-31.48814pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 144.27745pt\raise-31.48814pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern 174.27745pt\raise-31.48814pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{[GY,GZ]\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 195.10992pt\raise-44.98221pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.575pt\hbox{$\scriptstyle{[\upsilon,1]}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 195.10992pt\raise-53.22629pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern-22.09248pt\raise-62.97629pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{[G^{2}Y,GZ]\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 39.04749pt\raise-51.01382pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.575pt\hbox{$\scriptstyle{[\delta_{Y},1]}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 77.3525pt\raise-57.16382pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 37.71391pt\raise-62.63876pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.575pt\hbox{$\scriptstyle{[G\upsilon,1]}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 77.3525pt\raise-68.78876pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 46.09248pt\raise-62.97629pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern 77.3525pt\raise-62.97629pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{[GY,GZ]\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 137.74556pt\raise-56.8263pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.575pt\hbox{$\scriptstyle{[\upsilon,1]}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 177.81557pt\raise-62.97629pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 144.27745pt\raise-62.97629pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern 177.81557pt\raise-62.97629pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{[Y,GZ]}$}}}}}}}\ignorespaces}}}}\ignorespaces\end{aligned} (3.16)

If the middle vertical composite is invertible and the left vertical composite is an epimorphism then the right vertical composite is invertible. ∎

Definition 4.

The closed comonad GG on 𝒞{\mathscr{C}} is Hopf-Wood when the Wood fusion morphisms wυ,Zw_{\upsilon,Z} are all invertible. By Proposition 4, it suffices to know that all wδY,Zw_{\delta_{Y},Z} are invertible; then the property can be expressed without reference to Eilenberg-Moore coalgebras.

Lemma 5.

Under the conditions of Lemma 3, the parallel pair (2.6) is isomorphic to the parallel pair

(3.19)
Definition 5.

A strong magmal functor K:𝒜𝒞K:{\mathscr{A}}\to{\mathscr{C}} is said to create the cloak of BB by AA in 𝒜{\mathscr{A}} when the cloak of KBKB by KAKA exists in 𝒞{\mathscr{C}}, and there exist HH in 𝒜{\mathscr{A}} and τ:KH[KA,KB]\tau:KH\cong[KA,KB] in 𝒞{\mathscr{C}} with the following two properties:

  • (i)

    there exists a unique morphism e¯:HAB\bar{e}:H\otimes A\to B such that the square

    KHKA\textstyle{KH\otimes KA\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}τ1\scriptstyle{\tau\otimes 1}ϕ\scriptstyle{\phi}[KA,KB]KA\textstyle{[KA,KB]\otimes KA\ignorespaces\ignorespaces\ignorespaces\ignorespaces}eKBKA\scriptstyle{e_{KB}^{KA}}K(HA)\textstyle{K(H\otimes A)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Ke¯\scriptstyle{K\bar{e}}KB\textstyle{KB} (3.20)

    commutes;

  • (ii)

    the object HH with e¯\bar{e} is a cloak for BB by AA.

The following lemma is straightforward.

Lemma 6.

Suppose (3.21) is a pullback of magmal 𝒱{\mathscr{V}}-categories and strong magmal 𝒱{\mathscr{V}}-functors with WW fully faithful. Suppose A,B𝒜A,B\in{\mathscr{A}} are such that KK^{\prime} creates the cloak of VBVB by VAVA. If [VA,VB]VH[VA,VB]\cong VH for some HH then KK creates the cloak of BB by AA.

𝒜\textstyle{{\mathscr{A}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}V\scriptstyle{V}K\scriptstyle{K}𝒜\textstyle{{\mathscr{A}}^{\prime}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}K\scriptstyle{K^{\prime}}𝒞\textstyle{{\mathscr{C}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}W\scriptstyle{W}𝒞\textstyle{{\mathscr{C}}^{\prime}} (3.21)
Lemma 7.

Suppose [Y,Z][Y,Z] and [GY,GZ][GY,GZ] exist in 𝒞{\mathscr{C}}. The forgetful functor

undG:𝒞G𝒞\mathrm{und}_{G}:{\mathscr{C}}^{{G}}\to{\mathscr{C}}

creates the exponential [(Y,υ),(GZ,δZ)][(Y,\upsilon),(GZ,\delta_{Z})] of Lemma 3 if and only if [Y,GZ][Y,GZ] exists in 𝒞{\mathscr{C}} and the Wood GG-fusion morphism (3.12) is invertible.

Proof.

Assume [Y,GZ][Y,GZ] exists in 𝒞{\mathscr{C}} and the Wood GG-fusion morphism (3.12) is invertible. In the definition of creation, take H=(G[Y,Z],δ[Y,Z])H=(G[Y,Z],\delta_{[Y,Z]}) and τ=wυ,Z\tau=w_{\upsilon,Z}. Commutativity of diagram (3.20) means, in this case, that e¯\bar{e} must be the clockwise route around the diagram

and the diagram shows that e¯\bar{e} is the evaluation displayed in Lemma 3. By Lemma 3 we have what we need for “if”.

Now suppose undG:𝒞G𝒞\mathrm{und}_{G}:{\mathscr{C}}^{{G}}\to{\mathscr{C}} creates the exponential [(Y,υ),(GZ,δZ)][(Y,\upsilon),(GZ,\delta_{Z})] which we know from Lemma 3 is the object (G[Y,Z],δ[Y,Z])(G[Y,Z],\delta_{[Y,Z]}) with the evaluation e¯\bar{e} as displayed in that lemma. Since undG(GZ,δZ)=GZ\mathrm{und}_{G}(GZ,\delta_{Z})=GZ and undG(Y,υ)=Y\mathrm{und}_{G}(Y,\upsilon)=Y, we have the existence of [Y,GZ][Y,GZ] and that there is an isomorphism τ:G[Y,Z][Y,GZ]\tau:G[Y,Z]\cong[Y,GZ] such that e¯=evGYX(τ1)\bar{e}=\mathrm{ev}^{X}_{GY}\circ(\tau\otimes 1). This last equation means that τ\tau corresponds to e¯\bar{e} under the universal property of [Y,GZ][Y,GZ]; that is, τ=wυ,Z\tau=w_{\upsilon,Z}, which proves “only if”. ∎

Proposition 8.

Let G{G} be a magmal comonad on a magmal 𝒱{\mathscr{V}}-category 𝒞{\mathscr{C}}. Suppose (Y,υ)𝒞G(Y,\upsilon)\in{\mathscr{C}}^{{G}} is such that [Y,Z][Y,Z] and [GY,GZ][GY,GZ] exist for all Z𝒞Z\in{\mathscr{C}}. The Wood GG-fusion morphisms wυ,Zw_{\upsilon,Z} are invertible for all ZZ if and only if undG:𝒞G𝒞\mathrm{und}_{G}:{\mathscr{C}}^{{G}}\to{\mathscr{C}} creates all cloaks by (Y,υ)(Y,\upsilon). In this case, for any (Z,ζ)𝒞G(Z,\zeta)\in{\mathscr{C}}^{{G}},

[(Y,υ),(Z,ζ)]([Y,Z],wυ,Z1[1,ζ]).[(Y,\upsilon),(Z,\zeta)]\cong([Y,Z],w_{\upsilon,Z}^{-1}\circ[1,\zeta])\ .
Proof.

Lemma 7 gives “if”. Suppose all w(Y,υ),Yw_{(Y,\upsilon),Y} are invertible. We will use facts involved in the Beck monadicity theorem [25] in dual form for comonads. We have the cosplit equalizer (3.15). From Lemma 7, the parallel pair in equalizer (2.6) is taken by UGU_{G} to the cosplit pair

(3.25)

which, by applying [Y,][Y,-] to (3.15), has the cosplit equalizer

(3.28)

Since undG\mathrm{und}_{G} is comonadic, there exists a unique GG-coalgebra ([Y,Z],κ)([Y,Z],\kappa) and an equalizer

(3.31)

in 𝒞G{\mathscr{C}}^{G}, where (using Lemma 5) the coactions κ1\kappa_{1} and κ2\kappa_{2} are transported from the coactions δ[Y,Z]\delta_{[Y,Z]} on G[Y,Z]G[Y,Z] and δ[Y,GZ]\delta_{[Y,GZ]} on G[Y,GZ]G[Y,GZ] under the invertible Wood fusion morphisms. So we have condition (ii) for undG\mathrm{und}_{G} to create the cloak. For condition (i), note that commutativity of (2.7) in Lemma 2 with k=[1,ζ]k=[1,\zeta] shows that evZY:([Y,Z],κ)(Y,υ)(Z,ζ)\mathrm{ev}^{Y}_{Z}:([Y,Z],\kappa)\otimes(Y,\upsilon)\to(Z,\zeta) is the G-coalgebra morphism for the unique solution to diagram (3.20). ∎

4 Fusion for opmagmal monads

Let TT be an opmagmal monad on the magmal 𝒱{\mathscr{V}}-category 𝒞{\mathscr{C}}. The monad structure involves a unit η:1𝒞T\eta:1_{{\mathscr{C}}}\to T and a multiplication μ:TTT\mu:TT\to T. The opmagmal structure involves a natural family of morphisms T2;X,Y:T(XY)TXTYT_{2;X,Y}:T(X\otimes Y)\to TX\otimes TY. We denote the magmal category of Eilenberg-Moore TT-algebras by 𝒞T{\mathscr{C}}^{T} with strong magmal forgetful functor undT:𝒞T𝒞\mathrm{und}_{T}:{\mathscr{C}}^{T}\to{\mathscr{C}}. The tensor product for 𝒞T{\mathscr{C}}^{T} is defined by

(TX𝛼X)(TY𝛽Y)=(T(XY)T2TXTYαβXY).(TX\xrightarrow{\alpha}X)\otimes(TY\xrightarrow{\beta}Y)=\left(T(X\otimes Y)\xrightarrow{T_{2}}TX\otimes TY\xrightarrow{\alpha\otimes\beta}X\otimes Y\right)\ .

For X𝒞X\in{\mathscr{C}} and (Y,β)𝒞T(Y,\beta)\in{\mathscr{C}}^{T}, we call the composite v=vX,βv=v_{X,\beta}:

T(XY)T2TXTY1βTXY\displaystyle T(X\otimes Y)\xrightarrow{T_{2}}TX\otimes TY\xrightarrow{1\otimes\beta}TX\otimes Y (4.32)

a TT-fusion morphism (as featured in [6]).

Suppose T:𝒞𝒞T:{\mathscr{C}}\to{\mathscr{C}} has a right adjoint functor GG. As discussed in [14], GG becomes a comonad on 𝒞{\mathscr{C}} and there is an isomorphism of categories 𝒞T𝒞G{\mathscr{C}}^{T}\cong{\mathscr{C}}^{G} over 𝒞{\mathscr{C}}. These matters involve the calculus of mates (in the sense of [20]) as does the fact that GG becomes a monoidal comonad and the isomorphism 𝒞T𝒞G{\mathscr{C}}^{T}\cong{\mathscr{C}}^{G} becomes strong monoidal.

Proposition 9.

Suppose TT is an opmagmal monad on the magmal 𝒱{\mathscr{V}}-category 𝒞{\mathscr{C}}. Suppose GG is a right adjoint magmal comonad for TT. Let (Y,β)𝒞T(Y,\beta)\in{\mathscr{C}}^{T} correspond to (Y,υ)𝒞G(Y,\upsilon)\in{\mathscr{C}}^{G}. The TT-fusion morphism vX,βv_{X,\beta} is invertible for all X𝒞X\in{\mathscr{C}} if and only if the Wood GG-fusion morphism wυ,Zw_{\upsilon,Z} is invertible for all Z𝒞Z\in{\mathscr{C}}.

Proof.

Apply the Yoneda Lemma to the following commutative diagram where σ:TG1𝒞\sigma:TG\to 1_{{\mathscr{C}}} is the counit of TGT\dashv G.

where σ:TG1𝒞\sigma:TG\to 1_{{\mathscr{C}}} is the counit of TGT\dashv G. ∎

Example 1.

Let 𝒞{\mathscr{C}} be a braided closed monoidal category. Let HH be a monoid in the monoidal category of comagma in 𝒞{\mathscr{C}}. Then H:𝒞𝒞-\otimes H:{\mathscr{C}}\to{\mathscr{C}} is an opmagmal monad with right adjoint [H,]:𝒞𝒞[H,-]:{\mathscr{C}}\to{\mathscr{C}}. Proposition 9 relates Wood fusion for the magmal comonad [H,][H,-] with the fusion morphism

HHδ1HHH1μHHH\otimes H\xrightarrow{\delta\otimes 1}H\otimes H\otimes H\xrightarrow{1\otimes\mu}H\otimes H

for HH. We say HH is Hopf when its fusion morphism is invertible. This is equivalent to H-\otimes H Hopf and to [H,][H,-] Hopf-Wood.

5 Procomonads

Let 𝒱{\mathscr{V}} be a symmetric closed monoidal category which is complete and cocomplete. Let 𝔐=𝒱-Mod\mathfrak{M}={\mathscr{V}}\text{-}\mathrm{Mod} be the bicategory of 𝒱{\mathscr{V}}-categories and 𝒱{\mathscr{V}}-modules in the terminology of [32, 11] and elsewhere; modules are also called “bimodules” by Lawvere [23], and first “profunctors” [4] and then “distributors” [5] by Bénabou. The bicategory 𝔐\mathfrak{M} has homs enriched in 𝒱-Cat{\mathscr{V}}\text{-}\mathrm{Cat}; we equate the hom 𝔐(𝒜,)\mathfrak{M}({\mathscr{A}},{\mathscr{B}}) with the 𝒱{\mathscr{V}}-functor 𝒱{\mathscr{V}}-category [op𝒜,𝒱][{\mathscr{B}}^{\mathrm{op}}\otimes{\mathscr{A}},{\mathscr{V}}]. Composition of 𝒱{\mathscr{V}}-modules M:𝒜M:{\mathscr{A}}\nrightarrow{\mathscr{B}} and N:𝒞N:{\mathscr{B}}\nrightarrow{\mathscr{C}} is defined by coends

(NM)(C,A)=BM(B,A)N(C,B).\displaystyle(N\circ M)(C,A)=\int^{B}M(B,A)\otimes N(C,B)\ .

Each 𝒱{\mathscr{V}}-functor F:𝒜F:{\mathscr{A}}\to{\mathscr{B}} gives 𝒱{\mathscr{V}}-modules F:𝒜F_{*}:{\mathscr{A}}\nrightarrow{\mathscr{B}} and F:𝒜F^{*}:{\mathscr{B}}\nrightarrow{\mathscr{A}} with FFF_{*}\dashv F^{*} in 𝔐\mathfrak{M}; indeed, F(B,A)=(B,FA)F_{*}(B,A)={\mathscr{B}}(B,FA) and F(A,B)=(FA,B)F^{*}(A,B)={\mathscr{B}}(FA,B). A module M:𝒜M:{\mathscr{A}}\nrightarrow{\mathscr{B}} is called Cauchy when it has a right adjoint in 𝔐\mathfrak{M}. A module M:𝒜M:{\mathscr{A}}\nrightarrow{\mathscr{B}} is called convergent or representable when MFM\cong F_{*} for some 𝒱{\mathscr{V}}-functor F:𝒜F:{\mathscr{A}}\to{\mathscr{B}}.

We write {\mathscr{I}} for the 𝒱{\mathscr{V}}-category with one object 0 and hom (0,0)=I{\mathscr{I}}(0,0)=I (the tensor unit of 𝒱{\mathscr{V}}). Then 𝔐(,𝒞)[𝒞op,𝒱]\mathfrak{M}({\mathscr{I}},{\mathscr{C}})\cong[{\mathscr{C}}^{\mathrm{op}},{\mathscr{V}}], the category of 𝒱{\mathscr{V}}-presheaves on 𝒞{\mathscr{C}}. Composition with N𝔐(,𝒞)N\in\mathfrak{M}({\mathscr{B}},{\mathscr{C}}) transports to a left adjoint 𝒱{\mathscr{V}}-functor

N¯:[op,𝒱][𝒞op,𝒱]\widebar{N}:[{\mathscr{B}}^{\mathrm{op}},{\mathscr{V}}]\longrightarrow[{\mathscr{C}}^{\mathrm{op}},{\mathscr{V}}]

where

N¯(F)(C)=BF(B)N(C,B) so that N¯((,B))N(,B).\displaystyle\widebar{N}(F)(C)=\int^{B}F(B)\otimes N(C,B)\ \text{ so that }\ \widebar{N}({\mathscr{B}}(-,B))\cong N(-,B)\ . (5.34)

In fact, NN¯N\mapsto\widebar{N} is the object function of a biequivalence between the bicategory 𝔐\mathfrak{M} and the 2-category 𝔓\mathfrak{P} of 𝒱{\mathscr{V}}-presheaf categories, left adjoint 𝒱{\mathscr{V}}-functors, and 𝒱{\mathscr{V}}-natural transformations.

A 𝒱{\mathscr{V}}-procomonad is a comonad in 𝔐\mathfrak{M} and so consists of a 𝒱{\mathscr{V}}-category 𝒞{\mathscr{C}}, a 𝒱{\mathscr{V}}-module Γ:𝒞𝒞\Gamma:{\mathscr{C}}\nrightarrow{\mathscr{C}}, a 𝒱{\mathscr{V}}-natural transformation ε:Γ1𝒞\varepsilon:\Gamma\Rightarrow 1_{{\mathscr{C}}}, and a 𝒱{\mathscr{V}}-natural transformation δ:ΓΓΓ\delta:\Gamma\Rightarrow\Gamma\circ\Gamma satisfying the coassociativity and counital conditions. We say Γ=(Γ,ε,δ)\Gamma=(\Gamma,\varepsilon,\delta) is a 𝒱{\mathscr{V}}-procomonad on 𝒞{\mathscr{C}}. For any 𝒱{\mathscr{V}}-category 𝒜{\mathscr{A}}, we obtain a 𝒱{\mathscr{V}}-comonad 𝔐(1𝒜,Γ)\mathfrak{M}(1_{{\mathscr{A}}},\Gamma) on the 𝒱{\mathscr{V}}-category 𝔐(𝒜,𝒞)\mathfrak{M}({\mathscr{A}},{\mathscr{C}}). Then we have the 𝒱{\mathscr{V}}-category 𝔐(𝒜,𝒞)𝔐(1𝒜,Γ)\mathfrak{M}({\mathscr{A}},{\mathscr{C}})^{\mathfrak{M}(1_{{\mathscr{A}}},\Gamma)} of Eilenberg-Moore 𝔐(1𝒜,Γ)\mathfrak{M}(1_{{\mathscr{A}}},\Gamma)-coalgebras. In particular, when 𝒜={\mathscr{A}}={\mathscr{I}}, we obtain a 𝒱{\mathscr{V}}-comonad Γ¯\widebar{\Gamma} on the presheaf 𝒱{\mathscr{V}}-category [𝒞op,𝒱][{\mathscr{C}}^{\mathrm{op}},{\mathscr{V}}] and its 𝒱{\mathscr{V}}-category [𝒞op,𝒱]Γ¯[{\mathscr{C}}^{\mathrm{op}},{\mathscr{V}}]^{\widebar{\Gamma}} of Eilenberg-Moore Γ¯\widebar{\Gamma}-coalgebras.

The following definition agrees with the category 𝒞Γ{\mathscr{C}}^{\Gamma} defined by Thiébaud [38] in the case 𝒱=Set{\mathscr{V}}=\mathrm{Set}.

Definition 6.

The 𝒱{\mathscr{V}}-category of Γ\Gamma-algebras in 𝒞{\mathscr{C}} is defined by the pullback (5.35) in 𝒱-Cat{\mathscr{V}}\text{-}\mathrm{Cat} of the underlying 𝒱{\mathscr{V}}-functor along the Yoneda embedding .

𝒞ΓΓund[𝒞op,𝒱]Γ¯und𝒞[𝒞op,𝒱]\displaystyle\begin{aligned} \lx@xy@svg{\hbox{\raise 0.0pt\hbox{\kern 16.5pt\hbox{\ignorespaces\ignorespaces\ignorespaces\hbox{\vtop{\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr&&\\&&\crcr}}}\ignorespaces{\hbox{\kern-7.825pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{{\mathscr{C}}^{\Gamma}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 32.2pt\raise 3.615pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-0.615pt\hbox{$\scriptstyle{\!\text{\char 135\relax}\!^{\Gamma}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 61.825pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern-16.5pt\raise-17.11401pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-2.1875pt\hbox{$\scriptstyle{\mathrm{und}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 0.0pt\raise-31.22804pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 31.825pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern 61.825pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{[{\mathscr{C}}^{\mathrm{op}},{\mathscr{V}}]^{\widebar{\Gamma}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 79.86002pt\raise-17.69652pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-2.1875pt\hbox{$\scriptstyle{\mathrm{und}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 79.86002pt\raise-30.14305pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern-6.25pt\raise-40.37802pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{{\mathscr{C}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 33.5375pt\raise-43.37802pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{$\scriptstyle{\!\text{\char 135\relax}\!}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 63.825pt\raise-40.37802pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 31.825pt\raise-40.37802pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern 63.825pt\raise-40.37802pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{[{\mathscr{C}}^{\mathrm{op}},{\mathscr{V}}]}$}}}}}}}\ignorespaces}}}}\ignorespaces\end{aligned} (5.35)

So such a Γ\Gamma-algebra consists of an object C𝒞C\in{\mathscr{C}} equipped with a coaction morphism γ:IΓ(C,C)\gamma:I\to\Gamma(C,C), subject to the two axioms (5.36). We will write γX:𝒞(C,X)Γ(C,X)\gamma_{X}:{\mathscr{C}}(C,X)\to\Gamma(C,X) for the natural family corresponding to γ\gamma under the Yoneda bijection. Similarly we have γX:𝒞(X,C)Γ(X,C)\gamma^{X}:{\mathscr{C}}(X,C)\to\Gamma(X,C).

Iγ1CΓ(C,C)εC,C𝒞(C,C)IγγγΓ(C,C)Γ(C,C)inCΓ(C,C)δC,CXΓ(X,C)Γ(C,X)\displaystyle\begin{aligned} \lx@xy@svg{\hbox{\raise 0.0pt\hbox{\kern 18.13873pt\hbox{\ignorespaces\ignorespaces\ignorespaces\hbox{\vtop{\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr&\\&\crcr}}}\ignorespaces{\hbox{\kern-5.33124pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{I\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern-9.2617pt\raise-15.41249pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-0.74376pt\hbox{$\scriptstyle{\gamma}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 0.0pt\raise-27.82498pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 22.62463pt\raise-9.76749pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.41501pt\hbox{$\scriptstyle{1_{C}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 44.96643pt\raise-27.82498pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces{\hbox{\lx@xy@drawline@}}{\hbox{\kern 57.71497pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern-18.13873pt\raise-37.57498pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\Gamma(C,C)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 22.43935pt\raise-42.89622pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-0.39125pt\hbox{$\scriptstyle{\varepsilon_{C,C}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 42.13873pt\raise-37.57498pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 42.13873pt\raise-37.57498pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{{\mathscr{C}}(C,C)}$}}}}}}}\ignorespaces}}}}\ignorespaces\qquad\lx@xy@svg{\hbox{\raise 0.0pt\hbox{\kern 18.13873pt\hbox{\ignorespaces\ignorespaces\ignorespaces\hbox{\vtop{\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr&\\&\crcr}}}\ignorespaces{\hbox{\kern-5.33124pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{I\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 17.64667pt\raise 5.45pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.225pt\hbox{$\scriptstyle{\gamma\otimes\gamma}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 47.3855pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern-9.2617pt\raise-16.4305pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-0.74376pt\hbox{$\scriptstyle{\gamma}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 0.0pt\raise-29.861pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 47.3855pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\Gamma(C,C)\otimes\Gamma(C,C)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 86.16298pt\raise-16.94449pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.48875pt\hbox{$\scriptstyle{\mathrm{in}_{C}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 86.16298pt\raise-28.63899pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern-18.13873pt\raise-39.611pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\Gamma(C,C)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 22.50826pt\raise-45.76349pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.2225pt\hbox{$\scriptstyle{\delta_{C,C}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 42.13873pt\raise-39.611pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 42.13873pt\raise-39.611pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\int^{X}\Gamma(X,C)\otimes\Gamma(C,X)}$}}}}}}}\ignorespaces}}}}\ignorespaces\end{aligned} (5.36)

We will call any 𝒱{\mathscr{V}}-functor into 𝒞{\mathscr{C}}, isomorphic over 𝒞{\mathscr{C}} to und:𝒞Γ𝒞\mathrm{und}:{\mathscr{C}}^{\Gamma}\to{\mathscr{C}}, Thiébaud algebraic over 𝒞{\mathscr{C}}.

Example 2.

The construction 𝒞Γ{\mathscr{C}}^{\Gamma} includes the Eilenberg-Moore constructions for both 𝒱{\mathscr{V}}-monads and 𝒱{\mathscr{V}}-comonads.

  • 1.

    If T=(T,η,μ)T=(T,\eta,\mu) is a 𝒱{\mathscr{V}}-monad on the 𝒱{\mathscr{V}}-category 𝒞{\mathscr{C}} and we take Γ=T\Gamma=T^{*} so that Γ(X,Y)=𝒞(TX,Y)\Gamma(X,Y)={\mathscr{C}}(TX,Y) with counit ε\varepsilon and comultiplication δ\delta induced by the unit η\eta and multiplication μ\mu then 𝒞Γ𝒞T{\mathscr{C}}^{\Gamma}\cong{\mathscr{C}}^{T}, the 𝒱{\mathscr{V}}-category of TT-algebras.

  • 2.

    If G=(G,ε,δ)G=(G,\varepsilon,\delta) is a 𝒱{\mathscr{V}}-comonad on the 𝒱{\mathscr{V}}-category 𝒞{\mathscr{C}} and we take Γ=G\Gamma=G_{*} so that Γ(Y,Z)=𝒞(Y,GZ)\Gamma(Y,Z)={\mathscr{C}}(Y,GZ) with counit and comultiplication induced by those of GG then 𝒞Γ𝒞G{\mathscr{C}}^{\Gamma}\cong{\mathscr{C}}^{G}, the 𝒱{\mathscr{V}}-category of GG-coalgebras.

The two main closure properties Thiébaud proved in [38] were that Thiébaud algebraicity is closed under pullback and exponentiation. We now look at that.

Given a 𝒱{\mathscr{V}}-functor W:𝒟𝒞W:{\mathscr{D}}\to{\mathscr{C}} and a 𝒱{\mathscr{V}}-procomonad Γ\Gamma on 𝒞{\mathscr{C}}, we have the 𝒱{\mathscr{V}}-procomonad ΓW=WΓW\Gamma_{W}=W^{*}\circ\Gamma\circ W_{*} on 𝒟{\mathscr{D}}; it is the lifting of Γ\Gamma through WW_{*} in 𝔐\mathfrak{M} (see Section 2 of [30]).

Proposition 10.

The following square is a pullback.

𝒟ΓWund𝒞Γund𝒟W𝒞\displaystyle\begin{aligned} \lx@xy@svg{\hbox{\raise 0.0pt\hbox{\kern 16.5pt\hbox{\ignorespaces\ignorespaces\ignorespaces\hbox{\vtop{\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr&&\\&&\crcr}}}\ignorespaces{\hbox{\kern-9.5725pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{{\mathscr{D}}^{\Gamma_{W}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces{\hbox{\kern 33.5725pt\raise 0.0pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{$\scriptstyle{}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 63.5725pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern-16.5pt\raise-15.4305pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-2.1875pt\hbox{$\scriptstyle{\mathrm{und}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 0.0pt\raise-27.861pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 33.5725pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern 63.5725pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{{\mathscr{C}}^{\Gamma}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 71.39749pt\raise-15.4305pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-2.1875pt\hbox{$\scriptstyle{\mathrm{und}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 71.39749pt\raise-27.861pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern-6.4375pt\raise-37.01097pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{{\mathscr{D}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 29.38pt\raise-42.16347pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-2.1525pt\hbox{$\scriptstyle{W}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 65.14749pt\raise-37.01097pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 33.5725pt\raise-37.01097pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern 65.14749pt\raise-37.01097pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\mathscr{C}}$}}}}}}}\ignorespaces}}}}\ignorespaces\end{aligned}
Proof.

Using Yoneda, we deduce that ΓW(D,D)Γ(WD,WD)\Gamma_{W}(D^{\prime},D)\cong\Gamma(WD^{\prime},WD). The remaining details are routine. ∎

Corollary 11.

Thiébaud algebraicity is the closure under pullback of comonadicity.

Given 𝒱{\mathscr{V}}-categories 𝒜{\mathscr{A}} and 𝒞{\mathscr{C}}, each 𝒱{\mathscr{V}}-procomonad Γ\Gamma on 𝒞{\mathscr{C}} defines a 𝒱{\mathscr{V}}-procomonad Γ𝒜\Gamma^{{\mathscr{A}}} on [𝒜,𝒞][{\mathscr{A}},{\mathscr{C}}] via the commutative diagram (5.37); it is the lifting of [1𝒜,Γ¯][1_{{\mathscr{A}}},\widebar{\Gamma}]_{*} through [1𝒜,][1_{{\mathscr{A}}},\!\text{\char 135\relax}\!]_{*} and satisfies the simple formula:

Γ𝒜(F,F)=AΓ(FA,FA).\displaystyle\Gamma^{{\mathscr{A}}}(F^{\prime},F)=\int_{A}\Gamma(F^{\prime}A,FA)\ .
[𝒜,𝒞]Γ𝒜[1CA,][𝒜,𝒞][𝒜,[𝒞op,𝒱]][1𝒜,Γ¯][𝒜,[𝒞op,𝒱]][1𝒜,]\displaystyle\begin{aligned} \lx@xy@svg{\hbox{\raise 0.0pt\hbox{\kern 23.91002pt\hbox{\ignorespaces\ignorespaces\ignorespaces\hbox{\vtop{\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr&&\\&&\crcr}}}\ignorespaces{\hbox{\kern-13.37502pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{[{\mathscr{A}},{\mathscr{C}}]\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 44.59128pt\raise 5.7675pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-2.7675pt\hbox{$\scriptstyle{\Gamma^{{\mathscr{A}}}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 88.44502pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern-18.7305pt\raise-17.12875pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.575pt\hbox{$\scriptstyle{[1_{CA},\!\text{\char 135\relax}\!]_{*}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 0.0pt\raise-29.0075pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 47.91002pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern 88.44502pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{[{\mathscr{A}},{\mathscr{C}}]}$}}}}}}}{\hbox{\kern-23.91002pt\raise-39.24248pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{[{\mathscr{A}},[{\mathscr{C}}^{\mathrm{op}},{\mathscr{V}}]]\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 38.96pt\raise-45.86885pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-2.05139pt\hbox{$\scriptstyle{[1_{{\mathscr{A}}},\widebar{\Gamma}]_{*}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 77.91002pt\raise-39.24248pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 47.91002pt\raise-39.24248pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern 77.91002pt\raise-39.24248pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{[{\mathscr{A}},[{\mathscr{C}}^{\mathrm{op}},{\mathscr{V}}]]\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 101.82004pt\raise-17.12875pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.99374pt\hbox{$\scriptstyle{[1_{{\mathscr{A}}},\!\text{\char 135\relax}\!]^{*}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 101.82004pt\raise-5.25pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces}}}}\ignorespaces\end{aligned} (5.37)
Proposition 12.

[𝒜,𝒞]Γ𝒜[𝒜,𝒞Γ][{\mathscr{A}},{\mathscr{C}}]^{\Gamma^{{\mathscr{A}}}}\cong[{\mathscr{A}},{\mathscr{C}}^{\Gamma}] over [𝒜,𝒞][{\mathscr{A}},{\mathscr{C}}].

Proof.

The pullback (5.35) is preserved by exponentiation [𝒜,][{\mathscr{A}},-] by 𝒜{\mathscr{A}}. The Eilenberg-Moore construction of coalgebras in 𝒱-Cat{\mathscr{V}}\text{-}\mathrm{Cat} is also preserved by exponentiation. So we have the pullback

The result now follows from Proposition 10, the definition (5.37) of Γ𝒜\Gamma^{{\mathscr{A}}}, and the second of Example 2. ∎

An object 𝒳{\mathscr{X}} of a monoidal bicategory 𝔑\mathfrak{N} (see [11]) is magmal when a 1-morphism P:𝒳𝒳𝒳P:{\mathscr{X}}\otimes{\mathscr{X}}\to{\mathscr{X}} is specified. For example, every monoidale (called pseudomonoid by [11] and elsewhere) in 𝔑\mathfrak{N} has an underlying magmal object.

In particular, a magmal object in 𝒱-Cat{\mathscr{V}}\text{-}\mathrm{Cat} is called a magmal 𝒱{\mathscr{V}}-category as in Definition 1. A module M:𝒞𝒟M:{\mathscr{C}}\nrightarrow{\mathscr{D}} between magmal 𝒱{\mathscr{V}}-categories is called magmal when it is equipped with a 𝒱{\mathscr{V}}-natural family M2M_{2} of morphisms

M2;C,CD,D:M(D,C)M(D,C)M(DD,CC);\displaystyle M_{2;C,C^{\prime}}^{\ D,D^{\prime}}:M(D,C)\otimes M(D^{\prime},C^{\prime})\to M(D\otimes D^{\prime},C\otimes C^{\prime})\ ;

such families, by the universal property of coend and Yoneda’s Lemma, are in bijection with 𝒱{\mathscr{V}}-natural families of morphisms

M2;C,CD′′:D,DM(D,C)M(D,C)𝒟(D′′,DD)M(D′′,CC);\displaystyle M_{2;C,C^{\prime}}^{\ D^{\prime\prime}}:\int^{D,D^{\prime}}M(D,C)\otimes M(D^{\prime},C^{\prime})\otimes{\mathscr{D}}(D^{\prime\prime},D\otimes D^{\prime})\to M(D^{\prime\prime},C\otimes C^{\prime})\ ;

and in bijection with 𝒱{\mathscr{V}}-natural families of morphisms

M2;C′′D,D:C,C𝒞(CC,C′′)M(D,C)M(D,C)M(DD,C′′).\displaystyle M_{2;C^{\prime\prime}}^{\ D,D^{\prime}}:\int^{C,C^{\prime}}{\mathscr{C}}(C\otimes C^{\prime},C^{\prime\prime})\otimes M(D,C)\otimes M(D^{\prime},C^{\prime})\to M(D\otimes D^{\prime},C^{\prime\prime})\ .

A module morphism α:MN\alpha:M\Rightarrow N is magmal when

αDD,CCM2;C,CD,D=N2;C,CD,D(αD,CαD,C).\alpha_{D\otimes D^{\prime},C\otimes C^{\prime}}\circ M_{2;C,C^{\prime}}^{\ D,D^{\prime}}=N_{2;C,C^{\prime}}^{\ D,D^{\prime}}\circ(\alpha_{D,C}\otimes\alpha_{D^{\prime},C^{\prime}})\ .

A 𝒱{\mathscr{V}}-functor S:𝒞𝒟S:{\mathscr{C}}\to{\mathscr{D}} is magmal as in Definition 1 if and only if the module SS_{*} is. Using the Yoneda Lemma, we see that this amounts to a 𝒱{\mathscr{V}}-natural family of morphisms

S2=S2;C,C:SCSCS(CC)\displaystyle S_{2}=S_{2;C,C^{\prime}}:SC\otimes SC^{\prime}\longrightarrow S(C\otimes C^{\prime})

as in diagram (2.2). Call SS strong magmal when all S2,C,CS_{2,C,C^{\prime}} are invertible.

If 𝒞{\mathscr{C}} is a small magmal 𝒱{\mathscr{V}}-category then the presheaf 𝒱{\mathscr{V}}-category 𝒞^=[𝒞op,𝒱]\widehat{{\mathscr{C}}}=[{\mathscr{C}}^{\mathrm{op}},{\mathscr{V}}] has the Day convolution magmal structure

:𝒞^𝒞^𝒞^\asterisk:\widehat{{\mathscr{C}}}\otimes\widehat{{\mathscr{C}}}\to\widehat{{\mathscr{C}}}

defined by

(FF)Z=X,Y𝒞(Z,XY)FXFY.\displaystyle(F\asterisk F^{\prime})Z=\int^{X,Y}{\mathscr{C}}(Z,X\otimes Y)\otimes FX\otimes F^{\prime}Y\ .

The Yoneda embedding :𝒞𝒞^\!\text{\char 135\relax}\!:{\mathscr{C}}\to\widehat{{\mathscr{C}}} is strong magmal and has the (bicategorical) universal property of the magmal small cocompletion of 𝒞{\mathscr{C}}: for any small-cocomplete magmal 𝒳{\mathscr{X}}, the category of [strong-]magmal 𝒱{\mathscr{V}}-functors 𝒞𝒳{\mathscr{C}}\to{\mathscr{X}} is equivalent (via left Kan extension along ) to the category of colimit-preserving [strong-]magmal 𝒱{\mathscr{V}}-functors 𝒞^𝒳\widehat{{\mathscr{C}}}\to{\mathscr{X}}.

A procomonad Γ=(Γ,ε,δ)\Gamma=(\Gamma,\varepsilon,\delta) on a 𝒱{\mathscr{V}}-category 𝒳{\mathscr{X}} is magmal when Γ,ε,δ\Gamma,\varepsilon,\delta are all magmal.

Let Γ\Gamma be a magmal procomonad on the magmal 𝒱{\mathscr{V}}-category 𝒞{\mathscr{C}}. Then Γ¯\widebar{\Gamma} is a magmal comonad on 𝒞^\widehat{{\mathscr{C}}}. To obtain Γ¯2\widebar{\Gamma}_{2} we use the isomorphisms

Γ¯(F)Γ¯(F)UVXYFUFVΓ(X,U)Γ(Y,V)𝒞(,XY)\displaystyle\widebar{\Gamma}(F)\asterisk\widebar{\Gamma}(F^{\prime})\cong\int^{UVXY}FU\otimes F^{\prime}V\otimes\Gamma(X,U)\otimes\Gamma(Y,V)\otimes{\mathscr{C}}(-,X\otimes Y)

and

Γ¯(FF)UVFUFVΓ(,UV),\displaystyle\widebar{\Gamma}(F\asterisk F^{\prime})\cong\int^{UV}FU\otimes F^{\prime}V\otimes\Gamma(-,U\otimes V)\ ,

to transport UV1FU1FVΓ2;U,V\int^{UV}1_{FU}\otimes 1_{F^{\prime}V}\otimes\Gamma_{2;U,V}^{\ -} to obtain Γ¯2;F,F:Γ¯(F)Γ¯(F)Γ¯(FF)\widebar{\Gamma}_{2;F,F^{\prime}}:\widebar{\Gamma}(F)\asterisk\widebar{\Gamma}(F^{\prime})\to\widebar{\Gamma}(F\asterisk F^{\prime}). Using (2.3), we obtain a magmal structure on 𝒞^Γ¯\widehat{{\mathscr{C}}}^{\ \widebar{\Gamma}}. This restricts along the fully faithful 𝒱{\mathscr{V}}-functor Γ:𝒞Γ𝒞^Γ¯\!\text{\char 135\relax}\!^{\Gamma}:{\mathscr{C}}^{\Gamma}\to\widehat{{\mathscr{C}}}^{\ \widebar{\Gamma}} to a magmal structure on 𝒞Γ{\mathscr{C}}^{\Gamma} which is defined by

(X,I𝜉Γ(X,X))(Y,I𝜐Γ(Y,Y))\displaystyle\left(X,\ I\xrightarrow{\xi}\Gamma(X,X)\right)\otimes\left(Y,\ I\xrightarrow{\upsilon}\Gamma(Y,Y)\right)
:=\displaystyle:= (XY,IξυΓ(X,X)Γ(Y,Y)Γ2;XYXYΓ(XY,XY)).\displaystyle\left(X\otimes Y,\ I\xrightarrow{\xi\otimes\upsilon}\Gamma(X,X)\otimes\Gamma(Y,Y)\xrightarrow{\Gamma_{2;XY}^{XY}}\Gamma(X\otimes Y,X\otimes Y)\right)\ .
Definition 7.

Suppose S:𝒞𝒟S:{\mathscr{C}}\to{\mathscr{D}} is a 𝒱{\mathscr{V}}-functor between magmal 𝒱{\mathscr{V}}-categories. Suppose ZZ is left cloaked by YY in 𝒞{\mathscr{C}}. We say SS preserves the left cloaking of ZZ by YY when S[Y,Z]S[Y,Z] provides a left cloaking of SZSZ by SYSY. If this holds for all Y,ZY,Z then we say SS is strong left cloakal; by Proposition 1, it follows that SS is magmal, but it is not necessarily strong magmal.

Proposition 13.

For any magmal 𝒱{\mathscr{V}}-category 𝒞{\mathscr{C}}, the convolution magmal presheaf 𝒱{\mathscr{V}}-category 𝒞^\widehat{{\mathscr{C}}} is left cloakal. For H,K𝒞^H,K\in\widehat{{\mathscr{C}}}, the left cloaking of KK by HH is given by

[H,K]U=V[HV,K(UV)]𝒞^(H,K(U)).[H,K]U=\int_{V}[HV,K(U\otimes V)]\cong\ \widehat{{\mathscr{C}}}(H,K(U\otimes-))\ .

In particular, [Y,Z]X𝒞(XY,Z)[\!\text{\char 135\relax}\!Y,\!\text{\char 135\relax}\!Z]X\cong{\mathscr{C}}(X\otimes Y,Z) so that the Yoneda embedding :𝒞𝒞^\!\text{\char 135\relax}\!:{\mathscr{C}}\to\widehat{{\mathscr{C}}} preserves any left cloakings 𝒞{\mathscr{C}} admits.

Proof.

This follows mutatis mutandis the proof by Day [8] in the monoidal case. ∎

Definition 8.

The fusion morphisms for magmal procomonad Γ\Gamma are the Wood fusion morphisms for the magmal comonad Γ¯\widebar{\Gamma} restricted to representables.

Let us make this definition more explicit. According to Definition 3, Wood fusion for Γ¯\widebar{\Gamma} is the composite

wρ,K:=Γ¯[H,K]Γ¯2[Γ¯H,Γ¯K][ρ,1][H,Γ¯K],\displaystyle\mathrm{w}_{\rho,K}:=\widebar{\Gamma}[H,K]\xrightarrow{\widebar{\Gamma}^{\ell}_{2}}[\widebar{\Gamma}H,\widebar{\Gamma}K]\xrightarrow{[\rho,1]}[H,\widebar{\Gamma}K]\ , (5.39)

for (H,ρ)𝒞^Γ¯(H,\rho)\in\widehat{{\mathscr{C}}}^{\ \widebar{\Gamma}} and K𝒞^K\in\widehat{{\mathscr{C}}}. For X,Z𝒞X,Z\in{\mathscr{C}} and (Y,υ)𝒞Γ(Y,\upsilon)\in{\mathscr{C}}^{\Gamma}, put K=ZK=\!\text{\char 135\relax}\!Z, H=YH=\!\text{\char 135\relax}\!Y, and ρ=υ\rho=\upsilon^{-}, then we write wX,υ,Z\mathrm{w}_{X,\upsilon,Z} instead of (wρ,K)X(\mathrm{w}_{\rho,K})_{X}. Using Yoneda, we obtain

(Γ¯Y)XΓ(X,Y),(\widebar{\Gamma}\!\text{\char 135\relax}\!Y)X\cong\Gamma(X,Y)\ ,
(Γ¯[Y,Z])XU𝒞(UY,Z)Γ(X,U),(\widebar{\Gamma}[\!\text{\char 135\relax}\!Y,\!\text{\char 135\relax}\!Z])X\cong\int^{U}{\mathscr{C}}(U\otimes Y,Z)\otimes\Gamma(X,U)\ ,
[Γ¯Y,Γ¯Z]X=𝒞^(Γ(,Y),Γ(X,Z)),[\widebar{\Gamma}\!\text{\char 135\relax}\!Y,\widebar{\Gamma}\!\text{\char 135\relax}\!Z]X=\widehat{{\mathscr{C}}}(\Gamma(-,Y),\Gamma(X\otimes-,Z))\ ,
[Y,Γ¯Z]X=Γ(XY,Z).[\!\text{\char 135\relax}\!Y,\widebar{\Gamma}\!\text{\char 135\relax}\!Z]X=\Gamma(X\otimes Y,Z)\ .
Proposition 14.

Let Γ\Gamma be a magmal procomonad on the magmal 𝒱{\mathscr{V}}-category 𝒞{\mathscr{C}}. Suppose (Y,I𝜐Γ(Y,Y))𝒞Γ(Y,I\xrightarrow{\upsilon}\Gamma(Y,Y))\in{\mathscr{C}}^{\Gamma}. The diagram (5.40) commutes.

U𝒞(UY,Z)Γ(X,U)wXυZU11υΓ(XY,Z)U𝒞(UY,Z)Γ(X,U)Γ(Y,Y)UinYUV𝒞(UV,Z)Γ(X,U)Γ(Y,V)Γ2;ZXY\displaystyle\begin{aligned} \lx@xy@svg{\hbox{\raise 0.0pt\hbox{\kern 64.71925pt\hbox{\ignorespaces\ignorespaces\ignorespaces\hbox{\vtop{\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr&\\&\crcr}}}\ignorespaces{\hbox{\kern-46.68588pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\int^{U}{\mathscr{C}}(U\otimes Y,Z)\otimes\Gamma(X,U)\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 80.19775pt\raise 4.75221pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-0.65889pt\hbox{$\scriptstyle{\mathrm{w}_{X\upsilon Z}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 130.79848pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern-19.49268pt\raise-16.99998pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.94667pt\hbox{$\scriptstyle{\int^{U}11\upsilon}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 0.0pt\raise-28.99998pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 130.79848pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\Gamma(X\otimes Y,Z)}$}}}}}}}{\hbox{\kern-64.71925pt\raise-39.08621pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\int^{U}{\mathscr{C}}(U\otimes Y,Z)\otimes\Gamma(X,U)\otimes\Gamma(Y,Y)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 67.66792pt\raise-45.12398pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.94444pt\hbox{$\scriptstyle{\int^{U}\mathrm{in}_{Y}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 88.71925pt\raise-39.08621pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 88.71925pt\raise-39.08621pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\int^{UV}{\mathscr{C}}(U\otimes V,Z)\otimes\Gamma(X,U)\otimes\Gamma(Y,V)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 155.26517pt\raise-17.0pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.60222pt\hbox{$\scriptstyle{\Gamma_{2;Z}^{XY}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 155.26517pt\raise-5.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces}}}}\ignorespaces\end{aligned} (5.40)
Proof.

Replace the end vertex Γ(XY,Z)\Gamma(X\otimes Y,Z) of the diagram by the Yoneda isomorphic 𝒞^(𝒞(,Y),Γ(X,Z))\widehat{{\mathscr{C}}}({\mathscr{C}}(-,Y),\Gamma(X\otimes-,Z)). The morphism wXυZ\mathrm{w}_{X\upsilon Z} transports to the composite

U𝒞(UY,Z)Γ(X,U)Γ¯2𝒞^(Γ(,Y),Γ(X,Z))𝒞^(υ,1)𝒞^(𝒞(Y),Γ(X,Z)).\int^{U}{\mathscr{C}}(U\otimes Y,Z)\otimes\Gamma(X,U)\xrightarrow{\widebar{\Gamma}^{\ell}_{2}}\widehat{{\mathscr{C}}}(\Gamma(-,Y),\Gamma(X\otimes-,Z))\xrightarrow{\widehat{{\mathscr{C}}}(\upsilon^{-},1)}\widehat{{\mathscr{C}}}({\mathscr{C}}(-Y),\Gamma(X\otimes-,Z))\ .

It suffices to show that the two paths around (5.40) agree after we precompose the diagram with each injection

𝒞(UY,Z)Γ(X,U)inUU𝒞(UY,Z)Γ(X,U){\mathscr{C}}(U\otimes Y,Z)\otimes\Gamma(X,U)\xrightarrow{\mathrm{in}_{U}}\int^{U}{\mathscr{C}}(U\otimes Y,Z)\otimes\Gamma(X,U)

and postcompose with each projection

𝒞^(𝒞(,Y),Γ(X,Z))prV[𝒞(V,Y),Γ(XV,Z)].\widehat{{\mathscr{C}}}({\mathscr{C}}(-,Y),\Gamma(X\otimes-,Z))\xrightarrow{\mathrm{pr}_{V}}[{\mathscr{C}}(V,Y),\Gamma(X\otimes V,Z)]\ .

Now we need to show that two paths

𝒞(UY,Z)Γ(X,U)[𝒞(V,Y),Γ(XV,Z)]{\mathscr{C}}(U\otimes Y,Z)\otimes\Gamma(X,U)\to[{\mathscr{C}}(V,Y),\Gamma(X\otimes V,Z)]

are equal. By Yoneda, it suffices to check them equal after taking Z=UYZ=U\otimes Y and evaluating at the identity (that is, on precomposing with

jUY1Γ(X,U):Γ(X,U)𝒞(UY,UY)Γ(X,U)).j_{U\otimes Y}\otimes 1_{\Gamma(X,U)}:\Gamma(X,U)\to{\mathscr{C}}(U\otimes Y,U\otimes Y)\otimes\Gamma(X,U)\ )\ .

Two commutative diagrams then show that both paths reduce to the morphism

Γ(X,U)[𝒞(V,Y),Γ(XV,UY)]\Gamma(X,U)\longrightarrow[{\mathscr{C}}(V,Y),\Gamma(X\otimes V,U\otimes Y)]

corresponding to

Γ(X,U)𝒞(V,Y)1υVΓ(X,U)Γ(V,Y)Γ2Γ(XV,UY)\Gamma(X,U)\otimes{\mathscr{C}}(V,Y)\xrightarrow{1\otimes\upsilon^{V}}\Gamma(X,U)\otimes\Gamma(V,Y)\xrightarrow{\Gamma_{2}}\Gamma(X\otimes V,U\otimes Y)

under the closed-monoidal adjunction 𝒞(V,Y)[𝒞(V,Y),]-\otimes{\mathscr{C}}(V,Y)\dashv[{\mathscr{C}}(V,Y),-] for 𝒱{\mathscr{V}}. ∎

Corollary 15.

Suppose ZZ is left cloaked by YY in the magmal 𝒱{\mathscr{V}}-category 𝒞{\mathscr{C}} and (Y,υ)𝒞Γ(Y,\upsilon)\in{\mathscr{C}}^{\Gamma}. Then the fusion morphism (5.40) becomes the composite (5.41).

Γ(X,[Y,Z])wXυZ1υΓ(XY,Z)Γ(X,[Y,Z])Γ(Y,Y)Γ2Γ(XY,[Y,Z]Y)Γ(1,ev)\displaystyle\begin{aligned} \lx@xy@svg{\hbox{\raise 0.0pt\hbox{\kern 46.18752pt\hbox{\ignorespaces\ignorespaces\ignorespaces\hbox{\vtop{\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr&\\&\crcr}}}\ignorespaces{\hbox{\kern-25.9pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\Gamma(X,[Y,Z])\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 47.04378pt\raise 4.97125pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-0.74126pt\hbox{$\scriptstyle{\mathrm{w}_{X\upsilon Z}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 86.66252pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern-17.45378pt\raise-17.25pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.7675pt\hbox{$\scriptstyle{1\otimes\upsilon}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 0.0pt\raise-29.25pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 86.66252pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\Gamma(X\otimes Y,Z)}$}}}}}}}{\hbox{\kern-46.18752pt\raise-39.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\Gamma(X,[Y,Z])\otimes\Gamma(Y,Y)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 52.31877pt\raise-44.7325pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.5725pt\hbox{$\scriptstyle{\Gamma_{2}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 70.18752pt\raise-39.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 70.18752pt\raise-39.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\Gamma(X\otimes Y,[Y,Z]\otimes Y)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 113.81253pt\raise-17.25pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.575pt\hbox{$\scriptstyle{\Gamma(1,\mathrm{ev})}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 113.81253pt\raise-5.25pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces}}}}\ignorespaces\end{aligned} (5.41)
Proof.

We leave this as an exercise for the reader. ∎

Definition 9.

We call Γ\Gamma Hopf at (Y,υ)(Y,\upsilon) when wXυZ\mathrm{w}_{X\upsilon Z} is invertible for all X,ZX,Z.

Lemma 16.

Suppose (Y,υ)𝒞Γ(Y,\upsilon)\in{\mathscr{C}}^{\Gamma} is such that [Y,Z]𝒞[Y,Z]\in{\mathscr{C}} exists for all Z𝒞Z\in{\mathscr{C}}. Then Γ\Gamma is Hopf at (Y,υ)(Y,\upsilon) if and only if Γ¯\widebar{\Gamma} is Hopf at Γ(Y,υ)\!\text{\char 135\relax}\!^{\Gamma}(Y,\upsilon).

Proof.

“If” is clear since wXυZ\mathrm{w}_{X\upsilon Z} is defined as a special case of Wood fusion for Γ¯\widebar{\Gamma}. Conversely, suppose wXυZ:Γ(X,[Y,Z])Γ(XY,Z)\mathrm{w}_{X\upsilon Z}:\Gamma(X,[Y,Z])\cong\Gamma(X\otimes Y,Z) for all X,Z𝒞X,Z\in{\mathscr{C}}. For K𝒞^K\in\widehat{{\mathscr{C}}}, one easily calculates that [Y,K]K(Y)[\!\text{\char 135\relax}\!Y,K]\cong K(-\otimes Y), so

Γ¯[Y,K]\displaystyle\widebar{\Gamma}[\!\text{\char 135\relax}\!Y,K] \displaystyle\cong UK(UY)Γ(,U)\displaystyle\int^{U}K(U\otimes Y)\otimes\Gamma(-,U)
\displaystyle\cong UZ𝒞(UY,Z)KZΓ(,U)\displaystyle\int^{UZ}{\mathscr{C}}(U\otimes Y,Z)\otimes KZ\otimes\Gamma(-,U)
\displaystyle\cong UZ𝒞(U,[Y,Z])KZΓ(,U)\displaystyle\int^{UZ}{\mathscr{C}}(U,[Y,Z])\otimes KZ\otimes\Gamma(-,U)
\displaystyle\cong ZKZΓ(,[Y,Z])\displaystyle\int^{Z}KZ\otimes\Gamma(-,[Y,Z])
\displaystyle\cong ZKZΓ(Y,Z)\displaystyle\int^{Z}KZ\otimes\Gamma(-\otimes Y,Z)
\displaystyle\cong Γ¯(K)(Y)\displaystyle\widebar{\Gamma}(K)(-\otimes Y)
\displaystyle\cong [Y,Γ¯(K)],\displaystyle[\!\text{\char 135\relax}\!Y,\widebar{\Gamma}(K)]\ ,

where the fifth isomorphism uses the invertible Γ\Gamma-fusion morphisms wυZ\mathrm{w}_{-\upsilon Z}. The composite is (5.39) for H=YH=\!\text{\char 135\relax}\!Y and ρ=υ\rho=\upsilon^{-}. ∎

Suppose ZZ is left cloaked by YY in the magmal 𝒱{\mathscr{V}}-category 𝒞{\mathscr{C}} and (Y,υ),(Z,ζ)𝒞Γ(Y,\upsilon),(Z,\zeta)\in{\mathscr{C}}^{\Gamma}. Suppose Γ\Gamma is Hopf at (Y,υ)(Y,\upsilon). Then we have ([Y,Z],ω)𝒞Γ([Y,Z],\omega)\in{\mathscr{C}}^{\Gamma} defined by commutativity of (5.42).

IωζΓ([Y,Z],[Y,Z])w[Y,Z]υZΓ(Z,Z)Γ(ev,1)Γ([Y,Z]Y,Z)\displaystyle\begin{aligned} \lx@xy@svg{\hbox{\raise 0.0pt\hbox{\kern 17.84999pt\hbox{\ignorespaces\ignorespaces\ignorespaces\hbox{\vtop{\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr&\\&\crcr}}}\ignorespaces{\hbox{\kern-5.33124pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{I\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 19.1299pt\raise 4.35625pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.35625pt\hbox{$\scriptstyle{\omega}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 42.85pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern-8.75626pt\raise-16.125pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.57501pt\hbox{$\scriptstyle{\zeta}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 0.0pt\raise-29.25pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 42.85pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\Gamma([Y,Z],[Y,Z])\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 75.675pt\raise-17.25pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-0.23125pt\hbox{$\scriptstyle{\mathrm{w}_{[Y,Z]\upsilon Z}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 75.675pt\raise-29.25pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern-17.84999pt\raise-39.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\Gamma(Z,Z)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 16.91873pt\raise-45.15pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.575pt\hbox{$\scriptstyle{\Gamma(\mathrm{ev},1)}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 41.84999pt\raise-39.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 41.84999pt\raise-39.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\Gamma([Y,Z]\otimes Y,Z)}$}}}}}}}\ignorespaces}}}}\ignorespaces\end{aligned} (5.42)

Via Example 2, we obtain our unification of [6] and [39] as an application of Proposition 8 with G=Γ¯G=\widebar{\Gamma}, using Lemmas 6 and 16.

Theorem 17.

Let Γ{\Gamma} be a magmal procomonad on a magmal 𝒱{\mathscr{V}}-category 𝒞{\mathscr{C}}. Suppose (Y,υ)𝒞Γ(Y,\upsilon)\in{\mathscr{C}}^{\Gamma} is such that [Y,Z]𝒞[Y,Z]\in{\mathscr{C}} exists for all Z𝒞Z\in{\mathscr{C}}. Then Γ\Gamma is Hopf at (Y,υ)(Y,\upsilon) if and only if und:𝒞Γ𝒞\mathrm{und}:{\mathscr{C}}^{\Gamma}\to{\mathscr{C}} creates all cloaks by (Y,υ)(Y,\upsilon). In this case, for any (Z,ζ)𝒞G(Z,\zeta)\in{\mathscr{C}}^{{G}},

[(Y,υ),(Z,ζ)]([Y,Z],ω),[(Y,\upsilon),(Z,\zeta)]\cong([Y,Z],\omega)\ ,

where ω\omega is defined by (5.42).

Remark 18.

In general the 𝒱{\mathscr{V}}-functor und:𝒞Γ𝒞\mathrm{und}:{\mathscr{C}}^{\Gamma}\to{\mathscr{C}} has neither left nor right adjoint. Example 2 is where it does.

Appendix A Lifting adjunctions and doctrinal adjunction

After my talk on Wood fusion in the Australian Category Seminar on 8 February 2023, Steve Lack and Richard Garner suggested that the results I presented were obtainable from adjoint lifting theorems and that I should look at Peter Johnstone’s paper [15]. This section addresses that suggestion.

Richard Wood [39] already referred to William Keigher [16]. Johnstone states he learned of [16] after writing [15].

We revisit the Adjoint Triangle Theorem of Eduardo Dubuc [12] in Appendix B. Now we will see that other adjoint lifting results can be viewed as consequences of doctrinal adjunction (in the sense of Max Kelly in [19]) involving examples as in Theorem 9 of [30] and Theorem 1 of [31].

Let Mnd\mathrm{Mnd}\mathfrak{C} denote the bicategory of monads in a bicategory \mathfrak{C} essentially as defined in [30]. An object is a pair (A,s)(A,s) consisting of an object AA\in\mathfrak{C} and a monoid ss (called a monad on AA) in the endomonoidal category (A,A)\mathfrak{C}(A,A). The unit and multiplication of ss will be denoted by η:1As\eta:1_{A}\Rightarrow s and μ:sss\mu:s\circ s\Rightarrow s. A morphism (u,ϕ):(A,s)(B,t)(u,\phi):(A,s)\to(B,t) (called a monad morphism) consists of a morphism u:ABu:A\to B equipped with a 2-morphism

A\textstyle{A\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}u\scriptstyle{u}   s\scriptstyle{s}A\textstyle{A\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}u\scriptstyle{u}   ϕ\scriptstyle{\phi}B\textstyle{B\ignorespaces\ignorespaces\ignorespaces\ignorespaces}t\scriptstyle{t}B\textstyle{B} (A.43)

in \mathfrak{C} compatible with η\eta, μ\mu in the obvious way. A 2-morphism σ:(u,ϕ)(v,ψ):(A,s)(B,t)\sigma:(u,\phi)\Rightarrow(v,\psi):(A,s)\to(B,t) is a 2-morphism σ:uv\sigma:u\Rightarrow v in \mathfrak{C} such that σsϕ=ψtσ\sigma s\circ\phi=\psi\circ t\sigma. Composition is performed by pasting. There is a forgetful pseudofunctor

Mnd,(A,s)A.\mathrm{Mnd}\mathfrak{C}\to\mathfrak{C}\ ,\ (A,s)\mapsto A\ . (A.44)

A morphism in Mndop=(Mndop)op\mathrm{Mnd}^{\mathrm{op}}\mathfrak{C}=(\mathrm{Mnd}\mathfrak{C}^{\mathrm{op}})^{\mathrm{op}} is called a monad opmorphism: the 2-morphism in (A.43) is reversed. A morphism in Mndco=(Mndco)co\mathrm{Mnd}^{\mathrm{co}}\mathfrak{C}=(\mathrm{Mnd}\mathfrak{C}^{\mathrm{co}})^{\mathrm{co}} is called a comonad morphism. A morphism in Mndcoop=(Mndcoop)coop\mathrm{Mnd}^{\mathrm{coop}}\mathfrak{C}=(\mathrm{Mnd}\mathfrak{C}^{\mathrm{coop}})^{\mathrm{coop}} is called a comonad opmorphism.

Example 3.
  • 1.

    Let TT be an opmagmal monad on the magmal 𝒱{\mathscr{V}}-category 𝒞{\mathscr{C}} as in Section 4. For (X,α)𝒞T(X,\alpha)\in{\mathscr{C}}^{T}, TT-fusion supplies a monad morphism

    𝒞\textstyle{{\mathscr{C}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}X\scriptstyle{-\otimes X}   T\scriptstyle{T}𝒞\textstyle{{\mathscr{C}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}X\scriptstyle{-\otimes X}   v,α\scriptstyle{v_{-,\alpha}}𝒞\textstyle{{\mathscr{C}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}T\scriptstyle{T}𝒞.\textstyle{{\mathscr{C}}\ .}
  • 2.

    Let GG be a magmal comonad on the magmal 𝒱{\mathscr{V}}-category 𝒞{\mathscr{C}} as in Definition 1. For (Y,υ)𝒞G(Y,\upsilon)\in{\mathscr{C}}^{G}, Wood fusion supplies a comonad opmorphism

    𝒞\textstyle{{\mathscr{C}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}[Y,]\scriptstyle{[Y,-]}   G\scriptstyle{G}𝒞\textstyle{{\mathscr{C}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}[Y,]\scriptstyle{[Y,-]}   w,υ\scriptstyle{w_{-,\upsilon}}𝒞\textstyle{{\mathscr{C}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}G\scriptstyle{G}𝒞.\textstyle{{\mathscr{C}}\ .}

Part of doctrinal adjunction is the fact that, if (u,ϕ):(A,s)(B,t)(u,\phi):(A,s)\to(B,t) is a monad morphism and fuf\dashv u is an adjunction, then (f,ϕ^):(B,t)(A,s)(f,\hat{\phi}):(B,t)\to(A,s) is a monad opmorphism where ϕ^:ftsf\hat{\phi}:ft\Rightarrow sf is the mate of ϕ:tuus\phi:tu\Rightarrow us. The other part is obtained by examining adjunctions

(f,θ)(u,ϕ):(A,s)(B,t)(f,\theta)\dashv(u,\phi):(A,s)\to(B,t) (A.45)

in Mnd\mathrm{Mnd}\mathfrak{C}. Since pseudofunctors preserve adjunctions, we use (A.44) to deduce that fuf\dashv u in \mathfrak{C} and that the counit α:fu1A\alpha:fu\Rightarrow 1_{A} and unit β:1uf\beta:1\Rightarrow uf must be 2-morphisms in Mnd\mathrm{Mnd}\mathfrak{C}. Using only the first of these, a little diagram shows that θ\theta has inverse the mate

ϕ^:ftftβftuffϕffusfαsfsf\hat{\phi}:ft\xrightarrow{ft\beta}ftuf\xrightarrow{f\phi f}fusf\xrightarrow{\alpha sf}sf (A.46)

of ϕ\phi. Yet, if this mate of ϕ\phi has an inverse at all, one sees that both α\alpha and β\beta are 2-morphisms in Mnd\mathrm{Mnd}\mathfrak{C}. This proves:

Proposition 19.

A morphism (u,ϕ):(A,s)(B,t)(u,\phi):(A,s)\to(B,t) has a left adjoint in Mnd\mathrm{Mnd}\mathfrak{C} if and only if u:ABu:A\to B has a left adjoint and the mate (A.46) of ϕ\phi is invertible.

Let Fun\mathrm{Fun}\mathfrak{C} denote the lax morphism bicategory of \mathfrak{C}. An object is a morphism X𝑥AX\xrightarrow{x}A in \mathfrak{C}. A morphism (u,υ,u¯):xy(u,\upsilon,\bar{u}):x\to y is a diagram

X\textstyle{X\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}u¯\scriptstyle{\bar{u}}   x\scriptstyle{x}A\textstyle{A\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}u\scriptstyle{u}   υ\scriptstyle{\upsilon}Y\textstyle{Y\ignorespaces\ignorespaces\ignorespaces\ignorespaces}y\scriptstyle{y}B\textstyle{B} (A.47)

in \mathfrak{C}. A 2-morphism (σ,σ¯):(u,υ,u¯)(v,ω,v¯):xy(\sigma,\bar{\sigma}):(u,\upsilon,\bar{u})\Rightarrow(v,\omega,\bar{v}):x\to y is a pair of 2-morphisms in \mathfrak{C} satisfying σxυ=ωyσ¯\sigma x\circ\upsilon=\omega\circ y\bar{\sigma}. A morphism (u,υ,u¯)(u,\upsilon,\bar{u}) is called strong when υ\upsilon is invertible. Let sFun\mathrm{sFun}\mathfrak{C} denote the sub-2-category of Fun\mathrm{Fun}\mathfrak{C} obtained by restricting to the strong morphisms.

Let us look at adjunctions (f,τ,f¯)(u,υ,u¯)(f,\tau,\bar{f})\dashv(u,\upsilon,\bar{u}) in Fun\mathrm{Fun}\mathfrak{C}. As before, because of the existence of forgetful pseudofunctors, we must have adjunctions fuf\dashv u and f¯u¯\bar{f}\dashv\bar{u} in \mathfrak{C} such that the counits and units form 2-morphisms (α,α¯)(\alpha,\bar{\alpha}) and (β,β¯)(\beta,\bar{\beta}) in Fun\mathrm{Fun}\mathfrak{C}. The first of these yields that the mate υ^\hat{\upsilon} of υ\upsilon is a left inverse for τ\tau while the second yields that υ^\hat{\upsilon} is a right inverse for τ\tau. On the other hand, any inverse for υ^\hat{\upsilon} does render (α,α¯)(\alpha,\bar{\alpha}) and (β,β¯)(\beta,\bar{\beta}) 2-morphisms.

Proposition 20.

A morphism (u,υ,u¯):xy(u,\upsilon,\bar{u}):x\to y has a left adjoint in Fun\mathrm{Fun}\mathfrak{C} if and only if both u:ABu:A\to B and u¯:XY\bar{u}:X\to Y have left adjoints and the mate υ^\hat{\upsilon} of υ\upsilon is invertible. Any left adjoint in Fun\mathrm{Fun}\mathfrak{C} is in sFun\mathrm{sFun}\mathfrak{C}. Any (f,τ,f¯)(f,\tau,\bar{f}) in sFun\mathrm{sFun}\mathfrak{C} has a right adjoint in Fun\mathrm{Fun}\mathfrak{C} if and only if ff and f¯\bar{f} have right adjoints in \mathfrak{C}.

Now suppose \mathfrak{C} admits the construction of algebras in the bicategorical sense: for each monad (A,s)(A,s), there is an Eilenberg-Moore ss-algebra xs:AsAx_{s}:A^{s}\to A with action ξs:sxsxs\xi_{s}:sx_{s}\to x_{s} for which the functor

(X,As)(X,A)(1X,s),(XAs)(xsh,sxshξshxsh)\displaystyle\mathfrak{C}(X,A^{s})\longrightarrow\mathfrak{C}(X,A)^{\mathfrak{C}(1_{X},s)}\ ,\ (X\xrightarrow{h}A^{s})\mapsto(x_{s}h,sx_{s}h\xrightarrow{\xi_{s}h}x_{s}h)

is an equivalence for all XX\in\mathfrak{C}. Then we have a pseudofunctor

EM:MndsFun\mathrm{EM}:\mathrm{Mnd}\mathfrak{C}\to\mathrm{sFun}\mathfrak{C} (A.48)

defined as follows. For each monad (A,s)(A,s), we put EM(A,s)=xs\mathrm{EM}(A,s)=x_{s}. For each monad morphism (u,ϕ):(A,s)(B,t)(u,\phi):(A,s)\to(B,t), we have a tt-algebra

tuxsυxsusxsuξsuxs,\displaystyle tux_{s}\xrightarrow{\upsilon x_{s}}usx_{s}\xrightarrow{u\xi_{s}}ux_{s}\ , (A.49)

so there exist (uniquely up to isomorphism) a morphism u¯:AsAt\bar{u}:A^{s}\to A^{t} and an isomorphism xtu¯𝜐uxsx_{t}\bar{u}\xrightarrow{\upsilon}ux_{s} such that υ\upsilon becomes a tt-algebra isomorphism from (xtu¯,ξtu¯)(x_{t}\bar{u},\xi_{t}\bar{u}) to the tt-algebra (A.49). We put EM(u,ϕ)=(u,υ,u¯):xsxt\mathrm{EM}(u,\phi)=(u,\upsilon,\bar{u}):x_{s}\to x_{t}; it is a strong morphism. For a 2-morphism σ:(u,ϕ)(v,ψ):(A,s)(B,t)\sigma:(u,\phi)\Rightarrow(v,\psi):(A,s)\to(B,t), there is a unique 2-morphism σ¯:u¯v¯\bar{\sigma}:\bar{u}\Rightarrow\bar{v} such that (σ,σ¯):(u,υ,u¯)(v,ω,v¯):xsxt(\sigma,\bar{\sigma}):(u,\upsilon,\bar{u})\Rightarrow(v,\omega,\bar{v}):x_{s}\to x_{t} is a 2-morphism in Fun\mathrm{Fun}\mathfrak{C}; we put EMσ=(σ,σ¯)\mathrm{EM}\sigma=(\sigma,\bar{\sigma}).

Here is a restatement of an observation of Appelgate [1]; also see Lemma 1 of [15].

Proposition 21.

The pseudofunctor (A.48) is an equivalence on homcategories.

Proof.

Take (u,υ,u¯):xsxt(u,\upsilon,\bar{u}):x_{s}\to x_{t} in sFun\mathrm{sFun}\mathfrak{C} and let τ:ytuu¯ys\tau:y_{t}u\to\bar{u}y_{s} be the mate of υ1:uxsxtu¯\upsilon^{-1}:ux_{s}\to x_{t}\bar{u} under the adjunctions ysxsy_{s}\dashv x_{s} and ytxty_{t}\dashv x_{t}. Now put

ϕ=(tuxtytuxtτxtu¯ysυysuxsysus).\displaystyle\phi=(tu\cong x_{t}y_{t}u\xrightarrow{x_{t}\tau}x_{t}\bar{u}y_{s}\xrightarrow{\upsilon y_{s}}ux_{s}y_{s}\cong us)\ . (A.50)

Recalling how the unit and multiplication of the monads are obtained from the unit and counit of the generating adjunctions, we routinely check that (u,ϕ):(A,s)(B,t)(u,\phi):(A,s)\to(B,t) is a morphism of Mnd\mathrm{Mnd}\mathfrak{C} (a string diagram proof is attractive) and that EM(u,ϕ)(u,υ,u¯)\mathrm{EM}(u,\phi)\cong(u,\upsilon,\bar{u}). From the definition of EM\mathrm{EM} on 2-morphisms we see, for each (σ,σ¯):EM(u,ϕ)EM(v,ψ):xsxt(\sigma,\bar{\sigma}):\mathrm{EM}(u,\phi)\Rightarrow\mathrm{EM}(v,\psi):x_{s}\to x_{t}, that σ:(u,ϕ)(v,ψ)\sigma:(u,\phi)\Rightarrow(v,\psi) is the unique 2-morphism of Mnd\mathrm{Mnd}\mathfrak{C} with EMσ=(σ,σ¯)\mathrm{EM}\sigma=(\sigma,\bar{\sigma}). ∎

Remark 22.

In the above proof, notice that, since composing with xtx_{t} is conservative, ϕ\phi is invertible if and only if τ\tau is. This is Lemma 3 of Johnstone [15].

Corollary 23.

A monad morphism (u,ϕ):(A,s)(B,t)(u,\phi):(A,s)\to(B,t) has a left adjoint in Mnd\mathrm{Mnd}\mathfrak{C} if and only if EM(u,ϕ)\mathrm{EM}(u,\phi) has a left adjoint in Fun\mathrm{Fun}\mathfrak{C}.

The second sentence of Corollary 24 is Theorem 4 of [15] and the dual of Corollary 2.3 of [16]. Furthermore, by way of Example 3, it relates to Theorem 3.6 of [6] and to our Proposition 8.

Corollary 24.

A monad morphism (u,ϕ):(A,s)(B,t)(u,\phi):(A,s)\to(B,t) has a right adjoint in Mnd\mathrm{Mnd}\mathfrak{C} if and only if EM(u,ϕ)\mathrm{EM}(u,\phi) has a right adjoint (r,ρ,r¯)(r,\rho,\bar{r}) in sFun\mathrm{sFun}\mathfrak{C}. In particular, if uu has a right adjoint rr and ϕ\phi is invertible then u¯\bar{u} has a right adjoint r¯\bar{r} with xsr¯rxtx_{s}\bar{r}\cong rx_{t}.

Appendix B Liftings

We work in a bicategory \mathfrak{C}. We use the notation

𝒜\textstyle{{\mathscr{A}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}S\scriptstyle{S}𝒦\textstyle{{\mathscr{K}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}rif(S,B)\scriptstyle{\mathrm{rif}(S,B)}B\scriptstyle{B}εBS\scriptstyle{\varepsilon^{S}_{B}}\textstyle{\mathscr{B}} (B.51)

to depict a right lifting rif(S,B)\mathrm{rif}(S,B) (see [37]) of the 1-morphism BB through the 1-morphism SS. The defining property is that pasting with (B.51) gives a bijection

(𝒦,𝒜)(H,rif(S,B))(𝒦,)(SH,B).\mathfrak{C}({\mathscr{K}},{\mathscr{A}})(H,\mathrm{rif}(S,B))\cong\mathfrak{C}({\mathscr{K}},{\mathscr{B}})(SH,B)\ .

(This concept is a dual of Kan extension.)

The right lifting is said to be respected by the 1-morphism 𝒟𝐾𝒦{\mathscr{D}}\xrightarrow{K}{\mathscr{K}} when εBSK\varepsilon^{S}_{B}\cdot K exhibits rif(S,B)K\mathrm{rif}(S,B)\cdot K as a right lifting of BKB\cdot K through SS. If SS has a right adjoint TT then rif(S,B)TB\mathrm{rif}(S,B)\cong T\cdot B and so is respected by all 1-morphisms KK. On the other hand, if rif(S,1)\mathrm{rif}(S,1_{{\mathscr{B}}}) exists and is respected by SS then Srif(S,1)S\dashv\mathrm{rif}(S,1_{{\mathscr{B}}}).

If B𝛼CB\xrightarrow{\alpha}C is a 2-morphism and BB and CC have right liftings through SS, we write rif(S,B)rif(S,α)rif(S,C)\mathrm{rif}(S,B)\xrightarrow{\mathrm{rif}(S,\alpha)}\mathrm{rif}(S,C) for the 2-morphism defined by

(Srif(S,B)Srif(S,α)Srif(S,C)εCSC)=(Srif(S,B)εBSB𝛼C).\displaystyle\left(S\mathrm{rif}(S,B)\xrightarrow{S\mathrm{rif}(S,\alpha)}S\mathrm{rif}(S,C)\xrightarrow{\varepsilon_{C}^{S}}C\right)=\left(S\mathrm{rif}(S,B)\xrightarrow{\varepsilon_{B}^{S}}B\xrightarrow{\alpha}C\right)\ .

As with all cartesian morphisms, we have this simple property.

Proposition 25.

Suppose 𝒜𝑆𝑈𝒞𝐶𝒦{\mathscr{A}}\xrightarrow{S}{\mathscr{B}}\xrightarrow{U}{\mathscr{C}}\xleftarrow{C}{\mathscr{K}} are 1-morphisms such that rif(U,C):𝒦\mathrm{rif}(U,C):{\mathscr{K}}\to{\mathscr{B}} exists. Then

rif(S,rif(U,C))rif(US,C)\displaystyle\mathrm{rif}(S,\mathrm{rif}(U,C))\cong\mathrm{rif}(US,C)

in the sense that one side exists if and only if the other does and εBUS\varepsilon^{US}_{B} is the pasted composite of εrif(U,B)S\varepsilon^{S}_{\mathrm{rif}(U,B)} and εBU\varepsilon^{U}_{B}.

Proposition 26.

Suppose 𝒜𝑆𝑀𝐵𝒦{\mathscr{A}}\xrightarrow{S}{\mathscr{B}}\xrightarrow{M}{\mathscr{B}}\xleftarrow{B}{\mathscr{K}} are 1-morphisms. Suppose 1𝜂M1_{{\mathscr{B}}}\xrightarrow{\eta}M is a 2-morphism with ηB\eta B a regular monomorphism in (𝒦,)\mathfrak{C}({\mathscr{K}},{\mathscr{B}}) and ηC\eta C a monomorphism in (𝒦,)\mathfrak{C}({\mathscr{K}},{\mathscr{B}}) for all C(𝒦,)C\in\mathfrak{C}({\mathscr{K}},{\mathscr{B}}).

  • (i)

    For all B(𝒦,)B\in\mathfrak{C}({\mathscr{K}},{\mathscr{B}}),

    (B.54)

    is an equalizer in (𝒦,)\mathfrak{C}({\mathscr{K}},{\mathscr{B}}).

  • (ii)

    Suppose right liftings rif(S,MB)\mathrm{rif}(S,MB) and rif(S,M2B)\mathrm{rif}(S,M^{2}B) exist and are respected by 𝒟𝐾𝒦{\mathscr{D}}\xrightarrow{K}{\mathscr{K}}. The existence of a right lifting rif(S,B)\mathrm{rif}(S,B) respected by 𝒟𝐾𝒦{\mathscr{D}}\xrightarrow{K}{\mathscr{K}} is equivalent to the existence of an equalizer

    (B.57)

    preserved by (𝒦,𝒜)(K,1𝒜)(𝒟,𝒜)\mathfrak{C}({\mathscr{K}},{\mathscr{A}})\xrightarrow{\mathfrak{C}(K,1_{{\mathscr{A}}})}\mathfrak{C}({\mathscr{D}},{\mathscr{A}}).

  • (iii)

    In the situation of (ii), there is an isomorphism ω:Erif(S,B)\omega:E\cong\mathrm{rif}(S,B) whose composite with rif(S,ηB)\mathrm{rif}(S,\eta B) is κ\kappa.

Proof.

For (i), we know that ηB\eta B is the equalizer of some pair α,β:MBC\alpha,\beta:MB\to C. Take ϕ:DMB\phi:D\to MB such that ηMBϕ=MηBϕ\eta MB\cdot\phi=M\eta B\cdot\phi. Then

ηCαϕ=MαηMBϕ=MαMηBϕ=M(αηB)ϕ\displaystyle\eta C\cdot\alpha\cdot\phi=M\alpha\cdot\eta MB\cdot\phi=M\alpha\cdot M\eta B\cdot\phi=M(\alpha\cdot\eta B)\cdot\phi

and similarly ηCβϕ=M(βηB)ϕ\eta C\cdot\beta\cdot\phi=M(\beta\cdot\eta B)\cdot\phi. So ηCαϕ=ηCβϕ\eta C\cdot\alpha\cdot\phi=\eta C\cdot\beta\cdot\phi. Since ηC\eta C is a monomorphism, we have αϕ=βϕ\alpha\cdot\phi=\beta\cdot\phi so that ϕ=ηBψ\phi=\eta B\cdot\psi for some ψ\psi which is unique because ηB\eta B is also a monomorphism.

For (ii), using (i), we have

(𝒦,𝒜)(A,E)\displaystyle\mathfrak{C}({\mathscr{K}},{\mathscr{A}})(A,E)
\displaystyle\cong {A𝜎rif(S,MB):rif(S,ηMB)σ=rif(S,MηB)σ}\displaystyle\{A\xrightarrow{\sigma}\mathrm{rif}(S,MB):\ \mathrm{rif}(S,\eta_{MB})\cdot\sigma=\mathrm{rif}(S,M\eta_{B})\cdot\sigma\}
\displaystyle\cong {SA𝜏MB:ηMBτ=MηBτ}\displaystyle\{SA\xrightarrow{\tau}MB:\ \eta_{MB}\cdot\tau=M\eta_{B}\cdot\tau\}
\displaystyle\cong (𝒦,)(SA,B)\displaystyle\mathfrak{C}({\mathscr{K}},{\mathscr{B}})(SA,B)
\displaystyle\cong (𝒦,𝒜)(A,rif(S,B)).\displaystyle\mathfrak{C}({\mathscr{K}},{\mathscr{A}})(A,\mathrm{rif}(S,B))\ .

naturally in A(𝒦,𝒜)A\in\mathfrak{C}({\mathscr{K}},{\mathscr{A}}).

For (iii), by Yoneda, there is an isomorphism ω:Erif(S,B)\omega:E\cong\mathrm{rif}(S,B) inducing the composite isomorphism (B); this gives commutativity of the square

SE\textstyle{SE\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Sκ\scriptstyle{S\kappa}Sω\scriptstyle{S\omega}Srif(S,MB)\textstyle{S\mathrm{rif}(S,MB)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}εMBS\scriptstyle{\varepsilon_{MB}^{S}}Srif(S,B)\textstyle{S\mathrm{rif}(S,B)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}εBS\scriptstyle{\varepsilon_{B}^{S}}B\textstyle{B\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ηB\scriptstyle{\eta B}MB.\textstyle{MB\ .}

By applying the bijection

(𝒦,)(SE,MB)(𝒦,𝒜)(E,rif(S,MB))\mathfrak{C}({\mathscr{K}},{\mathscr{B}})(SE,MB)\cong\mathfrak{C}({\mathscr{K}},{\mathscr{A}})(E,\mathrm{rif}(S,MB))

we obtain the result stated. ∎

Proposition 27.

Suppose 𝒜𝑆𝑈𝒞{\mathscr{A}}\xrightarrow{S}{\mathscr{B}}\xrightarrow{U}{\mathscr{C}} and 𝒦𝐵{\mathscr{K}}\xrightarrow{B}{\mathscr{B}} are 1-morphisms. Suppose M:=rif(U,U)M:=\mathrm{rif}(U,U) exists and is respected by all 1-morphisms 𝒦{\mathscr{K}}\to{\mathscr{B}}. Suppose the 2-morphism 1𝜂M1_{{\mathscr{B}}}\xrightarrow{\eta}M, defined by εUUUη=1U\varepsilon_{U}^{U}\cdot U\eta=1_{U}, is such that ηB\eta B is a regular monomorphism in (𝒦,)\mathfrak{C}({\mathscr{K}},{\mathscr{B}}) and ηC\eta C is a monomorphism in (𝒦,)\mathfrak{C}({\mathscr{K}},{\mathscr{B}}) for all C(𝒦,)C\in\mathfrak{C}({\mathscr{K}},{\mathscr{B}}). Suppose both QB:=rif(US,UB)Q_{B}:=\mathrm{rif}(US,UB) and QMB:=rif(US,UMB)Q_{MB}:=\mathrm{rif}(US,UMB) exist and are respected by 𝒟𝐾𝒦{\mathscr{D}}\xrightarrow{K}{\mathscr{K}}. Then rif(S,B)\mathrm{rif}(S,B) has the same universal property as the equalizer of the pair of 2-morphisms from QBQ_{B} to QMBQ_{MB} in (𝒦,𝒜)\mathfrak{C}({\mathscr{K}},{\mathscr{A}}) corresponding (via the universal property of QMBQ_{MB}) to the two paths in (B.59). Moreover, rif(S,B)\mathrm{rif}(S,B) is respected by KK if and only if the equalizer is preserved by (K,1𝒜)\mathfrak{C}(K,1_{{\mathscr{A}}}).

USQB\textstyle{USQ_{B}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}UηSQB\scriptstyle{U\eta SQ_{B}}εUBUS\scriptstyle{\varepsilon^{US}_{UB}}UB\textstyle{UB\ignorespaces\ignorespaces\ignorespaces\ignorespaces}UηB\scriptstyle{U\eta B}UMB\textstyle{UMB}UMSQB\textstyle{UMSQ_{B}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}\scriptstyle{\cong}Urif(U,USQB)\textstyle{U\mathrm{rif}(U,USQ_{B})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Urif(U,εUBUS)\scriptstyle{U\mathrm{rif}(U,\varepsilon^{US}_{UB})}Urif(U,UB)\textstyle{U\mathrm{rif}(U,UB)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}\scriptstyle{\cong} (B.59)
Proof.

By Proposition 25, rif(S,MB)rif(S,rif(U,UB))rif(US,UB)=QB\mathrm{rif}(S,MB)\cong\mathrm{rif}(S,\mathrm{rif}(U,UB))\cong\mathrm{rif}(US,UB)=Q_{B} and rif(S,M2B)rif(S,rif(U,UMB))rif(US,UMB)=QMB\mathrm{rif}(S,M^{2}B)\cong\mathrm{rif}(S,\mathrm{rif}(U,UMB))\cong\mathrm{rif}(US,UMB)=Q_{MB}; so they exist by assumption and Proposition 26 applies. Furthermore, the parallel pair in (B.57) transports across these isomorphisms to the pair corresponding to the two paths in (B.59). ∎

Corollary 28 (Dubuc Adjoint Triangle Theorem [12]).

Suppose the 1-morphism 𝑈𝒞{\mathscr{B}}\xrightarrow{U}{\mathscr{C}} has a right adjoint RR with the unit 1𝜂RU1_{{\mathscr{B}}}\xrightarrow{\eta}RU a regular monomorphism preserved by the functors (B,1)\mathfrak{C}(B,1_{{\mathscr{B}}}) for all 1-morphisms BB with target {\mathscr{B}}. A 1-morphism 𝒜𝑆{\mathscr{A}}\xrightarrow{S}{\mathscr{B}} has a right adjoint if and only if the composite USUS has a right adjoint QQ and the coreflexive pair of 2-morphisms

QUSQU\textstyle{QUSQU\ignorespaces\ignorespaces\ignorespaces\ignorespaces}QUηSQU\scriptstyle{QU\eta{SQU}}QURUSQU\textstyle{QURUSQU\ignorespaces\ignorespaces\ignorespaces\ignorespaces}QURαU\scriptstyle{QUR\alpha U}QU\textstyle{QU\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}βQU\scriptstyle{\beta QU}QUη\scriptstyle{QU\eta}QURU\textstyle{QURU} (B.60)

admits an equalizer preserved by the functors (B,1)\mathfrak{C}(B,1_{{\mathscr{B}}}) for all 1-morphisms BB with target {\mathscr{B}}, where α\alpha, β\beta are the counit and unit for USQUS\dashv Q.

References

  • [1] Appelgate, H. Acyclic models and resolvent functors. (PhD Thesis, Columbia University, 1965).
  • [2] Barr, M. and Wells, C. Toposes, Triples and Theories. Grundlehren der math. Wissenschaften 278, Springer-Verlag, 1985.
  • [3] Beck, J.M. Triples, algebras and cohomology. Reprints in Theory and Applications of Categories 2 (2003) 1–59.
  • [4] Bénabou, J. Introduction to bicategories. Lecture Notes in Mathematics 47 (Springer-Verlag, 1967) 1–77.
  • [5] Bénabou, J. Les distributeurs. Seminaires de Math. Pure, Rapport No. 33 (Univ. Catholique de Louvain, 1973).
  • [6] Bruguiéres, A., Lack, S. and Virelizier, A. Hopf monads on monoidal categories. Advances in Mathematics 227(2) (2011) 745–800.
  • [7] Chikhladze, D., Lack, S. and Street, R. Hopf monoidal comonads. Theory and Applications of Categories 24(19) (2010) 554–563.
  • [8] Day, B.J. On closed categories of functors. Lecture Notes in Math. 137 (Springer 1970) 1–38.
  • [9] Day, B.J. Promonoidal functor categories. J. Austral. Math. Soc. Ser. A 23(3) (1977) 312–328.
  • [10] Day, B.J. Biclosed bicategories: Localisation of convolution. Macquarie Mathematics Report 81-0030 (Macquarie University, April 1981). https://arxiv.org/abs/0705.3485
  • [11] Day, B.J. and Street, R. Monoidal bicategories and Hopf algebroids. Advances in Math. 129 (1997) 99–157.
  • [12] Dubuc, E. Adjoint triangles. Lecture Notes in Math. 61 (Springer-Verlag, 1968) 69–91.
  • [13] Eilenberg, S. and Kelly, G.M. Closed categories. Proceedings of the Conference on Categorical Algebra (La Jolla, 1965) (Springer-Verlag,1966) 421–562.
  • [14] Eilenberg, S. and Moore, J.C. Adjoint functors and triples. Illinois Journal of Mathematics 9 (1965) 381–398.
  • [15] Johnstone, P.T. Adjoint lifting theorems for categories of algebras. Bulletin London Math. Soc. 59(1) (1975) 294–297.
  • [16] Keigher, W.F. Adjunctions and comonads in differential algebra. Pacific J. Math. 59(1) (1975) 99–112.
  • [17] Kelly, G.M. Many-variable functorial calculus. I. Lecture Notes in Math. 281 (Springer, Berlin, 1972) 66–105.
  • [18] Kelly, G.M. An abstract approach to coherence. Lecture Notes in Math. 281 (Springer, Berlin, 1972) 106–147
  • [19] Kelly, G.M. Doctrinal adjunction. Lecture Notes in Mathematics 420 (Springer-Verlag, 1974) 257–280.
  • [20] Kelly, G.M. and Street, R. Review of the elements of 2-categories. Lecture Notes in Mathematics 420 (Springer-Verlag, 1974) 75–103.
  • [21] Kelly, G.M. Basic concepts of enriched category theory. London Mathematical Society Lecture Note Series 64 (Cambridge University Press, Cambridge, 1982); also, Reprints in Theory and Applications of Categories, 10 (2005) 1–136.
  • [22] Kleisli, H. Every standard construction is induced by a pair of adjoint functors. Proc. Amer. Math. Soc. 16 (1965) 544–546.
  • [23] Lawvere, F.W. Metric spaces, generalized logic and closed categories. Reprints in Theory and Applications of Categories 1 (2002) 1–37.
  • [24] Linton, F.E.J. The multilinear Yoneda lemmas: Toccata, fugue, and fantasia on themes by Eilenberg- Kelly and Yoneda. Lecture Notes in Mathematics 195 (Springer, Berlin, 1971) 209–229.
  • [25] Mac Lane, S. Categories for the Working Mathematician. Graduate Texts in Mathematics 5 (Springer-Verlag, 1971).
  • [26] McCrudden, P. Opmonoidal monads. Theory and Applications of Categories 10 (2002) 469–485.
  • [27] Moerdijk, I. Monads on tensor categories. Journal of Pure Appl. Algebra 168 (2002) 189–208.
  • [28] Pastro, C. Note on star-autonomous comonads. Theory and Applications of Categories 26(7) (2012) 194–203.
  • [29] Pastro, C. and Street, R. Closed categories, star-autonomy, and monoidal comonads. Journal of Algebra 321(11) (1 June 2009) 3494–3520.
  • [30] Street, R. The formal theory of monads. Journal of Pure and Applied Algebra 2(2) (1972) 149–168.
  • [31] Street, R. Two constructions on lax functors. Cahiers de topologie et géométrie différentielle 13 (1972) 217–264.
  • [32] Street, R. Enriched categories and cohomology with author commentary. Reprints in Theory and Applications of Categories 14 (2005) 1–18.
  • [33] Street, R. Absolute colimits in enriched categories. Cahiers de topologie et géométrie différentielle 24 (1983) 377–379.
  • [34] Street, R. Fusion operators and cocycloids in monoidal categories. Applied Categorical Structures 6 (2) (1998) 177–191.
  • [35] Street, R. Quantum Groups: A Path to Current Algebra. Australian Mathematical Society Lecture Series 19. Cambridge University Press, 2007.
  • [36] Street, R. Skew-closed categories. Journal of Pure and Applied Algebra 217(6) (June 2013) 973–988.
  • [37] Street, R. and Walters, R.F.C. Yoneda structures on 2-categories. J. Algebra 50 (1978) 350–379.
  • [38] Thiébaud M. Self-dual structure-semantics and algebraic categories. Dalhousie University, PhD (Halifax, August 1971).
  • [39] Wood, R.J. Coalgebras for closed comonads. Communications in Algebra 6(14) (1978) 1497–1504.