This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Witten Deformation on Non-compact Manifolds
Heat Kernel Expansion and Local Index Theorem

Xianzhe Dai Department of Mathematics, UCSB, Santa Barbara CA 93106, [email protected]. Partially supported by the Simons Foundation    Junrong Yan111Department of Mathematics, UCSB, Santa Barbara CA 93106, [email protected]
Abstract

Asymptotic expansions of heat kernels and heat traces of Schrödinger operators on non-compact spaces are rarely explored, and even for cases as simple as n\mathbb{C}^{n} with (quasi-homogeneous) polynomials potentials, it’s already very complicated. Motivated by path integral formulation of the heat kernel, we introduced a parabolic distance, which also appeared in Li-Yau’s famous work on parabolic Harnack estimate. With the help of the parabolic distance, we derive a pointwise asymptotic expansion of the heat kernel for the Witten Laplacian with strong remainder estimate. When the deformation parameter of Witten deformation and time parameter are coupled, we derive an asymptotic expansion of trace of heat kernel for small-time tt, and obtain a local index theorem. This is the second of our papers in understanding Landau-Ginzburg B-models on nontrivial spaces, and in subsequent work, we will develop the Ray-Singer torsion for Witten deformation in the non-compact setting.

1 Introduction

1.1 Overview

Witten deformation is a deformation of the de Rham complex introduced in an extremely influential paper [14]. Witten deformation on closed manifolds has found many beautiful applications, such as the analytic proof of Morse inequalities, the development of Floer homology theory, and Bismut-Zhang’s proof [2] of Cheeger-Müller theorem (also known as the Ray-Singer conjecture).

The mathematical study of Landau-Ginzburg models has highlighted the question of understanding the Witten deformation on non-compact manifolds. In [3] we studied some of the fundamental questions in this regard, focusing on the relationships between the various cohomology theories involved. In this paper, we continue this study by looking into the heat kernel and index theoretic aspect of the Witten deformation on non-compact manifolds. In particular, one of our main results is a local index theorem for the Witten deformation on non-compact manifolds. For the very special case of Euclidean space n\mathbb{C}^{n} with a quasi-homogeneous polynomial, as is typical in Landau-Ginzburg models, the corresponding index theroem from our local index theorem reduces to the equality of the index with the Milnor number of the quasi-homogeneous polynomial, a result stated in [5]. Local index theorems, besides their obvious interests, are important steps towards developing the theory of Ray-Singer analytic torsion and their related applications.

Recall that the Witten deformation deforms the de Rham complex (Ω(M),d)(\Omega^{*}(M),d) by the new differential

dTf=d+Tdfd_{Tf}=d+Tdf\wedge

where ff is a smooth function and TT is the deformation parameter. The spaces we focus on here are complete non-compact Riemannian manifolds (M,g)(M,g) with bounded geometry. The key to local index theory is the study of the heat kernel of the Witten Laplacian Tf=(dTf+dTf)2\Box_{Tf}=(d_{Tf}+d^{*}_{Tf})^{2}, in particular, its asymptotic expansion. In previous work [4], [5], [3], tameness conditions are imposed on the potential function ff in order for the Witten Laplacian to have discrete spectrums; here we introduce further tameness conditions which guarantee that the heat kernel of the Witten Laplacian is of trace class. In fact, we prove a weak Weyl Law for the eigenvalues of the Witten Laplacian. It is interesting to note that our tameness condition here is closely related to the semi-classical Weyl Law for Schrödinger operators in Euclidean space and are satisfied for the examples coming from Landau-Ginzburg models.

Developing the asymptotic expansion for the heat kernel of the Witten Laplacian presents further challenges in the non-compact setting, as we need a more refined remainder estimate so that the local index theorem can actually be integrated to an index theorem. For the case of n\mathbb{C}^{n} with a quasi-homogeneous polynomial ff, this is dealt with in [5] by brute force, which does not give a needed strong remainder estimate nor generalize to the more general situation. To overcome the difficulty, we introduce a parabolic (meta-)distance which also appeared previously in the famous work of Li-Yau on Harnack inequality [10]. This parabolic distance is also intimately related to the Agmon distance which plays a crucial role in our previous work [3]. The connection will then be exploited to establish the remainder estimate needed for the local index theorem.

We would like to point out that the asymptotic expansion for the heat kernel of a Schrödinger operator as well as its trace on noncompact space is rarely explored. In the few cases it is studied (c. f. [5] and [7]), it deals with the situation when M=nM=\mathbb{R}^{n}, ff is a polynomial. And even then, it is already very complicated. On the other hand, though physicists are able to write a semi-classical asymptotic expansion of heat kernel via path integral, it is not sufficient for the asymptotic expansion of trace, as integration over noncompact space is involved. We found that the parabolic distance provides a much simpler and satisfying approach to the problem.

Another novel idea is in proving the local index theorem for the Witten deformation. Here a modified Getzler rescaling involving the rescaling on the deformation parameter TT is used. Thus our result in [3] that the dimension of the L2L^{2} cohomology of the Witten deformation is independent of TT (for T>0T>0 or sufficiently large depending on the tameness conditions) plays a crucial role here.

In a separate paper we extend our treatment to Dirac/Callias type operators.

Acknowledgment: We have benefitted from the preprint [5] which has provided motivation and inspiration for us. Thanks are also due to Guangbo Xu for interesting discussions a few years back when we started to look at these questions.

1.2 Notations and Assumptions

In this paper, we assume that all of our (Riemannian) manifolds have bounded geometry. Namely,

Definition 1.1.

Let (M,g)(M,g) be a complete Riemannian manifold with metric gg. (M,g)(M,g) is said to have bounded geometry, if the following conditions hold:

  1. 1.

    The injectivity radius τ\tau of (M,g)(M,g) is positive.

  2. 2.

    The curvature, as well as all its derivatives, is bounded, |mR|Fm|\nabla^{m}R|\leq F_{m}. Here mR\nabla^{m}R is the mm-th covariant derivative of the curvature tensor and CmC_{m} is a constant only depending on mm.

We now introduce the tameness conditions we need in treating the local index theorem. Various notions of tameness have been introduced, for example, the strong tameness condition in [4] and the weaker well tameness in [3]. Here we need stronger tameness conditions.

Definition 1.2.

Let (M,g)(M,g) be a complete Riemannian manifold and κ[0,1)\kappa\in[0,1). We say (M,g,f)(M,g,f) is κ\kappa-regular tame if

  1. 1.

    lim supp|mf||f|(m1)κ+1<,\limsup_{p\to\infty}\frac{|\nabla^{m}f|}{|\nabla f|^{(m-1)\kappa+1}}<\infty, for any m1m\geq 1;

  2. 2.

    limp|f|=.\lim_{p\to\infty}|\nabla f|=\infty.

Here f\nabla f denotes the gradient of ff, mf=m1f,m1\nabla^{m}f=\nabla^{m-1}\nabla f,m\geq 1, and pp\to\infty means that d(p,p0)d(p,p_{0})\to\infty for the distance function from a fixed base point p0p_{0}.

In typical examples from Landau-Ginzburg models, M=nM=\mathbb{C}^{n} with the Euclidean metric and a nondegenerate quasi-homogeneous polynomial ff. Then (n,f)(\mathbb{C}^{n},f) is κ\kappa-regular tame for some κ<1\kappa<1, see the discussion in the last section. For our purpose, we reformulate one of the consequences of κ\kappa-regular tameness. Indeed, an inductive argument yields that, if (M,g,f)(M,g,f) is κ\kappa-regular tame, then for V=|f|2V=|\nabla f|^{2}, we have, for all kk\in\mathbb{N},

lim supp|kV||V|(kκ+2)/2<.\limsup_{p\to\infty}\frac{|\nabla^{k}V|}{|V|^{(k\kappa+2)/2}}<\infty.
Remark 1.3.

In [11], in order to prove Weyl’s law for Schrödinger operator on n\mathbb{R}^{n}, Rozenbljum imposed similar κ\kappa-tameness conditions (see (0.6) in [11]). Later we will show that with κ\kappa-tameness condition, one can prove a weaker version of Weyl’s law.

The κ\kappa-regular tame condition ensures that, among other things, the Witten Laplacian has discrete spectrums, Cf. [4, 3]. As far as we know, examples coming from Landau-Ginzburg models satisfy the regular tame condition, see the discussion in the last section for a large class of such examples.

Our next condition ensures that we have a good local index theory, as we will see later.

Definition 1.4.

Fix αn/2.\alpha\geq n/2. A triple (M,g,f)(M,g,f) is called α\alpha-polynomial tame, if (M,g,f)(M,g,f) is κ\kappa-regular tame for some κ(0,1)\kappa\in(0,1), and in addition, there is some constant CC, such that for all λ0\lambda\geq 0,

{pM:|f|2(p)λ}(λ|f|2)n/2𝑑volMCλα.\int_{\{p\in M:|\nabla f|^{2}(p)\leq\lambda\}}(\lambda-|\nabla f|^{2})^{n/2}dvol_{M}\leq C\lambda^{\alpha}.

Again we will see that typical examples coming from Landau-Ginzburg models are polynomial tame, see the discussion in the last section.

Remark 1.5.

This condition should be interpreted in terms of the (semiclassical) Weyl’s law for Schrödinger operators in Euclidean space ( Cf. [11, 13] ), which would guarantee the polynomial growth of the eigenvalues. However, though expected, we could not find in the literature such Weyl’s law on manifolds. To focus our discussion on the asymptotic expansion of heat kernel and local index theorem, we only prove a weaker version of Weyl’s law here under our assumption. In a separate paper we will prove such Weyl’s law by using similar techniques in [13] and also give a treatment using heat kernel following the techniques developped here in Sections 3 and 4.

1.3 Main Result

As we will see in the next section, the α\alpha-polynomial tame condition garantees that exp(tTf)\exp(-t\Box_{Tf}) is of trace class. Our first contribution is the pointwise asymptotic expansion of the heat kernel of the Witten Laplacian with strong remainder estimate.

Let (M,g,f)(M,g,f) be α\alpha-polynomial tame, and KTf(t,x,y)K_{Tf}(t,x,y) denote the heat kernel of the Witten Laplacian Tf\Box_{Tf}. Denote by hT(x,y)h_{T}(x,y) the average of the potential function T2|f|2T^{2}|\nabla f|^{2} on the geodesic segment from xx to yy, Cf. (7).

Theorem 1.1.

The heat kernel KTfK_{Tf} has the following complete pointwise asymptotic expansion. For any x,yMx,y\in M such that d(x,y)12τd(x,y)\leq\frac{1}{2}\tau,

KTf(t,x,y)1(4πt)n2exp(d2(x,y)/4t)exp(thT(x,y))j=0tjΘT,j(x,y),K_{Tf}(t,x,y)\sim\frac{1}{(4\pi t)^{\frac{n}{2}}}\exp(-d^{2}(x,y)/4t)\exp(-t\,h_{T}(x,y))\sum_{j=0}^{\infty}t^{j}\Theta_{T,j}(x,y),

as t0t\rightarrow 0. Each ΘT,j\Theta_{T,j} is a polynomial of TT:

ΘT,j(x,y)=l=0[j3]+jTlΘl,j(x,y),\Theta_{T,j}(x,y)=\sum_{l=0}^{[\frac{j}{3}]+j}T^{l}\Theta_{l,j}(x,y),

and, when restricted to the diagonal of M×MM\times M, Θl,j(y,y)\Theta_{l,j}(y,y) can be written as an algebraic combination of the curvature of the metric gg, the function ff, as well as their derivatives, at yy; in addition, ΘT,0(y,y)=Id.\Theta_{T,0}(y,y)=\operatorname{Id}. Moreover, we have the following remainder estimate. For any kk sufficiently large and any a(0,1)a\in(0,1),

|KTf(t,x,y)1(4πt)n2exp(d2(x,y)/4t)exp(thT(x,y))j=0ktjΘT,j(x,y)|\displaystyle\left|K_{Tf}(t,x,y)-\frac{1}{(4\pi t)^{\frac{n}{2}}}\exp(-d^{2}(x,y)/4t)\exp(-t\,h_{T}(x,y))\sum_{j=0}^{k}t^{j}\Theta_{T,j}(x,y)\right|
Ct13(1κ)kκ+23n2+1T2k+43exp(ad~T(t,x,y)),\displaystyle\leq Ct^{\frac{1}{3}(1-\kappa)k-\frac{\kappa+2}{3}-\frac{n}{2}+1}T^{\frac{-2k+4}{3}}\exp(-a\tilde{d}_{T}(t,x,y)),\hskip 108.405pt

for t(0,1]t\in(0,1] and T(0,t12]T\in(0,t^{-\frac{1}{2}}].

Here d~T(t,x,y)\tilde{d}_{T}(t,x,y) is the parabolic distance alluded at the beginning of the introduction, see (13) for the precise definition. By relating it to the Agmon distance we are able to obtain an effective bound on d~T(t,x,y)\tilde{d}_{T}(t,x,y), which, when combined with the theorem above, yields the following corollary.

Corollary 1.2.

For T=t12T=t^{-\frac{1}{2}}, and any kk sufficiently large, any a(0,1)a\in(0,1),

|Kt12f(t,x,x)1(4πt)n2exp(|f|2(x))j=0l=0[j3]+jtjl2Θl,j(x,x)|\displaystyle\left|K_{t^{-\frac{1}{2}}f}(t,x,x)-\frac{1}{(4\pi t)^{\frac{n}{2}}}\exp(-|\nabla f|^{2}(x))\sum_{j=0}^{\infty}\sum_{l=0}^{[\frac{j}{3}]+j}t^{j-\frac{l}{2}}\Theta_{l,j}(x,x)\right|
Ct13(2κ)kκ+13n2exp(aβ¯|f|1κ(x)),\displaystyle\leq Ct^{\frac{1}{3}(2-\kappa)k-\frac{\kappa+1}{3}-\frac{n}{2}}\exp(-a\bar{\beta}|\nabla f|^{1-\kappa}(x)),\hskip 57.81621pt

for t(0,1]t\in(0,1], where β¯>0\bar{\beta}>0 is a constant depending only on the bounds in the tameness condition. In particular, we have the following small time asymptotic expansion of the heat trace:

Trs(exp(tt12f))1(4πt)n2j=0l=0[j3]+jtjl2Mexp(|f|2(x))trs(Θl,j(x,x))𝑑x,\operatorname{Tr}_{s}\left(\exp(-t\Box_{t^{-\frac{1}{2}}f})\right)\sim\frac{1}{(4\pi t)^{\frac{n}{2}}}\sum_{j=0}^{\infty}\sum_{l=0}^{[\frac{j}{3}]+j}t^{j-\frac{l}{2}}\int_{M}\exp(-|\nabla f|^{2}(x))\operatorname{tr}_{s}(\Theta_{l,j}(x,x))dx,

as t0t\rightarrow 0, with the remainder estimate

|Trs(exp(tt12f))1(4πt)n2j=0kl=0[j3]+jtjl2Mexp(|f|2(x))trs(Θl,j(x,x))𝑑x|\displaystyle\left|\operatorname{Tr}_{s}\left(\exp(-t\Box_{t^{-\frac{1}{2}}f})\right)-\frac{1}{(4\pi t)^{\frac{n}{2}}}\sum_{j=0}^{k}\sum_{l=0}^{[\frac{j}{3}]+j}t^{j-\frac{l}{2}}\int_{M}\exp(-|\nabla f|^{2}(x))\operatorname{tr}_{s}(\Theta_{l,j}(x,x))dx\right|
Ct13(2κ)kκ+13n2.\displaystyle\leq Ct^{\frac{1}{3}(2-\kappa)k-\frac{\kappa+1}{3}-\frac{n}{2}}.\hskip 108.405pt

Here Trs\operatorname{Tr}_{s} and trs\operatorname{tr}_{s} denote the global supertrace and pointwise supertrace respectively.

On the other hand, by Theorem 1.3 in [3] and the α\alpha-polynomial tame condition, the index of the Witten Laplacian

χ(M,dTf)=i=0n(1)ibi(T),bi(T)=dim(H(2)i(M,dTf))\chi(M,d_{Tf})=\sum_{i=0}^{n}(-1)^{i}b_{i}(T),\ b_{i}(T)=dim(H^{i}_{(2)}(M,d_{Tf}))

is independent of T>0T>0. In fact we have that Trs(exp(tTf))\operatorname{Tr}_{s}(exp(-t\Box_{Tf})) is independent of tt and TT and

χ(M,dTf)=ind(Tf)=Trs(texp(t12f))=Mtrs(KTf(t,x,x))𝑑x.\chi(M,d_{Tf})=\operatorname{ind}(\Box_{Tf})=\operatorname{Tr}_{s}(-t\exp(\Box_{t^{-\frac{1}{2}}f}))=\int_{M}\operatorname{tr}_{s}(K_{Tf}(t,x,x))dx.

Now apply our new rescaling technique, one has

Theorem 1.3 (Local index theorem and index formula for Tf\Box_{Tf}).

For any xMx\in M, we have

limt0trs(Kt12f(t,x,x))=(1)[n+12]πn2exp(|f(x)|2)Bexp(R~(x)2~2f(x)).\lim_{t\to 0}\operatorname{tr}_{s}(K_{t^{-\frac{1}{2}}f}(t,x,x))=\frac{(-1)^{[\frac{n+1}{2}]}}{\pi^{\frac{n}{2}}}\exp(-|\nabla f(x)|^{2})\int^{B}\exp(-\frac{\widetilde{R}(x)}{2}-\widetilde{\nabla}^{2}f(x)).

In particular, for any T>0T>0,

ind(Tf)=(1)[n+12]πn2Mexp(|f|2)Bexp(R~2~2f).\operatorname{ind}(\Box_{Tf})=\frac{(-1)^{[\frac{n+1}{2}]}}{\pi^{\frac{n}{2}}}\int_{M}\exp(-|\nabla f|^{2})\int^{B}\exp(-\frac{\tilde{R}}{2}-\tilde{\nabla}^{2}f). (1)

Here B\int^{B} denotes the Berezin integral, which will be introduced in a moment, and R~,~2fΩ(M)^Ω(M)\tilde{R},\tilde{\nabla}^{2}f\in\Omega^{*}(M)\hat{\otimes}\Omega^{*}(M) are defined as

R~=i<j,k<lRijkleieje^ke^l,~2f=ei,ej2feie^j\tilde{R}=-\sum_{i<j,k<l}R_{ijkl}e^{i}e^{j}\hat{e}^{k}\hat{e}^{l},\ \ \ \ \tilde{\nabla}^{2}f=\nabla^{2}_{e_{i},e_{j}}fe^{i}\hat{e}^{j}

for some orthonormal frame {ei}\{e_{i}\} in TMTM and its dual frame {ei}\{e^{i}\} in TMT^{*}M. We have used {e^i}\{\hat{e}_{i}\} to denote the same orthonormal frame in the second copy of TMT^{*}M. For any ωΩ(M)^Ω(TM)\omega\in\Omega^{*}(M)\hat{\otimes}\Omega^{*}(TM), I={i1,,ik}1,2,,nI=\{i_{1},...,i_{k}\}\subset{1,2,...,n}, we write ω\omega as

ω=IwIe^I,\omega=\sum_{I}w_{I}\hat{e}^{I},

where e^I=e^i1e^ik.\hat{e}^{I}=\hat{e}^{i_{1}}\wedge...\wedge\hat{e}^{i_{k}}. Then the Berezin integral is defined as

B:Ω(M)^Ω(M)Ω(M),Bω=ω1,2,,n.\int^{B}:\,\Omega^{*}(M)\hat{\otimes}\Omega^{*}(M)\mapsto\Omega^{*}(M),\ \ \ \ \ \ \int^{B}\omega=\omega_{1,2,...,n}.
Remark 1.6.
  1. 1.

    Here the index density is computed by coupling tT2=1tT^{2}=1. Our arguments still work if we set tT2tT^{2} to be any positive constant T0T_{0}. As T0T_{0}\to\infty, the integral of index density localizes at critical points of ff. On the other hand, when T00+T_{0}\to 0^{+}, the index of Tf\Box_{Tf} should depend on ”the topology away from infinity” and the behavior of ff near the infinity. This will be discussed in more detail in a separate paper where we extend our treatment to Dirac/Callias type operators.

  2. 2.

    When MM is compact, (1) is a special case of a formula in chapter 3 of [15].

  3. 3.

    Notice that Bexp(2f)=(1)[n2]det(2f)\int^{B}\exp(-\nabla^{2}f)=(-1)^{[\frac{n}{2}]}\det(-\nabla^{2}f). Thus, when M=nM=\mathbb{R}^{n}, (1) reduces to

    χ(n,df)=(1)nπn2nexp(|f|2)det(2f)dvol.\chi(\mathbb{R}^{n},d_{f})=\frac{(-1)^{n}}{\pi^{\frac{n}{2}}}\int_{\mathbb{R}^{n}}\exp(-|\nabla f|^{2})\det(-\nabla^{2}f)dvol.

    In particular, when M=nM=\mathbb{C}^{n}, ff is a holomorphic function such that its real part f\Re f is polynomial tame, we have

    χ(n,df)\displaystyle\chi(\mathbb{C}^{n},d_{f}) =1πnnexp(|f|2)𝑑et(2f)𝑑vol\displaystyle=\frac{1}{\pi^{n}}\int_{\mathbb{C}^{n}}\exp(-|\nabla\Re f|^{2})det(-\nabla^{2}\Re f)dvol
    =(1)nπnnexp(|f|2)|det(2f)|2𝑑vol\displaystyle=\frac{(-1)^{n}}{\pi^{n}}\int_{\mathbb{C}^{n}}\exp(-|\partial f|^{2})|det(-\partial^{2}f)|^{2}dvol

    is given by the Milnor number of ff. This is a generalization of a result in [5], see the last section for more discussion.

2 Weak Weyl Law

In this section we will show that the polynomial tame condition implies that exp(tTf)\exp(-t\Box_{Tf}) is of trace class. This is achieved by proving a weak Weyl law which shows that the eigenvalues of the Witten Laplacian grows polynomially. The Agmon estimate developped in [3] plays a crucial role here.

2.1 Review of Hodge Theory for Witten Laplacian

For any T>0T>0, let

dTf:=d+Tdf:Ω(M)Ω+1(M)d_{Tf}:=d+Tdf\wedge:\Omega^{*}(M)\mapsto\Omega^{*+1}(M)

be the so-called Witten deformation of de Rham operator dd. As usual, the metric gg induces a canonical metric (still denote it by gg) on Λ(M)\Lambda^{*}(M), which then defines an inner product (,)L2(\cdot,\cdot)_{L^{2}} on Ωc(M)\Omega^{*}_{c}(M):

(ϕ,ψ)L2=M(ϕ,ψ)g𝑑vol,ϕ,ψΩc(M).(\phi,\psi)_{L^{2}}=\int_{M}(\phi,\psi)_{g}dvol,\phi,\psi\in\Omega^{*}_{c}(M).

Let L2Λ(M)L^{2}\Lambda^{*}(M) be the completion of Ωc(M)\Omega_{c}^{*}(M) with respect to L2\|\cdot\|_{L^{2}}, and L2(M):=L2Λ0(M).L^{2}(M):=L^{2}\Lambda^{0}(M).

Then dTfd_{Tf} is an unbounded operator on L2Λ(M)L^{2}\Lambda^{*}(M) with domain Ωc(M)\Omega^{*}_{c}(M). Also, it has a formal adjoint operator δTf\delta_{Tf}, with Dom(δTf)=Ωc(M),\mathrm{Dom}(\delta_{Tf})=\Omega^{*}_{c}(M), such that

(dTfϕ,ψ)L2=(ϕ,δTfψ)L2,ϕ,ψΩc(M).(d_{Tf}\phi,\psi)_{L^{2}}=(\phi,\delta_{Tf}\psi)_{L^{2}},\phi,\psi\in\Omega^{*}_{c}(M).

Set ΔH,Tf=(dTf+δTf)2,\Delta_{H,Tf}=(d_{Tf}+\delta_{Tf})^{2}, and we denote the Friedrichs extension of ΔH,Tf\Delta_{H,Tf} by Tf\Box_{Tf}. If (M,g)(M,g) is complete then ΔH,Tf\Delta_{H,Tf} is essentially self-adjoint (and hence Tf\Box_{Tf} is the unique self-adjoint extension). In [3] We proved that when (M,g,f)(M,g,f) is tame,

L2Λ(M)=kerTfImd¯TfImδ¯Tf,L^{2}\Lambda^{*}(M)=\ker\Box_{Tf}\oplus\mathrm{Im}\bar{d}_{Tf}\oplus\mathrm{Im}\bar{\delta}_{Tf}, (2)

where d¯Tf\bar{d}_{Tf} and δ¯Tf\bar{\delta}_{Tf} are the graph extensions of dTfd_{Tf} and δTf\delta_{Tf} respectively.

Setting Ω(2)(M,Tf):=Dom(d¯Tf)Ω(M),\Omega_{(2)}^{*}(M,Tf):=\mathrm{Dom}(\bar{d}_{Tf})\cap\Omega^{*}(M), we have a chain complex

dTfΩ(2)(M,Tf)dTfΩ(2)+1(M,Tf)dTf.\cdots\xrightarrow{d_{Tf}}\Omega_{(2)}^{*}(M,Tf)\xrightarrow{d_{Tf}}\Omega_{(2)}^{*+1}(M,Tf)\xrightarrow{d_{Tf}}\cdots.

Let H(2)(M,dTf)H^{*}_{(2)}(M,d_{Tf}) denote the cohomology of this complex. In [3], we have shown that H(2)(M,dTf)kerTfH^{*}_{(2)}(M,d_{Tf})\cong\ker\Box_{Tf}, provided (M,g,f)(M,g,f) is well tame and TT is large enough. Note that the notion of well tame [3] is strictly weaker than that of regular tame.

Finally, we note the following well known

Proposition 2.1.

Denote Lf=ei,ej2f[ei,ιej]L_{f}=\nabla^{2}_{e_{i},e_{j}}f[e^{i}\wedge,\iota_{e_{j}}] locally, where {ei}\{e_{i}\} is a local frame on TMTM and {ei}\{e^{i}\} is the dual frame on TM.T^{*}M. Then the Witten Laplacian ΔH,Tf\Delta_{H,Tf} has the following expression:

ΔH,Tf=ΔTLf+T2|f|2.\Delta_{H,Tf}=\Delta-TL_{f}+T^{2}|\nabla f|^{2}. (3)

Here Δ\Delta denotes the Hodge Laplacian.

2.2 Weak Weyl Law for Witten Laplacian

Let (M,g,f)(M,g,f) be α\alpha-polynomial tame defined in the previous section. Then, (M,g,f)(M,g,f) is regular tame and there is some constant CC, such that for all λ0\lambda\geq 0,

{pM:|f|2(p)λ}(λ|f|2)n/2𝑑volMCλα.\int_{\{p\in M:|\nabla f|^{2}(p)\leq\lambda\}}(\lambda-|\nabla f|^{2})^{n/2}dvol_{M}\leq C\lambda^{\alpha}.

This has the following immediate consequences.

Lemma 2.2.

Let Kλ:={pM:|f|2(p)<λ},K_{\lambda}:=\{p\in M:|\nabla f|^{2}(p)<\lambda\}, then

Vol(Kλ)Cλαn2.\operatorname{Vol}(K_{\lambda})\leq C\lambda^{\alpha-\frac{n}{2}}.

Furthermore, for any k0k\geq 0, there is a constant CkC_{k} depending only on kk and the tameness condition such that

Mexp(|f|2)|f|k𝑑volCk.\int_{M}\exp(-|\nabla f|^{2})|\nabla f|^{k}dvol\leq C_{k}.
Proof.

We have

λn2Vol(Kλ)K2λ(2λ|f|2)n2Cλα.\displaystyle\lambda^{\frac{n}{2}}\operatorname{Vol}(K_{\lambda})\leq\int_{K_{2\lambda}}(2\lambda-|\nabla f|^{2})^{\frac{n}{2}}\leq C\lambda^{\alpha}.

To prove the second estimate, we notice that

Mexp(|f|2)|f|k𝑑vol\displaystyle\int_{M}\exp(-|\nabla f|^{2})|\nabla f|^{k}dvol =l=0Kl+1Klexp(|f|2)|f|k2𝑑vol\displaystyle=\sum_{l=0}^{\infty}\int_{K_{l+1}-K_{l}}\exp(-|\nabla f|^{2})|\nabla f|^{\frac{k}{2}}dvol
l=0el(l+1)k2Vol(Kl+1Kl)\displaystyle\leq\sum_{l=0}^{\infty}e^{-l}(l+1)^{\frac{k}{2}}\operatorname{Vol}(K_{l+1}-K_{l})
Cl=0el(l+1)k2+αn2=Ck<,\displaystyle\leq C\sum_{l=0}^{\infty}e^{-l}(l+1)^{{\frac{k}{2}}+\alpha-\frac{n}{2}}=C_{k}<\infty,

as desired. ∎

Note that, in particular, if α=n/2\alpha=n/2, then MM must have finite volume.

We now turn our attention to the growth of eigenvalues of the Witten Laplacian. First, by refining the argument of Theorem 1.1 in [3], we have the following exponential decay estimate for eigenforms.

Proposition 2.3.

Let (M,g,f)(M,g,f) be strongly tame, and ωDom(f)\omega\in\mathrm{Dom}(\Box_{f}) be an eigenform of f\Box_{f} with eigenvalue λ\lambda. Then

|ω(p)|Cexp(aρλ(p))ωL2,|\omega(p)|\leq C\exp(-a\rho_{\lambda}(p))\|\omega\|_{L^{2}},

for any a(0,1)a\in(0,1). Here ρλ\rho_{\lambda} is the Agmon distance induced by Agmon metric gλ:=(|f|2λ)+gg_{\lambda}:=(|\nabla f|^{2}-\lambda)_{+}\,g, with (|f|2λ)+(|\nabla f|^{2}-\lambda)_{+} denoting the nonnegative part, and CC is a constant independent of λ.\lambda.

With the help of Proposition 2.3, we now deduce a weak version of Weyl’s law:

Proposition 2.4.

If (M,g,f)(M,g,f) is α\alpha-polynomial tame, then the spectrum of f\Box_{f} has polynomial growth. More precisely, there exist constants δ>0\delta>0 and C>0C>0, such that λk(f)Ckδ\lambda_{k}(\Box_{f})\geq Ck^{\delta}, where λk(f)\lambda_{k}(\Box_{f}) denotes the kk-th eigenvalue of f\Box_{f} (counted with multiplicity). Consequently, exp(tTf)\exp(-t\Box_{Tf}) is of trace class for all T>0,t>0.T>0,t>0.

Proof.

Let E(λ)E(\lambda) be the number of eigenvalues not exceeding λ\lambda, and uu be an eigenform with eigenvalue λ0λ\lambda_{0}\leq\lambda. We normalize uu so that uL2=1\|u\|_{L^{2}}=1 .

By Proposition 2.3,

|u(p)|Cexp(aρλ(p)).|u(p)|\leq C\exp(-a\rho_{\lambda}(p)).

We claim that there exists n0>1n_{0}>1 independent of λ1\lambda\geq 1 and uu, such that

MKn0λ|u|2𝑑vol<12.\int_{M-K_{n_{0}\lambda}}|u|^{2}dvol<\frac{1}{2}. (4)

To prove the claim we first estimate the Agmon distance. Thus, for pK(k+1)λKkλp\in K_{(k+1)\lambda}-K_{k\lambda}, let γ:[0,l]M\gamma:[0,l]\mapsto M be a minimal curve in the Agmon metric gλg_{\lambda} connecting pp and KkλK_{k\lambda}; moreover, |γ(s)|=1|\gamma^{\prime}(s)|=1 with respect to the metric g.g. Then we may as well assume that γK(k+1)λ\gamma\subset K_{(k+1)\lambda}; otherwise, we can find l0[0,l]l_{0}\in[0,l], such that γ|[l0,l]K(k+1)λ\gamma|_{[l_{0},l]}\subset K_{(k+1)\lambda} and we can take p=γ(l0)p=\gamma(l_{0}). Hence by the tameness condition, there exists c>0c>0, s.t.

ddt(|f|2γ(t))c|f|κ+2c((k+1)λ)κ+22.\frac{d}{dt}(|\nabla f|^{2}\circ\gamma(t))\leq c|\nabla f|^{\kappa+2}\leq c((k+1)\lambda)^{\frac{\kappa+2}{2}}.

It follows by integrating that l|f|2(p)kλ((k+1)λ)κ+22.l\geq\frac{|\nabla f|^{2}(p)-k\lambda}{((k+1)\lambda)^{\frac{\kappa+2}{2}}}. In particular, if LL is the gλg_{\lambda}-length of γ\gamma such that that |f|2(p)=(k+1)λ,|\nabla f|^{2}(p)=(k+1)\lambda, then for some c>0c^{\prime}>0

L=0l(|f|2λ)12γ(t)𝑑t(k1)12λ1κ2(k+1)κ+22cλ1κ2kκ+12.L=\int_{0}^{l}(|\nabla f|^{2}-\lambda)^{\frac{1}{2}}\circ\gamma(t)dt\geq\frac{(k-1)^{\frac{1}{2}}\lambda^{\frac{1-\kappa}{2}}}{(k+1)^{\frac{\kappa+2}{2}}}\geq\frac{c^{\prime}\lambda^{\frac{1-\kappa}{2}}}{k^{\frac{\kappa+1}{2}}}.

Hence, if xK(k+1)λKkλx\in K_{(k+1)\lambda}-K_{k\lambda}, then (say k3k\geq 3)

ρλ(x)i=2k1cλ1κ2iκ+12c′′λ1κ2k1κ2\rho_{\lambda}(x)\geq\sum_{i=2}^{k-1}\frac{c^{\prime}\lambda^{\frac{1-\kappa}{2}}}{{i}^{\frac{\kappa+1}{2}}}\geq c^{\prime\prime}\lambda^{\frac{1-\kappa}{2}}k^{\frac{1-\kappa}{2}}

for some constant c′′>0c^{\prime\prime}>0.

Therefore,

MKn0λ|u|2𝑑vol\displaystyle\int_{M-K_{n_{0}\lambda}}|u|^{2}dvol =k=n0K(k+1)λKkλ|u|2𝑑vol\displaystyle=\sum_{k=n_{0}}^{\infty}\int_{K_{(k+1)\lambda-K_{k\lambda}}}|u|^{2}dvol
k=n0K(k+1)λKkλCeaρλ𝑑vol\displaystyle\leq\sum_{k=n_{0}}^{\infty}\int_{K_{(k+1)\lambda-K_{k\lambda}}}Ce^{-a\rho_{\lambda}}dvol
k=n0Ceac′′λ1κ2k1κ2Vol(K(k+1)λ)\displaystyle\leq\sum_{k=n_{0}}^{\infty}Ce^{-ac^{\prime\prime}\lambda^{\frac{1-\kappa}{2}}k^{\frac{1-\kappa}{2}}}\operatorname{Vol}(K_{(k+1)\lambda})
k=n0C1eac′′λ1κ2k1κ2((k+1)λ)αn2\displaystyle\leq\sum_{k=n_{0}}^{\infty}C_{1}e^{-ac^{\prime\prime}\lambda^{\frac{1-\kappa}{2}}k^{\frac{1-\kappa}{2}}}((k+1)\lambda)^{\alpha-\frac{n}{2}}
k=n0C2Ce12ac′′λ1κ2k1κ2k=n0C2Ce12ac′′k1κ2\displaystyle\leq\sum_{k=n_{0}}^{\infty}C_{2}C^{\prime}e^{-\frac{1}{2}ac^{\prime\prime}\lambda^{\frac{1-\kappa}{2}}k^{\frac{1-\kappa}{2}}}\leq\sum_{k=n_{0}}^{\infty}C_{2}C^{\prime}e^{-\frac{1}{2}ac^{\prime\prime}k^{\frac{1-\kappa}{2}}}

for λ1\lambda\geq 1. Here C=maxη>0η2αn1κe12ac′′ηC^{\prime}=\max_{\eta>0}\eta^{\frac{2\alpha-n}{1-\kappa}}e^{-\frac{1}{2}ac^{\prime\prime}\eta}. Clearly there is some n0n_{0} such that the last term in the inequality above is less than 1/21/2, which finishes the proof of the claim.

Let N(ϵ,λ)N(\epsilon,\lambda) be the minimal number of elements in an ϵ\epsilon-dense subset of Kn0λK_{n_{0}\lambda}. Then by the volume comparison, N(ϵ,λ)C1Vol(Kn0λ)ϵnN(\epsilon,\lambda)\leq C_{1}\frac{\operatorname{Vol}(K_{n_{0}\lambda})}{\epsilon^{n}}. We now follow the argument in the proof of Theorem 5.8 of [8] to show that E(λ)N(ϵ,λ)E(\lambda)\leq N(\epsilon,\lambda) for suitable ϵ\epsilon. Indeed, if E(λ)>N(ϵ,λ)E(\lambda)>N(\epsilon,\lambda), then there exists uE(λ)u\in E(\lambda) with unit L2L^{2} norm which vanishes on an ϵ\epsilon-dense subset of Kn0λK_{n_{0}\lambda}. By using the elliptic estimate as in [8] one deduces

supKn0λ|u|ϵCk(1+λk)\sup_{K_{n_{0}\lambda}}|u|\leq\epsilon C_{k}(1+\lambda^{k})

for any 2k>n2+1.2k>\frac{n}{2}+1. But this is clearly impossible if we take ϵ1:=2Ck(1+λk)Vol(Knoλ)1/2\epsilon^{-1}:=2C_{k}(1+\lambda^{k})\operatorname{Vol}(K_{n_{o}\lambda})^{1/2}, as

Kn0λ|u|2𝑑vol>1/2.\int_{K_{n_{0}\lambda}}|u|^{2}dvol>1/2.

.

As a result, if we choose the minimal kk, s.t. 2k>n2+12k>\frac{n}{2}+1, then by Lemma 2.2,

E(λ)N(ϵ,λ)C1Vol(Kn0λ)ϵnCλn2α+α+n.E(\lambda)\leq N(\epsilon,\lambda)\leq C_{1}\frac{\operatorname{Vol}(K_{n_{0}\lambda})}{\epsilon^{n}}\leq C\lambda^{\frac{n}{2}\alpha+\alpha+n}.

The rest of the proposition follows. ∎

Remark 2.5.

The α\alpha-polynomial tame condition is a technical one for the usual heat kernel approach to local index theorems. For example, on \mathbb{R} consider f=|x|ln|x|f=|x|\ln|x| outside |x|e|x|\leq e. Let λk\lambda_{k} be the kk-th eigenvalue of f\Box_{f}. Then by Weyl’s law (Cf. [13]), λkln(k)\lambda_{k}\lesssim\sqrt{\ln(k)}. For such slowly growing eigenvalue distributions, it is unreasonable to consider the limit limt0Trs(exp(tf))\lim_{t\to 0}Tr_{s}(\exp(-t\Box_{f})). On the other hand, this assumption is not essential if one is only interested in an index formula. This issue will be elaborated in a separate paper when we discuss the Dirac/Callias type operators.

Thus, assuming the α\alpha-polynomial tame condition, exp(tTf)\exp(-t\Box_{Tf}) is of trace class. It follows that

h(t,T)=Trs(exp(tTf))h(t,T)=\operatorname{Tr}_{s}(\exp(-t\Box_{Tf})) (5)

is independent of t.t. Moreover, as tt\to\infty, h(t,T)χ(M,dTf),h(t,T)\to\chi(M,d_{Tf}), where

χ(M,dTf)=i=0n(1)ibi(T),bi=dim(H(2)i(M,dTf)).\chi(M,d_{Tf})=\sum_{i=0}^{n}(-1)^{i}b_{i}(T),b_{i}=\dim(H^{i}_{(2)}(M,d_{Tf})).

Now by Theorem 1.3 in [3], h(t,T)h(t,T) is independent of T>0T>0. As a result, h(t,T)h(t,T) is independent of both t>0t>0 and T>0T>0.

3 Construction of Parametrix

In this section, we extend the parametrix construction of the heat kernel to the Witten deformation. The case of Euclidean space is treated in [5].

Fix xMx\in M, and let d(y,x)d(y,x) be the distance function. Let τ>0\tau>0 be the injectivity radius of M.M. Then for yBτ(x)y\in B_{\tau}(x), define

0(t,x,y)=1(4πt)n2exp(d2(x,y)/4t).\mathcal{E}_{0}(t,x,y)=\frac{1}{(4\pi t)^{\frac{n}{2}}}\exp(-d^{2}(x,y)/4t). (6)

For simplicity, we denote VT=T2|f|2V_{T}=T^{2}|\nabla f|^{2} and V=|f|2V=|\nabla f|^{2}. Suppose γ\gamma is the normal geodesic connecting xx and yy, and rx(y)=d(x,y)r_{x}(y)=d(x,y). Set

hT(x,y)=1rx(y)0rx(y)VT(γ(s))𝑑s=T2h(x,y),h(x,y)=1rx(y)0rx(y)V(γ(s))𝑑s.h_{T}(x,y)=\frac{1}{r_{x}(y)}\int_{0}^{r_{x}(y)}V_{T}(\gamma(s))ds=T^{2}h(x,y),\ \ \ h(x,y)=\frac{1}{r_{x}(y)}\int_{0}^{r_{x}(y)}V(\gamma(s))ds. (7)

We define

1,T(t,x,y)=exp(thT(x,y)).\mathcal{E}_{1,T}(t,x,y)=\exp(-t\,h_{T}(x,y)). (8)

Then direct computation gives us the following formulas (the first two are well known).

Proposition 3.1.

For yBτ(x)y\in B_{\tau}(x) in the normal coordinates near xx, we have

0=02trr,(t+Δ)0=04tGrrG.\nabla\mathcal{E}_{0}=-\frac{\mathcal{E}_{0}}{2t}r\nabla r,\ \ \ (\frac{\partial}{\partial t}+\Delta)\mathcal{E}_{0}=\frac{\mathcal{E}_{0}}{4tG}\nabla_{r\nabla r}G.
rrhT(x,y)+hT(x,y)VT(y)=0.\nabla_{r\nabla r}h_{T}(x,y)+h_{T}(x,y)-V_{T}(y)=0.

Here G=det(gij)G=\det(g_{ij}) and derivatives are taken with respect to y.y.

Let pi:M×MMp_{i}:M\times M\mapsto M be the projection of i-th factor of M×MM\times M to M,i=1,2M,\ i=1,2. We define the vector bundle EM×ME\to M\times M to be E=(p1)(Λ(M))(p2)(Λ(M))E=(p_{1})^{*}(\Lambda^{*}(M))\otimes(p_{2})^{*}(\Lambda^{*}(M)). Let s(t,x,y)=i=0ktiΘi(x,y),s(t,x,y)=\sum_{i=0}^{k}t^{i}\Theta_{i}(x,y), where Θi(x,y)Γ(E)\Theta_{i}(x,y)\in\Gamma(E). Since yy is within the injectivity radius of xx, we use parallel transport along radius geodesics to identify Λy(M)\Lambda^{*}_{y}(M) with Λx(M)\Lambda^{*}_{x}(M). In this way, Θi(x,y)Γ(E)\Theta_{i}(x,y)\in\Gamma(E) is identified with an endomorphismm of Λ(M)\Lambda^{*}(M) using the metric. Again by a straightforward computation and using Proposition 3.1, we have

Proposition 3.2.
(t+Tf)(01,Ts)=01,T{j=1k1[(j+1+14GrrG)Θj+1+rrΘj+1+ΔΘjTLfΘj]tj+[ΔΘkTLfΘk]tk+j=1k+1[ΔhTΘj1+2hTΘj1]tj+j=2k+2[|hT|2Θj2]tj},\displaystyle\begin{split}(&\frac{\partial}{\partial t}+\Box_{Tf})(\mathcal{E}_{0}\mathcal{E}_{1,T}s)\\ &=\mathcal{E}_{0}\mathcal{E}_{1,T}\Big{\{}\sum_{j=-1}^{k-1}[(j+1+\frac{1}{4G}\nabla_{r\nabla r}G)\Theta_{j+1}+\nabla_{r\nabla r}\Theta_{j+1}+\Delta\Theta_{j}-TL_{f}\Theta_{j}]t^{j}\\ &+[\Delta\Theta_{k}-TL_{f}\Theta_{k}]t^{k}+\sum_{j=1}^{k+1}[-\Delta h_{T}\Theta_{j-1}+2\nabla_{\nabla h_{T}}\Theta_{j-1}]t^{j}\\ &+\sum_{j=2}^{k+2}[-|\nabla h_{T}|^{2}\Theta_{j-2}]t^{j}\Big{\}},\end{split} (9)

where the derivatives are taken with respect to y.y.

Now we can follow the standard procedure to find suitable Θj=ΘT,j\Theta_{j}=\Theta_{T,j} with ΘT,0(x,x)=Id\Theta_{T,0}(x,x)=\operatorname{Id}, j=0,1,,k,j=0,1,...,k, such that

(t+Tf)(01s)=tkRk,T(t,x,y),(\frac{\partial}{\partial t}+\Box_{Tf})(\mathcal{E}_{0}\mathcal{E}_{1}s)=t^{k}R_{k,T}(t,x,y), (10)

where Rk,T(t,x,y)R_{k,T}(t,x,y) is C0C^{0} in t[0,)t\in[0,\infty). This amounts to solving ODEs inductively.

For j=1j=-1, we have ddr(G1/4ΘT,0)=0\frac{d}{dr}(G^{1/4}\Theta_{T,0})=0. Together with the initial condition ΘT,0(x,x)=Id\Theta_{T,0}(x,x)=\operatorname{Id}, one has ΘT,0=G1/4Id\Theta_{T,0}=G^{-1/4}\operatorname{Id}.

For j=0j=0, we have ddr(rG1/4ΘT,1)=G1/4(TLfΔ)ΘT,0\frac{d}{dr}(rG^{1/4}\Theta_{T,1})=G^{1/4}(TL_{f}-\Delta)\Theta_{T,0}; hence we can solve Θ1\Theta_{1} explicitly in terms of ΘT,0\Theta_{T,0}, by integrating along the geodesic.

Similarly, for 1jk11\leq j\leq k-1, ΘT,j+1\Theta_{T,j+1} can be solved recursively from the equation

ddr(rj+1G1/4ΘT,j+1)\displaystyle\frac{d}{dr}(r^{j+1}G^{1/4}\Theta_{T,j+1}) =rjG1/4(ΔΘT,jTLfΘT,jΔhTΘT,j1\displaystyle=-r^{j}G^{1/4}(\Delta\Theta_{T,j}-TL_{f}\Theta_{T,j}-\Delta h_{T}\Theta_{T,j-1}
+2hTΘT,j1|hT|2ΘT,j2).\displaystyle+2\nabla_{\nabla h_{T}}\Theta_{T,j-1}-|\nabla h_{T}|^{2}\Theta_{T,j-2}).

With these choices for ΘT,j\Theta_{T,j}’s, we obtain (10), where

Rk,T\displaystyle R_{k,T} =01{[ΔΘT,kTLfΘT,kΔhTΘT,k1+2hTΘT,k1|hT|2ΘT,k2]\displaystyle=\mathcal{E}_{0}\mathcal{E}_{1}\Big{\{}[\Delta\Theta_{T,k}-TL_{f}\Theta_{T,k}-\Delta h_{T}\Theta_{T,k-1}+2\nabla_{\nabla h_{T}}\Theta_{T,k-1}-|\nabla h_{T}|^{2}\Theta_{T,k-2}]
+[ΔhTΘT,k+2hTΘT,k|hT|2ΘT,k1]t+[|hT|2ΘT,k]t2}\displaystyle+[-\Delta h_{T}\Theta_{T,k}+2\nabla_{\nabla h_{T}}\Theta_{T,k}-|\nabla h_{T}|^{2}\Theta_{T,k-1}]t+[-|\nabla h_{T}|^{2}\Theta_{T,k}]t^{2}\Big{\}} (11)

The following proposition follows from the above construction via an argument of induction, using the κ\kappa-regular tame condition.

Proposition 3.3.

Each ΘT,j\Theta_{T,j} can be written as a polynomial of TT:

ΘT,j(x,y)=l=0[j3]+jTlΘl,j(x,y),\Theta_{T,j}(x,y)=\sum_{l=0}^{[\frac{j}{3}]+j}T^{l}\Theta_{l,j}(x,y),

where Θl,j\Theta_{l,j} is independent of TT, [a][a] denotes the integral part of a real number aa. Moreover

|ΘT,j(x,y)|C(V¯γ)κjT[j3]+j,|\Theta_{T,j}(x,y)|\leq C(\bar{V}_{\gamma})^{\kappa^{\prime}j}T^{[\frac{j}{3}]+j},

where κ=κ+23\kappa^{\prime}=\frac{\kappa+2}{3}, V¯γ=suppγ|V(p)|\bar{V}_{\gamma}=\sup_{p\in\gamma}|V(p)|, γ\gamma is the shortest geodesic connecting xx and y.y. When restricted to the diagonal of M×MM\times M, ΘT,j(y,y)\Theta_{T,j}(y,y) can be written as an algebraic combination the curvature of the metric gg, the function ff, as well as their derivatives, at yy; in addition, ΘT,0(y,y)=Id.\Theta_{T,0}(y,y)=\operatorname{Id}.

Let ηCc()\eta\in C_{c}^{\infty}(\mathbb{R}) be a bump function, such that the support of η\eta is contained in [1,1],[-1,1], and η|[12,12]1.\eta|_{[-\frac{1}{2},\frac{1}{2}]}\equiv 1. Let ϕC(M×M)\phi\in C^{\infty}(M\times M) be defined as

ϕ(x,y)=η(d2(x,y)/τ2).\phi(x,y)=\eta(d^{2}(x,y)/\tau^{2}). (12)
Proposition 3.4.

Set

KTfk(t,x,y)=ϕ(x,y)0(t,x,y)1,T(t,x,y)j=0ktjΘT,j(x,y),K_{Tf}^{k}(t,x,y)=\phi(x,y)\mathcal{E}_{0}(t,x,y)\mathcal{E}_{1,T}(t,x,y)\sum_{j=0}^{k}t^{j}\Theta_{T,j}(x,y),

then

(t+Tf)KTfk(t,x,y)\displaystyle(\frac{\partial}{\partial t}+\Box_{Tf})K^{k}_{Tf}(t,x,y) =tkϕ(x,y)Rk,T(t,x,y)+Δϕ(x,y)KTfk(t,x,y)\displaystyle=t^{k}\phi(x,y)R_{k,T}(t,x,y)+\Delta\phi(x,y)K^{k}_{Tf}(t,x,y)
2(ϕ(x,y),KTfk(t,x,y)),\displaystyle-2(\nabla\phi(x,y),\nabla K_{Tf}^{k}(t,x,y)),

where Rk,TR_{k,T} is given by (3).

The following lemma provides the estimate saying that KTfk(t,x,y)K_{Tf}^{k}(t,x,y) is a suitable parametrix for the heat kernel of the Witten Laplacian. The proof uses Lemma 4.9 which will be shown in the next section when we introduce the necessary notions.

Lemma 3.5.

Assume t(0,1]t\in(0,1]. Let

R~k,T=tkϕ(x,y)Rk,T(t,x,y)+Δϕ(x,y)KTfk(t,x,y)2(ϕ(x,y),KTfk(t,x,y),\displaystyle\tilde{R}_{k,T}=t^{k}\phi(x,y)R_{k,T}(t,x,y)+\Delta\phi(x,y)K^{k}_{Tf}(t,x,y)-2(\nabla\phi(x,y),\nabla K_{Tf}^{k}(t,x,y),

then for T(0,t12]T\in(0,t^{-\frac{1}{2}}], any a(0,1),a\in(0,1),

|R~k,T(x,y)|\displaystyle|\tilde{R}_{k,T}(x,y)| Ca,kχBx(y)t(1κ)kκn2T2k+43exp(atT2h(x,y))exp(ad2(x,y)4t).\displaystyle\leq C_{a,k}\chi_{B_{x}}(y)t^{(1-\kappa^{\prime})k-\kappa^{\prime}-\frac{n}{2}}T^{\frac{-2k+4}{3}}\exp(-atT^{2}h(x,y))\exp(-\frac{ad^{2}(x,y)}{4t}).

Here Ca,kC_{a,k} is a constant depends on a,k,a,k, κ=κ+23\kappa^{\prime}=\frac{\kappa+2}{3} (from Proposition 3.3), Bx={yM:d(x,y)<τ},B_{x}=\{y\in M:d(x,y)<{\tau}\}, and χBx(y)\chi_{B_{x}}(y) denotes the characteristic function of BxB_{x}.

Proof.

Since the support of Δϕ(x,y)\Delta\phi(x,y) and ϕ(x,y)\nabla\phi(x,y) is a subset of {(x,y)M×M:d2(x,y)τ2(12,1)},\{(x,y)\in M\times M:\frac{d^{2}(x,y)}{\tau^{2}}\in(\frac{1}{2},1)\}, by Proposition 3.3, Lemma 4.9 and the fact that 0<a<10<a<1,

|Δϕ(x,y)KTfk(t,x,y)+(ϕ(x,y),KTfk(t,x,y))|\displaystyle|\Delta\phi(x,y)K^{k}_{Tf}(t,x,y)+(\nabla\phi(x,y),\nabla K_{Tf}^{k}(t,x,y))|
Ck,aχBxtn2exp((1a)d2(x,y)4t)exp(atT2h(x,y))exp(ad2(x,y)4t)\displaystyle\leq C_{k,a}\chi_{B_{x}}t^{-\frac{n}{2}}\exp(-\frac{(1-a)d^{2}(x,y)}{4t})\exp(-atT^{2}h(x,y))\exp(-\frac{ad^{2}(x,y)}{4t})
Ck,a,kχBxt(1κ)kκn2exp(atT2h(x,y))exp(ad2(x,y)4t).\displaystyle\leq C_{k,a,k}\chi_{B_{x}}t^{(1-\kappa^{\prime})k-\kappa^{\prime}-\frac{n}{2}}\exp(-atT^{2}h(x,y))\exp(-\frac{ad^{2}(x,y)}{4t}).

The last inequality follows form the fact that the function tlexp(t)Clt^{l}\exp(-t)\leq C_{l} for t(0,),l>0.t\in(0,\infty),l>0.

Similarly, by Proposition 3.3, Lemma 4.9 and the fact that tT21tT^{2}\leq 1, we have

|tkϕ(x,y)Rk,T|\displaystyle|t^{k}\phi(x,y)R_{k,T}| CkχBxj=kk+2tjn2T4(j+1)/3V¯γκ(j+1)exp(thT(x,y))exp(d2(x,y)4t)\displaystyle\leq C_{k}\chi_{B_{x}}\sum_{j=k}^{k+2}t^{j-\frac{n}{2}}T^{4(j+1)/3}\bar{V}_{\gamma}^{\kappa^{\prime}(j+1)}\exp(-t\,h_{T}(x,y))\exp(-\frac{d^{2}(x,y)}{4t})
CkχBxtkn2T4(k+1)3V¯γκ(k+1)exp(tT2h(x,y)))exp(d2(x,y)4t)\displaystyle\leq C_{k}^{\prime}\chi_{B_{x}}t^{k-\frac{n}{2}}T^{\frac{4(k+1)}{3}}\bar{V}_{\gamma}^{\kappa^{\prime}(k+1)}\exp(-{tT^{2}}h(x,y)))\exp(-\frac{d^{2}(x,y)}{4t})
Ca,kχBxt(1κ)kκn2T2k+43exp(atT2h(x,y)))exp(ad2(x,y)4t).\displaystyle\leq C_{a,k}\chi_{B_{x}}t^{(1-\kappa^{\prime})k-\kappa^{\prime}-\frac{n}{2}}T^{\frac{-2k+4}{3}}\exp(-{atT^{2}}h(x,y)))\exp(-\frac{ad^{2}(x,y)}{4t}).

This finishes the proof. ∎

4 Parabolic Distance and Heat Kernel Estimate

With the construction of the parametrix and the error estimate in the last section, we are now faced with the task of proving that it gives the desired asymptotic expansion of heat kernel. To this end, we need to estimate the convolutions of these terms, which seem quite daunting. Remarkably we found that a parabolic distance that appeared previously in Li-Yau’s famous work [10] on the Harnack estimate of the heat kernel of Schrödinger operators greatly simplifies the task, both computationally and conceptually. Our inspiration actually comes from the path integral formalism of quantum mechanics.

Another remarkable feature of the parabolic distance is its connection with the Agmon distance [1], [2], [3], which we will use to establish the needed lower bound for the parabolic distance. The resulting pointwise asymptotic expansion of the heat kernel will then be strong enough to pass to the trace of the heat kernel in the noncompact setting.

Let KTfkK_{Tf}^{k} be the parametrix of t+Tf\partial_{t}+\Box_{Tf} constructed in Section 3, i.e.

KTfk(t,x,y)=ϕ(x,y)0(t,x,y)1,T(t,x,y)j=0ktjΘT,j(x,y),K_{Tf}^{k}(t,x,y)=\phi(x,y)\mathcal{E}_{0}(t,x,y)\mathcal{E}_{1,T}(t,x,y)\sum_{j=0}^{k}t^{j}\Theta_{T,j}(x,y),

where ϕ\phi is the cut-off function defined in (12).

We define convolution of f(t,x,y),g(t,x,y)Γ(E)f(t,x,y),g(t,x,y)\in\Gamma(E) as

(fg)(t,x,y)=0tM(f(ts,x,z),g(s,z,y))z𝑑vol(z)𝑑s.(f*g)(t,x,y)=\int_{0}^{t}\int_{M}(f(t-s,x,z),g(s,z,y))_{z}dvol(z)ds.

Let KTfK_{Tf} denote the heat kernel of Tf\Box_{Tf}. By the Duhamel Principle, we have

Lemma 4.1.

The heat kernel KTfK_{Tf} is given by

KTf(t,x,y)=KTfk(t,x,y)+(KTfkl=1(1)l(R~k,T)l)(t,x,y).K_{Tf}(t,x,y)=K^{k}_{Tf}(t,x,y)+(K^{k}_{Tf}*\sum_{l=1}^{\infty}(-1)^{l}(\tilde{R}_{k,T})^{*l})(t,x,y).

Here

R~k,Tl=R~k,TR~k,Tl times.\tilde{R}_{k,T}^{*l}=\underbrace{\tilde{R}_{k,T}*...*\tilde{R}_{k,T}}_{\text{$l$ times}}.

Motivated by the path integral formalism of quantum mechanics, for any piecewise smooth curve c:[0,t]Mc:[0,t]\mapsto M, s.t. c(0)=x,c(t)=yc(0)=x,c(t)=y, we define

St,x,y(c)=0t(|c(s)|24+T2V(c(s)))𝑑s.S_{t,x,y}(c)=\int_{0}^{t}\left(\frac{|c^{\prime}(s)|^{2}}{4}+T^{2}V(c(s))\right)ds.

Let Ct,x,y:={c:[0,t]M|cis piecewise smooth,c(0)=x,c(t)=y}C_{t,x,y}:=\{\,c:[0,t]\mapsto M\ |\ c\ \mbox{is piecewise smooth},\ c(0)=x,c(t)=y\,\}. Define the following parabolic (meta-)distance

d~T(t,x,y):=infcCt,x,ySt,x,y(c).\tilde{d}_{T}(t,x,y):=\inf_{c\in C_{t,x,y}}S_{t,x,y}(c). (13)

The following lemma summarizing its fundamental properties follows mostly from the definition.

Lemma 4.2.

d~T(t,x,y)\tilde{d}_{T}(t,x,y) is a parabolic (meta-)distance; that is

  • d~T(t,x,y)0\tilde{d}_{T}(t,x,y)\geq 0;

  • d~T(t,x,y)=d~T(t,y,x)\tilde{d}_{T}(t,x,y)=\tilde{d}_{T}(t,y,x);

  • for 0st0\leq s\leq t, we have

    d~T(ts,x,y)+d~T(s,y,z)d~T(t,x,z).\tilde{d}_{T}(t-s,x,y)+\tilde{d}_{T}(s,y,z)\geq\tilde{d}_{T}(t,x,z). (14)

Moreover,

d~T(t,x,y)d2(x,y)4t+thT(x,y).\tilde{d}_{T}(t,x,y)\leq\frac{d^{2}(x,y)}{4t}+t\,h_{T}(x,y). (15)

The last inequality follows from taking a minimal geodesic c~\tilde{c} connecting xx and yy and noting that St,x,y(c~)=d2(x,y)4t+thT(x,y)S_{t,x,y}(\tilde{c})=\frac{d^{2}(x,y)}{4t}+t\,h_{T}(x,y). The inequality (15) connects the parabolic distance to our parametrix.

Conceptually the most crucial property of the parabolic distance for the estimation of the convolutions of the error terms is the triangle inequality (14). We illustrate this by an example. If VT=0V_{T}=0, then d~T(t,x,y)=d2(x,y)4t\tilde{d}_{T}(t,x,y)=\frac{d^{2}(x,y)}{4t}. In this case, the triangle inequality (14) reduces to the well known

d2(x,y)ts+d2(y,z)sd2(x,z)t,\frac{d^{2}(x,y)}{t-s}+\frac{d^{2}(y,z)}{s}\geq\frac{d^{2}(x,z)}{t},

which plays a crucial role in the classical asymptotic expansion for the heat kernel.

The following lemma will be also needed in the heat kernel estimate involving the convolutions, and whose proof follows from a standard argument of volume comparison.

Lemma 4.3.

For xMx\in M and δ<τ\delta<\tau, denote Bx={yM:d(x,y)<δ}.B_{x}=\{y\in M:d(x,y)<{\delta}\}. Then there exists A=A(F0,τ,δ,n)>0A=A(F_{0},\tau,\delta,n)>0, s.t.

Bxexp(d2(x,z)t)𝑑zAtn2.\displaystyle\int_{B_{x}}\exp(-\frac{d^{2}(x,z)}{t})dz\leq At^{\frac{n}{2}}.

Recall that F0F_{0} is the curvature bound, τ\tau is the injectivity radius bound.

With these preparations we now turn to the estimation of the convolution terms in the Duhamel Principle, Lemma 4.1. From now on, we fix an integer kk sufficiently large so that

α(k,κ,n)=13(1κ)kκ+23n2+1>0.\alpha(k,\kappa,n)=\frac{1}{3}(1-\kappa)k-\frac{\kappa+2}{3}-\frac{n}{2}+1>0.
Lemma 4.4.

Assume that t(0,1]t\in(0,1] and T(0,t12]T\in(0,t^{-\frac{1}{2}}]. Then for any a(0,1)a\in(0,1), there exist C=C(k,a,κ,τ,F0)>0C=C(k,a,\kappa,\tau,F_{0})>0, such that, for all ll\in\mathbb{N},

|KTfkR~k,Tl|(t,x,y)CltαlTβll!exp(ad~T(t,x,y)),|K_{Tf}^{k}*\tilde{R}_{k,T}^{*l}|(t,x,y)\leq\frac{C^{l}t^{\alpha l}T^{\beta l}}{l!}\exp(-a\tilde{d}_{T}(t,x,y)),

where α=α(k,κ,n)\alpha=\alpha(k,\kappa,n) as above, and β=β(k)=2k+43\beta=\beta(k)=\frac{-2k+4}{3}.

Proof.

Let Bx={yM:d(x,y)<τ}B_{x}=\{y\in M:d(x,y)<\tau\}, then by the volume comparison, we have

vol(Bx)Cτ.vol(B_{x})\leq C_{\tau}. (16)

From Lemma 3.5 and (15), we have for T(0,t12]T\in(0,t^{-\frac{1}{2}}], any a(0,1),a\in(0,1),

|R~k,T(x,y)|\displaystyle|\tilde{R}_{k,T}(x,y)| Ca,kχBx(y)tα1Tβexp(ad~T(t,x,y)).\displaystyle\leq C_{a,k}\chi_{B_{x}}(y)t^{\alpha-1}T^{\beta}\exp(-a\tilde{d}_{T}(t,x,y)).

Therefore by (14),

|R~k,Tl|\displaystyle|\tilde{R}_{k,T}^{*l}| =|0t0t10tl2MMR~k,T(tt1,x,z1)R~k,T(t1t2,z1,z2)\displaystyle=\left|\int_{0}^{t}\int_{0}^{t_{1}}...\int_{0}^{t_{l-2}}\int_{M}...\int_{M}\tilde{R}_{k,T}(t-t_{1},x,z_{1})\tilde{R}_{k,T}(t_{1}-t_{2},z_{1},z_{2})\right.
×R~k,T(t2t3,z2,z3)R~k,T(tl1,zl1,y)dvol(zl1)dvol(z1)dtl1dtl2dt1|\displaystyle\left.\times\tilde{R}_{k,T}(t_{2}-t_{3},z_{2},z_{3})\cdots\tilde{R}_{k,T}(t_{l-1},z_{l-1},y)dvol(z_{l-1})\cdots dvol(z_{1})dt_{l-1}dt_{l-2}\cdots dt_{1}\right|
=|0t0t10tl2BxBzl2R~k,T(tt1,x,z1)R~k,T(t1t2,z1,z2)\displaystyle=\left|\int_{0}^{t}\int_{0}^{t_{1}}...\int_{0}^{t_{l-2}}\int_{B_{x}}...\int_{B_{z_{l-2}}}\tilde{R}_{k,T}(t-t_{1},x,z_{1})\tilde{R}_{k,T}(t_{1}-t_{2},z_{1},z_{2})\right.
×R~k,T(t2t3,z2,z3)R~k,T(tl1,zl1,y)dvol(zl1)dvol(z1)dtl1dtl2dt1|\displaystyle\times\left.\tilde{R}_{k,T}(t_{2}-t_{3},z_{2},z_{3})\cdots\tilde{R}_{k,T}(t_{l-1},z_{l-1},y)dvol(z_{l-1})\cdots dvol(z_{1})dt_{l-1}dt_{l-2}...dt_{1}\right|
(CτCa,k)lTβlexp(ad~T(t,x,y))0t0t10tl2(tt1)α1tl1α1𝑑tl1𝑑t1\displaystyle\leq(C_{\tau}C_{a,k})^{l}T^{\beta l}\exp(-a\tilde{d}_{T}(t,x,y))\int_{0}^{t}\int_{0}^{t_{1}}...\int_{0}^{t_{l-2}}(t-t_{1})^{\alpha-1}\cdots t_{l-1}^{\alpha-1}dt_{l-1}\cdots dt_{1}
Cltαl1Tβl(l1)!exp(ad~T(t,x,y)).\displaystyle\leq\frac{C^{l}t^{\alpha l-1}T^{\beta l}}{(l-1)!}\exp(-a\tilde{d}_{T}(t,x,y)).

On the other hand, by Proposition 3.3, Kk(t,x,y)Ctn2exp(ad~T(t,x,y))K_{k}(t,x,y)\leq Ct^{-\frac{n}{2}}\exp(-a^{\prime}\tilde{d}_{T}(t,x,y)), where, for our purpose, a(0,1)a^{\prime}\in(0,1) is chosen to be a=1+a2=a+ba^{\prime}=\frac{1+a}{2}=a+b, with b=1a2>0b=\frac{1-a}{2}>0. Hence

|KTfkR~k,Tl|(t,x,y)\displaystyle|K_{Tf}^{k}*\tilde{R}_{k,T}^{*l}|(t,x,y) Cl+1Tβl(l1)!0tBx(ts)n2sαl1\displaystyle\leq\frac{C^{l+1}T^{\beta l}}{(l-1)!}\int_{0}^{t}\int_{B_{x}}(t-s)^{-\frac{n}{2}}s^{\alpha l-1}
×exp(ad~T(ts,x,z))exp(ad~T(s,z,y))dvol(z)ds\displaystyle\times\exp(-a^{\prime}\tilde{d}_{T}(t-s,x,z))\exp(-a\tilde{d}_{T}(s,z,y))dvol(z)ds
Cl+1Tβl(l1)!exp(ad~T(t,x,y))\displaystyle\leq\frac{C^{l+1}T^{\beta l}}{(l-1)!}\exp(-a\tilde{d}_{T}(t,x,y))
×0tsαl1Bx(ts)n2exp(bd2(x,y)4(ts))dvol(z)ds\displaystyle\times\int_{0}^{t}s^{\alpha l-1}\int_{B_{x}}(t-s)^{-\frac{n}{2}}\exp(-\frac{bd^{2}(x,y)}{4(t-s)})dvol(z)ds
ACl+1tαlTβl(αl)(l1)!exp(ad~T(t,x,y)).\displaystyle\leq\frac{AC^{l+1}t^{\alpha l}T^{\beta l}}{(\alpha l)(l-1)!}\exp(-a\tilde{d}_{T}(t,x,y)).

Here in the last inequality, we have made use of Lemma 4.3. ∎

We summarize our discussion so far.

Theorem 4.1.

The heat kernel KTfK_{Tf} has the following complete pointwise asymptotic expansion. For any x,yMx,y\in M such that d(x,y)1/2τd(x,y)\leq 1/2\tau,

KTf(t,x,y)1(4πt)n2exp(d2(x,y)/4t)exp(thT(x,y))j=0tjΘT,j(x,y),K_{Tf}(t,x,y)\sim\frac{1}{(4\pi t)^{\frac{n}{2}}}\exp(-d^{2}(x,y)/4t)\exp(-t\,h_{T}(x,y))\sum_{j=0}^{\infty}t^{j}\Theta_{T,j}(x,y),

as t0t\rightarrow 0. Each ΘT,j\Theta_{T,j} is a polynomial of TT:

ΘT,j(x,y)=l=0[j3]+jTlΘl,j(x,y),\Theta_{T,j}(x,y)=\sum_{l=0}^{[\frac{j}{3}]+j}T^{l}\Theta_{l,j}(x,y),

and, when restricted to the diagonal of M×MM\times M, Θl,j(y,y)\Theta_{l,j}(y,y) can be written as an algebraic combination of the curvature of the metric gg, the function ff, as well as their derivatives, at yy; in addition, ΘT,0(y,y)=Id.\Theta_{T,0}(y,y)=\operatorname{Id}. Moreover, we have the following remainder estimate. For any kk sufficiently large and any a(0,1)a\in(0,1),

|KTf(t,x,y)1(4πt)n2exp(d2(x,y)/4t)exp(thT(x,y))j=0ktjΘT,j(x,y)|\displaystyle\left|K_{Tf}(t,x,y)-\frac{1}{(4\pi t)^{\frac{n}{2}}}\exp(-d^{2}(x,y)/4t)\exp(-t\,h_{T}(x,y))\sum_{j=0}^{k}t^{j}\Theta_{T,j}(x,y)\right|
Ct13(1κ)kκ+23n2+1T2k+43exp(ad~T(t,x,y)),\displaystyle\leq Ct^{\frac{1}{3}(1-\kappa)k-\frac{\kappa+2}{3}-\frac{n}{2}+1}T^{\frac{-2k+4}{3}}\exp(-a\tilde{d}_{T}(t,x,y)),\hskip 108.405pt

for t(0,1]t\in(0,1] and T(0,t12]T\in(0,t^{-\frac{1}{2}}].

Remark 4.5.

Here the choice for t(0,1]t\in(0,1] and T(0,t12]T\in(0,t^{-\frac{1}{2}}] is for simplicity and convenience. Our discussion works for t(0,t0]t\in(0,t_{0}] and T(0,T0t12]T\in(0,T_{0}t^{-\frac{1}{2}}] but the estimates will depend on those choices as well.

Without an effective lower bound on the parabolic distance d~T(t,x,y)\tilde{d}_{T}(t,x,y) in our noncompact setting, the pointwise asymptotic expansion for the heat kernel of the Witten Laplacian will not be very useful beyond recovering the classical expansion. In particular, in passing from the pointwise asymptotic expansion to the asymptotic expansion of the (global) heat trace, we need remainder estimates which can compensate for the divergent volume integral. Here we explore the interesting connection of the parabolic distance to the Agmon distance and establish such an effective lower bound.

Recall that, in our setting, the Agmon metric (Cf. [1], [2], [3]) is T2|f|2gT^{2}|\nabla f|^{2}g. For any piecewise smooth curve cc in MM, denote LTf(c)L_{Tf}(c) the Agmon length of cc, i.e., the length of cc with respect to Agmon metric T2|f|2g.T^{2}|\nabla f|^{2}g.

First of all, we note

Lemma 4.6.

Let cCt,x,yc\in C_{t,x,y} be a piecewise smooth curve.Then,

St,x,y(c)LTf(c).S_{t,x,y}(c)\geq L_{Tf}(c). (17)
Proof.

This follows from an elementary inequality as

St,x,y(c)=0t|c(s)|24+T2V(c(s))ds0tT|f|(c(s))|c(s)|𝑑s=LTf(c).S_{t,x,y}(c)=\int_{0}^{t}\frac{|c^{\prime}(s)|^{2}}{4}+T^{2}V(c(s))ds\geq\int_{0}^{t}T|\nabla f|(c(s))|c^{\prime}(s)|ds=L_{Tf}(c).

Thus the parabolic distance is bounded from below by the Agmon distance (but we actually will be using the Agmon length later). ∎

The following lemma says that the Agmon length can be bounded from below effectively if the potential function varies considerably along a curve.

Lemma 4.7.

Let cCt,x,yc\in C_{t,x,y} be a piecewise smooth curve. If

infs[0,t]V(c(s))12sups[0,t]V(c(s)),\inf_{s\in[0,t]}V(c(s))\leq\frac{1}{2}\sup_{s\in[0,t]}V(c(s)),

then there exists constant β¯>0\bar{\beta}>0 depending only on the bounds in the tameness condition, such that

LTf(c)β¯Tsups[0,t]|V|1κ(γ(s)).L_{Tf}(c)\geq\bar{\beta}T\sup_{s\in[0,t]}|V|^{1-\kappa}(\gamma(s)).
Proof.

Set V¯c:=sups[0,t]V(c(s))\bar{V}_{c}:=\sup_{s\in[0,t]}V(c(s)). Then we can find an interval [a,b][0,t][a,b]\subset[0,t], s.t. V(c(a))=V¯c2,V(c(a))=\frac{\bar{V}_{c}}{2}, V(c(b))=V¯cV(c(b))=\bar{V}_{c} (or vice versa, V(c(b))=V¯c2,V(c(b))=\frac{\bar{V}_{c}}{2}, V(c(a))=V¯cV(c(a))=\bar{V}_{c}). Moreover, for all s[a,b]s\in[a,b], V(c(s))V¯c2.V(c(s))\geq\frac{\bar{V}_{c}}{2}.

Now by the κ\kappa-regular tame condition,

V¯c2\displaystyle\frac{\bar{V}_{c}}{2} =|V(c(a))V(c(b))|ab|V(c(s))||c(s)|𝑑s\displaystyle=|V(c(a))-V(c(b))|\leq\int_{a}^{b}|\nabla V(c(s))||c^{\prime}(s)|ds
Cab|V(c(s))|κ+22|c(s)|𝑑s\displaystyle\leq C\int_{a}^{b}|V(c(s))|^{\frac{\kappa+2}{2}}|c^{\prime}(s)|ds
CV¯cκ+12ab|f|(c(s))|c(s)|𝑑s\displaystyle\leq C\bar{V}_{c}^{\frac{\kappa+1}{2}}\int_{a}^{b}|\nabla f|(c(s))|c^{\prime}(s)|ds
CT1V¯cκ+12LTf(c|[a,b])\displaystyle\leq CT^{-1}\bar{V}_{c}^{\frac{\kappa+1}{2}}L_{Tf}(c|_{[}a,b])

Thus, for β¯=12C>0\bar{\beta}=\frac{1}{2C}>0,

LTf(c)LTf(c|[a,b])β¯TV¯c1κ2=β¯Tsups[0,t]|V|1κ2(γ(s)).L_{Tf}(c)\geq L_{Tf}(c|_{[a,b]})\geq\bar{\beta}T{\bar{V}_{c}}^{\frac{1-\kappa}{2}}=\bar{\beta}T\sup_{s\in[0,t]}|V|^{\frac{1-\kappa}{2}}(\gamma(s)). (18)

Finally we arrive at the following effective lower bound for the parabolic distance.

Lemma 4.8.

One has

d~T(t,x,y)min{β¯TV1κ2(x),tT2V(x)2}.\tilde{d}_{T}(t,x,y)\geq\min\{\bar{\beta}TV^{\frac{1-\kappa}{2}}(x),\frac{tT^{2}V(x)}{2}\}. (19)

In particular, for t(0,1],T=t12t\in(0,1],T=t^{-\frac{1}{2}},

d~T(t,x,y)β¯V1κ2(x)min{1,V(x)κ+122β¯}.\tilde{d}_{T}(t,x,y)\geq\bar{\beta}V^{\frac{1-\kappa}{2}}(x)\min\{1,\frac{V(x)^{\frac{\kappa+1}{2}}}{2\bar{\beta}}\}. (20)
Proof.

Let γ:[0,t]M\gamma:[0,t]\mapsto M be a curve minimizing St,x,y.S_{t,x,y}. As before, set V¯γ:=sups[0,t]V(γ(s)).\bar{V}_{\gamma}:=\sup_{s\in[0,t]}V(\gamma(s)).

If V(γ(s))V¯γ2V(\gamma(s))\geq\frac{\bar{V}_{\gamma}}{2} for all s[0,t]s\in[0,t], then we have

d~T(t,x,y)tT2V¯γ2tT2V(x)2.\tilde{d}_{T}(t,x,y)\geq\frac{tT^{2}\bar{V}_{\gamma}}{2}\geq\frac{tT^{2}V(x)}{2}. (21)

If not, by Lemma 4.7,

LTf(x,y)β¯TV¯γ1κ2β¯TV1κ2(x).L_{Tf}(x,y)\geq\bar{\beta}T{\bar{V}_{\gamma}}^{\frac{1-\kappa}{2}}\geq\bar{\beta}TV^{\frac{1-\kappa}{2}}(x). (22)

Therefore, by Lemma 4.6,

d~T(t,x,y)min{β¯TV1κ2(x),tT2V(x)2}.\tilde{d}_{T}(t,x,y)\geq\min\{\bar{\beta}TV^{\frac{1-\kappa}{2}}(x),\frac{tT^{2}V(x)}{2}\}.

Our results follow. ∎

We also note the following lemma which was used in the previous section.

Lemma 4.9.

For a(0,1),t(0,1)a\in(0,1),t\in(0,1), l>0l>0, there exists Ca,κ,l>0C_{a,\kappa,l}>0, s.t.

V¯γlexp(d2(x,y)4t)exp(tT2h(x,y))Ca,κ,ltlT2lexp(ad2(x,y)4t)exp(atT2h(x,y)),\bar{V}_{\gamma}^{l}\exp(-\frac{d^{2}(x,y)}{4t})\exp(-tT^{2}h(x,y))\leq C_{a,\kappa,l}t^{-l}T^{-2l}\exp(-\frac{ad^{2}(x,y)}{4t})\exp(-atT^{2}h(x,y)),

where γ\gamma is the minimal geodesic connecting xx and yy, V¯γ=suppγ|V(p)|.\bar{V}_{\gamma}=\sup_{p\in\gamma}|V(p)|.

Proof.

When infpγ|V(p)|V¯γ2\inf_{p\in\gamma}|V(p)|\geq\frac{\bar{V}_{\gamma}}{2}, h(x,y)V¯γ2h(x,y)\geq\frac{\bar{V}_{\gamma}}{2}, hence V¯γlexp((1a)tT2h(x,y))Ca,ltlT2l\bar{V}_{\gamma}^{l}\exp(-(1-a)tT^{2}h(x,y))\leq C_{a,l}t^{-l}T^{-2l} for some Ca,l>0.C_{a,l}>0.

Otherwise, by Lemmas 4.6 and 4.7, d2(x,y)4t+tT2h(x,y)β¯TV¯γ1κ2β¯(T2V¯γ)1κ2\frac{d^{2}(x,y)}{4t}+tT^{2}h(x,y)\geq\bar{\beta}T\bar{V}_{\gamma}^{\frac{1-\kappa}{2}}\geq\bar{\beta}(T^{2}\bar{V}_{\gamma})^{\frac{1-\kappa}{2}}. Therefore, there exist Ca,κ,lC_{a,\kappa,l} such that

V¯γlexp((1a)d2(x,y)4t)exp((1a)tT2h(x,y))\displaystyle\bar{V}_{\gamma}^{l}\exp(-(1-a)\frac{d^{2}(x,y)}{4t})\exp(-(1-a)tT^{2}h(x,y)) V¯γlexp((1a)β¯(T2V)1κ)\displaystyle\leq\bar{V}_{\gamma}^{l}\exp(-(1-a)\bar{\beta}(T^{2}V)^{1-\kappa})
Ca,κ,lT2lCa,κ,ltlT2l\displaystyle\leq C_{a,\kappa,l}T^{-2l}\leq C_{a,\kappa,l}t^{-l}T^{-2l}

which yields the result. ∎

Combining the above discussion with Theorem 4.1 we have

Theorem 4.2.

For T=t12T=t^{-\frac{1}{2}}, the heat kernel Kt12fK_{t^{-\frac{1}{2}}f} of the Witten Laplacian has the following complete pointwise (diagonal) asymptotic expansion. For any xMx\in M,

Kt12f(t,x,x)1(4πt)n2exp(|f|2(x))j=0l=0[j3]+jtjl2Θl,j(x,x),K_{t^{-\frac{1}{2}}f}(t,x,x)\sim\frac{1}{(4\pi t)^{\frac{n}{2}}}\exp(-|\nabla f|^{2}(x))\sum_{j=0}^{\infty}\sum_{l=0}^{[\frac{j}{3}]+j}t^{j-\frac{l}{2}}\Theta_{l,j}(x,x),

as t0t\rightarrow 0. Moreover, for any kk sufficiently large and any a(0,1)a\in(0,1),

|Kt12f(t,x,x)1(4πt)n2exp(|f|2(x))j=0l=0[j3]+jtjl2Θl,j(x,x)|\displaystyle\left|K_{t^{-\frac{1}{2}}f}(t,x,x)-\frac{1}{(4\pi t)^{\frac{n}{2}}}\exp(-|\nabla f|^{2}(x))\sum_{j=0}^{\infty}\sum_{l=0}^{[\frac{j}{3}]+j}t^{j-\frac{l}{2}}\Theta_{l,j}(x,x)\right|
Ct13(2κ)kκ+13n2exp(aβ¯|f|1κ(x)),\displaystyle\leq Ct^{\frac{1}{3}(2-\kappa)k-\frac{\kappa+1}{3}-\frac{n}{2}}\exp(-a\bar{\beta}|\nabla f|^{1-\kappa}(x)),\hskip 57.81621pt

for t(0,1]t\in(0,1] and xMx\in M. In particular, we have the following small time asymptotic expansion of the heat trace:

Tr(exp(tt12f))1(4πt)n2j=0l=0[j3]+jtjl2Mexp(|f|2(x))tr(Θl,j(x,x))𝑑x,\operatorname{Tr}\left(\exp(-t\Box_{t^{-\frac{1}{2}}f})\right)\sim\frac{1}{(4\pi t)^{\frac{n}{2}}}\sum_{j=0}^{\infty}\sum_{l=0}^{[\frac{j}{3}]+j}t^{j-\frac{l}{2}}\int_{M}\exp(-|\nabla f|^{2}(x))\operatorname{tr}(\Theta_{l,j}(x,x))dx,

as t0t\rightarrow 0, with the remainder estimate

|Tr(exp(tt12f))1(4πt)n2j=0kl=0[j3]+jtjl2Mexp(|f|2(x))tr(Θl,j(x,x))𝑑x|\displaystyle\left|\operatorname{Tr}\left(\exp(-t\Box_{t^{-\frac{1}{2}}f})\right)-\frac{1}{(4\pi t)^{\frac{n}{2}}}\sum_{j=0}^{k}\sum_{l=0}^{[\frac{j}{3}]+j}t^{j-\frac{l}{2}}\int_{M}\exp(-|\nabla f|^{2}(x))\operatorname{tr}(\Theta_{l,j}(x,x))dx\right|
Ct13(2κ)kκ+13n2.\displaystyle\leq Ct^{\frac{1}{3}(2-\kappa)k-\frac{\kappa+1}{3}-\frac{n}{2}}.\hskip 108.405pt
Proof.

This follows from Theorem 4.1 and Lemma 4.8 by noting that V(2β¯)2κ+1V\geq(2\bar{\beta})^{\frac{2}{\kappa+1}} outside a compact set. ∎

5 Local Index Theorem for Witten Laplacian

We now turn to the local index theorem for the Witten Laplacian. From the discussion at the end of Section 2 (see (5) and after) we have

χ(M,dTf)=i=0n(1)idim(H(2)i(M,dTf))=Trs(exp(tTf))\chi(M,d_{Tf})=\sum_{i=0}^{n}(-1)^{i}dim(H^{i}_{(2)}(M,d_{Tf}))=\operatorname{Tr}_{s}(\exp(-t\Box_{Tf})) (23)

is independent of t.t. Moreover, by Theorem 1.3 in [3], χ(M,dTf)\chi(M,d_{Tf}) is independent of T>0T>0. As a consequence, Theorem 4.2 reduces the index formula for Witten Laplacian to a local index theorem, which we will develop in this section.

First we summarize what we know about the index of the Witten Laplacian as the following McKean-Singer type formula.

Proposition 5.1.

Assume that (M,g,f)(M,g,f) is polynomial tame. Then for T>0T>0, χ(M,dTf)\chi(M,d_{Tf}) is independent of TT and

χ(M,dTf)=Mtrs(KTf(t,x,x))𝑑x\chi(M,d_{Tf})=\int_{M}\operatorname{tr}_{s}(K_{Tf}(t,x,x))dx

for any t>0t>0. Here dxdx denotes the volume form induced by gg.

In the usual approach to the local index theorem, one studies the integrand, the pointwise supertrace trs(KTf(t,x,x))\operatorname{tr}_{s}(K_{Tf}(t,x,x)), in the limit t0t\rightarrow 0 via the Getzler’s rescaling. To proceed with Getzler’s rescaling technique, we now fix x0Mx_{0}\in M and let xx be the normal coordinates near x0.x_{0}. Thus x=0x=0 at x0x_{0}, and we will use 0 and x0x_{0} interchangeably in this section. We trivialize the bundle Λ(M)\Lambda^{*}(M) in the normal neighborhood UU by parallel transport along radical geodesic from x0.x_{0}. In fact, we can assume M=Tx0MM=T_{x_{0}}M for now by extending everything trivially outside the normal neighborhood (we will see that we can localize the problem because of Theorem 4.2).

For usual Getzler’s rescaling techniques (a la Bismut-Zhang [2] for the de Rham complex), one defines δϵ\delta_{\epsilon} as follows:

  1. 1.

    For function fC([0,)×U)f\in C^{\infty}([0,\infty)\times U), (δϵf)(t,x)=f(ϵt,ϵ12x)(\delta_{\epsilon}f)(t,x)=f(\epsilon t,\epsilon^{\frac{1}{2}}x). As a consequence, we have

    limt0f(t,0)=limϵ0(δϵf)(t,0).\lim_{t\to 0}f(t,0)=\lim_{\epsilon\to 0}(\delta_{\epsilon}f)(t,0).

    Moreover, δϵf(t,x)δϵ1=f(ϵt,ϵ12x),\delta_{\epsilon}f(t,x)\delta_{\epsilon}^{-1}=f(\epsilon t,\epsilon^{\frac{1}{2}}x), δϵxiδϵ1=ϵ12xi,\delta_{\epsilon}\partial_{x_{i}}\delta_{\epsilon}^{-1}=\epsilon^{-\frac{1}{2}}\partial_{x_{i}}, δϵtδϵ1=ϵt.\delta_{\epsilon}\partial_{t}\delta_{\epsilon}^{-1}=\epsilon\partial_{t}.

  2. 2.

    Let {ei}i=1n\{e_{i}\}_{i=1}^{n} be a local frame near x0,x_{0}, {ei}i=1n\{e^{i}\}_{i=1}^{n} its dual frame. Then for c(ei)=eiιei,c^(ei)=ei+ιeic(e_{i})=e^{i}\wedge-\iota_{e_{i}},\hat{c}(e_{i})=e^{i}\wedge+\iota_{e_{i}}, we define δϵc(ei)=ϵ14eiϵ14ιei\delta_{\epsilon}c(e_{i})=\epsilon^{-\frac{1}{4}}e^{i}\wedge-\epsilon^{\frac{1}{4}}\iota_{e_{i}},δϵc^(ei)=ϵ14ei+ϵ14ιei.\delta_{\epsilon}\hat{c}(e_{i})=\epsilon^{-\frac{1}{4}}e^{i}\wedge+\epsilon^{\frac{1}{4}}\iota_{e_{i}}. Now let cϵ(ei)=ϵ14eiϵ14ιei,c^ϵ(ei)=ϵ14ei+ϵ14ιeic_{\epsilon}(e_{i})=\epsilon^{-\frac{1}{4}}e^{i}\wedge-\epsilon^{\frac{1}{4}}\iota_{e_{i}},\hat{c}_{\epsilon}(e_{i})=\epsilon^{-\frac{1}{4}}e^{i}\wedge+\epsilon^{\frac{1}{4}}\iota_{e_{i}}, then δϵc(ei)δϵ1=cϵ(ei),δϵc^(ei)δϵ1=c^ϵ(ei).\delta_{\epsilon}c(e_{i})\delta_{\epsilon}^{-1}=c_{\epsilon}(e_{i}),\delta_{\epsilon}\hat{c}(e_{i})\delta_{\epsilon}^{-1}=\hat{c}_{\epsilon}(e_{i}).

Recall that KTfK_{Tf} is the heat kernel of Tf\Box_{Tf}. Then KTf,ϵ=ϵn2δϵKTfK_{Tf,\epsilon}^{\prime}=\epsilon^{\frac{n}{2}}\delta_{\epsilon}K_{Tf} is the heat kernel for Tf,ϵ:=ϵδϵTfδϵ1.\Box^{\prime}_{Tf,\epsilon}:=\epsilon\delta_{\epsilon}\Box_{Tf}\delta_{\epsilon}^{-1}. Moreover, for small ϵ\epsilon [2, (4.60)]

Tf,ϵ=ΔTx0MIdΛTx0M+12i<j<k<lRijkl(0)eieje^ke^l+O(ϵ12),\Box^{\prime}_{Tf,\epsilon}=-\Delta_{T_{x_{0}}M}\operatorname{Id}_{\Lambda^{*}T^{*}_{x_{0}}M}+\frac{1}{2}\sum_{i<j<k<l}R_{ijkl}(0)e^{i}\wedge e^{j}\otimes\hat{e}^{k}\wedge\hat{e}^{l}+O(\epsilon^{\frac{1}{2}}),

where ΔTx0M\Delta_{T_{x_{0}}M} is the Euclidean Laplacian on Tx0MT_{x_{0}}M, and Rijkl(x)R_{ijkl}(x) is the Riemannian curvature tensor at xx.

This is the usual Getzler’s rescaling. As ϵ0\epsilon\to 0, the information of ff disappears. But for the noncompact case, unlike the compact case, the index should depend on ff. To deal with this issue, we introduce the following rescaling technique: we let TT join the game.

As mentioned before, the index χ(M,dTf)=Trs(exp(tTf))\chi(M,d_{Tf})=\operatorname{Tr}_{s}(\exp(-t\Box_{Tf})) is independent of T>0T>0. Hence, in our rescaling, we define, in addition, δϵ(T)=ϵ12T.\delta_{\epsilon}(T)=\epsilon^{-\frac{1}{2}}T.

Now under new rescaling, then we have

Lemma 5.2.

Let Tf,ϵ:=ϵδϵTfδϵ1\Box_{Tf,\epsilon}:=\epsilon\delta_{\epsilon}\Box_{Tf}\delta_{\epsilon}^{-1}. Then

Tf,0:=limϵ0Tf,ϵ=ΔTx0MIdΛTx0M12i<j<k<lRijkl(0)eieje^ke^l+VT(x0)+TLf,0.\Box_{Tf,0}:=\lim_{\epsilon\to 0}\Box_{Tf,\epsilon}=-\Delta_{T_{x_{0}}M}\operatorname{Id}_{\Lambda^{*}T^{*}_{x_{0}}M}-\frac{1}{2}\sum_{i<j<k<l}R_{ijkl}(0)e^{i}\wedge e^{j}\otimes\hat{e}^{k}\wedge\hat{e}^{l}+V_{T}(x_{0})+TL_{f,0}.

Here Lf,0=ei,ej2f(x0)eie^j.L_{f,0}=\nabla^{2}_{e_{i},e_{j}}f(x_{0})e_{i}\otimes\hat{e}_{j}.

Proof.

By Proposition 2.1, Tf=ΔTLf+T2|f|2.\Box_{Tf}=\Delta-TL_{f}+T^{2}|\nabla f|^{2}. By [2, (4.60)],

ϵδϵΔδϵ1=ΔTx0MIdΛTx0M+12i<j<k<lRijkl(0)eieje^ke^l+O(ϵ12).\epsilon\delta_{\epsilon}\Delta\delta_{\epsilon}^{-1}=-\Delta_{T_{x_{0}}M}\operatorname{Id}_{\Lambda^{*}T^{*}_{x_{0}}M}+\frac{1}{2}\sum_{i<j<k<l}R_{ijkl}(0)e^{i}\wedge e^{j}\otimes\hat{e}^{k}\wedge\hat{e}^{l}+O(\epsilon^{\frac{1}{2}}).

On the other hand, by the new rescaling in TT, ϵδϵ(T2|f|2)δϵ1=T2|f|2(x0)+O(ϵ12)\epsilon\delta_{\epsilon}(T^{2}|\nabla f|^{2})\delta_{\epsilon}^{-1}=T^{2}|\nabla f|^{2}(x_{0})+O(\epsilon^{\frac{1}{2}}). Now Lf=ei,ej2f[ei,ιej]=ei,ej2fc(ei)c^(ej).L_{f}=\nabla^{2}_{e_{i},e_{j}}f[e^{i}\wedge,\iota_{e_{j}}]=-\nabla^{2}_{e_{i},e_{j}}fc(e^{i})\hat{c}(e^{j}). Hence

ϵδϵ(TLf)δϵ1=Tei,ej2f(x0)eie^j+O(ϵ12).\epsilon\delta_{\epsilon}(TL_{f})\delta_{\epsilon}^{-1}=-T\nabla^{2}_{e_{i},e_{j}}f(x_{0})e_{i}\otimes\hat{e}_{j}+O(\epsilon^{\frac{1}{2}}).

Our result follows. ∎

Denote R~(x0)=Rijkl(x0)eieje^ke^l\tilde{R}(x_{0})=-R_{ijkl}(x_{0})e^{i}\wedge e^{j}\otimes\hat{e}^{k}\wedge\hat{e}^{l}. Let KTf,0K_{Tf,0} be the heat kernel of Tf,0.\Box_{Tf,0}. Clearly ΔTx0MIdΛTx0M-\Delta_{T_{x_{0}}M}\operatorname{Id}_{\Lambda^{*}T^{*}_{x_{0}}M} commutes with R~(x0)2+TLf(x0)+VT(x0)\frac{\tilde{R}(x_{0})}{2}+TL_{f}(x_{0})+V_{T}(x_{0}). Therefore we have

KTf,0=0exp(t[R~(x0)2+TLf(x0)+VT(x0)]).\displaystyle K_{Tf,0}=\mathcal{E}_{0}\exp(-t[\frac{\tilde{R}(x_{0})}{2}+TL_{f}(x_{0})+V_{T}(x_{0})]). (24)

By Theorem 4.2, KTf(t,x,x)K_{Tf}(t,x,x) has the following asymptotic expansion,

KTf(t,x,x)=(4πt)n2exp(tVT)j=0tjΘT,j(x,x),K_{Tf}(t,x,x)=(4\pi t)^{-\frac{n}{2}}\exp(-tV_{T})\sum_{j=0}^{\infty}t^{j}\Theta_{T,j}(x,x),

with strong remainder estimate when T=t1/2T=t^{-1/2}. In particular,

Kt12f(t,x,x)=(4πt)n2exp(V)k12tkj12l=k,lj+[j3]Θl,j(x,x).\displaystyle K_{t^{-\frac{1}{2}}f}(t,x,x)=(4\pi t)^{-\frac{n}{2}}\exp(-V)\sum_{k\in\frac{1}{2}\mathbb{N}}t^{k}\sum_{j-\frac{1}{2}l=k,l\leq j+[\frac{j}{3}]}\Theta_{l,j}(x,x). (25)

Here \mathbb{N} denotes the set of natural numbers which by our convention contains 0. Thus we can upgrade Proposition 5.1 to

Proposition 5.3.

For T>0T>0,

χ(M,dTf)\displaystyle\chi(M,d_{Tf}) =limt0Tr(exp(tt12f))=Mlimt0TrsΛ(TM)(Kt12f(t,x,x))dx\displaystyle=\lim_{t\to 0}\operatorname{Tr}(\exp(-t\Box_{t^{-\frac{1}{2}}f}))=\int_{M}\lim_{t\to 0}\operatorname{Tr}_{s}^{\Lambda^{*}(TM)}(K_{t^{-\frac{1}{2}}f}(t,x,x))dx (26)
=1(4π)n2Mexp(|f|2)j12l=n2trsΛ(TM)(Θl,j(x,x))dx.\displaystyle=\frac{1}{(4\pi)^{\frac{n}{2}}}\int_{M}\exp(-|\nabla f|^{2})\sum_{j-\frac{1}{2}l=\frac{n}{2}}\operatorname{tr}_{s}^{\Lambda^{*}(TM)}(\Theta_{l,j}(x,x))dx.

Here (to emphasize) we use trsΛ(TM)\operatorname{tr}_{s}^{\Lambda^{*}(TM)} to denote the pointwise supertrace on Λ(TM)\Lambda^{*}(TM) which was previously denoted by trs\operatorname{tr}_{s}.

Now for I={i1,,ik}{1,2,,n},(i1<<ik)I=\{i_{1},...,i_{k}\}\subset\{1,2,...,n\},(i_{1}<...<i_{k}), denote c(eI)=c(ei1)c(eik),c^(eI)=c^(ei1)c^(eik).c(e_{I})=c(e_{i_{1}})...c(e_{i_{k}}),\hat{c}(e_{I})=\hat{c}(e_{i_{1}})...\hat{c}(e_{i_{k}}). Write Θl,j=I,J{1,2,,n}Θl,j,I,Jc(eI)c^(eJ).\Theta_{l,j}=\sum_{I,J\subset\{1,2,...,n\}}\Theta_{l,j,I,J}c(e_{I})\hat{c}(e_{J}). The following Proposition on the key property of the supertrace is well known.

Proposition 5.4.

For I,J{1,2,,n}I,J\subset\{1,2,...,n\},

trsΛ(TM)(c(eI)c^(eJ))={(1)n(n+1)22n, if I=J={1,2,,n}0, otherwise.\operatorname{tr}_{s}^{\Lambda^{*}(TM)}\left(c(e_{I})\hat{c}(e_{J})\right)=\begin{cases}(-1)^{\frac{n(n+1)}{2}}2^{n},\mbox{ if $I=J=\{1,2,...,n\}$}\\ 0,\mbox{ otherwise.}\end{cases}

Thus trsΛ(TM)(Θl,j)=(1)n(n+1)22nΘl,j,In,In\operatorname{tr}_{s}^{\Lambda^{*}(TM)}(\Theta_{l,j})=(-1)^{\frac{n(n+1)}{2}}2^{n}\Theta_{l,j,I_{n},I_{n}}, where In={1,2,,n}.I_{n}=\{1,2,...,n\}. We now recall the Berezin integral formalism. For any ωΩ(TM)^Ω(TM)\omega\in\Omega^{*}(TM)\hat{\otimes}\Omega^{*}(TM), I1,2,,nI\subset{1,2,...,n}, we can write ω\omega as

ω:=IwIe^I.\omega:=\sum_{I}w_{I}\hat{e}^{I}.

Then the Berezin integral B:Ω(TM)^Ω(TM)Ω(TM)\int^{B}:\Omega^{*}(TM)\hat{\otimes}\Omega^{*}(TM)\mapsto\Omega^{*}(TM) is defined as

Bω=ωIn.\int^{B}\omega=\omega_{I_{n}}.

The following lemma is also well known in local index theory and the Getzler rescaling technique.

Lemma 5.5.

We have

limt0trsΛ(TM)(Kt12f)(t,x0,x0)dx=(1)n(n+1)22nBlimϵ0ϵn2(δϵKt12f)(t,x0,x),\displaystyle\lim_{t\to 0}\operatorname{tr}_{s}^{\Lambda^{*}(TM)}(K_{t^{-\frac{1}{2}}f})(t,x_{0},x_{0})dx=(-1)^{\frac{n(n+1)}{2}}2^{n}\int^{B}\lim_{\epsilon\to 0}\epsilon^{\frac{n}{2}}(\delta_{\epsilon}K_{t^{-\frac{1}{2}}f})(t,x_{0},x), (27)

provided that the right hand limit exists.

Proof.

Write Kt12f(t,x0,x)=I,J{1,2,,n}aI,J(t,x)c(eI)c^(eJ)K_{t^{-\frac{1}{2}}f}(t,x_{0},x)=\sum_{I,J\subset\{1,2,...,n\}}a_{I,J}(t,x)c(e_{I})\hat{c}(e_{J}). By Proposition 5.4,

trsΛ(TM)(Kt12f(t,x0,x0))=(1)n(n+1)22naIn,In(t,x0).\operatorname{tr}_{s}^{\Lambda^{*}(TM)}(K_{t^{-\frac{1}{2}}f}(t,x_{0},x_{0}))=(-1)^{\frac{n(n+1)}{2}}2^{n}a_{I_{n},I_{n}}(t,x_{0}).

On the other hand,

(ϵn2δϵKt12f)(t,x0,x)=I,J{1,2,,n}aI,J(ϵt,ϵ12x)ϵn2cϵ(eI)c^ϵ(eJ).(\epsilon^{\frac{n}{2}}\delta_{\epsilon}K_{t^{-\frac{1}{2}}f})(t,x_{0},x)=\sum_{I,J\subset\{1,2,...,n\}}a_{I,J}(\epsilon t,\epsilon^{\frac{1}{2}}x)\epsilon^{\frac{n}{2}}c_{\epsilon}(e_{I})\hat{c}_{\epsilon}(e_{J}).

Hence,

Blimϵ0ϵn2(δϵKt12f)(t,x0,x)=limϵ0aIn,In(ϵt,ϵ12x)e1en=limt0aIn,In(t,x0)dx.\int^{B}\lim_{\epsilon\to 0}\epsilon^{\frac{n}{2}}(\delta_{\epsilon}K_{t^{-\frac{1}{2}}f})(t,x_{0},x)=\lim_{\epsilon\to 0}a_{I_{n},I_{n}}(\epsilon t,\epsilon^{\frac{1}{2}}x)e^{1}\wedge\cdots\wedge e^{n}=\lim_{t\to 0}a_{I_{n},I_{n}}(t,x_{0})dx.

Our result follows. ∎

For the right hand side of the previous lemma, we have the following proposition.

Proposition 5.6.

There exists a(0,1)a\in(0,1) such that

|ϵn2(δϵKt12f)(t,x,x)Kt12f,0(t,x,x)|Cϵt2κn2exp(aV1κ).|\epsilon^{\frac{n}{2}}(\delta_{\epsilon}K_{t^{-\frac{1}{2}}f})(t,x,x)-K_{t^{-\frac{1}{2}}f,0}(t,x,x)|\leq C\epsilon t^{2-\kappa-\frac{n}{2}}\exp(-aV^{1-\kappa}).
Proof.

Let K0(t,x,y)=ϕ(x,y)KTf,0(t,x,y).K_{0}(t,x,y)=\phi(x,y)K_{Tf,0}(t,x,y). Then by the tameness condition, for some a(0,1)a\in(0,1) we have

|(Tf,ϵTf,0)K0(t,x,y)|CχBx(y)ϵtn+1κ2T2exp(ad(x,y)4t)exp(atT2V(x)).|(\Box_{Tf,\epsilon}-\Box_{Tf,0})K_{0}(t,x,y)|\leq C\chi_{B_{x}}(y)\epsilon t^{-\frac{n+1-\kappa}{2}}T^{-2}\exp(-\frac{ad(x,y)}{4t})\exp(-atT^{2}V(x)).

By the Duhamel principle,

ϵn2KTf,ϵK0=(ϵn2KTf,ϵ)((Tf,ϵTf,0)K0(t,x,y)).\epsilon^{\frac{n}{2}}K_{Tf,\epsilon}-K_{0}=(\epsilon^{\frac{n}{2}}K_{Tf,\epsilon})*((\Box_{Tf,\epsilon}-\Box_{Tf,0})K_{0}(t,x,y)).

On the other hand, ϵn2KTf,ϵ=ϵn2(δϵKTfk+l=1δϵ(KTfkR~k,Tl),\epsilon^{\frac{n}{2}}K_{Tf,\epsilon}=\epsilon^{\frac{n}{2}}(\delta_{\epsilon}K_{Tf}^{k}+\sum_{l=1}^{\infty}\delta_{\epsilon}(K_{Tf}^{k}*\tilde{R}_{k,T}^{*l}), and it is straightforward to check that

|ϵn2δϵKTf(t,x,y)|CχBxtn2exp(atT22V(x))exp(ad2(x,y)4t).|\epsilon^{\frac{n}{2}}\delta_{\epsilon}K_{Tf}(t,x,y)|\leq C\chi_{B_{x}}t^{-\frac{n}{2}}\exp(-\frac{atT^{2}}{2}V(x))\exp(-\frac{ad^{2}(x,y)}{4t}).

Proceeding as in the previous section we finish the proof of the Proposition. ∎

Finally, we arrive at our local index theorem for the Witten Laplacian. Recall that R~,~2fΩ(M)^Ω(M)\widetilde{R},\widetilde{\nabla}^{2}f\in\Omega^{*}(M)\hat{\otimes}\Omega^{*}(M) are defined as (we abuse the notatin here by omitting the wedge product signs)

R~(x)=Rijkl(x)eieje^ke^l,~2f(x)=ei,ej2f(x)eie^j.\widetilde{R}(x)=R_{ijkl}(x)e^{i}e^{j}\hat{e}^{k}\hat{e}^{l},\ \ \ \ \widetilde{\nabla}^{2}f(x)=\nabla^{2}_{e_{i},e_{j}}f(x)e^{i}\hat{e}^{j}.
Theorem 5.1.

For any x0Mx_{0}\in M, we have

limt0TrsΛ(TM)(Kt12f)(t,x0,x0)=(1)[n+12]πn2exp(|f(x0)|2)Bexp(R~(x0)2~2f(x0)).\lim_{t\to 0}\operatorname{Tr}_{s}^{\Lambda^{*}(TM)}(K_{t^{-\frac{1}{2}}f})(t,x_{0},x_{0})=\frac{(-1)^{[\frac{n+1}{2}]}}{\pi^{\frac{n}{2}}}\exp(-|\nabla f(x_{0})|^{2})\int^{B}\exp(-\frac{\widetilde{R}(x_{0})}{2}-\widetilde{\nabla}^{2}f(x_{0})).

In particular, for T>0T>0,

χ(M,dTf)=(1)[n+12]πn2Mexp(|f|2)Bexp(R~2~2f).\chi(M,d_{Tf})=\frac{(-1)^{[\frac{n+1}{2}]}}{\pi^{\frac{n}{2}}}\int_{M}\exp(-|\nabla f|^{2})\int^{B}\exp(-\frac{\widetilde{R}}{2}-\widetilde{\nabla}^{2}f).
Proof.

By (27) and Proposition 5.6,

limt0trsΛ(TM)(Kt12f)(t,x0,x0)dx\displaystyle\lim_{t\to 0}\operatorname{tr}_{s}^{\Lambda^{*}(TM)}(K_{t^{-\frac{1}{2}}f})(t,x_{0},x_{0})dx =(1)n(n+1)22nBlimϵ0(ϵn2(δϵKt12f)(t,x0,x))\displaystyle=(-1)^{\frac{n(n+1)}{2}}2^{n}\int^{B}\lim_{\epsilon\to 0}(\epsilon^{\frac{n}{2}}(\delta_{\epsilon}K_{t^{-\frac{1}{2}}f})(t,x_{0},x))
=(1)n(n+1)22nBKt12f,0\displaystyle=(-1)^{\frac{n(n+1)}{2}}2^{n}\int^{B}K_{t^{-\frac{1}{2}}f,0}
=(1)n(n+1)22n(4πt)n2Bexp(tR~(x0)2t12Lf(x0)|f(x0)|2)\displaystyle=\frac{(-1)^{\frac{n(n+1)}{2}}2^{n}}{(4\pi t)^{\frac{n}{2}}}\int^{B}\exp(-t\frac{\tilde{R}(x_{0})}{2}-t^{\frac{1}{2}}L_{f}(x_{0})-|\nabla f(x_{0})|^{2})
=(1)[n+12]πn2exp(|f(x0)|2)Bexp(R~(x0)2~2f(x0)).\displaystyle=\frac{(-1)^{[\frac{n+1}{2}]}}{\pi^{\frac{n}{2}}}\exp(-|\nabla f(x_{0})|^{2})\int^{B}\exp(-\frac{\tilde{R}(x_{0})}{2}-\tilde{\nabla}^{2}f(x_{0})).

The second result then follows from Proposition 5.3. ∎

6 Examples From Landau-Ginzburg Models

In this section we will disucss in somewhat detail how our results apply to some examples coming from Landau-Ginzburg models. Some of our discussions benefited from those of [5].

Consider a triple (M,g,f)(M,g,f), where (M,g)(M,g) is a Kähler manifold with bounded geometry, and f:Mf:\,M\longrightarrow\mathbb{C} a holomorphic function. In this case, one considers the Witten deformation of the ¯\bar{\partial}-operator

¯f=¯+f:Ωk(M,)Ωk+1(M,).\bar{\partial}_{f}=\bar{\partial}+\partial f\wedge:\,\Omega^{k}(M,\mathbb{C})\longrightarrow\Omega^{k+1}(M,\mathbb{C}).

The corresponding Witten Laplacian is then ¯,f=¯f¯f+¯f¯f\Box_{\bar{\partial},f}=\bar{\partial}_{f}^{*}\bar{\partial}_{f}+\bar{\partial}_{f}\bar{\partial}_{f}^{*}.

On the other hand, one can also consider the underlying real manifold MM with the Riemannian metric given by gg, together with the potential function given by 2f=f+f¯2\Re f=f+\bar{f}. It follows from the Kähler identity that

2¯,f=2f.2\Box_{\bar{\partial},f}=\Box_{2\Re f}.

As a consequence, χ(M,¯f)=χ(M,df)\chi(M,\bar{\partial}_{f})=\chi(M,d_{\Re f}).

A large class of Landau-Ginzburg models consists of (n,g0,f)(\mathbb{C}^{n},g_{0},f) where g0g_{0} is the Euclidean metric and f:nf:\mathbb{C}^{n}\rightarrow\mathbb{C} a so-called nondegenerate quasi-homogeneous polynomial. Here f[z1,,zn]f\in\mathbb{C}[z_{1},\cdots,z_{n}] is a quasi-homogeneous (also known as weighted homogeneous) polynomial if there are positive rational numbers q1,,qnq_{1},\cdots,q_{n}, called the weights, such that

f(λq1z1,,λqnzn)=λf(z1,,zn),f(\lambda^{q_{1}}z_{1},\cdots,\lambda^{q_{n}}z_{n})=\lambda f(z_{1},\cdots,z_{n}),

for all λ\lambda\in\mathbb{C}^{*}. ff is called nondegenerate if ff contains no monomials of the form zizjz_{i}z_{j} for iji\not=j and 0 is the only critical point of ff (equivalently, the hypersurface f=0f=0 in the weighted projective space is non-singular). By the classification result of [12] (see also [9, Theorem 3.7]), if ff is nondegenerate, then qi12,iq_{i}\leq\frac{1}{2},\forall i (and these weights are unique).

If ff is a nondegenerate quasi-homogeneous polynomial, then (n,g0,f)(\mathbb{C}^{n},g_{0},f) (or equivalently, the corresponding real model) is polynomial tame. To see this, one uses a result from [6]. Indeed, it is shown in [6, Theorem 5.8] that if ff is a nondegenerate quasi-homogeneous polynomial, then there exists a constant C>0C>0 depending only on ff such that for all (u1,,un)n(u_{1},\cdots,u_{n})\in\mathbb{C}^{n}, and each i=1,,n,i=1,\cdots,n,

|ui|C(j=1n|fzj(u1,,un)|+1)γi,\displaystyle|u_{i}|\leq C\left(\sum_{j=1}^{n}|\frac{\partial f}{\partial z_{j}}(u_{1},\cdots,u_{n})|+1\right)^{\gamma_{i}}, (28)

where γi=qiminj(1qj)\gamma_{i}=\frac{q_{i}}{\min_{j}(1-q_{j})}.

As |f|2=j|fzj|2|\nabla\Re f|^{2}=\sum_{j}|\frac{\partial f}{\partial z_{j}}|^{2}, one obtains using the above estimate and quasi-homogeneity that for m1m\geq 1,

|mf|C(|f|+1)1mminjqjminj(1qj),|\nabla^{m}\Re f|\leq C(|\nabla\Re f|+1)^{\frac{1-m\min_{j}q_{j}}{\min_{j}(1-q_{j})}},

where the constant CC now also depends on mm, nn. Since qj12q_{j}\leq\frac{1}{2}, the exponent here

1mminjqjminj(1qj)2(1mminjqj).\frac{1-m\min_{j}q_{j}}{\min_{j}(1-q_{j})}\leq 2(1-m\min_{j}q_{j}).

Thus, if we let κ=max{0,14minjqj}<1\kappa=\max\{0,1-4\min_{j}q_{j}\}<1, then the real model here (2n,g0,f)(\mathbb{R}^{2n},g_{0},\Re f) is κ\kappa-regular tame.

Remark 6.1.

It is also clear from the above discussion that when mminjqj1m\min_{j}q_{j}\geq 1, we can choose κ=0\kappa=0, and therefore the real model (2n,g0,f)(\mathbb{R}^{2n},g_{0},\Re f) is effectively 0-regular tame.

Also from the estimate (28) and qj12q_{j}\leq\frac{1}{2} one deduces that

|z|2C(|f|2+1).|z|^{2}\leq C(|\nabla\Re f|^{2}+1).

It follows that

|f|2λ}(λ|f|2)2n/2𝑑volλnVol(B(0,C(λ+1)))Cλ2n.\int_{|\nabla\Re f|^{2}\leq\lambda\}}(\lambda-|\nabla\Re f|^{2})^{2n/2}dvol\leq\lambda^{n}\operatorname{Vol}(B(0,\sqrt{C(\lambda+1)}))\leq C^{\prime}\lambda^{2n}.

And thus (2n,g0,f)(\mathbb{R}^{2n},g_{0},\Re f) is polynomial tame. Therefore, Theorem 5.1 yields the following formula for the Milnor number of ff, which is stated in [5] under additional restriction on the weights of ff.

Corollary 6.1.

If f[z1,,zn]f\in\mathbb{C}[z_{1},\cdots,z_{n}] is a nondegenerate quasi-homogeneous polynomial, then

χ(n,¯f)=(1)nπnnexp(|f|2)|det(2f)|2𝑑vol.\chi(\mathbb{C}^{n},\bar{\partial}_{f})=\frac{(-1)^{n}}{\pi^{n}}\int_{\mathbb{C}^{n}}\exp(-|\partial f|^{2})|det(-\partial^{2}f)|^{2}dvol.
Proof.

Theorem 5.1 applied to the real model (2n,g0,f)(\mathbb{R}^{2n},g_{0},\Re f) gives us

χ(n,¯f)\displaystyle\chi(\mathbb{C}^{n},\bar{\partial}_{f}) =χ(2n,df)=(1)[2n+12]πn2nexp(|f|2)Bexp(~2f)\displaystyle=\chi(\mathbb{R}^{2n},d_{\Re f})=\frac{(-1)^{[\frac{2n+1}{2}]}}{\pi^{n}}\int_{\mathbb{R}^{2n}}\exp(-|\nabla\Re f|^{2})\int^{B}\exp(-\widetilde{\nabla}^{2}\Re f)
=(1)nπn2nexp(|f|2)(1)ndet(2f)dvol\displaystyle=\frac{(-1)^{n}}{\pi^{n}}\int_{\mathbb{R}^{2n}}\exp(-|\nabla\Re f|^{2})(-1)^{n}\det(-\nabla^{2}\Re f)dvol
=(1)nπnnexp(|f|2)|det(2f)|2𝑑vol.\displaystyle=\frac{(-1)^{n}}{\pi^{n}}\int_{\mathbb{C}^{n}}\exp(-|\partial f|^{2})|det(-\partial^{2}f)|^{2}dvol.

In the remaining part of the section we discuss the asymptotic expansion of the heat trace for the Witten Laplacian of the Landau-Ginzburg model (n,g0,f)(\mathbb{C}^{n},g_{0},f), or equivalently, its real model (2n,g0,f)(\mathbb{R}^{2n},g_{0},\Re f), for ff a nondegenerate quasi-homogeneous polynomial, but without setting T=t12T=t^{-\frac{1}{2}} as before.

By Theorem 4.1, we have a pointwise asymptotic expansion for the heat kernel with remainder estimate, which we will specialize here on the diagonal. For any kk sufficiently large and any a(0,1)a\in(0,1), there exists C>0C>0 such that for t(0,1]t\in(0,1] and T(0,t12]T\in(0,t^{-\frac{1}{2}}],

|KTf(t,x,x)1(4πt)nexp(tT2V(x))j=0ktjΘT,j(x,x)|\displaystyle\left|K_{Tf}(t,x,x)-\frac{1}{(4\pi t)^{n}}\exp(-tT^{2}V(x))\sum_{j=0}^{k}t^{j}\Theta_{T,j}(x,x)\right|\ \ \
Ct13(1κ)kκ+23n+1T2k+43exp(ad~T(t,x,x)).\displaystyle\leq Ct^{\frac{1}{3}(1-\kappa)k-\frac{\kappa+2}{3}-n+1}T^{\frac{-2k+4}{3}}\exp(-a\tilde{d}_{T}(t,x,x)).\hskip 36.135pt

Here

V=|f|2=j|fzj|2.V=|\nabla\Re f|^{2}=\sum_{j}|\frac{\partial f}{\partial z_{j}}|^{2}.

We will first see that the remainder estimate is strong enough for the global heat trace, namely it is convergent when integrated on n\mathbb{C}^{n}. By Lemma 4.8

d~T(t,x,x)min{β¯TV1κ2(x),tT2V(x)2}.\tilde{d}_{T}(t,x,x)\geq\min\{\bar{\beta}TV^{\frac{1-\kappa}{2}}(x),\frac{tT^{2}V(x)}{2}\}.

On the other hand, by [5, Lemma 3.11(i)], which follows from the fact that ff is a nondegenerate quasi-homogeneous polynomial,

tV(z1,,zn)V(tδq1z1,,tδqnzn),δ=12minj(1qj)1.tV(z_{1},\cdots,z_{n})\geq V(t^{\delta q_{1}}z_{1},\cdots,t^{\delta q_{n}}z_{n}),\ \ \ \ \ \ \delta=\frac{1}{2\min_{j}(1-q_{j})}\leq 1.

Now set

Ωt={V(2β¯tT)21+κ},Ωtc=nΩt.\Omega_{t}=\left\{V\leq(\frac{2\bar{\beta}}{tT})^{\frac{2}{1+\kappa}}\right\},\ \ \ \ \ \ \Omega_{t}^{c}=\mathbb{C}^{n}-\Omega_{t}.

Then on Ωt\Omega_{t},

d~T(t,z,z)tT2V(z)212T2V(tδq1z1,,tδqnzn).\tilde{d}_{T}(t,z,z)\geq\frac{tT^{2}V(z)}{2}\geq\frac{1}{2}T^{2}V(t^{\delta q_{1}}z_{1},\cdots,t^{\delta q_{n}}z_{n}).

Hence,

Ωtead~T(t,z,z)𝑑volne12aT2V(tδq1z1,,tδqnzn)𝑑vol=t2δ|q|C(a,T),|q|=jqj.\displaystyle\int_{\Omega_{t}}e^{-a\tilde{d}_{T}(t,z,z)}dvol\leq\int_{\mathbb{C}^{n}}e^{-\frac{1}{2}aT^{2}V(t^{\delta q_{1}}z_{1},\cdots,t^{\delta q_{n}}z_{n})}dvol=t^{-2\delta|q}|C(a,T),\ \ \ |q|=\sum_{j}q_{j}.

On Ωtc\Omega_{t}^{c}, d~Tβ¯TV1κ2\tilde{d}_{T}\geq\bar{\beta}TV^{\frac{1-\kappa}{2}}. Thus,

Ωtcead~T(t,z,z)𝑑volneβ¯TV1κ2𝑑vol=C1(β¯,T).\displaystyle\int_{\Omega_{t}^{c}}e^{-a\tilde{d}_{T}(t,z,z)}dvol\leq\int_{\mathbb{C}^{n}}e^{-\bar{\beta}TV^{\frac{1-\kappa}{2}}}dvol=C_{1}(\bar{\beta},T).

And we arrive at

nead~T(t,z,z)𝑑volt2δ|q||C(a,T)+C1(β¯,T).\displaystyle\int_{\mathbb{C}^{n}}e^{-a\tilde{d}_{T}(t,z,z)}dvol\leq t^{-2\delta|q|}|C(a,T)+C_{1}(\bar{\beta},T).

We now look at the terms in the asymptotic expansion given by Theorem 4.1. For a multi-index α=(α1,,αn)\alpha=(\alpha_{1},\cdots,\alpha_{n}) with αi\alpha_{i} nonnegative integer, we denote αf=|α|fα1z1αnzn\partial^{\alpha}f=\frac{\partial^{|\alpha|}f}{\partial^{\alpha_{1}}z_{1}\cdots\partial^{\alpha_{n}}z_{n}}, |α|=α1+αn|\alpha|=\alpha_{1}+\cdots\alpha_{n}. From the construction in Section 3, ΘT,j(z,z)\Theta_{T,j}(z,z) is a linear combination of α1fαlf¯\partial^{\alpha^{1}}f\cdots\overline{\partial^{\alpha^{l}}f}, with ljl\leq j and (non-trivial) multi-indeces α1,,αl\alpha^{1},\cdots,\alpha^{l} satisfying |α1|+|αl|2j|\alpha^{1}|+\cdots|\alpha^{l}|\leq 2j.

At this point we make the further assumption that ff is homogeneous; namely

q1==qn,q_{1}=\cdots=q_{n},

and we denote the common value by qq. Differentiating the equation for quasi-homogeneity gives,

λq|α|(αf)(λq1z1,,λqnzn)=λαf(z1,,zn),\lambda^{q|\alpha|}(\partial^{\alpha}f)(\lambda^{q_{1}}z_{1},\cdots,\lambda^{q_{n}}z_{n})=\lambda\,\partial^{\alpha}f(z_{1},\cdots,z_{n}),

from which one deduces that

tV(z1,,zn)=V(tδqz1,,tδqzn).tV(z_{1},\cdots,z_{n})=V(t^{\delta q}z_{1},\cdots,t^{\delta q}z_{n}).

Hence,

netT2Vα1fαlfdvol=tδqi=1l|αi|δl2nδqCα1,,αl(f),\displaystyle\int_{\mathbb{C}^{n}}e^{-tT^{2}V}\partial^{\alpha^{1}}f\cdots\partial^{\alpha^{l}}fdvol=t^{\delta q\sum_{i=1}^{l}|\alpha^{i}|-\delta l-2n\delta q}\,C_{\alpha^{1},\cdots,\alpha^{l}}(f),

where Cα1,,αl(f)C_{\alpha^{1},\cdots,\alpha^{l}}(f) is a constant depending on ff and α1,,αl\alpha^{1},\cdots,\alpha^{l}.

We now summarize our discussion as the following result. For convenience we set T=1T=1 here. (Thus, for homogeneous ff, we don’t need to couple tT2=1tT^{2}=1 to get a local index theorem.)

Theorem 6.2.

For the Landau-Ginzburg model (n,g0,f)(\mathbb{C}^{n},g_{0},f) where ff is a nondegenerate homogeneous polynomial with weight qq, we have the following small time asymptotic expansion of the heat trace for the Witten Laplacian:

Tr(exp(tf))1(4πt)nj=0ljα1,,αltj+δqi=1l|αi|δl2nδqCα1,,αl(f),\operatorname{Tr}\left(\exp(-t\Box_{f})\right)\sim\frac{1}{(4\pi t)^{n}}\sum_{j=0}^{\infty}\sum_{l\leq j}\sum_{\alpha^{1},\cdots,\alpha^{l}}t^{j+\delta q\sum_{i=1}^{l}|\alpha^{i}|-\delta l-2n\delta q}C_{\alpha^{1},\cdots,\alpha^{l}}(f),

as t0t\rightarrow 0, where |α1|+|αl|2j|\alpha^{1}|+\cdots|\alpha^{l}|\leq 2j. Moreover, for kk sufficiently large, and t(0,1]t\in(0,1],

|Tr(exp(tf))1(4πt)nj=0kljα1,,αltj+δqi=1l|αi|δl2nδqCα1,,αl(f)|Ctk+13n2nδq.\displaystyle\left|\operatorname{Tr}\left(\exp(-t\Box_{f})\right)-\frac{1}{(4\pi t)^{n}}\sum_{j=0}^{k}\sum_{l\leq j}\sum_{\alpha^{1},\cdots,\alpha^{l}}t^{j+\delta q\sum_{i=1}^{l}|\alpha^{i}|-\delta l-2n\delta q}C_{\alpha^{1},\cdots,\alpha^{l}}(f)\right|\leq Ct^{\frac{k+1}{3}-n-2n\delta q}.

Here δ=12(1q)\delta=\frac{1}{2(1-q)}.

Proof.

We note that κ=0\kappa=0 in this case. The result follows from combining the above discussion. ∎

Remark 6.2.

A similar but different expansion is in [5], and without the remainder estimate.

References

  • [1] S. Agmon. Lectures on exponential decay of solutions of second-order elliptic equations: Bounds on eigenfunctions of N-body Schrödinger operations.(MN-29). Princeton University Press, 2014.
  • [2] J.-M. Bismut and W. Zhang. An extension of a theorem by Cheeger and Müller. Astérisque, 205, 1992.
  • [3] X. Dai and J. Yan. Witten deformation for noncompact manifolds with bounded geometry. arXiv preprint arXiv:2005.04607, 2020.
  • [4] H. Fan. Schro¨\mathrm{\ddot{o}}dinger equations, deformation theory and tttt^{*}-geometry. arXiv preprint arXiv:1107.1290, 2011.
  • [5] H. Fan and H. Fang. Torsion type invariants of singularities. arXiv preprint arXiv:1603.0653, 2016.
  • [6] H. Fan, T. Jarvis, and Y. Ruan. Geometry and analysis of spin equations. Communications on Pure and Applied Mathematics, 61:745–788, 2008.
  • [7] G. Fucci. Asymptotic expansion of the heat kernel trace of Laplacians with polynomial potentials. Letters in Mathematical Physics, 108(11):2453–2478, 2018.
  • [8] H. B. Lawson and M. L. Michelsohn. Spin geometry (PMS-38), volume 38. Princeton university press, 2016.
  • [9] C. Hertling and R. Kurbel. On the classification of quasihomogeneous singularities. Journal of Singularities, 4:131–153, 2012.
  • [10] P. Li and S. T. Yau. On the parabolic kernel of the Schrödinger operator. Acta Mathematica, 156:153–201, 1986.
  • [11] G. V. Rozenbljum. Asymptotics of the eigenvalues of the Schrödinger operator. Mathematics of the USSR-Sbornik, 22(3):349, 1974.
  • [12] K. Saito. Quasihomogene isolierte Singularitäten von Hyperflächen. Inventiones Mathematicae, 14(11):123–142, 1971.
  • [13] K. Tachizawa. Eigenvalue asymptotics of Schrödinger operators with only discrete spectrum. Publications of the Research Institute for Mathematical Sciences, 28(6):943–981, 1992.
  • [14] E. Witten. Supersymmetry and Morse theory. J. Diff. Geom, 17(4):661–692, 1982.
  • [15] W. Zhang. Lectures on Chern-Weil theory and Witten deformations, volume 4. World Scientific, 2001.