This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Willmore deformations between minimal surfaces in ℍn+2\mathbb{H}^{n+2} and π•Šn+2\mathbb{S}^{n+2}

Changping Wang, Peng Wang College of Mathematics and Informatics, FJKLMAA, Fujian Normal University, Fuzhou 350117, P. R. China [email protected] College of Mathematics and Informatics, FJKLMAA, Fujian Normal University, Fuzhou 350117, P. R. China [email protected], [email protected]
Abstract.

In this paper we show that locally there exists a Willmore deformation between minimal surfaces in π•Šn+2\mathbb{S}^{n+2} and minimal surfaces in ℍn+2\mathbb{H}^{n+2}, i.e., there exists a smooth family of Willmore surfaces {yt,t∈[0,1]}\{y_{t},t\in[0,1]\} such that (yt)|t=0(y_{t})|_{t=0} is conformally equivalent to a minimal surface in π•Šn+2\mathbb{S}^{n+2} and (yt)|t=1(y_{t})|_{t=1} is conformally equivalent to a minimal surface in ℍn+2\mathbb{H}^{n+2}. For some cases the deformations are global. Consider the Willmore deformations of the Veronese two-sphere and its generalizations in S4S^{4}, for any positive number W0βˆˆβ„+W_{0}\in\mathbb{R}^{+}, we construct complete minimal surfaces in ℍ4\mathbb{H}^{4} with Willmore energy being equal to W0W_{0}. An example of complete minimal MΓΆbius strip in ℍ4\mathbb{H}^{4} with Willmore energy 6​5​π5β‰ˆ10.733​π\frac{6\sqrt{5}\pi}{5}\approx 10.733\pi is also presented. We also show that all isotropic minimal surfaces in π•Š4\mathbb{S}^{4} admit Jacobi fields different from Killing fields, i.e., they are not β€œisolated”.

CPW was partly supported by the Project 11831005 of NSFC. PW was partly supported by the Project 11971107 of NSFC. The authors are thankful to Prof. Zhenxiao Xie for value discussions
This work is partially supported by the Project 11831005 and 11971107 of NSFC. The authors are thankful to Prof. Josef Dorfmeister, Prof. Shimpei Kobayashi, Prof. Xiang Ma and Prof. Nan Ye for valuable discussions

Keywords: minimal surfaces; minimal MΓΆbius strip; Kβ„‚βˆ’K^{\mathbb{C}}-dressing; Willmore energy; Willmore two-spheres.

MSC(2020): 53A31;53A10; 53C40; 58E20

1. Introduction

Minimal surfaces in ℍn\mathbb{H}^{n} are important geometric objects in geometry [3] and mathematical physics [40, 23, 1, 2] and attract many attentions from different kind of directions ([14, 15, 36]). For instance, in [1] it is shown that the renormalized area introduced by Maldacena in [40] can be expressed as the Willmore functional of minimal surfaces in ℍn\mathbb{H}^{n}. Moreover, in [2] Alexakis and Mazzeo discussed in details of the geometry and analysis of complete Willmore surfaces in ℍ3\mathbb{H}^{3} which meet the infinity boundary βˆ‚βˆžβ„3\partial_{\infty}\mathbb{H}^{3} orthogonally. Minimal surfaces in ℍn\mathbb{H}^{n} can be viewed as special kind of Willmore surfaces, which are the critical surface of the Willmore functional. It is natural to consider them under the framework of Willmore surfaces. In [18, 19] Dorfmeister and Wang started the study of the global geometry of Willmore surfaces in terms of the harmonic conformal Gauss maps and the DPW method. Such an idea was first introduced by HΓ©lein in [28] ( generalized by Xia-Shen [56]). Moreover, in [53], a description of minimal surfaces in space forms as special Willmore surfaces is presented.

In this paper, we continue the study minimal surfaces in ℍn\mathbb{H}^{n} and π•Šn\mathbb{S}^{n} along this direction. To begin with, let us first recall the characterization of minimal surfaces in space forms [53] briefly. Roughly speaking, the DPW method gives a representation of Willmore surfaces in terms of some Lie-algebra-valued meromorphic 1-form called normalized potential [17, 28, 18, 19]. Then a Willmore surface being minimal in some space form is equivalent to the Lorenzian orthogonality of some (non-zero) constant real vector 𝐯\mathbf{v} with some part of the normalized potential [53]. The vector 𝐯\mathbf{v} being lightlike, timelike or spacelike corresponds to the space form ℝn+2\mathbb{R}^{n+2}, π•Šn+2\mathbb{S}^{n+2} or ℍn+2\mathbb{H}^{n+2} respectively (See [53] or Theorem 2.5 of Section 2; Compare also [28, 56] for a slightly different treatment, where a different harmonic map introduced by [28] is used).

A key observation due to this paper is that the Lorenzian orthogonality is preserved by some complex group action, while the minimality in space forms could be changed. This makes it possible to deform minimal surfaces in π•Šn+2\mathbb{S}^{n+2} into non-minimal Willmore surfaces and furthermore into minimal surfaces in ℍn+2\mathbb{H}^{n+2} or conversely111It is natural to compare this correspondence with the famous Lawson correspondence [33]. A crucial difference is that from a minimal surface in π•Šn\mathbb{S}^{n}, one can obtain a lot of non-isometric minimal surfaces in ℍn\mathbb{H}^{n}. See Section 5.:

Theorem 1.1.

(See Theorem 4.1) Let y:Uβ†’π•Šn+2y:U\rightarrow\mathbb{S}^{n+2} be a minimal surface from a simple connected open subset UβŠ‚MU\subset M. There exists a family of Willmore surfaces yt:Uβ€²βŠ‚Uβ†’π•Šn+2y_{t}:U^{\prime}\subset U\rightarrow\mathbb{S}^{n+2}, t∈[0,Ο€]t\in[0,\pi], such that yt|t=0=yy_{t}|_{t=0}=y and yt|t=Ο€/2y_{t}|_{t=\pi/2} is conformally equivalent to a minimal surface in ℍn+2\mathbb{H}^{n+2}. Here Uβ€²U^{\prime} is an open subset of UU.

Such a phenomenon is new to the authors’ best knowledge. Note that in [10, 12], dressing actions of Willmore surfaces are discussed. But they are different from the actions discussed here since here we use simply elements in the complexified subgroup Kβ„‚K^{\mathbb{C}}. For a general discussion of dressing actions, we refer to [24, 49, 50].

One of the most simple minimal surfaces in π•Šn+2\mathbb{S}^{n+2} is the Veronese two-sphere in π•Š4\mathbb{S}^{4}. We show explicitly the Willmore deformations for the Veronese two-sphere in π•Š4\mathbb{S}^{4}. Moreover, we obtain a lot of explicit examples of complete minimal disks in ℍ4\mathbb{H}^{4} which are deformed from the Veronese two-sphere and its generalizations:

Example 1.2.

(of Proposition 5.10) Set

(1.1) Yt=(y0y1y2y3y4y5)=((kβˆ’1)​(e2​t​r2​k+2+1)+(k+1)​(r2​k+e2​t​r2)βˆ’(kβˆ’1)​(e2​t​r2​k+2+1)+(k+1)​(r2​k+e2​t​r2)i​et​k2βˆ’1​(1+r2​k)​(zβˆ’zΒ―)et​k2βˆ’1​(1+r2​k)​(z+zΒ―)i​k2βˆ’1​(1βˆ’e2​t​r2)​(zkβˆ’zΒ―k)βˆ’k2βˆ’1​(1βˆ’e2​t​r2)​(zk+zΒ―k)).Y_{t}=\left(\begin{array}[]{c}y_{0}\\ y_{1}\\ y_{2}\\ y_{3}\\ y_{4}\\ y_{5}\\ \end{array}\right)=\left(\begin{array}[]{ccccc}(k-1)(e^{2t}r^{2k+2}+1)+(k+1)(r^{2k}+e^{2t}r^{2})\\ -(k-1)(e^{2t}r^{2k+2}+1)+(k+1)(r^{2k}+e^{2t}r^{2})\\ ie^{t}\sqrt{k^{2}-1}(1+r^{2k})(z-\bar{z})\\ e^{t}\sqrt{k^{2}-1}(1+r^{2k})(z+\bar{z})\\ i\sqrt{k^{2}-1}(1-e^{2t}r^{2})(z^{k}-\bar{z}^{k})\\ -\sqrt{k^{2}-1}(1-e^{2t}r^{2})(z^{k}+\bar{z}^{k})\\ \end{array}\right).

The equation y1=0y_{1}=0 gives two circles of S2S^{2}, which divide S2S^{2} into three parts. On each part of them,

yt=1y1​(y0y2y3y4y5)y_{t}=\frac{1}{y_{1}}\left(\begin{array}[]{ccccc}y_{0}&y_{2}&y_{3}&y_{4}&y_{5}\\ \end{array}\right)

provides a proper, complete minimal surface in ℍ4\mathbb{H}^{4} with finite Willmore energy. Moreover, for any number W0βˆˆβ„+W_{0}\in\mathbb{R}^{+}, there exist some kβˆˆβ„€+βˆ–{1}k\in\mathbb{Z}^{+}\setminus\{1\} and tβ€²βˆˆβ„t^{\prime}\in\mathbb{R} such that one of the above three minimal surfaces, has Willmore energy W0W_{0}. Note that when k=1k=1, yty_{t} is in the Willmore deformation family of the Veronese sphere in S4S^{4}.

Remark 1.3.
  1. (1)

    This is different from the value distribution of Willmore two-spheres in S4S^{4} [9, 43], where the Willmore energy is always 4​π​k4\pi k for some k​℀+βˆͺ{0}k\mathbb{Z}^{+}\cup\{0\}. Note that different from the cases discussed in [1, 2], the examples constructed here do not intersect the infinite boundary π•Šβˆž3=βˆ‚βˆžβ„4\mathbb{S}^{3}_{\infty}=\partial_{\infty}\mathbb{H}^{4} orthogonally, since there are equivariant and not rotating. But they do intersect the infinite boundary π•Šβˆž3=βˆ‚βˆžβ„4\mathbb{S}^{3}_{\infty}=\partial_{\infty}\mathbb{H}^{4} with a constant angle.

  2. (2)

    By embedding ℍ4\mathbb{H}^{4} conformally into π•Š4\mathbb{S}^{4} via the canonical map (see e.g. [4, 11, 52])

    x=(x0,x1,β‹―,x4)↦1x0​(1,x1,β‹―,x4),x=(x_{0},x_{1},\cdots,x_{4})\mapsto\frac{1}{x_{0}}(1,x_{1},\cdots,x_{4}),

    the three minimal surfaces form a Willmore immersion from S2S^{2} to π•Š4\mathbb{S}^{4} by crossing the infinite boundary of ℍ4\mathbb{H}^{4}, which gives an explicit illustration of Babich and Bobenko’s famous construction of Willmore tori (with umbilical circles) in π•Š3\mathbb{S}^{3} via gluing complete minimal surfaces in ℍ3\mathbb{H}^{3} at the infinite boundary of ℍ3\mathbb{H}^{3} in [4]. A slight difference is that, although here the intersection of these surfaces with the infinite boundary π•Šβˆž3\mathbb{S}^{3}_{\infty} is not orthogonal, the whole surface stays smooth. We refer to Section 5.3 for more details.

We also obtain a complete minimal MΓΆbius strip in ℍ4\mathbb{H}^{4} with Willmore energy 6​5​π5β‰ˆ10.733​π\frac{6\sqrt{5}\pi}{5}\approx 10.733\pi (see Section 5.5). It can be extended as above to obtain a branched Willmore ℝ​P2\mathbb{R}P^{2} in S4S^{4} (Compare [29]). It is natural to ask the infimum of the Willmore energy of non-oriented complete minimal surfaces in ℍn\mathbb{H}^{n}, in comparison with the famous Willmore conjecture, which is proved by Marques and Neves [41] for the case of π•Š3\mathbb{S}^{3}. This example shows that the infimum is ≀6​5​π5\leq\frac{6\sqrt{5}\pi}{5}.

Using the Kβ„‚K^{\mathbb{C}} dressing actions, we can construct concretely a family of isotropic minimal surfaces in π•Š4\mathbb{S}^{4} for each such surface, which shows that they are not isolated.

This paper is organized as follows: in Section 2 we will review the basic theory of Willmore surfaces and loop group description of them in terms of their conformal Gauss map. Then in Section 3 we will discuss in details of the Kβ„‚βˆ’K^{\mathbb{C}}-dressing of Willmore surfaces in π•Šn+2\mathbb{S}^{n+2}, as well as applications to minimal surfaces in π•Šn+2\mathbb{S}^{n+2} and ℍn+2\mathbb{H}^{n+2}. Section 4 is a description of two kind of one parameter group dressing actions on minimal surfaces in π•Šn+2\mathbb{S}^{n+2} and ℍn+2\mathbb{H}^{n+2}. Then in Section 5 we will focus on examples of complete minimal surfaces in ℍ4\mathbb{H}^{4} with bounded Gauss curvature and finite Willmore energy. In Section 6 we show that isotropic minimal surfaces in π•Š4\mathbb{S}^{4} have non-trivial minimal deformations. The paper is ended by an appendix for the technical proof of a lemma.

2. Surface theory of Willmore surfaces and the DPW constructions

In this section we will first recall the basic theory about Willmore surfaces in π•Šn+2\mathbb{S}^{n+2}. Then we will collect the basic DPW theory for harmonic maps in symmetric space and its applications to Willmore surfaces.

2.1. Willmore surfaces in π•Šn+2\mathbb{S}^{n+2}

Here we will follow the treatment for Wilmore surfaces in [11, 18, 19, 38]. Note that in [28, 56], different frames are used in the spirits of [9] and [52] respectively. Let ℝ1n+4\mathbb{R}^{n+4}_{1} be the Lorentz-Minkowski space with the Lorentzian metric

⟨x,y⟩=βˆ’x0​y0+βˆ‘j=1n+1xj​yj=xt​I1,n+1​y,\langle x,y\rangle=-x_{0}y_{0}+\sum_{j=1}^{n+1}x_{j}y_{j}=x^{t}I_{1,n+1}y, for all x,yβˆˆβ„n+4.x,y\in\mathbb{R}^{n+4}.

Here I1,n+3=d​i​a​g​(βˆ’1,1,β‹―,1).I_{1,n+3}=diag\left(-1,1,\cdots,1\right). Let π’ž+n+3={xβˆˆβ„1n+4|⟨x,x⟩=0,x0>0}\mathcal{C}^{n+3}_{+}=\{x\in\mathbb{R}^{n+4}_{1}|\langle x,x\rangle=0,x_{0}>0\} be the forward light cone. Let Qn+2=π’ž+n+3/ℝ+Q^{n+2}=\mathcal{C}^{n+3}_{+}/\mathbb{R}^{+} be the projective light cone. For a point Yβˆˆπ’ž+n+3Y\in\mathcal{C}^{n+3}_{+}, we denote by [Y][Y] its projection in Qn+2Q^{n+2}. Then we can identify Sn+2S^{n+2} with Qn+2Q^{n+2} by setting y∈Sn+2y\in S^{n+2} to [Y=(1,y)]∈Qn+2[Y=(1,y)]\in Q^{n+2}. Let y:Mβ†’π•Šn+2y:M\rightarrow\mathbb{S}^{n+2} be a conformal immersion from a Riemann surface MM. Let zz be a local complex coordinate on UβŠ‚MU\subset M with e2​ω=2β€‹βŸ¨yz,yz¯⟩e^{2\omega}=2\langle y_{z},y_{\bar{z}}\rangle. We have a canonical lift Y=eβˆ’Ο‰β€‹(1,y)Y=e^{-\omega}(1,y) into π’žn+3\mathcal{C}^{n+3} with respect to zz since |Yz|2=12|Y_{z}|^{2}=\frac{1}{2}. Moreover, there exists a global bundle decomposition M×ℝ1n+4=VβŠ•VβŸ‚.M\times\mathbb{R}^{n+4}_{1}=V\oplus V^{\perp}. Here Vp=Span​{Y,Re​Yz,Im​Yz,Yz​zΒ―}|p​ for ​p∈MV_{p}={\rm Span}\{Y,{\rm Re}Y_{z},{\rm Im}Y_{z},Y_{z\bar{z}}\}|_{p}\hbox{ for }p\in M, and VβŸ‚|pV^{\perp}|_{p} is the orthogonal complement of VpV_{p} in ℝ1n+4\mathbb{R}^{n+4}_{1}. Note that VpV_{p} is a 4-dimensional Lorenzian subspace and VβŸ‚|pV^{\perp}|_{p} is an (n)βˆ’(n)-dimensional Euclidean subspace. Denote by Vβ„‚V_{\mathbb{C}} and Vβ„‚βŸ‚V^{\perp}_{\mathbb{C}} the complexifications of VV and VβŸ‚V^{\perp} respectively. Let {Y,Yz,YzΒ―,N}\{Y,Y_{z},Y_{\bar{z}},N\} be a frame of Vβ„‚V_{\mathbb{C}} such that ⟨N,Yz⟩=⟨N,Yz¯⟩=⟨N,N⟩=0,⟨N,Y⟩=βˆ’1\langle N,Y_{z}\rangle=\langle N,Y_{\bar{z}}\rangle=\langle N,N\rangle=0,\ \langle N,Y\rangle=-1. Let DD be the normal connection on Vβ„‚βŸ‚V_{\mathbb{C}}^{\perp}, and ΟˆβˆˆΞ“β€‹(Vβ„‚βŸ‚)\psi\in\Gamma(V_{\mathbb{C}}^{\perp}) be an arbitrary section of Vβ„‚βŸ‚V_{\mathbb{C}}^{\perp}. Then we have:

(2.1) {Yz​z=βˆ’s2​Y+ΞΊ,Yz​zΒ―=βˆ’βŸ¨ΞΊ,ΞΊΒ―βŸ©β€‹Y+12​N,Nz=βˆ’2β€‹βŸ¨ΞΊ,ΞΊΒ―βŸ©β€‹Yzβˆ’s​YzΒ―+2​Dz¯​κ,ψz=Dzβ€‹Οˆ+2β€‹βŸ¨Οˆ,DzΒ―β€‹ΞΊβŸ©β€‹Yβˆ’2β€‹βŸ¨Οˆ,ΞΊβŸ©β€‹YzΒ―.​ Structure equations.Β \left\{\begin{array}[]{lllll}Y_{zz}&=&-\frac{s}{2}Y+\kappa,\\ Y_{z\bar{z}}&=&-\langle\kappa,\bar{\kappa}\rangle Y+\frac{1}{2}N,\\ N_{z}&=&-2\langle\kappa,\bar{\kappa}\rangle Y_{z}-sY_{\bar{z}}+2D_{\bar{z}}\kappa,\\ \psi_{z}&=&D_{z}\psi+2\langle\psi,D_{\bar{z}}\kappa\rangle Y-2\langle\psi,\kappa\rangle Y_{\bar{z}}.\\ \end{array}\right.\ \hbox{ Structure equations. }

Here ΞΊ\kappa and ss are named as the conformal Hopf differential and the Schwarzian of yy respectively [11]. The integrability conditions are as follows:

(2.2) {12​szΒ―=3β€‹βŸ¨ΞΊ,Dzβ€‹ΞΊΒ―βŸ©+⟨Dz​κ,κ¯⟩,Β Gauss eq.Im​(Dz¯​Dz¯​κ+sΒ―2​κ)=0,Β Codazzi eq.Rz¯​zDβ€‹Οˆ=Dz¯​Dzβ€‹Οˆβˆ’Dz​DzΒ―β€‹Οˆ=2β€‹βŸ¨Οˆ,ΞΊβŸ©β€‹ΞΊΒ―βˆ’2β€‹βŸ¨Οˆ,ΞΊΒ―βŸ©β€‹ΞΊ,Β Ricci eq.\left\{\begin{array}[]{lllll}\frac{1}{2}s_{\bar{z}}=3\langle\kappa,D_{z}\bar{\kappa}\rangle+\langle D_{z}\kappa,\bar{\kappa}\rangle,&\hbox{ Gauss eq.}\\ {\rm Im}(D_{\bar{z}}D_{\bar{z}}\kappa+\frac{\bar{s}}{2}\kappa)=0,&\hbox{ Codazzi eq.}\\ R^{D}_{\bar{z}z}\psi=D_{\bar{z}}D_{z}\psi-D_{z}D_{\bar{z}}\psi=2\langle\psi,\kappa\rangle\bar{\kappa}-2\langle\psi,\bar{\kappa}\rangle\kappa,&\hbox{ Ricci eq.}\end{array}\right.

The Willmore energy of yy is defined to be

W​(y)=i2β€‹βˆ«M|ΞΊ|2​dz∧d​zΒ―.W(y)=\frac{i}{2}\int_{M}|\kappa|^{2}\mathrm{d}z\wedge\mathrm{d}\bar{z}.

Let HH and KK denote the mean curvature and Gauss curvature of yy in π•Šn+2\mathbb{S}^{n+2} respectively. We have

W​(y)=∫M(H2βˆ’K+1)​dM.W(y)=\int_{M}(H^{2}-K+1)\mathrm{d}M.

Note that in many cases the Willmore energy is also defined as

W~​(y)=∫M(H2+1)​dM=W​(y)+∫MK​dM.\tilde{W}(y)=\int_{M}(H^{2}+1)\mathrm{d}M=W(y)+\int_{M}K\mathrm{d}M.

In particular, for an oriented closed surface MM with Euler number χ​(M)\chi(M),

W~​(y)=W​(y)+2​π​χ​(M).\tilde{W}(y)=W(y)+2\pi\chi(M).

For compact surfaces with boundary, to get a conformal invariant functional, one needs to use W​(y)W(y) instead of W~​(y)\tilde{W}(y) (See e.g. [1, 2, 47]).

For a surface in hyperbolic space x:M→ℍn+2x:M\rightarrow\mathbb{H}^{n+2}, with or without boundary, the conformal invariant Willmore energy is defined to be (See e.g. [1, 2, 47]).

(2.3) W​(x)=∫M(H2βˆ’Kβˆ’1)​dM.W(x)=\int_{M}(H^{2}-K-1)\mathrm{d}M.

By the Gauss equation of xx one has

H2βˆ’Kβˆ’1=12​(Sβˆ’2​H2),H^{2}-K-1=\frac{1}{2}(S-2H^{2}),

where SS is the square of the length of the second fundament form of xx (Compare Theorem 1.2 of [1]). For the case of surfaces in Sn+2S^{n+2}, see (1.2) and (2.8) of [35].

It is well-known that Willmore surfaces can be characterized as follows.

Theorem 2.1.

[9], [27], [11]: yy is a Willmore surface if and only if the Willmore equation holds

(2.4) Dz¯​Dz¯​κ+sΒ―2​κ=0;D_{\bar{z}}D_{\bar{z}}\kappa+\frac{\bar{s}}{2}\kappa=0;

if and only if the conformal Gauss map G​r:Mβ†’G​r1,3​(ℝ1n+4)=S​O+​(1,n+1)/S​O+​(1,3)Γ—S​O​(n)Gr:M\rightarrow Gr_{1,3}(\mathbb{R}^{n+4}_{1})=SO^{+}(1,n+1)/SO^{+}(1,3)\times SO(n) of yy is harmonic. Here G​rGr is defined as

G​r:=Y∧Yu∧Yv∧N=βˆ’2​iβ‹…Y∧Yz∧Yz¯∧N.Gr:=Y\wedge Y_{u}\wedge Y_{v}\wedge N=-2i\cdot Y\wedge Y_{z}\wedge Y_{\bar{z}}\wedge N.

A local lift of G​rGr into S​O+​(1,n+3)SO^{+}(1,n+3) can be chosen as

(2.5) F:=(12​(Y+N),12​(βˆ’Y+N),e1,e2,ψ1,β‹―,ψn):Uβ†’S​O+​(1,n+1)F:=\left(\frac{1}{\sqrt{2}}(Y+N),\frac{1}{\sqrt{2}}(-Y+N),e_{1},e_{2},\psi_{1},\cdots,\psi_{n}\right):U\rightarrow SO^{+}(1,n+1)

with Maurer-Cartan form

Ξ±=Fβˆ’1​d​F=(A1B1βˆ’B1t​I1,3A2)​d​z+(AΒ―1BΒ―1βˆ’BΒ―1t​I1,3AΒ―2)​d​zΒ―,\alpha=F^{-1}\mathrm{d}F=\left(\begin{array}[]{cc}A_{1}&B_{1}\\ -B_{1}^{t}I_{1,3}&A_{2}\\ \end{array}\right)\mathrm{d}z+\left(\begin{array}[]{cc}\bar{A}_{1}&\bar{B}_{1}\\ -\bar{B}_{1}^{t}I_{1,3}&\bar{A}_{2}\\ \end{array}\right)\mathrm{d}\bar{z},

and

(2.6) B1=(2​β1β‹―2​βnβˆ’2​β1β‹―βˆ’2​βnβˆ’k1β‹―βˆ’knβˆ’i​k1β‹―βˆ’i​kn).B_{1}=\left(\begin{array}[]{ccc}\sqrt{2}\beta_{1}&\cdots&\sqrt{2}\beta_{n}\\ -\sqrt{2}\beta_{1}&\cdots&-\sqrt{2}\beta_{n}\\ -k_{1}&\cdots&-k_{n}\\ -ik_{1}&\cdots&-ik_{n}\\ \end{array}\right).

Here {ψj}\{\psi_{j}\} is an orthonormal basis of VβŸ‚V^{\perp} and ΞΊ=βˆ‘jkjβ€‹Οˆj,Dz¯​κ=βˆ‘jΞ²jβ€‹Οˆj,k=βˆ‘j|kj|2.\kappa=\sum_{j}k_{j}\psi_{j},\ D_{\bar{z}}\kappa=\sum_{j}\beta_{j}\psi_{j},\ k=\sqrt{\sum_{j}|k_{j}|^{2}}.

Finally we recall that for a surface yy in π•Š4\mathbb{S}^{4}, it is called isotropic if and only if its Hopf differential satisfies

⟨κ,ΞΊβŸ©β‰‘0\langle\kappa,\kappa\rangle\equiv 0

(see [13, 27, 43, 44]). This is a conformal invariant condition and it plays important roles in the classification of minimal two-spheres [13] and Willmore two-spheres in π•Š4\mathbb{S}^{4} [27, 43, 44]. It is well-known that if yy is an isotropic surface in S4S^{4}, then it is Willmore [27].

2.2. The DPW construction of Willmore surfaces in π•Šn+2\mathbb{S}^{n+2} via conformal Gauss maps

2.2.1. The DPW construction of harmonic maps

We will recall the basic theory of the DPW methods(See [17, 19] for more details). Let G/KG/K be a symmetric space defined by the involution Οƒ:Gβ†’G\sigma:G\rightarrow G, with GΟƒβŠƒKβŠƒ(GΟƒ)0G^{\sigma}\supset K\supset(G^{\sigma})_{0}, and Lie algebras 𝔀=L​i​e​(G)\mathfrak{g}=Lie(G), 𝔨=L​i​e​(K)\mathfrak{k}=Lie(K). Then 𝔀=π”¨βŠ•π”­,[𝔨,𝔨]βŠ‚π”¨,[𝔨,𝔭]βŠ‚π”­,[𝔭,𝔭]βŠ‚π”¨.\mathfrak{g}=\mathfrak{k}\oplus\mathfrak{p},\ [\mathfrak{k},\mathfrak{k}]\subset\mathfrak{k},\ [\mathfrak{k},\mathfrak{p}]\subset\mathfrak{p},\ [\mathfrak{p},\mathfrak{p}]\subset\mathfrak{k}.

Let f:Mβ†’G/Kf:M\rightarrow G/K be a harmonic map. Let zz be a complex coordinate on UβŠ‚MU\subset M. Then there exists a frame F:Uβ†’GF:U\rightarrow G of ff with Maurer-Cartan form Fβˆ’1​d​F=Ξ±F^{-1}\mathrm{d}F=\alpha. The Maurer-Cartan equation reads d​α+12​[α∧α]=0.\mathrm{d}\alpha+\frac{1}{2}[\alpha\wedge\alpha]=0. Decompose it with respect to the Cartan decomposition, we obtain Ξ±=Ξ±0+Ξ±1\alpha=\alpha_{0}+\alpha_{1} with Ξ±0βˆˆΞ“β€‹(π”¨βŠ—Tβˆ—β€‹M),Ξ±1βˆˆΞ“β€‹(π”­βŠ—Tβˆ—β€‹M)\alpha_{0}\in\Gamma(\mathfrak{k}\otimes T^{*}M),\ \alpha_{1}\in\Gamma(\mathfrak{p}\otimes T^{*}M). Decompose Ξ±1\alpha_{1} further into the (1,0)βˆ’(1,0)-part Ξ±1β€²\alpha_{1}^{\prime} and the (0,1)βˆ’(0,1)-part Ξ±1β€²β€²\alpha_{1}^{\prime\prime}. Introducing λ∈S1\lambda\in S^{1}, set

(2.7) Ξ±Ξ»=Ξ»βˆ’1​α1β€²+Ξ±0+λ​α1β€²β€²,λ∈S1.\alpha_{\lambda}=\lambda^{-1}\alpha_{1}^{\prime}+\alpha_{0}+\lambda\alpha_{1}^{\prime\prime},\ \lambda\in S^{1}.

It is well known ([17]) that the map f:M→G/Kf:M\rightarrow G/K is harmonic if and only if

d​αλ+12​[αλ∧αλ]=0for allβ€‹Ξ»βˆˆS1.\mathrm{d}\alpha_{\lambda}+\frac{1}{2}[\alpha_{\lambda}\wedge\alpha_{\lambda}]=0\ \ \hbox{for all}\ \lambda\in S^{1}.
Definition 2.2.

Let F​(z,Ξ»)F(z,\lambda) be a solution to the equation d​F​(z,Ξ»)=F​(z,Ξ»)​αλ,F​(0,Ξ»)=F​(0).\mathrm{d}F(z,\lambda)=F(z,\lambda)\alpha_{\lambda},\ F(0,\lambda)=F(0). Then F​(z,Ξ»)F(z,\lambda) is called the extended frame of the harmonic map ff. Moreover,

f​(z,Ξ»):=F​(z,Ξ»)modKf(z,\lambda):=F(z,\lambda)\mod K

are harmonic maps in G/KG/K for all λ∈S1\lambda\in S^{1}, called the associated family of ff. Note that f​(z,Ξ»)=ff(z,\lambda)=f and F​(z,1)=F​(z)F(z,1)=F(z).

So far we have related harmonic maps with maps into loop groups. Moreover, we need the Iwasawa and Birkhoff decompositions for loop groups. Let Gβ„‚G^{\mathbb{C}} be the complexified Lie group of GG. Extend Οƒ\sigma to an inner involution of Gβ„‚G^{\mathbb{C}} with F​i​xσ​Gβ„‚=Kβ„‚Fix_{\sigma}G^{\mathbb{C}}=K^{\mathbb{C}}. Let Λ​GΟƒβ„‚\Lambda G^{\mathbb{C}}_{\sigma} be the group of loops in Gβ„‚G^{\mathbb{C}} twisted by Οƒ\sigma. Let Ξ›βˆ—βˆ’β€‹GΟƒβ„‚\Lambda^{-}_{*}G^{\mathbb{C}}_{\sigma} be the group of loops that extends holomorphically into ∞\infty and take values II at ∞\infty.

Theorem 2.3.

[17], [18]

  1. (1)

    (Iwasawa decomposition): There exists a closed, connected solvable subgroup SβŠ†Kβ„‚S\subseteq K^{\mathbb{C}} such that the multiplication Λ​GΟƒ0Γ—Ξ›S+​Gσℂ→Λ​GΟƒβ„‚\Lambda G_{\sigma}^{0}\times\Lambda^{+}_{S}G^{\mathbb{C}}_{\sigma}\rightarrow\Lambda G^{\mathbb{C}}_{\sigma} is a real analytic diffeomorphism onto the open subset Λ​GΟƒ0β‹…Ξ›S+​GΟƒβ„‚=ℐeπ’°βŠ‚(Λ​GΟƒβ„‚)0\Lambda G_{\sigma}^{0}\cdot\Lambda^{+}_{S}G^{\mathbb{C}}_{\sigma}=\mathcal{I}^{\mathcal{U}}_{e}\subset(\Lambda G^{\mathbb{C}}_{\sigma})^{0}, with Ξ›S+​GΟƒβ„‚:={Ξ³βˆˆΞ›+​GΟƒS|Ξ³|Ξ»=0∈S}.\Lambda_{S}^{+}G^{\mathbb{C}}_{\sigma}:=\{\gamma\in\Lambda^{+}G^{S}_{\sigma}~{}|~{}\gamma|_{\lambda=0}\in S\}.

  2. (2)

    (Birkhoff decomposition): The multiplication Ξ›βˆ—βˆ’β€‹GΟƒβ„‚Γ—Ξ›π’ž+​Gσℂ→Λ​GΟƒβ„‚\Lambda_{*}^{-}{G}^{\mathbb{C}}_{\sigma}\times\Lambda^{+}_{\mathcal{C}}{G}^{\mathbb{C}}_{\sigma}\rightarrow\Lambda{G}^{\mathbb{C}}_{\sigma} is an analytic diffeomorphism onto the open, dense subset Ξ›βˆ—βˆ’β€‹GΟƒβ„‚β‹…Ξ›π’ž+​GΟƒβ„‚\Lambda_{*}^{-}{G}^{\mathbb{C}}_{\sigma}\cdot\Lambda^{+}_{\mathcal{C}}{G}^{\mathbb{C}}_{\sigma} of Λ​GΟƒβ„‚\Lambda{G}^{\mathbb{C}}_{\sigma} (the big Birkhoff cell), with Ξ›π’ž+​GΟƒβ„‚:={Ξ³βˆˆΞ›+​GΟƒβ„‚|Ξ³|Ξ»=0∈(Kβ„‚)0}.\Lambda_{\mathcal{C}}^{+}G^{\mathbb{C}}_{\sigma}:=\{\gamma\in\Lambda^{+}G^{\mathbb{C}}_{\sigma}~{}|~{}\gamma|_{\lambda=0}\in(K^{\mathbb{C}})^{0}\}.

The well-known DPW construction for harmonic maps can be stated as follows

Theorem 2.4.

[17] Let π”»βŠ‚β„‚\mathbb{D}\subset\mathbb{C} be a disk or β„‚\mathbb{C} with complex coordinate zz.

  1. (1)

    Let f:𝔻→G/Kf:\mathbb{D}\rightarrow G/K denote a harmonic map with an extended frame F​(z,zΒ―,Ξ»)βˆˆΞ›β€‹GΟƒF(z,\bar{z},\lambda)\in\Lambda G_{\sigma} and F​(0,0,Ξ»)=IF(0,0,\lambda)=I. Then there exists a Birkhoff decomposition of F​(z,zΒ―,Ξ»)F(z,\bar{z},\lambda): Fβˆ’β€‹(z,Ξ»)=F​(z,zΒ―,Ξ»)​F+​(z,zΒ―,Ξ»),F_{-}(z,\lambda)=F(z,\bar{z},\lambda)F_{+}(z,\bar{z},\lambda), with F+F_{+} taking values in Ξ›S+​GΟƒβ„‚,\Lambda^{+}_{S}G^{\mathbb{C}}_{\sigma}, such that Fβˆ’β€‹(z,Ξ»):π”»β†’Ξ›βˆ—βˆ’β€‹GΟƒβ„‚F_{-}(z,\lambda):\mathbb{D}\rightarrow\Lambda^{-}_{*}G^{\mathbb{C}}_{\sigma} is meromorphic. Moreover, the Maurer-Cartan form of Fβˆ’F_{-} is the form

    Ξ·=Fβˆ’βˆ’1​d​Fβˆ’=Ξ»βˆ’1β€‹Ξ·βˆ’1​(z)​d​z,\eta=F_{-}^{-1}\mathrm{d}F_{-}=\lambda^{-1}\eta_{-1}(z)\mathrm{d}z,

    called the normalized potential of ff, with Ξ·βˆ’1:π”»β†’π”­βŠ—β„‚\eta_{-1}:\mathbb{D}\rightarrow\mathfrak{p}\otimes\mathbb{C} independent of Ξ»\lambda.

  2. (2)

    Let Ξ·\eta be a Ξ»βˆ’1β‹…π”­βŠ—β„‚βˆ’\lambda^{-1}\cdot\mathfrak{p}\otimes\mathbb{C}-valued meromorphic 1-form on 𝔻\mathbb{D}. Let Fβˆ’β€‹(z,Ξ»)F_{-}(z,\lambda) be a solution to Fβˆ’βˆ’1​d​Fβˆ’=Ξ·F_{-}^{-1}\mathrm{d}F_{-}=\eta, Fβˆ’β€‹(0,Ξ»)=IF_{-}(0,\lambda)=I. Then there exists an Iwasawa decomposition

    Fβˆ’β€‹(0,Ξ»)=F~​(z,zΒ―,Ξ»)​F~+​(z,zΒ―,Ξ»),F_{-}(0,\lambda)=\tilde{F}(z,\bar{z},\lambda)\tilde{F}^{+}(z,\bar{z},\lambda),

    with F~βˆˆΞ›β€‹GΟƒ,F~βˆˆΞ›S+​GΟƒβ„‚\tilde{F}\in\Lambda G_{\sigma},\ \tilde{F}\in\Lambda^{+}_{S}G^{\mathbb{C}}_{\sigma} on an open subset 𝔻ℑ\mathbb{D}_{\mathfrak{I}} of 𝔻\mathbb{D}. Moreover, F~​(z,zΒ―,Ξ»)\tilde{F}(z,\bar{z},\lambda) is an extended frame of some harmonic map from 𝔻ℑ\mathbb{D}_{\mathfrak{I}} to G/KG/K with F~​(0,0,Ξ»)=I\tilde{F}(0,0,\lambda)=I. All harmonic maps can be obtained in this way, since the above two procedures are inverse to each other if the normalization at some based point is fixed.

2.2.2. Normalized potentials of Willmore surfaces in π•Šn+2\mathbb{S}^{n+2}

For simplicity let us restrict to the case for Willmore surfaces [18, 19, 53]. In this case, G=S​O+​(1,n+3)G=SO^{+}(1,n+3), K=S​O+​(1,3)Γ—S​O​(n)K=SO^{+}(1,3)\times SO(n), and 𝔀=𝔰​𝔬​(1,n+3)={Xβˆˆπ”€β€‹l​(n+4,ℝ)|Xt​I1,n+3+I1,n+3​X=0}.\mathfrak{g}=\mathfrak{so}(1,n+3)=\{X\in\mathfrak{g}l(n+4,\mathbb{R})|X^{t}I_{1,n+3}+I_{1,n+3}X=0\}. The involution Οƒ\sigma is given by Οƒ:S​O+​(1,n+3)β†’S​O+​(1,n+3),σ​(A):=D​A​Dβˆ’1,\sigma:\ SO^{+}(1,n+3)\rightarrow\ SO^{+}(1,n+3),\sigma(A):=DAD^{-1}, with D=diag​{βˆ’I4,In}D=\hbox{diag}\{-I_{4},I_{n}\}. We also have 𝔀=π”¨βŠ•π”­,\mathfrak{g}=\mathfrak{k}\oplus\mathfrak{p}, with

𝔨={(A100A2)|A1t​I1,3+I1,3​A1=0,A2+A2t=0},𝔭={(0B1βˆ’B1t​I1,30)}.\mathfrak{k}=\left\{\left(\begin{array}[]{cc}A_{1}&0\\ 0&A_{2}\\ \end{array}\right)|A_{1}^{t}I_{1,3}+I_{1,3}A_{1}=0,A_{2}+A_{2}^{t}=0\right\},\ \mathfrak{p}=\left\{\left(\begin{array}[]{cc}0&B_{1}\\ -B_{1}^{t}I_{1,3}&0\\ \end{array}\right)\right\}.

Let Gβ„‚=S​O+​(1,n+3,β„‚)={X∈S​L​(n+4,β„‚)|Xt​I1,n+3​X=I1,n+3}G^{\mathbb{C}}=SO^{+}(1,n+3,\mathbb{C})=\{X\in SL(n+4,\mathbb{C})~{}|~{}X^{t}I_{1,n+3}X=I_{1,n+3}\} with Lie algebra 𝔰​𝔬​(1,n+3,β„‚)\mathfrak{so}(1,n+3,\mathbb{C}). Extend Οƒ\sigma to an inner involution of S​O+​(1,n+3,β„‚)SO^{+}(1,n+3,\mathbb{C}) with fixed point group Kβ„‚=S​(O+​(1,3,β„‚)Γ—O​(n,β„‚))K^{\mathbb{C}}=S(O^{+}(1,3,\mathbb{C})\times O(n,\mathbb{C})).

Since Willmore surfaces and their oriented conformal Gauss map are in one to one correspondence [18, 27, 38], we will use the normalized potential for a Willmore surface directly. For later use, we recall the description of minimal surfaces in space forms in terms of normalized potentials.

Theorem 2.5.

[53] (compare also [8, 28, 56]) Let yy be a Willmore surface in π•Šn+2\mathbb{S}^{n+2}, with its normalized potential being of the form

Ξ·=Ξ»βˆ’1β€‹Ξ·βˆ’1​d​z=Ξ»βˆ’1​(0B^1βˆ’B^1t​I1,30)​d​z,Β and ​B^1t​I1,3​B^1=0.\eta=\lambda^{-1}\eta_{-1}\mathrm{d}z=\lambda^{-1}\left(\begin{array}[]{cc}0&\hat{B}_{1}\\ -\hat{B}_{1}^{t}I_{1,3}&0\\ \end{array}\right)\mathrm{d}z,\ \hbox{ and }\hat{B}_{1}^{t}I_{1,3}\hat{B}_{1}=0.

Then yy is conformally equivalent to some minimal surface in ℝn+2\mathbb{R}^{n+2}, π•Šn+2\mathbb{S}^{n+2} or ℍn\mathbb{H}^{n} if and only if there exists a non-zero, real, constant vector 𝐯=(v1,v2,v3,v4)tβˆˆβ„14\mathbf{v}=(\mathrm{v}_{1},\mathrm{v}_{2},\mathrm{v}_{3},\mathrm{v}_{4})^{t}\in\mathbb{R}^{4}_{1} such that

(2.8) 𝐯t​I1,3​B^1≑0.\mathbf{v}^{t}I_{1,3}\hat{B}_{1}\equiv 0.

Moreover,

  1. (1)

    the space form is ℝn+2\mathbb{R}^{n+2} if and only if ⟨𝐯,𝐯⟩=𝐯t​I1,3​𝐯=0;\langle\mathbf{v},\mathbf{v}\rangle=\mathbf{v}^{t}I_{1,3}\mathbf{v}=0;

  2. (2)

    the space form is π•Šn+2\mathbb{S}^{n+2} if and only if ⟨𝐯,𝐯⟩=𝐯t​I1,3​𝐯<0;\langle\mathbf{v},\mathbf{v}\rangle=\mathbf{v}^{t}I_{1,3}\mathbf{v}<0;

  3. (3)

    the space form is ℍn+2\mathbb{H}^{n+2} if and only if ⟨𝐯,𝐯⟩=𝐯t​I1,3​𝐯>0.\langle\mathbf{v},\mathbf{v}\rangle=\mathbf{v}^{t}I_{1,3}\mathbf{v}>0.

Note that in [16], [7], there are some different treatments of minimal surfaces in ℍ3\mathbb{H}^{3} via loop group methods.

3. Kβ„‚βˆ’K^{\mathbb{C}}-dressing actions on Willmore surfaces

In this section, we will use the dressing actions on harmonic maps by Kβ„‚K^{\mathbb{C}} for Willmore surfaces. We refer to [12, 24, 34, 49, 50] for more details on dressing actions and their applications on all kinds of geometric problems. Note that here we use the elements in Kβ„‚K^{\mathbb{C}} instead of the loop group elements.

3.1. Kβ„‚βˆ’K^{\mathbb{C}}-dressing actions

Definition 3.1.

Let 𝐀∈Kβ„‚\mathbf{k}\in K^{\mathbb{C}}. Let f:𝔻→G/Kf:\mathbb{D}\rightarrow G/K be a harmonic map with an extended frame F​(z,Ξ»)F(z,\lambda), based at z0z_{0} such that F​(z0,Ξ»)=e∈GF(z_{0},\lambda)=e\in G. a dressing action by 𝐀\mathbf{k} on ff is defined by the harmonic map

𝐀​♯​f:=F^modK,\mathbf{k}\sharp f:=\hat{F}\mod K,

where F^:𝔻→Λ​GΟƒ\hat{F}:\mathbb{D}\rightarrow\Lambda G_{\sigma} is given by the following

(3.1) F^=𝐀​F​(z,Ξ»)​V^+,Β with ​V^+βˆˆΞ›+​GΟƒβ„‚.\hat{F}=\mathbf{k}F(z,\lambda)\hat{V}_{+},\hbox{ with }\hat{V}_{+}\in\Lambda^{+}G^{\mathbb{C}}_{\sigma}.

From the definition it is obvious that

Corollary 3.2.

f~=𝐀​♯​f\tilde{f}=\mathbf{k}\sharp f if f=π€βˆ’1​♯​f~f=\mathbf{k}^{-1}\sharp\tilde{f}.

The following result is well-known to the experts. For the reader’s convenience, we state it in the following way with a proof.

Proposition 3.3.

Let Ξ·\eta and Ξ·^\hat{\eta} be the normalized potentials of ff and 𝐀​♯​f\mathbf{k}\sharp f given by the extended frames FF and F^\hat{F} respectively. Then

(3.2) Ξ·^=π€β€‹Ξ·β€‹π€βˆ’1.\hat{\eta}=\mathbf{k}\eta\mathbf{k}^{-1}.

Conversely, assume that Ξ·\eta and Ξ·^\hat{\eta} satisfies (3.2), and their integrations have the same initial conditions, then their corresponding harmonic maps ff and f^\hat{f} satisfy f^=𝐀​♯​f\hat{f}=\mathbf{k}\sharp f.

Proof.

By Theorem 2.4, we have

Fβˆ’=F​F+​ and ​η=Fβˆ’βˆ’1​d​Fβˆ’,F^βˆ’=F^​F^+​ and ​η^=F^βˆ’βˆ’1​d​F^βˆ’.F_{-}=FF_{+}\hbox{ and }\eta=F_{-}^{-1}\mathrm{d}F_{-},~{}\hat{F}_{-}=\hat{F}\hat{F}_{+}\hbox{ and }\hat{\eta}=\hat{F}_{-}^{-1}\mathrm{d}\hat{F}_{-}.

From (3.1), we also have F^=𝐀​F​(z,Ξ»)​V^+\hat{F}=\mathbf{k}F(z,\lambda)\hat{V}_{+}. So

F^βˆ’=𝐀​F​(z,Ξ»)​V^+​F^+=𝐀​Fβˆ’β€‹F+βˆ’1​V^+=𝐀​Fβˆ’β€‹π€βˆ’1​𝐀​F+βˆ’1​V^+.\hat{F}_{-}=\mathbf{k}F(z,\lambda)\hat{V}_{+}\hat{F}_{+}=\mathbf{k}F_{-}F_{+}^{-1}\hat{V}_{+}=\mathbf{k}F_{-}\mathbf{k}^{-1}\mathbf{k}F_{+}^{-1}\hat{V}_{+}.

Together with the assumption of having same initial conditions, we obtain that F^βˆ’=𝐀​Fβˆ’β€‹π€βˆ’1\hat{F}_{-}=\mathbf{k}F_{-}\mathbf{k}^{-1}, and (3.2) follows directly.

Concerning the converse part, first by assumptions we have F^βˆ’=𝐀​Fβˆ’β€‹π€βˆ’1\hat{F}_{-}=\mathbf{k}F_{-}\mathbf{k}^{-1}. So

F^=F^βˆ’β€‹F^+βˆ’1=𝐀​Fβˆ’β€‹π€βˆ’1​F^+βˆ’1=𝐀​F​V^+\hat{F}=\hat{F}_{-}\hat{F}_{+}^{-1}=\mathbf{k}F_{-}\mathbf{k}^{-1}\hat{F}_{+}^{-1}=\mathbf{k}F\hat{V}_{+}

with V^+=F+βˆ’1β€‹π€βˆ’1​F^+βˆ’1,\hat{V}_{+}=F_{+}^{-1}\mathbf{k}^{-1}\hat{F}_{+}^{-1}, that is, f^=𝐀​♯​f.\hat{f}=\mathbf{k}\sharp f. ∎

Applying to Willmore surfaces, we obtain

Proposition 3.4.

Let T=T1Γ—T2∈S​O​(1,3,β„‚)Γ—S​O​(n,β„‚)T=T_{1}\times T_{2}\in SO(1,3,\mathbb{C})\times SO(n,\mathbb{C}). Let ff be a harmonic map with normalized potential

(3.3) Ξ·=Ξ»βˆ’1β€‹Ξ·βˆ’1​d​z=Ξ»βˆ’1​(0B^1βˆ’B^1t​I1,30)​d​z,Β with ​B^1t​I1,3​B^1=0.\eta=\lambda^{-1}\eta_{-1}dz=\lambda^{-1}\left(\begin{array}[]{cc}0&\hat{B}_{1}\\ -\hat{B}_{1}^{t}I_{1,3}&0\\ \end{array}\right)dz,\hbox{ with }\hat{B}_{1}^{t}I_{1,3}\hat{B}_{1}=0.

Then the normalized potential Ξ·T\eta_{T} of T​♯​fT\sharp f has the form

(3.4) Ξ·T=T​η​Tβˆ’1=Ξ»βˆ’1​(0T1​B^1​T2tβˆ’T2​B^1t​I1,3​T1t0)​d​z.\eta_{T}=T\eta T^{-1}=\lambda^{-1}\left(\begin{array}[]{cc}0&T_{1}\hat{B}_{1}T_{2}^{t}\\ -T_{2}\hat{B}_{1}^{t}I_{1,3}T_{1}^{t}&0\\ \end{array}\right)dz.

We define the space of the conformal Gauss maps of minimal surfaces in three space forms

(3.5) β„³0:={f|f​ is the conformal Gauss map of a minimal surface in ​ℝn+2},\mathcal{M}_{0}:=\{f|f\hbox{ is the conformal Gauss map of a minimal surface in }\mathbb{R}^{n+2}\},
(3.6) β„³1:={f|f​ is the conformal Gauss map of a minimal surface inΒ β€‹π•Šn+2},\mathcal{M}_{1}:=\{f|f\hbox{ is the conformal Gauss map of a minimal surface in }\mathbb{S}^{n+2}\},
(3.7) β„³βˆ’1:={f|f​ is the conformal Gauss map of a minimal surface in ​ℍn+2}.\mathcal{M}_{-1}:=\{f|f\hbox{ is the conformal Gauss map of a minimal surface in }\mathbb{H}^{n+2}\}.

We also define the space β„³L\mathcal{M}_{L} and its subset β„³~0\widetilde{\mathcal{M}}_{0} as below

(3.8) β„³L:={f|The normalized potentialΒ Ξ·Β ofΒ fΒ satisfies ​𝐯t​I1,3​B^1=0​ for someΒ β€‹π―βˆˆβ„‚14\{0}},\mathcal{M}_{L}:=\left\{f|\hbox{The normalized potential $\eta$ of $f$ satisfies }\mathbf{v}^{t}I_{1,3}\hat{B}_{1}=0\hbox{ for some }\mathbf{v}\in\mathbb{C}^{4}_{1}\backslash\{0\}\right\},
(3.9) β„³~0:={f|fβˆˆβ„³L,Β with 𝐯 satisfying ​𝐯t​I1,3​𝐯=0}.\widetilde{\mathcal{M}}_{0}:=\left\{f|f\in\mathcal{M}_{L},\hbox{ with $\mathbf{v}$ satisfying }\mathbf{v}^{t}I_{1,3}\mathbf{v}=0\right\}.

Note that β„³0β«‹β„³~0\mathcal{M}_{0}\subsetneqq\widetilde{\mathcal{M}}_{0} (See [53] for example). In [53], it is shown that up to a conjugation, for any fβˆˆβ„³~0f\in\widetilde{\mathcal{M}}_{0}, the normalized potential of ff has the form ((1) of [53])

B^1=(f^11f^12β‹―f^1,nβˆ’f^11βˆ’f^12β‹―βˆ’f^1,nf^13f^32β‹―f^3​ni​f^13i​f^32β‹―i​f^3​n)\hat{B}_{1}=\left(\begin{array}[]{ccccccc}\hat{f}_{11}&\hat{f}_{12}&\cdots&\hat{f}_{1,n}\\ -\hat{f}_{11}&-\hat{f}_{12}&\cdots&-\hat{f}_{1,n}\\ \hat{f}_{13}&\hat{f}_{32}&\cdots&\hat{f}_{3n}\\ i\hat{f}_{13}&i\hat{f}_{32}&\cdots&i\hat{f}_{3n}\\ \end{array}\right)

with f^i​j\hat{f}_{ij} being meromorphic functions.

Set Kβ„‚=S​O​(1,3,β„‚)Γ—S​O​(n,β„‚)K^{\mathbb{C}}=SO(1,3,\mathbb{C})\times SO(n,\mathbb{C}) and we define

(3.10) Kℂ​♯​ℳj:={T​♯​f|T∈Kβ„‚,fβˆˆβ„³j},j=0,1,βˆ’1;Kℂ​♯​ℳ~0:={T​♯​f|T∈Kβ„‚,fβˆˆβ„³~0};Kℂ​♯​ℳL:={T​♯​f|T∈Kβ„‚,fβˆˆβ„³L}.\begin{split}K^{\mathbb{C}}\sharp\mathcal{M}_{j}&:=\{T\sharp f|T\in K^{\mathbb{C}},f\in\mathcal{M}_{j}\},\ j=0,1,-1;\\ K^{\mathbb{C}}\sharp\widetilde{\mathcal{M}}_{0}&:=\{T\sharp f|T\in K^{\mathbb{C}},f\in\widetilde{\mathcal{M}}_{0}\};\\ K^{\mathbb{C}}\sharp\mathcal{M}_{L}&:=\{T\sharp f|T\in K^{\mathbb{C}},f\in\mathcal{M}_{L}\}.\\ \end{split}

3.2. Kβ„‚βˆ’K^{\mathbb{C}}-dressing actions preserve minimal surfaces in ℝn+2\mathbb{R}^{n+2}

Theorem 3.5.

Let ff be the oriented conformal Gauss map of a minimal surface in ℝn+2\mathbb{R}^{n+2} and T∈Kβ„‚T\in K^{\mathbb{C}}. Then T​♯​fT\sharp f is also the oriented conformal Gauss map of a minimal surface in ℝn+2\mathbb{R}^{n+2}, i.e.,

Kℂ​♯​ℳ0=β„³0.K^{\mathbb{C}}\sharp\mathcal{M}_{0}={\mathcal{M}}_{0}.
Proof.

To show that Kℂ​♯​ℳ0=β„³0K^{\mathbb{C}}\sharp\mathcal{M}_{0}=\mathcal{M}_{0}, we need to show that Kℂ​♯​ℳ0βˆ–β„³0=βˆ…K^{\mathbb{C}}\sharp\mathcal{M}_{0}\setminus\mathcal{M}_{0}=\emptyset. Otherwise assume that f~∈Kℂ​♯​ℳ0βˆ–β„³0\tilde{f}\in K^{\mathbb{C}}\sharp\mathcal{M}_{0}\setminus\mathcal{M}_{0}. Then there exists fβˆˆβ„³0f\in\mathcal{M}_{0} and T∈Kβ„‚T\in K^{\mathbb{C}} such that T​♯​f=f~T\sharp f=\tilde{f}. So Tβˆ’1​♯​f~=fT^{-1}\sharp\tilde{f}=f. Assume that T=diag​(T1,T2)T=\hbox{diag}(T_{1},T_{2}) and the normalized potential of ff is given by B^1\hat{B}_{1}. Then the normalized potential of f~\tilde{f} is given by T1​B^1​T2βˆ’1T_{1}\hat{B}_{1}T_{2}^{-1} by (3.4).

Since f~βˆ‰β„³0\tilde{f}\not\in\mathcal{M}_{0}, by [53] we have that either T1​B^1​T2βˆ’1T_{1}\hat{B}_{1}T_{2}^{-1} has rank 22 or f~\tilde{f} reduces to a map into S​O​(n+2)/S​O​(2)Γ—S​O​(n)SO(n+2)/SO(2)\times SO(n) or S​O​(1,1)/S​O​(1,1)Γ—S​O​(n)SO(1,1)/SO(1,1)\times SO(n). If B~1\tilde{B}_{1} has maximal rank 2, then B^1\hat{B}_{1} also has maximal rank 2, which is not possible since B^1\hat{B}_{1} has maximal rank 1 due to the assumption fβˆˆβ„³0f\in\mathcal{M}_{0}. If f~\tilde{f} reduces to a map into S​O​(n+2)/S​O​(2)Γ—S​O​(n)SO(n+2)/SO(2)\times SO(n) or S​O​(1,1)/S​O​(1,1)Γ—S​O​(n)SO(1,1)/SO(1,1)\times SO(n), then we can assume w.l.g. that

T1​B^1​T2βˆ’1=(f~11f~12β‹―f~1,nβˆ’f~11βˆ’f~12β‹―βˆ’f~1,n00β‹―000β‹―0)​ or ​(00β‹―000β‹―0f~13f~32β‹―f~3​ni​f~13i​f~32β‹―i​f~3​n).T_{1}\hat{B}_{1}T_{2}^{-1}=\left(\begin{array}[]{ccccccc}\tilde{f}_{11}&\tilde{f}_{12}&\cdots&\tilde{f}_{1,n}\\ -\tilde{f}_{11}&-\tilde{f}_{12}&\cdots&-\tilde{f}_{1,n}\\ 0&0&\cdots&0\\ 0&0&\cdots&0\\ \end{array}\right)\hbox{ or }\left(\begin{array}[]{ccccccc}0&0&\cdots&0\\ 0&0&\cdots&0\\ \tilde{f}_{13}&\tilde{f}_{32}&\cdots&\tilde{f}_{3n}\\ i\tilde{f}_{13}&i\tilde{f}_{32}&\cdots&i\tilde{f}_{3n}\\ \end{array}\right).

So

B^1=T1βˆ’1​(f~11f~12β‹―f~1,nβˆ’f~11βˆ’f~12β‹―βˆ’f~1,n00β‹―000β‹―0)​T2​ or ​B^1=T1βˆ’1​(00β‹―000β‹―0f~13f~32β‹―f~3​ni​f~13i​f~32β‹―i​f~3​n)​T2.\hat{B}_{1}=T_{1}^{-1}\left(\begin{array}[]{ccccccc}\tilde{f}_{11}&\tilde{f}_{12}&\cdots&\tilde{f}_{1,n}\\ -\tilde{f}_{11}&-\tilde{f}_{12}&\cdots&-\tilde{f}_{1,n}\\ 0&0&\cdots&0\\ 0&0&\cdots&0\\ \end{array}\right)T_{2}\hbox{ or }\hat{B}_{1}=T_{1}^{-1}\left(\begin{array}[]{ccccccc}0&0&\cdots&0\\ 0&0&\cdots&0\\ \tilde{f}_{13}&\tilde{f}_{32}&\cdots&\tilde{f}_{3n}\\ i\tilde{f}_{13}&i\tilde{f}_{32}&\cdots&i\tilde{f}_{3n}\\ \end{array}\right)T_{2}.

Consider in the first case the constant vector

π―βˆ—=T1βˆ’1​(1βˆ’100)βˆˆβ„‚14.\mathbf{v}^{*}=T_{1}^{-1}\left(\begin{array}[]{ccccccc}1\\ -1\\ 0\\ 0\\ \end{array}\right)\in\mathbb{C}^{4}_{1}.

Apparently the action of T2T_{2} does not change its form. So we can assume without lose of generality T2=IT_{2}=I. Note by construction π―βˆ—\mathbf{v}^{*} stays an isotropic vector, i.e., (π―βˆ—)t​I1,3β€‹π―βˆ—=0(\mathbf{v}^{*})^{t}I_{1,3}\mathbf{v}^{*}=0. So there exists some real TΛ‡1∈S​O​(1,3)\check{T}_{1}\in SO(1,3) such that

TΛ‡1​T1βˆ’1​(1βˆ’100)=a​(1βˆ’100)​ or ​a​(001i),\check{T}_{1}T_{1}^{-1}\left(\begin{array}[]{ccccccc}1\\ -1\\ 0\\ 0\\ \end{array}\right)=a\left(\begin{array}[]{ccccccc}1\\ -1\\ 0\\ 0\\ \end{array}\right)\hbox{ or }a\left(\begin{array}[]{ccccccc}0\\ 0\\ 1\\ i\\ \end{array}\right),

depending on whether R​eβ€‹π―βˆ—Re\mathbf{v}^{*} and I​mβ€‹π―βˆ—Im\mathbf{v}^{*} are linear dependent or not. Here aa is a constant number. So up to an action TΛ‡=diag​(TΛ‡1,In)\check{T}=\hbox{diag}(\check{T}_{1},I_{n}), ff reduces to a harmonic map into S​O​(1,n+1)/S​O​(1,1)Γ—S​O​(n)SO(1,n+1)/SO(1,1)\times SO(n), which is contradicted to the assumption fβˆˆβ„³0f\in\mathcal{M}_{0}, since harmonic maps into S​O​(1,n+1)/S​O​(1,1)Γ—S​O​(n)SO(1,n+1)/SO(1,1)\times SO(n) does not produce minimal surfaces in ℝn+2\mathbb{R}^{n+2}. Similarly, the second case produces a harmonic map into S​O​(n+2)/S​O​(2)Γ—S​O​(n)SO(n+2)/SO(2)\times SO(n), which also does not give minimal surfaces in ℝn+2\mathbb{R}^{n+2}. Hence Kℂ​♯​ℳ0=β„³0.K^{\mathbb{C}}\sharp\mathcal{M}_{0}=\mathcal{M}_{0}. ∎

Remark 3.6.

In [34], it is shown that the simple dressing actions preserve minimal surfaces in ℝ4\mathbb{R}^{4}. Our result here shows that Kβ„‚K^{\mathbb{C}} dressing actions preserve minimal surfaces in ℝn+2\mathbb{R}^{n+2}.

3.3. Kβ„‚βˆ’K^{\mathbb{C}}-dressing actions on minimal surfaces in π•Šn+2\mathbb{S}^{n+2} and ℍn+2\mathbb{H}^{n+2}

Theorem 3.7.
  1. (1)

    Let fβˆˆβ„³1f\in\mathcal{M}_{1}. Then T​♯​fβˆˆβ„³Lβˆ–β„³~0T\sharp f\in{\mathcal{M}}_{L}\setminus\widetilde{\mathcal{M}}_{0} for any T∈Kβ„‚T\in K^{\mathbb{C}}. Conversely, let f~βˆˆβ„³Lβˆ–β„³~0\tilde{f}\in{\mathcal{M}}_{L}\setminus\widetilde{\mathcal{M}}_{0}. Then there exists some T~∈Kβ„‚\tilde{T}\in K^{\mathbb{C}} such that T~​♯​f~βˆˆβ„³1\tilde{T}\sharp\tilde{f}\in\mathcal{M}_{1}. That is

    (3.11) Kℂ​♯​ℳ1=β„³Lβˆ–β„³~0.K^{\mathbb{C}}\sharp\mathcal{M}_{1}={\mathcal{M}}_{L}\setminus\widetilde{\mathcal{M}}_{0}.
  2. (2)

    Let fβˆˆβ„³βˆ’1f\in\mathcal{M}_{-1}. Then T​♯​fβˆˆβ„³Lβˆ–β„³~0T\sharp f\in{\mathcal{M}}_{L}\setminus\widetilde{\mathcal{M}}_{0} for any T∈Kβ„‚T\in K^{\mathbb{C}}. Conversely, let f~βˆˆβ„³Lβˆ–β„³~0\tilde{f}\in{\mathcal{M}}_{L}\setminus\widetilde{\mathcal{M}}_{0}. Then there exists some T~∈Kβ„‚\tilde{T}\in K^{\mathbb{C}} such that T~​♯​f~βˆˆβ„³βˆ’1\tilde{T}\sharp\tilde{f}\in\mathcal{M}_{-1}. That is

    (3.12) Kβ„‚β€‹β™―β€‹β„³βˆ’1=β„³Lβˆ–β„³~0.K^{\mathbb{C}}\sharp\mathcal{M}_{-1}={\mathcal{M}}_{L}\setminus\widetilde{\mathcal{M}}_{0}.\
  3. (3)

    In particular, for any fβˆˆβ„³1f\in\mathcal{M}_{1}, there exists some T∈Kβ„‚T\in K^{\mathbb{C}} such that f^=T​♯​fβˆˆβ„³βˆ’1\hat{f}=T\sharp f\in\mathcal{M}_{-1}. For any fβˆˆβ„³βˆ’1f\in\mathcal{M}_{-1}, there exists T∈Kβ„‚T\in K^{\mathbb{C}} such that f^=T​♯​fβˆˆβ„³1\hat{f}=T\sharp f\in\mathcal{M}_{1}. That is,

    β„³βˆ’1βŠ†Kℂ​♯​ℳ1,β„³1βŠ†Kβ„‚β€‹β™―β€‹β„³βˆ’1.\mathcal{M}_{-1}\subseteq K^{\mathbb{C}}\sharp\mathcal{M}_{1},\ \mathcal{M}_{1}\subseteq K^{\mathbb{C}}\sharp\mathcal{M}_{-1}.
Proof.

(1) Let fβˆˆβ„³1f\in\mathcal{M}_{1} with normalized potential given by B^1\hat{B}_{1}. Then by Theorem 2.5, there exists some π―βˆˆβ„14\mathbf{v}\in\mathbb{R}^{4}_{1} such that

𝐯t​I1,3​B^1≑0,⟨𝐯,𝐯⟩=𝐯t​I1,3​𝐯<0.\mathbf{v}^{t}I_{1,3}\hat{B}_{1}\equiv 0,\ \langle\mathbf{v},\mathbf{v}\rangle=\mathbf{v}^{t}I_{1,3}\mathbf{v}<0.

So for any T∈Kβ„‚T\in K^{\mathbb{C}}, the normalized potential of T​♯​fT\sharp f is given by B~1=T1​B^1​T2βˆ’1\tilde{B}_{1}=T_{1}\hat{B}_{1}T_{2}^{-1}, where T=diag​(T1,T2)T=\hbox{diag}(T_{1},T_{2}). So 𝐯~=T1​𝐯\tilde{\mathbf{v}}=T_{1}\mathbf{v} is the vector such that 𝐯~t​I1,3​T1​B^1​T2βˆ’1=0\tilde{\mathbf{v}}^{t}I_{1,3}T_{1}\hat{B}_{1}T_{2}^{-1}=0. So T​♯​fβˆˆβ„³LT\sharp f\in\mathcal{M}_{L}. Since 𝐯~t​I1,3​𝐯~=𝐯t​I1,3​𝐯<0\tilde{\mathbf{v}}^{t}I_{1,3}\tilde{\mathbf{v}}={\mathbf{v}}^{t}I_{1,3}{\mathbf{v}}<0, T​♯​fβˆˆβ„³Lβˆ–β„³~0T\sharp f\in{\mathcal{M}}_{L}\setminus\widetilde{\mathcal{M}}_{0}.

Now let f~βˆˆβ„³Lβˆ–β„³~0\tilde{f}\in{\mathcal{M}}_{L}\setminus\widetilde{\mathcal{M}}_{0} with normalized potential given by B~1\tilde{B}_{1}. Then there exists some 𝐯\mathbf{v} such that 𝐯t​I1,3​B~1≑0,⟨𝐯,𝐯⟩=𝐯t​I1,3​𝐯≠0.\mathbf{v}^{t}I_{1,3}\tilde{B}_{1}\equiv 0,\ \langle\mathbf{v},\mathbf{v}\rangle=\mathbf{v}^{t}I_{1,3}\mathbf{v}\neq 0. Set 𝐯1=i𝐯t​I1,3​𝐯​𝐯\mathbf{v}_{1}=\frac{i}{\sqrt{\mathbf{v}^{t}I_{1,3}\mathbf{v}}}\mathbf{v}. There exists some 𝐯j\mathbf{v}_{j}, j=2,3,4j=2,3,4 such that

T1=(𝐯1𝐯2𝐯3𝐯4)t∈S​O​(1,3,β„‚)T_{1}=\left(\begin{array}[]{ccccc}\mathbf{v}_{1}&\mathbf{v}_{2}&\mathbf{v}_{3}&\mathbf{v}_{4}\end{array}\right)^{t}\in SO(1,3,\mathbb{C})

Set T~=diag​(T1,In)\tilde{T}=\hbox{diag}(T_{1},I_{n}) and

𝐯0=T1​𝐯1=(βˆ’1000)t.\mathbf{v}_{0}=T_{1}\mathbf{v}_{1}=\left(\begin{array}[]{ccccc}-1&0&0&0\end{array}\right)^{t}.

We see that T~​♯​f~\tilde{T}\sharp\tilde{f} has normalized potential B^1=T1​B~1\hat{B}_{1}=T_{1}\tilde{B}_{1} such that

𝐯0t​I1,3​B^1=𝐯0t​T1t​I1,3​T1​B^1=𝐯0t​T1t​I1,3​B~1=𝐯1t​I1,3​B~1=i𝐯t​I1,3​𝐯​𝐯t​I1,3​B~1=0.\mathbf{v}_{0}^{t}I_{1,3}\hat{B}_{1}=\mathbf{v}_{0}^{t}T_{1}^{t}I_{1,3}T_{1}\hat{B}_{1}=\mathbf{v}_{0}^{t}T_{1}^{t}I_{1,3}\tilde{B}_{1}=\mathbf{v}_{1}^{t}I_{1,3}\tilde{B}_{1}=\frac{i}{\sqrt{\mathbf{v}^{t}I_{1,3}\mathbf{v}}}\mathbf{v}^{t}I_{1,3}\tilde{B}_{1}=0.

Since 𝐯0βˆˆβ„14\mathbf{v}_{0}\in\mathbb{R}^{4}_{1} and 𝐯0t​I1,3​𝐯0<0\mathbf{v}_{0}^{t}I_{1,3}\mathbf{v}_{0}<0, T~​♯​f~βˆˆβ„³1\tilde{T}\sharp\tilde{f}\in\mathcal{M}_{1}.

The proof of (2) is similar to (1) and we leave it for interested readers. (3) is a corollary of (1) and (2). ∎

4. On Kβ„‚βˆ’K^{\mathbb{C}}-dressing actions of minimal surfaces in π•Šn+2\mathbb{S}^{n+2} &\& ℍn+2\mathbb{H}^{n+2}

We will first discuss the general Kβ„‚βˆ’K^{\mathbb{C}}-dressing actions briefly. Then we will consider concretely two kinds of 1-parameter subgroups of S​O​(1,3,β„‚)SO(1,3,\mathbb{C}) and their actions on dressing actions of minimal surfaces in π•Šn+2\mathbb{S}^{n+2} and ℍn+2\mathbb{H}^{n+2}. One of the group changes the minimality and builds a local Willmore deformation between minimal surfaces in π•Šn+2\mathbb{S}^{n+2} and ℍn+2\mathbb{H}^{n+2}. And the other one keeps the minimality and gives a family of minimal surfaces in π•Šn+2\mathbb{S}^{n+2}(ℍn+2\mathbb{H}^{n+2}).

4.1. Kβ„‚βˆ’K^{\mathbb{C}}-dressing actions of minimal surfaces in π•Šn+2\mathbb{S}^{n+2} & ℍn+2\mathbb{H}^{n+2}

It is direct to have the following proposition by Theorem 2.5 and Proposition 3.4.

Proposition 4.1.
  1. (1)

    The dimension of non-trivial Kβ„‚βˆ’K^{\mathbb{C}}-dressing actions of a Willmore surfaces in π•Šn+2\mathbb{S}^{n+2} is less or equal to

    (4.1) dimS​O​(1,3,β„‚)Γ—S​O​(n,β„‚)βˆ’dimS​O​(1,3)Γ—S​O​(n)=n​(nβˆ’1)2+6.\dim SO(1,3,\mathbb{C})\times SO(n,\mathbb{C})-\dim SO(1,3)\times SO(n)=\frac{n(n-1)}{2}+6.
  2. (2)

    The dimension of non-trivial Kβ„‚βˆ’K^{\mathbb{C}}-dressing actions of a minimal surface in π•Šn+2\mathbb{S}^{n+2} preserving minimality infinitesimally is less or equal to

    (4.2) dimS​O​(3,β„‚)Γ—S​O​(n,β„‚)βˆ’dimS​O​(3)Γ—S​O​(n)=n​(nβˆ’1)2+3.\dim SO(3,\mathbb{C})\times SO(n,\mathbb{C})-\dim SO(3)\times SO(n)=\frac{n(n-1)}{2}+3.
  3. (3)

    The dimension of non-trivial Kβ„‚βˆ’K^{\mathbb{C}}-dressing actions of a minimal surface in ℍn+2\mathbb{H}^{n+2} preserving minimality infinitesimally is less or equal to

    (4.3) dimS​O​(1,2,β„‚)Γ—S​O​(n,β„‚)βˆ’dimS​O​(1,2)Γ—S​O​(n)=n​(nβˆ’1)2+3.\dim SO(1,2,\mathbb{C})\times SO(n,\mathbb{C})-\dim SO(1,2)\times SO(n)=\frac{n(n-1)}{2}+3.

The above spaces of the non-trivial Kβ„‚βˆ’K^{\mathbb{C}}-dressing actions can be locally expressed (near II) as exp⁑𝔖,\exp\mathfrak{S}, exp⁑𝔖1\exp\mathfrak{S}_{1} and expβ‘π”–βˆ’1\exp\mathfrak{S}_{-1} respectively, where

𝔖={Aβˆˆπ”°β€‹π”¬β€‹(1,3,β„‚)×𝔰​𝔬​(n,β„‚)|A=βˆ’AΒ―},𝔖1={Aβˆˆπ”°β€‹π”¬β€‹(3,β„‚)×𝔰​𝔬​(n,β„‚)|A=βˆ’AΒ―},π”–βˆ’1={Aβˆˆπ”°β€‹π”¬β€‹(1,2,β„‚)×𝔰​𝔬​(n,β„‚)|A=βˆ’AΒ―}.\begin{split}\mathfrak{S}&=\{A\in\mathfrak{so}(1,3,\mathbb{C})\times\mathfrak{so}(n,\mathbb{C})|A=-\bar{A}\},\\ \mathfrak{S}_{1}&=\{A\in\mathfrak{so}(3,\mathbb{C})\times\mathfrak{so}(n,\mathbb{C})|A=-\bar{A}\},\\ \mathfrak{S}_{-1}&=\{A\in\mathfrak{so}(1,2,\mathbb{C})\times\mathfrak{so}(n,\mathbb{C})|A=-\bar{A}\}.\\ \end{split}

Here 𝔰​𝔬​(3,β„‚)\mathfrak{so}(3,\mathbb{C}) and 𝔰​𝔬​(1,2,β„‚)\mathfrak{so}(1,2,\mathbb{C}) are viewed as subsets of 𝔰​𝔬​(1,3,β„‚)\mathfrak{so}(1,3,\mathbb{C}) naturally.

4.2. On some S1βˆ’S^{1}-dressing actions of minimal surfaces in π•Šn+2\mathbb{S}^{n+2} & ℍn+2\mathbb{H}^{n+2}

In this subsection, we discuss a special S1βˆ’S^{1}-dressing actions which build a smooth local Willmore deformations between minimal surfaces in π•Šn+2\mathbb{S}^{n+2} and ℍn+2\mathbb{H}^{n+2}. Set

T1,t=(cos⁑ti​sin⁑t00i​sin⁑tcos⁑t0000100001)∈S​O​(1,3,β„‚),t∈[0,2​π].T_{1,t}=\left(\begin{array}[]{cccc}\cos t&i\sin t&0&0\\ i\sin t&\cos t&0&0\\ 0&0&1&0\\ 0&0&0&1\\ \end{array}\right)\in SO(1,3,\mathbb{C}),\ t\in[0,2\pi].

Then T1,tT_{1,t}, t∈[0,2​π]t\in[0,2\pi], is a circle subgroup of S​O​(1,3,β„‚)SO(1,3,\mathbb{C}). We see that T1,t∈S​O​(1,3)∩S​O​(1,3,β„‚)T_{1,t}\in SO(1,3)\cap SO(1,3,\mathbb{C}) if and only if t=0,Ο€,2​πt=0,\pi,2\pi. And T1,t∈(iβ‹…O​(1,3))∩S​O​(1,3,β„‚)T_{1,t}\in(i\cdot O(1,3))\cap SO(1,3,\mathbb{C}) if and only if t=Ο€2,3​π2t=\frac{\pi}{2},\frac{3\pi}{2}.

First, assume without lose of generality that the normalized potential of a Willmore surface in π•Šn+2\mathbb{S}^{n+2} has the form

Ξ·=Ξ»βˆ’1​(0B^1βˆ’B^1t​I1,30)​d​z,B^1=(𝐑1⋯𝐑n).\eta=\lambda^{-1}\left(\begin{array}[]{cc}0&\hat{B}_{1}\\ -\hat{B}_{1}^{t}I_{1,3}&0\\ \end{array}\right)dz,\hat{B}_{1}=\left(\begin{array}[]{ccccc}\mathbf{h}_{1}&\cdots&\mathbf{h}_{n}\end{array}\right).

By Theorem 2.5, we can assume without lose of generality that the normalized potential of a minimal surface in π•Šn+2\mathbb{S}^{n+2} has the form

(4.4) 𝐑j=h0​j​(0h2~h3~h4~),(h2~)2+(h3~)2+(h4~)2=0,j=1,β‹―,n.\mathbf{h}_{j}=h_{0j}\left(\begin{array}[]{c}0\\ \widetilde{h_{2}}\\ \widetilde{h_{3}}\\ \widetilde{h_{4}}\\ \end{array}\right),\ (\widetilde{h_{2}})^{2}+(\widetilde{h_{3}})^{2}+(\widetilde{h_{4}})^{2}=0,j=1,\cdots,n.

Here h2h_{2}, h3h_{3} and h4h_{4} are linear independent meromorphic functions.

Theorem 4.2.

The normalized potential

Ξ·t=Ξ»βˆ’1​(0T1,t​B^1βˆ’B^1t​T1,tt​I1,30)​d​z,\eta_{t}=\lambda^{-1}\left(\begin{array}[]{cc}0&T_{1,t}\hat{B}_{1}\\ -\hat{B}_{1}^{t}T_{1,t}^{t}I_{1,3}&0\\ \end{array}\right)dz,

with B^1=(𝐑1⋯𝐑n)\hat{B}_{1}=\left(\begin{array}[]{ccccc}\mathbf{h}_{1}&\cdots&\mathbf{h}_{n}\end{array}\right) and all of {𝐑j,1≀j≀n}\{\mathbf{h}_{j},1\leq j\leq n\} being of the form (4.4), locally gives a family of Willmore surfaces yty_{t}, t∈[0,2​π)t\in[0,2\pi), such that (yt)|t=0(y_{t})|_{t=0}, (yt)|t=Ο€(y_{t})|_{t=\pi} are conformally equivalent to minimal surfaces in π•Šn+2\mathbb{S}^{n+2} and (yt)|t=Ο€2(y_{t})|_{t=\frac{\pi}{2}}, (yt)|t=3​π2(y_{t})|_{t=\frac{3\pi}{2}} are conformally equivalent to minimal surfaces in ℍn+2\mathbb{H}^{n+2}, and for all other tt, yty_{t} are Willmore surfaces in π•Šn+2\mathbb{S}^{n+2} not minimal in any space forms.

Proof.

It is direct to see that

𝐯t=(cos⁑ti​sin⁑t00)t=T1,tt​(1000)t\mathbf{v}_{t}=\left(\begin{array}[]{ccccc}\cos t&i\sin t&0&0\end{array}\right)^{t}=T_{1,t}^{t}\left(\begin{array}[]{ccccc}1&0&0&0\end{array}\right)^{t}

satisfies

𝐯tt​I1,3​T1,t​B^1≑0.\mathbf{v}_{t}^{t}I_{1,3}T_{1,t}\hat{B}_{1}\equiv 0.

So when t=0t=0 or Ο€\pi, one obtains minimal surfaces in π•Šn+2\mathbb{S}^{n+2}. So when t=Ο€2t=\frac{\pi}{2} or 3​π2\frac{3\pi}{2}, one obtains minimal surfaces in ℍn+2\mathbb{H}^{n+2}.

For other tt, assume yty_{t} is conformal to some minimal surface in space forms. Then there exists a real vector π―βˆˆβ„14\mathbf{v}\in\mathbb{R}^{4}_{1} such that 𝐯​I1,3​T1,t​B^1≑0\mathbf{v}I_{1,3}T_{1,t}\hat{B}_{1}\equiv 0. So w.l.g. we can assume 𝐯=(abc0)t\mathbf{v}=\left(\begin{array}[]{ccccc}a&b&c&0\end{array}\right)^{t}. So we have

βˆ’i​a​h2​sin⁑t+b​h2​cos⁑t+c​h3=0-iah_{2}\sin t+bh_{2}\cos t+ch_{3}=0

Since a,bβˆˆβ„a,b\in\mathbb{R}, we see that cβ‰ 0c\neq 0 and h3=βˆ’bβˆ’i​ac​h2h_{3}=-\frac{b-ia}{c}h_{2}, which contradicts to the fact that h2h_{2} and h3h_{3} are linear independent. This finishes the proof. ∎

Similarly, by Theorem 2.5 we can assume without lose of generality that the normalized potential of a minimal surface in ℍn+2\mathbb{H}^{n+2} has the form

(4.5) 𝐑j=h0​j​(h1~0h3~h4~),βˆ’(h1~)2+(h3~)2+(h4~)2=0,j=1,β‹―,n.\mathbf{h}_{j}=h_{0j}\left(\begin{array}[]{c}\widetilde{h_{1}}\\ 0\\ \widetilde{h_{3}}\\ \widetilde{h_{4}}\\ \end{array}\right),~{}-(\widetilde{h_{1}})^{2}+(\widetilde{h_{3}})^{2}+(\widetilde{h_{4}})^{2}=0,j=1,\cdots,n.
Theorem 4.3.

The normalized potential

Ξ·t=Ξ»βˆ’1​(0T1,t​B^1βˆ’B^1t​T1,tt​I1,30)​d​z,\eta_{t}=\lambda^{-1}\left(\begin{array}[]{cc}0&T_{1,t}\hat{B}_{1}\\ -\hat{B}_{1}^{t}T_{1,t}^{t}I_{1,3}&0\\ \end{array}\right)dz,

with B^1=(𝐑1⋯𝐑n)\hat{B}_{1}=\left(\begin{array}[]{ccccc}\mathbf{h}_{1}&\cdots&\mathbf{h}_{n}\end{array}\right) and all of {𝐑j,1≀j≀n}\{\mathbf{h}_{j},1\leq j\leq n\} being of the form (4.5), locally gives a family of Willmore surfaces yty_{t}, t∈[0,2​π)t\in[0,2\pi), such that (yt)|t=0(y_{t})|_{t=0}, (yt)|t=Ο€(y_{t})|_{t=\pi} are conformally equivalent to minimal surfaces in ℍn+2\mathbb{H}^{n+2} and (yt)|t=Ο€2(y_{t})|_{t=\frac{\pi}{2}}, (yt)|t=3​π2(y_{t})|_{t=\frac{3\pi}{2}} are conformally equivalent to minimal surfaces in π•Šn+2\mathbb{S}^{n+2}, and for all other tt, yty_{t} is a non-minimal Willmore surface in π•Šn+2\mathbb{S}^{n+2}.

Proof.

The proof is the same as above theorem. So we omit it. ∎

Remark 4.4.

Comparing (4.4) and (4.5), we see that the loop group data of minimal surfaces in π•Šn+2\mathbb{S}^{n+2} and ℍn+2\mathbb{H}^{n+2} differ essentially by some shifting and multiplying some ii for some terms, which can achieved of the above dressing action. This is the key observation & motivation of the Kβ„‚K^{\mathbb{C}} dressing action.

4.3. On some ℝ1βˆ’\mathbb{R}^{1}-dressing actions preserving minimal surfaces in π•Šn+2\mathbb{S}^{n+2} & ℍn+2\mathbb{H}^{n+2}

Set

T2,t=(1000010000cosh⁑ti​sinh⁑t00βˆ’i​sinh⁑tcosh⁑t)∈S​O​(1,3,β„‚),tβˆˆβ„.T_{2,t}=\left(\begin{array}[]{cccc}1&0&0&0\\ 0&1&0&0\\ 0&0&\cosh t&i\sinh t\\ 0&0&-i\sinh t&\cosh t\\ \end{array}\right)\in SO(1,3,\mathbb{C}),\ t\in\mathbb{R}.

Then T2,tT_{2,t}, tβˆˆβ„t\in\mathbb{R}, is a β„βˆ’\mathbb{R}-subgroup of S​O​(1,3,β„‚)SO(1,3,\mathbb{C}). Note that T2,t∈S​O​(1,3)∩S​O​(1,3,β„‚)T_{2,t}\in SO(1,3)\cap SO(1,3,\mathbb{C}) if and only if t=0t=0.

Theorem 4.5.
  1. (1)

    The normalized potential

    Ξ·t=Ξ»βˆ’1​(0T2,t​B^1βˆ’B^1t​T2,tt​I1,30)​d​z,\eta_{t}=\lambda^{-1}\left(\begin{array}[]{cc}0&T_{2,t}\hat{B}_{1}\\ -\hat{B}_{1}^{t}T_{2,t}^{t}I_{1,3}&0\\ \end{array}\right)dz,

    with B^1=(𝐑1⋯𝐑n)\hat{B}_{1}=\left(\begin{array}[]{ccccc}\mathbf{h}_{1}&\cdots&\mathbf{h}_{n}\end{array}\right) and 𝐑j\mathbf{h}_{j} being of the form (4.4), locally gives a family of Willmore surfaces yty_{t} conformally equivalent to minimal surfaces in π•Šn+2\mathbb{S}^{n+2}.

  2. (2)

    The normalized potential

    Ξ·t=Ξ»βˆ’1​(0T2,t​B^1βˆ’B^1t​T2,tt​I1,30)​d​z,\eta_{t}=\lambda^{-1}\left(\begin{array}[]{cc}0&T_{2,t}\hat{B}_{1}\\ -\hat{B}_{1}^{t}T_{2,t}^{t}I_{1,3}&0\\ \end{array}\right)dz,

    with B^1=(𝐑1⋯𝐑n)\hat{B}_{1}=\left(\begin{array}[]{ccccc}\mathbf{h}_{1}&\cdots&\mathbf{h}_{n}\end{array}\right) and 𝐑j\mathbf{h}_{j} being of the form (4.5), locally gives a family of Willmore surfaces yty_{t} conformally equivalent to minimal surfaces in ℍn+2\mathbb{H}^{n+2}.

Proof.

By Theorem 2.5 and setting 𝐯=(1000)t\mathbf{v}=\left(\begin{array}[]{ccccc}1&0&0&0\end{array}\right)^{t} and (0100)t\left(\begin{array}[]{ccccc}0&1&0&0\end{array}\right)^{t} respectively, we obtain (1) and (2) respectively. ∎

Remark 4.6.

Note that the T2,tT_{2,t} action on (4.4), are used exactly as the famous Lopez-Ros deformation for minimal surfaces in ℝ3\mathbb{R}^{3} [37]. We refer to [34] for the simple factor dressing expression of the Lopez-Ros deformation for minimal surfaces in ℝ3\mathbb{R}^{3}, which is different from the action considered in this paper.

5. Examples of Minimal surfaces in ℍ4\mathbb{H}^{4}

In this section, we will illustrate the Kβ„‚βˆ’K^{\mathbb{C}}-dressing actions for isotropic minimal surfaces in π•Š4\mathbb{S}^{4} in terms of the formula in above section. Kβ„‚βˆ’K^{\mathbb{C}}-dressing actions of the Veronese 2-spheres give many explicit examples of Willmore two-spheres in S4S^{4}. In particular, we obtain many examples of complete minimal surfaces in ℍ4\mathbb{H}^{4}, defined on disks, annulus or Moebius strips. By these examples we show that there exists complete minimal disks with their Willmore energy tending to zero. Moreover, by consider the Willmore deformations of generalizations of Veronese two-spheres in π•Š4\mathbb{S}^{4}, we obtain complete minimal disks with arbitrary Willmore energy. Some new non-oriented minimal Moebius strips are also obtained in this way.

We will first recall a Weierstrass type formula for isotropic (Willmore) surfaces in π•Š4\mathbb{S}^{4} [54]. Then we will discuss in details of two kind of one-parameter group action on isotropic surfaces in π•Š4\mathbb{S}^{4}. With help of the formula, we derive many explicit examples with expected properties in Section 5.3-5.6.

We refer to [27], [43], [44], [54] for more discussions of isotropic Willmore surfaces.

5.1. The Weierstrass formula for isotropic surfaces in π•Š4\mathbb{S}^{4}

The following formula provides all explicit examples in this paper. So we include it here for readers’ convenience.

Theorem 5.1.

[54] Let MM be a Riemann surface, and let

(5.1) Ξ·=Ξ»βˆ’1​(0B^1βˆ’B1^​I1,30)​d​z,Β with ​B^1=(𝐑i​𝐑)=12​(i​(h3β€²βˆ’h2β€²)βˆ’(h3β€²βˆ’h2β€²)i​(h3β€²+h2β€²)βˆ’(h3β€²+h2β€²)h4β€²βˆ’h1β€²i​(h4β€²βˆ’h1β€²)i​(h4β€²+h1β€²)βˆ’(h4β€²+h1β€²)).\eta=\lambda^{-1}\left(\begin{array}[]{cc}0&\hat{B}_{1}\\ -\hat{B_{1}}I_{1,3}&0\\ \end{array}\right)\mathrm{d}z,\hbox{ with }\hat{B}_{1}=\left(\mathbf{h}\ \ i\mathbf{h}\right)=\frac{1}{2}\left(\begin{array}[]{cccc}i(h_{3}^{\prime}-h_{2}^{\prime})&-(h_{3}^{\prime}-h_{2}^{\prime})\\ i(h_{3}^{\prime}+h_{2}^{\prime})&-(h_{3}^{\prime}+h_{2}^{\prime})\\ h_{4}^{\prime}-h_{1}^{\prime}&i(h_{4}^{\prime}-h_{1}^{\prime})\\ i(h_{4}^{\prime}+h_{1}^{\prime})&-(h_{4}^{\prime}+h_{1}^{\prime})\\ \end{array}\right).

Here hjh_{j} are meromorphic functions on MM satisfying h1′​h4β€²+h2′​h3β€²=0,Β and ​h1′​h2β€²β‰’0.h_{1}^{\prime}h_{4}^{\prime}+h_{2}^{\prime}h_{3}^{\prime}=0,\hbox{ and }h_{1}^{\prime}h_{2}^{\prime}\not\equiv 0. Then the corresponding Willmore surface [YΞ»][Y_{\lambda}] is of the form YΞ»=Rλ​Y1Y_{\lambda}=R_{\lambda}Y_{1}, with

(5.2) Y1=(y0y1y2y3y4y5)=|h1β€²|2​((1+|h2|2+|h4|2)1βˆ’|h2|2+|h4|2βˆ’i​(βˆ’hΒ―2​h4+h2​hΒ―4)βˆ’(hΒ―2​h4+h2​hΒ―4)i​(hΒ―2βˆ’h2)(hΒ―2+h2))+|h2β€²|2​((1+|h1|2+|h3|2)βˆ’(1+|h1|2βˆ’|h3|2)i​(βˆ’hΒ―1​h3+h1​hΒ―3)hΒ―1​h3+h1​hΒ―3i​(h3βˆ’hΒ―3)βˆ’(h3+hΒ―3))+h1′​hΒ―2′​(βˆ’hΒ―1​h2+hΒ―3​h4hΒ―1​h2+hΒ―3​h4βˆ’i​(1+hΒ―1​h4+h2​hΒ―3)βˆ’(1βˆ’hΒ―1​h4+h2​hΒ―3)i​(βˆ’hΒ―1+h4)βˆ’(hΒ―1+h4))+hΒ―1′​h2′​(βˆ’hΒ―1​h2+hΒ―3​h4hΒ―1​h2+hΒ―3​h4βˆ’i​(1+hΒ―1​h4+h2​hΒ―3)βˆ’(1βˆ’hΒ―1​h4+h2​hΒ―3)i​(βˆ’hΒ―1+h4)βˆ’(hΒ―1+h4))Β―,\begin{split}Y_{1}=\left(\begin{array}[]{c}y_{0}\\ y_{1}\\ y_{2}\\ y_{3}\\ y_{4}\\ y_{5}\\ \end{array}\right)=~{}&|h_{1}^{\prime}|^{2}\left(\begin{array}[]{cc}(1+|h_{2}|^{2}+|h_{4}|^{2})\\ 1-|h_{2}|^{2}+|h_{4}|^{2}\\ -i(-\bar{h}_{2}h_{4}+h_{2}\bar{h}_{4})\\ -(\bar{h}_{2}h_{4}+h_{2}\bar{h}_{4})\\ i(\bar{h}_{2}-h_{2})\\ (\bar{h}_{2}+h_{2})\\ \end{array}\right)+|h_{2}^{\prime}|^{2}\left(\begin{array}[]{cc}(1+|h_{1}|^{2}+|h_{3}|^{2})\\ -(1+|h_{1}|^{2}-|h_{3}|^{2})\\ i(-\bar{h}_{1}h_{3}+h_{1}\bar{h}_{3})\\ \bar{h}_{1}h_{3}+h_{1}\bar{h}_{3}\\ i(h_{3}-\bar{h}_{3})\\ -(h_{3}+\bar{h}_{3})\\ \end{array}\right)\\ &~{}~{}~{}~{}+h_{1}^{\prime}\bar{h}_{2}^{\prime}\left(\begin{array}[]{cc}-\bar{h}_{1}h_{2}+\bar{h}_{3}h_{4}\\ \bar{h}_{1}h_{2}+\bar{h}_{3}h_{4}\\ -i(1+\bar{h}_{1}h_{4}+h_{2}\bar{h}_{3})\\ -(1-\bar{h}_{1}h_{4}+h_{2}\bar{h}_{3})\\ i(-\bar{h}_{1}+h_{4})\\ -(\bar{h}_{1}+h_{4})\\ \end{array}\right)+\bar{h}_{1}^{\prime}h_{2}^{\prime}\overline{\left(\begin{array}[]{cc}-\bar{h}_{1}h_{2}+\bar{h}_{3}h_{4}\\ \bar{h}_{1}h_{2}+\bar{h}_{3}h_{4}\\ -i(1+\bar{h}_{1}h_{4}+h_{2}\bar{h}_{3})\\ -(1-\bar{h}_{1}h_{4}+h_{2}\bar{h}_{3})\\ i(-\bar{h}_{1}+h_{4})\\ -(\bar{h}_{1}+h_{4})\\ \end{array}\right)},\\ \end{split}

and

(5.3) RΞ»=(1000000100000010000001000000Ξ»+Ξ»βˆ’12Ξ»βˆ’Ξ»βˆ’1βˆ’2​i0000Ξ»βˆ’Ξ»βˆ’12​iΞ»+Ξ»βˆ’12).R_{\lambda}=\left(\begin{array}[]{ccccccc}1&0&0&0&0&0\\ 0&1&0&0&0&0\\ 0&0&1&0&0&0\\ 0&0&0&1&0&0\\ 0&0&0&0&\frac{\lambda+\lambda^{-1}}{2}&\frac{\lambda-\lambda^{-1}}{-2i}\\ 0&0&0&0&\frac{\lambda-\lambda^{-1}}{2i}&\frac{\lambda+\lambda^{-1}}{2}\\ \end{array}\right).

[YΞ»][Y_{\lambda}] is an (possibly branched) isotropic Willmore surface in π•Š4\mathbb{S}^{4}.

Moreover, a lift Y^1\hat{Y}_{1} of the dual surface of y1=[Y1]y_{1}=[Y_{1}] is of the form

(5.4) Y^1=(y^0y^1y^2y^3y^4y^5)=|h1β€²|2​((1+|h3|2+|h4|2)βˆ’(1βˆ’|h3|2+|h4|2)βˆ’i​(hΒ―3​h4βˆ’h3​hΒ―4)hΒ―3​h4+h3​hΒ―4i​(βˆ’hΒ―3+h3)βˆ’(hΒ―3+h3))+|h3β€²|2​((1+|h1|2+|h2|2)1+|h1|2βˆ’|h2|2βˆ’i​(βˆ’hΒ―1​h2+h1​hΒ―2)βˆ’hΒ―1​h2βˆ’h1​hΒ―2βˆ’i​(h2βˆ’hΒ―2)h2+hΒ―2)+h1′​hΒ―3′​(βˆ’hΒ―1​h3+hΒ―2​h4βˆ’hΒ―1​h3βˆ’hΒ―2​h4i​(1+hΒ―1​h4+hΒ―2​h3)(1βˆ’hΒ―1h4+hΒ―2h3))i​(hΒ―1βˆ’h4)hΒ―1+h4)+hΒ―1′​h3′​(βˆ’hΒ―1​h3+hΒ―2​h4βˆ’hΒ―1​h3βˆ’hΒ―2​h4i​(1+hΒ―1​h4+hΒ―2​h3)(1βˆ’hΒ―1h4+hΒ―2h3))i​(hΒ―1βˆ’h4)hΒ―1+h4)Β―.\begin{split}\hat{Y}_{1}=\left(\begin{array}[]{c}\hat{y}_{0}\\ \hat{y}_{1}\\ \hat{y}_{2}\\ \hat{y}_{3}\\ \hat{y}_{4}\\ \hat{y}_{5}\\ \end{array}\right)=&|h_{1}^{\prime}|^{2}\left(\begin{array}[]{cc}(1+|h_{3}|^{2}+|h_{4}|^{2})\\ -(1-|h_{3}|^{2}+|h_{4}|^{2})\\ -i(\bar{h}_{3}h_{4}-h_{3}\bar{h}_{4})\\ \bar{h}_{3}h_{4}+h_{3}\bar{h}_{4}\\ i(-\bar{h}_{3}+h_{3})\\ -(\bar{h}_{3}+h_{3})\\ \end{array}\right)+|h_{3}^{\prime}|^{2}\left(\begin{array}[]{cc}(1+|h_{1}|^{2}+|h_{2}|^{2})\\ 1+|h_{1}|^{2}-|h_{2}|^{2}\\ -i(-\bar{h}_{1}h_{2}+h_{1}\bar{h}_{2})\\ -\bar{h}_{1}h_{2}-h_{1}\bar{h}_{2}\\ -i(h_{2}-\bar{h}_{2})\\ h_{2}+\bar{h}_{2}\\ \end{array}\right)\\ &~{}~{}~{}~{}+h_{1}^{\prime}\bar{h}_{3}^{\prime}\left(\begin{array}[]{cc}-\bar{h}_{1}h_{3}+\bar{h}_{2}h_{4}\\ -\bar{h}_{1}h_{3}-\bar{h}_{2}h_{4}\\ i(1+\bar{h}_{1}h_{4}+\bar{h}_{2}h_{3})\\ (1-\bar{h}_{1}h_{4}+\bar{h}_{2}h_{3}))\\ i(\bar{h}_{1}-h_{4})\\ \bar{h}_{1}+h_{4}\\ \end{array}\right)+\bar{h}_{1}^{\prime}h_{3}^{\prime}\overline{\left(\begin{array}[]{cc}-\bar{h}_{1}h_{3}+\bar{h}_{2}h_{4}\\ -\bar{h}_{1}h_{3}-\bar{h}_{2}h_{4}\\ i(1+\bar{h}_{1}h_{4}+\bar{h}_{2}h_{3})\\ (1-\bar{h}_{1}h_{4}+\bar{h}_{2}h_{3}))\\ i(\bar{h}_{1}-h_{4})\\ \bar{h}_{1}+h_{4}\\ \end{array}\right)}.\\ \end{split}

and Y^Ξ»=Rλ​Y^1\hat{Y}_{\lambda}=R_{\lambda}\hat{Y}_{1}.

Moreover we have

  1. (1)

    Y^Ξ»\hat{Y}_{\lambda} reduces to a point and [YΞ»][Y_{\lambda}] is conformally equivalent to an isotropic minimal surface in ℝ4\mathbb{R}^{4}, if and only if h3β€²=h4β€²=0h_{3}^{\prime}=h_{4}^{\prime}=0;

  2. (2)

    Both [YΞ»][Y_{\lambda}] and [Y^Ξ»][\hat{Y}_{\lambda}] are conformally equivalent to (full) isotropic minimal surfaces in π•Š4\mathbb{S}^{4}, if and only if there exists a non-zero, real, constant vector 𝐯=(v1,v2,v3,v4)tβˆˆβ„14\mathbf{v}=(\mathrm{v}_{1},\mathrm{v}_{2},\mathrm{v}_{3},\mathrm{v}_{4})^{t}\in\mathbb{R}^{4}_{1} with 𝐯t​I1,3​𝐯=βˆ’1\mathbf{v}^{t}I_{1,3}\mathbf{v}=-1, such that

    (5.5) (βˆ’v3+i​v4)​h1β€²+(v1+i​v2)​h2β€²+(βˆ’v1+i​v2)​h3β€²+(v3+i​v4)​h4β€²=0;(-\mathrm{v}_{3}+i\mathrm{v}_{4})h_{1}^{\prime}+(\mathrm{v}_{1}+i\mathrm{v}_{2})h_{2}^{\prime}+(-\mathrm{v}_{1}+i\mathrm{v}_{2})h_{3}^{\prime}+(\mathrm{v}_{3}+i\mathrm{v}_{4})h_{4}^{\prime}=0;
  3. (3)

    Both [YΞ»][Y_{\lambda}] and [Y^Ξ»][\hat{Y}_{\lambda}] are conformally equivalent to (full) isotropic minimal surfaces in ℍ4\mathbb{H}^{4}, if and only if there exists a non-zero, real, constant vector 𝐯=(v1,v2,v3,v4)tβˆˆβ„14\mathbf{v}=(\mathrm{v}_{1},\mathrm{v}_{2},\mathrm{v}_{3},\mathrm{v}_{4})^{t}\in\mathbb{R}^{4}_{1} with 𝐯t​I1,3​𝐯=1\mathbf{v}^{t}I_{1,3}\mathbf{v}=1, such that

    (5.6) (βˆ’v3+i​v4)​h1β€²+(v1+i​v2)​h2β€²+(βˆ’v1+i​v2)​h3β€²+(v3+i​v4)​h4β€²=0.(-\mathrm{v}_{3}+i\mathrm{v}_{4})h_{1}^{\prime}+(\mathrm{v}_{1}+i\mathrm{v}_{2})h_{2}^{\prime}+(-\mathrm{v}_{1}+i\mathrm{v}_{2})h_{3}^{\prime}+(\mathrm{v}_{3}+i\mathrm{v}_{4})h_{4}^{\prime}=0.

5.2. S1βˆ’S^{1}-dressing action on isotropic surfaces in π•Š4\mathbb{S}^{4}

Recall that for a isotropic surface in π•Š4\mathbb{S}^{4}, its normalized potential has the form [54]

(5.7) B^1=(𝐑i​𝐑),Β with ​𝐑=12​(i​(h3β€²βˆ’h2β€²)i​(h3β€²+h2β€²)h4β€²βˆ’h1β€²i​(h4β€²+h1β€²))\hat{B}_{1}=\left(\mathbf{h}\ \ i\mathbf{h}\right),\hbox{ with }\mathbf{h}=\frac{1}{2}\left(\begin{array}[]{cccc}i(h_{3}^{\prime}-h_{2}^{\prime})\\ i(h_{3}^{\prime}+h_{2}^{\prime})\\ h_{4}^{\prime}-h_{1}^{\prime}\\ i(h_{4}^{\prime}+h_{1}^{\prime})\\ \end{array}\right)

Then we have

T1,t​𝐑=𝐑~=(i​(h3~β€²βˆ’h2~β€²)i​(h3~β€²+h2~β€²)h4β€²βˆ’h1β€²i​(h4β€²+h1β€²)),Β with ​h2~=eβˆ’i​t​h2,h3~=ei​t​h3.T_{1,t}\mathbf{h}=\widetilde{\mathbf{h}}=\left(\begin{array}[]{cccc}i(\widetilde{h_{3}}^{\prime}-\widetilde{h_{2}}^{\prime})\\ i(\widetilde{h_{3}}^{\prime}+\widetilde{h_{2}}^{\prime})\\ h_{4}^{\prime}-h_{1}^{\prime}\\ i(h_{4}^{\prime}+h_{1}^{\prime})\\ \end{array}\right),\hbox{ with }\widetilde{h_{2}}=e^{-it}h_{2},\ \widetilde{h_{3}}=e^{it}h_{3}.

By Theorem 4.2 and 4.3, when h2=h3h_{2}=h_{3}, we obtain a minimal surface in π•Š4\mathbb{S}^{4}. When h2~=βˆ’h3~\widetilde{h_{2}}=-\widetilde{h_{3}} we obtain a minimal surface in ℍ4\mathbb{H}^{4}.

Proposition 5.2.

We retain the notions in Theorem 5.1. Assume now furthermore that h2=h3h_{2}=h_{3} in (5.7) and set yt=Tt​♯​yy_{t}=T_{t}\sharp y, with Tt=d​i​a​g​(T1,t,I2)T_{t}=diag(T_{1,t},I_{2}). Then

  1. (1)

    yty_{t} is conformally equivalent to a minimal surface in π•Š4\mathbb{S}^{4} if and only if t=0t=0 or Ο€\pi;

  2. (2)

    yty_{t} is conformally equivalent to a minimal surface in ℍ4\mathbb{H}^{4} if and only if t=Ο€2t=\frac{\pi}{2} or 3​π2\frac{3\pi}{2};

  3. (3)

    yty_{t} is not conformally equivalent to any minimal surface in any space form for any t∈(0,2​π)t\in(0,2\pi) and tβˆ‰{Ο€2,Ο€,3​π2}t\not\in\{\frac{\pi}{2},\pi,\frac{3\pi}{2}\}.

Proposition 5.3.

We retain the notions in Theorem 5.1 and set Tt=d​i​a​g​(T2,t,I2)T_{t}=diag(T_{2,t},I_{2}).

  1. (1)

    Assume that h2=h3h_{2}=h_{3} and yt=Tt​♯​yy_{t}=T_{t}\sharp y. Then yty_{t} is conformally equivalent to a minimal surface in π•Š4\mathbb{S}^{4} for any tβˆˆβ„t\in\mathbb{R}.

  2. (2)

    Assume that h2=βˆ’h3h_{2}=-h_{3} and yt=Tt​♯​yy_{t}=T_{t}\sharp y. Then yty_{t} is conformally equivalent to a minimal surface in ℍ4\mathbb{H}^{4} for any tβˆˆβ„t\in\mathbb{R}.

5.3. The Veronese sphere and its Willmore deformations

Applying to the Veronese surface in π•Š4\mathbb{S}^{4}, we obtain many new Willmore two-spheres in π•Š4\mathbb{S}^{4} with the same Willmore energy. Moreover, we also obtain many examples of minimal surfaces in ℍ4\mathbb{H}^{4} with Willmore energy taking every value in (0,2​π)(0,2\pi).

5.3.1. The Veronese sphere and its S1βˆ’S^{1}-Willmore deformations

Proposition 5.4.

Let z=r​ei​θz=re^{i\theta}. Set

(5.8) h1=βˆ’2​z3,h2=3​i​z2,h3=3​i​z2,h4=βˆ’2​z,h_{1}=-2z^{3},\ h_{2}=\sqrt{3}iz^{2},\ h_{3}=\sqrt{3}iz^{2},\ h_{4}=-2z,

in (5.7). Let [Y][Y] be the corresponding Willmore surface in S4S^{4}. Set Yt=Tt​♯​YY_{t}=T_{t}\sharp Y with Tt=d​i​a​g​(T1,t,I2)T_{t}=diag(T_{1,t},I_{2}). Then

(5.9) Yt=(r4+2​r2+1βˆ’r4+4​r2βˆ’13​(z​eβˆ’i​t+z¯​ei​tβˆ’r4​(z​ei​t+z¯​eβˆ’i​t))1+r2βˆ’i​3​(z​eβˆ’i​tβˆ’z¯​ei​tβˆ’r4​(z​ei​tβˆ’z¯​eβˆ’i​t))1+r23​(z2​eβˆ’i​t+zΒ―2​ei​t+r2​(z2​ei​t+zΒ―2​eβˆ’i​t))1+r2i​3​(z2​eβˆ’i​tβˆ’zΒ―2​ei​t+r2​(z2​ei​tβˆ’zΒ―2​eβˆ’i​t))1+r2)=(r4+2​r2+1βˆ’r4+4​r2βˆ’12​3​r​(cos⁑(ΞΈβˆ’t)βˆ’r4​cos⁑(ΞΈ+t))1+r22​3​r​(sin⁑(ΞΈβˆ’t)βˆ’r4​sin⁑(ΞΈ+t))1+r22​3​r2​(cos⁑(2β€‹ΞΈβˆ’t)+r2​cos⁑(2​θ+t))1+r2βˆ’2​3​r2​(sin⁑(2β€‹ΞΈβˆ’t)+r2​sin⁑(2​θ+t))1+r2).Y_{t}=\left(\begin{array}[]{ccccc}r^{4}+2r^{2}+1\\ -r^{4}+4r^{2}-1\\ \frac{\sqrt{3}\left({z}{e^{-it}}+\bar{z}e^{it}-r^{4}\left(ze^{it}+{\bar{z}}{e^{-it}}\right)\right)}{1+r^{2}}\\ \frac{-i\sqrt{3}\left({z}{e^{-it}}-\bar{z}e^{it}-r^{4}\left(ze^{it}-{\bar{z}}{e^{-it}}\right)\right)}{1+r^{2}}\\ \frac{\sqrt{3}\left({z^{2}}{e^{-it}}+\bar{z}^{2}e^{it}+r^{2}\left(z^{2}e^{it}+{\bar{z}^{2}}{e^{-it}}\right)\right)}{1+r^{2}}\\ \frac{i\sqrt{3}\left({z^{2}}{e^{-it}}-\bar{z}^{2}e^{it}+r^{2}\left(z^{2}e^{it}-{\bar{z}^{2}}{e^{-it}}\right)\right)}{1+r^{2}}\\ \end{array}\right)=\left(\begin{array}[]{ccccc}r^{4}+2r^{2}+1\\ -r^{4}+4r^{2}-1\\ \frac{2\sqrt{3}r\left(\cos(\theta-t)-r^{4}\cos(\theta+t)\right)}{1+r^{2}}\\ \frac{2\sqrt{3}r\left(\sin(\theta-t)-r^{4}\sin(\theta+t)\right)}{1+r^{2}}\\ \frac{2\sqrt{3}r^{2}\left(\cos(2\theta-t)+r^{2}\cos(2\theta+t)\right)}{1+r^{2}}\\ \frac{-2\sqrt{3}r^{2}\left(\sin(2\theta-t)+r^{2}\sin(2\theta+t)\right)}{1+r^{2}}\\ \end{array}\right).

and yt=[Yt]:S2β†’S4y_{t}=[Y_{t}]:S^{2}\rightarrow S^{4} is an isotropic Willmore immersion with

(5.10) yt=1(r2+1)3​(βˆ’r6+3​r4+3​r2βˆ’12​3​r​(cos⁑(ΞΈβˆ’t)βˆ’r4​cos⁑(ΞΈ+t))2​3​r​(sin⁑(ΞΈβˆ’t)βˆ’r4​sin⁑(ΞΈ+t))2​3​r2​(cos⁑(2β€‹ΞΈβˆ’t)+r2​cos⁑(2​θ+t))βˆ’2​3​r2​(sin⁑(2β€‹ΞΈβˆ’t)+r2​sin⁑(2​θ+t)))y_{t}=\frac{1}{(r^{2}+1)^{3}}\left(\begin{array}[]{ccccc}-r^{6}+3r^{4}+3r^{2}-1\\ 2\sqrt{3}r\left(\cos(\theta-t)-r^{4}\cos(\theta+t)\right)\\ {2\sqrt{3}r\left(\sin(\theta-t)-r^{4}\sin(\theta+t)\right)}\\ 2\sqrt{3}r^{2}\left(\cos(2\theta-t)+r^{2}\cos(2\theta+t)\right)\\ -2\sqrt{3}r^{2}\left(\sin(2\theta-t)+r^{2}\sin(2\theta+t)\right)\\ \end{array}\right)

and

(5.11) |d​yt|2=12​(r8+4​r6+6​r4​cos⁑2​t+4​r2+1)(r2+1)6​|d​z|2.|\mathrm{d}y_{t}|^{2}=\frac{12(r^{8}+4r^{6}+6r^{4}\cos 2t+4r^{2}+1)}{(r^{2}+1)^{6}}|\mathrm{d}z|^{2}.
  1. (1)

    W​([Yt])=8​πW([Y_{t}])=8\pi for all t∈[0,2​π]t\in[0,2\pi]. [Yt][Y_{t}] is conformally equivalent to [Yt+Ο€][Y_{t+\pi}] for all t∈[0,Ο€]t\in[0,\pi]. And for any t1,t2∈[0,Ο€)t_{1},t_{2}\in[0,\pi), [Yt1][Y_{t_{1}}] is conformally equivalent to [Yt2][Y_{t_{2}}] if and only if t1=t2t_{1}=t_{2} or t1+t2=Ο€t_{1}+t_{2}=\pi.

  2. (2)

    [Yt][Y_{t}] is conformally equivalent to the Veronese surface in π•Š4\mathbb{S}^{4} when t=0t=0 and [Yt][Y_{t}] is conformally equivalent to three complete minimal surfaces in ℍ4\mathbb{H}^{4} on three open subsets of S2S^{2} when t=Ο€2t=\frac{\pi}{2}. For any other t∈(0,Ο€)t\in(0,\pi), [Yt][Y_{t}] is a Willmore surface in π•Š4\mathbb{S}^{4} not minimal in any space form.

  3. (3)

    When t=3​π2t=\frac{3\pi}{2}, consider the projection of [(Yt)|t=3​π2][(Y_{t})|_{t=\frac{3\pi}{2}}] into ℍ4\mathbb{H}^{4} w.r.t (0,1,0,0,0,0)tβˆˆβ„16(0,1,0,0,0,0)^{t}\in\mathbb{R}^{6}_{1}:

    (5.12) y~=βˆ’1(1+r2)​(r4βˆ’4​r2+1)​((1+r2)33​i​(zβˆ’zΒ―)​(1+r4)3​(z+zΒ―)​(1+r4)3​i​(z2βˆ’zΒ―2)​(1βˆ’r2)βˆ’3​(z2+zΒ―2)​(1βˆ’r2)).\widetilde{y}=\frac{-1}{(1+r^{2})(r^{4}-4r^{2}+1)}\left(\begin{array}[]{cccccc}(1+r^{2})^{3}\\ \sqrt{3}i(z-\bar{z})(1+r^{4})\\ \sqrt{3}(z+\bar{z})(1+r^{4})\\ \sqrt{3}i(z^{2}-\bar{z}^{2})(1-r^{2})\\ {-\sqrt{3}(z^{2}+\bar{z}^{2})(1-r^{2})}\\ \end{array}\right).

    It has metric

    |d​y~|2=12​(r8+4​r6βˆ’6​r4+4​r2+1)(r2+1)2​(r4βˆ’4​r2+1)2​|d​z|2|\mathrm{d}\widetilde{y}|^{2}=\frac{12(r^{8}+4r^{6}-6r^{4}+4r^{2}+1)}{(r^{2}+1)^{2}(r^{4}-4r^{2}+1)^{2}}|\mathrm{d}z|^{2}

    and Gauss curvature

    (5.13) K=βˆ’1βˆ’23​(r2+1)4​(r4βˆ’4​r2+1)4(r8+4​r6βˆ’6​r4+4​r2+1)3\begin{split}K=&-1-\frac{2}{3}\frac{(r^{2}+1)^{4}(r^{4}-4r^{2}+1)^{4}}{(r^{8}+4r^{6}-6r^{4}+4r^{2}+1)^{3}}\end{split}

    on S2βˆ–{|z|=r1}βˆͺ{|z|=r2}S^{2}\setminus\{|z|=r_{1}\}\cup\{|z|=r_{2}\}. Here r1=6βˆ’22r_{1}=\frac{\sqrt{6}-\sqrt{2}}{2} and r2=6+22r_{2}=\frac{\sqrt{6}+\sqrt{2}}{2}. Set

    M1={zβˆˆβ„‚Β―||z|<r1},M2={zβˆˆβ„‚Β―|r1<|z|<r2},M3={zβˆˆβ„‚Β―||z|>r2}.M_{1}=\{z\in\overline{\mathbb{C}}\ |\ |z|<r_{1}\},\ M_{2}=\{z\in\overline{\mathbb{C}}\ |\ r_{1}<|z|<r_{2}\},\ M_{3}=\{z\in\overline{\mathbb{C}}\ |\ |z|>r_{2}\}.
    1. (a)

      Set μ​(z):=βˆ’1zΒ―\mu(z):=-\frac{1}{\bar{z}} on S2S^{2}. Then

      y~∘μ=R​y~,Β with ​R=diag​(1,βˆ’1,βˆ’1,1,1).\widetilde{y}\circ\mu=R\widetilde{y},~{}\hbox{ with }R=\hbox{diag}(1,-1,-1,1,1).
    2. (b)

      y~|M1:M1→ℍ4\widetilde{y}|_{M_{1}}:M_{1}\rightarrow\mathbb{H}^{4} is a proper, complete minimal disk with finite Willmore energy (4βˆ’2​3)​π(4-2\sqrt{3})\pi. Its Gauss curvature takes value in [βˆ’53,βˆ’1)[-\frac{5}{3},-1). In particular, it has bounded Gauss curvature. And y~|M3\widetilde{y}|_{M_{3}} is congruent to y~|M1\widetilde{y}|_{M_{1}} in the sense y~|M3=R​(y~βˆ˜Οƒ)|M1\widetilde{y}|_{M_{3}}=R(\widetilde{y}\circ\sigma)|_{M_{1}}.

    3. (c)

      y~|M2:M2→ℍ4\widetilde{y}|_{M_{2}}:M_{2}\rightarrow\mathbb{H}^{4} is a proper, complete minimal annulus with finite Willmore energy 4​3​π4\sqrt{3}\pi. Its Gauss curvature takes value in [βˆ’113,βˆ’1)[-\frac{11}{3},-1). In particular, it has bounded Gauss curvature.

    4. (d)

      Each of the three minimal surfaces intersects the infinite boundary of ℍ4\mathbb{H}^{4} with a constant angle <Ο€2<\frac{\pi}{2}. The circles r=6Β±22r=\frac{\sqrt{6}\pm\sqrt{2}}{2} are the umbilical sets of the Willmore immersion [Yt|t=3​π2][Y_{t}|_{t=\frac{3\pi}{2}}].

Proof.

The equation (5.9) is a direct application of Theorem 4.2 and Theorem 5.1. When t=0t=0, we see that yt|t=0y_{t}|_{t=0} is a minimal immersion with constant curvature 1/31/3, hence it is the Veronese surface. It is well-known that Veronese two-sphere have Willmore energy 8​π8\pi. Since the Willmore energy of [Yt][Y_{t}] depends smoothly on tt and the Willmore energy of a Willmore two-sphere is 4​π​m4\pi m for some m∈Zm\in Z [43], we see that W​([Yt])=8​πW([Y_{t}])=8\pi.

Substituting t+Ο€t+\pi into (5.9) we see that [Yt][Y_{t}] is conformally equivalent to [Yt+Ο€][Y_{t+\pi}]. By Theorem 4.2, we see that (2) holds. From (5.9) we see that for any [Yt][Y_{t}], it admits an S1βˆ’S^{1}-symmetry given by Rt~=diag​(I2,Rt~,R2​t~)R_{\tilde{t}}=\hbox{diag}(I_{2},R_{\tilde{t}},R_{2\tilde{t}}). Here

Rt~=(cos⁑t~βˆ’sin⁑t~sin⁑t~cos⁑t~),R2​t~=(cos⁑2​t~sin⁑2​t~βˆ’sin⁑2​t~cos⁑2​t~).R_{\tilde{t}}=\left(\begin{array}[]{cc}\cos\tilde{t}&-\sin\tilde{t}\\ \sin\tilde{t}&\cos\tilde{t}\\ \end{array}\right),\ R_{2\tilde{t}}=\left(\begin{array}[]{cc}\cos 2\tilde{t}&\sin 2\tilde{t}\\ -\sin 2\tilde{t}&\cos 2\tilde{t}\\ \end{array}\right).

To be concrete, we have Yt​(z​ei​t~,z¯​eβˆ’i​t~)=Rt~​YtY_{t}(ze^{i\tilde{t}},\bar{z}e^{-i\tilde{t}})=R_{\tilde{t}}Y_{t}. Moreover, for any t∈(0,Ο€)t\in(0,\pi), [Yt][Y_{t}] does not admit another S1βˆ’S^{1}-symmetry. Otherwise, we will see that [Yt][Y_{t}] is a homogeneous Willmore two-sphere since it has two different S1βˆ’S^{1}-symmetry. By [39, 21], it is conformally equivalent to the Veronese two-sphere, which is not possible. Therefore, [Yt1][Y_{t_{1}}] is conformally equivalent to [Yt2][Y_{t_{2}}] only if yt1y_{t_{1}} is isometric to yt2y_{t_{2}}, which by (5.11), if and only if t1=t2t_{1}=t_{2} or t1+t2=Ο€t_{1}+t_{2}=\pi. By (5.9), [Yt1][Y_{t_{1}}] is conformally equivalent to [Yt2][Y_{t_{2}}] if t1+t2=Ο€t_{1}+t_{2}=\pi. This finishes (1). And (2) comes from Theorem 4.2.

(3) comes from a lengthy but straightforward computation. Note that the properness of y~|Mj\widetilde{y}|_{M_{j}}, j=1,2,3j=1,2,3 comes from the fact that they have smooth boundary curves at infinity. ∎

Remark 5.5.
  1. (1)

    Note that K attains maximal value βˆ’1-1 at r=6Β±22r=\frac{\sqrt{6}\pm\sqrt{2}}{2} and attains minimal value βˆ’113-\frac{11}{3} at r=1r=1 (FIGURE 1). This means that the two circles r=6Β±22r=\frac{\sqrt{6}\pm\sqrt{2}}{2} on S2=β„‚Β―S^{2}=\bar{\mathbb{C}} are exactly the umbilical sets on the Willmore surface [Yt]|t=3​π2[Y_{t}]|_{t=\frac{3\pi}{2}} (Compare also [4]).

    Refer to caption
    Figure 1. Curvature of y~\widetilde{y}
  2. (2)

    The surface [Y~t=3​π2][\widetilde{Y}_{t=\frac{3\pi}{2}}] can be looked as a combination of three complete minimal surfaces y~|Mj\widetilde{y}|_{M_{j}} in ℍ4\mathbb{H}^{4}, with j=1,2,3j=1,2,3. To be concrete, when |z|<6βˆ’22|z|<\frac{\sqrt{6}-\sqrt{2}}{2}, the surface takes values in the upper connected component of ℍ4\mathbb{H}^{4}, and tends to the boundary of ℍ4\mathbb{H}^{4} when |z|β†’6βˆ’22|z|\rightarrow\frac{\sqrt{6}-\sqrt{2}}{2} from the left side. When |z|=6βˆ’22|z|=\frac{\sqrt{6}-\sqrt{2}}{2}, it takes values at the boundary of ℍ4\mathbb{H}^{4}. When 6βˆ’22<|z|<6+22\frac{\sqrt{6}-\sqrt{2}}{2}<|z|<\frac{\sqrt{6}+\sqrt{2}}{2}, it takes values in the lower connected component of ℍ4\mathbb{H}^{4}, and tends to the boundary of ℍ4\mathbb{H}^{4} again when |z|β†’6+22|z|\rightarrow\frac{\sqrt{6}+\sqrt{2}}{2} from the right side. When |z|=6+22|z|=\frac{\sqrt{6}+\sqrt{2}}{2}, it takes values at the boundary of ℍ4\mathbb{H}^{4} again. When |z|>6+22|z|>\frac{\sqrt{6}+\sqrt{2}}{2}, it again takes values in the upper connected component of ℍ4\mathbb{H}^{4}. When viewing the surface in ℍ4\mathbb{H}^{4}, it blows up at the points 6Β±22\frac{\sqrt{6}\pm\sqrt{2}}{2}. If we embed ℍ4\mathbb{H}^{4} conformally into π•Š4\mathbb{S}^{4}, the surface will be a smooth immersion on the whole S2S^{2}. This is the well-known construction of compact Willmore surfaces due to Babich and Bobenko [4] for minimal surfaces in ℍ3\mathbb{H}^{3}, where they constructed successfully Willmore tori with a umbilical line in S3S^{3} via this way. It is hence not surprising that similar construction also works for Willmore two-spheres. To the authors’ best knowledge, the example in Proposition 5.4 should be the first explicit example of Willmore two-sphere in π•Š4\mathbb{S}^{4} which is conformally equivalent to some minimal surface in ℍ4\mathbb{H}^{4} on an open subset of S2S^{2} (Note that this is not possible for Willmore two-spheres in S3S^{3} except the round sphere [9]).

  3. (3)

    In [43], it is shown that all Willmore two-spheres with W​([Yt])=8​πW([Y_{t}])=8\pi are expressed as twistor deformations of the Veronese surface in π•Š4\mathbb{S}^{4}. Here we derive some explicit examples. Moreover, the generating curve of the S1βˆ’S^{1}-equivariant Willmore two-sphere yty_{t}, t∈(0,Ο€2)t\in(0,\frac{\pi}{2}), in S4S^{4} is

    Ξ³t=1(r2+1)3​(βˆ’r6+3​r4+3​r2βˆ’12​3​r​(1βˆ’r4)​cos⁑tβˆ’2​3​r​(1+r4)​sin⁑t2​3​r2​(1+r2)​cos⁑t2​3​r2​(1βˆ’r2)​sin⁑t).\gamma_{t}=\frac{1}{(r^{2}+1)^{3}}\left(\begin{array}[]{ccccc}-r^{6}+3r^{4}+3r^{2}-1\\ 2\sqrt{3}r\left(1-r^{4}\right)\cos t\\ -2\sqrt{3}r\left(1+r^{4}\right)\sin t\\ 2\sqrt{3}r^{2}\left(1+r^{2}\right)\cos t\\ 2\sqrt{3}r^{2}\left(1-r^{2}\right)\sin t\\ \end{array}\right).

    So Ξ³t\gamma_{t} is full in S4S^{4} for all t∈(0,Ο€2)t\in(0,\frac{\pi}{2}) and Ξ³t\gamma_{t} takes value in some S2βŠ‚S4S^{2}\subset S^{4} when t=0,Ο€2t=0,\frac{\pi}{2}. This indicates that in general, S1βˆ’S^{1}-equivariant Willmore two-spheres in S4S^{4} have more complicated structures than S1βˆ’S^{1}-equivariant minimal two-spheres in S4S^{4} [26].

  4. (4)

    Different from the case of complete minimal surfaces in ℍ3\mathbb{H}^{3} with finite Willmore energy, which always intersect the infinity boundary orthogonally as shown in [2], here the complete minimal surface y~\widetilde{y} intersect the infinity boundary with a constant angle not equal to Ο€2\frac{\pi}{2}.

5.3.2. ℝ1βˆ’\mathbb{R}^{1}-minimal deformations of the minimal surface y~\widetilde{y}

Let us consider the ℝ1βˆ’\mathbb{R}^{1}-minimal deformations of the minimal surface y~\widetilde{y} in ℍ4\mathbb{H}^{4} given in (5.12), by use of which we obtain a lot of (non-congruent) complete minimal surfaces in ℍ4\mathbb{H}^{4}.

Proposition 5.6.

Let z=r​ei​θz=re^{i\theta}. Set

(5.14) h1=βˆ’2​z3,h2=3​z2,h3=βˆ’3​z2,h4=βˆ’2​z.h_{1}=-2z^{3},\ h_{2}=\sqrt{3}z^{2},\ h_{3}=-\sqrt{3}z^{2},\ h_{4}=-2z.

in (5.7). Let [Y][Y] be the corresponding Willmore surface in S4S^{4}. Set Yt=Tt​♯​YY_{t}=T_{t}\sharp Y with Tt=d​i​a​g​(T2,t,I2)T_{t}=diag(T_{2,t},I_{2}). Then

(5.15) Yt=(y0y1y2y3y4y5)=(e2​t​r6+3​r4+3​e2​t​r2+1βˆ’e2​t​r6+3​r4+3​e2​t​r2βˆ’1i​3​et​(1+r4)​(zβˆ’zΒ―)3​et​(1+r4)​(z+zΒ―)i​3​(1βˆ’e2​t​r2)​(z2βˆ’zΒ―2)βˆ’3​(1βˆ’e2​t​r2)​(z2+zΒ―2)).Y_{t}=\left(\begin{array}[]{c}y_{0}\\ y_{1}\\ y_{2}\\ y_{3}\\ y_{4}\\ y_{5}\\ \end{array}\right)=\left(\begin{array}[]{ccccc}e^{2t}r^{6}+3r^{4}+3e^{2t}r^{2}+1\\ -e^{2t}r^{6}+3r^{4}+3e^{2t}r^{2}-1\\ i\sqrt{3}e^{t}(1+r^{4})(z-\bar{z})\\ \sqrt{3}e^{t}(1+r^{4})(z+\bar{z})\\ i\sqrt{3}(1-e^{2t}r^{2})(z^{2}-\bar{z}^{2})\\ -\sqrt{3}(1-e^{2t}r^{2})(z^{2}+\bar{z}^{2})\\ \end{array}\right).
  1. (1)

    For every tβˆˆβ„t\in\mathbb{R}, [Yt][Y_{t}] is a Willmore immersion from S2S^{2} to π•Š4\mathbb{S}^{4} with W​([Yt])=8​πW([Y_{t}])=8\pi and [Yt][Y_{t}] is oriented for all tβˆˆβ„t\in\mathbb{R}. Moreover, [Yt​(z,zΒ―)][Y_{t}(z,\bar{z})] is conformally equivalent to [Yβˆ’t​(βˆ’1z,βˆ’1zΒ―)][Y_{-t}(-\frac{1}{z},-\frac{1}{\bar{z}})] for all tβˆˆβ„.t\in\mathbb{R}.

  2. (2)

    Set

    yt=1y1​(y0y2y3y4y5)t.y_{t}=\frac{1}{y_{1}}\left(\begin{array}[]{ccccc}y_{0}&y_{2}&y_{3}&y_{4}&y_{5}\\ \end{array}\right)^{t}.

    Then yty_{t} is minimally immersed into ℍ4\mathbb{H}^{4} on the points where y0β‰ 0y_{0}\neq 0, with metric

    |(yt)z|2=6​(e2​t​r8+4​e4​t​r6βˆ’6​e2​t​r4+4​r2+e2​t)(e2​t​r6βˆ’3​r4βˆ’3​e2​t​r2+1)2=6​(e2​t​(r4+1)2+4​r2​(e2​t​r2βˆ’1)2)(e2​t​r6βˆ’3​r4βˆ’3​e2​t​r2+1)2\begin{split}|(y_{t})_{z}|^{2}&=\frac{6(e^{2t}r^{8}+4e^{4t}r^{6}-6e^{2t}r^{4}+4r^{2}+e^{2t})}{(e^{2t}r^{6}-3r^{4}-3e^{2t}r^{2}+1)^{2}}\\ &=\frac{6\left(e^{2t}(r^{4}+1)^{2}+4r^{2}(e^{2t}r^{2}-1)^{2}\right)}{(e^{2t}r^{6}-3r^{4}-3e^{2t}r^{2}+1)^{2}}\end{split}

    and curvature

    K=βˆ’1βˆ’2​e2​t​(e2​t​r6βˆ’3​r4βˆ’3​e2​t​r2+1)43​(e2​t​r8+4​e4​t​r6βˆ’6​e2​t​r4+4​r2+e2​t)3K=-1-\frac{2e^{2t}(e^{2t}r^{6}-3r^{4}-3e^{2t}r^{2}+1)^{4}}{3(e^{2t}r^{8}+4e^{4t}r^{6}-6e^{2t}r^{4}+4r^{2}+e^{2t})^{3}}

    In particular, set

    Mt,1={zβˆˆβ„‚Β―||z|<r1},Mt,2={zβˆˆβ„‚Β―|r1<|z|<r2},Mt,3={zβˆˆβ„‚Β―||z|>r2}.\begin{split}&M_{t,1}=\{z\in\overline{\mathbb{C}}\ |\ |z|<r_{1}\},\\ &M_{t,2}=\{z\in\overline{\mathbb{C}}\ |\ r_{1}<|z|<r_{2}\},\\ &M_{t,3}=\{z\in\overline{\mathbb{C}}\ |\ |z|>r_{2}\}.\end{split}

    Here we denote by r1r_{1} and r2r_{2} the two positive solutions to e2​t​r6βˆ’3​r4βˆ’3​e2​t​r2+1=0e^{2t}r^{6}-3r^{4}-3e^{2t}r^{2}+1=0 with 0<r1<r20<r_{1}<r_{2} 222Note that cos⁑3​θ0βˆ’2​cos⁑(ΞΈ0+Ο€3)=2​sin⁑θ0​(sin⁑π3βˆ’sin⁑2​θ0)>0\cos 3\theta_{0}-2\cos(\theta_{0}+\frac{\pi}{3})=2\sin\theta_{0}(\sin\frac{\pi}{3}-\sin 2\theta_{0})>0 since 0<ΞΈ0<Ο€/60<\theta_{0}<\pi/6 for all tβˆˆβ„t\in\mathbb{R}.:

    r12=1+eβˆ’4​t​(cos⁑3​θ0βˆ’2​cos⁑(ΞΈ0+Ο€3)),r22=1+eβˆ’4​t​(cos⁑3​θ0+2​cos⁑θ0).r_{1}^{2}=\sqrt{1+e^{-4t}}\left(\cos 3\theta_{0}-2\cos(\theta_{0}+\frac{\pi}{3})\right),\ r_{2}^{2}=\sqrt{1+e^{-4t}}\left(\cos 3\theta_{0}+2\cos\theta_{0}\right).

    Here ΞΈ0=13​arccos⁑11+e4​t.\theta_{0}=\frac{1}{3}\arccos\frac{1}{\sqrt{1+e^{4t}}}. Then we obtain two complete minimal disks Mt,1M_{t,1}, Mt,3M_{t,3} and one complete minimal annulus Mt,2M_{t,2} in ℍ4\mathbb{H}^{4}.

  3. (3)

    [Yt]|Mt,1[Y_{t}]|_{M_{t,1}} and [Yt]|Mt,3[Y_{t}]|_{M_{t,3}} are conformally equivalent to complete immersed, isotropic minimal disks yt,1y_{t,1} and yt,3y_{t,3} in ℍ4\mathbb{H}^{4}. Moreover, yt,1y_{t,1} and yt,3y_{t,3} are isometrically congruent if and only if t=0t=0. [Yt]|Mt,2[Y_{t}]|_{M_{t,2}} is conformally equivalent to an immersed, complete, isotropic minimal annulus yt,2y_{t,2} in ℍ4\mathbb{H}^{4}.

  4. (4)

    When tβ†’+∞t\rightarrow+\infty, [Yt][Y_{t}] tends to a branched double cover of a totally geodesic surface y∞y_{\infty} π•Š4\mathbb{S}^{4} which is orthogonal to the equator π•Š03={xβˆˆπ•Š4|xβŸ‚(1,0,0,0,0)t}\mathbb{S}^{3}_{0}=\{x\in\mathbb{S}^{4}|x\perp(1,0,0,0,0)^{t}\}.

  5. (5)

    When t=0t=0, W​([Yt]|Mt,1)=W​([Yt]|Mt,3)=(4βˆ’2​3)​πW([Y_{t}]|_{M_{t,1}})=W([Y_{t}]|_{M_{t,3}})=(4-2\sqrt{3})\pi. When tβ†’+∞t\rightarrow+\infty, W​([Yt]|Mt,1)β†’0W([Y_{t}]|_{M_{t,1}})\rightarrow 0. There exists tβˆˆβ„βˆ’t\in\mathbb{R}^{-} such that W​([Yt]|Mt,1)>1.9999​πW([Y_{t}]|_{M_{t,1}})>1.9999\pi. Hence for every c0∈(0,1.9999​π]c_{0}\in(0,1.9999\pi], there exists some tβˆˆβ„t\in\mathbb{R} such that W​([Yt]|Mt,1)=c0W([Y_{t}]|_{M_{t,1}})=c_{0}.

Proof.

(1) and (2) come from direct computations, as shown in the proposition. (3) is obvious.

Now let’s consider (4). When tβ†’+∞t\rightarrow+\infty, from (5.23) it is direct to see that yty_{t} tends to

13+r4​(βˆ’r4+300βˆ’i​3​(z2βˆ’zΒ―2)3​(z2+zΒ―2)),\frac{1}{3+r^{4}}\left(\begin{array}[]{ccccc}-r^{4}+3\\ 0\\ 0\\ -i\sqrt{3}(z^{2}-\bar{z}^{2})\\ \sqrt{3}(z^{2}+\bar{z}^{2})\\ \end{array}\right),

which is exactly a branched double covering of a totally geodesic surface y∞y_{\infty} orthogonal to the infinity boundary of ℍ4\mathbb{H}^{4}. Moreover, [Yt]|Mt,1[Y_{t}]|_{M_{t,1}} tends to the branched point p0=(1,0,0,0,0)tp_{0}=(1,0,0,0,0)^{t}. The equator π•Š03\mathbb{S}^{3}_{0} divides y∞y_{\infty} into two parts: y∞+y_{\infty}^{+} (containing p0p_{0}) and yβˆžβˆ’y_{\infty}^{-}. Therefore [Yt]|Mt,2[Y_{t}]|_{M_{t,2}} tends to y∞+βˆ–{p0}y_{\infty}^{+}\setminus\{p_{0}\} and [Yt]|Mt,3[Y_{t}]|_{M_{t,3}} tends to yβˆžβˆ’y_{\infty}^{-} .

Finally, let’s consider (5). First we note that the Willmore energy of [Yt]|Mt,j[Y_{t}]|_{M_{t,j}} are

(5.16) W​(Mt,j)=16β€‹Ο€β€‹βˆ«rjβˆ’1rje2​t​(e2​t​r6βˆ’3​r4βˆ’3​e2​t​r2+1)2(e2​t​r8+4​e4​t​r6βˆ’6​e2​t​r4+4​r2+e2​t)2​r​dr,j=1,2,3,W(M_{t,j})=16\pi\int_{r_{j-1}}^{r_{j}}\frac{e^{2t}(e^{2t}r^{6}-3r^{4}-3e^{2t}r^{2}+1)^{2}}{(e^{2t}r^{8}+4e^{4t}r^{6}-6e^{2t}r^{4}+4r^{2}+e^{2t})^{2}}r\mathrm{d}r,~{}j=1,2,3,

with r0=0r_{0}=0, r3=+∞r_{3}=+\infty and r1r_{1} and r2r_{2} as shown in the proposition.

Since

limtβ†’+∞r1=0​ and ​limtβ†’+∞e2​t​r1=0,\lim_{t\rightarrow+\infty}r_{1}=0\hbox{ and }\lim_{t\rightarrow+\infty}e^{2t}r_{1}=0,

when tβ†’+∞t\rightarrow+\infty we have for 0≀r≀r10\leq r\leq r_{1}

(e2​t​r8+4​e4​t​r6βˆ’6​e2​t​r4+4​r2+e2​t)2β‰₯e4​t,(e2​t​r6βˆ’3​r4βˆ’3​e2​t​r2+1)2<1.(e^{2t}r^{8}+4e^{4t}r^{6}-6e^{2t}r^{4}+4r^{2}+e^{2t})^{2}\geq e^{4t},\ (e^{2t}r^{6}-3r^{4}-3e^{2t}r^{2}+1)^{2}<1.

So when tβ†’+∞t\rightarrow+\infty,

∫0r1e2​t​(e2​t​r6βˆ’3​r4βˆ’3​e2​t​r2+1)2(e2​t​r8+4​e4​t​r6βˆ’6​e2​t​r4+4​r2+e2​t)2​r​drβ‰€βˆ«0r1eβˆ’2​t​r​dr=2​eβˆ’2​t​r12.\begin{split}\int_{0}^{r_{1}}\frac{e^{2t}(e^{2t}r^{6}-3r^{4}-3e^{2t}r^{2}+1)^{2}}{(e^{2t}r^{8}+4e^{4t}r^{6}-6e^{2t}r^{4}+4r^{2}+e^{2t})^{2}}r\mathrm{d}r&\leq\int_{0}^{r_{1}}e^{-2t}r\mathrm{d}r\\ &=2e^{-2t}r_{1}^{2}.\\ \end{split}

So

limtβ†’+∞W​(Mt,1)=0.\lim_{t\rightarrow+\infty}W(M_{t,1})=0.

On the other hand, numerical computation shows when t=ln⁑0.000039t=\ln 0.000039,

W​(Mt,2)β‰ˆ6.000089931​π,W​(Mt,1)β‰ˆ1.999910062​π.W(M_{t,2})\approx 6.000089931\pi,\ W(M_{t,1})\approx 1.999910062\pi.

Since W​(M1)W(M_{1}) depends continuously on tt, we see that for any number c0∈(0,1.9999​π]c_{0}\in(0,1.9999\pi], there exists some t0βˆˆβ„t_{0}\in\mathbb{R} such that W​(M1)=c0W(M_{1})=c_{0} for t=t0t=t_{0}. This finishes the proof. ∎

Remark 5.7.

It is interesting to ask whether there exists a complete minimal annulus xx in ℍ4\mathbb{H}^{4} with W​(x)≀6​πW(x)\leq 6\pi. Moreover, what is the infimum of the Willmore energy of a complete minimal annulus xx in ℍ4\mathbb{H}^{4}?

5.3.3. ℝ1βˆ’\mathbb{R}^{1}-minimal deformations of the Veronese two-sphere in π•Š4\mathbb{S}^{4}

Similarly we can construct a family of minimal two-spheres in π•Š4\mathbb{S}^{4} via the ℝ1βˆ’\mathbb{R}^{1}-action on the Veronese two sphere in π•Š4\mathbb{S}^{4}.

Proposition 5.8.

Let z=r​ei​θz=re^{i\theta}. Set

(5.17) h1=βˆ’2​z3,h2=3​i​z2,h3=3​i​z2,h4=βˆ’2​z.h_{1}=-2z^{3},\ h_{2}=\sqrt{3}iz^{2},\ h_{3}=\sqrt{3}iz^{2},\ h_{4}=-2z.

Set Yt=Tt​♯​YY_{t}=T_{t}\sharp Y with Tt=d​i​a​g​(T2,t,I2)T_{t}=diag(T_{2,t},I_{2}). Then

(5.18) Yt=(y0y1y2y3y4y5)=(e2​t​r6+3​r4+3​e2​t​r2+1βˆ’e2​t​r6+3​r4+3​e2​t​r2βˆ’13​et​(1βˆ’r4)​(z+zΒ―)βˆ’i​3​et​(1βˆ’r4)​(zβˆ’zΒ―)3​(1+e2​t​r2)​(z2+zΒ―2)i​3​(1+e2​t​r2)​(z2βˆ’zΒ―2)).Y_{t}=\left(\begin{array}[]{c}y_{0}\\ y_{1}\\ y_{2}\\ y_{3}\\ y_{4}\\ y_{5}\\ \end{array}\right)=\left(\begin{array}[]{ccccc}e^{2t}r^{6}+3r^{4}+3e^{2t}r^{2}+1\\ -e^{2t}r^{6}+3r^{4}+3e^{2t}r^{2}-1\\ \sqrt{3}e^{t}(1-r^{4})(z+\bar{z})\\ -i\sqrt{3}e^{t}(1-r^{4})(z-\bar{z})\\ \sqrt{3}(1+e^{2t}r^{2})(z^{2}+\bar{z}^{2})\\ i\sqrt{3}(1+e^{2t}r^{2})(z^{2}-\bar{z}^{2})\\ \end{array}\right).
  1. (1)

    For every tβˆˆβ„t\in\mathbb{R}, [Yt][Y_{t}] is conformally equivalent to an immersed isotropic minimal two-sphere yt=1y0​(y1y2y3y4y5)ty_{t}=\frac{1}{y_{0}}\left(\begin{array}[]{ccccc}y_{1}&y_{2}&y_{3}&y_{4}&y_{5}\\ \end{array}\right)^{t} in π•Š4\mathbb{S}^{4} with W​([Yt])=8​πW([Y_{t}])=8\pi,

    |d​(yt)|2=12​(e2​t​r8+4​e4​t​r6+6​e2​t​r4+4​r2+e2​t)(e2​t​r6+3​r4+3​e2​t​r2+1)2​|d​z|2\left|\mathrm{d}(y_{t})\right|^{2}=\frac{12(e^{2t}r^{8}+4e^{4t}r^{6}+6e^{2t}r^{4}+4r^{2}+e^{2t})}{(e^{2t}r^{6}+3r^{4}+3e^{2t}r^{2}+1)^{2}}|\mathrm{d}z|^{2}

    and

    (5.19) Kt=1βˆ’2​e2​t​(e2​t​r6+3​r4+3​e2​t​r2+1)43​(e2​t​r8+4​e4​t​r6+6​e2​t​r4+4​r2+e2​t)3.K_{t}=1-\frac{2e^{2t}(e^{2t}r^{6}+3r^{4}+3e^{2t}r^{2}+1)^{4}}{3(e^{2t}r^{8}+4e^{4t}r^{6}+6e^{2t}r^{4}+4r^{2}+e^{2t})^{3}}.
  2. (2)

    [Yt][Y_{t}] descend to a minimal ℝ​P2\mathbb{R}P^{2} if and only if t=0t=0.

  3. (3)

    When tβ†’βˆžt\rightarrow\infty, yty_{t} tends to a branched double covering of a totally geodesic round two-sphere of π•Š4\mathbb{S}^{4}.

5.4. S1βˆ’S^{1}-deformation of generalizations of Veronese two-sphere in π•Š4\mathbb{S}^{4}

In [22], generalizations of Veronese two-sphere in π•Š4\mathbb{S}^{4} are discussed. Here we consider the S1βˆ’S^{1}-deformation of them, which will give more examples of complete minimal surfaces in ℍ4\mathbb{H}^{4}, which will be important in Willmore energy estimates of complete minimal surfaces in ℍ4\mathbb{H}^{4}.

Proposition 5.9.

Let z=r​ei​θz=re^{i\theta}. Set

(5.20) h1=βˆ’k​zk+1,h2=i​k2βˆ’1​zk,h3=i​k2βˆ’1​zk,h4=βˆ’k​zkβˆ’1,kβ‰₯2,h_{1}=-kz^{k+1},\ h_{2}=i\sqrt{k^{2}-1}z^{k},\ h_{3}=i\sqrt{k^{2}-1}z^{k},\ h_{4}=-kz^{k-1},~{}k\geq 2,

in (5.7). Let [Y^][\hat{Y}] be the corresponding Willmore surface in S4S^{4}. Set Y^t=Tt​♯​Y^\hat{Y}_{t}=T_{t}\sharp\hat{Y} with Tt=d​i​a​g​(T1,t,I2)T_{t}=diag(T_{1,t},I_{2}). Then

(5.21) Y^t=(y^0y^1y^2y^3y^4y^5)=((kβˆ’1)​(r2​k+2+1)+(k+1)​(r2​k+r2)βˆ’(kβˆ’1)​(r2​k+2+1)+(k+1)​(r2​k+r2)k2βˆ’1​((z​eβˆ’i​t+z¯​ei​t)βˆ’r2​k​(z​ei​t+z¯​eβˆ’i​t))βˆ’i​k2βˆ’1​((z​eβˆ’i​tβˆ’z¯​ei​t)βˆ’r2​k​(z​ei​tβˆ’z¯​eβˆ’i​t))k2βˆ’1​((zk​eβˆ’i​t+zΒ―k​ei​t)+r2​(zk​ei​t+zΒ―k​eβˆ’i​t))i​k2βˆ’1​((zk​eβˆ’i​tβˆ’zΒ―k​ei​t)+r2​(zk​ei​tβˆ’zΒ―k​eβˆ’i​t))).\hat{Y}_{t}=\left(\begin{array}[]{c}\hat{y}_{0}\\ \hat{y}_{1}\\ \hat{y}_{2}\\ \hat{y}_{3}\\ \hat{y}_{4}\\ \hat{y}_{5}\\ \end{array}\right)=\left(\begin{array}[]{ccccc}(k-1)(r^{2k+2}+1)+(k+1)(r^{2k}+r^{2})\\ -(k-1)(r^{2k+2}+1)+(k+1)(r^{2k}+r^{2})\\ \sqrt{k^{2}-1}\left((ze^{-it}+\bar{z}e^{it})-r^{2k}(ze^{it}+\bar{z}e^{-it})\right)\\ -i\sqrt{k^{2}-1}\left((ze^{-it}-\bar{z}e^{it})-r^{2k}(ze^{it}-\bar{z}e^{-it})\right)\\ \sqrt{k^{2}-1}\left((z^{k}e^{-it}+\bar{z}^{k}e^{it})+r^{2}(z^{k}e^{it}+\bar{z}^{k}e^{-it})\right)\\ i\sqrt{k^{2}-1}\left((z^{k}e^{-it}-\bar{z}^{k}e^{it})+r^{2}(z^{k}e^{it}-\bar{z}^{k}e^{-it})\right)\\ \end{array}\right).
  1. (1)

    For every t∈[0,2​π]t\in[0,2\pi], [Y^t][\hat{Y}_{t}] is an oriented Willmore immersion from S2S^{2} to π•Š4\mathbb{S}^{4} with Willmore energy 4​π​k4\pi k. [Y^t][\hat{Y}_{t}] is conformally equivalent to [Y^t+Ο€][\hat{Y}_{t+\pi}] for all t∈[0,Ο€]t\in[0,\pi]. And for any t1,t2∈[0,Ο€)t_{1},t_{2}\in[0,\pi), [Y^t1][\hat{Y}_{t_{1}}] is conformally equivalent to [Y^t2][\hat{Y}_{t_{2}}] if and only if t1=t2t_{1}=t_{2} or t1+t2=Ο€t_{1}+t_{2}=\pi.

  2. (2)

    [Y^t][\hat{Y}_{t}] is conformally equivalent to a minimal two-sphere in π•Š4\mathbb{S}^{4} when t=0t=0 and [Yt][Y_{t}] is conformally equivalent to three complete minimal surfaces in ℍ4\mathbb{H}^{4} on three open subsets of S2S^{2} when t=Ο€2t=\frac{\pi}{2}. For any other t∈(0,Ο€)t\in(0,\pi), [Yt][Y_{t}] Willmore surfaces in π•Š4\mathbb{S}^{4} not minimal in any space form.

  3. (3)

    [Y^t][\hat{Y}_{t}] reduces to a non-oriented Willmore surface from ℝ​P2=S2/ΞΌ\mathbb{R}P^{2}=S^{2}/\mu, if and only if t=0t=0 or Ο€\pi, and k=2​k~k=2\tilde{k} for some k~βˆˆβ„€+\tilde{k}\in\mathbb{Z}^{+}. Here μ​(z)=βˆ’1zΒ―\mu(z)=-\frac{1}{\bar{z}}.

Proof.

The equation (5.21) comes from direct computations.

We need only to show that W​([Y^t])=4​π​kW([\hat{Y}_{t}])=4\pi k, since proofs of the rest of (1) and (2) are the same as Proposition 5.4. Since the Willmore energy of [Yt][Y_{t}] depends smoothly on tt and the Willmore energy of a Willmore two-sphere is 4​π​m4\pi m for some m∈Zm\in Z [43], we have A​r​e​a​([Y^t])=A​r​e​a​([Y^])Area([\hat{Y}_{t}])=Area([\hat{Y}]). By Theorem 3.1 of [26] (see also [6]), A​r​e​a​([Y^t])=A​r​e​a​([Y^])=4​π​(k+1)Area([\hat{Y}_{t}])=Area([\hat{Y}])=4\pi(k+1) since the equivariant action here is (m(1),m(2))=(1,k)(m_{(1)},m_{(2)})=(1,k).

Substituting ΞΌ\mu into (5.21) shows that [Y^t∘μ]=[Y^t][\hat{Y}_{t}\circ\mu]=[\hat{Y}_{t}] if and only if kk is even and t=0t=0 or Ο€\pi, which finishes the proof of (3). ∎

5.5. ℝ1βˆ’\mathbb{R}^{1}-minimal deformations of another type of minimal surfaces in ℍ4\mathbb{H}^{4}

It is natural to show the existence of complete minimal surfaces in ℍ4\mathbb{H}^{4} with any Willmore energy W0βˆˆβ„+βˆͺ{0}W_{0}\in\mathbb{R}^{+}\cup\{0\} by further generalization of the above examples.

Proposition 5.10.

Let z=r​ei​θz=re^{i\theta}. Let [Y]=Y^t|t=3​π2[Y]=\hat{Y}_{t}|_{t=\frac{3\pi}{2}}. Then its normalized potential can be given by setting

(5.22) h1=βˆ’k​zk+1,h2=k2βˆ’1​zk,h3=βˆ’k2βˆ’1​zk,h4=βˆ’k​zkβˆ’1,kβ‰₯2,h_{1}=-kz^{k+1},\ h_{2}=\sqrt{k^{2}-1}z^{k},\ h_{3}=-\sqrt{k^{2}-1}z^{k},\ h_{4}=-kz^{k-1},~{}k\geq 2,

in (5.7). Set Yt=Tt​♯​YY_{t}=T_{t}\sharp Y with Tt=d​i​a​g​(T2,t,I2)T_{t}=diag(T_{2,t},I_{2}). Then

(5.23) Yt=(y0y1y2y3y4y5)=((kβˆ’1)​(e2​t​r2​k+2+1)+(k+1)​(r2​k+e2​t​r2)βˆ’(kβˆ’1)​(e2​t​r2​k+2+1)+(k+1)​(r2​k+e2​t​r2)i​et​k2βˆ’1​(1+r2​k)​(zβˆ’zΒ―)et​k2βˆ’1​(1+r2​k)​(z+zΒ―)i​k2βˆ’1​(1βˆ’e2​t​r2)​(zkβˆ’zΒ―k)βˆ’k2βˆ’1​(1βˆ’e2​t​r2)​(zk+zΒ―k)).Y_{t}=\left(\begin{array}[]{c}y_{0}\\ y_{1}\\ y_{2}\\ y_{3}\\ y_{4}\\ y_{5}\\ \end{array}\right)=\left(\begin{array}[]{ccccc}(k-1)(e^{2t}r^{2k+2}+1)+(k+1)(r^{2k}+e^{2t}r^{2})\\ -(k-1)(e^{2t}r^{2k+2}+1)+(k+1)(r^{2k}+e^{2t}r^{2})\\ ie^{t}\sqrt{k^{2}-1}(1+r^{2k})(z-\bar{z})\\ e^{t}\sqrt{k^{2}-1}(1+r^{2k})(z+\bar{z})\\ i\sqrt{k^{2}-1}(1-e^{2t}r^{2})(z^{k}-\bar{z}^{k})\\ -\sqrt{k^{2}-1}(1-e^{2t}r^{2})(z^{k}+\bar{z}^{k})\\ \end{array}\right).
  1. (1)

    For every tβˆˆβ„t\in\mathbb{R}, [Yt][Y_{t}] is an oriented Willmore immersion from S2S^{2} to π•Š4\mathbb{S}^{4} with Willmore energy 4​π​k4\pi k and [Yt​(z,zΒ―)][Y_{t}(z,\bar{z})] is conformally equivalent to [Yβˆ’t​(βˆ’1z,βˆ’1zΒ―)][Y_{-t}(-\frac{1}{z},-\frac{1}{\bar{z}})].

  2. (2)

    Set

    yt=1y1​(y0y2y3y4y5)t.y_{t}=\frac{1}{y_{1}}\left(\begin{array}[]{ccccc}y_{0}&y_{2}&y_{3}&y_{4}&y_{5}\\ \end{array}\right)^{t}.

    Then yty_{t} is minimally immersed into ℍ4\mathbb{H}^{4} on the points where y0β‰ 0y_{0}\neq 0, with metric

    |d​yt|2=4​(k2βˆ’1)​(e2​t​(1+r2​k)2+k2​r2​kβˆ’2​(1βˆ’e2​t​r2)2)((kβˆ’1)​(e2​t​r2​k+2+1)βˆ’(k+1)​(r2​k+e2​t​r2))2​|d​z|2\begin{split}|\mathrm{d}y_{t}|^{2}&=\frac{4(k^{2}-1)\left(e^{2t}(1+r^{2k})^{2}+k^{2}r^{2k-2}(1-e^{2t}r^{2})^{2}\right)}{\left((k-1)(e^{2t}r^{2k+2}+1)-(k+1)(r^{2k}+e^{2t}r^{2})\right)^{2}}|\mathrm{d}z|^{2}\end{split}

    and curvature

    K=βˆ’1βˆ’k2​e2​t​r2​kβˆ’4​((kβˆ’1)​(e2​t​r2​k+2+1)βˆ’(k+1)​(r2​k+e2​t​r2))42​(k2βˆ’1)​(e2​t​(1+r2​k)2+k2​r2​kβˆ’2​(1βˆ’e2​t​r2)2)3K=-1-\frac{k^{2}e^{2t}r^{2k-4}\left((k-1)(e^{2t}r^{2k+2}+1)-(k+1)(r^{2k}+e^{2t}r^{2})\right)^{4}}{2(k^{2}-1)\left(e^{2t}(1+r^{2k})^{2}+k^{2}r^{2k-2}(1-e^{2t}r^{2})^{2}\right)^{3}}

    In particular, set

    Mt,1={zβˆˆβ„‚Β―||z|<r1},Mt,2={zβˆˆβ„‚Β―|r1<|z|<r2},Mt,3={zβˆˆβ„‚Β―||z|>r2}.\begin{split}&M_{t,1}=\{z\in\overline{\mathbb{C}}\ |\ |z|<r_{1}\},\\ &M_{t,2}=\{z\in\overline{\mathbb{C}}\ |\ r_{1}<|z|<r_{2}\},\\ &M_{t,3}=\{z\in\overline{\mathbb{C}}\ |\ |z|>r_{2}\}.\end{split}

    Here we denote by r1r_{1} and r2r_{2} the two positive solutions to

    (kβˆ’1)​(e2​t​r2​k+2+1)βˆ’(k+1)​(r2​k+e2​t​r2)=0(k-1)(e^{2t}r^{2k+2}+1)-(k+1)(r^{2k}+e^{2t}r^{2})=0

    with 0<r1<r20<r_{1}<r_{2}. Then we obtain two complete minimal disks Mt,1M_{t,1}, Mt,3M_{t,3} and one complete minimal annulus Mt,2M_{t,2} in ℍ4\mathbb{H}^{4}.

  3. (3)

    [Yt]|Mt,1[Y_{t}]|_{M_{t,1}} and [Yt]|Mt,3[Y_{t}]|_{M_{t,3}} are conformally equivalent to complete immersed, isotropic minimal disks yt,1y_{t,1} and yt,3y_{t,3} in ℍ4\mathbb{H}^{4}. Moreover, yt,1y_{t,1} and yt,3y_{t,3} are isometrically congruent if and only if t=0t=0. [Yt]|Mt,2[Y_{t}]|_{M_{t,2}} is conformally equivalent to an immersed, complete, isotropic minimal annulus yt,2y_{t,2} in ℍ4\mathbb{H}^{4}.

  4. (4)

    For every fixed kk, when tβ†’+∞t\rightarrow+\infty, [Yt][Y_{t}] tends to a branched kβˆ’k-cover of a totally geodesic surface y∞y_{\infty} π•Š4\mathbb{S}^{4} which is orthogonal to the equator π•Š03={xβˆˆπ•Š4|xβŸ‚(1,0,0,0,0)t}\mathbb{S}^{3}_{0}=\{x\in\mathbb{S}^{4}|x\perp(1,0,0,0,0)^{t}\}.

  5. (5)

    When tβ†’+∞t\rightarrow+\infty, W​([Yt]|Mt,1)β†’0W([Y_{t}]|_{M_{t,1}})\rightarrow 0.

  6. (6)

    Set t0=1βˆ’k2​ln⁑k{t_{0}}=\frac{1-k}{2}\ln k. Then when kk is large enough,

    (5.24) W​([Yt0]|Mt0,1)β‰₯(kβˆ’1)​π3.W([Y_{t_{0}}]|_{M_{t_{0},1}})\geq\frac{(k-1)\pi}{3}.

    Moreover, when kβ†’+∞k\rightarrow+\infty, W​([Yt0]|Mt0,1)β†’+∞W([Y_{t_{0}}]|_{M_{t_{0},1}})\rightarrow+\infty. In particular for every W0βˆˆβ„+W_{0}\in\mathbb{R}^{+}, there exists some kβˆˆβ„€+k\in\mathbb{Z}^{+} with k>2+3​W0Ο€k>2+\frac{3W_{0}}{\pi}, and tβ€²βˆˆβ„t^{\prime}\in\mathbb{R}, such that W​([Ytβ€²]|Mtβ€²,1)=W0W([Y_{t}^{\prime}]|_{M_{t^{\prime},1}})=W_{0}.

Proof.

(1). By Proposition 5.9, we have W​([Yt])=W​([Y])=4​π​kW([Y_{t}])=W([Y])=4\pi k.

The proof of (2)-(4) is the same as Proposition 5.6. So let’s focus on (5) and (6). First we note that the Willmore energy of [Yt]|Mt,j[Y_{t}]|_{M_{t,j}} are (Here b=k+1kβˆ’1b=\frac{k+1}{k-1})

(5.25) W​(Mt,j)=4β€‹Ο€β€‹βˆ«rjβˆ’1rjk2​(kβˆ’1)2​e2​t​r2​kβˆ’3​(e2​t​r2​k+2+1βˆ’b​(r2​k+e2​t​r2))2(e2​t​(1+r2​k)2+k2​r2​kβˆ’2​(1βˆ’e2​t​r2)2)2​dr,j=1,2,3,W(M_{t,j})=4\pi\int_{r_{j-1}}^{r_{j}}\ \frac{k^{2}(k-1)^{2}e^{2t}r^{2k-3}\left(e^{2t}r^{2k+2}+1-b(r^{2k}+e^{2t}r^{2})\right)^{2}}{\left(e^{2t}(1+r^{2k})^{2}+k^{2}r^{2k-2}(1-e^{2t}r^{2})^{2}\right)^{2}}\mathrm{d}r,~{}j=1,2,3,

with r0=0r_{0}=0, r3=+∞r_{3}=+\infty and r1r_{1} and r2r_{2} as shown in the proposition.

It is direct to check that

limtβ†’+∞r1=0​ and ​e2​t​r12≀1.\lim_{t\rightarrow+\infty}r_{1}=0\hbox{ and }e^{2t}r_{1}^{2}\leq 1.

When tβ†’+∞t\rightarrow+\infty we have for 0≀r≀r10\leq r\leq r_{1}

e2​t​(1+r2​k)2+k2​r2​kβˆ’2​(1βˆ’e2​t​r2)2β‰₯e2​t,e2​t​r2​k+2+1βˆ’b​(r2​k+e2​t​r2)<1.e^{2t}(1+r^{2k})^{2}+k^{2}r^{2k-2}(1-e^{2t}r^{2})^{2}\geq e^{2t},~{}e^{2t}r^{2k+2}+1-b(r^{2k}+e^{2t}r^{2})<1.

So when tβ†’+∞t\rightarrow+\infty,

∫0r1k2​e2​t​r2​kβˆ’3​(e2​t​r2​k+2+1βˆ’b​(r2​k+e2​t​r2))2(e2​t​(1+r2​k)2+k2​r2​kβˆ’2​(1βˆ’e2​t​r2)2)2​drβ‰€βˆ«0r12​k2​e2​t(e2​t)2​r2​kβˆ’3​dr=2​k2​eβˆ’2​t​r12​kβˆ’22​kβˆ’2β†’0.\begin{split}\int^{r_{1}}_{0}\ \frac{k^{2}e^{2t}r^{2k-3}\left(e^{2t}r^{2k+2}+1-b(r^{2k}+e^{2t}r^{2})\right)^{2}}{\left(e^{2t}(1+r^{2k})^{2}+k^{2}r^{2k-2}(1-e^{2t}r^{2})^{2}\right)^{2}}\mathrm{d}r&\leq\int_{0}^{r_{1}}\frac{2k^{2}e^{2t}}{(e^{2t})^{2}}r^{2k-3}\mathrm{d}r\\ &=\frac{2k^{2}e^{-2t}r_{1}^{2k-2}}{2k-2}\rightarrow 0.\\ \end{split}

So for every fixed kk, limtβ†’+∞W​([Yt]|Mt,1)=0.\lim_{t\rightarrow+\infty}W([Y_{t}]|_{M_{t,1}})=0.

The key point of (6) is the technical estimate (5.24). We will leave the proof of it for the appendix. ∎

5.6. Non-oriented examples of minimal Moebius strips in ℍ4\mathbb{H}^{4}

In this subsection, we consider some non-oriented minimal surfaces in ℍ4\mathbb{H}^{4}, which is based on the work of [20] and [54].

Set

(5.26) h1=32​z5,h2=βˆ’h3=52​z3,h4=32​z.h_{1}=\frac{3}{2}z^{5},\ h_{2}=-h_{3}=\frac{\sqrt{5}}{2}z^{3},\ \ h_{4}=\frac{3}{2}z.\

We have

(5.27) Y=(y0y1y2y3y4y5)=((r10+5​r6+5​r4+1)βˆ’(r10βˆ’5​r6βˆ’5​r4+1)5​i​(1+r6)​(z2βˆ’zΒ―2)5​(1+r6)​(z2+zΒ―2)βˆ’5​i​(1βˆ’r4)​(z3βˆ’zΒ―3)5​(1βˆ’r4)​(z3+zΒ―3)).Y=\left(\begin{array}[]{c}y_{0}\\ y_{1}\\ y_{2}\\ y_{3}\\ y_{4}\\ y_{5}\\ \end{array}\right)=\left(\begin{array}[]{ccc}(r^{10}+5r^{6}+5r^{4}+1)\\ -(r^{10}-5r^{6}-5r^{4}+1)\\ \sqrt{5}i(1+r^{6})(z^{2}-\bar{z}^{2})\\ \sqrt{5}(1+r^{6})(z^{2}+\bar{z}^{2})\\ -\sqrt{5}i(1-r^{4})(z^{3}-\bar{z}^{3})\\ \sqrt{5}(1-r^{4})(z^{3}+\bar{z}^{3})\\ \end{array}\right).

with

|d​Y|2=40​r2​(4​r4βˆ’7​r2+4)​(r2+1)4​|d​z|2.|\mathrm{d}Y|^{2}=40r^{2}(4r^{4}-7r^{2}+4)(r^{2}+1)^{4}|\mathrm{d}z|^{2}.

So YY has exactly two branched points 0 and ∞\infty. Consider μ​(z)=βˆ’1zΒ―\mu(z)=-\frac{1}{\bar{z}}, we have

[Y​(μ​(z))]=[Y​(z)].[Y(\mu(z))]=[Y(z)].

As a consequence, [Y][Y] induces a branched Willmore ℝ​P2\mathbb{R}P^{2}: [Y]:S2/ΞΌ=ℝ​P2β†’π•Š4[Y]:S^{2}/{\mu}=\mathbb{R}P^{2}\rightarrow\mathbb{S}^{4} is a Willmore ℝ​P2\mathbb{R}P^{2} with Willmore energy 12​π12\pi and one branched point at z=0z=0. For more discussions on singularities and branched points of Willmore surfaces, see [5, 42, 30, 31, 32, 46].

Set r1=5βˆ’12r_{1}=\frac{\sqrt{5}-1}{2} and

M1={zβˆˆβ„‚|0≀r<r1},M2={zβˆˆβ„‚|r1<r<1r1},M3={zβˆˆβ„‚Β―|r>1r1}.M_{1}=\left\{z\in\mathbb{C}|0\leq r<r_{1}\right\},\ M_{2}=\left\{z\in\mathbb{C}|r_{1}<r<\frac{1}{r_{1}}\right\},\ M_{3}=\left\{z\in\bar{\mathbb{C}}|r>\frac{1}{r_{1}}\right\}.

Set y~=1y1​(y0,y2,y3,y4,y5)t.\tilde{y}=\frac{1}{y_{1}}(y_{0},y_{2},y_{3},y_{4},y_{5})^{t}. We see that

  1. (1)

    y~|M2/ΞΌ\tilde{y}|_{M_{2}/\mu} is a complete minimal Moebius strip in ℍ4\mathbb{H}^{4} with W​(y)=6​5​π5β‰ˆ10.733​πW(y)=\frac{6\sqrt{5}\pi}{5}\approx 10.733\pi.

  2. (2)

    y~|M1=(y~∘μ)|M3\tilde{y}|_{M_{1}}=(\tilde{y}\circ\mu)|_{M_{3}} is a branched minimal disk in ℍ4\mathbb{H}^{4} with Willmore energy W​(y)=12​π​(1βˆ’2​5/5)β‰ˆ1.267​πW(y)=12\pi(1-2\sqrt{5}/5)\approx 1.267\pi and one branched point z=0z=0.

It is natural to ask whether the complete minimal Moebius strip y~|M2\tilde{y}|_{M_{2}} takes uniquely the minimum of the Willmore energy among all complete minimal Moebius strips in ℍn\mathbb{H}^{n}, nβ‰₯4n\geq 4.

6. Remarks on the non-rigidity of isotropic surfaces in π•Š4\mathbb{S}^{4}

Finally we would like to discuss briefly some simple applications of the W-deformations on the study of stability problems of Willmore surfaces and minimal surfaces. More detailed study will be done in a separate publication, since it will involve many other independent calculations. We refer to [45, 48, 51, 55] for more details on this topics, in particular Theorem 3.3.1 and Corollary 3.3.1 of [48].

Since for isotropic surfaces in π•Š4\mathbb{S}^{4}, we have an explicit W-representation formula, we see that W-deformations are globally defined if the surfaces are globally defined. From this we see immediately that they are Willmore non-rigidity since they admits non-trivial Willmore Deformations.

Theorem 6.1.

Let y:Mβ†’π•Š4y:M\rightarrow\mathbb{S}^{4} be an isotropic (hence Willmore) surface from a closed Riemann surface MM with its conformal Gauss map in β„³L\mathcal{M}_{L}. Then yy is Willmore non-rigid. That is, it admits conformal Jacobi fields different from the conformal Killing fields which come from conformal transformations of S4S^{4}.

Proof.

We first consider the case that yy is not conformally equivalent to a minimal surface in π•Š4\mathbb{S}^{4}. By Theorem 3.7, the condition that the conformal Gauss map of yy is in β„³L\mathcal{M}_{L}, is equivalent to saying that it is coming from a Kβ„‚βˆ’K^{\mathbb{C}}-dressing of some minimal surface in π•Š4\mathbb{S}^{4}. Therefore by Theorem 5.1, there exists a family of Willore surfaces yty_{t} such that yty_{t} is real analytic in tt and yt|t=0=yy_{t}|_{t=0}=y and yt|t=t0y_{t}|_{t=t_{0}} is a minimal surface in π•Š4\mathbb{S}^{4}. So {yt}\{y_{t}\} does not come from any conformal transformations of π•Š4\mathbb{S}^{4} and the Jacobi field of yty_{t} is not a conformal Killing field.

Now consider the case that yy is conformally equivalent to a minimal surface in π•Š4\mathbb{S}^{4}. Without lose of generality, we assume yy has the potential as the form in Proposition 5.2. By Proposition 5.2 and Theorem 5.1, there exists globally a family of Willore surfaces yty_{t} such that yty_{t} is real analytic in tt and yty_{t} is not conformally equivalent to any minimal surface in π•Š4\mathbb{S}^{4} when 0<t<Ο€/20<t<\pi/2. So {yt}\{y_{t}\} does not come from any conformal transformations of π•Š4\mathbb{S}^{4} and the Jacobi field of yty_{t} is not a conformal Killing field.

∎

For minimal surfaces in π•Š4\mathbb{S}^{4}, we also have the following

Theorem 6.2.

Let y:Mβ†’π•Š4y:M\rightarrow\mathbb{S}^{4} be an isotropic minimal surface from a closed Riemann surface MM. Then yy is non-rigidity. That is, it admits Jacobi fields different from the Killing fields which come from isometric transformations of S4S^{4}.

Proof.

Assume without loss of generality the normalized potential of yy is of the form (5.1) with h2=h3h_{2}=h_{3}. Let

T^t=(I4000cosh⁑ti​sinh⁑t0βˆ’i​sinh⁑tcosh⁑t)\hat{T}_{t}=\left(\begin{array}[]{cccc}I_{4}&0&0\\ 0&\cosh t&i\sinh t\\ 0&-i\sinh t&\cosh t\\ \end{array}\right)

be a one-parameter subgroup of Kβ„‚K^{\mathbb{C}}. The one-parameter family of normalized potentials Ξ·t\eta_{t} has the same form as yy in (5.1), except the functions {hj}\{h_{j}\} becomes {et​hj}\{e^{t}h_{j}\}. Substituting {et​hj}\{e^{t}h_{j}\} into (5.2), we obtain the Willmore family yt=1y0​t(y1​t,,y2​t,y3​t,y4​t,y5​t)y_{t}=\frac{1}{y_{0t}}(y_{1t},,y_{2t},y_{3t},y_{4t},y_{5t}) derived by Ξ·t\eta_{t}. We have that yty_{t} is real analytic in tt and for every tt, yty_{t} is a minimal surface in S4S^{4}.

Let tt tends to +∞+\infty. We have that yty_{t} tends to a conformal map into S2S^{2}. As a consequence, yty_{t} can not be derived by an isometric transformations of S4S^{4}. Hence the Jacobi field of yty_{t} is not a Killing field of yy. ∎

We refer to Ejiri’s interesting paper [25] for the discussion of the index of minimal two-spheres in S2​mS^{2m}. Note that the Willmore deformations contribute explicitly to the index of minimal two-spheres in S4S^{4} [45, 55].

7. Appendix: Proof of (5.24)

Set a=e2​t0=kβˆ’(kβˆ’1)a=e^{2t_{0}}=k^{-(k-1)}, ρ=r2\rho=r^{2}. Set L=a​ρk+1+1βˆ’b​ρkβˆ’a​b​ρL=a\rho^{k+1}+1-b\rho^{k}-ab\rho with b=k+1kβˆ’1b=\frac{k+1}{k-1}. Let ρ1∈(0,1)\rho_{1}\in(0,1) and ρ2∈(1,+∞)\rho_{2}\in(1,+\infty) be the two solutions to

L​(ρ)=a​ρk+1+1βˆ’b​ρkβˆ’a​b​ρ=0.L(\rho)=a\rho^{k+1}+1-b\rho^{k}-ab\rho=0.

We can rewrite W​(Mt0,1)W(M_{t_{0},1}) as

W​(Mt0,1)=2β€‹Ο€β€‹βˆ«0ρ1ak2(kβˆ’1)2ρkβˆ’2(aρk+1+1βˆ’bρkβˆ’abρ))2(a​(1+ρk)2+k2​ρkβˆ’1​(1βˆ’a​ρ)2)2​dρ.W(M_{t_{0},1})=2\pi\int^{\rho_{1}}_{0}\frac{ak^{2}(k-1)^{2}\rho^{k-2}\left(a\rho^{k+1}+1-b\rho^{k}-ab\rho)\right)^{2}}{\left(a(1+\rho^{k})^{2}+k^{2}\rho^{k-1}(1-a\rho)^{2}\right)^{2}}\mathrm{d}\rho.

Then (5.24) follows from the following Lemma.

Lemma 7.1.
  1. (1)

    When kβ†’+∞k\rightarrow+\infty, ρ1>eβˆ’3/k2\rho_{1}>e^{-3/k^{2}}; In particular

    limkβ†’βˆžΟ1=limkβ†’βˆž(ρ1)k=1.\lim_{k\rightarrow\infty}\rho_{1}=\lim_{k\rightarrow\infty}(\rho_{1})^{k}=1.
  2. (2)

    On [0,ρ1][0,\rho_{1}], L​(ρ)β‰₯ρ1βˆ’1​(ρ1βˆ’Ο).L(\rho)\geq\rho_{1}^{-1}(\rho_{1}-\rho). When kβ†’+∞k\rightarrow+\infty,

    (7.1) W​(Mt0,1)β‰₯2​π​k2​(kβˆ’1)2ρ12​I1,Β with ​I1=∫0ρ1a​ρkβˆ’1​(ρ1βˆ’Ο)2(2​a+k2​ρkβˆ’1)2​dρ.W(M_{t_{0},1})\geq\frac{2\pi k^{2}(k-1)^{2}}{\rho_{1}^{2}}I_{1},\hbox{ with }I_{1}=\int^{\rho_{1}}_{0}\frac{a\rho^{k-1}(\rho_{1}-\rho)^{2}}{\left(2a+k^{2}\rho^{k-1}\right)^{2}}\mathrm{d}\rho.
  3. (3)

    Set Ο†=ρ/ρ1\varphi=\rho/\rho_{1}. Then I1I_{1} is tending to

    I2=∫01a​φkβˆ’1​(1βˆ’Ο†)2(2​a+k2​φkβˆ’1)2​dΟ†I_{2}=\int^{1}_{0}\frac{a\varphi^{k-1}(1-\varphi)^{2}}{\left(2a+k^{2}\varphi^{k-1}\right)^{2}}\mathrm{d}\varphi

    when kβ†’+∞.k\rightarrow+\infty.

  4. (4)

    I2>19​R​(a,k)I_{2}>\frac{1}{9}R(a,k) with Ξ΄=(ak2)1kβˆ’1∈(0,1)\delta=(\frac{a}{k^{2}})^{\frac{1}{k-1}}\in(0,1) and

    R​(a,k)=1k2​(2kβˆ’1βˆ’2​δk+Ξ΄2k+1)+1k2​(βˆ’2​δkβˆ’2+Ξ΄2kβˆ’3)βˆ’ak4​(1kβˆ’1βˆ’2kβˆ’2+1kβˆ’3).R(a,k)=\frac{1}{k^{2}}\left(\frac{2}{k-1}-\frac{2\delta}{k}+\frac{\delta^{2}}{k+1}\right)+\frac{1}{k^{2}}\left(-\frac{2\delta}{k-2}+\frac{\delta^{2}}{k-3}\right)-\frac{a}{k^{4}}\left(\frac{1}{k-1}-\frac{2}{k-2}+\frac{1}{k-3}\right).

    Moreover, when kβ†’+∞k\rightarrow+\infty, R​(a,k)=2k2​(kβˆ’1)+o​(1k3).R(a,k)=\frac{2}{k^{2}(k-1)}+o\left(\frac{1}{k^{3}}\right).

  5. (5)

    When kk is large enough, W​(Mt0,1)>13​(kβˆ’1)​π.W(M_{t_{0},1})>\frac{1}{3}(k-1)\pi.

Proof.

(1). From 0<ρ1<10<\rho_{1}<1 and a​ρ1k+1+1βˆ’b​ρ1kβˆ’a​b​ρ1=0a\rho_{1}^{k+1}+1-b\rho_{1}^{k}-ab\rho_{1}=0, we have

(ρ1)k+1=1βˆ’a​b​ρ1b​ρ1βˆ’1βˆ’aβ‰₯1βˆ’a​bbβˆ’a=1+(1βˆ’b)​(1+a)bβˆ’a=1+1+abβˆ’a​2k+1.(\rho_{1})^{k+1}=\frac{1-ab\rho_{1}}{b\rho_{1}^{-1}-a}\geq\frac{1-ab}{b-a}=1+\frac{(1-b)(1+a)}{b-a}=1+\frac{1+a}{b-a}\frac{2}{k+1}.

From this, limkβ†’βˆžΟ1=limkβ†’βˆž(ρ1)k=1.\lim_{k\rightarrow\infty}\rho_{1}=\lim_{k\rightarrow\infty}(\rho_{1})^{k}=1.

(2). Since L′​(ρ)=a​(k+1)​ρkβˆ’b​k​ρkβˆ’1βˆ’a​b,L′′​(ρ)=a​k​(k+1)​ρkβˆ’1βˆ’b​k​(kβˆ’1)​ρkβˆ’2=a​k​(k+1)​ρkβˆ’2​(Οβˆ’1).L^{\prime}(\rho)=a(k+1)\rho^{k}-bk\rho^{k-1}-ab,\ \ L^{\prime\prime}(\rho)=ak(k+1)\rho^{k-1}-bk(k-1)\rho^{k-2}=ak(k+1)\rho^{k-2}(\rho-1). So on (0,ρ1)(0,\rho_{1}), L′′​(ρ)<0L^{\prime\prime}(\rho)<0, from which we have L​(ρ)β‰₯ρ1βˆ’1​(ρ1βˆ’Ο)L(\rho)\geq\rho_{1}^{-1}(\rho_{1}-\rho). And (7.1) follows from this and the fact that a​(1+ρk)2+k2​ρkβˆ’1​(1βˆ’a​ρ)2<2​a+k2​ρkβˆ’1a(1+\rho^{k})^{2}+k^{2}\rho^{k-1}(1-a\rho)^{2}<2a+k^{2}\rho^{k-1}.

(3). Since ρ=ρ1​φ\rho=\rho_{1}\varphi, we have

I1=ρ1k+1β€‹βˆ«01a​φkβˆ’1​(1βˆ’Ο†)2(2​a+k2​ρ1kβˆ’1​φkβˆ’1)2​dΟ†.I_{1}=\rho_{1}^{k+1}\int^{1}_{0}\frac{a\varphi^{k-1}(1-\varphi)^{2}}{\left(2a+k^{2}\rho_{1}^{k-1}\varphi^{k-1}\right)^{2}}\mathrm{d}\varphi.

Since limkβ†’+∞ρ1=limkβ†’+∞ρ1k+1=limkβ†’+∞ρ1kβˆ’1=1\lim_{k\rightarrow+\infty}\rho_{1}=\lim_{k\rightarrow+\infty}\rho_{1}^{k+1}=\lim_{k\rightarrow+\infty}\rho_{1}^{k-1}=1, we have

1<2​a+k2​φkβˆ’12​a+k2​ρ1kβˆ’1​φkβˆ’1<1ρ1kβˆ’1β†’11<\frac{2a+k^{2}\varphi^{k-1}}{2a+k^{2}\rho_{1}^{k-1}\varphi^{k-1}}<\frac{1}{\rho_{1}^{k-1}}\rightarrow 1

as kβ†’+∞k\rightarrow+\infty. (3) follows from this.

(4) First we have k2​δkβˆ’1=ak^{2}\delta^{k-1}=a. So

2​a+k2​φkβˆ’1<3​a,βˆ€Ο†βˆˆ(0,Ξ΄);2​a+k2​φkβˆ’1<3​k2​φkβˆ’1,βˆ€Ο†βˆˆ(Ξ΄,1).2a+k^{2}\varphi^{k-1}<3a,~{}~{}\forall\varphi\in(0,\delta);\ ~{}2a+k^{2}\varphi^{k-1}<3k^{2}\varphi^{k-1},~{}~{}\forall\varphi\in(\delta,1).

By substituting Ξ΄kβˆ’1=ak2\delta^{k-1}=\frac{a}{k^{2}}, we have

I2>∫0Ξ΄a​φkβˆ’1​(1βˆ’Ο†)29​a2​dΟ†+∫δ1a​φkβˆ’1​(1βˆ’Ο†)29​k4​φ2​(kβˆ’1)​dΟ†=Ξ΄kβˆ’19​a​(1kβˆ’1βˆ’2​δk+Ξ΄2k+1)+a​δ1βˆ’k9​k4​(1kβˆ’1βˆ’2​δkβˆ’2+Ξ΄2kβˆ’3)βˆ’a9​k4​(1kβˆ’1βˆ’2kβˆ’2+1kβˆ’3)=19​R​(a,k).\begin{split}I_{2}&>\int^{\delta}_{0}\frac{a\varphi^{k-1}(1-\varphi)^{2}}{9a^{2}}\mathrm{d}\varphi+\int^{1}_{\delta}\frac{a\varphi^{k-1}(1-\varphi)^{2}}{9k^{4}\varphi^{2(k-1)}}\mathrm{d}\varphi\\ &=\frac{\delta^{k-1}}{9a}\left(\frac{1}{k-1}-\frac{2\delta}{k}+\frac{\delta^{2}}{k+1}\right)+\frac{a\delta^{1-k}}{9k^{4}}\left(\frac{1}{k-1}-\frac{2\delta}{k-2}+\frac{\delta^{2}}{k-3}\right)\\ &~{}~{}-\frac{a}{9k^{4}}\left(\frac{1}{k-1}-\frac{2}{k-2}+\frac{1}{k-3}\right)\\ &=\frac{1}{9}R(a,k).\\ \end{split}

When kβ†’+∞k\rightarrow+\infty, Ξ΄=kβˆ’1βˆ’2kβˆ’1β†’0\delta=k^{-1-\frac{2}{k-1}}\rightarrow 0 and hence R​(a,k)=2k2​(kβˆ’1)+o​(1k3).R(a,k)=\frac{2}{k^{2}(k-1)}+o\left(\frac{1}{k^{3}}\right). This finishes (4).

(5) As a consequence, we have

W​(Mt0,1)β‰₯2​π​k2​(kβˆ’1)2ρ12​I1β‰₯(4βˆ’Ξ΅)​π9​(kβˆ’1),W(M_{t_{0},1})\geq\frac{2\pi k^{2}(k-1)^{2}}{\rho_{1}^{2}}I_{1}\geq\frac{(4-\varepsilon)\pi}{9}(k-1),

for some Ρ∈(0,1/2)\varepsilon\in(0,1/2) when kβ†’+∞k\rightarrow+\infty, which finishes (5). ∎

Reference

  • [1] Alexakis, S., Mazzeo, R. Renormalized area and properly embedded minimal surfaces in hyperbolic 3-manifolds, Comm. Math. Phys. 297 (2010), no. 3, 621-651.
  • [2] Alexakis, S., Mazzeo, R. Complete Willmore surfaces in ℍ3\mathbb{H}^{3} with bounded energy: boundary regularity and bubbling. J. Differential Geom. 101 (2015), no. 3, 369-422.
  • [3] Anderson, M., Complete Minimal Varieties in hyperbolic space. Invent. Math. 69. (1982), 477-494.
  • [4] Babich, M., Bobenko, A. Willmore tori with umbilic lines and minimal surfaces in hyperbolic space, Duke Math. J. 72 (1993), no.1, 151-185.
  • [5] Bernard, Y., RiviΓ¨re, T, Singularity removability at branch points for Willmore surfaces, Pacific J. Math., Vol. 265, No. 2, 2013.
  • [6] Barbosa J L. On minimal immersions of S2S^{2} into S2​mS^{2m}, Trans. Amer. Math. Soc., 1975, 210, 75-106.
  • [7] Bobenko, A, Heller, S., Schmitt, N. Minimal n-Noids in Hyperbolic and Anti-de Sitter 3-Space, Proceedings of The Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 475, no. 2227, 2019, p. 20190173.
  • [8] Brander, D., Wang, P. On the BjΓΆrling problem for Willmore surfaces, J. Diff. Geom., 108 (2018), 3, 411-457.
  • [9] Bryant, R. A duality theorem for Willmore surfaces, J. Diff.Geom. 20 (1984), 23-53.
  • [10] Burstall, F., Ferus, D., Leschke, K., Pedit, F., Pinkall, U. Conformal geometry of surfaces in S4S^{4} and quaternions, Lecture Notes in Mathematics 1772. Springer, Berlin, 2002.
  • [11] Burstall, F., Pedit, F., Pinkall, U. Schwarzian derivatives and flows of surfaces, Contemporary Mathematics 308, 39-61, Providence, RI: Amer. Math. Soc., 2002.
  • [12] Burstall, F., Quintino, A. Dressing transformations of constrained Willmore surfaces, Commun. Anal. Geom. 22, 469-518 (2014).
  • [13] Calabi, E. Minimal immersions of surfaces in Euclidean spheres, J. Diff.Geom. 1(1967), 111-125.
  • [14] Coskunuzer, B. Minimal planes in hyperbolic space. Comm. Anal. Geom. 12(4), 821-836 (2004).
  • [15] Coskunuzer, B. Generic uniqueness of least area planes in hyperbolic space. Geom. & Top. 10, 401-412 (2006).
  • [16] Dorfmeister, J. F., Inoguchi, J., Kobayashi, S.Constant mean curvature surfaces in hyperbolic 3-space via loop groups, J. Reine Angew. Math., 686(2014), 1-36.
  • [17] Dorfmeister, J., Pedit, F., Wu, H., Weierstrass type representation of harmonic maps into symmetric spaces, Comm. Anal. Geom. 6 (1998), 633-668.
  • [18] Dorfmeister, J., Wang, P. Weierstrass-Kenmotsu representation of Willmore surfaces in spheres, Nagoya Mathematical Journal, to appear. doi:10.1017/nmj.2020.6.
  • [19] Dorfmeister, J., Wang, P. Willmore surfaces in spheres: the DPW approach via the conformal Gauss map. Abh. Math. Semin. Univ. Hambg. 89 (2019), no. 1, 77-103.
  • [20] Dorfmeister, J., Wang, P. On symmetric Willmore surfaces in spheres II: the orientation reversing case, Differential Geom. Appl. 69 (2020), 101606.
  • [21] Dorfmeister, J., Wang, P. Classification of homogeneous Willmore surfaces in SnS^{n}, Osaka. J. Math.,Vol. 57 No.4(2020).
  • [22] Dorfmeister, J., Wang, P., Classification of equivariant Willmore ℝ​P2\mathbb{R}P^{2} in S4S^{4}, in preparation.
  • [23] Drukker, N., Gross, D., Ooguri, H., Wilson Loops and Minimal Surfaces. Phys. Rev. D (3) 60(12), 125006 (1999).
  • [24] Guest, M.A., Ohnita, Y. Group actions and deformations for harmonic maps , Journal of the Mathematical Society of Japan, 1993, 45(4): 671-704.
  • [25] Ejiri, N. The index of minimal immersions of S2S^{2} into S2​nS^{2n}. Math. Z. 184(1) (1983) 127-132.
  • [26] Ejiri N., Equivariant minimal immersions of S2S^{2} into S2​m​(1)S^{2m}(1), Trans. Amer. Math. Soc., 1986, 297(1): 105-124.
  • [27] Ejiri, N. Willmore surfaces with a duality in Sn​(1)S^{n}(1), Proc. London Math. Soc. (3), 1988, 57(2), 383-416.
  • [28] HΓ©lein, F. Willmore immersions and loop groups, J. Differ. Geom., 50, 1998, 331-385.
  • [29] Ishihara T. Harmonic maps of nonorientable surfaces to four-dimensional manifolds, Tohoku Math. J., 1993, 45(1): 1-12.
  • [30] Kuwert, E., SchΓ€tzle, R. Removability of point singularities of Willmore surfaces, Ann. of Math. (2) 160 (2004), 315-357.
  • [31] Kuwert, E., SchΓ€tzle, R. The Willmore functional, Topics in modern regularity theory, 1-115, CRM Series, 13, Ed. Norm., Pisa, (2012).
  • [32] Lamm, T., Nguyen, H. T. Branched Willmore spheres, J. Reine Angew. Math. 701 (2015), 169-194.
  • [33] Lawson, H. B. Jr. Complete minimal surfaces in S3S^{3}, Ann. of Math. (2) 92 1970 335Β¨C374.
  • [34] Leschke, K.; Moriya, K. Simple factor dressing and the LΓ³pez-Ros deformation of minimal surfaces in Euclidean 3-space, Math. Z. 291 (2019), no. 3-4, 1015-1058.
  • [35] Li, H.Z. Willmore surfaces in SnS^{n}, Ann. Global Anal. Geom. 21 (2002), no. 2, 203-213.
  • [36] Lin, F.H. On the Dirichlet problem for the minimal graphs in hyperbolic space, Invent. Math. 96, 593-612 (1989).
  • [37] LΓ³pez, F.J., Ros, A. On embedded complete minimal surfaces of genus zero, J. Differ. Geom. 33(1), 293-300 (1991).
  • [38] Ma, X. Willmore surfaces in SnS^{n}: transforms and vanishing theorems, dissertation, Technischen UniversitΓ€t Berlin, 2005.
  • [39] Ma, X., Pedit, F., Wang, P. MΓΆbius homogeneous Willmore 2-spheres, Bull. Lond. Math. Soc. 50 (2018), no. 3, 509-512.
  • [40] Maldacena, J, Wilson loops in Large N field theories, Phys. Rev. Lett. 80, 4859 (1998).
  • [41] Marques, F., Neves, A. Min-Max theory and the Willmore conjecture, Ann. of Math. 179 (2014), no. 2, 683-782.
  • [42] Michelat, A., RiviΓ¨re, T. The Classification of Branched Willmore Spheres in the 3-Sphere and the 4-Sphere, arXiv:1706.01405.
  • [43] Montiel, S. Willmore two spheres in the four-sphere, Trans. Amer.Math. Soc. 2000, 352(10), 4469-4486.
  • [44] Musso, E. Willmore surfaces in the four-sphere, Ann. Global Anal. Geom. Vol 8, No.1(1990), 21-41.
  • [45] Ndiaye, C. M., SchΓ€tzle, R. Explicit conformally constrained Willmore minimizers in arbitrary codimension, Calc. Var. Partial Differential Equations 51 (2014), no. 1-2, 291-314.
  • [46] RiviΓ¨re, T. Analysis aspects of Willmore surfaces, Invent. Math. 174 (2008), no. 1, 1-45.
  • [47] SchΓ€tzle, R.The Willmore boundary problem, Cal. Var. PDE, (2010), 37, pp. 275-302.
  • [48] Simons, J. Minimal varieties in Riemannian manifolds. Ann. of Math. (2) 88 1968 62-105.
  • [49] Terng, C., Uhlenbeck, K. BΓ€acklund transformations and loop group actions. Commun. Pure Appl. Math., Vol. 53, No.1, 1-75 (2000).
  • [50] Uhlenbeck, K. Harmonic maps into Lie groups (classical solutions of the chiral model), J. Diff. Geom. 30 (1989), 1-50.
  • [51] Urbano, F.Minimal surfaces with low index in the three-dimensional sphere, Proc. Amer. Math. Soc. 108 (1990), no. 4, 989-992.
  • [52] Wang, C.P. Moebius geometry of submanifolds in π•Šn+2\mathbb{S}^{n+2}. Manuscripta Mathematica,Β 1998,Β 96(4):Β 517-534.
  • [53] Wang, P. Willmore surfaces in spheres via loop groups III: on minimal surfaces in space forms, Tohoku Math. J. (2) 69 (2017), no. 1, 141-160.
  • [54] Wang, P., A Weierstrass type representation of isotropic Willmore surfaces in π•Š4\mathbb{S}^{4}, in preparation.
  • [55] Weiner, J. On a Problem of Chen, Willmore, et al. Indiana Univ. Math. J. 27 No. 1 (1978), 19-35.
  • [56] Xia, Q.L., Shen, Y.B. Weierstrass Type Representation of Willmore Surfaces in π•Šn+2\mathbb{S}^{n+2}. Acta Math. Sinica, Vol. 20, No. 6, 1029-1046.