This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Where are the hidden-charm hexaquarks?

Zhe Liu1,2 [email protected]    Hong-Tao An1,2 [email protected]    Zhan-Wei Liu1,2,3 [email protected]    Xiang Liu1,2,3 [email protected] 1School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China
2Research Center for Hadron and CSR Physics, Lanzhou University and Institute of Modern Physics of CAS, Lanzhou 730000, China
3Lanzhou Center for Theoretical Physics, Key Laboratory of Theoretical Physics of Gansu Province, and Frontiers Science Center for Rare Isotopes, Lanzhou University, Lanzhou 730000, China
Abstract

In this work, we carry out the study of hidden-charm hexaquark states with the typical configurations qqcq¯q¯c¯qqc\bar{q}\bar{q}\bar{c} (q=u,d,sq=u,d,s). The mass spectra of hidden-charm hexaquark states are obtained within the chromo-magnetic interaction model. In addition to the mass spectra analysis, we further illustrate their two-body strong decay behaviors. There exist some compact bound states which cannot decay through the strong interaction. Hopefully our results will help to search for such types of the exotic states in the future experiments.

I Introduction

With the improvement of the luminosity and precision in experiment, more and more charmonium-like XYZXYZ states and PcP_{c} states have been observed Choi:2003ue ; Acosta:2003zx ; Abazov:2004kp ; Aaij:2014jqa ; Ablikim:2016qzw ; Ablikim:2017oaf ; Ablikim:2020hsk ; BESIII:2016adj ; Aaij:2015tga ; Aaij:2016phn ; Aaij:2019vzc . The present situation of hadronic states is far beyond the conventional quark model. The first doubly charm tetraquark Tcc+T_{\rm cc}^{+} with the configuration ccu¯d¯cc\bar{u}\bar{d} was observed by the LHCb Collaboration Franz:2021talk , and this newly discovered particle is explicitly an exotic state which cannot be classified into the conventional mesons.

The hexaquark states were proposed and the spectra of light-flavored hexaquarks were dynamically investigated very early after the birth of quark model. The d(2380)d^{*}(2380) resonance with I(JP)=0(3+)I(J^{P})=0(3^{+}) has been reported by CELSIUS/WASA and WASA-at-COSY Collaborations Faldt:2011zv ; Adlarson:2011bh ; Adlarson:2012fe , and it is expected to be a dibaryon which contains 6 constituent quarks. The deuteron is also a dibaryon. Jaffe firstly found the HH particle whose hyperfine interaction is much larger than that for two separated Λ\Lambda baryons within the chromo-magnetic interaction model Jaffe:1976yi , and this dibaryon uuddssuuddss was also studied within other framework Mackenzie:1985vv ; Aerts:1984vv ; Balachandran:1983dj ; Straub:1988mz ; Paganis:1999ux ; Yost:1985mj ; Rosner:1985yh ; Karl:1987cg . Moreover, the heavy dibaryons (qqqqqQqqqqqQ) Oka:2013iua ; Gerasyuta:2011yg ; Oka:2019mrd ; Liu:2012zzo ; Pepin:1998ih , doubly-heavy dibaryons (qqqqQQqqqqQQ) Liu:2012zzo ; Vijande:2016nzk ; Wang:2017sto ; Meng:2017fwb ; Meguro:2011nr ; Li:2012bt ; Leandri:1995zm , triply-heavy dibaryons (qqqQQQqqqQQQ) Wang:2020jqu ; Chen:2018pzd ; Richard:2020zxb , the other fully light dibaryons (qqqqqqqqqqqq) Zhang:1997ny ; Gerasyuta:2010hn ; SilvestreBrac:1992yg ; Park:2015nha ; Oka:1988yq ; Chen:2019vdh , and even fully heavy dibaryons (QQQQQQQQQQQQ) Huang:2020bmb were also proposed and discussed.

The hadronic states composed of three quarks and three antiquarks are another class of heaxquarks. The hidden-charm and hidden-bottom hexaquarks are especially focused on since they have much larger masses and thus are more easily distinguished from the ordinary mesons. With the hidden-charm tetraquark and pentaquark states observed in experiment, the discovery of hidden-charm hexaquarks would also come true in future.

Very recently, BESIII collaboration measured the cross section of the process e+eπ+πψ(3686)e^{+}e^{-}\rightarrow\pi^{+}\pi^{-}\psi(3686) and further confirms the existence of three charmonium-like states wherein Y(4660)Y(4660) is closed to the threshold of Λc\Lambda_{c}-Λ¯c\bar{\Lambda}_{c} systems BESIII:2021njb . Before this, the structure Y(4660)Y(4660) has been observed in the process of e+eγISRπ+πψ(3686)e^{+}e^{-}\rightarrow\gamma_{\text{ISR}}\pi^{+}\pi^{-}\psi(3686) in the Belle and BarBar experiments Belle:2007umv ; Belle:2014wyt ; BaBar:2012hpr . Y(4660)Y(4660) was interpreted as a higher charmonium in Ref. Wang:2020prx and a hexaquark state configured by the triquark-antitriquark clusters in Ref. Qiao:2007ce . The charmonium states can very likely be bound inside light hadronic matters, and such hadro-charmonium may explain the properties of the Y(4660)Y(4660) peak Dubynskiy:2008mq . G. Cotugno et al. suggested that the two observations of Y(4660)Y(4660) and Y(4630)Y(4630) are likely to be due to the same state constituted by four quarks in Ref. Cotugno:2009ys .

The Λc\Lambda_{c}-Λ¯c\bar{\Lambda}_{c} structure was introduced to explain the production and decays of Y(4260)Y(4260) in Refs. Qiao:2007ce ; Qiao:2005av ; Chen:2011cta . Y(4630)Y(4630) was observed in process e+eΛcΛ¯ce^{+}e^{-}\rightarrow\Lambda_{c}\bar{\Lambda}_{c} in the Belle experiments Belle:2008xmh and is considered as a candidate of ΛcΛ¯c\Lambda_{c}\bar{\Lambda}_{c} bound state Lee:2011rka . Especially, heavy baryon chiral perturbation theory was applied to systemically study the Λc\Lambda_{c}-Λ¯c\bar{\Lambda}_{c}, Σc\Sigma_{c}-Σ¯c\bar{\Sigma}_{c}, and Λb\Lambda_{b}-Λ¯b\bar{\Lambda}_{b} systems Chen:2013sba , and the results suggest that Y(4260)Y(4260) and Y(4360)Y(4360) could be Λc\Lambda_{c}-Λ¯c\bar{\Lambda}_{c} baryonia. The two states are also suggested to be a mixture, with mixing close to maximal, of two states of hadrochamonium Li:2013ssa .

The masses of baryonia with the open and hidden charm, bottomness and strangeness are studied in the framework of dispersion relation technique in Refs. Gerasyuta:2013esc ; Gerasyuta:2020gyy ; Gerasyuta:2020fii . The heavy baryon-antibaryon molecule states are investigated within the effective field theory Lu:2017dvm . The hidden-charm and hidden-bottom hexaquark states were discussed within the QCD sum rules Wan:2019ake ; Chen:2016ymy .

These work stimulate us to further study the hidden-charm hexaquark states. In this work we systemically investigate their mass spectra, stability, and two-body decay within the chromo-magnetic interaction (CMI) model.

The simple chromo-magnetic interaction arises from the one-gluon-exchange potential and further causes the mass splittings DeRujula:1975qlm ; Liu:2019zoy . The CMI model has been successfully adopted to study the mass spectra and stability of multiquark states Luo:2017eub ; Wu:2016gas ; Wu:2018xdi ; Chen:2016ont ; Wu:2016vtq ; Liu:2016ogz ; Wu:2017weo ; Zhou:2018pcv ; Li:2018vhp ; An:2019idk ; Cheng:2020irt ; Cheng:2019obk ; Hogaasen:2013nca ; Weng:2018mmf ; Weng:2019ynva ; Weng:2020jao ; Cheng:2020nho ; An:2020jix ; Karliner:2016zzc ; Weng:2021hje ; Zhao:2014qva . The method can catch the basic features of hadron spectra, since the mass splittings between hadrons reflect the basic symmetries of their inner structures.

This paper is organized as follows. In Sec. II, the adopted CMI model and relevant parameters are introduced. We construct the flavor \otimes color \otimes spin wavefunctions for the SS-wave hidden-charm hexaquark system in Sec. III, and study the mass spectrum and the two-body decays through the strong interaction in Sec. IV. A short summary follows in Sec. V.

II THE Hamiltonian in the CMI model

In the CMI model, the Hamiltonian has a simple form

H\displaystyle H =\displaystyle= i6mi+HCMI,\displaystyle\sum_{i}^{6}m_{i}+H_{\rm CMI},
HCMI\displaystyle H_{\rm CMI} =\displaystyle= i<jCij𝝀i𝝀j𝝈i𝝈j,\displaystyle-\sum_{i<j}C_{ij}\bm{\lambda}_{i}\cdot\bm{\lambda}_{j}\bm{\sigma}_{i}\cdot\bm{\sigma}_{j}, (1)

where mim_{i} is the effective mass of the ii-th constituent (anti) quark, and 𝝀i\bm{\lambda}_{i} and 𝝈i\bm{\sigma}_{i} are Gell-Mann and Pauli matrices, respectively. For the antiquark, 𝝀q¯=𝝀q\bm{\lambda}_{\bar{q}}=-\bm{\lambda}_{q}^{*} and 𝝈q¯=𝝈q\bm{\sigma}_{\bar{q}}=\bm{\sigma}_{q}^{*}. The dynamical effect of spatial wavefunctions plays an important role in the study of hadron spectrum. Chromomagnetic interaction is nonrelativistic in the Schro¨\rm\ddot{o}dinger equation in Ref. Godfrey:1985xj wherein the authors used the spatial wave functions with harmonic-oscillator expansion. The CijC_{ij} is effective coupling constant between the ii-th (anti) quark and jj-th (anti) quark

Cij=παs(r)δ3(𝒓)6mimj,C_{ij}=\frac{\pi\Braket{\alpha_{s}(r)\delta^{3}(\bm{r})}}{6m_{i}m_{j}}, (2)

which is directly related to the spatial wavefunctions and the constituent quark masses. We focus on ground states in SS-wave, and we simply suppose it does not change for various hexaquark systems.

Høgaasen et al. found out that the bb quark mass in bottomonium is much lighter than the one in the heavy-light system, and introduced the color interaction (the spin-independent color Coulomb-like terms in the one-gluon-exchange interactions) in Refs. Hogaasen:2013nca ; Karliner:2016zzc ; Weng:2018mmf . We also introduce a color term into our model Refs. Hogaasen:2013nca ; Weng:2018mmf

HC=i<jAij𝝀i𝝀j.H_{\text{C}}=-\sum_{i<j}A_{ij}\bm{\lambda}_{i}\cdot\bm{\lambda}_{j}. (3)

The nonvanishing color interaction coefficient AijA_{ij} implies a change of the effective masses. We can rewrite the CMI Hamiltonian as Ref. Weng:2018mmf

H=34i<jmij𝝀i𝝀ji<jvij𝝀i𝝀j𝝈i𝝈j,\displaystyle H=-\frac{3}{4}\sum_{i<j}m_{ij}\bm{\lambda}_{i}\cdot\bm{\lambda}_{j}-\sum_{i<j}v_{ij}\bm{\lambda}_{i}\cdot\bm{\lambda}_{j}\bm{\sigma}_{i}\cdot\bm{\sigma}_{j}, (4)

where

mij=14(mi+mj)+43Aij.\displaystyle m_{ij}=\frac{1}{4}\left(m_{i}+m_{j}\right)+\frac{4}{3}A_{ij}. (5)

To estimate the mass spectra of the hidden-charm hexaquark states, we extract the effective coupling parameters mijm_{ij} and vijv_{ij} from the conventional hadron masses Weng:2018mmf . In the present work, vqq¯v_{q\bar{q}} and mqq¯m_{q\bar{q}} are only determined by vector mesons (q=n,sq=n,s and n=u,dn=u,d). We present the obtained effective coupling parameters in Table 1.

Table 1: The effective coupling parameters in units of MeV.
mnnm_{nn} mnsm_{ns} mssm_{ss} mncm_{nc} mnn¯m_{n\bar{n}} mns¯m_{n\bar{s}} mss¯m_{s\bar{s}} mnc¯m_{n\bar{c}} mcc¯m_{c\bar{c}}
182.2 226.7 262.3 520.0 166.49 204.2 241.1 493.3 767.1
vnnv_{nn} vnsv_{ns} vssv_{ss} vncv_{nc} vnn¯v_{n\bar{n}} vns¯v_{n\bar{s}} vss¯v_{s\bar{s}} vnc¯v_{n\bar{c}} vcc¯v_{c\bar{c}}
19.1 13.3 12.2 3.9 20.5 14.2 10.3 6.6 5.3

III The wavefunctions

In order to calculate the CMI Hamiltonian, we need to exhaust all the possible spin and color wavefunctions of hexaquark states and combine them with the corresponding flavor wavefunctions. The constructed flavor-color-spin wavefunctions should be fully antisymmetric when exchanging identical quarks because of Pauli principle. The wavefunctions do not change with different sets of basis, and we use the |[(q1q2)c][(q¯3q¯4)c¯]|[(q_{1}q_{2})c][(\bar{q}_{3}\bar{q}_{4})\bar{c}]\rangle basis to construct the hidden-charm hexaquarks wavefunctions.

Firstly, we discuss the flavor wavefunctions. The mass hierarchy for cc, ss and udud quarks is obvious and we neglect the mixing effect among the cc¯c\bar{c}, ss¯s\bar{s}, and nn¯n\bar{n} pairs. Based on these, we list all the possible flavor combinations for the hidden-charm hexaquark system in Table 2.

In Table 2, the three subsystems of the first line are pure neutral particles and CC parity is “good” quantum number. For the six subsystems of the second line, every subsystem has a charge conjugation anti-partner, thus they have the same mass spectra, and we only need to discuss one of two relevant subsystems. In the first line of Table 2, nncn¯n¯c¯nnc\bar{n}\bar{n}\bar{c} has isospin I=(2,1,0)I=(2,1,0) and nscn¯s¯c¯nsc\bar{n}\bar{s}\bar{c} has isospin I=(1,0)I=(1,0). In the second line, the isospin II can be (3/2,1/2)(3/2,1/2) for nscn¯n¯c¯nsc\bar{n}\bar{n}\bar{c}, (1,0)(1,0) for nncs¯s¯c¯nnc\bar{s}\bar{s}\bar{c}, and 1/2 for nscs¯s¯c¯nsc\bar{s}\bar{s}\bar{c}.

Table 2: All possible flavor combinations for the hidden-charm hexaquark system.
System Flavor combinations
qqcq¯q¯c¯qqc\bar{q}\bar{q}\bar{c} nncn¯n¯c¯nnc\bar{n}\bar{n}\bar{c} sscs¯s¯c¯ssc\bar{s}\bar{s}\bar{c} nscn¯s¯c¯nsc\bar{n}\bar{s}\bar{c}
nscn¯n¯c¯nsc\bar{n}\bar{n}\bar{c} (nncn¯s¯c¯nnc\bar{n}\bar{s}\bar{c}) nncs¯s¯c¯nnc\bar{s}\bar{s}\bar{c} (sscn¯n¯c¯ssc\bar{n}\bar{n}\bar{c}) nscs¯s¯c¯nsc\bar{s}\bar{s}\bar{c} (sscn¯s¯c¯ssc\bar{n}\bar{s}\bar{c})

Next, we briefly introduce the color wavefunctions for all hexaquark systems. They can be deduced from the following direct product:

([3][3][3])([3¯][3¯][3¯])=([1A][8MA][8MS][10S])([1A][8MA][8MS][10¯S])([1A][1A])([8MA][8MA])([8MS][8MA])([8MA][8MS])([8MS][8MS])([10S][10¯S]),\begin{split}&([3]\otimes[3]\otimes[3])\otimes([\bar{3}]\otimes[\bar{3}]\otimes[\bar{3}])\\ =&([1_{\rm A}]\oplus[8_{\rm MA}]\oplus[8_{\rm MS}]\oplus[10_{\rm S}])\otimes([1_{\rm A}]\oplus[8_{\rm MA}]\oplus[8_{\rm MS}]\oplus[\bar{10}_{S}])\\ \rightarrow&([1_{\rm A}]\otimes[1_{\rm A}])\oplus([8_{\rm MA}]\otimes[8_{\rm MA}])\oplus([8_{\rm MS}]\otimes[8_{\rm MA}])\oplus\\ &([8_{\rm MA}]\otimes[8_{\rm MS}])\oplus([8_{\rm MS}]\otimes[8_{\rm MS}])\oplus([10_{\rm S}]\otimes[\bar{10}_{\rm S}]),\end{split}

(6)

where A (S) means totally symmetric (antisymmetric), and MS (MA) means that q1q2q_{1}q_{2} or q¯3q¯4\bar{q}_{3}\bar{q}_{4} is symmetric (antisymmetric). Here, the color-singlet wavefunctions for the hexaquarks are shown in Table 3. In the notation |[(q1q2)color1c]color3[(q¯3q¯4)color2c¯]color4|[(q_{1}q_{2})^{\rm color1}c]^{\rm color3}[(\bar{q}_{3}\bar{q}_{4})^{\rm color2}\bar{c}]^{\rm color4}\rangle, the color1, color2, color3, and color4 stand for the color representations of q1q2q_{1}q_{2}, q¯3q¯4\bar{q}_{3}\bar{q}_{4}, q1q2cq_{1}q_{2}c, and q¯3q¯4c¯\bar{q}_{3}\bar{q}_{4}\bar{c}, respectively.

Table 3: All possible color and spin wavefunctions for the hidden-charm hexaquark system.

Color wavefunctions ϕ1AA=|[(q1q2)3¯c]1[(q¯3q¯4)3c¯]1\phi_{1}^{\rm AA}=|[(q_{1}q_{2})^{\bar{3}}c]^{1}[(\bar{q}_{3}\bar{q}_{4})^{3}\bar{c}]^{1}\rangle ϕ2MAMA=|[(q1q2)3¯c]8[(q¯3q¯4)3c¯]8\phi_{2}^{\rm MAMA}=|[(q_{1}q_{2})^{\bar{3}}c]^{8}[(\bar{q}_{3}\bar{q}_{4})^{3}\bar{c}]^{8}\rangle ϕ3MSMA=|[(q1q2)6c]8[(q¯3q¯4)3c¯]8\phi_{3}^{\rm MSMA}=|[(q_{1}q_{2})^{6}c]^{8}[(\bar{q}_{3}\bar{q}_{4})^{3}\bar{c}]^{8}\rangle ϕ4MAMS=|[(q1q2)3¯c]8[(q¯3q¯4)6¯c¯]8\phi_{4}^{\rm MAMS}=|[(q_{1}q_{2})^{\bar{3}}c]^{8}[(\bar{q}_{3}\bar{q}_{4})^{\bar{6}}\bar{c}]^{8}\rangle ϕ5MSMS=|[(q1q2)6c]8[(q¯3q¯4)6¯c¯]8\phi_{5}^{\rm MSMS}=|[(q_{1}q_{2})^{6}c]^{8}[(\bar{q}_{3}\bar{q}_{4})^{\bar{6}}\bar{c}]^{8}\rangle ϕ6SS=|[(q1q2)6c]10[(q¯3q¯4)6¯c¯]10¯\phi_{6}^{\rm SS}=|[(q_{1}q_{2})^{6}c]^{10}[(\bar{q}_{3}\bar{q}_{4})^{\bar{6}}\bar{c}]^{\bar{10}}\rangle Spin wavefunctions Spin=0: χ1MSMS=|[(q1q2)1c]12[(q¯3q¯4)1c¯]120\chi_{1}^{\rm MSMS}=|[(q_{1}q_{2})_{1}c]_{\frac{1}{2}}[(\bar{q}_{3}\bar{q}_{4})_{1}\bar{c}]_{\frac{1}{2}}\rangle_{0} χ2SS=|[(q1q2)1c]32[(q¯3q¯4)1c¯]320\chi_{2}^{\rm SS}=|[(q_{1}q_{2})_{1}c]_{\frac{3}{2}}[(\bar{q}_{3}\bar{q}_{4})_{1}\bar{c}]_{\frac{3}{2}}\rangle_{0} χ3MSA=|[(q1q2)1c]12[(q¯3q¯4)0c¯]120\chi_{3}^{\rm MSA}=|[(q_{1}q_{2})_{1}c]_{\frac{1}{2}}[(\bar{q}_{3}\bar{q}_{4})_{0}\bar{c}]_{\frac{1}{2}}\rangle_{0} χ4AMS=|[(q1q2)0c]12[(q¯3q¯4)1c¯]120\chi_{4}^{\rm AMS}=|[(q_{1}q_{2})_{0}c]_{\frac{1}{2}}[(\bar{q}_{3}\bar{q}_{4})_{1}\bar{c}]_{\frac{1}{2}}\rangle_{0} χ5AA=|[(q1q2)0c]12[(q¯3q¯4)0c¯]120\chi_{5}^{\rm AA}=|[(q_{1}q_{2})_{0}c]_{\frac{1}{2}}[(\bar{q}_{3}\bar{q}_{4})_{0}\bar{c}]_{\frac{1}{2}}\rangle_{0} Spin=1: χ6MSMS=|[(q1q2)1c]12[(q¯3q¯4)1c¯]121\chi_{6}^{\rm MSMS}=|[(q_{1}q_{2})_{1}c]_{\frac{1}{2}}[(\bar{q}_{3}\bar{q}_{4})_{1}\bar{c}]_{\frac{1}{2}}\rangle_{1} χ7SS=|[(q1q2)1c]32[(q¯3q¯4)1c¯]321\chi_{7}^{\rm SS}=|[(q_{1}q_{2})_{1}c]_{\frac{3}{2}}[(\bar{q}_{3}\bar{q}_{4})_{1}\bar{c}]_{\frac{3}{2}}\rangle_{1} χ8MSS=|[(q1q2)1c]32[(q¯3q¯4)1c¯]121\chi_{8}^{\rm MSS}=|[(q_{1}q_{2})_{1}c]_{\frac{3}{2}}[(\bar{q}_{3}\bar{q}_{4})_{1}\bar{c}]_{\frac{1}{2}}\rangle_{1} χ9SMS=|[(q1q2)1c]12[(q¯3q¯4)1c¯]321\chi_{9}^{\rm SMS}=|[(q_{1}q_{2})_{1}c]_{\frac{1}{2}}[(\bar{q}_{3}\bar{q}_{4})_{1}\bar{c}]_{\frac{3}{2}}\rangle_{1} χ10MSA=|[(q1q2)1c]12[(q¯3q¯4)0c¯]121\chi_{10}^{\rm MSA}=|[(q_{1}q_{2})_{1}c]_{\frac{1}{2}}[(\bar{q}_{3}\bar{q}_{4})_{0}\bar{c}]_{\frac{1}{2}}\rangle_{1} χ11SA=|[(q1q2)1c]32[(q¯3q¯4)0c¯]121\chi_{11}^{\rm SA}=|[(q_{1}q_{2})_{1}c]_{\frac{3}{2}}[(\bar{q}_{3}\bar{q}_{4})_{0}\bar{c}]_{\frac{1}{2}}\rangle_{1} χ12AMS=|[(q1q2)0c]12[(q¯3q¯4)1c¯]121\chi_{12}^{\rm AMS}=|[(q_{1}q_{2})_{0}c]_{\frac{1}{2}}[(\bar{q}_{3}\bar{q}_{4})_{1}\bar{c}]_{\frac{1}{2}}\rangle_{1} χ13AS=|[(q1q2)0c]12[(q¯3q¯4)1c¯]321\chi_{13}^{\rm AS}=|[(q_{1}q_{2})_{0}c]_{\frac{1}{2}}[(\bar{q}_{3}\bar{q}_{4})_{1}\bar{c}]_{\frac{3}{2}}\rangle_{1} χ14AA=|[(q1q2)0c]12[(q¯3q¯4)0c¯]121\chi_{14}^{\rm AA}=|[(q_{1}q_{2})_{0}c]_{\frac{1}{2}}[(\bar{q}_{3}\bar{q}_{4})_{0}\bar{c}]_{\frac{1}{2}}\rangle_{1} Spin=2: χ15SS=|[(q1q2)1c]32[(q¯3q¯4)1c¯]322\chi_{15}^{\rm SS}=|[(q_{1}q_{2})_{1}c]_{\frac{3}{2}}[(\bar{q}_{3}\bar{q}_{4})_{1}\bar{c}]_{\frac{3}{2}}\rangle_{2} χ16SMS=|[(q1q2)1c]32[(q¯3q¯4)1c¯]122\chi_{16}^{\rm SMS}=|[(q_{1}q_{2})_{1}c]_{\frac{3}{2}}[(\bar{q}_{3}\bar{q}_{4})_{1}\bar{c}]_{\frac{1}{2}}\rangle_{2} χ17MSS=|[(q1q2)1c]12[(q¯3q¯4)1c¯]322\chi_{17}^{\rm MSS}=|[(q_{1}q_{2})_{1}c]_{\frac{1}{2}}[(\bar{q}_{3}\bar{q}_{4})_{1}\bar{c}]_{\frac{3}{2}}\rangle_{2} χ18SA=|[(q1q2)1c]32[(q¯3q¯4)0c¯]122\chi_{18}^{\rm SA}=|[(q_{1}q_{2})_{1}c]_{\frac{3}{2}}[(\bar{q}_{3}\bar{q}_{4})_{0}\bar{c}]_{\frac{1}{2}}\rangle_{2} χ19AS=|[(q1q2)0c]12[(q¯3q¯4)1c¯]322\chi_{19}^{\rm AS}=|[(q_{1}q_{2})_{0}c]_{\frac{1}{2}}[(\bar{q}_{3}\bar{q}_{4})_{1}\bar{c}]_{\frac{3}{2}}\rangle_{2} Spin=3: χ20SS=|[(q1q2)1c]32[(q¯3q¯4)1c¯]323\chi_{20}^{\rm SS}=|[(q_{1}q_{2})_{1}c]_{\frac{3}{2}}[(\bar{q}_{3}\bar{q}_{4})_{1}\bar{c}]_{\frac{3}{2}}\rangle_{3}

Lastly, the spin wavefunctions for the hidden-charm hexaquark states are also shown in Table 3. In the notation |[(q1q2)spin1c]spin3[(q¯3q¯4)spin2c¯]spin4spin5|[(q_{1}q_{2})_{\rm spin1}c]_{\rm spin3}[(\bar{q}_{3}\bar{q}_{4})_{\rm spin2}\bar{c}]_{\rm spin4}\rangle_{\rm spin5}, the spin1, spin2, spin3, spin4, and spin5 represent the spins of q1q2q_{1}q_{2}, q¯3q¯4\bar{q}_{3}\bar{q}_{4}, q1q2cq_{1}q_{2}c, q¯3q¯4c¯\bar{q}_{3}\bar{q}_{4}\bar{c}, and the total spin, respectively.

Considering the Pauli principle, we obtain 54 types of total wavefunctions and present them in the first part of Table 4. Some wavefunctions are the eigenstates of CC parity like [ϕSSχSS][\phi^{\rm SS}\otimes\chi^{\rm SS}], but others are not. For the neutral states, we need do linear superposition to construct eigen wavefunctions of CC parity, and present them in the second part of Table 4. We introduce notations δ12A\delta_{12}^{A}, δ12S\delta_{12}^{S}, δ34A\delta_{34}^{A}, and δ34S\delta_{34}^{S}. When the two light quarks or antiquarks are antisymmetric (symmetric) in the flavor space, δ12A=0\delta_{12}^{A}=0 (δ12S=0\delta_{12}^{S}=0), or else δ12A=1\delta_{12}^{A}=1 (δ12S=1\delta_{12}^{S}=1). The hidden-charm hexaquark states can be categorized into 6 classes, and we present them in third part of Table 4.

Table 4: All possible types of total wavefunctions and different classes of the hidden-charm hexaquark system

All possible types of total wavefunctions for hexaquark system without CC parity [ϕAAχSS]δ12Aδ34A[\phi^{\rm AA}\otimes\chi^{\rm SS}]\delta_{12}^{\rm A}\delta_{34}^{\rm A} [ϕMAMAχSS]δ12Aδ34A[\phi^{\rm MAMA}\otimes\chi^{\rm SS}]\delta_{12}^{\rm A}\delta_{34}^{\rm A} [ϕMSMAχSS]δ12Sδ34A[\phi^{\rm MSMA}\otimes\chi^{\rm SS}]\delta_{12}^{\rm S}\delta_{34}^{\rm A} [ϕSSχSS]δ12Sδ34S[\phi^{\rm SS}\otimes\chi^{\rm SS}]\delta_{12}^{\rm S}\delta_{34}^{\rm S} [ϕMSMAχSS]δ12Sδ34A[\phi^{\rm MSMA}\otimes\chi^{\rm SS}]\delta_{12}^{\rm S}\delta_{34}^{\rm A} [ϕMSMSχSS]δ12Sδ34S[\phi^{\rm MSMS}\otimes\chi^{\rm SS}]\delta_{12}^{\rm S}\delta_{34}^{\rm S} [ϕAAχSA]δ12Aδ34S[\phi^{\rm AA}\otimes\chi^{\rm SA}]\delta_{12}^{\rm A}\delta_{34}^{\rm S} [ϕMAMAχSA]δ12Aδ34S[\phi^{\rm MAMA}\otimes\chi^{\rm SA}]\delta_{12}^{\rm A}\delta_{34}^{\rm S} [ϕMSMAχSA]δ12Sδ34S[\phi^{\rm MSMA}\otimes\chi^{\rm SA}]\delta_{12}^{\rm S}\delta_{34}^{\rm S} [ϕSSχSA]δ12Sδ34A[\phi^{\rm SS}\otimes\chi^{\rm SA}]\delta_{12}^{\rm S}\delta_{34}^{\rm A} [ϕMSMAχSA]δ12Sδ34S[\phi^{\rm MSMA}\otimes\chi^{\rm SA}]\delta_{12}^{\rm S}\delta_{34}^{\rm S} [ϕMSMSχSA]δ12Sδ34A[\phi^{\rm MSMS}\otimes\chi^{\rm SA}]\delta_{12}^{\rm S}\delta_{34}^{\rm A} [ϕAAχAS]δ12Sδ34A[\phi^{\rm AA}\otimes\chi^{\rm AS}]\delta_{12}^{\rm S}\delta_{34}^{\rm A} [ϕMAMAχAS]δ12Sδ34A[\phi^{\rm MAMA}\otimes\chi^{\rm AS}]\delta_{12}^{\rm S}\delta_{34}^{\rm A} [ϕMSMAχAS]δ12Aδ34A[\phi^{\rm MSMA}\otimes\chi^{\rm AS}]\delta_{12}^{\rm A}\delta_{34}^{\rm A} [ϕSSχAS]δ12Aδ34S[\phi^{\rm SS}\otimes\chi^{\rm AS}]\delta_{12}^{\rm A}\delta_{34}^{\rm S} [ϕMSMAχAS]δ12Aδ34A[\phi^{\rm MSMA}\otimes\chi^{\rm AS}]\delta_{12}^{\rm A}\delta_{34}^{\rm A} [ϕMSMSχAS]δ12Aδ34S[\phi^{\rm MSMS}\otimes\chi^{\rm AS}]\delta_{12}^{\rm A}\delta_{34}^{\rm S} [ϕAAχAA]δ12Sδ34S[\phi^{\rm AA}\otimes\chi^{\rm AA}]\delta_{12}^{\rm S}\delta_{34}^{\rm S} [ϕMAMAχAA]δ12Sδ34S[\phi^{\rm MAMA}\otimes\chi^{\rm AA}]\delta_{12}^{\rm S}\delta_{34}^{\rm S} [ϕMSMAχAA]δ12Aδ34S[\phi^{\rm MSMA}\otimes\chi^{\rm AA}]\delta_{12}^{\rm A}\delta_{34}^{\rm S} [ϕSSχAA]δ12Aδ34A[\phi^{\rm SS}\otimes\chi^{\rm AA}]\delta_{12}^{\rm A}\delta_{34}^{\rm A} [ϕMSMAχAA]δ12Aδ34S[\phi^{\rm MSMA}\otimes\chi^{\rm AA}]\delta_{12}^{\rm A}\delta_{34}^{\rm S} [ϕMSMSχAA]δ12Aδ34A[\phi^{\rm MSMS}\otimes\chi^{\rm AA}]\delta_{12}^{\rm A}\delta_{34}^{\rm A} [ϕAAχSMS]δ12Aδ34A[\phi^{\rm AA}\otimes\chi^{\rm SMS}]\delta_{12}^{\rm A}\delta_{34}^{\rm A} [ϕMAMAχSMS]δ12Aδ34A[\phi^{\rm MAMA}\otimes\chi^{\rm SMS}]\delta_{12}^{\rm A}\delta_{34}^{\rm A} [ϕMSMAχSMS]δ12Sδ34A[\phi^{\rm MSMA}\otimes\chi^{\rm SMS}]\delta_{12}^{\rm S}\delta_{34}^{\rm A} [ϕSSχSMS]δ12Sδ34S[\phi^{\rm SS}\otimes\chi^{\rm SMS}]\delta_{12}^{\rm S}\delta_{34}^{\rm S} [ϕMSMAχSMS]δ12Sδ34A[\phi^{\rm MSMA}\otimes\chi^{\rm SMS}]\delta_{12}^{\rm S}\delta_{34}^{\rm A} [ϕMSMSχSMS]δ12Sδ34S[\phi^{\rm MSMS}\otimes\chi^{\rm SMS}]\delta_{12}^{\rm S}\delta_{34}^{\rm S} [ϕAAχMSS]δ12Aδ34A[\phi^{\rm AA}\otimes\chi^{\rm MSS}]\delta_{12}^{\rm A}\delta_{34}^{\rm A} [ϕMAMAχMSS]δ12Aδ34A[\phi^{\rm MAMA}\otimes\chi^{\rm MSS}]\delta_{12}^{\rm A}\delta_{34}^{\rm A} [ϕMSMAχMSS]δ12Sδ34A[\phi^{\rm MSMA}\otimes\chi^{\rm MSS}]\delta_{12}^{\rm S}\delta_{34}^{\rm A} [ϕSSχMSS]δ12Sδ34S[\phi^{\rm SS}\otimes\chi^{\rm MSS}]\delta_{12}^{\rm S}\delta_{34}^{\rm S} [ϕMSMAχMSS]δ12Sδ34A[\phi^{\rm MSMA}\otimes\chi^{\rm MSS}]\delta_{12}^{\rm S}\delta_{34}^{\rm A} [ϕMSMSχMSS]δ12Sδ34S[\phi^{\rm MSMS}\otimes\chi^{\rm MSS}]\delta_{12}^{\rm S}\delta_{34}^{\rm S} [ϕAAχMSA]δ12Aδ34S[\phi^{\rm AA}\otimes\chi^{\rm MSA}]\delta_{12}^{\rm A}\delta_{34}^{\rm S} [ϕMAMAχMSA]δ12Aδ34S[\phi^{\rm MAMA}\otimes\chi^{\rm MSA}]\delta_{12}^{\rm A}\delta_{34}^{\rm S} [ϕMSMAχMSA]δ12Sδ34S[\phi^{\rm MSMA}\otimes\chi^{\rm MSA}]\delta_{12}^{\rm S}\delta_{34}^{\rm S} [ϕSSχMSA]δ12Sδ34A[\phi^{\rm SS}\otimes\chi^{\rm MSA}]\delta_{12}^{\rm S}\delta_{34}^{\rm A} [ϕMSMAχMSA]δ12Sδ34S[\phi^{\rm MSMA}\otimes\chi^{\rm MSA}]\delta_{12}^{\rm S}\delta_{34}^{\rm S} [ϕMSMSχMSA]δ12Sδ34A[\phi^{\rm MSMS}\otimes\chi^{\rm MSA}]\delta_{12}^{\rm S}\delta_{34}^{\rm A} [ϕAAχAMS]δ12Sδ34A[\phi^{\rm AA}\otimes\chi^{\rm AMS}]\delta_{12}^{\rm S}\delta_{34}^{\rm A} [ϕMAMAχAMS]δ12Sδ34A[\phi^{\rm MAMA}\otimes\chi^{\rm AMS}]\delta_{12}^{\rm S}\delta_{34}^{\rm A} [ϕMSMAχAMS]δ12Aδ34A[\phi^{\rm MSMA}\otimes\chi^{\rm AMS}]\delta_{12}^{\rm A}\delta_{34}^{\rm A} [ϕSSχAMS]δ12Aδ34S[\phi^{\rm SS}\otimes\chi^{\rm AMS}]\delta_{12}^{\rm A}\delta_{34}^{\rm S} [ϕMSMAχAMS]δ12Aδ34A[\phi^{\rm MSMA}\otimes\chi^{\rm AMS}]\delta_{12}^{\rm A}\delta_{34}^{\rm A} [ϕMSMSχAMS]δ12Aδ34S[\phi^{\rm MSMS}\otimes\chi^{\rm AMS}]\delta_{12}^{\rm A}\delta_{34}^{\rm S} [ϕAAχMSMS]δ12Aδ34A[\phi^{\rm AA}\otimes\chi^{\rm MSMS}]\delta_{12}^{\rm A}\delta_{34}^{\rm A} [ϕMAMAχMSMS]δ12Aδ34A[\phi^{\rm MAMA}\otimes\chi^{\rm MSMS}]\delta_{12}^{\rm A}\delta_{34}^{\rm A} [ϕMSMAχMSMS]δ12Sδ34A[\phi^{\rm MSMA}\otimes\chi^{\rm MSMS}]\delta_{12}^{\rm S}\delta_{34}^{\rm A} [ϕSSχMSMS]δ12Sδ34S[\phi^{\rm SS}\otimes\chi^{\rm MSMS}]\delta_{12}^{\rm S}\delta_{34}^{\rm S} [ϕMSMAχMSMS]δ12Sδ34A[\phi^{\rm MSMA}\otimes\chi^{\rm MSMS}]\delta_{12}^{\rm S}\delta_{34}^{\rm A} [ϕMSMSχMSMS]δ12Sδ34S[\phi^{\rm MSMS}\otimes\chi^{\rm MSMS}]\delta_{12}^{\rm S}\delta_{34}^{\rm S} All possible types of total wavefunctions for pure neutral hexaquark system [ϕSSχSS]δ12Sδ34S[\phi^{\rm SS}\otimes\chi^{\rm SS}]\delta_{12}^{\rm S}\delta_{34}^{\rm S} [ϕSSχMSMS]δ12Sδ34S[\phi^{\rm SS}\otimes\chi^{\rm MSMS}]\delta_{12}^{\rm S}\delta_{34}^{\rm S} [ϕSSχAA]δ12Aδ34A[\phi^{\rm SS}\otimes\chi^{\rm AA}]\delta_{12}^{\rm A}\delta_{34}^{\rm A} [ϕMSMSχSS]δ12Sδ34S[\phi^{\rm MSMS}\otimes\chi^{\rm SS}]\delta_{12}^{\rm S}\delta_{34}^{\rm S} [ϕMSMSχAA]δ12Aδ34A[\phi^{\rm MSMS}\otimes\chi^{\rm AA}]\delta_{12}^{\rm A}\delta_{34}^{\rm A} [ϕMSMSχMSMS]δ12Sδ34S[\phi^{\rm MSMS}\otimes\chi^{\rm MSMS}]\delta_{12}^{\rm S}\delta_{34}^{\rm S} [ϕAAχSS]δ12Aδ34A[\phi^{\rm AA}\otimes\chi^{\rm SS}]\delta_{12}^{\rm A}\delta_{34}^{\rm A} [ϕAAχMSMS]δ12Aδ34A[\phi^{\rm AA}\otimes\chi^{\rm MSMS}]\delta_{12}^{\rm A}\delta_{34}^{\rm A} [ϕAAχAA]δ12Sδ34S[\phi^{\rm AA}\otimes\chi^{\rm AA}]\delta_{12}^{\rm S}\delta_{34}^{\rm S} [ϕMAMAχSS]δ12Aδ34A[\phi^{\rm MAMA}\otimes\chi^{\rm SS}]\delta_{12}^{\rm A}\delta_{34}^{\rm A} [ϕMAMAχAA]δ12Sδ34S[\phi^{\rm MAMA}\otimes\chi^{\rm AA}]\delta_{12}^{\rm S}\delta_{34}^{\rm S} [ϕMAMAχMSMS]δ12Aδ34A[\phi^{\rm MAMA}\otimes\chi^{\rm MSMS}]\delta_{12}^{\rm A}\delta_{34}^{\rm A} 12[(ϕMAMS±ϕMSMA)χSS]δ12Sδ12Aδ34Sδ34A\frac{1}{\sqrt{2}}[(\phi^{\rm MAMS}\pm\phi^{\rm MSMA})\otimes\chi^{\rm SS}]\delta_{12}^{\rm S}\delta_{12}^{\rm A}\delta_{34}^{\rm S}\delta_{34}^{\rm A} 12[(ϕMAMS±ϕMSMA)χMSMS]δ12Sδ12Aδ34Sδ34A\frac{1}{\sqrt{2}}[(\phi^{\rm MAMS}\pm\phi^{\rm MSMA})\otimes\chi^{\rm MSMS}]\delta_{12}^{\rm S}\delta_{12}^{\rm A}\delta_{34}^{\rm S}\delta_{34}^{\rm A} 12[(ϕMAMS±ϕMSMA)χAA]δ12Sδ12Aδ34Sδ34A\frac{1}{\sqrt{2}}[(\phi^{\rm MAMS}\pm\phi^{\rm MSMA})\otimes\chi^{\rm AA}]\delta_{12}^{\rm S}\delta_{12}^{\rm A}\delta_{34}^{\rm S}\delta_{34}^{\rm A} 12[ϕSS(χSA±χAS)]δ12Sδ12Aδ34Sδ34A\frac{1}{\sqrt{2}}[\phi^{\rm SS}\otimes(\chi^{\rm SA}\pm\chi^{\rm AS})]\delta_{12}^{\rm S}\delta_{12}^{\rm A}\delta_{34}^{\rm S}\delta_{34}^{\rm A} 12[ϕAA(χSA±χAS)]δ12Sδ12Aδ34Sδ34A\frac{1}{\sqrt{2}}[\phi^{\rm AA}\otimes(\chi^{\rm SA}\pm\chi^{\rm AS})]\delta_{12}^{\rm S}\delta_{12}^{\rm A}\delta_{34}^{\rm S}\delta_{34}^{\rm A} 12[ϕMSMS(χSA±χAS)]δ12Sδ12Aδ34Sδ34A\frac{1}{\sqrt{2}}[\phi^{\rm MSMS}\otimes(\chi^{\rm SA}\pm\chi^{\rm AS})]\delta_{12}^{\rm S}\delta_{12}^{\rm A}\delta_{34}^{\rm S}\delta_{34}^{\rm A} 12[ϕSS(χMSA±χAMS)]δ12Sδ12Aδ34Sδ34A\frac{1}{\sqrt{2}}[\phi^{\rm SS}\otimes(\chi^{\rm MSA}\pm\chi^{\rm AMS})]\delta_{12}^{\rm S}\delta_{12}^{\rm A}\delta_{34}^{\rm S}\delta_{34}^{\rm A} 12[ϕAA(χMSA±χAMS)]δ12Sδ12Aδ34Sδ34A\frac{1}{\sqrt{2}}[\phi^{\rm AA}\otimes(\chi^{\rm MSA}\pm\chi^{\rm AMS})]\delta_{12}^{\rm S}\delta_{12}^{\rm A}\delta_{34}^{\rm S}\delta_{34}^{\rm A} 12[ϕMSMS(χMSA±χAMS)]δ12Sδ12Aδ34Sδ34A\frac{1}{\sqrt{2}}[\phi^{\rm MSMS}\otimes(\chi^{\rm MSA}\pm\chi^{\rm AMS})]\delta_{12}^{\rm S}\delta_{12}^{\rm A}\delta_{34}^{\rm S}\delta_{34}^{\rm A} 12[ϕSS(χSMS±χMSS)]δ12Sδ34S\frac{1}{\sqrt{2}}[\phi^{\rm SS}\otimes(\chi^{\rm SMS}\pm\chi^{\rm MSS})]\delta_{12}^{\rm S}\delta_{34}^{\rm S} 12[ϕAA(χSMS±χSMS)]δ12Aδ34A\frac{1}{\sqrt{2}}[\phi^{\rm AA}\otimes(\chi^{\rm SMS}\pm\chi^{\rm SMS})]\delta_{12}^{\rm A}\delta_{34}^{\rm A} 12[ϕMSMS(χSMS±χSMS)]δ12Sδ34S\frac{1}{\sqrt{2}}[\phi^{\rm MSMS}\otimes(\chi^{\rm SMS}\pm\chi^{\rm SMS})]\delta_{12}^{\rm S}\delta_{34}^{\rm S} 12[ϕMAMA(χMSA±χAMS)]δ12Sδ12Aδ34Sδ34A\frac{1}{\sqrt{2}}[\phi^{\rm MAMA}\otimes(\chi^{\rm MSA}\pm\chi^{\rm AMS})]\delta_{12}^{\rm S}\delta_{12}^{\rm A}\delta_{34}^{\rm S}\delta_{34}^{\rm A} 12[ϕMAMA(χSA±χAS)]δ12Sδ12Aδ34Sδ34A\frac{1}{\sqrt{2}}[\phi^{\rm MAMA}\otimes(\chi^{\rm SA}\pm\chi^{\rm AS})]\delta_{12}^{\rm S}\delta_{12}^{\rm A}\delta_{34}^{\rm S}\delta_{34}^{\rm A} 12[ϕMAMA(χSMS±χSMS)]δ12Aδ34A\frac{1}{\sqrt{2}}[\phi^{\rm MAMA}\otimes(\chi^{\rm SMS}\pm\chi^{\rm SMS})]\delta_{12}^{\rm A}\delta_{34}^{\rm A} 12[(ϕMAMSχSA)±(ϕMSMAχAS)]δ12Sδ12Aδ34Sδ34A\frac{1}{\sqrt{2}}[(\phi^{\rm MAMS}\otimes\chi^{\rm SA})\pm(\phi^{\rm MSMA}\otimes\chi^{\rm AS})]\delta_{12}^{\rm S}\delta_{12}^{\rm A}\delta_{34}^{\rm S}\delta_{34}^{\rm A} 12[(ϕMAMSχMSA)±(ϕMSMAχAMS)]δ12Sδ12Aδ34Sδ34A\frac{1}{\sqrt{2}}[(\phi^{\rm MAMS}\otimes\chi^{\rm MSA})\pm(\phi^{\rm MSMA}\otimes\chi^{\rm AMS})]\delta_{12}^{\rm S}\delta_{12}^{\rm A}\delta_{34}^{\rm S}\delta_{34}^{\rm A} 12[(ϕMAMSχAS)±(ϕMSMAχSA)]δ12Sδ12Aδ34Sδ34A\frac{1}{\sqrt{2}}[(\phi^{\rm MAMS}\otimes\chi^{\rm AS})\pm(\phi^{\rm MSMA}\otimes\chi^{\rm SA})]\delta_{12}^{\rm S}\delta_{12}^{\rm A}\delta_{34}^{\rm S}\delta_{34}^{\rm A} 12[(ϕMAMSχMSA)±(ϕMSMAχAMS)]δ12Sδ12Aδ34Sδ34A\frac{1}{\sqrt{2}}[(\phi^{\rm MAMS}\otimes\chi^{\rm MSA})\pm(\phi^{\rm MSMA}\otimes\chi^{\rm AMS})]\delta_{12}^{\rm S}\delta_{12}^{\rm A}\delta_{34}^{\rm S}\delta_{34}^{\rm A} Different classes of the hidden-charm hexaquark system δ12A=1\delta_{12}^{\rm A}=1, δ34A=1\delta_{34}^{\rm A}=1, δ12S=0\delta_{12}^{\rm S}=0, δ34S=0\delta_{34}^{\rm S}=0 : (nn)I=1c(n¯n¯)I=1c¯(nn)^{I=1}c(\bar{n}\bar{n})^{I=1}\bar{c}, δ12A=0\delta_{12}^{\rm A}=0, δ34A=1\delta_{34}^{\rm A}=1, δ12S=1\delta_{12}^{\rm S}=1, δ34S=0\delta_{34}^{\rm S}=0 : (nn)I=0c(n¯n¯)I=1c¯(nn)^{I=0}c(\bar{n}\bar{n})^{I=1}\bar{c}, (nn)I=1cs¯s¯c¯(nn)^{I=1}c\bar{s}\bar{s}\bar{c}, sscs¯s¯c¯ssc\bar{s}\bar{s}\bar{c} (nn)I=0cs¯s¯c¯(nn)^{I=0}c\bar{s}\bar{s}\bar{c} δ12A=0\delta_{12}^{\rm A}=0, δ34A=0\delta_{34}^{\rm A}=0, δ12S=1\delta_{12}^{\rm S}=1, δ34S=1\delta_{34}^{\rm S}=1 : (nn)I=0c(n¯n¯)I=0c¯(nn)^{I=0}c(\bar{n}\bar{n})^{I=0}\bar{c} δ12A=1\delta_{12}^{\rm A}=1, δ34A=1\delta_{34}^{\rm A}=1, δ12S=1\delta_{12}^{\rm S}=1, δ34S=0\delta_{34}^{\rm S}=0 : nsc(n¯n¯)I=1c¯nsc(\bar{n}\bar{n})^{I=1}\bar{c}, nscs¯s¯c¯nsc\bar{s}\bar{s}\bar{c} δ12A=1\delta_{12}^{\rm A}=1, δ34A=0\delta_{34}^{\rm A}=0, δ12S=1\delta_{12}^{\rm S}=1, δ34S=1\delta_{34}^{\rm S}=1 : nsc(n¯n¯)I=0c¯nsc(\bar{n}\bar{n})^{I=0}\bar{c} δ12A=1\delta_{12}^{\rm A}=1, δ34A=1\delta_{34}^{\rm A}=1, δ12S=1\delta_{12}^{\rm S}=1, δ34S=1\delta_{34}^{\rm S}=1 : nscn¯s¯c¯nsc\bar{n}\bar{s}\bar{c}

IV Numerical results and discussion

Sandwiching the CMI Hamiltonian between the two wavefunctions with the same quantum number, we obtain the Hamiltonian matrices. Based on the corresponding eigenvalues and eigenvectors, we discuss the mass gaps, stabilities, and strong decay behaviors of all the hidden-charm hexaquark states.

From the eigenvalues, we present the mass spectra in Fig. 1 (for nncn¯n¯c¯nnc\bar{n}\bar{n}\bar{c}, sscs¯s¯c¯ssc\bar{s}\bar{s}\bar{c}, and nncs¯s¯c¯nnc\bar{s}\bar{s}\bar{c}), Fig. 2 (for nncn¯s¯c¯nnc\bar{n}\bar{s}\bar{c} and nscn¯s¯c¯nsc\bar{n}\bar{s}\bar{c}), and Fig. 3 (for nscs¯s¯c¯nsc\bar{s}\bar{s}\bar{c}). Moreover, we also plot the corresponding thresholds which they can decay to through quark rearrangements. In convenience, we label the spin (isospin) of the rearrangement decay channel in the superscript (subscript).

Refer to caption
Figure 1: Relative positions (units: MeV) for three kinds of hexaquark states. In the nncn¯n¯c¯nnc\bar{n}\bar{n}\bar{c} subsystem, the black lines show the (nn)I=1c(n¯n¯)I=1c¯(nn)^{I=1}c(\bar{n}\bar{n})^{I=1}\bar{c} hexaquark states, the red lines show the (nn)I=0c(n¯n¯)I=1c¯(nn)^{I=0}c(\bar{n}\bar{n})^{I=1}\bar{c} hexaquark states, and the orange lines show the (nn)I=0c(n¯n¯)I=0c¯(nn)^{I=0}c(\bar{n}\bar{n})^{I=0}\bar{c} hexaquark states. The solid and dashed short lines are to differentiate the positive and negative CC parity and it’s the same as sscs¯s¯c¯ssc\bar{s}\bar{s}\bar{c} subsystem. In the nncs¯s¯c¯nnc\bar{s}\bar{s}\bar{c} subsystem, the black (red) lines represent the nncs¯s¯c¯nnc\bar{s}\bar{s}\bar{c} hexaquark states with I=1(0)I=1(0). The dotted lines denote various baryon-antibaryon or meson-meson-meson thresholds. Some meson-meson-meson thresholds have specific CC parity, we label thresholds which have positive (negative) CC parity with blue (green). When the spin (isospin) of an initial hexaquark state is equal to the number in the superscript (subscript) of a baryon-antibaryon (meson-meson-meson) state, it can decay into these state through SS-wave. Moreover, the stable states are marked with “{\dagger}”.
Refer to caption Refer to caption
(a)
nscn¯n¯c¯nsc\bar{n}\bar{n}\bar{c} states
(b) nscn¯s¯c¯nsc\bar{n}\bar{s}\bar{c} states
Figure 2: Relative positions (units: MeV) for the nscn¯n¯c¯nsc\bar{n}\bar{n}\bar{c} and nscn¯s¯c¯nsc\bar{n}\bar{s}\bar{c} hexaquark states labeled with solid lines. In the nscn¯n¯c¯nsc\bar{n}\bar{n}\bar{c} subsystem, the black (red) lines represent the nscn¯n¯c¯nsc\bar{n}\bar{n}\bar{c} hexaquark states with In¯n¯=1(0)I_{\bar{n}\bar{n}}=1(0). In the nscn¯s¯c¯nsc\bar{n}\bar{s}\bar{c} subsystem, the solid (dashed) lines represent the nscn¯s¯c¯nsc\bar{n}\bar{s}\bar{c} hexaquark states with the positive (negative) CC parity. See the caption of Fig. 1 for meaning of thresholds and “{\dagger}”.
Refer to caption
(a) nscs¯s¯c¯nsc\bar{s}\bar{s}\bar{c} states
Figure 3: Relative positions (units: MeV) for the nscs¯s¯c¯nsc\bar{s}\bar{s}\bar{c} hexaquark states labeled with solid short lines. The dotted lines denote various baryon-antibaryon and meson-meson-meson thresholds. When the spin of an initial hexaquark state is equal to a number in the superscript of a baryon-antibaryon (meson-meson-meson) state, it can decay into these states through SS-wave.

In addition to the mass spectra, we discuss the two body strong decay based on the obtained eigenvectors. According to Table 3 and Table 4, we can find that there are overlaps between hexaquark states and particular baryon-antibaryon states. In the qqcq¯q¯c¯qqc\otimes\bar{q}\bar{q}\bar{c} configuration, the color wavefunction of the hexaquark states falls into three categories: |(qqc)1c(q¯q¯c¯)1c|(qqc)^{1_{c}}(\bar{q}\bar{q}\bar{c})^{1_{c}}\rangle, |(qqc)8c(q¯q¯c¯)8c|(qqc)^{8_{c}}(\bar{q}\bar{q}\bar{c})^{8_{c}}\rangle, and |(qqc)10c(q¯q¯c¯)10¯c|(qqc)^{10_{c}}(\bar{q}\bar{q}\bar{c})^{\bar{10}_{c}}\rangle. The |(qqc)1c(q¯q¯c¯)1c|(qqc)^{1_{c}}(\bar{q}\bar{q}\bar{c})^{1_{c}}\rangle can easily dissociate into an S-wave baryon and S-wave antibaryon (the “OZI-superallowed” decay mode). In contrast, the |(qqc)8c(q¯q¯c¯)8c|(qqc)^{8_{c}}(\bar{q}\bar{q}\bar{c})^{8_{c}}\rangle and |(qqc)10c(q¯q¯c¯)10¯c|(qqc)^{10_{c}}(\bar{q}\bar{q}\bar{c})^{\bar{10}_{c}}\rangle fall apart through the gluon exchange. For simplicity, we only focus on the “OZI-superallowed” decay mode.

The partial width of the two body LL-wave “OZI-superallowed decay” mode reads Weng:2019ynva ; Weng:2020jao ; Weng:2021hje

Γi=γiαk2L+1m2L|ci|2,\Gamma_{i}=\gamma_{i}\alpha\frac{k^{2L+1}}{m^{2L}}{\cdot}|c_{i}|^{2}, (7)

where α\alpha is an effective coupling constant, mm is the initial state mass, kk is the spatial momentum of the final state in the center-of-mass frame, and cic_{i} is overlap between the hexaquark states and the final baryon-antibaryon states. Generally, γi\gamma_{i} depends on the spatial wavefunctions of the initial hexaquark and final baryon-antibaryon, which are different for each decay process. In the heavy quark limit, Σc\Sigma_{c} (Ξc\Xi^{*}_{c}) and Σc\Sigma^{*}_{c} (Ξc\Xi^{\prime}_{c}) have the same spatial wavefunction. Based on these, we assume the γi\gamma_{i} relationships for different hidden-charm hexaquark states presented in Table 5. We find that the (k/m)2(k/m)^{2} is of 𝒪(102)\mathcal{O}(10^{-2}) or even smaller, which means that the large partial wave decays are all suppressed. Thus we only need to consider the SS-wave two body decay modes. Employing the eigenvectors in Table 6, we calculate the values of k|ci|2k\cdot|c_{i}|^{2} for each decay process and present them in Table 7. The blank area in Tables 6 and 7 means that the hexaquark state is forbidden to decay through this channel because of the quantum number conservation. According to the γi\gamma_{i} relationships in Table 5 and the values of k|ci|2k\cdot|c_{i}|^{2} in Table 7, we can roughly estimate the relative decay widths for different two-body decay processes of a hexaquark state.

Table 5: The γi\gamma_{i} relationships for different hidden-charm hexaquark subsystems.
Subsystem γi\gamma_{i}
nncn¯n¯c¯nnc\bar{n}\bar{n}\bar{c} γΣcΣ¯c=γΣcΣ¯c=γΣcΣ¯c=γΣcΣ¯c\gamma_{\Sigma_{c}^{*}\bar{\Sigma}_{c}^{*}}=\gamma_{\Sigma_{c}^{*}\bar{\Sigma}_{c}}=\gamma_{\Sigma_{c}\bar{\Sigma}^{*}_{c}}=\gamma_{\Sigma_{c}\bar{\Sigma}_{c}}γΣcΛ¯c=γΣcΛ¯c\gamma_{\Sigma_{c}^{*}\bar{\Lambda}_{c}}=\gamma_{\Sigma_{c}\bar{\Lambda}_{c}}
nscn¯s¯c¯nsc\bar{n}\bar{s}\bar{c} γΞcΞ¯c=γΞcΞ¯c=γΞcΞ¯c=γΞcΞ¯cγΞcΞ¯c=γΞcΞ¯c\gamma_{\Xi_{c}^{*}\bar{\Xi}^{*}_{c}}=\gamma_{\Xi_{c}^{\prime}\bar{\Xi}_{c}^{*}}=\gamma_{\Xi_{c}^{\prime}\bar{\Xi}_{c}^{\prime}}=\gamma_{\Xi_{c}\bar{\Xi}_{c}^{*}}\approx\gamma_{\Xi_{c}\bar{\Xi}_{c}^{\prime}}=\gamma_{\Xi_{c}\bar{\Xi}_{c}}
nscn¯n¯c¯nsc\bar{n}\bar{n}\bar{c} γΞcΣ¯c=γΞcΣ¯c=γΞcΣ¯c=γΞcΣ¯c=γΞcΣ¯c=γΞcΣ¯c\gamma_{\Xi_{c}^{*}\bar{\Sigma}_{c}^{*}}=\gamma_{\Xi_{c}^{*}\bar{\Sigma}_{c}}=\gamma_{\Xi_{c}^{\prime}\bar{\Sigma}_{c}^{*}}=\gamma_{\Xi_{c}^{\prime}\bar{\Sigma}_{c}}=\gamma_{\Xi_{c}\bar{\Sigma}_{c}^{*}}=\gamma_{\Xi_{c}\bar{\Sigma}_{c}}
nncs¯s¯c¯nnc\bar{s}\bar{s}\bar{c} γΣcΩ¯c=γΣcΩ¯c=γΣcΩ¯c=γΣcΩ¯c\gamma_{\Sigma_{c}^{*}\bar{\Omega}_{c}^{*}}=\gamma_{\Sigma_{c}\bar{\Omega}_{c}^{*}}=\gamma_{\Sigma_{c}^{*}\bar{\Omega}_{c}}=\gamma_{\Sigma_{c}\bar{\Omega}_{c}}γΛcΩ¯c=γΛcΩ¯c\gamma_{\Lambda_{c}\bar{\Omega}_{c}^{*}}=\gamma_{\Lambda_{c}\bar{\Omega}_{c}}
nscs¯s¯c¯nsc\bar{s}\bar{s}\bar{c} γΞcΩ¯c=γΞcΩ¯c=γΞcΩ¯c=γΞcΩ¯cγΞcΩ¯c=γΞcΩ¯c\gamma_{\Xi_{c}^{*}\bar{\Omega}_{c}^{*}}=\gamma_{\Xi_{c}^{*}\bar{\Omega}_{c}}=\gamma_{\Xi_{c}^{{}^{\prime}}\bar{\Omega}_{c}^{*}}=\gamma_{\Xi_{c}^{{}^{\prime}}\bar{\Omega}_{c}}\approx\gamma_{\Xi_{c}\bar{\Omega}_{c}^{*}}=\gamma_{\Xi_{c}\bar{\Omega}_{c}}
sscs¯s¯c¯ssc\bar{s}\bar{s}\bar{c} γΩcΩ¯c=γΩcΩ¯c=γΩcΩ¯c=γΩcΩ¯c\gamma_{\Omega_{c}^{*}\bar{\Omega}_{c}^{*}}=\gamma_{\Omega_{c}^{*}\bar{\Omega}_{c}}=\gamma_{\Omega_{c}^{*}\bar{\Omega}_{c}}=\gamma_{\Omega_{c}\bar{\Omega}_{c}}
Table 6: The values of eigenvectors for the nncn¯n¯c¯nnc\bar{n}\bar{n}\bar{c}, nscn¯n¯c¯nsc\bar{n}\bar{n}\bar{c}, nncs¯s¯c¯nnc\bar{s}\bar{s}\bar{c}, nscn¯s¯c¯nsc\bar{n}\bar{s}\bar{c}, nscs¯s¯c¯nsc\bar{s}\bar{s}\bar{c}, and sscs¯s¯c¯ssc\bar{s}\bar{s}\bar{c} hexaquark subsystems. The masses are all in units of MeV.

sscs¯s¯c¯ssc\bar{s}\bar{s}\bar{c}(I=0)(I=0) (nn)I=1cs¯s¯c¯(nn)^{I=1}c\bar{s}\bar{s}\bar{c}(I=1)(I=1) (nn)I=1c(n¯n¯)I=1c¯(nn)^{I=1}c(\bar{n}\bar{n})^{I=1}\bar{c}(I=2,1,0)(I=2,1,0) (nn)I=0c(n¯n¯)I=1c¯(nn)^{I=0}c(\bar{n}\bar{n})^{I=1}\bar{c}(I=1)(I=1) JPCJ^{PC} Mass ΩcΩ¯c{\Omega_{c}^{*}\bar{\Omega}_{c}^{*}} ΩcΩ¯c\Omega_{c}^{*}\bar{\Omega}_{c} ΩcΩ¯c\Omega_{c}\bar{\Omega}_{c}^{*} ΩcΩ¯c{\Omega_{c}\bar{\Omega}_{c}} JPJ^{P} Mass ΣcΩ¯c{\Sigma_{c}^{*}\bar{\Omega}_{c}^{*}} ΣcΩ¯c{\Sigma_{c}\bar{\Omega}_{c}^{*}} ΣcΩ¯c{\Sigma_{c}^{*}\bar{\Omega}_{c}} ΣcΩ¯c{\Sigma_{c}\bar{\Omega}_{c}} JPCJ^{PC} Mass ΣcΣ¯c\Sigma^{*}_{c}\bar{\Sigma}^{*}_{c} ΣcΣ¯c\Sigma^{*}_{c}\bar{\Sigma}_{c} ΣcΣ¯c\Sigma_{c}\bar{\Sigma}^{*}_{c} ΣcΣ¯c\Sigma_{c}\bar{\Sigma}_{c} JPJ^{P} Mass ΛcΣ¯c\Lambda_{c}\bar{\Sigma}^{*}_{c} ΛcΣ¯c\Lambda_{c}\bar{\Sigma}_{c} 33^{--} 5534 -0.993 33^{-} 5285 -0.991 33^{--} 5036 -0.989 22^{-} 4939 0.259 22^{--} 5490 0.665 -0.665 22^{-} 5319 -0.884 -0.306 -0.128 22^{--} 5025 0.909 4895 -0.764 2+2^{-+} 5539 -0.983 -0.050 -0.050 5255 -0.288 0.358 0.720 2+2^{-+} 5060 -0.924 -0.161 -0.161 11^{-} 5013 0.221 -0.015 5475 0.091 -0.664 -0.664 5233 -0.259 0.825 - 0.441 5008 0.296 -0.484 -0.484 4922 0.456 0.255 11^{--} 5569 0.918 0.135 -0.135 0.133 11^{-} 5415 0.688 0.3 0.275 0.188 11^{--} 5143 0.672 0.327 -0.327 0.338 4876 -0.634 -0.300 5522 -0.225 0.593 -0.593 0.248 5312 0.417 -0.116 -0.685 -0.213 5130 -0.538 0.416 -0.416 0.161 4852 -0.354 0.740 5429 0.087 0.243 -0.243 -0.882 5269 -0.307 0.805 -0.191 -0.169 4954 -0.217 -0.415 0.415 0.825 4792 0.128 -0.264 1+1^{-+} 5465 0.699 0.699 5196 -0.071 0.123 -0.439 0.774 1+1^{-+} 5006 0.650 0.650 4686 0.188 -0.031 0+0^{-+} 5622 -0.806 -0.235 5157 0.058 -0.173 -0.145 -0.284 0+0^{-+} 5217 -0.704 -0.369 4605 -0.191 0.097 5495 0.447 -0.641 5150 0.308 0.244 0.067 -0.227 5066 0.531 -0.599 00^{-} 4933 0.118 5435 -0.017 0.365 00^{-} 5366 -0.899 -0.169 4958 0.055 0.213 4842 -0.599 5242 0.191 -0.827 4797 0.674 nscn¯s¯c¯nsc\bar{n}\bar{s}\bar{c}(I=1,0)(I=1,0) nsc(n¯n¯)I=1c¯nsc(\bar{n}\bar{n})^{I=1}\bar{c}(I=3/2,1/2)(I=3/2,1/2) (nn)I=0c(n¯n¯)I=0c¯(nn)^{I=0}c(\bar{n}\bar{n})^{I=0}\bar{c}(I=0)(I=0) JPCJ^{PC} Mass ΞcΞ¯c\Xi^{*}_{c}\bar{\Xi}^{*}_{c} ΞcΞ¯c\Xi^{*}_{c}\bar{\Xi}^{\prime}_{c} ΞcΞ¯c\Xi^{\prime}_{c}\bar{\Xi}^{*}_{c} ΞcΞ¯c\Xi^{*}_{c}\bar{\Xi}_{c} ΞcΞ¯c\Xi_{c}\bar{\Xi}^{*}_{c} ΞcΞ¯c\Xi^{\prime}_{c}\bar{\Xi}_{c} ΞcΞ¯c\Xi_{c}\bar{\Xi}^{\prime}_{c} ΞcΞ¯c\Xi^{\prime}_{c}\bar{\Xi}^{\prime}_{c} ΞcΞ¯c\Xi_{c}\bar{\Xi}_{c} JPJ^{P} Mass ΞcΣ¯c\Xi^{*}_{c}\bar{\Sigma}^{*}_{c} ΞcΣ¯c\Xi^{*}_{c}\bar{\Sigma}_{c} ΞcΣ¯c\Xi^{\prime}_{c}\bar{\Sigma}^{*}_{c} ΞcΣ¯c\Xi^{\prime}_{c}\bar{\Sigma}_{c} ΞcΣ¯c\Xi_{c}\bar{\Sigma}^{*}_{c} ΞcΣ¯c\Xi_{c}\bar{\Sigma}_{c} JPCJ^{PC} Mass ΛcΛ¯c\Lambda_{c}\bar{\Lambda}_{c} 33^{--} 5292 -0.991 33^{-} 5164 0.989 11^{--} 4940 -0.319 2+2^{-+} 5329 -0.883 -0.148 -0.148 -0.132 -0.132 22^{-} 5250 0.749 0.187 0.377 0.252 4816 -0.019 5240 0.264 -0.645 -0.645 -0.095 -0.095 5134 -0.482 0.709 0.354 0.145 4584 -0.818 5216 -0.303 -0.013 -0.013 0.291 0.291 5116 -0.276 -0.554 0.705 -0.005 0+0^{-+} 4767 0.562 5168 -0.064 -0.168 -0.168 0.535 0.535 5071 0.203 0.140 -0.013 -0.707 4649 -0.619 24  5125 -0.030 0.081 0.081 -0.006 -0.006 5051 -0.014 0.118 0.350 -0.345 nsc(n¯n¯c¯)I=0nsc(\bar{n}\bar{n}\bar{c})^{I=0}(I=1/2)(I=1/2) 22^{--} 5295 0.603 -0.603 0.131 -0.131 5017 0.080 0.180 0.156 -0.293 JPJ^{P} Mass ΞcΛ¯c\Xi_{c}^{*}\bar{\Lambda}_{c} ΞcΛ¯c\Xi_{c}^{\prime}\bar{\Lambda}_{c} ΞcΛ¯c\Xi_{c}\bar{\Lambda}_{c} 24  5200 -0.026 0.026 -0.443 0.443 11^{-} 5419 0.509 0.341 0.303 0.231 0.259 0.225 22^{-} 5192 -0.061 5155 0.218 -0.218 -0.407 0.407 5235 -0.523 0.549 -0.036 0.067 0.163 0.104 5015 0.746 1+1^{-+} 5326 0.347 0.347 0.194 0.194 0.219 0.219 5185 -0.337 -0.092 0.652 0.009 -0.162 -0.039 4971 -0.359 5224 -0.578 -0.578 0.069 0.069 0.108 0.108 5120 -0.18 -0.042 -0.302 0.366 0.206 -0.011 11^{-} 5447 0.037 -0.023 -0.010 5134 0.066 0.066 -0.620 -0.620 0.132 0.132 5090 -0.201 -0.555 0.218 0.154 0.578 0.247 5028 0.409 -0.060 -0.009 5110 0.025 0.025 -0.157 -0.157 -0.291 -0.291 5056 0.016 0.172 0.119 -0.591 0.389 -0.102 5005 0.659 0.443 0.164 5066 0.101 0.101 -0.003 -0.003 -0.440 -0.440 5041 0.187 -0.172 -0.333 -0.129 0.246 -0.126 4970 -0.143 0.345 0.066 11^{--} 5421 0.433 0.346 -0.346 0.128 -0.128 0.107 -0.107 0.317 0.142 5036 -0.175 0.022 0.033 -0.189 0.299 -0.25 4943 -0.426 0.634 0.025 5398 0.558 -0.053 0.053 0.066 -0.066 0.082 -0.082 0.066 0.025 5008 0.113 0.019 0.192 0.313 0.138 -0.734 4913 0.028 -0.033 0.078 5288 -0.537 0.388 -0.388 0.088 -0.088 0.095 -0.095 0.173 0.014 4991 0.101 0.002 -0.008 -0.302 0.014 -0.052 4896 0.171 0.215 0.432 5206 0.240 0.361 -0.361 -0.131 0.131 -0.092 0.092 -0.734 -0.079 4970 0.160 -0.163 0.070 0.021 -0.108 -0.015 4870 0.097 0.009 -0.588 5153 0.118 0.090 -0.090 -0.549 0.549 -0.141 0.141 0.394 -0.131 4946 -0.168 0.165 -0.211 0.204 0.136 -0.135 4822 0.017 -0.014 -0.279 5114 -0.065 -0.057 0.057 -0.265 0.265 0.488 -0.488 -0.158 0.129 00^{-} 5285 0.845 0.256 0.093 4809 -0.226 0.017 -0.272 5073 0.182 -0.173 0.173 0.127 -0.127 0.063 -0.063 -0.059 -0.163 5151 0.333 -0.723 -0.049 4770 0.058 0.127 0.107 5050 -0.167 0.008 -0.008 0.109 -0.109 0.023 -0.023 -0.092 -0.259 5071 -0.003 0.287 0.244 00^{-} 5027 0.047 -0.124 5041 0.008 0.004 -0.004 -0.001 0.001 0.008 -0.008 0.007 -0.054 5024 0.057 0.064 -0.719 4996 -0.544 -0.224 5027 0.093 0.067 -0.067 0.111 -0.111 0.083 -0.083 0.109 -0.746 5015 0.018 -0.272 0.167 4914 -0.705 0.246 5021 -0.009 0.028 -0.028 -0.006 0.006 -0.082 0.082 0.065 -0.038 4962 0.033 0.171 -0.139 4894 0.087 0.639 19  5003 0.001 -0.019 0.019 -0.124 0.124 0.296 -0.296 -0.016 -0.291 nscs¯s¯c¯nsc\bar{s}\bar{s}\bar{c}(I=1/2)(I=1/2) 4815 0.145 0.296 24  4987 -0.059 -0.030 0.030 0.046 -0.046 0.127 -0.127 -0.042 0.148 JPJ^{P} Mass ΞcΩ¯c{\Xi_{c}^{*}\bar{\Omega}_{c}^{*}} ΞcΩ¯c{\Xi_{c}^{\prime}\bar{\Omega}_{c}^{*}} ΞcΩ¯c{\Xi_{c}^{*}\bar{\Omega}_{c}} ΞcΩ¯c{\Xi_{c}^{\prime}\bar{\Omega}_{c}} ΞcΩ¯c{\Xi_{c}\bar{\Omega}_{c}^{*}} ΞcΩ¯c{\Xi_{c}\bar{\Omega}_{c}} (nnc)I=0s¯s¯c¯(nnc)^{I=0}\bar{s}\bar{s}\bar{c}(I=0)(I=0) 19  4978 0.047 0.028 -0.028 -0.002 0.002 -0.227 0.227 0.029 -0.049 33^{-} 5413 0.991 JPJ^{P} Mass ΛcΩ¯c\Lambda_{c}\bar{\Omega}_{c}^{*} ΛcΩ¯c\Lambda_{c}\bar{\Omega}_{c} 24  0+0^{-+} 5407 -0.854 -0.094 -0.094 -0.233 -0.112 11^{-} 5590 -0.556 -0.295 -0.326 -0.239 -0.213 -0.199 22^{-} 5135 0.412 5300 -0.064 -0.052 -0.052 0.342 0.027 5432 0.642 -0.16 -0.538 -0.162 -0.109 -0.103 5128 -0.661 5235 0.323 -0.165 -0.165 -0.732 -0.137 5390 0.192 -0.776 0.326 0.149 0.015 0.033 11^{-} 5189 -0.337 -0.068 5131 0.094 -0.541 -0.541 0.309 -0.177 5332 0.178 0.102 0.502 -0.560 -0.408 -0.181 5138 -0.478 -0.225 5116 0.018 0.030 0.030 -0.016 -0.264 5307 -0.003 -0.202 0.184 -0.474 0.454 -0.041 5088 0.677 -0.0003 5047 -0.071 -0.202 -0.202 -0.175 0.733 5274 0.015 0.068 -0.176 -0.386 0.472 0.205 5071 0.139 -0.819 5009 0.019 -0.216 -0.216 0.092 -0.042 5245 -0.001 0.106 0.068 -0.138 -0.297 0.634 4984 0.006 -0.195 4976 0.041 -0.052 -0.052 -0.035 0.167 5244 0.199 -0.119 -0.113 -0.125 -0.112 0.129 00^{-} 5130 0.205 00^{--} 5137 0.280 -0.280 5227 -0.166 -0.298 -0.12 -0.064 -0.166 0.443 5040 0.818 5117 0.382 -0.382 5208 -0.093 0.039 -0.012 -0.091 0.260 0.182 5007 0.359 24  5084 -0.441 0.441 5183 -0.141 -0.151 0.186 0.148 0.116 -0.021 JPJ^{P} Mass ΞcΩ¯c\Xi_{c}^{\prime}\bar{\Omega}_{c}^{*} ΞcΩ¯c\Xi_{c}^{\prime}\bar{\Omega}_{c} ΞcΩ¯c\Xi_{c}\bar{\Omega}_{c}   24  JPJ^{P} Mass ΞcΩ¯c\Xi_{c}^{*}\bar{\Omega}_{c}^{*} ΞcΩ¯c\Xi_{c}^{\prime}\bar{\Omega}_{c}^{*} ΞcΩ¯c\Xi_{c}^{*}\bar{\Omega}_{c} ΞcΩ¯c\Xi_{c}^{*}\bar{\Omega}_{c} Mass ΞcΩ¯c\Xi_{c}^{*}\bar{\Omega}_{c}^{*} ΞcΩ¯c\Xi_{c}^{\prime}\bar{\Omega}_{c}^{*} ΞcΩ¯c\Xi_{c}^{*}\bar{\Omega}_{c} ΞcΩ¯c\Xi_{c}^{*}\bar{\Omega}_{c} 00^{-} 5492 0.899 0.171 0.072 00^{-} 5211 -0.054 -0.069 -0.071   22^{-} 5456 0.843 0.314 0.155 0.187 5295 -0.16 -0.168 -0.126 0.855 5354 -0.216 0.829 0.071 5176 -0.035 0.239 -0.333 5371 -0.437 0.629 0.551 0.147 5251 0.057 -0.134 -0.214 0.123 5267 0.023 -0.199 -0.411 5356 0.113 -0.611 0.735 0.0003 5229 0.085 0.162 -0.710

Table 7: The values of k|ci|2k\cdot|c_{i}|^{2} for the nncn¯n¯c¯nnc\bar{n}\bar{n}\bar{c}, nscn¯n¯c¯nsc\bar{n}\bar{n}\bar{c}, nncs¯s¯c¯nnc\bar{s}\bar{s}\bar{c}, nscn¯s¯c¯nsc\bar{n}\bar{s}\bar{c}, nscs¯s¯c¯nsc\bar{s}\bar{s}\bar{c}, and sscs¯s¯c¯ssc\bar{s}\bar{s}\bar{c} hexaquark subsystems. The masses are all in units of MeV. The ×\times means that the decay channel is kinetically forbidden.

sscs¯s¯c¯ssc\bar{s}\bar{s}\bar{c}(I=0)(I=0) (nn)I=1cs¯s¯c¯(nn)^{I=1}c\bar{s}\bar{s}\bar{c}(I=1)(I=1) (nn)I=1c(n¯n¯)I=1c¯(nn)^{I=1}c(\bar{n}\bar{n})^{I=1}\bar{c}(I=2,1,0)(I=2,1,0) (nn)I=0c(n¯n¯)I=1c¯(nn)^{I=0}c(\bar{n}\bar{n})^{I=1}\bar{c}(I=1)(I=1) JPCJ^{PC} Mass ΩcΩ¯c{\Omega_{c}^{*}\bar{\Omega}_{c}^{*}} ΩcΩ¯c\Omega_{c}^{*}\bar{\Omega}_{c} ΩcΩ¯c\Omega_{c}\bar{\Omega}_{c}^{*} ΩcΩ¯c{\Omega_{c}\bar{\Omega}_{c}} JPJ^{P} Mass ΣcΩ¯c{\Sigma_{c}^{*}\bar{\Omega}_{c}^{*}} ΣcΩ¯c{\Sigma_{c}\bar{\Omega}_{c}^{*}} ΣcΩ¯c{\Sigma_{c}^{*}\bar{\Omega}_{c}} ΣcΩ¯c{\Sigma_{c}\bar{\Omega}_{c}} JPCJ^{PC} Mass ΣcΣ¯c\Sigma^{*}_{c}\bar{\Sigma}^{*}_{c} ΣcΣ¯c\Sigma^{*}_{c}\bar{\Sigma}_{c} ΣcΣ¯c\Sigma_{c}\bar{\Sigma}^{*}_{c} ΣcΣ¯c\Sigma_{c}\bar{\Sigma}_{c} JPJ^{P} Mass ΛcΣ¯c\Lambda_{c}\bar{\Sigma}^{*}_{c} ΛcΣ¯c\Lambda_{c}\bar{\Sigma}_{c} 33^{--} 5534 69 33^{-} 5285 47 33^{--} 5036 552 22^{-} 4939 38 22^{--} 5490 124 124 22^{-} 5319 238 48 9 22^{--} 5025 301 4895 272 2+2^{-+} 5539 136 1 1 5255 ×\times 38.5 170 2+2^{-+} 5060 206 12 12 11^{-} 5013 35 0.2 5475 ×\times 88 88 5233 ×\times 126 44 5008 ×\times 70 70 4922 110 59 11^{--} 5569 271 10 10 12 11^{-} 5415 281 65 56 30 11^{--} 5143 235 71 71 88 4876 167 76 5522 ×\times 143 143 37 5312 47 7 239 30 5130 141 109 109 19 4852 42 444 5429 ×\times ×\times ×\times 252 5269 ×\times 233 14 16 4954 ×\times ×\times ×\times 228 4792 ×\times 50 1+1^{-+} 5465 53 53 5196 ×\times ×\times 209 1+1^{-+} 5006 123 123 4686 ×\times 0.5 0+0^{-+} 5622 325 44 5157 ×\times ×\times 11 0+0^{-+} 5217 337 121 4605 ×\times 3 5495 ×\times 219 5150 ×\times ×\times 2 5066 77 226 00^{-} 4933 10 5435 ×\times 46 00^{-} 5366 377 21 4958 ×\times 16 4842 178 5242 ×\times 336 4797 166 nscn¯s¯c¯nsc\bar{n}\bar{s}\bar{c}(I=1,0)(I=1,0) nsc(n¯n¯)I=1c¯nsc(\bar{n}\bar{n})^{I=1}\bar{c}(I=3/2,1/2)(I=3/2,1/2) (nn)I=0c(n¯n¯)I=0c¯(nn)^{I=0}c(\bar{n}\bar{n})^{I=0}\bar{c}(I=0)(I=0) JPCJ^{PC} Mass ΞcΞ¯c\Xi^{*}_{c}\bar{\Xi}^{*}_{c} ΞcΞ¯c\Xi^{*}_{c}\bar{\Xi}^{\prime}_{c} ΞcΞ¯c\Xi^{\prime}_{c}\bar{\Xi}^{*}_{c} ΞcΞ¯c\Xi^{*}_{c}\bar{\Xi}_{c} ΞcΞ¯c\Xi_{c}\bar{\Xi}^{*}_{c} ΞcΞ¯c\Xi^{\prime}_{c}\bar{\Xi}_{c} ΞcΞ¯c\Xi_{c}\bar{\Xi}^{\prime}_{c} ΞcΞ¯c\Xi^{\prime}_{c}\bar{\Xi}^{\prime}_{c} ΞcΞ¯c\Xi_{c}\bar{\Xi}_{c} JPJ^{P} Mass ΞcΣ¯c\Xi^{*}_{c}\bar{\Sigma}^{*}_{c} ΞcΣ¯c\Xi^{*}_{c}\bar{\Sigma}_{c} ΞcΣ¯c\Xi^{\prime}_{c}\bar{\Sigma}^{*}_{c} ΞcΣ¯c\Xi^{\prime}_{c}\bar{\Sigma}_{c} ΞcΣ¯c\Xi_{c}\bar{\Sigma}^{*}_{c} ΞcΣ¯c\Xi_{c}\bar{\Sigma}_{c} JPCJ^{PC} Mass ΛcΛ¯c\Lambda_{c}\bar{\Lambda}_{c} 33^{--} 5292 51.2 33^{-} 5164 28.4 11^{--} 4940 95 2+2^{-+} 5329 247 12 12 13 13 22^{-} 5250 265 22 90 52 4816 0.3 5240 ×\times 88 88 5 5 5134 ×\times 149 39 13 4584 108 5216 ×\times ×\times ×\times 44 44 5116 ×\times 64 114 0.01 0+0^{-+} 4767 213 5168 ×\times ×\times ×\times 107 107 5071 ×\times ×\times ×\times 231 4649 160 24  5125 ×\times ×\times ×\times 0 0 5051 ×\times ×\times ×\times 48 nsc(n¯n¯)I=0c¯nsc(\bar{n}\bar{n})^{I=0}\bar{c}(I=1/2)(I=1/2) 22^{--} 5295 317 318 12 12 5017 ×\times ×\times ×\times 24 JPJ^{P} Mass ΞcΛ¯c\Xi_{c}^{*}\bar{\Lambda}_{c} ΞcΛ¯c\Xi_{c}^{\prime}\bar{\Lambda}_{c} ΞcΛ¯c\Xi_{c}\bar{\Lambda}_{c} 24  5200 ×\times ×\times 93 93 11^{-} 5419 213 106 85 57 68 57 22^{-} 5192 3 5155 ×\times ×\times 54 54 5235 118 179 1 4 19 10 5015 252 1+1^{-+} 5326 63 63 28 28 41 41 5185 27 4 204 0.1 16 1 4971 40 5224 17 17 3 3 8 8 5120 ×\times 0.4 23 78 20 0.1 11^{-} 5447 2 1 0.1 5134 ×\times ×\times 88 88 9 9 5090 ×\times ×\times ×\times 12 128 40 5028 82 2 0.1 5110 ×\times ×\times ×\times ×\times 35 35 5056 ×\times ×\times ×\times 146 38 6 5005 185 116 21 5066 ×\times ×\times ×\times ×\times 44 44 5041 ×\times ×\times ×\times 6 9 9 4970 6 61 3 11^{--} 5421 111 88 88 15 15 12 12 84 23 5036 ×\times ×\times ×\times 13 9 33 4943 30 177 0.4 5398 167 2 2 4 4 7 7 4 1 5008 ×\times ×\times ×\times 23 ×\times 249 4913 ×\times 0.4 4 5288 ×\times 63 63 6 6 7 7 18 0.2 4991 ×\times ×\times ×\times 9 ×\times 1 4896 ×\times 13 109 5206 ×\times ×\times ×\times 9 9 6 6 196 5 4970 ×\times ×\times ×\times ×\times ×\times 0.1 4870 ×\times 0.01 182 5153 ×\times ×\times ×\times 96 96 11 11 ×\times 13 4946 ×\times ×\times ×\times ×\times ×\times 4 4822 ×\times ×\times 31 5114 ×\times ×\times ×\times 4 4 100 100 ×\times 11 00^{-} 5285 402 53 8 4809 ×\times ×\times 27 5073 ×\times ×\times ×\times ×\times ×\times 1 1 ×\times 16 5151 ×\times 288 2 4770 ×\times ×\times 2 5050 ×\times ×\times ×\times ×\times ×\times 0 0 ×\times 36 5071 ×\times 26 36 00^{-} 5027 1 13 5041 ×\times ×\times ×\times ×\times ×\times ×\times ×\times ×\times 2 5024 ×\times ×\times 261 4996 169 38 5027 ×\times ×\times ×\times ×\times ×\times ×\times ×\times ×\times 265 5015 ×\times ×\times 13 4914 173 38 5021 ×\times ×\times ×\times ×\times ×\times ×\times ×\times ×\times 1 4962 ×\times ×\times 6 4894 2 237 19  5003 ×\times ×\times ×\times ×\times ×\times ×\times ×\times ×\times 35 nscs¯s¯c¯nsc\bar{s}\bar{s}\bar{c}(I=1/2)(I=1/2) 4815 ×\times 33 24  4987 ×\times ×\times ×\times ×\times ×\times ×\times ×\times ×\times 8 JPJ^{P} Mass ΞcΩ¯c{\Xi_{c}^{*}\bar{\Omega}_{c}^{*}} ΞcΩ¯c{\Xi_{c}^{\prime}\bar{\Omega}_{c}^{*}} ΞcΩ¯c{\Xi_{c}^{*}\bar{\Omega}_{c}} ΞcΩ¯c{\Xi_{c}^{\prime}\bar{\Omega}_{c}} ΞcΩ¯c{\Xi_{c}\bar{\Omega}_{c}^{*}} ΞcΩ¯c{\Xi_{c}\bar{\Omega}_{c}} (nn)I=0cs¯s¯c¯(nn)^{I=0}c\bar{s}\bar{s}\bar{c}(I=0)(I=0) 19  4978 ×\times ×\times ×\times ×\times ×\times ×\times ×\times ×\times 1 33^{-} 5413 68 JPJ^{P} Mass ΛcΩ¯c\Lambda_{c}\bar{\Omega}_{c}^{*} ΛcΩ¯c\Lambda_{c}\bar{\Omega}_{c} 24  0+0^{-+} 5407 407 9 9 44 14 11^{-} 5590 216 71 88 53 45 43 22^{-} 5135 78 5300 1 2 2 72 1 5432 98 13 144 17 9 9 5128 191 5235 ×\times 19 19 245 16 5390 ×\times 212 39 13 0.2 1 11^{-} 5189 67 3 5131 ×\times 136 136 ×\times 22 5332 ×\times ×\times ×\times 124 84 22 5138 106 32 5116 ×\times 0.5 0.5 ×\times 47 5307 ×\times ×\times ×\times 68 91 1 5088 136 0.00005 5047 ×\times 0.5 0.5 ×\times 283 5274 ×\times ×\times ×\times 9 72 23 5071 4 318 5009 ×\times 3 3 ×\times 1 5245 ×\times ×\times ×\times ×\times 15 185 4984 ×\times 3 4976 ×\times ×\times ×\times ×\times 9 5244 ×\times ×\times ×\times ×\times 2 8 00^{-} 5130 ×\times 26 00^{--} 5137 38 38 5227 ×\times ×\times ×\times ×\times ×\times 80 5040 ×\times 256 5117 62 62 5208 ×\times ×\times ×\times ×\times ×\times 11 5007 ×\times 33 24  5084 62 62 5183 ×\times ×\times ×\times ×\times ×\times 0.1 JPJ^{P} Mass ΞcΩ¯c\Xi_{c}^{\prime}\bar{\Omega}_{c}^{*} ΞcΩ¯c\Xi_{c}^{\prime}\bar{\Omega}_{c} ΞcΩ¯c\Xi_{c}\bar{\Omega}_{c}   24  JPJ^{P} Mass ΞcΩ¯c\Xi_{c}^{*}\bar{\Omega}_{c}^{*} ΞcΩ¯c\Xi_{c}^{\prime}\bar{\Omega}_{c}^{*} ΞcΩ¯c\Xi_{c}^{*}\bar{\Omega}_{c} ΞcΩ¯c\Xi_{c}^{*}\bar{\Omega}_{c} Mass ΞcΩ¯c\Xi_{c}^{*}\bar{\Omega}_{c}^{*} ΞcΩ¯c\Xi_{c}^{\prime}\bar{\Omega}_{c}^{*} ΞcΩ¯c\Xi_{c}^{*}\bar{\Omega}_{c} ΞcΩ¯c\Xi_{c}^{*}\bar{\Omega}_{c} 00^{-} 5492 1 0.2 0.1 00^{-} 5211 ×\times ×\times 2   22^{-} 5456 249 55 13 27 5295 ×\times ×\times ×\times 294 5354 ×\times 319 4 5176 ×\times ×\times 21 5371 ×\times 108 86 13 5251 ×\times ×\times ×\times 3 5267 ×\times ×\times 88 5356 ×\times 70 111 0 5229 ×\times ×\times 209

IV.1 The nncn¯n¯c¯nnc\bar{n}\bar{n}\bar{c} subsystem

Firstly, we discuss the nncn¯n¯c¯nnc\bar{n}\bar{n}\bar{c} subsystem based on Fig. 1 (a). They have the same mass range as the excited states of cc¯c\bar{c}. The nncn¯n¯c¯nnc\bar{n}\bar{n}\bar{c} subsystem can be divided into three situations: (nn)I=1c(n¯n¯)I=1c¯(nn)^{I=1}c(\bar{n}\bar{n})^{I=1}\bar{c}, (nn)I=0c(n¯n¯)I=1c¯(nn)^{I=0}c(\bar{n}\bar{n})^{I=1}\bar{c}, and (nn)I=0c(n¯n¯)I=0c¯(nn)^{I=0}c(\bar{n}\bar{n})^{I=0}\bar{c}.

As for (nn)I=1c(n¯n¯)I=0c¯(nn)^{I=1}c(\bar{n}\bar{n})^{I=0}\bar{c} states, they are antiparticles of the (nn)I=0c(n¯n¯)I=1c¯(nn)^{I=0}c(\bar{n}\bar{n})^{I=1}\bar{c} states, thus they have the same mass spectra. We find no relative “stable” states for the nncn¯n¯c¯nnc\bar{n}\bar{n}\bar{c} system, that is, all of them can decay in SS-wave through strong interaction.

There are some hexaquark states which have the same quantum numbers among (nn)I=1c(n¯n¯)I=1c¯(nn)^{I=1}c(\bar{n}\bar{n})^{I=1}\bar{c} (nn)I=0c(n¯n¯)I=1c¯(nn)^{I=0}c(\bar{n}\bar{n})^{I=1}\bar{c}, and (nn)I=0c(n¯n¯)I=0c¯(nn)^{I=0}c(\bar{n}\bar{n})^{I=0}\bar{c}. For example, both (nn)I=1c(n¯n¯)I=1c¯(nn)^{I=1}c(\bar{n}\bar{n})^{I=1}\bar{c} and (nn)I=0c(n¯n¯)I=1c¯(nn)^{I=0}c(\bar{n}\bar{n})^{I=1}\bar{c} have some states with the total isospin I=1{I=1}. The mass spectrum of these states should have been mixed, but all of transition matrix elements of CMI Hamiltonian are zero and thus they cannot be mixed under the CMI model. According to Fig. 1 (a), the masses of (nn)I=1c(n¯n¯)I=1c¯(nn)^{I=1}c(\bar{n}\bar{n})^{I=1}\bar{c} states are usually larger than those of (nn)I=0c(n¯n¯)I=1c¯(nn)^{I=0}c(\bar{n}\bar{n})^{I=1}\bar{c} states which are generally larger than those of (nn)I=0c(n¯n¯)I=0c¯(nn)^{I=0}c(\bar{n}\bar{n})^{I=0}\bar{c} states. In the conventional baryon sectors, the I=1I=1 one is usually heavier than the I=0I=0 one, for example, see [Σ(1189)(I=1)\Sigma(1189)(I=1) vs Λ(1116)(I=0)\Lambda(1116)(I=0)] and [Σc(2455)(I=1)\Sigma_{c}(2455)(I=1) vs Λc(2286)(I=0)\Lambda_{c}(2286)(I=0)]. In our work, the wave functions of hexaquark states can be regarded as “baryon \otimes antibaryon” configuration. These two factors may result into that the hexaquark with larger isospin is heavier than that with smaller isospin. The similar results can be found in Refs. Chen:2016ont ; Weng:2018mmf ; Weng:2019ynva .

The total isospin of (nn)I=1c(n¯n¯)I=1c¯(nn)^{I=1}c(\bar{n}\bar{n})^{I=1}\bar{c} states can be I=2I=2, 1, and 0. Note that the symmetry property of (nn)I=1c(n¯n¯)I=1c¯(nn)^{I=1}c(\bar{n}\bar{n})^{I=1}\bar{c} is determined from InnI_{nn} and In¯n¯I_{\bar{n}\bar{n}}. Thus, the (nn)I=1c(n¯n¯)I=1c¯(nn)^{I=1}c(\bar{n}\bar{n})^{I=1}\bar{c} states are degenerate for the total isospin of I=2I=2, 11, and 0 in the CMI model.

There are some nncn¯n¯c¯nnc\bar{n}\bar{n}\bar{c} neutral states with exotic quantum numbers JPC=0J^{PC}=0^{--}, 1+1^{-+}, and 3+3^{-+} which the traditional mesons (qq¯q\bar{q}) cannot have. These exotic quantum number can help identify hidden-charm hexaquark states.

The notation Hn2n¯2(5036,2,3)H_{n^{2}\bar{n}^{2}}(5036,2^{-},3^{--}) is for a hexaquark state nncn¯n¯c¯nnc\bar{n}\bar{n}\bar{c} with mass around 5036 MeV and IG(JPC)=2(3)I^{G}(J^{PC})=2^{-}(3^{--}). According to the Table 6, the overlap between Hn2n¯2(5036,2,3)H_{n^{2}\bar{n}^{2}}(5036,2^{-},3^{--}) and ΣcΣ¯c\Sigma^{*}_{c}\bar{\Sigma}^{*}_{c} states is nearly 1, and thus the hexaquark is mainly made of a baryon and an antibaryon. It may behave like the ordinary scattering state if the inner interaction is not strong, but could also be a resonance or bound state dynamically generated by the baryon and antibaryon. The Hn2n¯2(5060,2+,2+)H_{n^{2}\bar{n}^{2}}(5060,2^{+},2^{-+}), Hn2n¯2(5066,2+,0+)H_{n^{2}\bar{n}^{2}}(5066,2^{+},0^{-+}), and others have similar situations. These kinds of hexaquarks deserve a more careful study.

The nncn¯n¯c¯nnc\bar{n}\bar{n}\bar{c} subsystem has one rearrangement decay mode: nncn¯n¯c¯nnc-\bar{n}\bar{n}\bar{c}. The (nn)I=0c(n¯n¯)I=1c¯(nn)^{I=0}c(\bar{n}\bar{n})^{I=1}\bar{c} hexaquark states can decay to ΛcΣ¯c\Lambda_{c}\bar{\Sigma}_{c}^{*} and ΛcΣ¯c\Lambda_{c}\bar{\Sigma}_{c}, but the JP=2J^{P}=2^{-} (00^{-}) states can only decay into ΛcΣ¯c\Lambda_{c}\bar{\Sigma}_{c}^{*} (ΛcΣ¯c\Lambda_{c}\bar{\Sigma}_{c}) due to the angular momentum conservation. The (nn)I=0c(n¯n¯)I=0c¯(nn)^{I=0}c(\bar{n}\bar{n})^{I=0}\bar{c} hexaquarks have only one decay channel ΛcΛ¯c\Lambda_{c}\bar{\Lambda}_{c} while the (nn)I=1c(n¯n¯)I=1c¯(nn)^{I=1}c(\bar{n}\bar{n})^{I=1}\bar{c} hexaquark states decay to Σc()Σ¯c()\Sigma_{c}^{(*)}\bar{\Sigma}_{c}^{(*)} in the “OZI-superallowed” decay mode.

One can extract the decay width information from Table 7. The Hn2n¯2(5143,2,1)H_{n^{2}\bar{n}^{2}}(5143,2^{-},1^{--}) and Hn2n¯2(5130,2,1)H_{n^{2}\bar{n}^{2}}(5130,2^{-},1^{--}) decay to all possible channel, but their partial width ratios are different. For the Hn2n¯2(5143,2,1)H_{n^{2}\bar{n}^{2}}(5143,2^{-},1^{--}),

ΓΣcΣ¯c:Γ(ΣcΣ¯c):ΓΣcΣ¯c=2.7:1.6:1,\Gamma_{\Sigma_{c}^{*}\bar{\Sigma}_{c}^{*}}:\Gamma_{(\Sigma_{c}^{*}\bar{\Sigma}_{c})^{-}}:\Gamma_{\Sigma_{c}\bar{\Sigma}_{c}}=2.7:1.6:1, (8)

and for Hn2n¯2(5130,2,1)H_{n^{2}\bar{n}^{2}}(5130,2^{-},1^{--})·

ΓΣcΣ¯c:Γ(ΣcΣ¯c):ΓΣcΣ¯c=7.4:11.5:1,\Gamma_{\Sigma_{c}^{*}\bar{\Sigma}_{c}^{*}}:\Gamma_{(\Sigma_{c}^{*}\bar{\Sigma}_{c})^{-}}:\Gamma_{\Sigma_{c}\bar{\Sigma}_{c}}=7.4:11.5:1, (9)

where (ΣcΣ¯c)(\Sigma_{c}^{*}\bar{\Sigma}_{c})^{-} is short for the (ΣcΣ¯cΣcΣ¯c)/2(\Sigma_{c}^{*}\bar{\Sigma}_{c}-\Sigma_{c}\bar{\Sigma}_{c}^{*})/\sqrt{2} mode with C=1C=-1.

IV.2 The sscs¯s¯c¯ssc\bar{s}\bar{s}\bar{c} subsystem

The sscs¯s¯c¯ssc\bar{s}\bar{s}\bar{c} states can be considered as pure neutral particles. Some of them have normal quantum numbers JPC=0+J^{PC}=0^{-+}, 11^{--}, 2+2^{-+}, 22^{--}, and 33^{--}, but others carry exotic quantum numbers JPC=0J^{PC}=0^{--}, 1+1^{-+}, and 3+3^{-+}. Meanwhile, all of these have many different rearrangement decay channels according to Fig. 1 (b) and thus their widths are relative broad.

For the two-body strong decay behaviors of the sscs¯s¯c¯ssc\bar{s}\bar{s}\bar{c} subsystem, the heaviest Hs2s¯2(5651,0+,0+)H_{s^{2}\bar{s}^{2}}(5651,0^{+},0^{-+}) has two decay modes,

ΓΩcΩ¯c:ΓΩcΩ¯c=7.4:1,\Gamma_{\Omega_{c}^{*}\bar{\Omega}_{c}^{*}}:\Gamma_{\Omega_{c}\bar{\Omega}_{c}}=7.4:1, (10)

and its dominant decay mode is ΩcΩ¯c\Omega_{c}^{*}\bar{\Omega}_{c}^{*}. The Hs2s¯2(5569,0,1)H_{s^{2}\bar{s}^{2}}(5569,\\ 0^{-},1^{--}) state can decay through all possible baryon-antibaryon channels, and

ΓΩcΩ¯c:Γ(ΩcΩ¯c):ΓΩcΩ¯c=22.6:1.7:1,\Gamma_{\Omega_{c}^{*}\bar{\Omega}_{c}^{*}}:\Gamma_{(\Omega_{c}^{*}\bar{\Omega}_{c})^{-}}:\Gamma_{\Omega_{c}\bar{\Omega}_{c}}=22.6:1.7:1, (11)

where the (ΩcΩ¯c)(\Omega_{c}^{*}\bar{\Omega}_{c})^{-} means (ΩcΩ¯cΩcΩ¯c)/2(\Omega_{c}^{*}\bar{\Omega}_{c}-\Omega_{c}\bar{\Omega}_{c}^{*})/\sqrt{2} which is antisymmetric under the CC-parity transformation. Moreover, for the states Hs2s¯2(5429,0,1)H_{s^{2}\bar{s}^{2}}(5429,0^{-},1^{--}) and Hs2s¯2(5435,0+,0+)H_{s^{2}\bar{s}^{2}}(5435,0^{+},0^{-+}), their masses are similar and they can only decay through ΩcΩ¯c{\Omega_{c}\bar{\Omega}_{c}} mode. Hs2s¯2(5495,0+,0+)H_{s^{2}\bar{s}^{2}}(5495,0^{+},0^{-+}) and Hs2s¯2(5490,0+,2)H_{s^{2}\bar{s}^{2}}(5490,0^{+},2^{--}) have similar masses but the former can decay into ΩcΩ¯c{\Omega_{c}\bar{\Omega}_{c}} while the latter can decay through (ΩcΩ¯cΩcΩ¯c)/2(\Omega_{c}^{*}\bar{\Omega}_{c}-\Omega_{c}\bar{\Omega}_{c}^{*})/\sqrt{2} in SS-wave.

The rest of sscs¯s¯c¯ssc\bar{s}\bar{s}\bar{c} hexaquark states are below the baryon-antibaryon decay channels. Therefore, their mainly rearrangement decay channels should be meson-meson-meson decay channels.

IV.3 The nncs¯s¯c¯nnc\bar{s}\bar{s}\bar{c} subsystem

According to Fig. 1 (c), we discuss the mass spectra and decay behaviour of nncs¯s¯c¯nnc\bar{s}\bar{s}\bar{c} subsystem. For the I=1I=1 nncs¯s¯c¯nnc\bar{s}\bar{s}\bar{c} states, they are explicitly exotic states. There are still no relative stable states in nncs¯s¯c¯nnc\bar{s}\bar{s}\bar{c} subsystem.

For the I=0I=0 states, they have only two channels: ΛcΩ¯c{\Lambda_{c}\bar{\Omega}_{c}^{*}} and ΛcΩ¯c{\Lambda_{c}\bar{\Omega}_{c}}. The two states Hn2s¯2(5128,0,2)H_{n^{2}\bar{s}^{2}}(5128,0,2^{-}) and Hn2s¯2(5130,0,0)H_{n^{2}\bar{s}^{2}}(5130,0,0^{-}) can be distinguished by their respective decay modes. The Hn2s¯2(5128,0,2)H_{n^{2}\bar{s}^{2}}(5128,0,2^{-}) can dissociate into ΛcΩ¯c\Lambda_{c}\bar{\Omega}_{c}^{*} while Hn2s¯2(5130,0,0)H_{n^{2}\bar{s}^{2}}(5130,0,0^{-}) can decay into ΛcΩ¯c\Lambda_{c}\bar{\Omega}_{c} in SS-wave.

There are four different decay channels for the I=1I=1 states: ΣcΩ¯c{\Sigma_{c}^{*}\bar{\Omega}_{c}^{*}}, ΣcΩ¯c{\Sigma_{c}\bar{\Omega}_{c}^{*}}, ΣcΩ¯c{\Sigma_{c}^{*}\bar{\Omega}_{c}}, and ΣcΩ¯c{\Sigma_{c}\bar{\Omega}_{c}}. From Table 7, for Hn2s¯2(5415,1,1)H_{n^{2}\bar{s}^{2}}(5415,1,1^{-}) state,

ΓΣcΩ¯c:ΓΣcΩ¯c:ΓΣcΩ¯c:ΓΣcΩ¯c=9.4:2.2:1.9:1.\Gamma_{\Sigma_{c}^{*}\bar{\Omega}_{c}^{*}}:\Gamma_{\Sigma_{c}\bar{\Omega}_{c}^{*}}:\Gamma_{\Sigma_{c}^{*}\bar{\Omega}_{c}}:\Gamma_{\Sigma_{c}\bar{\Omega}_{c}}=9.4:2.2:1.9:1. (12)

and for the Hn2s¯2(5312,1,1)H_{n^{2}\bar{s}^{2}}(5312,1,1^{-}) state

ΓΣcΩ¯c:ΓΣcΩ¯c:ΓΣcΩ¯c:ΓΣcΩ¯c=1.6:0.2:8:1.\Gamma_{\Sigma_{c}^{*}\bar{\Omega}_{c}^{*}}:\Gamma_{\Sigma_{c}\bar{\Omega}_{c}^{*}}:\Gamma_{\Sigma_{c}^{*}\bar{\Omega}_{c}}:\Gamma_{\Sigma_{c}\bar{\Omega}_{c}}=1.6:0.2:8:1. (13)

IV.4 The nscn¯n¯c¯nsc\bar{n}\bar{n}\bar{c} subsystem

We discuss the mass spectra and decay behaviors of nscn¯n¯c¯nsc\bar{n}\bar{n}\bar{c} subsystem based on Fig. 2 (a). The nncn¯s¯c¯nnc\bar{n}\bar{s}\bar{c} states are antiparticles of the nscn¯n¯c¯nsc\bar{n}\bar{n}\bar{c} states, and thus they have the same mass spectra.

The nscn¯n¯c¯nsc\bar{n}\bar{n}\bar{c} subsystem can be divided into two situations: nsc(n¯n¯)I=1c¯nsc(\bar{n}\bar{n})^{I=1}\bar{c} and nsc(n¯n¯)I=0c¯nsc(\bar{n}\bar{n})^{I=0}\bar{c}. For the nsc(n¯n¯)I=1c¯nsc(\bar{n}\bar{n})^{I=1}\bar{c} states, the mass spectra are identical for total isospin of I=3/2I=3/2 and 1/21/2 in CMI model similar to (nn)I=1c(n¯n¯)I=1c¯(nn)^{I=1}c(\bar{n}\bar{n})^{I=1}\bar{c} subsystem. The nscn¯n¯c¯nsc\bar{n}\bar{n}\bar{c} states with I=3/2I=3/2 are explicitly exotic and thus easily identifiable as candidates for the hidden-charm hexaquark state.

From Fig. 2 (a), we find the lowest 00^{-}, 11^{-}, 22^{-}, and 33^{-} states are relatively stable states, and especially the Hnsn¯2(3578,1/2,0)H_{ns\bar{n}^{2}}(3578,1/2,0^{-}) is below all the thresholds for rearrangement decay channels. Other three states can still decay via DD-wave strong interaction. For example, the Hnsn¯2(4682,1/2,3)H_{ns\bar{n}^{2}}(4682,{1}/{2},3^{-}) can decay into KDD¯KD^{*}\bar{D} final states via DD-wave.

From Table 7, there are 6 and 3 possible baryon-antibaryon channels for the nsc(n¯n¯)I=1c¯nsc(\bar{n}\bar{n})^{I=1}\bar{c} and nsc(n¯n¯)I=0c¯nsc(\bar{n}\bar{n})^{I=0}\bar{c} subsystems, respectively. The Hnsn¯2(5071,3/2,2)H_{ns\bar{n}^{2}}(5071,3/2,2^{-}) and Hnsn¯2(5071,3/2,0)H_{ns\bar{n}^{2}}(5071,3/2,0^{-}) are accidentally degenerate, but the JP=2J^{P}=2^{-} state can decay into ΞcΣ¯c\Xi_{c}^{*}\bar{\Sigma}_{c}^{*}, ΞcΣ¯c\Xi_{c}^{*}\bar{\Sigma}_{c}, ΞcΣ¯c\Xi_{c}^{\prime}\bar{\Sigma}_{c}^{*}, and ΞcΣ¯c\Xi_{c}^{\prime}\bar{\Sigma}_{c} while the JP=0J^{P}=0^{-} state can only decay through ΞcΣ¯c\Xi_{c}\bar{\Sigma}_{c}^{*}, and ΞcΣ¯c\Xi_{c}\bar{\Sigma}_{c} channels. Similarly, Hnsn¯2(4971,1/2,2)H_{ns\bar{n}^{2}}(4971,1/2,2^{-}) can only decay through ΞcΛ¯c{\Xi_{c}^{*}\bar{\Lambda}_{c}} mode, but Hnsn¯2(4970,1/2,1)H_{ns\bar{n}^{2}}(4970,1/2,1^{-}) can only decay into ΞcΛ¯c{\Xi_{c}^{\prime}\bar{\Lambda}_{c}}, ΞcΛ¯c{\Xi_{c}^{\prime}\bar{\Lambda}_{c}} and ΞcΛ¯c{\Xi_{c}\bar{\Lambda}_{c}} modes. We can distinguish Hnsn¯2(4913,1/2,1)H_{ns\bar{n}^{2}}(4913,1/2,1^{-}) and Hnsn¯2(4914,1/2,0)H_{ns\bar{n}^{2}}(4914,1/2,0^{-}) by partial decay width ratios since for the former,

ΓΞcΛ¯c:ΓΞcΛ¯c=0.1:1.\Gamma_{\Xi_{c}^{\prime}\bar{\Lambda}_{c}}:\Gamma_{\Xi_{c}\bar{\Lambda}_{c}}=0.1:1. (14)

and for the latter,

ΓΞcΛ¯c:ΓΞcΛ¯c=4.6:1.\Gamma_{\Xi_{c}^{\prime}\bar{\Lambda}_{c}}:\Gamma_{\Xi_{c}\bar{\Lambda}_{c}}=4.6:1. (15)

IV.5 The nscn¯s¯c¯nsc\bar{n}\bar{s}\bar{c} subsystem

Here, we discuss the nscn¯s¯c¯nsc\bar{n}\bar{s}\bar{c} subsystem based on Fig. 2 (b). The subsystem is also a pure neutral subsystem, thus CC parity and GG parity are good quantum numbers. Since there is no constraint from the Pauli principle for nscn¯s¯c¯nsc\bar{n}\bar{s}\bar{c} subsystem, the values of δ12A\delta^{A}_{12}, δ12S\delta^{S}_{12}, δ34A\delta^{A}_{34}, and δ34S\delta^{S}_{34} from Table 4 are all 1 and the obtained mass spectra is more complicated than other subsystems. There are no relative stable states for the nscn¯s¯c¯nsc\bar{n}\bar{s}\bar{c} subsystem.

Similar to the nncn¯n¯c¯nnc\bar{n}\bar{n}\bar{c} states, the mass spectra of nscn¯s¯c¯nsc\bar{n}\bar{s}\bar{c} states are identical for total isospin of I=1I=1 and 0 in CMI model. From Fig. 2 (b), we find nine good exotic states candidates for quantum numbers JPC=0J^{PC}=0^{--}.

The mass of Hnsn¯s¯(5117,1(0+),0)H_{ns\bar{n}\bar{s}}(5117,1^{-}(0^{+}),0^{--}) is very closed to Hnsn¯s¯(5114,1(0+),1)H_{ns\bar{n}\bar{s}}(5114,1^{-}(0^{+}),1^{--}), and they all can decay into (ΞcΞ¯cΞcΞ¯c)/2(\Xi_{c}^{\prime}\bar{\Xi}_{c}-\Xi_{c}\bar{\Xi}_{c}^{\prime})/\sqrt{2}. However, the Hnsn¯s¯(5114,1+(0),1)H_{ns\bar{n}\bar{s}}(5114,1^{+}(0^{-}),1^{--}) has others decay channels. From Table 7, we obtain for Hnsn¯s¯(5114,1+(0),1)H_{ns\bar{n}\bar{s}}(5114,1^{+}(0^{-}),1^{--})

Γ(ΞcΞ¯c):Γ(ΞcΞ¯c):ΓΞcΞ¯c=0.6:18.1:1,\displaystyle\Gamma_{(\Xi_{c}^{*}\bar{\Xi}_{c})^{-}}:\Gamma_{(\Xi_{c}^{\prime}\bar{\Xi}_{c})^{-}}:\Gamma_{\Xi_{c}\bar{\Xi}_{c}}=0.6:18.1:1, (16)

where (ΞcΞ¯c)(\Xi_{c}^{*}\bar{\Xi}_{c})^{-} and (ΞcΞ¯c)(\Xi_{c}^{\prime}\bar{\Xi}_{c})^{-} represent (ΞcΞ¯cΞcΞ¯c)/2(\Xi_{c}^{*}\bar{\Xi}_{c}-\Xi_{c}\bar{\Xi}_{c}^{*})/\sqrt{2} and (ΞcΞ¯cΞcΞ¯c)/2(\Xi_{c}^{\prime}\bar{\Xi}_{c}-\Xi_{c}\bar{\Xi}_{c}^{\prime})/\sqrt{2} respectively.

IV.6 The nscs¯s¯c¯nsc\bar{s}\bar{s}\bar{c} subsystem

Lastly, we discuss the mass spectra and decay behaviour of nscs¯s¯c¯nsc\bar{s}\bar{s}\bar{c} subsystem based on the Fig. 3 (a). The sscn¯s¯c¯ssc\bar{n}\bar{s}\bar{c} states are antiparticles of the nscs¯s¯c¯nsc\bar{s}\bar{s}\bar{c} states, and thus they have the same mass spectra. The restrictions from Pauli principle for the nscs¯s¯c¯nsc\bar{s}\bar{s}\bar{c} states are the same as the nsc(n¯n¯)I=1c¯nsc(\bar{n}\bar{n})^{I=1}\bar{c} states, and therefore the numbers of their states are equal.

From Fig. 3 (a), we easily find that there are no relative stable states. The nscs¯s¯c¯nsc\bar{s}\bar{s}\bar{c} states are higher than many different rearrangement decay channels. Therefore, they would have a relative wide width. In conclusion, we do not suggest that the experimentalists foremost find these states.

The reference baryon-antibaryon systems for the nscs¯s¯c¯nsc\bar{s}\bar{s}\bar{c} states are the ΞcΩ¯c\Xi^{*}_{c}\bar{\Omega}^{*}_{c}, ΞcΩ¯c\Xi^{\prime}_{c}\bar{\Omega}^{*}_{c}, ΞcΩ¯c\Xi_{c}\bar{\Omega}^{*}_{c}, ΞcΩ¯c\Xi^{*}_{c}\bar{\Omega}_{c}, ΞcΩ¯c\Xi^{\prime}_{c}\bar{\Omega}_{c}, and ΞcΩ¯c\Xi_{c}\bar{\Omega}_{c}. The mass of Hnss¯2(5356,1/2,2)H_{ns\bar{s}^{2}}(5356,1/2,2^{-}) is close to that of Hnss¯2(5354,1/2,0)H_{ns\bar{s}^{2}}(5354,1/2,0^{-}). For Hnss¯2(5356,1/2,2)H_{ns\bar{s}^{2}}(5356,1/2,2^{-}) state, it can decay through ΞcΩ¯c{\Xi_{c}^{\prime}\bar{\Omega}_{c}^{*}}, ΞcΩ¯c{\Xi_{c}^{*}\bar{\Omega}_{c}}, and ΞcΩ¯c{\Xi_{c}\bar{\Omega}_{c}} channels. But Hnss¯2(5354,1/2,0)H_{ns\bar{s}^{2}}(5354,1/2,0^{-}) can decay into ΞcΩ¯c{\Xi_{c}^{\prime}\bar{\Omega}_{c}} and ΞcΩ¯c{\Xi_{c}\bar{\Omega}_{c}} channels. Then we consider Hnss¯2(5245,1/2,2)H_{ns\bar{s}^{2}}(5245,1/2,2^{-}) and Hnss¯2(5244,1/2,2)H_{ns\bar{s}^{2}}(5244,1/2,2^{-}), and both of them can decay through ΞcΩ¯c{\Xi_{c}\bar{\Omega}_{c}^{*}} and ΞcΩ¯c{\Xi_{c}\bar{\Omega}_{c}} channels in SS-wave. From Table 7, for Hnss¯2(5245,1/2,2)H_{ns\bar{s}^{2}}(5245,1/2,2^{-}),

ΓΞcΩ¯c:ΓΞcΩ¯c=0.1:1,\displaystyle\Gamma_{\Xi_{c}\bar{\Omega}_{c}^{*}}:\Gamma_{\Xi_{c}\bar{\Omega}_{c}}=0.1:1, (17)

and for Hnss¯2(5244,1/2,2)H_{ns\bar{s}^{2}}(5244,1/2,2^{-}),

ΓΞcΩ¯c:ΓΞcΩ¯c=0.3:1.\displaystyle\Gamma_{\Xi_{c}\bar{\Omega}_{c}^{*}}:\Gamma_{\Xi_{c}\bar{\Omega}_{c}}=0.3:1. (18)

V SUMMARY

Up to now, more and more hidden-charm tetraquark states and pentaquark states have been discovered and confirmed by different experiments. These give us a significant confidence to the existence of hidden-charm hexaquark states. Thus, we studied systemically the mass spectra, stability, and strong decay behaviors of hidden-charm hexaquark states in the framework of the CMI model.

Table 8: The relatively stable states of hidden-charm hexaquark system in CMI model. The masses are all in units of MeV.
States IG(JPC)I^{G}(J^{PC}) Masses States I(G)(JP(C))I^{(G)}(J^{P(C)}) Masses
nscn¯s¯c¯nsc\bar{n}\bar{s}\bar{c} 0+(0+)0^{+}(0^{-+}) 3815 nscn¯n¯c¯nsc\bar{n}\bar{n}\bar{c} 1/2(0)1/2(0^{-}) 3578
0(1)0^{-}(1^{--}) 4005 1/2(1)1/2(1^{-}) 3670
0(2)0^{-}(2^{--}) 4443 1/2(2)1/2(2^{-}) 4090
1+(2)1^{+}(2^{--}) 1/2(3)1/2(3^{-}) 4682
0(3)0^{-}(3^{--}) 4794 nncn¯n¯c¯nnc\bar{n}\bar{n}\bar{c} 0+(1+)0^{+}(1^{-+}) 3887
1+(3)1^{+}(3^{--}) 0(3)0^{-}(3^{--}) 4576

Firstly, we introduce the CMI model and extract the corresponding coupling constants from traditional hadrons. Next, we construct the flavor \otimes color \otimes spin wavefunctions based on the SU(3) and SU(2) symmetry. Meanwhile, we require the wavefunction to obey Pauli Principle. After that, we systemically calculate the mass spectra, corresponding overlap, and the values of k|ci|k\cdot|c_{i}|. Lastly, we specifically discuss the stability, the possible quark rearrangement decay channels, and the relative decay width ratios.

For nncn¯n¯c¯nnc\bar{n}\bar{n}\bar{c}, sscs¯s¯c¯ssc\bar{s}\bar{s}\bar{c}, and nscn¯s¯c¯nsc\bar{n}\bar{s}\bar{c} subsystems, they are pure neutral particles (except (nn)I=0c(n¯n¯)I=1c¯(nn)^{I=0}c(\bar{n}\bar{n})^{I=1}\bar{c} subsystem), and CC parity and GG parity both are good quantum numbers. According to the mass spectra, we find that the lower isospin quantum number, the more compact hexaquark states. Here, the JPC=0,1+,3+J^{PC}=0^{--},1^{-+},3^{-+} states are good exotic states candidates, and especially the 00^{--} states which even the SS-wave tetraquark states cannot carry.

We list some possible stable hexaquark states in Table 8. We find ten relative stable states, which are below all allowed rearrangement decay channels. These states belong to the nncn¯n¯c¯nnc\bar{n}\bar{n}\bar{c} subsystem, nscn¯n¯c¯nsc\bar{n}\bar{n}\bar{c} subsystem and nscn¯s¯c¯nsc\bar{n}\bar{s}\bar{c} subsystem respectively. We think the Hnsn¯2(3578,1/2,0)H_{ns{\bar{n}}^{2}}(3578,1/2,0^{-}) and Hnsn¯2(3670,1/2,1)H_{ns{\bar{n}}^{2}}(3670,1/2,1^{-}) states are better stable candidates which could be first searched for in experiments.

Table 9: The comparison of the masses for the (nn)I=0c(n¯n¯)I=0c¯(nn)^{I=0}c(\bar{n}\bar{n})^{I=0}\bar{c} and sscs¯s¯c¯ssc\bar{s}\bar{s}\bar{c} systems with IG(JPC)=0(1)I^{G}(J^{PC})=0^{-}(1^{--}) in two scenarios. All masses are in units of MeV.
nncn¯n¯c¯nnc\bar{n}\bar{n}\bar{c} sscs¯s¯c¯ssc\bar{s}\bar{s}\bar{c}
Scen.1 Scen.2 Scen.1 Scen.2
3600 3201 4836 4670
3736 3443 4940 4871
4197 3960 5100 5068
4234 4053 5175 5152
4325 4260 5275 5258
4432 4437 5287 5274
4548 4520 5329 5298
4584 4588 5429 5434
4816 4835 5522 5556
4940 5003 5569 5592

In order to check the uncertainty of our framework, we also determine the vqq¯v_{q\bar{q}} and mqq¯m_{q\bar{q}} with the masses of pseudoscalar mesons. Since the spontaneously breaking of vacuum symmetry strongly affects the properties of these pseudoscalar mesons, the parameters of vqq¯v_{q\bar{q}} and mqq¯m_{q\bar{q}} are not the same as those obtained with the vector mesons. For example, vnn¯v_{n\bar{n}} and mnn¯m_{n\bar{n}} become 29.87 MeV and 153.99 MeV in the new scenario, respectively. However, the difference between the hexquark masses of the two scenarios can be roughly used to estimate the uncertainly of our approach. We give the comparison of the (nn)I=0c(n¯n¯)I=0c¯(nn)^{I=0}c(\bar{n}\bar{n})^{I=0}\bar{c} and sscs¯s¯c¯ssc\bar{s}\bar{s}\bar{c} systems with IG(JPC)=0(1)I^{G}(J^{PC})=0^{-}(1^{--}) in Table 9. Scen.1 (Scen.2) denotes the results calculated by using the parameters obtained with the vector (pseudoscalar) mesons. Firstly, one notices that the ground states differ largest from the table. The heavier the state is, the smaller the difference between the two scenarios is. These may be resulted from that the new vqq¯v_{q\bar{q}} becomes larger while the new mqq¯m_{q\bar{q}} becomes smaller. Secondly, the mass of the (nn)I=0c(n¯n¯)I=0c¯(nn)^{I=0}c(\bar{n}\bar{n})^{I=0}\bar{c} ground state with IG(JPC)=0(1)I^{G}(J^{PC})=0^{-}(1^{--}) changes about 399 MeV while that for the sscs¯s¯c¯ssc\bar{s}\bar{s}\bar{c} case only varies about 166 MeV. That is, the uncertainty reduces when the number of n/n¯n/\bar{n} quark in hexaquark states decreases, which is because the mass difference between π\pi and ρ\rho mesons is much larger than those between KK and KK^{*} mesons.

In summary, we give a preliminary study about the mass spectra of hidden-charm hexaquark states. In addition to the CMI model, other non-perturbative QCD methods can also help us to understand more properties of the hexaquark states in detail such as QCD sum rule, effective fields theories and lattice QCD simulations. We hope that our study may inspire theorists and experimentalists to pay attention to these hidden-charm hexaquark states.

VI Acknowledgments

This work is supported by the China National Funds for Distinguished Young Scientists under Grant No. 11825503, National Key Research and Development Program of China under Contract No. 2020YFA0406400, the 111 Project under Grant No. B20063, and the National Natural Science Foundation of China under Grant No. 12047501. This project is also supported by the National Natural Science Foundation of China under Grants No. 12175091, and 11965016, CAS Interdisciplinary Innovation Team, and the Fundamental Research Funds for the Central Universities under Grants No. lzujbky-2021-sp24.

References

  • (1) S. K. Choi et al. [Belle Collaboration], Observation of a narrow charmonium-like state in exclusive B±K±π+πJ/ψB^{\pm}\rightarrow K^{\pm}\pi^{+}\pi^{-}J/\psi decays, Phys. Rev. Lett. 91, 262001 (2003).
  • (2) D. Acosta et al. [CDF Collaboration], Observation of the narrow state X(3872)J/ψπ+πX(3872)\to J/\psi\pi^{+}\pi^{-} in p¯p\bar{p}p collisions at s=1.96\sqrt{s}=1.96 TeV, Phys. Rev. Lett.  93, 072001 (2004).
  • (3) V. M. Abazov et al. [D0 Collaboration], Observation and properties of the X(3872)X(3872) decaying to J/ψπ+πJ/\psi\pi^{+}\pi^{-} in pp¯p\bar{p} collisions at s=1.96\sqrt{s}=1.96 TeV, Phys. Rev. Lett.  93, 162002 (2004).
  • (4) R. Aaij et al. [LHCb Collaboration], Observation of the resonant character of the Z(4430)Z(4430)^{-} state, Phys. Rev. Lett.  112, no. 22, 222002 (2014).
  • (5) M. Ablikim et al. [BESIII], Evidence of Two Resonant Structures in e+eπ+πhce^{+}e^{-}\to\pi^{+}\pi^{-}h_{c}, Phys. Rev. Lett. 118, no.9, 092002 (2017).
  • (6) M. Ablikim et al. [BESIII], Precise measurement of the e+eπ+πJ/ψe^{+}e^{-}\to\pi^{+}\pi^{-}J/\psi cross section at center-of-mass energies from 3.77 to 4.60 GeV, Phys. Rev. Lett. 118, no.9, 092001 (2017).
  • (7) M. Ablikim et al. [BESIII], Measurement of e+eπ+πψ(3686)e^{+}e^{-}\rightarrow\pi^{+}\pi^{-}\psi(3686) from 4.008 to 4.600 GeV and observation of a charged structure in the π±ψ(3686)\pi^{\pm}\psi(3686) mass spectrum, Phys. Rev. D 96, no.3, 032004 (2017).
  • (8) M. Ablikim et al. [BESIII], Observation of a Near-Threshold Structure in the K+K^{+} Recoil-Mass Spectra in e+eK+(DsD0+DsD0e^{+}e^{-}\rightarrow K^{+}(D_{s}^{-}D^{*0}+D_{s}^{*-}D^{0}), Phys. Rev. Lett. 126 (2021) no.10, 102001.
  • (9) R. Aaij et al. [LHCb Collaboration], Observation of J/ψpJ/\psi p Resonances Consistent with Pentaquark States in Λb0J/ψKp\Lambda_{b}^{0}\to J/\psi K^{-}p Decays, Phys. Rev. Lett.  115, 072001 (2015).
  • (10) R. Aaij et al. [LHCb Collaboration], Model-independent evidence for J/ψpJ/\psi p contributions to Λb0J/ψpK\Lambda_{b}^{0}\to J/\psi pK^{-} decays, Phys. Rev. Lett.  117, no. 8, 082002 (2016).
  • (11) R. Aaij et al. [LHCb Collaboration], Observation of a narrow pentaquark state, Pc(4312)+P_{c}(4312)^{+}, and of two-peak structure of the Pc(4450)+P_{c}(4450)^{+}, Phys. Rev. Lett.  122, no. 22, 222001 (2019).
  • (12) The talk by Franz Muheim at the European Physical Society conference on high energy physics 2021 on July 28, https://indico.desy.de/event/28202/contributions/102717/.
  • (13) G. Faldt and C. Wilkin, Estimation of the ratio of the pnpnπ0π0pn\rightarrow pn\pi^{0}\pi^{0}/pndπ0π0pn\rightarrow d\pi^{0}\pi^{0} cross sections, Phys. Lett. B 701 (2011), 619-622.
  • (14) P. Adlarson et al. [WASA-at-COSY], ABC Effect in Basic Double-Pionic Fusion — Observation of a new resonance?, Phys. Rev. Lett. 106, 242302 (2011).
  • (15) P. Adlarson et al. [WASA-at-COSY], Isospin Decomposition of the Basic Double-Pionic Fusion in the Region of the ABC Effect, Phys. Lett. B 721 (2013), 229-236.
  • (16) R. L. Jaffe, Perhaps a Stable Dihyperon, Phys. Rev. Lett. 38 (1977), 195-198.
  • (17) S. A. Yost and C. R. Nappi, The Mass of the HH Dibaryon in a Chiral Model, Phys. Rev. D 32 (1985), 816.
  • (18) S. D. Paganis, G. W. Hoffmann, R. L. Ray, J. L. Tang, T. Udagawa and R. S. Longacre, Can doubly strange dibaryon resonances be discovered at RHIC?, Phys. Rev. C 62 (2000), 024906.
  • (19) J. L. Rosner, SU(3) Breaking and the HH Dibaryon, Phys. Rev. D 33 (1986), 2043.
  • (20) G. Karl and P. Zenczykowski, H DIBARYON SPECTROSCOPY, Phys. Rev. D 36 (1987), 2079.
  • (21) P. B. Mackenzie and H. B. Thacker, Evidence Against a Stable Dibaryon from Lattice QCD, Phys. Rev. Lett. 55, 2539 (1985).
  • (22) A. T. M. Aerts and J. Rafelski, QCD, Bags and Hadron Masses, Phys. Lett. B 148 (1984), 337.
  • (23) A. P. Balachandran, A. Barducci, F. Lizzi, V. G. J. Rodgers and A. Stern, A Doubly Strange Dibaryon in the Chiral Model, Phys. Rev. Lett. 52 (1984), 887.
  • (24) U. Straub, Z. Y. Zhang, K. Brauer, A. Faessler and S. B. Khadkikar, Binding Energy of the Dihyperon in the Quark Cluster Model, Phys. Lett. B 200 (1988), 241-245.
  • (25) M. Oka, Y. R. Liu and W. Meguro, Charmed Deuteron, Few Body Syst. 54 (2013) no.7-10, 1255-1258.
  • (26) S. M. Gerasyuta and E. E. Matskevich, Heavy dibaryons, Int. J. Mod. Phys. E 20 (2011), 2443-2462.
  • (27) M. Oka, S. Maeda and Y. R. Liu, Charmed dibaryon resonances in the potential quark model, Int. J. Mod. Phys. Conf. Ser. 49 (2019), 1960004.
  • (28) S. Pepin and F. Stancu, Heavy hexaquarks in a chiral constituent quark model, Phys. Rev. D 57, 4475-4478 (1998).
  • (29) Y. R. Liu, W. Meguro and M. Oka, Possible molecular bound states: ΛcN\Lambda_{c}N and ΛcΛc\Lambda_{c}\Lambda_{c}, EPJ Web Conf. 20 (2012), 01001.
  • (30) J. Vijande, A. Valcarce, J. M. Richard and P. Sorba, Search for doubly-heavy dibaryons in a quark model, Phys. Rev. D 94 (2016) no.3, 034038.
  • (31) L. Meng, N. Li and S. L. Zhu, Deuteron-like states composed of two doubly charmed baryons, Phys. Rev. D 95 (2017) no.11, 114019.
  • (32) Z. G. Wang, Analysis of the scalar doubly charmed hexaquark state with QCD sum rules, Eur. Phys. J. C 77 (2017) no.9, 642.
  • (33) W. Meguro, Y. R. Liu and M. Oka, Possible ΛcΛc\Lambda_{c}\Lambda_{c} molecular bound state, Phys. Lett. B 704 (2011), 547-550.
  • (34) J. Leandri and B. Silvestre-Brac, “Dibaryon states containing two different types of heavy quarks,” Phys. Rev. D 51 (1995), 3628-3637.
  • (35) N. Li and S. L. Zhu, Hadronic Molecular States Composed of Heavy Flavor Baryons, Phys. Rev. D 86 (2012), 014020.
  • (36) Z. G. Wang, Triply-charmed hexaquark states with the QCD sum rules, Int. J. Mod. Phys. A 35 (2020) no.14, 2050073.
  • (37) R. Chen, F. L. Wang, A. Hosaka and X. Liu, Exotic triple-charm deuteronlike hexaquarks, Phys. Rev. D 97 (2018) no.11, 114011.
  • (38) J. M. Richard, A. Valcarce and J. Vijande, Very heavy flavored dibaryons, Phys. Rev. Lett. 124 (2020) no.21, 212001.
  • (39) Z. Y. Zhang, Y. W. Yu, P. N. Shen, L. R. Dai, A. Faessler and U. Straub, Hyperon nucleon interactions in a chiral SU(3) quark model, Nucl. Phys. A 625 (1997), 59-70.
  • (40) S. M. Gerasyuta and E. E. Matskevich, Hexaquarks in the coupled-channel formalism, Phys. Rev. D 82 (2010), 056002.
  • (41) B. Silvestre- Brac and J. Leandri, Systematics of q-6 systems in a simple chromomagnetic model, Phys. Rev. D 45 (1992), 4221-4239.
  • (42) W. Park, A. Park and S. H. Lee, Dibaryons in a constituent quark model, Phys. Rev. D 92 (2015) no.1, 014037.
  • (43) X. H. Chen, Q. N. Wang, W. Chen and H. X. Chen, Exotic ΩΩ\Omega\Omega dibaryon states in a molecular picture, Chin. Phys. C 45 (2021) no.4, 041002.
  • (44) M. Oka, Flavor Octet Dibaryons in the Quark Model, Phys. Rev. D 38 (1988), 298.
  • (45) H. Huang, J. Ping, X. Zhu and F. Wang, Full heavy dibaryons, [arXiv:2011.00513].
  • (46) M. Ablikim et al. [BESIII], Cross section measurement of e+eπ+π(3686)e^{+}e^{-}\rightarrow\pi^{+}\pi^{-}(3686) from S=4.0076\sqrt{S}=4.0076 to 4.6984 GeV, Phys. Rev. D 104, no.5, 052012 (2021).
  • (47) X. L. Wang et al. [Belle], Observation of Two Resonant Structures in e+eπ+πψ(2S)e^{+}e^{-}\rightarrow\pi^{+}\pi^{-}\psi(2S) via Initial State Radiation at Belle, Phys. Rev. Lett. 99, 142002 (2007).
  • (48) X. L. Wang et al. [Belle], Measurement of e+eπ+πψ(2S)e^{+}e^{-}\to\pi^{+}\pi^{-}\psi(2S) via Initial State Radiation at Belle, Phys. Rev. D 91, 112007 (2015).
  • (49) J. P. Lees et al. [BaBar], Study of the reaction e+eψ(2S)π+πe^{+}e^{-}\to\psi(2S)\pi^{+}\pi^{-} via initial-state radiation at BaBar, Phys. Rev. D 89, no.11, 111103 (2014).
  • (50) J. Z. Wang, R. Q. Qian, X. Liu and T. Matsuki, Are the YY states around 4.6 GeV from e+ee^{+}e^{-} annihilation higher charmonia?, Phys. Rev. D 101, no.3, 034001 (2020).
  • (51) S. Dubynskiy and M. B. Voloshin, Hadro-Charmonium, Phys. Lett. B 666, 344-346 (2008).
  • (52) G. Cotugno, R. Faccini, A. D. Polosa and C. Sabelli, Charmed Baryonium, Phys. Rev. Lett. 104, 132005 (2010).
  • (53) C. F. Qiao, A Uniform description of the states recently observed at B-factories, J. Phys. G 35 (2008), 075008.
  • (54) C. F. Qiao, One explanation for the exotic state Y(4260), Phys. Lett. B 639 (2006), 263-265.
  • (55) Y. D. Chen and C. F. Qiao, Baryonium Study in Heavy Baryon Chiral Perturbation Theory, Phys. Rev. D 85 (2012), 034034.
  • (56) G. Pakhlova et al. [Belle], Observation of a near-threshold enhancement in the e+eΛc+Λce^{+}e^{-}\to\Lambda^{+}_{c}\Lambda^{-}_{c} cross section using initial-state radiation, Phys. Rev. Lett. 101, 172001 (2008).
  • (57) N. Lee, Z. G. Luo, X. L. Chen and S. L. Zhu, Possible Deuteron-like Molecular States Composed of Heavy Baryons, Phys. Rev. D 84 (2011), 014031.
  • (58) Y. D. Chen, C. F. Qiao, P. N. Shen and Z. Q. Zeng, Revisiting the spectrum of baryonium in heavy baryon chiral perturbation theory, Phys. Rev. D 88 (2013) no.11, 114007.
  • (59) X. Li and M. B. Voloshin, YY(4260) and YY(4360) as mixed hadrocharmonium, Mod. Phys. Lett. A 29, no.12, 1450060 (2014).
  • (60) S. M. Gerasyuta and E. E. Matskevich, Heavy baryonia with the open and hidden charm, Int. J. Mod. Phys. E 22, 1350093 (2013).
  • (61) S. M. Gerasyuta and E. E. Matskevich, Baryonia with open and hidden bottom, Int. J. Mod. Phys. E 29, no.06, 2050038 (2020)
  • (62) S. M. Gerasyuta and E. E. Matskevich, Baryonia with open and hidden strange, Int. J. Mod. Phys. E 29, no.06, 2050035 (2020).
  • (63) J. X. Lu, L. S. Geng and M. P. Valderrama, Heavy baryon-antibaryon molecules in effective field theory, Phys. Rev. D 99 (2019) no.7, 074026.
  • (64) B. D. Wan, L. Tang and C. F. Qiao, Hidden-bottom and -charm hexaquark states in QCD sum rules, Eur. Phys. J. C 80 (2020) no.2, 121.
  • (65) H. X. Chen, D. Zhou, W. Chen, X. Liu and S. L. Zhu, Searching for hidden-charm baryonium signals in QCD sum rules, Eur. Phys. J. C 76 (2016) no.11, 602.
  • (66) A. De Rujula, H. Georgi and S. L. Glashow, Hadron Masses in a Gauge Theory, Phys. Rev. D 12 (1975), 147-162
  • (67) Y. R. Liu, H. X. Chen, W. Chen, X. Liu and S. L. Zhu, Pentaquark and Tetraquark states, Prog. Part. Nucl. Phys. 107 (2019), 237-320.
  • (68) L. Zhao, W. Z. Deng and S. L. Zhu, Hidden-Charm Tetraquarks and Charged ZcZ_{c} States, Phys. Rev. D 90 (2014) no.9, 094031.
  • (69) K. Chen, X. Liu, J. Wu, Y. R. Liu and S. L. Zhu, Triply heavy tetraquark states with the QQQ¯q¯QQ\bar{Q}\bar{q} configuration, Eur. Phys. J. A 53, no. 1, 5 (2017).
  • (70) S. Q. Luo, K. Chen, X. Liu, Y. R. Liu and S. L. Zhu, Exotic tetraquark states with the qqQ¯Q¯qq\bar{Q}\bar{Q} configuration, Eur. Phys. J. C 77, no.10, 709 (2017).
  • (71) J. Wu, Y. R. Liu, K. Chen, X. Liu and S. L. Zhu, Heavy-flavored tetraquark states with the QQQ¯Q¯QQ\bar{Q}\bar{Q} configuration, Phys. Rev. D 97, no. 9, 094015 (2018).
  • (72) J. Wu, Y. R. Liu, K. Chen, X. Liu and S. L. Zhu, X(4140)X(4140), X(4270)X(4270), X(4500)X(4500) and X(4700)X(4700) and their csc¯s¯cs\bar{c}\bar{s} tetraquark partners, Phys. Rev. D 94 (2016) no.9, 094031.
  • (73) J. Wu, X. Liu, Y. R. Liu and S. L. Zhu, Systematic studies of charmonium-, bottomonium-, and BcB_{c}-like tetraquark states, Phys. Rev. D 99, no.1, 014037 (2019).
  • (74) J. Wu, Y. R. Liu, K. Chen, X. Liu and S. L. Zhu, Hidden-charm pentaquarks and their hidden-bottom and BcB_{c}-like partner states, Phys. Rev. D 95, no. 3, 034002 (2017).
  • (75) Q. S. Zhou, K. Chen, X. Liu, Y. R. Liu and S. L. Zhu, Surveying exotic pentaquarks with the typical QQqqq¯QQqq\bar{q} configuration, Phys. Rev. C 98, no. 4, 045204 (2018).
  • (76) S. Y. Li, Y. R. Liu, Y. N. Liu, Z. G. Si and J. Wu, Pentaquark states with the QQQqq¯QQQq\bar{q} configuration in a simple model, Eur. Phys. J. C 79, no. 1, 87 (2019).
  • (77) H. T. An, Q. S. Zhou, Z. W. Liu, Y. R. Liu and X. Liu, Exotic pentaquark states with the qqQQQ¯qqQQ\bar{Q} configuration, Phys. Rev. D 100, no. 5, 056004 (2019).
  • (78) Y. R. Liu, X. Liu and S. L. Zhu, X(5568)X(5568) and and its partner states, Phys. Rev. D 93, no. 7, 074023 (2016).
  • (79) J. B. Cheng and Y. R. Liu, Understanding the structures of hidden-charm pentaquarks in a simple model, Nucl. Part. Phys. Proc. 309-311, 158-161 (2020).
  • (80) J. B. Cheng and Y. R. Liu, Pc(4457)+P_{c}(4457)^{+}, Pc(4440)+P_{c}(4440)^{+}, and Pc(4312)+P_{c}(4312)^{+}: molecules or compact pentaquarks?, Phys. Rev. D 100, no. 5, 054002 (2019).
  • (81) J. B. Cheng, S. Y. Li, Y. R. Liu, Y. N. Liu, Z. G. Si and T. Yao, Spectrum and rearrangement decays of tetraquark states with four different flavors, Phys. Rev. D 101, no.11, 114017 (2020).
  • (82) H. T. An, K. Chen, Z. W. Liu and X. Liu, Fully heavy pentaquarks, Phys. Rev. D 103 (2021) no.7, 074006.
  • (83) S. Godfrey and N. Isgur, Mesons in a Relativized Quark Model with Chromodynamics, Phys. Rev. D 32, 189-231 (1985).
  • (84) H. Hogaasen, E. Kou, J. M. Richard and P. Sorba, Isovector and hidden-beauty partners of the X(3872), Phys. Lett. B 732, 97 (2014).
  • (85) M. Karliner, S. Nussinov and J. L. Rosner, QQQ¯Q¯QQ\bar{Q}\bar{Q} states: masses, production, and decays, Phys. Rev. D 95 (2017) no.3, 034011.
  • (86) X. Z. Weng, X. L. Chen and W. Z. Deng, Masses of doubly heavy-quark baryons in an extended chromomagnetic model, Phys. Rev. D 97, no. 5, 054008 (2018).
  • (87) X. Z. Weng, X. L. Chen, W. Z. Deng and S. L. Zhu, Hidden-charm pentaquarks and PcP_{c} states, Phys. Rev. D 100, no. 1, 016014 (2019).
  • (88) X. Z. Weng, X. L. Chen, W. Z. Deng and S. L. Zhu, Systematics of fully heavy tetraquarks, Phys. Rev. D 103 (2021) no.3, 034001.
  • (89) X. Z. Weng, W. Z. Deng and S. L. Zhu, Doubly heavy tetraquarks in an extended chromomagnetic model, [arXiv:2108.07242 [hep-ph]].