This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Weyl excitations via helicon-phonon mixing in conducting materials

Dmitry K. Efimkin [email protected] School of Physics and Astronomy, Monash University, Victoria 3800, Australia ARC Centre of Excellence in Future Low-Energy Electronics Technologies, Monash University, Victoria 3800, Australia    Sergey Syzranov Physics Department, University of California, Santa Cruz, California 95064, USA
Abstract

Quasiparticles with Weyl dispersion can display an abundance of novel topological, thermodynamic and transport phenomena, which is why novel Weyl materials and platforms for Weyl physics are being intensively looked for in electronic, magnetic, photonic and acoustic systems. We demonstrate that conducting materials in magnetic fields generically host Weyl excitations due to the hybridisation of phonons with helicons, collective neutral modes of electrons interacting with electromagnetic waves propagating in the material. Such Weyl excitations are, in general, created by the interactions of helicons with longitudinal acoustic phonons. An additional type of Weyl excitation in polar crystals comes from the interaction between helicons and longitudinal optical phonons. Such excitations can be detected in X-ray and Raman scattering experiments. The existence of the Weyl excitations involving optical phonons in the bulk of the materials also leads to the formation of topologically protected surface arc states that can be detected via surface plasmon resonance.

Introduction. The tremendous recent interest in Weyl materials Wan et al. (2011); Armitage et al. (2018); Xu et al. (2015a); Lv et al. (2015a, b); Xu et al. (2015b, c); Yang et al. (2015); Xu et al. (2016); Hasan et al. (2017) is owed, in large part, to a plethora of fundamental and novel topological phenomena they can display: the chiral anomaly Burkov (2015, 2018), topological surface states Wan et al. (2011); Armitage et al. (2018), unconventional regimes of transport Son and Spivak (2013); Syzranov and Radzihovsky (2018); Moll et al. (2016); Potter et al. (2014); Skinner (2014), etc. Numerous predictions and observations of Weyl-related topological phenomena have motivated researchers to look for Weyl excitations not only in electronic but also in magnetic, photonic and acoustic systems.

Excitations with Weyl dispersion may generically be engineered via the hybridisation of two other types of excitations with similar energies if the interactions between them vanishes along a certain direction of momentum. Such interactions lead to a degeneracy between the two bands of the hybridised excitations at the respective wave vectors and a gap for other wave vectors. For example, the hybridization between different types of plasma waves Kaner and Skobov (1968); Morgan (1967) has been shown to lead to Weyl excitations in photonic metamaterials Yang et al. (2017); Guo et al. (2017); Li et al. (2021) and magnetized electron gases Gao et al. (2016); Parker et al. (2020); Fu and Qin (2021); Parker (2021). This mechanism of the formation of Weyl excitations is similar to the emergence of 2D topological excitations due to the hybridization between phonons and spin-waves Okamoto et al. (2020); Park and Yang (2019); Shen and Kim (2020); Takahashi and Nagaosa (2016); Zhang et al. (2019); Go et al. (2019); Zhang et al. (2020); Neumann et al. (2022), spin- and plasma-waves Efimkin and Kargarian (2021), as well as excitons and cavity photons Karzig et al. (2015); Nalitov et al. (2015).

In this Letter, we demonstrate that conducting materials in magnetic fields generically host Weyl excitation due to the hybridisation of phonons with helicons Kaner and Skobov (1968); Morgan (1967), collective neutral modes of electrons interacting with electromagnetic waves propagating in the material. Such Weyl excitations emerge generically due to the hybridisation of helicons with longitudinal acoustic phonons. In polar crystals, Weyl excitations are also created by the interactions of helicons with longitudinal optical phonons.

The predicted Weyl excitations can be detected in, e.g., Raman-spectroscopy experiments. Weyl excitations involving optical phonons in the bulk of the material also lead to the formation of topologically protected arc states on its surfaces, which can be observed via the surface plasmon resonance.

Refer to caption
Figure 1: The dispersion of hybrid modes emerging due to the hybridisation of plasma waves with acoustic (a-c) and optical (d-f) phonons in a conductor in a magnetic field. The 3D plots (c) and (d) shows the dispersion for as a function of the wave vectors qzq_{z} and qq_{\bot} along and perpendicular to the magnetic field. The side panels are 2D plots of the dispersion as a function of qzq_{z} for different values of qq_{\bot}. As a result of the hybridisation of helicon and longitudinal-phonon branches, Weyl points emerge at q=0q_{\bot}=0, as shown in panels (a) and (c) for the case of acoustic phonons and in panels (d) and (e) for the case of optical phonons. The numbers on the axes are given for a potassium crystal in the magnetic field B=20TB=20\;\hbox{T} (a-c) and for heavily doped SM CdSe with the electron density n=41019cm3n=4\cdot 10^{19}~{}\mathrm{cm}^{-3} in the magnetic field B=45TB=45\;\hbox{T}. (d-f)

Heuristic argument for the emergence of Weyl nodes. A conductor in a magnetic field hosts excitations called helicons Kaner and Skobov (1968) that exhibit the anisotropic dispersion |𝐪|(𝐁𝐪)\propto|{\mathbf{q}}|({\mathbf{B}}\cdot{\mathbf{q}}) at small wave vectors 𝐪{\mathbf{q}}. If helicon-phonon interactions are neglected, the helicon dispersion intersects along a line with the phonon dispersion. Such an intersection always exists for acoustic phonons (see Fig. 1c), which are linearly dispersive for small 𝐪{\mathbf{q}}. It also exists for optical phonons, which are gapped, if the magnetic field (cyclotron frequency ωc\omega_{c}) is sufficiently large (see Fig. 1d).

Unless wavevector 𝐪\mathbf{q} is aligned with the direction of the magnetic field 𝐁\mathbf{B}, helicons involve both transverse and longitudinal oscillations of electric current and electromagnetic fields. As a result, they interact with both longitudinal and transverse phonon modes and the mixed helicon-phonon excitations are separated by a gap (as shown in Figs. 1b and f). In contrast, helicons propagating along the magnetic field 𝐁\mathbf{B} are purely transverse circularly polarized waves (these corkscrew-shaped oscillations motivated the term “helicon”) and their coupling with the longitudinal phonon mode vanishes (cf. Figs. 1a and e). As a result, dispersion relations for the mixed helicon-phonon excitations intersect at two selected points in reciprocal space and are of the Weyl nature in their vicinity.

The intersections of the dispersion relations for the mixed modes involving acoustic phonons and helicons have been known previously Kaner and Skobov (1968). In this Letter, we demonstrate that they are of the Weyl nature and that such excitations also emerge for optical phonons. Furthermore, we show that Weyl excitations created by optical-phonon-Weyl hybridisation can be readily observed in experiments and favor the emergence of arc surface modes.

Helicon waves. In the absence of phonons, the propagation of the helicon waves is described by the linearized hydrodynamics equation

t𝐣(𝐫,t)\displaystyle\partial_{t}\mathbf{j}(\mathbf{r},t) =ne2m𝐄(𝐫,t)emc[𝐣(𝐫,t)×𝐁],\displaystyle=\frac{ne^{2}}{m}\mathbf{E}(\mathbf{r},t)-\frac{e}{mc}[\mathbf{j}(\mathbf{r},t)\times\mathbf{B}], (1a)
complemented by the Maxwell equations
curl𝐇(𝐫,t)\displaystyle\mathrm{curl}\,\mathbf{H}(\mathbf{r},t) =4π𝐣(𝐫,t)c+1ct𝐃(𝐫,t),\displaystyle=\frac{4\pi\mathbf{j}(\mathbf{r},t)}{c}+\frac{1}{c}\partial_{t}\mathbf{D}(\mathbf{r},t), (1b)
curl𝐄(𝐫,t)\displaystyle\mathrm{curl}\,\mathbf{E}(\mathbf{r},t) =1ct𝐇(𝐫,t),\displaystyle=-\frac{1}{c}\partial_{t}\mathbf{H}(\mathbf{r},t), (1c)

where ee is the absolute value of the electron charge; nn is the electron density; mm is the effective mass and cc is the speed of light in vacuum. The magnetic field includes both the large external magnetic field 𝐁=B𝐞z\mathbf{B}=B\mathbf{e}_{\mathrm{z}} and a small oscillating component 𝐇(𝐫,t)\mathbf{H}(\mathbf{r},t) created by propagating current density oscillations. For simplicity, we assume that the medium is non-magnetic, i.e. has the magnetic permeability μ=1\mu=1.

The helicon dispersion can be obtained from Eqs. (1a)-(1b) as a solution of the eigenvalue problem ωψpl=^pl(𝐪)ψpl\omega\psi_{\mathrm{pl}}=\hat{\mathcal{H}}_{\mathrm{pl}}(\mathbf{q})\psi_{\mathrm{pl}} Gao et al. (2016); Parker et al. (2020); Fu and Qin (2021); Parker (2021) with the 99-component vector ψpl={ϵ𝐄(𝐪),𝐇(𝐪),4π𝐣(𝐪)/ωpϵ}T\psi_{\mathrm{pl}}=\{\sqrt{\epsilon_{\infty}}\mathbf{E}(\mathbf{q}),\mathbf{H}(\mathbf{q}),4\pi\mathbf{j}(\mathbf{q})/\omega_{\mathrm{p}}\sqrt{\epsilon_{\infty}}\}^{T}, where ωp=4πne2/mε\omega_{\mathrm{p}}=\sqrt{4\pi ne^{2}/m\varepsilon_{\infty}} is the plasma frequency and ε\varepsilon_{\infty} is the contribution of the electronic shells of the atoms to the dielectirc constants {at GHz and higher frequencies, 𝐃(𝐫,t)=ϵ𝐄(𝐫,t)\mathbf{D}(\mathbf{r},t)=\epsilon_{\infty}\mathbf{E}(\mathbf{r},t)}. The matrix ^pl\hat{\mathcal{H}}_{\mathrm{pl}} is given by

^pl(𝐪)=(0c¯K^𝐪iωp1^c¯K^𝐪00iωp1^0iωcL^),\hat{\mathcal{H}}_{\mathrm{pl}}(\mathbf{q})=\begin{pmatrix}0&-\bar{c}\hat{K}_{\mathbf{q}}&-i\omega_{\mathrm{p}}\hat{1}\\ \bar{c}\hat{K}_{\mathbf{q}}&0&0\\ i\omega_{\mathrm{p}}\hat{1}&0&-i\omega_{\mathrm{c}}\hat{L}\\ \end{pmatrix}, (2a)
where we have introduced the speed c¯=c/ϵ\bar{c}=c/\sqrt{\epsilon_{\infty}} of electromagnetic waves in the material and the antisymmetric matricies K^𝐪\hat{K}_{\mathbf{\mathbf{q}}} and L^\hat{L} are given by
K^𝐪=(0qzqyqz0qxqyqx0),L^=(010100000),\hat{K}_{\mathbf{q}}=\begin{pmatrix}0&-q_{z}&q_{y}\\ q_{z}&0&-q_{x}\\ -q_{y}&q_{x}&0\\ \end{pmatrix},\quad\hat{L}=\begin{pmatrix}0&1&0\\ -1&0&0\\ 0&0&0\\ \end{pmatrix}, (2b)
where ωc=eB/mc\omega_{\mathrm{c}}=eB/mc is the cyclotron frequency.
Refer to caption
Figure 2: The dispersion of plasma waves in an electron gas in a magnetic field for ωc/ωp=0.3\omega_{\mathrm{c}}/\omega_{\mathrm{p}}=0.3. They include three high-frequency modes (Langmuir, R-, and L-waves with frequencies around the plasma frequency, ωp\omega_{\mathrm{p}}) and the low-frequency helicon mode, whose dispersion is anisotropic and bounded by the cyclotron frequency, ωc\omega_{\mathrm{c}}.

The dispersion of the magnetoplasma modes is given by the positive (ω>0\omega>0) eigenvalues of the “Hamiltonian” (2a). They include three gapped dispersion branches (longitudinal Langmuir waves and transverse circularly polarized L- and R-waves) with the gap of the order of the plasma frequency ωp\omega_{p} and a gapless branch, helicons (sometimes referred to as whistlers Swanson (2003), cf. Fig. 2), on which we focus in the rest of the paper.

For small ratios ωc/ωp\omega_{c}/\omega_{p} of the cyclotron to plasma frequencies, corresponding to realistic materials, the high-frequency modes can be excluded (see Supplemental Material SM for details) and the dynamics of helicons can be conveniently described using the three-component vector ψhel={(BxiBy)/2,Bz,(BxiBy)/2}\psi_{\mathrm{hel}}=\left\{(B_{x}-iB_{y})/\sqrt{2},-B_{z},(-B_{x}-iB_{y})/\sqrt{2}\right\}. The dispersion ω(𝐪)\omega(\mathbf{q}) of the low-energy excitations is given by the eigenvalue problem ω(𝐪)ψhel=^hel(𝐪)ψhel\omega(\mathbf{q})\psi_{\mathrm{hel}}=\hat{\mathcal{H}}_{\mathrm{hel}}(\mathbf{q})\psi_{\mathrm{hel}} with the matrix ^hel(𝐪)\hat{\mathcal{H}}_{\mathrm{hel}}(\mathbf{q}) given by

^hel(𝐪)=αqz(qzqx+iqy20qxiqy20qx+iqy20qxiqy2qz),\hat{\mathcal{H}}_{\mathrm{hel}}(\mathbf{q})=\alpha q_{z}\begin{pmatrix}q_{z}&\frac{q_{x}+iq_{y}}{\sqrt{2}}&0\\ \frac{q_{x}-iq_{y}}{\sqrt{2}}&0&\frac{q_{x}+iq_{y}}{\sqrt{2}}\\ 0&\frac{q_{x}-iq_{y}}{\sqrt{2}}&-q_{z}\end{pmatrix}, (3)

where α=ωcc¯2/ωp2=Bc/4πne\alpha=\omega_{\mathrm{c}}\bar{c}^{2}/\omega_{\mathrm{p}}^{2}=Bc/4\pi ne.

By introducing the effective spin-11 operator 𝐬^\bf\hat{s} in the space of vectors ψH\psi_{\mathrm{H}}, the operator (3) can be rewritten in the form ^hel(𝐪)=αqz(𝐬^𝐪)\hat{\mathcal{H}}_{\mathrm{hel}}(\mathbf{q})=\alpha q_{z}\left({\bf\hat{s}}\cdot\mathbf{q}\right) similar to the dispersion H^Weyl=v(𝐬^𝐪)\hat{H}_{\text{Weyl}}=v\left({\bf\hat{s}}\cdot\mathbf{q}\right) of a spin-11 Weyl semimetal Bradlyn et al. (2016). The topological properties of the low-energy helicons are similar to those of spin-11 Weyl fermions. The operator (3) describes the helicon dispersion for small wave vectors |𝐪|ωp/c|\mathbf{q}|\ll\omega_{p}/c. At larger wave vectors, the dispersion ω(𝐪)\omega(\mathbf{q}) with nonvanishing transverse wave vectors saturates to ωc\omega_{c}.

We note that helicons propagating (anti-)parallel to the magnetic field 𝐁{\mathbf{B}} have circular polarization in the plane perpendicular to 𝐁{\mathbf{B}}. As we discuss below, the transverse polarization of helicons leads to the vanishing of the helicon-phonon interaction for both longitudinal acoustic and longitudinal optical phonons.

Interactions between helicons and acoustic phonons. In the absence of electrons, the dynamics of long-wave acoustic phonons is universally described in terms of the lattice displacement 𝐮(𝐫,t){\mathbf{u}}({\mathbf{r}},t) by the equation of motion Landau and Lifshitz (1959)

t2𝐮(𝐫,t)=st2Δ𝐮(𝐫,t)+(sl2st2)[𝐮(𝐫,t)]\partial_{t}^{2}\mathbf{u}({\mathbf{r}},t)=s_{\mathrm{t}}^{2}\Delta\mathbf{u}({\mathbf{r}},t)+(s_{\mathrm{l}}^{2}-s_{\mathrm{t}}^{2})\nabla[\nabla\cdot\mathbf{u}({\mathbf{r}},t)] (4a)
or the equivalent Hamilton’s equations
t𝐮(𝐪,t)=𝐩(𝐪,t),t𝐩(𝐪,t)=(W^𝐪ac)2𝐮(𝐪,t),\displaystyle\partial_{t}\mathbf{u}({\mathbf{q}},t)=\mathbf{p}({\mathbf{q}},t),\quad\partial_{t}\mathbf{p}({\mathbf{q}},t)=-(\hat{W}_{\mathbf{q}}^{\mathrm{ac}})^{2}\mathbf{u}({\mathbf{q}},t), (4b)

where W^𝐪ac\hat{W}^{\mathrm{ac}}_{\mathbf{q}}, 𝐮(𝐪,t)\mathbf{u}(\mathbf{q},t) and 𝐩(𝐪,t)\mathbf{p}(\mathbf{q},t) are the Fourier-transforms of, respectively, W^𝐫𝐫ac\hat{W}^{\mathrm{ac}}_{{\mathbf{r}}-{\mathbf{r}}^{\prime}}, 𝐮(𝐫,t)\mathbf{u}(\mathbf{r},t) and 𝐩(𝐫,t)\mathbf{p}(\mathbf{r},t). The momentum 𝐩{\mathbf{p}} is the momentum canonically conjugate to the displacement 𝐮{\mathbf{u}}; sls_{\mathrm{l}} and sts_{\mathrm{t}} are the velocities of, respectively, longitudinal and transverse phonons; the matrix W^𝐪ac\hat{W}^{\mathrm{ac}}_{\mathbf{q}} (dynamical matrix) describes the energy

Edef=ρ2𝑑𝐫𝑑𝐫𝐮(𝐫,t)(W^ac)𝐫𝐫2𝐮(𝐫,t)E_{\mathrm{def}}=\frac{\rho}{2}\int d{\mathbf{r}}d{\mathbf{r}}^{\prime}{\mathbf{u}}({\mathbf{r}},t)(\hat{W}^{\mathrm{ac}})_{\mathbf{r}-\mathbf{r}^{\prime}}^{2}{\mathbf{u}}({\mathbf{r}}^{\prime},t) (5)

of elastic deformations of the crystal where ρ\rho is the its mass density (see SM SM for an explicit derivation of the dynamical matrix). The equations Eq. 4a and b can also be written as the eigenvalue problem ωψac=^ac(𝐪)ψac\omega\psi_{\mathrm{ac}}=\hat{\mathcal{H}}_{\mathrm{ac}}(\mathbf{q})\psi_{\mathrm{ac}} with the 6-component vector ψac={𝐩,W^𝐪ac𝐮}\psi_{\mathrm{ac}}=\{\mathbf{p},\hat{W}_{\mathbf{q}}^{\mathrm{ac}}\mathbf{u}\} and the matrix ^ac(𝐪)\hat{\mathcal{H}}_{\mathrm{ac}}(\mathbf{q}) given by

^ac(𝐪)=(0iW^𝐪aciW^𝐪ac0).\hat{\mathcal{H}}_{\mathrm{ac}}(\mathbf{q})=\begin{pmatrix}0&-i\hat{W}_{\mathbf{q}}^{\mathrm{ac}}\\ i\hat{W}_{\mathbf{q}}^{\mathrm{ac}}&0\end{pmatrix}. (6)

The interactions between helicons and acoustic phonons come from relativistic effects (“inductive coupling” Kaner and Skobov (1968)). On the one hand, the dynamics of the crystalline lattice lead to the modification

𝐄(𝐫,t)𝐄(𝐫,t)+1c[t𝐮(𝐫,t)×𝐁]\displaystyle{\mathbf{E}}({\mathbf{r}},t)\rightarrow{\mathbf{E}}({\mathbf{r}},t)+\frac{1}{c}\left[\partial_{t}{\mathbf{u}}({\mathbf{r}},t)\times{\mathbf{B}}\right] (7)

of the electric field 𝐄{\mathbf{E}} in the reference frame of the displaced atoms, where, in the long-wave limit under consideration, the displacement 𝐮(𝐫,t){\mathbf{u}}({\mathbf{r}},t) varies smoothly compared to atomic length scales. The currents 𝐣(𝐫,t){\mathbf{j}}({\mathbf{r}},t) in the helicon waves also lead the forces

𝐟(𝐫,t)=1c[𝐣(𝐫,t)×𝐁]\displaystyle\mathbf{f}({\mathbf{r}},t)=\frac{1}{c}\left[{\mathbf{j}}({\mathbf{r}},t)\times{\mathbf{B}}\right] (8)

(per unit volume) acting on the lattice of the crystal and thus contributing to the displacements 𝐮(𝐫,t){\mathbf{u}}({\mathbf{r}},t). Equations (7) and (8) describe the interactions between the electromagnetic field and the deformations of the lattice and thus account for the interactions between helicons and phonons.

The dynamics of coupled helicons and phonons is conveniently described by the 1515-component vector ψplac={ε𝐄,𝐇,4π𝐣/ωpε,4πρ𝐩,4πρW^𝐪ac𝐮}T\psi_{\mathrm{pl-ac}}=\{\sqrt{\varepsilon_{\infty}}\mathbf{E},\mathbf{H},4\pi\mathbf{j}/\omega_{\mathrm{p}}\sqrt{\varepsilon_{\infty}},\sqrt{4\pi\rho}\mathbf{p},\sqrt{4\pi\rho}\hat{W}_{\mathbf{q}}^{\mathrm{ac}}\mathbf{u}\}^{\mathrm{T}}, where the first three vectors describe helicons [cf. Eqs. (1a)-(1c)] and the last two vectors describe the phonon degrees of freedom. The collective dispersion of coupled helicons and phonons is given by the solution of the eigenvalue problem ωψplac(𝐪)=^plac(𝐪)ψplac(𝐪)\omega\psi_{\mathrm{pl-ac}}(\mathbf{q})=\hat{\mathcal{H}}_{\mathrm{pl-ac}}(\mathbf{q})\psi_{\mathrm{pl-ac}}(\mathbf{q}) with the “Hamiltonian” ^plac\hat{\mathcal{H}}_{\mathrm{pl-ac}} given by

^plac=(0c¯K^𝐪iωp1^00c¯K^𝐪0000iωp1^0iωcL^iγacL^000iγacL^0iW^𝐪ac000iW^𝐪ac0),\displaystyle\scalebox{0.98}{\mbox{$\displaystyle\hat{\mathcal{H}}_{\mathrm{pl-ac}}=\begin{pmatrix}0&-\bar{c}\hat{K}_{\mathbf{q}}&-i\omega_{\mathrm{p}}\hat{1}&0&0\\ \bar{c}\hat{K}_{\mathbf{q}}&0&0&0&0\\ i\omega_{\mathrm{p}}\hat{1}&0&-i\omega_{\mathrm{c}}\hat{L}&i\gamma_{\mathrm{ac}}\hat{L}&0\\ 0&0&i\gamma_{\mathrm{ac}}\hat{L}&0&-i\hat{W}_{\mathbf{q}}^{\mathrm{ac}}\\ 0&0&0&i\hat{W}_{\mathbf{q}}^{\mathrm{ac}}&0\end{pmatrix}$}}, (9)

where the frequency γac=ωcnm/ρ\gamma_{\mathrm{ac}}=\omega_{\mathrm{c}}\sqrt{nm/\rho} describes the strength of the coupling between helicons and acoustic phonons.

The structure of the matrix (9) can be understood as follows. The top left 3×33\times 3 block (whose each element is a 3×33\times 3 matrix) matches the matrix (2a) that describes the helicon degrees of freedom in the absence of phonons. The bottom right 2×22\times 2 block describes the dynamics of phonons and has eigenvectors that correspond to the harmonic modes of the crystal. The other terms describe the helicon-phonon coupling and are obtained from Eqs. (7) and (8) taking into account that t𝐮(𝐪,t)=𝐩(𝐪,t)\partial_{t}{\mathbf{u}}({\mathbf{q}},t)={\mathbf{p}}({\mathbf{q}},t).

The dispersions of the hybridized helicon-phonon excitations, given by the eigenvalues of the matrix (9), are plotted in Figs. 1a-c for a crystal of potassium in the magnetic field B=20TB=20\;\hbox{T}. The character of helicon-phonon hybridisation is qualitatively different for different branches of the dispersion of acoustic phonons. Helicons do not interact with the antisymmetric combination of two transverse phonon modes. The interaction between helicons and the symmetric combination of the transverse phonon modes leads to a gap in the dispersion of the resulting excitations at all wave vectors.

By contrast, the interaction of longitudinal phonons with helicons vanishes for 𝐪𝐁{\mathbf{q}}\parallel{\mathbf{B}} and is finite for other wave vectors. Their hybridisation leads to the formation of two dispersion bands that intersect at the wave vectors 𝐪Weyl±=±𝐞zsl/α{\mathbf{q}}_{\text{Weyl}}^{\pm}=\pm{\bf e}_{z}s_{l}/\alpha, at which the frequencies of phonons and helicons match (sl|𝐪|=|αqz𝐪|s_{l}|{\mathbf{q}}|=|\alpha q_{z}{\mathbf{q}}|) and which are parallel to the magnetic field 𝐁{\mathbf{B}}. The interactions lead to the splitting between the bands at all other wave vectors. Therefore, the interaction between helicons and the longitudinal phonons leads to the formation of Weyl excitations near the wave vectors 𝐪Weyl±{\mathbf{q}}_{\text{Weyl}}^{\pm}.

Near the Weyl points, the Hamiltonian of the Weyl excitations as a function of the wave vector 𝐤=𝐪𝐪Weyl±{\mathbf{k}}={\mathbf{q}}-{\mathbf{q}}_{\text{Weyl}}^{\pm} measured from the Weyl points is given by

^w±(𝐤)=slα+32slkz±(12slkzisackisack+12slkz),\displaystyle\hat{\mathcal{H}}_{\mathrm{w}}^{\pm}(\mathbf{k})=\frac{s_{l}}{\alpha}+\frac{3}{2}s_{l}k_{z}\pm\begin{pmatrix}\frac{1}{2}s_{l}k_{z}&is_{\perp}^{\mathrm{ac}}k_{-}\\ -is_{\perp}^{\mathrm{ac}}k_{+}&-\frac{1}{2}s_{l}k_{z}\end{pmatrix}, (10)

where k±=kx±ikyk_{\pm}=k_{x}\pm ik_{y} and the matrix acts in the space of the phonon and helicon bands that are being hybridized. The transverse velocity of the Weyl excitations sac=γacc¯/2ωps_{\perp}^{\mathrm{ac}}=\gamma_{\mathrm{ac}}\bar{c}/2\omega_{\mathrm{p}} is determined by the strength of the helicon-phonons interactions. The Weyl nodes near the wave vectors 𝐪Weyl±{\mathbf{q}}_{\text{Weyl}}^{\pm} have topological Chern numbers Burkov (2018) C±=12πS𝐤×ψ+(𝐤)|i𝐤|ψ+(𝐤)𝑑𝐒=1C^{\pm}=\frac{1}{2\pi}\int_{S}{\boldsymbol{\nabla}}_{\mathbf{k}}\times\langle\psi_{+}({\mathbf{k}})|i{\boldsymbol{\nabla}}_{\mathbf{k}}|\psi_{+}({\mathbf{k}})\rangle\,d{\mathbf{S}}=\mp 1, where ψ+(𝐤)\psi_{+}({\mathbf{k}}) is the eigenvector of the Hamiltonian (10) that describes the quasiparticle state with the wavevector 𝐤\mathbf{k} and SS is an arbitrary closed surface in reciprocal space surrounding the Weyl node.

Interaction between helicons and optical phonons. In certain materials, such as polar crystals or ionic semimetals, the elementary cell consists of positively and negatively charged ions, and electric polarization may be caused by a relative displacement of the atoms within the cell. This leads to strong interactions of helicons with optical phonons, which, unlike the case of acoustic phonons, are non-relativistic in nature. Such interactions lead to the emergence of additional pairs of Weyl excitations, distinct from those generated by the interactions of helicons with acoustic phonons.

In what follows, we consider a crystal with two ions in the elementary cell and introduce the relative displacement 𝐰(𝐫,t){\mathbf{w}}({\mathbf{r}},t) between the ions. Our results can be generalized to the case of an arbitrary number of atoms in the elementary cell.

Due to a change in the electric polarization, the displacement 𝐰{\mathbf{w}} affects the electric induction

𝐃(𝐫,t)=ε𝐄(𝐫,t)+4πχ𝐰(𝐫,t)\displaystyle\mathbf{D}(\mathbf{r},t)=\varepsilon_{\infty}{\mathbf{E}}(\mathbf{r},t)+4\pi\chi{\mathbf{w}}(\mathbf{r},t) (11)

in the crystal, where ε\varepsilon_{\infty} is determined by the polarization of the electron shells of the atoms in an electric field, and the quantity χ\chi describes the response of the polarization to 𝐰{\mathbf{w}} 111For polar crystals, χ=ωl(ϵ0ϵ)/4π\chi=\omega_{l}\sqrt{(\epsilon_{0}-\epsilon_{\infty})/4\pi} is usually parametrized in terms of the static dielectric constant ϵ0\epsilon_{0} and its value ϵ\epsilon_{\infty} in the high-frequency limit. In the absence of helicons, the long-wave dynamics of displacement 𝐰(𝐫,t){\mathbf{w}}({\mathbf{r}},t) are governed by the equation of motion Huang (1951)

t2𝐰(𝐪,t)=(W^𝐪op)2𝐰(𝐪,t)+χ𝐄(𝐪,t),\partial_{t}^{2}\mathbf{w}(\mathbf{q},t)=-(\hat{W}_{\mathbf{q}}^{\mathrm{op}})^{2}\mathbf{w}(\mathbf{q},t)+\chi\mathbf{E}(\mathbf{q},t), (12)

where the dynamical matrix W^𝐪op\hat{W}^{\mathrm{op}}_{\mathbf{q}} determines the dispersion of optical phonons (see Supplemental Material SM for a specific form of W^𝐪op\hat{W}^{\mathrm{op}}_{\mathbf{q}}) in the absence of phonon interaction with the electromagnetic fields.

Similarly to the case of acoustic phonons, the collective modes of helicons interacting with optical phonons can be obtained as a solution of the eigenvalues problem ^plopψplop=ωψplop\hat{\mathcal{H}}_{\mathrm{pl}-\mathrm{op}}\psi_{\mathrm{pl-op}}=\omega\psi_{\mathrm{pl-op}}, where ψplop={ε𝐄,𝐇,4π𝐣/ωpε,4π𝐩,4πW^𝐪op𝐮}T\psi_{\mathrm{pl-op}}=\{\sqrt{\varepsilon_{\infty}}\mathbf{E},\mathbf{H},4\pi\mathbf{j}/\omega_{\mathrm{p}}\sqrt{\varepsilon_{\infty}},\sqrt{4\pi}\mathbf{p},\sqrt{4\pi}\hat{W}_{\mathbf{q}}^{\mathrm{op}}\mathbf{u}\}^{\mathrm{T}}. The resulting effective Hamiltonian HplopH_{\mathrm{pl-op}} is given by

^plop=(0cK^𝐪iωp1^iγop1^0cK^𝐪0000iωp1^0iωcL^00iγop1^000iW^𝐪op000iW^𝐪op0),\displaystyle\scalebox{0.96}{\mbox{$\displaystyle\hat{\mathcal{H}}_{\mathrm{pl}-\mathrm{op}}=\begin{pmatrix}0&-c\hat{K}_{\mathbf{q}}&-i\omega_{\mathrm{p}}\hat{1}&-i\gamma_{\mathrm{op}}\hat{1}&0\\ c\hat{K}_{\mathbf{q}}&0&0&0&0\\ i\omega_{\mathrm{p}}\hat{1}&0&i\omega_{\mathrm{c}}\hat{L}&0&0\\ i\gamma_{\mathrm{op}}\hat{1}&0&0&0&-i\hat{W}^{\mathrm{op}}_{\mathbf{q}}\\ 0&0&0&i\hat{W}^{\mathrm{op}}_{\mathbf{q}}&0\end{pmatrix}$}}, (13)

where γop=χ4π/ϵ\gamma_{\mathrm{op}}=\chi\sqrt{4\pi/\epsilon_{\infty}} describes the strength of the coupling between helicons and optical phonons. The off-diagonal blocks in the matrix ^plac\hat{\mathcal{H}}_{\mathrm{pl-ac}} and ^plop\hat{\mathcal{H}}_{\mathrm{pl-op}}, given by Eqs. (9) and (13), have different structure that reflects the distinct physical mechanisms of helicon interactions with acoustic and optical phonons.

In what follows, we neglect the dispersion of longitudinal and transverse optical phonons, i.e. assume that their frequencies ωl\omega_{l} and ωt\omega_{t} are momentum-independent, which provides a good approximation for realistic crystals. Also, we assume that the frequencies ωl\omega_{l} and ωt\omega_{t} are of the same order of magnitude but differ. These assumptions are satisfied for semiconductors with the anisotropic wurtzite crystalline structure (e.g. CdSe, AlN, InN, etc) 222We also assume that the external magnetic field is directed along the c-axis of the crystal or in semiconductors with the zincblend structure (e.g. InAs, InSb, etc) in the presence of a uniaxial strain. We also assume that the semiconductor crystal is heavily doped ωl,ωcωp\omega_{\mathrm{l}},\omega_{\mathrm{c}}\ll\omega_{\mathrm{p}} that implies dispersion curves for both helicons and optical phonons are well separated from the ones for high-frequency plasma Langmuir, R- and L- waves 333We note that the emergence of the Weyl helicon-phonon waves does not rely on this assumption. Instead, it ensures that the renormalization of phonon dispersion curves due to their interactions with the three gapped high-frequency magnetoplasma modes can be safely neglected and simplifies the analysis of the dispersion relations for the mixed excitations.

The dispersion relations of excitations obtained as the eigenvalues of the matrix ^plop\hat{\mathcal{H}}_{\mathrm{pl-op}} are shown in Fig. 1d-f, with the numerical values of frequencies and wave vectors given for heavily doped CdSe for the magnetic field B=45TB=45\;\hbox{T} and electron concentration n=41019cm3n=4\cdot 10^{19}\;\hbox{cm}^{-3} (see Supplemental Material SM for the details of the estimates).

Similarly to the case of acoustic phonons, the dispersions of non-interacting helicons and longitudinal optical phonons intersect along 2D lines, which for optical phonons are given by ωl/α=|qzq|\omega_{l}/\alpha=|q_{z}q|. Interactions split these intersecting branches at all wave vectors other than 𝐪Weyl±=±𝐞𝐳ωl/α{\mathbf{q}}^{\pm}_{\text{Weyl}}=\pm{\bf e_{z}}\sqrt{\omega_{l}/\alpha} parallel to the magnetic field. Indeed, for this direction of wave vector, the electric field of helicon waves is orthogonal to the polarisation and displacement of longitudinal phonons, and the helicon-phonon interaction vanishes. As a result, the hybridised helicon-phonon excitations have two bands that touch at the Weyl points at the wave vectors 𝐪Weyl±{\mathbf{q}}^{\pm}_{\text{Weyl}}. As a function of small deviations 𝐤=𝐪𝐪Weyl±{\mathbf{k}}={\mathbf{q}}-{\mathbf{q}}^{\pm}_{\text{Weyl}} of momentum from Weyl points, the Hamiltonian of the Weyl excitations is given by

^w±(𝐤)=ωl+αωlkz±(αωlkzisopkisopk+αωlkz),\hat{\mathcal{H}}_{\mathrm{w}}^{\pm}(\mathbf{k})=\omega_{\mathrm{l}}+\sqrt{\alpha\omega_{\mathrm{l}}}k_{z}\pm\begin{pmatrix}\sqrt{\alpha\omega_{\mathrm{l}}}k_{z}&is_{\perp}^{\mathrm{op}}k_{-}\\ -is_{\perp}^{\mathrm{op}}k_{+}&-\sqrt{\alpha\omega_{\mathrm{l}}}k_{z}\end{pmatrix}, (14)

where sop=γopωcc/2ωp2s_{\perp}^{\mathrm{op}}=\gamma_{\mathrm{op}}\omega_{\mathrm{c}}c/2\omega_{\mathrm{p}}^{2} is the transverse velocity of Weyl excitations. The Weyl nodes near wave vectors 𝐪Weyl±{\mathbf{q}}_{\text{Weyl}}^{\pm} have topological Chern numbers C±=1C^{\pm}=\mp 1.

Discussion. A prominent manifestation of the Weyl spectrum topology is a possible presence of protected surface arc states Burkov (2018); Hasan et al. (2017); Wan et al. (2011); Armitage et al. (2018). The existence of such arcs on the surface of a crystal requires that the excitations have a global gap in the reciprocal-space plane perpendicular to the surface. Provided that the global gap is present, the presence of the arc states is dictated by the bulk-edge correspondence Armitage et al. (2018).

In the case of acoustic phonos, the derived above Weyl excitations do not have such a gap and, therefore, lack arc surface states. By contrast, the dispersion of the mixed modes involving optical phonons has the global gap for any reciprocal-space section between the Weyl nodes. As for the other sections, the global gap naturally appears if the optical phonons are dispersive (that is not captured by the hydrodynamic scheme we employ in this Letter). We can get insights into the behavior of the arc states if we consider the evolution of the mixed modes spectra with the longitudinal optical phonons frequency ωl\omega_{\mathrm{l}} treated as a free parameter. If ωl\omega_{\mathrm{l}} exceeds ωc\omega_{\mathrm{c}}, longitudinal phonons and helicons do not intersect, and the Weyl nodes do not emerge. If ωl\omega_{\mathrm{l}} crosses ωc\omega_{\mathrm{c}} and further decreases, the pair of Weyl nodes emerges at the infinity (qz±q_{z}\rightarrow\pm\infty) and then moves towards qz=0q_{z}=0. Thus, the surface arc states connect the projections of Weyl nodes in different Brillouin zones to the surface. The exact shape of the arcs away from their ends is non-universal and depends on the details of the phonon and helicon dispersion in the entire Brillouin zone.

The characteristic wavevectors and frequencies of Weyl excitations are very different in the cases of acoustic and optical phonons. For acoustic phonons, their mixing with helions has been reported in potassium Grimes and Buchsbaum (1964); Libchaber and Grimes (1969a); Blaney (1967), aluminium Larsen and Saermark (1967), indium Gudkov (1982), lead telluride Schilz (1968) and cadmium arsenide Rosenman (1965), is prominent within the MHz\simGHz range and can be tuned by an external magnetic field. In the case of optical phonons, the frequencies of the Weyl excitations are determined by the frequencies of optical phonons that typically lie in the THz range. Good material candidates would have: (i) low frequencies of optical phonons and at least a moderate splitting between their longitudinal and transverse modes; (ii) high mobilities of charge carriers. Among semiconductors extensively studied in the context of optoelectronics and plasmonics Caldwell et al. (2015), these conditions are well satisfied for CdSe and strained InSb.

The discussed phonon-helicon excitations is a rather favourable playground for Weyl physics and observing associated fundamental phenomena. The predicted Weyl excitations are highly tunable, with the dispersion curves that can be tuned by the external magnetic field, strain, electric currents, etc. The relatively small momenta of these excitations allow for them to be readily excited by electromagnetic pulses in the THz and GHz ranges. The discussed systems present time-reversal-symmetry-breaking Weyl semimetals Armitage et al. (2018) (effectively, Weyl semimetal with only two symmetric Weyl cones, as opposed to the so-called inversion-symmetry-breaking Weyl semimetals, in which the Weyl nodes lie, in general, at different energies). Such Weyl semimetals are extremely rare in solid-state materials and have not been observed until recently Ma et al. (2019); Morali et al. (2019).

The predicted Weyl excitations and the surface arc states can be probed by phononic techiques (Raman and inelastic X-ray scattering experiments), as well as various techniques designed for plasmon-polaritons, including angle-resolved reflection experiment Gao et al. (2016); Wang et al. (2019). The unidirectional nature of the topological-surface-arc excitations is promising for applications in the context of topological and non-reciprical plasmonics Shastri et al. (2021).

Conclusion and outlook. We have shown that a generic conductor in a magnetic field hosts Weyl excitations, which emerge as a result of the hybridisation of helicon waves and phonons. Such Weyl excitations exist generically due to the interactions of helicons with acoustic phonons. In polar crystals, additional Weyl excitations may emerge due to the interactions of helicons with optical phonons.

In this paper, we considered the emergence of Weyl excitations in topologically trivial materials. Our approach can be extended to doped topological insulators and Weyl semimetals, in which helicons are impacted by anomalous electronic responses as well as axion electrodynamic effects Pellegrino et al. (2015); Gorbar et al. (2017)

In this paper, we neglected the effects of dissipation on the considered excitations, assuming quasiparticle and phonon scattering rates to be sufficiently smaller than the characteristic frequencies, which corresponds to realistic experimental conditions SM . In principle, dissipation effects may not only result in the broadening of Weyl nodes but lead to new intriguing phenomena. It has been predicted, for example, that in plasmonic and photonic crystals, non-Hermitian perturbations of the effective Hamiltonian can make Weyl nodes evolve into nodal discs Wang et al. (2020) and nodal rings Cerjan et al. (2019). We leave the studies of such effects and the conditions necessary for realising them for future studies.

Acknowledgments. We acknowledge support from the Australian Research Council Centre of Excellence in Future Low-Energy Electronics Technologies (CE170100039).

References

  • Wan et al. (2011) X. Wan, A. M. Turner, A. Vishwanath,  and S. Y. Savrasov, Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridatesPhys. Rev. B 83, 205101 (2011).
  • Armitage et al. (2018) N. P. Armitage, E. J. Mele,  and A. Vishwanath, Weyl and Dirac semimetals in three-dimensional solidsRev. Mod. Phys. 90, 015001 (2018).
  • Xu et al. (2015a) S.-Y. Xu, I. Belopolski, N. Alidoust, M. Neupane, G. Bian, C. Zhang, R. Sankar, G. Chang, Z. Yuan, C.-C. Lee, S.-M. Huang, H. Zheng, J. Ma, D. S. Sanchez, B. Wang, A. Bansil, F. Chou, P. P. Shibayev, H. Lin, S. Jia,  and M. Z. Hasan, Discovery of a Weyl fermion semimetal and topological Fermi arcsScience 349, 613 (2015a).
  • Lv et al. (2015a) B. Q. Lv, H. M. Weng, B. B. Fu, X. P. Wang, H. Miao, J. Ma, P. Richard, X. C. Huang, L. X. Zhao, G. F. Chen, Z. Fang, X. Dai, T. Qian,  and H. Ding, Experimental Discovery of Weyl Semimetal TaAs\mathrm{TaAs}Phys. Rev. X 5, 031013 (2015a).
  • Lv et al. (2015b) B. Q. Lv, N. Xu, H. M. Weng, J. Z. Ma, P. Richard, X. C. Huang, L. X. Zhao, G. F. Chen, C. E. Matt, F. Bisti, V. N. Strocov, J. Mesot, Z. Fang, X. Dai, T. Qian, M. Shi,  and H. Ding, Observation of Weyl nodes in TaAs\mathrm{TaAs}Nature Physics 11, 724 (2015b).
  • Xu et al. (2015b) S.-Y. Xu, I. Belopolski, D. S. Sanchez, C. Zhang, G. Chang, C. Guo, G. Bian, Z. Yuan, H. Lu, T.-R. Chang, P. P. Shibayev, M. L. Prokopovych, N. Alidoust, H. Zheng, C.-C. Lee, S.-M. Huang, R. Sankar, F. Chou, C.-H. Hsu, H.-T. Jeng, A. Bansil, T. Neupert, V. N. Strocov, H. Lin, S. Jia,  and M. Z. Hasan, Experimental discovery of a topological Weyl semimetal state in TaP\mathrm{TaP}Science Advances 1 (2015b).
  • Xu et al. (2015c) S.-Y. Xu, N. Alidoust, I. Belopolski, Z. Yuan, G. Bian, T.-R. Chang, H. Zheng, V. N. Strocov, D. S. Sanchez, G. Chang, C. Zhang, D. Mou, Y. Wu, L. Huang, C.-C. Lee, S.-M. Huang, B. Wang, A. Bansil, H.-T. Jeng, T. Neupert, A. Kaminski, H. Lin, S. Jia,  and M. Zahid Hasan, Discovery of a Weyl fermion state with Fermi arcs in niobium arsenideNature Physics 11, 748 (2015c).
  • Yang et al. (2015) L. X. Yang, Z. K. Liu, Y. Sun, H. Peng, H. F. Yang, T. Zhang, B. Zhou, Y. Zhang, Y. F. Guo, M. Rahn, D. Prabhakaran, Z. Hussain, S.-K. Mo, C. Felser, B. Yan,  and Y. L. Chen, Weyl semimetal phase in the non-centrosymmetric compound TaAs\mathrm{TaAs}Nature Physics 11, 728 (2015).
  • Xu et al. (2016) N. Xu, H. M. Weng, B. Q. Lv, C. E. Matt, J. Park, F. Bisti, V. N. Strocov, D. Gawryluk, E. Pomjakushina, K. Conder, N. C. Plumb, M. Radovic, G. AutGIos, O. V. Yazyev, Z. Fang, X. Dai, T. Qian, J. Mesot, H. Ding,  and M. Shi, Observation of Weyl nodes and Fermi arcs in tantalum phosphideNature Communications 7, 11006 (2016).
  • Hasan et al. (2017) M. Z. Hasan, S.-Y. Xu, I. Belopolski,  and S.-M. Huang, Discovery of Weyl Fermion Semimetals and Topological Fermi Arc StatesAnnual Review of Condensed Matter Physics 8, 289 (2017).
  • Burkov (2015) A. A. Burkov, Chiral anomaly and transport in Weyl metalsJournal of Physics: Condensed Matter 27, 113201 (2015).
  • Burkov (2018) A. Burkov, Weyl MetalsAnnual Review of Condensed Matter Physics 9, 359 (2018).
  • Son and Spivak (2013) D. T. Son and B. Z. Spivak, Chiral anomaly and classical negative magnetoresistance of Weyl metalsPhys. Rev. B 88, 104412 (2013).
  • Syzranov and Radzihovsky (2018) S. V. Syzranov and L. Radzihovsky, High-Dimensional Disorder-Driven Phenomena in Weyl Semimetals, Semiconductors, and Related SystemsAnnual Review of Condensed Matter Physics 9, 35 (2018).
  • Moll et al. (2016) P. J. W. Moll, N. L. Nair, T. Helm, A. C. Potter, I. Kimchi, A. Vishwanath,  and J. G. Analytis, Transport evidence for Fermi-arc-mediated chirality transfer in the Dirac semimetal Cd3As2\mathrm{Cd_{3}As_{2}}Nature 535, 266 (2016).
  • Potter et al. (2014) A. C. Potter, I. Kimchi,  and A. Vishwanath, Quantum oscillations from surface Fermi arcs in Weyl and Dirac semimetalsNature Communications 5, 5161 (2014).
  • Skinner (2014) B. Skinner, Coulomb disorder in three-dimensional Dirac systemsPhys. Rev. B 90, 060202 (2014).
  • Kaner and Skobov (1968) E. Kaner and V. Skobov, Electromagnetic waves in metals in a magnetic fieldAdvances in Physics 17, 605 (1968).
  • Morgan (1967) D. P. Morgan, Helicon Waves in Solidsphysica status solidi (b) 24, 9 (1967).
  • Yang et al. (2017) B. Yang, Q. Guo, B. Tremain, L. E. Barr, W. Gao, H. Liu, B. Béri, Y. Xiang, D. Fan, A. P. Hibbins,  and S. Zhang, Direct observation of topological surface-state arcs in photonic metamaterialsNature Communications 8, 97 (2017).
  • Guo et al. (2017) Q. Guo, B. Yang, L. Xia, W. Gao, H. Liu, J. Chen, Y. Xiang,  and S. Zhang, Three Dimensional Photonic Dirac Points in MetamaterialsPhys. Rev. Lett. 119, 213901 (2017).
  • Li et al. (2021) M. Li, J. Song,  and Y. Jiang, Topological characteristic of Weyl degeneracies in a reciprocal chiral metamaterials systemNew Journal of Physics 23, 093036 (2021).
  • Gao et al. (2016) W. Gao, B. Yang, M. Lawrence, F. Fang, B. Béri,  and S. Zhang, Photonic Weyl degeneracies in magnetized plasmaNature Communications 7, 12435 (2016).
  • Parker et al. (2020) J. B. Parker, J. B. Marston, S. M. Tobias,  and Z. Zhu, Topological Gaseous Plasmon Polariton in Realistic PlasmaPhys. Rev. Lett. 124, 195001 (2020).
  • Fu and Qin (2021) Y. Fu and H. Qin, Topological phases and bulk-edge correspondence of magnetized cold plasmasNature Communications 12, 3924 (2021).
  • Parker (2021) J. B. Parker, Topological phase in plasma physicsJournal of Plasma Physics 87, 835870202 (2021).
  • Okamoto et al. (2020) A. Okamoto, S. Murakami,  and K. Everschor-Sitte, Berry curvature for magnetoelastic wavesPhys. Rev. B 101, 064424 (2020).
  • Park and Yang (2019) S. Park and B.-J. Yang, Topological magnetoelastic excitations in noncollinear antiferromagnetsPhys. Rev. B 99, 174435 (2019).
  • Shen and Kim (2020) P. Shen and S. K. Kim, Magnetic field control of topological magnon-polaron bands in two-dimensional ferromagnetsPhys. Rev. B 101, 125111 (2020).
  • Takahashi and Nagaosa (2016) R. Takahashi and N. Nagaosa, Berry Curvature in Magnon-Phonon Hybrid SystemsPhys. Rev. Lett. 117, 217205 (2016).
  • Zhang et al. (2019) X. Zhang, Y. Zhang, S. Okamoto,  and D. Xiao, Thermal Hall Effect Induced by Magnon-Phonon InteractionsPhys. Rev. Lett. 123, 167202 (2019).
  • Go et al. (2019) G. Go, S. K. Kim,  and K.-J. Lee, Topological Magnon-Phonon Hybrid Excitations in Two-Dimensional Ferromagnets with Tunable Chern NumbersPhys. Rev. Lett. 123, 237207 (2019).
  • Zhang et al. (2020) S. Zhang, G. Go, K.-J. Lee,  and S. K. Kim, SU(3) Topology of Magnon-Phonon Hybridization in 2D AntiferromagnetsPhys. Rev. Lett. 124, 147204 (2020).
  • Neumann et al. (2022) R. R. Neumann, A. Mook, J. Henk,  and I. Mertig, Thermal Hall Effect of Magnons in Collinear Antiferromagnetic Insulators: Signatures of Magnetic and Topological Phase TransitionsPhys. Rev. Lett. 128, 117201 (2022).
  • Efimkin and Kargarian (2021) D. K. Efimkin and M. Kargarian, Topological spin-plasma wavesPhys. Rev. B 104, 075413 (2021).
  • Karzig et al. (2015) T. Karzig, C.-E. Bardyn, N. H. Lindner,  and G. Refael, Topological PolaritonsPhys. Rev. X 5, 031001 (2015).
  • Nalitov et al. (2015) A. V. Nalitov, D. D. Solnyshkov,  and G. Malpuech, Polariton \mathbb{Z} Topological InsulatorPhys. Rev. Lett. 114, 116401 (2015).
  • (38) See Supplemental Material at [] for detailed derivations of the long-wavelength theories for helicons, phonons, and mixed helicon-phonon excitations; specific forms of the dynamical matrices W^𝐪ac(op)\hat{W}_{\mathbf{q}}^{\mathrm{ac}(\mathrm{op})} for acoustic (optical) phonons; the list of material parameters used for calculations; estimations of the quality factor for helicons in potassium and heavily doped CdSe. The Supplemental Material also contains the Refs. Bungaro et al. (2000); Widulle et al. (1999); Madelung (2004).
  • Swanson (2003) D. G. Swanson, Plasma Waves (CRC Press, 2003).
  • Bradlyn et al. (2016) B. Bradlyn, J. Cano, Z. Wang, M. G. Vergniory, C. Felser, R. J. Cava,  and B. A. Bernevig, Beyond Dirac and Weyl fermions: Unconventional quasiparticles in conventional crystalsScience 353, 6299 (2016).
  • Landau and Lifshitz (1959) L. D. Landau and E. M. Lifshitz, Theory of Elasticity, Course of Theoretical Physics, Vol. 7 (Pergamon Press, London, 1959).
  • Note (1) For polar crystals, χ=ωl(ϵ0ϵ)/4π\chi=\omega_{l}\sqrt{(\epsilon_{0}-\epsilon_{\infty})/4\pi} is usually parametrized in terms of the static dielectric constant ϵ0\epsilon_{0} and its value ϵ\epsilon_{\infty} in the high-frequency limit.
  • Huang (1951) K. Huang, On the interaction between the radiation field and ionic crystalsProceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences 208, 352 (1951).
  • Note (2) We also assume that the external magnetic field is directed along the c-axis of the crystal.
  • Note (3) We note that the emergence of the Weyl helicon-phonon waves does not rely on this assumption. Instead, it ensures that the renormalization of phonon dispersion curves due to their interactions with the three gapped high-frequency magnetoplasma modes can be safely neglected and simplifies the analysis of the dispersion relations for the mixed excitations.
  • Grimes and Buchsbaum (1964) C. C. Grimes and S. J. Buchsbaum, Interaction Between Helicon Waves and Sound Waves in PotassiumPhys. Rev. Lett. 12, 357 (1964).
  • Libchaber and Grimes (1969a) A. Libchaber and C. C. Grimes, Resonant Damping of Helicon Waves in PotassiumPhys. Rev. 178, 1145 (1969a).
  • Blaney (1967) T. G. Blaney, The interaction between sound and helicon waves in potassiumThe Philosophical Magazine: A Journal of Theoretical Experimental and Applied Physics 15, 707 (1967).
  • Larsen and Saermark (1967) P. Larsen and K. Saermark, Helicon excitation of acoustic waves in aluminiumPhysics Letters A 24, 374 (1967).
  • Gudkov (1982) V. Gudkov, Rotation of polarization and ellipticity of ultrasound in helicon-phonon resonance conditions in indiumSolid State Communications 44, 229 (1982).
  • Schilz (1968) W. Schilz, Experimental Evidence of Bulk Helicon-Phonon Coupling in PbTePhys. Rev. Lett. 20, 104 (1968).
  • Rosenman (1965) I. Rosenman, Helicon-phonon interaction in cadmium arsenide (Cd3As2)Solid State Communications 3, 405 (1965).
  • Caldwell et al. (2015) J. D. Caldwell, L. Lindsay, V. Giannini, I. Vurgaftman, T. L. Reinecke, S. A. Maier,  and O. J. Glembocki, Low-loss, infrared and terahertz nanophotonics using surface phonon polaritonsNanophotonics 4, 44 (2015).
  • Ma et al. (2019) J.-Z. Ma, S. M. Nie, C. J. Yi, J. Jandke, T. Shang, M. Y. Yao, M. Naamneh, L. Q. Yan, Y. Sun, A. Chikina, V. N. Strocov, M. Medarde, M. Song, Y.-M. Xiong, G. Xu, W. Wulfhekel, J. Mesot, M. Reticcioli, C. Franchini, C. Mudry, M. Müller, Y. G. Shi, T. Qian, H. Ding,  and M. Shi, Spin fluctuation induced Weyl semimetal state in the paramagnetic phase of EuCd2As2\hbox{EuCd}_{2}\hbox{As}_{2}Science Advances 5, eaaw4718 (2019).
  • Morali et al. (2019) N. Morali, R. Batabyal, P. K. Nag, E. Liu, Q. Xu, Y. Sun, B. Yan, C. Felser, N. Avraham,  and H. Beidenkopf, Fermi-arc diversity on surface terminations of the magnetic Weyl semimetal Co3Sn2S2\hbox{Co}_{3}\hbox{Sn}_{2}\hbox{S}_{2}Science 365, 1286 (2019).
  • Wang et al. (2019) D. Wang, B. Yang, W. Gao, H. Jia, Q. Yang, X. Chen, M. Wei, C. Liu, M. Navarro-Cía, J. Han, W. Zhang,  and S. Zhang, Photonic Weyl points due to broken time-reversal symmetry in magnetized semiconductorNature Physics 15, 1150 (2019).
  • Shastri et al. (2021) K. Shastri, M. I. Abdelrahman,  and F. Monticone, Nonreciprocal and Topological PlasmonicsPhotonics 8 (2021).
  • Pellegrino et al. (2015) F. M. D. Pellegrino, M. I. Katsnelson,  and M. Polini, Helicons in Weyl semimetalsPhys. Rev. B 92, 201407 (2015).
  • Gorbar et al. (2017) E. V. Gorbar, V. A. Miransky, I. A. Shovkovy,  and P. O. Sukhachov, Pseudomagnetic heliconsPhys. Rev. B 95, 115422 (2017).
  • Wang et al. (2020) W. Wang, W. Gao, L. Cao, Y. Xiang,  and S. Zhang, Photonic topological fermi nodal disk in non-Hermitian magnetic plasmaLight: Science & Applications 9, 40 (2020).
  • Cerjan et al. (2019) A. Cerjan, S. Huang, M. Wang, K. P. Chen, Y. Chong,  and M. C. Rechtsman, Experimental realization of a Weyl exceptional ringNature Photonics 13, 623 (2019).
  • Bungaro et al. (2000) C. Bungaro, K. Rapcewicz,  and J. Bernholc, Ab initio phonon dispersions of wurtzite AlN, GaN, and InNPhys. Rev. B 61, 6720 (2000).
  • Widulle et al. (1999) F. Widulle, S. Kramp, N. Pyka, A. Göbel, T. Ruf, A. Debernardi, R. Lauck,  and M. Cardona, The phonon dispersion of wurtzite CdSePhysica B: Condensed Matter 263-264, 448 (1999).
  • Madelung (2004) O. Madelung, Semiconductors Data Handbook (Springer, Berlin, 2004) pp. 815–835.
  • Libchaber and Grimes (1969b) A. Libchaber and C. C. Grimes, Resonant Damping of Helicon Waves in PotassiumPhys. Rev. 178, 1145 (1969b).

Supplemental Material for
Weyl excitations via helicon-phonon mixing in conducting materials

Dmitry K. Efimkin and Sergey Syzranov

I Long-wavelength theory for helicons

The “Hamiltonian” ^pl(𝐪)\hat{\mathcal{H}}_{\mathrm{pl}}(\mathbf{q}) given by Eq. (2a) contains complete full information about the helicon dispersion but is excessive and cumbersome to deal with. To get rid of the high frequency-plasma modes, it is instructive to rewrite ^pl(𝐪)\hat{\mathcal{H}}_{\mathrm{pl}}(\mathbf{q}) in the eigenbasis for ^pl(𝐪=𝟎)\hat{\mathcal{H}}_{\mathrm{pl}}(\mathbf{q}=\mathbf{0}) that admits an analytical solution. For instance, the dispersion of helicons is gapless and therefore vanishes at 𝐪=0\mathbf{q}=0, but this is not the case for the high frequency plasma waves. The Langmuir waves is dispersionless and its frequency is ωp\omega_{\mathrm{p}}, while the corresponding frequencies for R- and L-waves are given by

ω±=ωp2+(ωc2)2±ωc2.\omega_{\pm}=\sqrt{\omega_{\mathrm{p}}^{2}+\left(\frac{\omega_{\mathrm{c}}}{2}\right)^{2}}\pm\frac{\omega_{\mathrm{c}}}{2}. (S1)

The splitting between them is induced by external magnetic field and is equal to the cyclotron frequency ωc\omega_{\mathrm{c}}. The basis transformation results in the Hamiltonian ^pl(𝐪)\hat{\mathcal{H}}^{\prime}_{\mathrm{pl}}(\mathbf{q}) that is given by

^pl(𝐪)=(ϵ^+Σ^+0(𝐪)0Σ^0+(𝐪)0Σ^0(𝐪)0Σ^0(𝐪)ϵ^)\hat{\mathcal{H}}^{\prime}_{\mathrm{pl}}(\mathbf{q})=\begin{pmatrix}\hat{\epsilon}_{+}&\hat{\Sigma}_{+0}(\mathbf{q})&0\\ \hat{\Sigma}_{0+}(\mathbf{q})&0&\hat{\Sigma}_{0-}(\mathbf{q})\\ 0&\hat{\Sigma}_{-0}(\mathbf{q})&\hat{\epsilon}_{-}\end{pmatrix} (S2)

Here ϵ^+=diag[{ω+,ωp,ω}]\hat{\epsilon}_{+}=\mathrm{diag}[\{\omega_{+},\omega_{\mathrm{p}},\omega_{-}\}] and ϵ^=diag[{ω,ωp,ω+}]\hat{\epsilon}_{-}=\mathrm{diag}[\{-\omega_{-},-\omega_{\mathrm{p}},-\omega_{+}\}] are diagonal matrices. Importantly, zero-frequency modes are not coupled directly, but only via transitions to high frequency plasma modes (including both positive and negative frequency sectors). If we reshuffle wave functions for zero-frequency modes as ψhel(𝐪)={(BxiBy)/2,Bz,(BxiBy)/2}\psi_{\mathrm{hel}}(\mathbf{q})=\{(B_{x}-iB_{y})/\sqrt{2},-B_{z},(-B_{x}-iB_{y})/\sqrt{2}\}, the matrix elements of their coupling with high-frequency plasma waves are given by

Σ+0(𝐪)=(ic¯qzricq+r20c¯q20c¯q+20ic¯qr+2ic¯qzr+),Σ0(𝐪)=(ic¯qzr+ic¯q+20cq20c¯q+20icq2ic¯qzr).\begin{split}\Sigma_{+0}(\mathbf{q})&=\begin{pmatrix}i\bar{c}q_{z}r_{-}&\frac{icq_{+}r_{-}}{\sqrt{2}}&0\\ \frac{\bar{c}q_{-}}{2}&0&\frac{\bar{c}q_{+}}{2}\\ 0&\frac{i\bar{c}q_{-}r_{+}}{\sqrt{2}}&-i\bar{c}q_{z}r_{+}\end{pmatrix},\\ \Sigma_{-0}(\mathbf{q})&=\begin{pmatrix}-i\bar{c}q_{z}r_{+}&-\frac{i\bar{c}q_{+}}{\sqrt{2}}&0\\ \frac{-cq_{-}}{2}&0&-\frac{\bar{c}q_{+}}{2}\\ 0&-\frac{icq_{-}}{\sqrt{2}}&i\bar{c}q_{z}r_{-}\end{pmatrix}.\end{split}

Here we have introduced q±=qx±iqyq_{\pm}=q_{x}\pm iq_{y}, r=ω/(ω++ω)r_{-}=\sqrt{\omega_{-}/(\omega_{+}+\omega_{-})} and r+=ω+/(ω++ω)r_{+}=\sqrt{\omega_{+}/(\omega_{+}+\omega_{-})}. The other two matrix elements are not independent, but can be obtained by the Hermitian conjugation as as Σ0+=Σ+0\Sigma_{0+}=\Sigma_{+0}^{\dagger} and Σ0=Σ0\Sigma_{0-}=\Sigma_{-0}^{\dagger}. In the leading order in the small parameter ωc/ωp1\omega_{\mathrm{c}}/\omega_{\mathrm{p}}\ll 1,the exclusion of the high-frequency plasma waves is straightforward and results in the following effective low-frequency ”Hamiltonian” ^hel(𝐪)\hat{\mathcal{H}}_{\mathrm{hel}}(\mathbf{q}) that is given by

^hel=Σ^0+(𝐪)ϵ^+1Σ^+0(𝐪)Σ^0(𝐪)ϵ^1Σ^0(𝐪).\hat{\mathcal{H}}_{\mathrm{hel}}=-\hat{\Sigma}_{0+}(\mathbf{q})\hat{\epsilon}_{+}^{-1}\hat{\Sigma}_{+0}(\mathbf{q})-\hat{\Sigma}_{0-}(\mathbf{q})\hat{\epsilon}_{-}^{-1}\hat{\Sigma}_{-0}(\mathbf{q}). (S3)

Explicit evaluation results in

^hel(𝐪)=αqz(qzqx+iqy20qxiqy20qx+iqy20qxiqy2qz)\hat{\mathcal{H}}_{\mathrm{hel}}(\mathbf{q})=\alpha q_{z}\begin{pmatrix}q_{z}&\frac{q_{x}+iq_{y}}{\sqrt{2}}&0\\ \frac{q_{x}-iq_{y}}{\sqrt{2}}&0&\frac{q_{x}+iq_{y}}{\sqrt{2}}\\ 0&\frac{q_{x}-iq_{y}}{\sqrt{2}}&-q_{z}\end{pmatrix} (S4)

that is presented in the main part of the paper as Eq. (3). Here α=ωcc¯2/ωp2=Bc/4πne\alpha=\omega_{\mathrm{c}}\bar{c}^{2}/\omega_{\mathrm{p}}^{2}=Bc/4\pi ne gives the prefactor in the anisotropic dispersion relation ωhel(𝐪)=αqzq\omega_{\mathrm{hel}}(\mathbf{q})=\alpha q_{\mathrm{z}}q for helicons.

Interestingly, the Hamiltonian ^hel(𝐪)\hat{\mathcal{H}}_{\mathrm{hel}}(\mathbf{q}) given by Eq. (S4) can be readily recognized as product of the spin-1 Weyl Hamiltonian and qzq_{z}-factor. The presence of the extra factor not only shapes the anisotropic helicon dispersion, but makes the plane qz=0q_{z}=0 in reciprocal space to be special. Indeed, all three eigenvalues of H^hel(𝐪)\hat{H}_{\mathrm{hel}}(\mathbf{q}) are degenerate there. As a result, positive and negative branches for the spin-1 Weyl Hamiltonian switch across this plane, and wave function for helicons (in the basis ψhel={B,Bz,B+}\psi_{\mathrm{hel}}=\{B_{-},-B_{z},B_{+}\}) can be presented as

|ψH(𝐪)=(1+|nz|2(nx+iny)n2nz|nz|1|nz|2(nxiny)).|\psi_{\mathrm{H}}(\mathbf{q})\rangle=\begin{pmatrix}\frac{1+|n_{z}|}{2}(n_{x}+in_{y})\\ \frac{n_{\perp}}{\sqrt{2}}\frac{n_{z}}{|n_{z}|}\\ \frac{1-|n_{z}|}{2}(n_{x}-in_{y})\end{pmatrix}. (S5)

Here 𝐧=𝐪/q\mathbf{n}=\mathbf{q}/q is the unit vector aligned with the wavevector 𝐪\mathbf{q}. Generally, propagation of helicons involves both longitudinal and transverse oscillations (of electronic current, as well as electric and magnetic fields). However, if the wavevector 𝐪\mathbf{q} and magnetic field are aligned, helicons become circularly polarized transverse wave with no longitudinal component. Their wave function simplifies as

|ψH(𝐪z)=(nx+iny00).|\psi_{\mathrm{H}}(\mathbf{q}_{z})\rangle=\begin{pmatrix}n_{x}+in_{y}\\ 0\\ 0\end{pmatrix}. (S6)

It also can be noticed that circular polarization is the same as for helicons propagating along magnetic field as ones propagating in the opposite direction.

II Equations of motion for phonons

This section discusses the reformulation of equations of motion for phonons, Eqs. (4a) and (12) in the main text, as an eigenvalue problem. It is instructive to start with acoustic phonons. The corresponding equation of motion, Eq. (4a), is of the second order in t\partial_{t} and needs to be rewritten as a system of two coupled equations of the first order in t\partial_{t}. After the Fourier transform, this can be achieved in a naive way as

t𝐮(𝐪,t)=𝐩(𝐪,t),t𝐩(𝐪,t)=D^𝐪ac𝐮(𝐪,t)\begin{split}\partial_{t}\mathbf{u}(\mathbf{q},t)=\mathbf{p}(\mathbf{q},t),\\ \partial_{t}\mathbf{p}(\mathbf{q},t)=-\hat{D}_{\mathbf{q}}^{\mathrm{ac}}\mathbf{u}(\mathbf{q},t)\end{split} (S7)

The explicit expression for the dynamical matrix D^𝐪ac\hat{D}_{\mathbf{q}}^{\mathrm{ac}} is given by

D^𝐪ac=(sl2qx2+st2(qy2+qz2)(sl2st2)qxqy(sl2st2)qxqz(sl2st2)qyqxsl2qy2+st2(qy2+qz2)(sl2st2)qyqz(sl2st2)qzqx(sl2st2)qzqysl2qz2+st2(qx2+qy2)).\hat{D}_{\mathbf{q}}^{\mathrm{ac}}=\begin{pmatrix}s^{2}_{\mathrm{l}}q_{x}^{2}+s^{2}_{\mathrm{t}}(q_{y}^{2}+q_{z}^{2})&(s_{\mathrm{l}}^{2}-s_{\mathrm{t}}^{2})q_{x}q_{y}&(s_{\mathrm{l}}^{2}-s_{\mathrm{t}}^{2})q_{x}q_{z}\\ (s_{\mathrm{l}}^{2}-s_{\mathrm{t}}^{2})q_{y}q_{x}&s^{2}_{\mathrm{l}}q_{y}^{2}+s^{2}_{\mathrm{t}}(q_{y}^{2}+q_{z}^{2})&(s_{\mathrm{l}}^{2}-s_{\mathrm{t}}^{2})q_{y}q_{z}\\ (s_{\mathrm{l}}^{2}-s_{\mathrm{t}}^{2})q_{z}q_{x}&(s_{\mathrm{l}}^{2}-s_{\mathrm{t}}^{2})q_{z}q_{y}&s^{2}_{\mathrm{l}}q_{z}^{2}+s^{2}_{\mathrm{t}}(q_{x}^{2}+q_{y}^{2})\end{pmatrix}. (S8)

The resulting system of equations is of the first order in t\partial_{t}, but does not have the desirable ”Shrödinger-like” structure. This can be fixed if we notice that the matrix D^𝐪ac=(W^𝐪ac)2\hat{D}_{\mathbf{q}}^{\mathrm{ac}}=(\hat{W}_{\mathbf{q}}^{\mathrm{ac}})^{2} can be presented as a square of another Hermitain matrix W^𝐪ac\hat{W}_{\mathbf{q}}^{\mathrm{ac}}. This is possible because all eigenvalues for D^𝐪ac\hat{D}_{\mathbf{q}}^{\mathrm{ac}} are positive {sl2𝐪2,st2𝐪2,st2𝐪2}\{s_{\mathrm{l}}^{2}\mathbf{q}^{2},s_{\mathrm{t}}^{2}\mathbf{q}^{2},s_{\mathrm{t}}^{2}\mathbf{q}^{2}\}. The connection between D^𝐪ac\hat{D}_{\mathbf{q}}^{\mathrm{ac}} and W^𝐪ac\hat{W}_{\mathbf{q}}^{\mathrm{ac}} can be established as

D^𝐪ac=sl2𝐪2|ψl(𝐪)ψl(q)|+st2𝐪2|ψt1(𝐪)ψt1(𝐪)|+st2𝐪2|ψt2(𝐪)ψt2(𝐪)|,W^𝐪ac=slq|ψl(𝐪)ψl(𝐪)|+stq|ψt1(𝐪)ψt1(𝐪)|+stq|ψt2(𝐪)ψt2(𝐪)|.\begin{split}\hat{D}_{\mathbf{q}}^{\mathrm{ac}}=s_{\mathrm{l}}^{2}\mathbf{q}^{2}|\psi_{\mathrm{l}}(\mathbf{q})\rangle\langle\psi_{\mathrm{l}}(q)|\\ +s_{\mathrm{t}}^{2}\mathbf{q}^{2}|\psi_{\mathrm{t1}}(\mathbf{q})\rangle\langle\psi_{\mathrm{t1}}(\mathbf{q})|+s_{\mathrm{t}}^{2}\mathbf{q}^{2}|\psi_{\mathrm{t2}}(\mathbf{q})\rangle\langle\psi_{\mathrm{t2}}(\mathbf{q})|,\\ \hat{W}_{\mathbf{q}}^{\mathrm{ac}}=s_{\mathrm{l}}q|\psi_{\mathrm{l}}(\mathbf{q})\rangle\langle\psi_{\mathrm{l}}(\mathbf{q})|+\\ s_{\mathrm{t}}q|\psi_{\mathrm{t1}}(\mathbf{q})\rangle\langle\psi_{\mathrm{t1}}(\mathbf{q})|+s_{\mathrm{t}}q|\psi_{\mathrm{t2}}(\mathbf{q})\rangle\langle\psi_{\mathrm{t2}}(\mathbf{q})|.\end{split} (S9)

Here we have introduced eigenstates for longitudinal and trasnverse phonons in the basis {ux,uy,uz}\{u_{x},u_{y},u_{z}\} as

|ψl(𝐪)={nx,ny,nz}T,|ψt1(𝐪)={ny,nx,0}Tnx2+ny2,|ψt2(𝐪)={nxnz,nynz,nx2+ny2}Tnx2+ny2.\begin{split}|\psi_{\mathrm{l}}(\mathbf{q})\rangle=\{n_{x},&n_{y},n_{z}\}^{\mathrm{T}},\quad|\psi_{\mathrm{t1}}(\mathbf{q})\rangle=\frac{\{-n_{y},n_{x},0\}^{\mathrm{T}}}{\sqrt{n_{x}^{2}+n_{y}^{2}}},\\ \\ |\psi_{\mathrm{t2}}(\mathbf{q})\rangle&=\frac{\{-n_{x}n_{z},-n_{y}n_{z},n_{x}^{2}+n_{y}^{2}\}^{\mathrm{T}}}{\sqrt{n_{x}^{2}+n_{y}^{2}}}.\end{split}

Here 𝐧=𝐪/q\mathbf{n}=\mathbf{q}/q is the unit vector aligned with the wavevector 𝐪\mathbf{q}. The introduced matrix W^𝐪ac\hat{W}_{\mathbf{q}}^{\mathrm{ac}} plays the key role in the transformation

ψac={𝐩,W^𝐪ac𝐮}\psi_{\mathrm{ac}}=\{\mathbf{p},\hat{W}_{\mathbf{q}}^{\mathrm{ac}}\mathbf{u}\} (S10)

that recasts the equations of motion for acoustic phonons as an eigenvalue problem with the ”Hamiltonian” that is given by

^ac(𝐪)=(0iW^𝐪aciW^𝐪ac0)\hat{\mathcal{H}}_{\mathrm{ac}}(\mathbf{q})=\begin{pmatrix}0&-i\hat{W}_{\mathbf{q}}^{\mathrm{ac}}\\ i\hat{W}_{\mathbf{q}}^{\mathrm{ac}}&0\end{pmatrix} (S11)

and is presented in the main text as Eq. (6).

This approach can readily be generalized to the case of optical phonons. The only difference is that the key matrices D^𝐪ac\hat{D}_{\mathbf{q}}^{\mathrm{ac}} and W𝐪acW_{\mathbf{q}}^{\mathrm{ac}} needs to be substituted by

D^𝐪op=ωl2|ψl(𝐪)ψl(q)|+ωt2|ψt1(𝐪)ψt1(𝐪)|+ωt2|ψt2(𝐪)ψt2(𝐪)|,W^𝐪op=ωl|ψl(𝐪)ψl(𝐪)|+ωt|ψt1(𝐪)ψt1(𝐪)|+ωt|ψt2(𝐪)ψt2(𝐪)|.\begin{split}\hat{D}_{\mathbf{q}}^{\mathrm{op}}=\omega_{\mathrm{l}}^{2}|\psi_{\mathrm{l}}(\mathbf{q})\rangle\langle\psi_{\mathrm{l}}(q)|\\ +\omega_{\mathrm{t}}^{2}|\psi_{\mathrm{t1}}(\mathbf{q})\rangle\langle\psi_{\mathrm{t1}}(\mathbf{q})|+\omega_{\mathrm{t}}^{2}|\psi_{\mathrm{t2}}(\mathbf{q})\rangle\langle\psi_{\mathrm{t2}}(\mathbf{q})|,\\ \hat{W}_{\mathbf{q}}^{\mathrm{op}}=\omega_{\mathrm{l}}|\psi_{\mathrm{l}}(\mathbf{q})\rangle\langle\psi_{\mathrm{l}}(\mathbf{q})|+\\ \omega_{\mathrm{t}}|\psi_{\mathrm{t1}}(\mathbf{q})\rangle\langle\psi_{\mathrm{t1}}(\mathbf{q})|+\omega_{\mathrm{t}}|\psi_{\mathrm{t2}}(\mathbf{q})\rangle\langle\psi_{\mathrm{t2}}(\mathbf{q})|.\end{split} (S12)

Here ωl\omega_{\mathrm{l}} and ωt\omega_{\mathrm{t}} are dispersion relations for the longitudinal and optical phonons.

III Long-wavelength theory for interacting helicons and phonons

Effective ”Hamiltonians” ^helac\hat{\mathcal{H}}_{\mathrm{hel}-\mathrm{ac}} and ^helopt\hat{\mathcal{H}}_{\mathrm{hel}-\mathrm{opt}} describing mixing of helicons with acoustic and optical phonons are presented in the main text as Eqs. (9) and (13). They contain the complete information on the dispersion relations of the hybrid modes as well as on their nontrivial topology, but are excessive and cumbersome to deal with. It is instructive to truncate the transverse phonons as well as perturbatively exclude the high-frequency plasma waves. For both considered scenarios, the functional form of the resulting effective ”Hamiltonian” is the same

^helph(𝐪)=(ωl(𝐪)M𝐪+h0M𝐪h+^hel(𝐪)M𝐪h0M𝐪hωl(𝐪)).\hat{\mathcal{H}}_{\mathrm{hel-ph}}(\mathbf{q})=\begin{pmatrix}\omega_{\mathrm{l}}(\mathbf{q})&M^{+h}_{\mathbf{q}}&0\\ M^{h+}_{\mathbf{q}}&\hat{\mathcal{H}}_{\mathrm{hel}}(\mathbf{q})&M^{h-}_{\mathbf{q}}\\ 0&M^{-h}_{\mathbf{q}}&-\omega_{\mathrm{l}}(\mathbf{q})\end{pmatrix}. (S13)

The top left and bottom right corner elements correspond to longitudinal phonons (including their negative frequency counterpart states) and ωl(𝐪)\omega_{\mathrm{l}}(\mathbf{q}) is their dispersion relation. The central block is 3×33\times 3 effective Hamiltonian for helicons ^hel(𝐪)\hat{\mathcal{H}}_{\mathrm{hel}}(\mathbf{q}) given by Eq. (S4). The off-diagonal vectors M𝐪±h=isq1{qzq,2q2,qzq+}M^{\pm h}_{\mathbf{q}}=\mp is_{\perp}q^{-1}\{q_{z}q_{-},\sqrt{2}q_{\perp}^{2},-q_{z}q_{+}\} describe inter-mode coupling and M𝐪h±=(M𝐪±h)M^{h\pm}_{\mathbf{q}}=(M^{\pm h}_{\mathbf{q}})^{*}. The strength of the coupling between helicons and longitudinal phonons is parameterized by the velocity ss_{\perp} and its explicit expressions for the case of acoustical and optical phonons are given by sac=γacc¯/2ωps_{\perp}^{\mathrm{ac}}=\gamma_{\mathrm{ac}}\bar{c}/2\omega_{\mathrm{p}} and sop=γopωcc¯/2ωp2s_{\perp}^{\mathrm{op}}=\gamma_{\mathrm{op}}\omega_{\mathrm{c}}\bar{c}/2\omega_{\mathrm{p}}^{2}. In the vicinity of the Weyl nodes, this ”Hamiltonian” ^helph(𝐪)\hat{\mathcal{H}}_{\mathrm{hel-ph}}(\mathbf{q}) further simplifies into the genuine Weyl Hamiltonian presented in the main text as Eqs. (10) and (14).

IV Parameters for estimates

IV.1 Acoustic phonons

Mixing between acoustic phonons and helicons has been reported in potassium Grimes and Buchsbaum (1964); Libchaber and Grimes (1969a); Blaney (1967), aluminium Larsen and Saermark (1967), indium Gudkov (1982), lead telluride Schilz (1968) and cadmium arsenide Rosenman (1965). We have used the set of parameters that corresponds to potassium and is given by Blaney (1967): electron density n=2.65 1022cm3n=2.65\;10^{22}\;\hbox{cm}^{-3}, effective mass m=1.2m0m=1.2m_{0} where m0m_{0} is free electron mass, optical dielectric constant ϵ1\epsilon_{\infty}\approx 1, speed of longitudinal sl=2.0×105cm/ss_{\mathrm{l}}=2.0\times 10^{5}\;\hbox{cm}/\hbox{s} and transverse st=7.4×104cm/ss_{\mathrm{t}}=7.4\times 10^{4}\;\hbox{cm}/\hbox{s} phonons, and electron scattering time τe0.4×1010s\tau_{\mathrm{e}}\approx 0.4\times 10^{-10}\;\hbox{s} (at T=1.2KT=1.2\;\hbox{K})Libchaber and Grimes (1969b). We have also chosen the external magnetic field B=20TB=20\;\hbox{T}. The resulting plasma ωp8.3PHz\omega_{\mathrm{p}}\approx 8.3~{}\hbox{PHz} and cyclotron ωc2.8THz\omega_{\mathrm{c}}\approx 2.8~{}\hbox{THz} frequencies (ωp5.5eV\omega_{\mathrm{p}}\approx 5.5~{}\hbox{eV} and ωc1.9meV\omega_{\mathrm{c}}\approx 1.9~{}\hbox{meV}) are separated by a few orders of magnitude.

The resulting strength of the coupling between helicons and acoustic phonons is parameterized by the frequency γac16GHz\gamma_{\mathrm{ac}}\approx 16\;\hbox{GHz}. The resulting wave vector and frequency for the Weyl point are qWeyl±=0.53μm1q_{\mathrm{Weyl}}^{\pm}=0.53\;\mu m^{-1} and ωWeyl=1.1GHz\omega_{\mathrm{Weyl}}=1.1\;\hbox{GHz}. The transverse velocity across the Weyl node is sac=2.9 104cm/ss_{\perp}^{\mathrm{ac}}=2.9\;10^{4}\;\hbox{cm}/\hbox{s}.

The quality factor for helicons (the ratio of their decay rate to frequency Libchaber and Grimes (1969b)) is given by 1/ωcτe1031/\omega_{\mathrm{c}}\tau_{\mathrm{e}}\approx 10^{-3}. This demonstrates that the effect of dissipation at the Weyl nodes is very small and they are readily observable even at elevated temperatures.

IV.2 Optical phonons

Frequencies of optical phonons in typical polar semiconductors lie in the range 520THz5-20\;\hbox{THz} Caldwell et al. (2015); Bungaro et al. (2000). In this paper, we consider CdSe, a material characterized by relatively small phonon frequencies, ωl6THz\omega_{\mathrm{l}}\approx 6\;\hbox{THz} and ωt5.3THz\omega_{\mathrm{t}}\approx 5.3\;\hbox{THz}, as well as a relatively small effective electron mass m0.12m0m\approx 0.12m_{0}, thus requiring lower magnetic fields (cyclotron frequencies) to achieve intersection of optical-phonon and helicon dispersion curves (Another possible candidate is strained InSb). The other parameters are Widulle et al. (1999): static dielectric constant ϵ010.2\epsilon_{0}\approx 10.2, its value ϵ6.3\epsilon_{\infty}\approx 6.3 in the high frequency limit. We also consider electron density n1019cm2n\approx 10^{19}~{}\hbox{cm}^{-2} and the magnetic field and the magnetic field B=25TB=25\;\hbox{T}. The corresponding electron scattering time can be estimated as τe3×1013s\tau_{\mathrm{e}}\approx 3\times 10^{-13}\;\hbox{s} at T=80KT=80~{}\hbox{K} Madelung (2004). The resulting plasma ωp=186Thz\omega_{\mathrm{p}}=186~{}\hbox{Thz} and cyclotron ωc=36THz\omega_{\mathrm{c}}=36~{}\hbox{THz} frequencies (ωp124meV\omega_{\mathrm{p}}\approx 124~{}\hbox{meV} and ωc24meV\omega_{\mathrm{c}}\approx 24~{}\hbox{meV}) are reasonably well separated and exceed the frequencies of optical phonons.

The resulting strength of the coupling between helicons and optical phonons is parameterized by the frequency is γop3.7THz\gamma_{\mathrm{op}}\approx 3.7\;\hbox{THz}. The frequency of the Weyl nodes is pinned to the frequency of longitudinal optical mode, whereas the corresponding wave vector is given by qWeyl±=0.69μm1q_{\mathrm{Weyl}}^{\pm}=0.69\;\mu m^{-1}. The transverse velocity across the Weyl nodes is sop2.3×106cm/ss_{\perp}^{\mathrm{op}}\approx 2.3\times 10^{6}\;\hbox{cm}/\hbox{s}.

The quality factor for helicons (the ratio of their decay rate to frequency) is given by 1/ωcτe101/\omega_{\mathrm{c}}\tau_{\mathrm{e}}\approx 10 and can be further improved by cooling the crystal to helium temperatures or by reducing the doping level (As we discuss in the main text, the condition ωl,ωcωp\omega_{\mathrm{l}},\omega_{\mathrm{c}}\ll\omega_{\mathrm{p}} is not a requirement for the Weyl helicon-phonon waves, but simplifies analysis of their dispersion relations). The predicted Weyl nodes can, therefore, be clearly resolved in experiments.