This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Well-posedness theory for nonlinear scalar conservation laws on networks

Ulrik Skre Fjordholm, Markus Musch and Nils Henrik Risebro
Abstract

We consider nonlinear scalar conservation laws posed on a network. We establish L1L^{1} stability, and thus uniqueness, for weak solutions satisfying the entropy condition. We apply standard finite volume methods and show stability and convergence to the unique entropy solution, thus establishing existence of a solution in the process. Both our existence and stability/uniqueness theory is centred around families of stationary states for the equation. In one important case – for monotone fluxes with an upwind difference scheme – we show that the set of (discrete) stationary solutions is indeed sufficiently large to suit our general theory. We demonstrate the method’s properties through several numerical experiments.

1 Introduction

Partial differential equations (PDEs) on networks have a large number of applications, including fluid flow in pipelines, traffic flow on a network of roads, blood flow in vessels, data networks, irrigation channels and supply chains. A treatment of this wide range of applications can be found in the review articles [5, 11] and the references therein. In this paper we will focus on scalar, one-dimensional conservation laws

ut+f(u)x=0u_{t}+f(u)_{x}=0 (1.1)

on a network. Here, u=u(x,t)u=u(x,t) is the unknown conserved variable and ff is a scalar flux function defined either on \mathbb{R} or some subinterval. We aim to make sense of the conservation law on a directed graph and obtain existence, uniqueness, stability and approximability results.

Consider a network represented by a connected and directed graph. We tag the edges of this graph with an index kk and impose on each edge a scalar conservation law

utk+fk(uk)x=0,xDk,t>0uk(x,0)=u¯k(x),xDk\begin{split}u_{t}^{k}+f^{k}(u^{k})_{x}=0&,\qquad x\in D^{k},\ t>0\\ u^{k}(x,0)=\bar{u}^{k}(x)&,\qquad x\in D^{k}\end{split} (1.2)

for some spatial domain DkD^{k}\subset\mathbb{R}. (Here and in the remainder, a superscript kk will refer to an edge or a vertex.) We may think of edges as pipes or roads and the vertices as intersections, with the convention that the direction of travel is in the positive xx-direction, as shown in Figure 1.

Dout1D_{\mathrm{out}}^{1}Din1D_{\mathrm{in}}^{-1}Dout2D_{\mathrm{out}}^{2}Dout3D_{\mathrm{out}}^{3}Din2D_{\mathrm{in}}^{-2}vv
Figure 1: A star shaped network with two ingoing and three outgoing edges.
Example 1.1.

A common one-dimensional model for traffic flow on a single road is described by (1.1) with f(u)=smaxu(umaxu)f(u)=s_{\max}u(u_{\max}-u). Here u=u(x,t)u=u(x,t) denotes the number of cars per length unit of road (density of vehicles), umaxu_{\max} denotes the maximal density of the road, and smaxs_{\max} the maximum speed. Commonly, the length unit is scaled so that umax=1u_{\max}=1. This model is often referred to as the Lighthill–Whitham model [18].

A traffic model on a network might incorporate different speed limits smaxks_{\max}^{k} on each road section kk, or different numbers of lanes. In order to model the latter, each unknown uku^{k} can be scaled according to the capacity (proportional to the number of lanes) αk\alpha^{k} on road kk, and the guiding principle to obtain the correct scaling should be the conservation of the total mass (i.e., the total number of cars) kDkuk(x,t)𝑑x\sum_{k}\int_{D^{k}}u^{k}(x,t)\,dx. Thus, if αk\alpha^{k} denotes the capacity and vk(x,t)v^{k}(x,t) denotes the density of vehicles per lane, then the correct scaling is uk=αkvku^{k}=\alpha^{k}v^{k}, and uku^{k} should satisfy (1.2) with

fk(uk)=αkf(uk/αk)f^{k}(u^{k})=\alpha^{k}f\big{(}u^{k}/\alpha^{k}\big{)}

and e.g. f(v)=v(1v)f(v)=v(1-v).

In this paper we will be interested in uniqueness and stability for nonlinear scalar conservation laws on a network, as well as in constructing a numerical approximation and proving convergence of the numerical scheme. As opposed to many existing results, where the flux function on each edge is the same [8, 13], we want to allow for a different flux function fkf^{k} on each edge DkD^{k} of the network. Assuming that each flux fkf^{k} is continuous and independent of the space variable, the problem can be seen as a PDE with a discontinuous flux, with the points of discontinuity sitting on the vertices of the graph. In fact, if our network would be the trivial network with only one ingoing and one outgoing edge then this would be exactly the case of a conservation law on the real line with a flux function with one discontinuity located at the vertex. Because of the connection to the theory for conservation laws with discontinuous fluxes (see e.g. [2]), we will borrow several ideas from this theory.

It is well-established that nonlinear hyperbolic conservation laws develop shocks in finite time. Therefore, solutions are always understood in the weak sense. Unfortunately, weak solutions to nonlinear hyperbolic conservation laws turn out to be non-unique, and additional conditions, usually referred to as entropy conditions, are imposed to select a unique solution. If the flux function is continuous then the theory of entropy solutions is covered by Kruzkhov’s theory [16]. For conservation laws with discontinuous fluxes the choice of entropy conditions is not obvious, and different physical models might lead to different entropy conditions. Although suitable entropy conditions can yield uniqueness, different entropy conditions are known to yield different solutions; see [2] and references therein. This study of different entropy conditions for conservation laws with discontinuous fluxes culminated in the paper by Andreianov, Karlsen and Risebro [2]. The authors relate the question of admissibility of a solution to the properties of a set of constant solutions, a so-called germ. Inspired by the entropy theory of Andreianov, Karlsen and Risebro, we investigate so-called stationary and discrete stationary solutions for our graph problem and thus derive an entropy theory for conservation laws on networks. Although our theory is influenced by the theory in [2], we have strived to make this paper as self-contained as possible.

In [13] the authors show uniqueness and existence to the Riemann problem as well as existence of a weak solution of the Cauchy problem on a network of roads in the case that the flux functions on each edge are identical. In [7, 6, 1, 8] the authors show well-posedness results for vanishing viscosity solutions. In [12] the authors investigate two entropy type conditions. However, in none of the existing literature can one find a general entropy condition which leads to uniqueness and stability of solutions. In the present work we aim to address this deficiency in the existing theory of conservation laws on networks.

The second important question to address is existence of a solution. Our approach will be to construct an approximation of the exact entropy solution by constructing a finite volume scheme. We will prove convergence to an entropy solution, thereby also proving existence of a solution.

In this article we focus on monotone fluxes – that is, each flux fkf^{k} is either increasing or decreasing. For non-monotone fluxes only some of the techniques in the present paper are applicable; a traffic flow model, in which fluxes are assumed to be strictly concave, will be treated in a forthcoming work [10].

This article is structured as follows: In Section 2 we define our mathematical framework. We show uniqueness of entropy solutions to our problem in Section 3. In Section 4 we define a finite difference scheme appropriate for our problem, and in Section 5 we prove that our numerical scheme converges towards the unique entropy solution. In Section 6 we show that a class of monotone flux functions fits in our general scheme. Numerical experiments for the monotone case are presented in Section 7.

While the theory outlined in Sections 2 through 4 holds for conservation laws with general flux functions, the convergence theory in Sections 5 and 7 focuses on monotone flux functions and upwind numerical fluxes.

2 Entropy solutions on networks

Consider a network (or directed graph) of vertices and edges; for simplicity we will assume that the network contains a single vertex, along with NinN_{{\mathrm{in}}}\in\mathbb{N} edges entering and NoutN_{{\mathrm{out}}}\in\mathbb{N} edges exiting the vertex (see Figure 1). (The generalization to general networks will follow analogously, due to the finite speed of propagation of the equations considered.) We think of the NinN_{\mathrm{in}} edges as being to the left of the vertex and the NoutN_{\mathrm{out}} edges to its right. The ingoing edges will be labelled kin{Nin,,1}k\in{{\mathscr{I}}_{\mathrm{in}}}\coloneqq\{-{N_{\mathrm{in}}},\dots,-1\} and the outgoing edges kout{1,,Nout}k\in{{\mathscr{I}}_{\mathrm{out}}}\coloneqq\{1,\dots,{N_{\mathrm{out}}}\}. We denote NNin+NoutN\coloneqq{N_{\mathrm{in}}}+{N_{\mathrm{out}}} and we let inout{\mathscr{I}}\coloneqq{{\mathscr{I}}_{\mathrm{in}}}\cup{{\mathscr{I}}_{\mathrm{out}}} denote the set of all edge indices. Placing the vertex at the origin x=0x=0, the incoming edges have coordinates x=(,0)x\in\mathbb{R}_{-}=(-\infty,0), while the outgoing edges have coordinates x+=(0,)x\in\mathbb{R}_{+}=(0,\infty); we will denote the kk-th edge by

Dk={for kin,+for kout.D^{k}=\begin{cases}\mathbb{R}_{-}&\text{for }k\in{{\mathscr{I}}_{\mathrm{in}}},\\ \mathbb{R}_{+}&\text{for }k\in{{\mathscr{I}}_{\mathrm{out}}}.\end{cases}

On each edge DkD^{k} we now impose the scalar conservation law (1.1), resulting in the NN distinct equations

utk+fk(uk)x=0for xDk,k.\begin{split}u^{k}_{t}+f^{k}(u^{k})_{x}=0&\qquad\text{for }x\in D^{k},\ k\in{\mathscr{I}}.\end{split} (2.1)

The collection of functions 𝐮=(uk)k{\mathbf{u}}=(u^{k})_{k\in{\mathscr{I}}} can be thought of as a function 𝐮:Ω{\mathbf{u}}\colon\Omega\to\mathbb{R}, where

ΩkDk×{k}.\Omega\coloneqq\bigcup_{k\in{\mathscr{I}}}D^{k}\times\{k\}.

On the Borel σ\sigma-algebra (Ω){kAk×{k}:Ak(Dk)}{\mathscr{B}}(\Omega)\simeq\big{\{}\prod_{k\in{\mathscr{I}}}A^{k}\times\{k\}\ :\ A^{k}\in{\mathscr{B}}(D^{k})\big{\}} on Ω\Omega we define the measure λ=×#\lambda={\mathcal{L}}\times\#, where {\mathcal{L}} is the one-dimensional Lebesgue measure and #\# is the counting measure; thus, the integral of 𝐮=(uk)k{\mathbf{u}}=(u^{k})_{k\in{\mathscr{I}}} is

Ω𝐮𝑑λ=kDkuk(x)𝑑x.\int_{\Omega}{\mathbf{u}}\,d\lambda=\sum_{k\in{\mathscr{I}}}\int_{D^{k}}u^{k}(x)\,dx. (2.2)

The set of LL^{\infty}-bounded, real-valued functions on Ω\Omega will be denoted by L(Ω;λ)L^{\infty}(\Omega;\lambda). We define the total variation of a function 𝐮L(Ω;λ){\mathbf{u}}\in L^{\infty}(\Omega;\lambda) as the sum of the variations of its components:

TV(𝐮)Ω|d𝐮dx|dλ=kDk|dukdx(x)|dx.\operatorname{TV}({\mathbf{u}})\coloneqq\int_{\Omega}\Bigl{|}\frac{d{\mathbf{u}}}{dx}\Bigr{|}\,d\lambda=\sum_{k\in{\mathscr{I}}}\int_{D^{k}}\Bigl{|}\frac{du^{k}}{dx}(x)\Bigr{|}\,dx. (2.3)

2.1 Weak solutions

Definition 2.1 (Weak Solution).

We say that a function 𝐮L(+;L(Ω;λ)){\mathbf{u}}\in L^{\infty}\big{(}\mathbb{R}_{+};L^{\infty}(\Omega;\lambda)\big{)} is a weak solution of (2.1) with initial data 𝐮¯L(Ω;λ)\bar{\mathbf{u}}\in L^{\infty}(\Omega;\lambda) if

k0Dkukφtk+fk(uk)φxkdxdt+kDku¯k(x)φk(x,0)𝑑x=0\begin{split}\sum_{k\in{\mathscr{I}}}\int_{0}^{\infty}\int_{D^{k}}u^{k}\varphi^{k}_{t}+f^{k}(u^{k})\varphi^{k}_{x}\,dx\,dt+\sum_{k\in{\mathscr{I}}}\int_{D^{k}}\bar{u}^{k}(x)\varphi^{k}(x,0)\,dx=0\end{split} (2.4)

for all φkCc(Dk¯×[0,))\varphi^{k}\in C_{c}^{\infty}\big{(}\overline{D^{k}}\times[0,\infty)\big{)} satisfying φk(0,t)φ1(0,t)\varphi^{k}(0,t)\equiv\varphi^{1}(0,t) for all kk\in{\mathscr{I}}.

Weak solutions automatically satisfy a Rankine–Hugoniot condition at the intersection:

Proposition 2.2 (Rankine–Hugoniot condition).

Let (uk)k(u^{k})_{k\in{\mathscr{I}}} be a weak solution of (2.1) such that fkuk(,t)f^{k}\circ u^{k}(\cdot,t) has a strong trace at x=0x=0 for every kk\in{\mathscr{I}} and a.e. t>0t>0. Then

kinfk(uk)(0,t)=koutfk(uk)(0,t)for a.e. t>0.\sum_{k\in{{\mathscr{I}}_{\mathrm{in}}}}f^{k}(u^{k})(0,t)=\sum_{k\in{{\mathscr{I}}_{\mathrm{out}}}}f^{k}(u^{k})(0,t)\qquad\text{for a.e.~{}}t>0. (2.5)
Proof.

Define

θε(x)={1ε(ε+x)if x[ε,0]1ε(εx)if x[0,ε]0if |x|>ε.\theta_{\varepsilon}(x)=\begin{cases}\frac{1}{\varepsilon}(\varepsilon+x)&\text{if }x\in[-\varepsilon,0]\\ \frac{1}{\varepsilon}(\varepsilon-x)&\text{if }x\in[0,\varepsilon]\\ 0&\text{if }|x|>\varepsilon.\end{cases} (2.6)

We define Φ(x,t)θε(x)ψ(t)\Phi(x,t)\coloneqq\theta_{\varepsilon}(x)\psi(t) where ψCc([0,))\psi\in C_{c}^{\infty}([0,\infty)). The partial derivatives of Φ\Phi are

Φx(x,t)={1εψ(t)if x[ε,0]1εψ(t)if x[0,ε]0if |x|>εandΦt(x,t)=θε(x)ψ(t).\Phi_{x}(x,t)=\begin{cases}\frac{1}{\varepsilon}\psi(t)&\text{if }x\in[-\varepsilon,0]\\ -\frac{1}{\varepsilon}\psi(t)&\text{if }x\in[0,\varepsilon]\\ 0&\text{if }|x|>\varepsilon\end{cases}\qquad\text{and}\qquad\Phi_{t}(x,t)=\theta_{\varepsilon}(x)\psi^{\prime}(t).

By a density argument, Φ\Phi qualifies as an admissible test function. Thus, we can insert Φ\Phi into the weak formulation (2.4) to get

0=\displaystyle 0={} k0DkukΦtk+fk(uk)Φxkdxdt+kDku¯k(x)Φk(x,0)𝑑x\displaystyle\sum_{k\in{\mathscr{I}}}\int_{0}^{\infty}\int_{D^{k}}u^{k}\Phi_{t}^{k}+f^{k}(u^{k})\Phi_{x}^{k}\,dx\,dt+\sum_{k\in{\mathscr{I}}}\int_{D^{k}}\bar{u}^{k}(x)\Phi^{k}(x,0)\,dx
=\displaystyle={} k0Dkukθε(x)ψ(t)𝑑t𝑑x\displaystyle\sum_{k\in{\mathscr{I}}}\int_{0}^{\infty}\int_{D^{k}}u^{k}\theta_{\varepsilon}(x)\psi^{\prime}(t)\,dt\,dx
+1εk0Dk(ε,ε)sgn(k)fk(uk)ψ(t)𝑑x𝑑t\displaystyle+\frac{1}{\varepsilon}\sum_{k\in{\mathscr{I}}}\int_{0}^{\infty}\int_{D^{k}\cap(-\varepsilon,\varepsilon)}\operatorname{sgn}(k)f^{k}(u^{k})\psi(t)\,dx\,dt
1εkDk(ε,ε)u¯k(x,0)ψ(t)𝑑t\displaystyle-\frac{1}{\varepsilon}\sum_{k\in{\mathscr{I}}}\int_{D^{k}\cap(-\varepsilon,\varepsilon)}\bar{u}^{k}(x,0)\psi(t)\,\,dt
\displaystyle\to{} k0sgn(k)fk(uk)ψ(t)𝑑t\displaystyle-\sum_{k\in{\mathscr{I}}}\int_{0}^{\infty}\operatorname{sgn}(k)f^{k}(u^{k})\psi(t)\,dt

as ε0\varepsilon\to 0, which is equivalent to (2.5). ∎

Definition 2.3 (Stationary Solution).

A stationary solution of (2.1) is a weak solution of (2.1) which is constant in time and is a strong solution on each edge DkD^{k}. We see from (2.4) and (2.5) that the stationary solutions are precisely those satisfying uk(x,t)cku^{k}(x,t)\equiv c^{k}\in\mathbb{R} for xDk,t0x\in D^{k},\ t\geqslant 0 and kk\in{\mathscr{I}}, and where ckc^{k} satisfy the Rankine–Hugoniot condition

kinfk(ck)=koutfk(ck).\sum_{k\in{{\mathscr{I}}_{\mathrm{in}}}}f^{k}(c^{k})=\sum_{k\in{{\mathscr{I}}_{\mathrm{out}}}}f^{k}(c^{k}). (2.7)

Thus, we can identify each stationary solution with a vector 𝐜=(ck)kN{\mathbf{c}}=(c^{k})_{k\in{\mathscr{I}}}\in\mathbb{R}^{N}.

Remark 2.4.

Note that if we only required stationary solutions to be weak solutions on each edge DkD^{k} then they could exhibit arbitrarily many jump discontinuities. More precisely, if ff is not injective then a “stationary weak solution” could jump arbitrarily often between values uk=ck,±u^{k}=c^{k,\pm}, where f(ck,)=f(ck,+)f(c^{k,-})=f(c^{k,+}).

2.2 Entropy conditions

Next, we formulate conditions that will single out a unique weak solution.

Definition 2.5 (Kruzkov entropy pairs).

The Kruzkov entropy pairs are the pairs of functions ηc(u)=|uc|\eta_{c}(u)=|u-c|, qck(u)=sgn(uc)(fk(u)fk(c))q_{c}^{k}(u)=\operatorname{sgn}(u-c)\big{(}f^{k}(u)-f^{k}(c)\big{)} for cc\in\mathbb{R}.

The Kruzkov entropy pairs lead to a consistency condition on sets of stationary solutions:

Definition 2.6.

A subset 𝒢N\mathscr{G}\subset\mathbb{R}^{N} consisting of stationary solutions of (2.1) is mutually consistent if

kinqckk(c~k)koutqckk(c~k)\sum_{k\in{{\mathscr{I}}_{\mathrm{in}}}}q_{c^{k}}^{k}\big{(}\tilde{c}^{k}\big{)}\geqslant\sum_{k\in{{\mathscr{I}}_{\mathrm{out}}}}q_{c^{k}}^{k}\big{(}\tilde{c}^{k}\big{)} (2.8)

for every pair 𝐜,𝐜~𝒢{\mathbf{c}},\tilde{{\mathbf{c}}}\in\mathscr{G}, where qckq_{c}^{k} are the Kruzkov entropy flux functions.

The set of stationary solutions 𝒢\mathscr{G} will determine what class of initial data we can consider:

Definition 2.7.

Let 𝒢N\mathscr{G}\subset\mathbb{R}^{N}. We let Loco(𝒢)L^{\infty}_{\mathrm{oco}}(\mathscr{G}) be the set of LL^{\infty}-bounded data with values lying in the orthogonal convex hull***This nomenclature is somewhat non-standard. The authors found several similar, but non-equivalent, definitions of the orthogonal convex hull in the literature. of 𝒢\mathscr{G},

Loco(𝒢)={𝐮L(Ω;λ):𝐜,𝐝𝒢 s.t. [ck,dk]πk(𝒢)kand cku(x,k)dk(x,k)Ω and ckdlk,l}\begin{split}L^{\infty}_{\mathrm{oco}}(\mathscr{G})=\Bigl{\{}&{\mathbf{u}}\in L^{\infty}(\Omega;\lambda)\ :\ \exists\ {\mathbf{c}},{\mathbf{d}}\in\mathscr{G}\text{ s.t. }[c^{k},d^{k}]\subset\pi^{k}(\mathscr{G})\ \forall\ k\in{\mathscr{I}}\\ &\text{and }c^{k}\leqslant u(x,k)\leqslant d^{k}\ \forall\ (x,k)\in\Omega\text{ and }c^{k}\leqslant d^{l}\ \forall\ k,l\in{\mathscr{I}}\Bigr{\}}\end{split} (2.9)

where πk\pi^{k} is the projection πk(𝐜)=ck\pi^{k}({\mathbf{c}})=c^{k}. (Note that we are ignoring the vertex index k=0k=0.)

The condition [ck,dk]πk(𝒢)k[c^{k},d^{k}]\subset\pi^{k}(\mathscr{G})\ \forall\ k\in{\mathscr{I}} asserts that for every α[ck,dk]\alpha\in[c^{k},d^{k}], there is some 𝐜~𝒢\tilde{\mathbf{c}}\in\mathscr{G} such that c~k=α\tilde{c}^{k}=\alpha. This property is needed in the doubling-of-variables argument in the proof of stability and uniqueness.

Example 2.8.

If Nin=Nout=1N_{\mathrm{in}}=N_{\mathrm{out}}=1 and fk(u)=f(u)=u2f^{k}(u)=f(u)=u^{2} then the stationary solutions are all 𝐜2{\mathbf{c}}\in\mathbb{R}^{2} of the form 𝐜=(c,c){\mathbf{c}}=(c,c) or 𝐜=(c,c){\mathbf{c}}=(c,-c) for cc\in\mathbb{R}. Both 𝒢1={(c,c):c}\mathscr{G}_{1}=\{(c,c):c\in\mathbb{R}\} and 𝒢2={(c,c):c0}\mathscr{G}_{2}=\{(c,-c):c\geqslant 0\} (as well as any subset of these) are mutually consistent, as is 𝒢1𝒢2\mathscr{G}_{1}\cup\mathscr{G}_{2}. Note that no point of the form (c,c)(-c,c) for c>0c>0 can be added to any of these sets and remain mutually consistent. Similarly, no set containing both (c,c)(-c,c) and (d,d)(-d,d) for distinct c,d>0c,d>0 can be mutually consistent. The set 𝒢1\mathscr{G}_{1} stands out as the smallest closed set which is such that both components span all of \mathbb{R}, i.e. πk𝒢1=\pi^{k}\mathscr{G}_{1}=\mathbb{R} for k=1,1k=-1,1. It is readily checked that Loco(𝒢1)=L(Ω;λ)L^{\infty}_{\mathrm{oco}}(\mathscr{G}_{1})=L^{\infty}(\Omega;\lambda), and that any subset of 𝒢1\mathscr{G}_{1} will yield a strictly smaller set of initial data. It is similarly straightforward to check that 𝒢2\mathscr{G}_{2} generates a very restrictive set of initial data:

Loco(𝒢2)={uL(Ω;λ):u1c,u1c for some c0}.L^{\infty}_{\mathrm{oco}}(\mathscr{G}_{2})=\big{\{}u\in L^{\infty}(\Omega;\lambda)\ :\ u^{-1}\equiv c,\ u^{1}\equiv-c\text{ for some }c\geqslant 0\big{\}}.

Thus, 𝒢1\mathscr{G}_{1} is the smallest mutually consistent set of stationary solutions that allow for initial data in all of L(Ω;λ)L^{\infty}(\Omega;\lambda).

Similar considerations hold when fk(uk)=αkf(uk/αk)f^{k}(u^{k})=\alpha^{k}f(u^{k}/\alpha^{k}) for α1α1\alpha_{-1}\neq\alpha_{1} (see Example 1.1).

Definition 2.9 (Entropy Solution).

Let 𝒢N\mathscr{G}\subset\mathbb{R}^{N} be a mutually consistent set of stationary solutions of (2.1) and let 𝐮¯L(Ω;λ)\bar{{\mathbf{u}}}\in L^{\infty}(\Omega;\lambda). We say that a function 𝐮L(+,L(Ω;λ)){\mathbf{u}}\in L^{\infty}(\mathbb{R}_{+},L^{\infty}(\Omega;\lambda)) is an entropy solution of (2.1) with respect to 𝒢\mathscr{G} with initial data 𝐮¯\bar{\mathbf{u}} if

k0Dkηck(uk)φtk+qckk(uk)φxkdxdt+k0ηck(u¯k(x))φk(x,0)𝑑x0\begin{split}\sum_{k\in{\mathscr{I}}}\int_{0}^{\infty}\int_{D^{k}}\eta_{c^{k}}(u^{k})\varphi^{k}_{t}+q_{c^{k}}^{k}(u^{k})\varphi^{k}_{x}\,dx\,dt&\\ +\sum_{k\in{\mathscr{I}}}\int_{0}^{\infty}\eta_{c^{k}}(\bar{u}^{k}(x))\varphi^{k}(x,0)\,dx&\geqslant 0\end{split} (2.10)

for every 𝐜𝒢{\mathbf{c}}\in\mathscr{G} and every 0φCc(Ω×[0,))0\leqslant\varphi\in C_{c}^{\infty}\big{(}\Omega\times[0,\infty)\big{)} satisfying φk(0,t)φ1(0,t)\varphi^{k}(0,t)\equiv\varphi^{1}(0,t) for all kk\in{\mathscr{I}}.

Audusse and Perthame [3] considered an entropy condition similar to (2.10), but in the context of spatially dependent, discontinuous flux functions.

We show first that entropy solutions are invariant in the set LocoL^{\infty}_{\mathrm{oco}} from Definition 2.7.

Lemma 2.10.

Let 𝒢N\mathscr{G}\subset\mathbb{R}^{N} be a mutually consistent set of stationary solutions of (2.1) and let 𝐮L(+,L(Ω;λ)){\mathbf{u}}\in L^{\infty}(\mathbb{R}_{+},L^{\infty}(\Omega;\lambda)) be an entropy solution w.r.t. 𝒢\mathscr{G} with initial data 𝐮¯Loco(𝒢)\bar{\mathbf{u}}\in L^{\infty}_{\mathrm{oco}}(\mathscr{G}). Then 𝐮(t)Loco(𝒢){\mathbf{u}}(t)\in L^{\infty}_{\mathrm{oco}}(\mathscr{G}) for a.e. t>0t>0.

Proof.

Select 𝐜,𝐝𝒢{\mathbf{c}},{\mathbf{d}}\in\mathscr{G} such that 𝐜𝐮¯𝐝{\mathbf{c}}\leqslant\bar{{\mathbf{u}}}\leqslant{\mathbf{d}} (cf. (2.9)). Add inequality (2.10) and equation (2.4) for both ckc^{k} and uku^{k} to get

k0Dk(ckuk)+φtk+H(ckuk)(fk(ck)fk(uk))φxkdxdt\displaystyle\sum_{k\in{\mathscr{I}}}\int_{0}^{\infty}\int_{D^{k}}\big{(}c^{k}-u^{k}\big{)}^{+}\varphi^{k}_{t}+H\big{(}c^{k}-u^{k}\big{)}\big{(}f^{k}(c^{k})-f^{k}(u^{k})\big{)}\varphi^{k}_{x}\,dx\,dt
+k0(cku¯k(x))+= 0φk(x,0)𝑑x\displaystyle+\sum_{k\in{\mathscr{I}}}\int_{0}^{\infty}\underbrace{\big{(}c^{k}-\bar{u}^{k}(x)\big{)}^{+}}_{=\,0}\varphi^{k}(x,0)\,dx 0\displaystyle\geqslant 0

(where +=max(,0)\cdot^{+}=\max(\cdot,0) and H=sgn+H=\operatorname{sgn}^{+} is the Heaviside function). Replacing φ\varphi by a sequence of approximations of the identity function on the set Ω×[0,T]\Omega\times[0,T] yields

kDk(ckuk(x,T))+𝑑x0\sum_{k\in{\mathscr{I}}}\int_{D^{k}}\big{(}c^{k}-u^{k}(x,T)\big{)}^{+}\,dx\leqslant 0

for a.e. T>0T>0, whence 𝐮(T)𝐜{\mathbf{u}}(T)\geqslant{\mathbf{c}}. It follows similarly that 𝐮(T)𝐝{\mathbf{u}}(T)\leqslant{\mathbf{d}}, and hence, 𝐮(T)Loco(𝒢){\mathbf{u}}(T)\in L^{\infty}_{\mathrm{oco}}(\mathscr{G}). ∎

The above lemma enables us to show that entropy solutions have strong traces.

Theorem 2.11.

Let 𝒢N\mathscr{G}\subset\mathbb{R}^{N} be a mutually consistent set of stationary solutions of (2.1) and let 𝐮L(+,L(Ω;λ)){\mathbf{u}}\in L^{\infty}(\mathbb{R}_{+},L^{\infty}(\Omega;\lambda)) be an entropy solution w.r.t. 𝒢\mathscr{G} with initial data 𝐮¯Loco(𝒢)\bar{\mathbf{u}}\in L^{\infty}_{\mathrm{oco}}(\mathscr{G}). Then the functions qkukq^{k}\circ u^{k} and fkukf^{k}\circ u^{k} admit strong traces on {x=0}\{x=0\}, for any kk\in{\mathscr{I}}.

Proof.

It follows from Lemma 2.10 that uku^{k} is a Kruzkhov entropy solution on DkD^{k}, for any kk\in{\mathscr{I}}. We can therefore apply [19, Theorem 1.4] to obtain the desired conclusion. ∎

Proposition 2.12.

Let 𝒢N\mathscr{G}\subset\mathbb{R}^{N} be a set of stationary solutions of (2.1). Let 𝐮{\mathbf{u}} be an entropy solution of (2.1) w.r.t. 𝒢\mathscr{G} such that qckkuk(,t)q_{c^{k}}^{k}\circ u^{k}(\cdot,t) has a strong trace at x=0x=0 for every kk\in{\mathscr{I}} and a.e. t>0t>0. Then

kinqckk(uk)(0,t)koutqckk(uk)(0,t)for a.e. t>0\sum_{k\in{{\mathscr{I}}_{\mathrm{in}}}}q_{c^{k}}^{k}(u^{k})(0,t)\geqslant\sum_{k\in{{\mathscr{I}}_{\mathrm{out}}}}q_{c^{k}}^{k}(u^{k})(0,t)\qquad\text{for a.e.~{}}t>0 (2.11)

for every 𝐜𝒢{\mathbf{c}}\in\mathscr{G}.

Proof.

We take a positive test function 0ψCc((0,))0\leqslant\psi\in C_{c}^{\infty}((0,\infty)). As in the proof of Proposition 2.2 we define Φ(x,t)θε(x,t)ψ(t)\Phi(x,t)\coloneqq\theta_{\varepsilon}(x,t)\psi(t) where θε\theta_{\varepsilon} is given by (2.6). Now we insert Φ\Phi as test function into the entropy inequality (2.10) to get

0\displaystyle 0\leqslant{} k0Dkηck(uk)θε(x)ψ(t)𝑑x𝑑t\displaystyle\sum_{k\in{\mathscr{I}}}\int_{0}^{\infty}\int_{D^{k}}\eta_{c^{k}}(u^{k})\theta_{\varepsilon}(x)\psi^{\prime}(t)\,dx\,dt
1εk(0Dk(ε,ε)sgn(k)qckk(uk)ψ(t)𝑑x𝑑t+Dkηck(u¯k(x))θε(x)ψ(t)dx)\displaystyle-\frac{1}{\varepsilon}\sum_{k\in{\mathscr{I}}}\biggl{(}\begin{aligned} &\int_{0}^{\infty}\int_{D^{k}\cap(-\varepsilon,\varepsilon)}\operatorname{sgn}(k)q_{c^{k}}^{k}(u^{k})\psi(t)\,dx\,dt\\ &+\int_{D^{k}}\eta_{c^{k}}(\bar{u}^{k}(x))\theta_{\varepsilon}(x)\psi(t)\,dx\biggr{)}\end{aligned}
\displaystyle\to{} k0sgn(k)qckk(uk(0,t))ψ(t)𝑑t\displaystyle-\sum_{k\in{\mathscr{I}}}\int_{0}^{\infty}\operatorname{sgn}(k)q_{c^{k}}^{k}(u^{k}(0,t))\psi(t)\,dt

as ε0\varepsilon\to 0, which shows the desired inequality. ∎

Definition 2.13 (Maximality).

A mutually consistent set of stationary solutions 𝒢\mathscr{G} is called maximal if there is no mutually consistent set of stationary solutions 𝒢~\widetilde{\mathscr{G}} having 𝒢\mathscr{G} as a strict subset.

Lemma 2.14.

Let 𝒢\mathscr{G} be a maximal, mutually consistent set of stationary solutions and let 𝐝Nin+Nout{\mathbf{d}}\in\mathbb{R}^{N_{\mathrm{in}}+N_{\mathrm{out}}} satisfy the Rankine–Hugoniot condition (2.7) as well as

kinqckk(dk)koutqckk(dk)𝐜𝒢.\sum_{k\in{{\mathscr{I}}_{\mathrm{in}}}}q_{c^{k}}^{k}\big{(}d^{k}\big{)}\geqslant\sum_{k\in{{\mathscr{I}}_{\mathrm{out}}}}q_{c^{k}}^{k}\big{(}d^{k}\big{)}\qquad\forall\ {\mathbf{c}}\in\mathscr{G}.

Then 𝐝𝒢{\mathbf{d}}\in\mathscr{G}.

Proof.

By assumption, 𝒢{𝐝}\mathscr{G}\cup\{{\mathbf{d}}\} is a mutually consistent set of stationary solutions. But 𝒢\mathscr{G} is maximal, whence 𝒢{𝐝}=𝒢\mathscr{G}\cup\{{\mathbf{d}}\}=\mathscr{G}. ∎

Remark 2.15.

By Proposition 2.12, we can take the vector 𝐝{\mathbf{d}} to be the trace of an entropy solution at the vertex. This observation will be important in the proof of the stability result in Section 3,

3 Stability and Uniqueness

Theorem 3.1 (Entropy Solutions are L1L^{1} stable).

Let 𝒢N\mathscr{G}\subset\mathbb{R}^{N} be a mutually consistent, maximal set of stationary solutions. Let 𝐮,𝐯{\mathbf{u}},\,{\mathbf{v}}, be entropy solutions of (2.1) w.r.t. 𝒢\mathscr{G} with initial data 𝐮¯,𝐯¯Loco(𝒢)L1(Ω;λ)\bar{\mathbf{u}},\,\bar{\mathbf{v}}\in L^{\infty}_{\mathrm{oco}}(\mathscr{G})\cap L^{1}(\Omega;\lambda), and assume each function uk,vku^{k},v^{k} has a strong trace at x=0x=0. Then

kuk(t)vk(t)L1(Dk)ku¯kv¯kL1(Dk)\sum_{k\in{\mathscr{I}}}\big{\|}u^{k}(t)-v^{k}(t)\big{\|}_{L^{1}(D^{k})}\leqslant\sum_{k\in{\mathscr{I}}}\big{\|}\bar{u}^{k}-\bar{v}^{k}\big{\|}_{L^{1}(D^{k})}

for every t>0t>0. In particular, there exists at most one entropy solution for given initial data.

Proof.

From Lemma 2.10 it follows that 𝐮(t),𝐯(t)Loco(𝒢){\mathbf{u}}(t),{\mathbf{v}}(t)\in L^{\infty}_{\mathrm{oco}}(\mathscr{G}) for a.e. t>0t>0. Let kink\in{{\mathscr{I}}_{\mathrm{in}}}; the case koutk\in{{\mathscr{I}}_{\mathrm{out}}} will follow analogously. The first step is a standard doubling of variables argument on each edge kink\in{{\mathscr{I}}_{\mathrm{in}}} by selecting φkCc(Dk×[0,))\varphi^{k}\in C_{c}^{\infty}(D^{k}\times[0,\infty)) and φl0\varphi_{l}\equiv 0 for lkl\neq k. The doubling of variables technique on a single edge gives:

Dk0|uk(x,t)vk(x,t)|φt+qvk(u)φxdtdx+Dk|u¯k(x)v¯k(x)|φ(x,0)𝑑x0.\begin{split}\int_{D^{k}}\int_{0}^{\infty}\big{|}u^{k}(x,t)-v^{k}(x,t)\big{|}\varphi_{t}+q_{v}^{k}(u)\varphi_{x}\,dt\,dx&\\ +\int_{D^{k}}\big{|}\bar{u}^{k}(x)-\bar{v}^{k}(x)\big{|}\varphi(x,0)\,dx&\geqslant 0.\end{split} (3.1)

Next, for general φkCc(Dk¯×[0,))\varphi^{k}\in C_{c}^{\infty}\big{(}\overline{D^{k}}\times[0,\infty)\big{)}, we cut off the functions near x=0x=0 and couple the terms (3.1) on each edge together by utilizing (2.11). For h>0h>0 we define

μh(x){0x(,2h)1h(x+2h)x[2h,h)1x[h,0]\mu_{h}(x)\coloneqq\begin{cases}0&x\in(-\infty,-2h)\\ \frac{1}{h}(x+2h)&x\in[-2h,-h)\\ 1&x\in[-h,0]\end{cases}

and

Ψh(x)1μh(x).\Psi_{h}(x)\coloneqq 1-\mu_{h}(x).

The derivative of Ψh\Psi_{h} reads

Ψh(x)={0x(,2h)1hx[2h,h)0x[h,0].\Psi_{h}^{\prime}(x)=\begin{cases}0&x\in(-\infty,-2h)\\ -\frac{1}{h}&x\in[-2h,-h)\\ 0&x\in[-h,0].\end{cases}

Define φk(x,t)ξk(x,t)Ψh(x)\varphi^{k}(x,t)\coloneqq\xi^{k}(x,t)\Psi_{h}(x) for a function ξkCc(Dk¯×[0,))\xi^{k}\in C_{c}^{\infty}\big{(}\overline{D^{k}}\times[0,\infty)\big{)}. We insert φ\varphi into equation (3.1) to get

Dk0|uk(x,t)vk(x,t)|ξtkΨh+qvkk(uk)ξxkΨhdtdx\displaystyle\int_{D^{k}}\int_{0}^{\infty}\big{|}u^{k}(x,t)-v^{k}(x,t)\big{|}\xi_{t}^{k}\Psi_{h}+q^{k}_{v^{k}}(u^{k})\xi_{x}^{k}\Psi_{h}\,dt\,dx
+Dk0qvkk(uk)ξkΨh𝑑t𝑑x+Dk|u¯k(x)v¯k(x)|ξkΨh𝑑x\displaystyle+\int_{D^{k}}\int_{0}^{\infty}q^{k}_{v^{k}}(u^{k})\xi^{k}\Psi_{h}^{\prime}\,dt\,dx+\int_{D^{k}}\big{|}\bar{u}^{k}(x)-\bar{v}^{k}(x)\big{|}\xi^{k}\Psi_{h}\,dx 0.\displaystyle\geqslant 0.

Sending h0h\downarrow 0 we get

Dk0|uk(x,t)vk(x,t)|ξtk+qvkk(uk)ξxkdtdx+Dk|u¯k(x)v¯k(x)|ξk𝑑x\displaystyle\int_{D^{k}}\int_{0}^{\infty}\big{|}u^{k}(x,t)-v^{k}(x,t)\big{|}\xi_{t}^{k}+q^{k}_{v^{k}}(u^{k})\xi_{x}^{k}\,dt\,dx+\int_{D^{k}}\big{|}\bar{u}^{k}(x)-\bar{v}^{k}(x)\big{|}\xi^{k}\,dx
+limh02hh0qvkk(uk)ξkΨh𝑑t𝑑x\displaystyle+\lim_{h\downarrow 0}\int_{-2h}^{-h}\int_{0}^{\infty}q^{k}_{v^{k}}(u^{k})\xi^{k}\Psi_{h}^{\prime}\,dt\,dx 0.\displaystyle\geqslant 0.

Since the traces of qk(uk)q^{k}(u^{k}) and qk(vk)q^{k}(v^{k}) exist, we get

limh01h0T2hhqvkk(uk)ξk𝑑x𝑑t=0Tqvkk(uk)ξk(0,t)𝑑t.\displaystyle-\lim_{h\downarrow 0}\frac{1}{h}\int_{0}^{T}\int_{-2h}^{-h}q^{k}_{v^{k}}(u^{k})\xi^{k}\,dx\,dt=-\int_{0}^{T}q_{v^{k-}}^{k}(u^{k})\xi^{k}(0,t)\,dt.

We therefore obtain

Dk0|uk(x,t)vk(x,t)|ξt+qvkk(uk)ξxdtdx+Dk|u¯k(x)v¯k(x)|𝑑x0Tqvkk(uk)ξ(0,t)𝑑t0.\begin{split}\int_{D^{k}}\int_{0}^{\infty}\big{|}u^{k}(x,t)-v^{k}(x,t)\big{|}\xi_{t}+q^{k}_{v^{k}}(u^{k})\xi_{x}\,dt\,dx&\\ +\int_{D^{k}}\big{|}\bar{u}^{k}(x)-\bar{v}^{k}(x)\big{|}\,dx-\int_{0}^{T}q_{v^{k}}^{k}(u^{k})\xi(0,t)\,dt&\geqslant 0.\end{split} (3.2)

By an analogous argument we get

Dk0|uk(x,t)vk(x,t)|ξt+qvkk(uk)ξxdtdx\displaystyle\int_{D^{k}}\int_{0}^{\infty}\big{|}u^{k}(x,t)-v^{k}(x,t)\big{|}\xi_{t}+q^{k}_{v^{k}}(u^{k})\xi_{x}\,dt\,dx
+Dk|u¯k(x)v¯k(x)|𝑑x+0Tqvkk(uk)ξ(0,t)𝑑t\displaystyle+\int_{D^{k}}\big{|}\bar{u}^{k}(x)-\bar{v}^{k}(x)\big{|}\,dx+\int_{0}^{T}q_{v^{k}}^{k}(u^{k})\xi(0,t)\,dt 0\displaystyle\geqslant 0

for koutk\in{{\mathscr{I}}_{\mathrm{out}}}. Fix s>0s>0, let r,κ>0r,\kappa>0, and let αr:\alpha_{r}:\mathbb{R}_{-}\to\mathbb{R} and βκ:+\beta_{\kappa}\colon\mathbb{R}_{+}\to\mathbb{R} be given by

αr(x)={0x(,r1]x+r+1x(r1,r)1x[r,0)\alpha_{r}(x)=\begin{cases}0&x\in(-\infty,-r-1]\\ x+r+1&x\in(-r-1,-r)\\ 1&x\in[-r,0)\end{cases}
βκ(t)={1t[0,s]1κ(κ+st)t(s,s+κ)0t[s+κ,).\beta_{\kappa}(t)=\begin{cases}1&t\in[0,s]\\ \frac{1}{\kappa}(\kappa+s-t)&t\in(s,s+\kappa)\\ 0&t\in[s+\kappa,\infty).\end{cases}

Via a standard regularization argument one can check that φ(x,t)=αr(x)βκ(t)\varphi(x,t)=\alpha_{r}(x)\beta_{\kappa}(t) is an admissible test function. We compute the partial derivatives of φ\varphi:

φt(x,t)={0t[0,s]1καr(x)t(s,s+κ]0t(s+κ,)\varphi_{t}(x,t)=\begin{cases}0&t\in[0,s]\\ -\frac{1}{\kappa}\alpha_{r}(x)&t\in(s,s+\kappa]\\ 0&t\in(s+\kappa,\infty)\end{cases}

and

φx(x,t)={0x(,r1)βκ(t)x(r1,r)0x(r,0).\varphi_{x}(x,t)=\begin{cases}0&x\in(-\infty,-r-1)\\ \beta_{\kappa}(t)&x\in(-r-1,-r)\\ 0&x\in(-r,0).\end{cases}

We insert this into (3.2) to get

1κss+κr10|uk(x,t)vk(x,t)|αr(x)𝑑x𝑑t\displaystyle-\frac{1}{\kappa}\int_{s}^{s+\kappa}\int_{-r-1}^{0}\big{|}u^{k}(x,t)-v^{k}(x,t)\big{|}\alpha_{r}(x)\,dx\,dt
+0s+κr1rqvkk(uk)βκ(t)𝑑x𝑑t+r10|u¯k(x)v¯k(x)|αr(x)𝑑x\displaystyle+\int_{0}^{s+\kappa}\int_{-r-1}^{-r}q_{v^{k}}^{k}(u^{k})\beta_{\kappa}(t)\,dx\,dt+\int_{-r-1}^{0}\big{|}\bar{u}^{k}(x)-\bar{v}^{k}(x)\big{|}\alpha_{r}(x)\,dx
0s+κqvkk(uk(0,t))βκ(t)𝑑t\displaystyle-\int_{0}^{s+\kappa}q_{v^{k}}^{k}(u^{k}(0,t))\beta_{\kappa}(t)\,dt 0.\displaystyle\geqslant 0.

Letting κ0\kappa\to 0 and rr\to\infty, we get

uk(x,t)vk(x,t)L1(Dk)u¯k(x)v¯k(x)L1(Dk)0sqvkk(uk(0,t))𝑑t.\big{\|}u^{k}(x,t)-v^{k}(x,t)\big{\|}_{L^{1}(D^{k})}\leqslant\big{\|}\bar{u}^{k}(x)-\bar{v}^{k}(x)\big{\|}_{L^{1}(D^{k})}-\int_{0}^{s}q_{v^{k}}^{k}(u^{k}(0,t))\,dt.

An analogous inequality holds for koutk\in{{\mathscr{I}}_{\mathrm{out}}}. We sum over all edges to get

kuk(x,t)vk(x,t)L1(Dk)\displaystyle\sum_{k\in{\mathscr{I}}}\big{\|}u^{k}(x,t)-v^{k}(x,t)\big{\|}_{L^{1}(D^{k})}
kDk|u¯k(x)v¯k(x)|𝑑x+0sksgn(k)qvkk(uk)0 by (2.11) and maximality of 𝒢\displaystyle\leqslant\sum_{k\in{\mathscr{I}}}\int_{D^{k}}\big{|}\bar{u}^{k}(x)-\bar{v}^{k}(x)\big{|}\,dx+\underbrace{\int_{0}^{s}\sum_{k\in{\mathscr{I}}}\operatorname{sgn}(k)q^{k}_{v^{k}}(u^{k})}_{\begin{subarray}{c}\text{$\leqslant 0$ by \eqref{eq:RHentr} and}\\ \text{ maximality of $\mathscr{G}$}\end{subarray}}
ku¯k(x)v¯k(x)L1(Dk).\displaystyle\leqslant\sum_{k\in{\mathscr{I}}}\big{\|}\bar{u}^{k}(x)-\bar{v}^{k}(x)\big{\|}_{L^{1}(D^{k})}.

4 Numerical approximation

In this section we construct a finite volume numerical approximation for (2.1) and prove stability and convergence properties of the method. The numerical method is rather standard for hyperbolic conservation laws, but an important feature of the method is that the vertex is discretized as a separate control volume. Although this control volume vanishes as the mesh parameter Δx{\Delta x} is passed to zero, its presence will ensure that entropy is correctly dissipated at the vertex, even in the limit Δx0{\Delta x}\to 0.

4.1 A finite volume method on networks

Let Δt,Δx>0{\Delta t},{\Delta x}>0 be given discretization parameters. We define the index sets

Ddisc+,Ddisc,DdisckDdiscsgn(k),Ddisc0{0}.\displaystyle D_{\mathrm{disc}}^{+}\coloneqq\mathbb{N},\qquad D_{\mathrm{disc}}^{-}\coloneqq-\mathbb{N},\qquad D_{\mathrm{disc}}^{k}\coloneqq D_{\mathrm{disc}}^{\operatorname{sgn}(k)},\qquad D_{\mathrm{disc}}^{0}\coloneqq\{0\}.

For n0n\in\mathbb{N}_{0} we discretizeIn numerical experiments, the timestep Δt{\Delta t} is chosen dynamically at each step nn in order to comply with the CFL condition derived in Section 4. We use a uniform timestep for the sake of simplicity only. tn=nΔtt^{n}=n{\Delta t}, and for kk\in{\mathscr{I}} and ii\in\mathbb{Z} we let xi+1/2=(i+1/2)Δxx_{i+{\nicefrac{{1}}{{2}}}}=({i+{\nicefrac{{1}}{{2}}}}){\Delta x}, and partition the physical domain into cells

𝒞ik=Dk(xi1/2,xi+1/2).{\mathscr{C}}_{i}^{k}=D^{k}\cap\big{(}x_{i-{\nicefrac{{1}}{{2}}}},\,x_{i+{\nicefrac{{1}}{{2}}}}\big{)}.

We define the mesh size at the vertex by Δx0k|𝒞0k|=NΔx/2{\Delta x}_{0}\coloneqq\sum_{k\in{\mathscr{I}}}|{\mathscr{C}}_{0}^{k}|=N{\Delta x}/2, where |A||A| denotes the Lebesgue measure of AA\subset\mathbb{R}. We make the finite volume approximation

uik,n\displaystyle u_{i}^{k,n} 1Δx𝒞ikuk(x,tn)𝑑xfor iDdisck,\displaystyle\approx\frac{1}{{\Delta x}}\int_{{\mathscr{C}}_{i}^{k}}u^{k}(x,t^{n})\,dx\qquad\text{for }i\in D^{k}_{\mathrm{disc}},
u0n\displaystyle u_{0}^{n} 1Δx0k𝒞0kuk(x,tn)𝑑x.\displaystyle\approx\frac{1}{{\Delta x}_{0}}\sum_{k\in{\mathscr{I}}}\int_{{\mathscr{C}}_{0}^{k}}u^{k}(x,t^{n})\,dx.

Fix some iDdiscki\in D_{\mathrm{disc}}^{k}, let φk(x,t)=1ΔtΔx𝟙𝒞ik(x)𝟙[tn,tn+1)(t)\varphi^{k}(x,t)=\frac{1}{{\Delta t}{\Delta x}}\mathbbm{1}_{{\mathscr{C}}_{i}^{k}}(x)\mathbbm{1}_{[t^{n},\,t^{n+1})}(t) and φl0\varphi^{l}\equiv 0 for lkl\neq k, and (after an approximation procedure) insert these into (2.4). We then obtain the numerical method

uik,n+1uik,nΔt+Fi+1/2k,nFi1/2k,nΔx=0\frac{u_{i}^{k,n+1}-u_{i}^{k,n}}{{\Delta t}}+\frac{F_{i+{\nicefrac{{1}}{{2}}}}^{k,n}-F_{i-{\nicefrac{{1}}{{2}}}}^{k,n}}{{\Delta x}}=0 (4.1a)
where Fi+1/2k,n=Fk(uik,n,ui+1k,n)F_{i+{\nicefrac{{1}}{{2}}}}^{k,n}=F^{k}\big{(}u^{k,n}_{i},u^{k,n}_{i+1}\big{)} is an approximation of the mean flux through xi+1/2x_{i+{\nicefrac{{1}}{{2}}}} over the time interval [tn,tn+1)[t^{n},t^{n+1}),
Fi+1/2k,n1Δttntn+1fk(uk(xi+1/2,t))𝑑t.F_{i+{\nicefrac{{1}}{{2}}}}^{k,n}\approx\frac{1}{{\Delta t}}\int_{t^{n}}^{t^{n+1}}f^{k}\big{(}u^{k}(x_{i+{\nicefrac{{1}}{{2}}}},t)\big{)}\,dt.
For the special cell i=0i=0 we let φk(x,t)=1ΔtΔx0𝟙𝒞0k(x)𝟙[tn,tn+1)(t)\varphi^{k}(x,t)=\frac{1}{{\Delta t}{\Delta x}_{0}}\mathbbm{1}_{{\mathscr{C}}_{0}^{k}}(x)\mathbbm{1}_{[t^{n},\,t^{n+1})}(t) for kk\in{\mathscr{I}} to obtain
u0n+1u0nΔt+1Δx0(koutF1/2k,nkinF1/2k,n)=0.\frac{u_{0}^{n+1}-u_{0}^{n}}{{\Delta t}}+\frac{1}{{\Delta x}_{0}}\biggl{(}\sum_{k\in{{\mathscr{I}}_{\mathrm{out}}}}F_{\nicefrac{{1}}{{2}}}^{k,n}-\sum_{k\in{{\mathscr{I}}_{\mathrm{in}}}}F_{-{\nicefrac{{1}}{{2}}}}^{k,n}\biggr{)}=0. (4.1b)

We will use the notational convention that u0k,nu0nu_{0}^{k,n}\equiv u_{0}^{n} for all kk\in{\mathscr{I}}. (We postpone the definition of the initial data uik,0u_{i}^{k,0} until Section 4.3.)

Given a numerically computed solution (𝐮in)i,n({\mathbf{u}}_{i}^{n})_{i,n}, we define the piecewise constant function

𝐮Δt(x,k,t)=uik,nfor x𝒞ik,t[tn,tn+1).{\mathbf{u}}_{\Delta t}(x,k,t)=u_{i}^{k,n}\qquad\text{for }x\in{\mathscr{C}}_{i}^{k},\ t\in[t^{n},t^{n+1}). (4.2)

We remark that the integral of 𝐮Δt{\mathbf{u}}_{\Delta t} w.r.t. the measure λ\lambda (cf. (2.2)) can be written

Ω𝐮Δt(,t)𝑑λ=kiDdisckuik,nΔx+u0nΔx0\int_{\Omega}{\mathbf{u}}_{\Delta t}(\cdot,t)\,d\lambda=\sum_{k\in{\mathscr{I}}}\sum_{i\in D_{\mathrm{disc}}^{k}}u_{i}^{k,n}\,{\Delta x}+u_{0}^{n}\,{\Delta x}_{0} (4.3)

for any t[tn,tn+1)t\in[t^{n},t^{n+1}), and the total variation of 𝐮Δt{\mathbf{u}}_{\Delta t} (cf. (2.3)) can be written

TV(𝐮Δt(,t))=kiniDdisck|ui+1k,nuik,n|+koutiDdisck|uik,nui1k,n|=kiniDdisck|uik,nui1k,n|+koutiDdisck|ui+1k,nuik,n|+kin|u0nu1k,n|+kout|u0nu1k,n|.\begin{split}\operatorname{TV}({\mathbf{u}}_{\Delta t}(\cdot,t))=&\sum_{k\in{{\mathscr{I}}_{\mathrm{in}}}}\sum_{i\in D_{\mathrm{disc}}^{k}}\big{|}u_{i+1}^{k,n}-u_{i}^{k,n}\big{|}+\sum_{k\in{{\mathscr{I}}_{\mathrm{out}}}}\sum_{i\in D_{\mathrm{disc}}^{k}}\big{|}u_{i}^{k,n}-u_{i-1}^{k,n}\big{|}\\ =&\sum_{k\in{{\mathscr{I}}_{\mathrm{in}}}}\sum_{i\in D_{\mathrm{disc}}^{k}}\big{|}u_{i}^{k,n}-u_{i-1}^{k,n}\big{|}+\sum_{k\in{{\mathscr{I}}_{\mathrm{out}}}}\sum_{i\in D_{\mathrm{disc}}^{k}}\big{|}u_{i+1}^{k,n}-u_{i}^{k,n}\big{|}\\ &+\sum_{k\in{{\mathscr{I}}_{\mathrm{in}}}}\big{|}u_{0}^{n}-u_{-1}^{k,n}\big{|}+\sum_{k\in{{\mathscr{I}}_{\mathrm{out}}}}\big{|}u_{0}^{n}-u_{1}^{k,n}\big{|}.\end{split} (4.4)

Note also that a numerical method of the form (4.1) is conservative in the sense that the total mass kΩ𝐮Δt𝑑λ\sum_{k\in{\mathscr{I}}}\int_{\Omega}{\mathbf{u}}_{\Delta t}\,d\lambda is independent of nn:

Ω𝐮Δt(,tn+1)𝑑λ=\displaystyle\int_{\Omega}{\mathbf{u}}_{\Delta t}(\cdot,t^{n+1})\,d\lambda={} kiDdisckuik,n+1Δx+u0n+1Δx0\displaystyle\sum_{k\in{\mathscr{I}}}\sum_{i\in D_{\mathrm{disc}}^{k}}u_{i}^{k,n+1}{\Delta x}+u_{0}^{n+1}{\Delta x}_{0}
=\displaystyle={} kiDdisckuik,nΔxΔt(Fi+1/2k,nFi1/2k,n)+u0nΔx0\displaystyle\sum_{k\in{\mathscr{I}}}\sum_{i\in D_{\mathrm{disc}}^{k}}u_{i}^{k,n}{\Delta x}-{\Delta t}\big{(}F_{i+{\nicefrac{{1}}{{2}}}}^{k,n}-F_{i-{\nicefrac{{1}}{{2}}}}^{k,n}\big{)}+u_{0}^{n}{\Delta x}_{0}
Δt(koutF1/2kkinF1/2k)\displaystyle{{}-{\Delta t}}\biggl{(}\sum_{k\in{{\mathscr{I}}_{\mathrm{out}}}}F_{{\nicefrac{{1}}{{2}}}}^{k}-\sum_{k\in{{\mathscr{I}}_{\mathrm{in}}}}F_{-{\nicefrac{{1}}{{2}}}}^{k}\biggr{)}
=\displaystyle={} kiDdisckuik,nΔx+u0nΔx0\displaystyle\sum_{k\in{\mathscr{I}}}\sum_{i\in D_{\mathrm{disc}}^{k}}u_{i}^{k,n}{\Delta x}+u_{0}^{n}{\Delta x}_{0}
=\displaystyle={} Ω𝐮Δt(,tn)𝑑λ.\displaystyle\int_{\Omega}{\mathbf{u}}_{\Delta t}(\cdot,t^{n})\,d\lambda.

As a shorthand for the scheme (4.1) we define the functions

Gk(ui1k,uik,ui+1k)uikΔtΔx(Fk(uik,ui+1k)Fk(ui1k,uik))G^{k}\big{(}u_{i-1}^{k},u_{i}^{k},u_{i+1}^{k}\bigr{)}\coloneqq u_{i}^{k}-\frac{{\Delta t}}{{\Delta x}}\big{(}F^{k}\bigl{(}u_{i}^{k},u_{i+1}^{k}\bigr{)}-F^{k}\bigl{(}u_{i-1}^{k},u_{i}^{k}\bigr{)}\big{)} (4.5a)
for kk\in{\mathscr{I}} and
G0(u1Nin,,u11,u0,u11,,u1Nout)u0ΔtΔx0(koutFk(u0,u1k)kinFk(u1k,u0)),\begin{split}&G^{0}\bigl{(}u_{-1}^{-{N_{\mathrm{in}}}},\dots,u_{-1}^{-1},u_{0},u_{1}^{1},\dots,u_{1}^{{N_{\mathrm{out}}}}\bigr{)}\\ &\quad\coloneqq u_{0}-\frac{{\Delta t}}{{\Delta x}_{0}}\biggl{(}\sum_{k\in{{\mathscr{I}}_{\mathrm{out}}}}F^{k}\bigl{(}u_{0},u_{1}^{k}\bigr{)}-\sum_{k\in{{\mathscr{I}}_{\mathrm{in}}}}F^{k}\bigl{(}u_{-1}^{k},u_{0}\bigr{)}\biggr{)},\end{split} (4.5b)

enabling us to write (4.1) in the update form

uik,n+1=Gk(ui1k,n,uik,n,ui+1k,n)for iDdisck,ku0n+1=G0(u1Nin,n,,u11,n,u0n,u11,n,,u1Nout,n).\begin{split}u_{i}^{k,n+1}&=G^{k}\big{(}u_{i-1}^{k,n},u_{i}^{k,n},u_{i+1}^{k,n}\bigr{)}\qquad\qquad\text{for }i\in D_{\mathrm{disc}}^{k},\ k\in{\mathscr{I}}\\ u_{0}^{n+1}&=G^{0}\bigl{(}u_{-1}^{-{N_{\mathrm{in}}},n},\dots,u_{-1}^{-1,n},u_{0}^{n},u_{1}^{1,n},\dots,u_{1}^{{N_{\mathrm{out}}},n}\bigr{)}.\end{split} (4.6)

As a shorthand for (4.6), we will sometimes use the notation

uik,n+1=Gk(𝐮i1n,𝐮in,𝐮i+1n)for iDdisck,k0,u_{i}^{k,n+1}=G^{k}\big{(}{\mathbf{u}}_{i-1}^{n},{\mathbf{u}}_{i}^{n},{\mathbf{u}}_{i+1}^{n}\big{)}\qquad\text{for }i\in D_{\mathrm{disc}}^{k},\ k\in{\mathscr{I}}_{0}, (4.6’)

where 𝐮in{\mathbf{u}}_{i}^{n} is the vector containing all numerical values at index ii at time nn.

Definition 4.1 (Monotone scheme).

The difference scheme (4.6) is monotone if

𝐮n𝐯n𝐮n+1𝐯n+1,{\mathbf{u}}^{n}\leqslant{\mathbf{v}}^{n}\quad\Rightarrow\quad{\mathbf{u}}^{n+1}\leqslant{\mathbf{v}}^{n+1},

where 𝐮n𝐯n{\mathbf{u}}^{n}\leqslant{\mathbf{v}}^{n} means that every component uik,nu_{i}^{k,n} of 𝐮n{\mathbf{u}}^{n} is no greater than the corresponding component of 𝐯n{\mathbf{v}}^{n}.

We state a straightforward CFL-type condition which ensures monotonicity of the numerical scheme.

Proposition 4.2.

Consider a consistent finite volume method (4.1), where FkF^{k} is nondecreasing in the first variable and nonincreasing in the second. Then the method is monotone under the CFL condition

Δtmaxk,u,v|Fku(u,v)|Δx/2,Δtmaxk,u,v|Fkv(u,v)|Δx/2.{\Delta t}\max_{k,u,v}\Bigl{|}\frac{\partial F^{k}}{\partial u}(u,v)\Bigr{|}\leqslant{\Delta x}/2,\qquad{\Delta t}\max_{k,u,v}\Bigl{|}\frac{\partial F^{k}}{\partial v}(u,v)\Bigr{|}\leqslant{\Delta x}/2. (4.7)
Proof.

We can calculate the derivatives to the update functions to get

Gkui1k\displaystyle\frac{\partial G^{k}}{\partial u_{i-1}^{k}} =ΔtΔxFi1/2kui1k,Gkui+1k=ΔtΔxFi+1/2kui+1k\displaystyle=\frac{{\Delta t}}{{\Delta x}}\frac{\partial F_{i-{\nicefrac{{1}}{{2}}}}^{k}}{\partial u_{i-1}^{k}},\qquad\frac{\partial G^{k}}{\partial u_{i+1}^{k}}=-\frac{{\Delta t}}{{\Delta x}}\frac{\partial F_{i+{\nicefrac{{1}}{{2}}}}^{k}}{\partial u_{i+1}^{k}}
Gkuik\displaystyle\frac{\partial G^{k}}{\partial u_{i}^{k}} =1ΔtΔx(Fi+1/2kuikFi1/2kuik),\displaystyle=1-\frac{{\Delta t}}{{\Delta x}}\biggl{(}\frac{\partial F_{i+{\nicefrac{{1}}{{2}}}}^{k}}{\partial u_{i}^{k}}-\frac{\partial F_{i-{\nicefrac{{1}}{{2}}}}^{k}}{\partial u_{i}^{k}}\biggr{)},

for each kk\in{\mathscr{I}}, and

G0u1k\displaystyle\frac{\partial G^{0}}{\partial u_{-1}^{k}} =ΔtΔx0F1/2ku1k\displaystyle=\frac{{\Delta t}}{{\Delta x}_{0}}\frac{\partial F_{-{\nicefrac{{1}}{{2}}}}^{k}}{\partial u_{-1}^{k}} for kin,\displaystyle\text{for }k\in{{\mathscr{I}}_{\mathrm{in}}},
G0u1k\displaystyle\frac{\partial G^{0}}{\partial u_{1}^{k}} =ΔtΔx0F1/2ku1k\displaystyle=-\frac{{\Delta t}}{{\Delta x}_{0}}\frac{\partial F_{{\nicefrac{{1}}{{2}}}}^{k}}{\partial u_{1}^{k}} for kout,\displaystyle\text{for }k\in{{\mathscr{I}}_{\mathrm{out}}},
G0u0\displaystyle\frac{\partial G^{0}}{\partial u_{0}} =1ΔtΔx0(koutF1/2ku0nkinF1/2ku0n)\displaystyle=1-\frac{{\Delta t}}{{\Delta x}_{0}}\biggl{(}\sum_{k\in{{\mathscr{I}}_{\mathrm{out}}}}\frac{\partial F_{{\nicefrac{{1}}{{2}}}}^{k}}{\partial u_{0}^{n}}-\sum_{k\in{{\mathscr{I}}_{\mathrm{in}}}}\frac{\partial F_{-{\nicefrac{{1}}{{2}}}}^{k}}{\partial u_{0}^{n}}\biggr{)}

on the vertex. We would like these derivatives to be non-negative. The monotonicity of FkF^{k} guarantees that the first, second, fourth and fifth expressions are non-negative. Applying monotonicity of FkF^{k} to the third and sixth terms, we get

Gkuik=ΔtΔx(ΔxΔt|Fi+1/2kuik||Fi1/2kuik|)0\frac{\partial G^{k}}{\partial u_{i}^{k}}=\frac{{\Delta t}}{{\Delta x}}\biggl{(}\frac{{\Delta x}}{{\Delta t}}-\Bigl{|}\frac{\partial F_{i+{\nicefrac{{1}}{{2}}}}^{k}}{\partial u_{i}^{k}}\Bigr{|}-\Bigl{|}\frac{\partial F_{i-{\nicefrac{{1}}{{2}}}}^{k}}{\partial u_{i}^{k}}\Bigr{|}\biggr{)}\geqslant 0

(by (4.7)) and

G0u0\displaystyle\frac{\partial G^{0}}{\partial u_{0}} =ΔtΔx0(Δx0Δtkout|F1/2ku0n|kin|F1/2ku0n|)\displaystyle=\frac{{\Delta t}}{{\Delta x}_{0}}\biggl{(}\frac{{\Delta x}_{0}}{{\Delta t}}-\sum_{k\in{{\mathscr{I}}_{\mathrm{out}}}}\Bigl{|}\frac{\partial F_{{\nicefrac{{1}}{{2}}}}^{k}}{\partial u_{0}^{n}}\Bigr{|}-\sum_{k\in{{\mathscr{I}}_{\mathrm{in}}}}\Bigl{|}\frac{\partial F_{-{\nicefrac{{1}}{{2}}}}^{k}}{\partial u_{0}^{n}}\Bigr{|}\biggr{)}
(using Δx0=NΔx/2{\Delta x}_{0}=N{\Delta x}/2)
ΔtΔx0(NΔx2ΔtNoutmaxk,u,v|Fku(u,v)|Ninmaxk,u,v|Fkv(u,v)|)\displaystyle\geqslant\frac{{\Delta t}}{{\Delta x}_{0}}\biggl{(}N\frac{{\Delta x}}{2{\Delta t}}-{N_{\mathrm{out}}}\max_{k,u,v}\Bigl{|}\frac{\partial F^{k}}{\partial u}(u,v)\Bigr{|}-{N_{\mathrm{in}}}\max_{k,u,v}\Bigl{|}\frac{\partial F^{k}}{\partial v}(u,v)\Bigr{|}\biggr{)}
0\displaystyle\geqslant 0

by (4.7). ∎

4.2 Discrete stationary solutions

In the same way that stationary solutions are essential for the well-posedness of entropy solutions (cf. Section 3), they are essential to the stability and convergence of numerical methods on networks. Asserting that a numerical solution is both constant in time and on each edge yields the following definition.

Definition 4.3 (Discrete Stationary Solution).

Consider a consistent, conservative numerical method (4.1). A discrete stationary solution for (4.1) is a vector

𝐜disc(cNin,,cNout)N+1{\mathbf{c}}^{\mathrm{disc}}\coloneqq(c^{-{N_{\mathrm{in}}}},\dots,c^{{N_{\mathrm{out}}}})\in\mathbb{R}^{N+1}

satisfying the Rankine–Hugoniot condition

kinfk(ck)=koutfk(ck)\sum_{k\in{{\mathscr{I}}_{\mathrm{in}}}}f^{k}(c^{k})=\sum_{k\in{{\mathscr{I}}_{\mathrm{out}}}}f^{k}(c^{k}) (4.8)

as well as the conditions

Fk(ck,c0)\displaystyle F^{k}(c^{k},c^{0}) =fk(ck)for kin,\displaystyle=f^{k}(c^{k})\qquad\text{for }k\in{{\mathscr{I}}_{\mathrm{in}}}, (4.9a)
Fk(c0,ck)\displaystyle F^{k}(c^{0},c^{k}) =fk(ck)for kout.\displaystyle=f^{k}(c^{k})\qquad\text{for }k\in{{\mathscr{I}}_{\mathrm{out}}}. (4.9b)

In the remainder, sets of discrete stationary solutions will be denoted with a superscript, 𝒢0\mathscr{G}^{0}, to signal that they also include a value at the vertex i=0i=0.

Notation 4.4.

We will sometimes index a discrete stationary solution as

𝐜i={(cNin,,c1)i<0c0i=0(c1,,cNout)i>0{\mathbf{c}}_{i}=\begin{cases}\big{(}c^{-{N_{\mathrm{in}}}},\dots,c^{-1}\big{)}&i<0\\ c^{0}&i=0\\ \big{(}c^{1},\dots,c^{N_{\mathrm{out}}}\big{)}&i>0\end{cases} (4.10a)
for ii\in\mathbb{Z} and, by extension,
cik={cki0c0i=0.c_{i}^{k}=\begin{cases}c^{k}&i\neq 0\\ c^{0}&i=0.\end{cases} (4.10b)

Using the notation (4.6), it is readily checked that discrete stationary solutions are precisely those that are constant on each edge and satisfy

𝐜i=Gk(𝐜i1,𝐜i,𝐜i+1)iDdisck,k0.{\mathbf{c}}_{i}=G^{k}({\mathbf{c}}_{i-1},{\mathbf{c}}_{i},{\mathbf{c}}_{i+1})\qquad\forall\ i\in D_{\mathrm{disc}}^{k},\ k\in{\mathscr{I}}_{0}.
Remark 4.5.

The conditions (4.9) say that the numerical fluxes at the vertex reduce to the upwind flux on the in edges and the downwind flux on the out edges. This can be interpreted as information only flowing into the vertex, not out of it. This is consistent with the interpretation of the vertex as a stationary shock.

Remark 4.6.

Discrete stationary solutions 𝐜=(cNin,,cNout){\mathbf{c}}=\big{(}c^{-{N_{\mathrm{in}}}},\dots,c^{{N_{\mathrm{out}}}}\big{)} fulfil a discrete version of the Rankine–Hugoniot type condition (2.7),

kinFk(ck,c0)=koutFk(c0,ck).\sum_{k\in{{\mathscr{I}}_{\mathrm{in}}}}F^{k}\big{(}c^{k},c^{0}\big{)}=\sum_{k\in{{\mathscr{I}}_{\mathrm{out}}}}F^{k}\big{(}c^{0},c^{k}\big{)}.
Lemma 4.7.

Consider a consistent, conservative numerical scheme (4.1). Let 𝐜=(ck)k{\mathbf{c}}=(c^{k})_{k\in{\mathscr{I}}} be a stationary solution for (1.1) and let c0c^{0}\in\mathbb{R}. Then the vector 𝐜disc=(cNin,,c1,c0,c1,,cNout)N+1{\mathbf{c}}_{\mathrm{disc}}=(c^{-{N_{\mathrm{in}}}},\dots,c^{-1},c^{0},c^{1},\dots,c^{{N_{\mathrm{out}}}})\in\mathbb{R}^{N+1} is a discrete stationary solution if and only if

c0kin(Hk)1({fk(ck)})kout(Jk)1({fk(ck)})c^{0}\in\bigcap_{k\in{{\mathscr{I}}_{\mathrm{in}}}}(H^{k})^{-1}(\{f^{k}(c^{k})\})\mathrel{\bigcap}\bigcap_{k\in{{\mathscr{I}}_{\mathrm{out}}}}(J^{k})^{-1}(\{f^{k}(c^{k})\})

where

Hk(c)\displaystyle H^{k}(c) Fk(ck,c)for kin,Jk(c)Fk(c,ck)for kout.\displaystyle\coloneqq F^{k}(c^{k},c)\quad\text{for }k\in{{\mathscr{I}}_{\mathrm{in}}},\qquad J^{k}(c)\coloneqq F^{k}(c,c^{k})\quad\text{for }k\in{{\mathscr{I}}_{\mathrm{out}}}.
Proof.

We can rewrite conditions (4.9a) and (4.9b) as

(4.9b)Hk(c0)=fk(ck)c0(Hk)1({fk(ck)})\displaystyle\eqref{eq:consistencyOutEdge}\quad\Leftrightarrow\quad H^{k}(c^{0})=f^{k}(c^{k})\quad\Leftrightarrow\quad c^{0}\in(H^{k})^{-1}(\{f^{k}(c^{k})\})
for kink\in{{\mathscr{I}}_{\mathrm{in}}}, and
(4.9a)Jk(c0)=fk(ck)c0(Jk)1({fk(ck)})\displaystyle\eqref{eq:consistencyInEdge}\quad\Leftrightarrow\quad J^{k}(c^{0})=f^{k}(c^{k})\quad\Leftrightarrow\quad c^{0}\in(J^{k})^{-1}(\{f^{k}(c^{k})\})

for koutk\in{{\mathscr{I}}_{\mathrm{out}}}. Hence, if (4.9a), (4.9b) are satisfied then c0c^{0} must lie in all of the sets on the right hand side, and hence in their intersection. Conversely, if c0c^{0} lies in the intersection, then (4.9a), (4.9b) are satisfied. ∎

4.3 A stability framework for general consistent, conservative, monotone methods

We set out to prove an LL^{\infty} bound, L1L^{1} contractiveness and Lipschitz continuity in time for solutions computed with a general consistent, conservative, monotone finite volume method on a network. Our starting point will be a class of discrete stationary solutions 𝒢disc0N+1\mathscr{G}_{\mathrm{disc}}^{0}\subset\mathbb{R}^{N+1} for a conservative finite volume method (4.1). We take initial data u¯Loco(𝒢disc0)\bar{u}\in L^{\infty}_{\mathrm{oco}}(\mathscr{G}_{\mathrm{disc}}^{0}) (cf. (2.9)), we let 𝐜𝒢disc0{\mathbf{c}}\in\mathscr{G}_{\mathrm{disc}}^{0} be as specified in (2.9), and consider the finite volume method (4.1) initialized by

uik,0=1Δx𝒞iku¯k(x)𝑑x,u00=c0.u_{i}^{k,0}=\frac{1}{{\Delta x}}\int_{{\mathscr{C}}_{i}^{k}}\bar{u}^{k}(x)\,dx,\qquad u_{0}^{0}=c^{0}. (4.11)

(The value c0c^{0} is chosen for convenience, and any value in [c0,d0][c^{0},d^{0}] will have the desired effect.)

Lemma 4.8.

Consider monotone numerical flux functions FkF^{k} (kk\in{\mathscr{I}}). Let 𝐜,𝐝{\mathbf{c}},{\mathbf{d}} be discrete stationary solutions satisfying ckdlc^{k}\leqslant d^{l} for all k,lk,l\in{\mathscr{I}} (cf. Definition 2.7). Then c0,d0c^{0},d^{0} can be modified such that 𝐜,𝐝{\mathbf{c}},{\mathbf{d}} remain discrete stationary solutions and such that c0d0c^{0}\leqslant d^{0}.

Proof.

Define

Ik(ck){(Fk(ck,))1({fk(ck)})for kin(Fk(,ck))1({fk(ck)})for kout.I^{k}(c^{k})\coloneqq\begin{cases}\big{(}F^{k}(c^{k},\cdot)\big{)}^{-1}\big{(}\{f^{k}(c^{k})\}\big{)}&\text{for }k\in{{\mathscr{I}}_{\mathrm{in}}}\\ \big{(}F^{k}(\cdot,c^{k})\big{)}^{-1}\big{(}\{f^{k}(c^{k})\}\big{)}&\text{for }k\in{{\mathscr{I}}_{\mathrm{out}}}.\end{cases}

Since all FkF^{k} are monotone, each Ik(ck)I^{k}(c^{k}) is a connected interval which contains ckc^{k}, and moreover, Lemma 4.7 says that c0kIk(ck)c^{0}\in\bigcap_{k\in{\mathscr{I}}}I^{k}(c^{k}). This implies that [[c0,ck]]Ik(ck)[\![c^{0},c^{k}]\!]\subset I^{k}(c^{k}), where [[a,b]]=[min(a,b),max(a,b)][\![a,b]\!]=[\min(a,b),\,\max(a,b)]. Since k[[c0,ck]]\bigcap_{k\in{\mathscr{I}}}[\![c^{0},c^{k}]\!] is nonempty, the number

c~0min(k[[c0,ck]])\tilde{c}^{0}\coloneqq\min\biggl{(}\bigcap_{k\in{\mathscr{I}}}[\![c^{0},c^{k}]\!]\biggr{)}

exists and satisfies c~0maxkck\tilde{c}^{0}\leqslant\max_{k\in{\mathscr{I}}}c^{k}. Appealing again to Lemma 4.7, 𝐜{\mathbf{c}} remains a discrete stationary solution if c0c^{0} is replaced by c~0\tilde{c}^{0}. In a similar way we replace d0d^{0} by

d~0max(k[[d0,dk]]),\tilde{d}^{0}\coloneqq\max\biggl{(}\bigcap_{k\in{\mathscr{I}}}[\![d^{0},d^{k}]\!]\biggr{)},

which satisfies d~0minkdk\tilde{d}^{0}\geqslant\min_{k\in{\mathscr{I}}}d^{k}. By our hypothesis, it follows that c~0d~0\tilde{c}^{0}\leqslant\tilde{d}^{0}. ∎

Proposition 4.9.

Consider a consistent, conservative, monotone finite volume method (4.1), (4.11) with a set of discrete stationary states 𝒢disc0\mathscr{G}_{\mathrm{disc}}^{0}. For any initial data 𝐮¯Loco(𝒢disc0)\bar{\mathbf{u}}\in L^{\infty}_{\mathrm{oco}}(\mathscr{G}_{\mathrm{disc}}^{0}), the numerical solution is uniformly LL^{\infty} bounded.

Proof.

Pick discrete stationary states 𝐜,𝐝𝒢disc0{\mathbf{c}},{\mathbf{d}}\in\mathscr{G}_{\mathrm{disc}}^{0} as in (2.9). It is clear that the initial data defined in (4.11) satisfy ckuik,0dkc^{k}\leqslant u_{i}^{k,0}\leqslant d^{k} for all iDdiscki\in D_{\mathrm{disc}}^{k} and k0k\in{\mathscr{I}}_{0}. If the same holds at some time step n0n\in\mathbb{N}_{0} then (using the notation (4.6), (4.10))

uik,n+1=Gk(𝐮i1n,𝐮in,𝐮i+1n)Gk(𝐜i1,𝐜i,𝐜i+1)=ciku_{i}^{k,n+1}=G^{k}\bigl{(}{\mathbf{u}}_{i-1}^{n},{\mathbf{u}}_{i}^{n},{\mathbf{u}}_{i+1}^{n}\bigr{)}\geqslant G^{k}\bigl{(}{\mathbf{c}}_{i-1},{\mathbf{c}}_{i},{\mathbf{c}}_{i+1}\bigr{)}=c_{i}^{k}

for all iDdiscki\in D_{\mathrm{disc}}^{k} and k0k\in{\mathscr{I}}_{0}, and similarly, uik,n+1diku_{i}^{k,n+1}\leqslant d_{i}^{k}. ∎

Definition 4.10 (L1L^{1} contractive method).

A numerical method (4.6) is L1L^{1} contractive if

𝐮Δt(,t)𝐯Δt(,t)L1(Ω;λ)𝐮¯𝐯¯L1(Ω;λ)\displaystyle\bigl{\|}{\mathbf{u}}_{\Delta t}(\cdot,t)-{\mathbf{v}}_{\Delta t}(\cdot,t)\bigr{\|}_{L^{1}(\Omega;\lambda)}\leqslant\|\bar{\mathbf{u}}-\bar{\mathbf{v}}\|_{L^{1}(\Omega;\lambda)}

for all t0t\geqslant 0, where 𝐮Δt{\mathbf{u}}_{\Delta t} and 𝐯Δt{\mathbf{v}}_{\Delta t} are the projection of the numerical solution (cf. (4.2)) computed with initial data 𝐮¯,𝐯¯Loco(𝒢disc0)L1(Ω;λ)\bar{\mathbf{u}},\bar{\mathbf{v}}\in L^{\infty}_{\mathrm{oco}}(\mathscr{G}_{\mathrm{disc}}^{0})\cap L^{1}(\Omega;\lambda), respectively. (See (4.3) for the integral of 𝐮Δt{\mathbf{u}}_{\Delta t}, 𝐯Δt{\mathbf{v}}_{\Delta t} w.r.t. λ\lambda.)

We state the well known Crandall–Tartar lemma which we will use in the following proof. Here and below, we use the notation ab=max(a,b)a\vee b=\max(a,b).

Theorem 4.11 (Crandall–Tartar: [9, Proposition 1]).

Let (Ω,λ)(\Omega,\lambda) be a measure space. Let CL1(Ω;λ)C\subset L^{1}(\Omega;\lambda) have the property that f,gCf,g\in C implies fgCf\vee g\in C. Let V:CL1(Ω;λ)V\colon C\to L^{1}(\Omega;\lambda) satisfy ΩV(f)𝑑λ=Ωf𝑑λ\int_{\Omega}V(f)\,d\lambda=\int_{\Omega}f\,d\lambda for fCf\in C. Then the following three properties of VV are equivalent:

  • (a)

    f,gCf,g\in C and fgf\leqslant g a.e. implies V(f)V(g)V(f)\leqslant V(g) a.e.,

  • (b)

    Ω(V(f)V(g))+Ω(fg)+\int_{\Omega}(V(f)-V(g))^{+}\leqslant\int_{\Omega}(f-g)^{+} for f,gCf,g\in C,

  • (c)

    Ω|V(f)V(g)|Ω|fg|\int_{\Omega}\big{|}V(f)-V(g)\big{|}\leqslant\int_{\Omega}|f-g| for f,gCf,g\in C.

We can now prove L1L^{1}-contractivity of our method.

Theorem 4.12.

Every conservative, consistent monotone method (4.1), (4.11) is L1L^{1}-contractive.

Proof.

Let C=CΔxC={C_{\Delta x}} be the set of piecewise constant functions,

CΔx={𝐮L1L(Ω;λ):𝐮(x)=k0iDdisckuik𝟙𝒞ik for uik}.{C_{\Delta x}}=\Bigl{\{}{\mathbf{u}}\in L^{1}\cap L^{\infty}(\Omega;\lambda)\ :\ {\mathbf{u}}(x)=\sum_{k\in{\mathscr{I}}_{0}}\sum_{i\in D_{\mathrm{disc}}^{k}}u_{i}^{k}\mathbbm{1}_{{\mathscr{C}}_{i}^{k}}\text{ for }u_{i}^{k}\in\mathbb{R}\Bigr{\}}.

We define the operator V:CΔxCΔxV:{C_{\Delta x}}\to{C_{\Delta x}} mapping a numerical solution to the next time step,

V(𝐮)\displaystyle V({\mathbf{u}})\coloneqq{} kiDdisck𝟙𝒞ik(uikΔtΔx(Fk(uik,ui+1k)Fk(ui1k,uik)))\displaystyle\sum_{k\in{\mathscr{I}}}\sum_{i\in D_{\mathrm{disc}}^{k}}\mathbbm{1}_{{\mathscr{C}}_{i}^{k}}\Bigl{(}u_{i}^{k}-\frac{{\Delta t}}{{\Delta x}}\big{(}F^{k}\big{(}u_{i}^{k},u_{i+1}^{k}\big{)}-F^{k}\big{(}u_{i-1}^{k},u_{i}^{k}\big{)}\big{)}\Bigr{)}
+k𝟙𝒞0k(u00ΔtΔx0(koutFk(u0,u1k)kinFk(u1k,u0))).\displaystyle+\sum_{k\in{\mathscr{I}}}\mathbbm{1}_{{\mathscr{C}}_{0}^{k}}\biggl{(}u_{0}^{0}-\frac{{\Delta t}}{{\Delta x}_{0}}\biggl{(}\sum_{k\in{{\mathscr{I}}_{\mathrm{out}}}}F^{k}(u_{0},u_{1}^{k})-\sum_{k\in{{\mathscr{I}}_{\mathrm{in}}}}F^{k}(u_{-1}^{k},u_{0})\biggr{)}\biggr{)}.

By the definition (2.2) of the measure λ\lambda (cf. also (4.3)), we have ΩV(𝐮)𝑑λ=Ω𝐮𝑑λ\int_{\Omega}V({\mathbf{u}})\,d\lambda=\int_{\Omega}{\mathbf{u}}\,d\lambda for all 𝐮CΔx{\mathbf{u}}\in{C_{\Delta x}}. We apply the Crandall–Tartar lemma to conclude L1L^{1}-contractivity of the numerical solution operator VV. ∎

From L1L^{1}-contractivity we get continuity in time as a corollary:

Corollary 4.13.

Consider a consistent, conservative and monotone method (4.1). Let 𝐮Δt{\mathbf{u}}_{\Delta t} be an approximate solution computed with this method and assume that all numerical fluxes FkF^{k} are Lipschitz continuous in both arguments. Then computed solutions are uniformly L1L^{1} Lipschitz continuous in time, i.e.,

𝐮Δt(tn+1)𝐮Δt(tn)L1(Ω;λ)\displaystyle\big{\|}{\mathbf{u}}_{\Delta t}(t^{n+1})-{\mathbf{u}}_{\Delta t}(t^{n})\big{\|}_{L^{1}(\Omega;\lambda)} 𝐮Δt(t1)𝐮Δt(t0)L1(Ω;λ)\displaystyle\leqslant\big{\|}{\mathbf{u}}_{\Delta t}(t^{1})-{\mathbf{u}}_{\Delta t}(t^{0})\big{\|}_{L^{1}(\Omega;\lambda)}
Δt(CTV(𝐮0)+M¯),\displaystyle\leqslant{\Delta t}\big{(}C\operatorname{TV}({\mathbf{u}}^{0})+\bar{M}\big{)},

where the constants CC and M¯\bar{M} depend on the flux functions and on the initial data.

Proof.

We compute

\displaystyle\bigl{\|} 𝐮Δt(tn+1)𝐮Δt(tn)L1(Ω;λ)\displaystyle{\mathbf{u}}_{\Delta t}(t^{n+1})-{\mathbf{u}}_{\Delta t}(t^{n})\bigr{\|}_{L^{1}(\Omega;\lambda)}
=V(𝐮Δt(tn))V(𝐮Δt(tn1))L1(Ω;λ)\displaystyle=\big{\|}V({\mathbf{u}}_{\Delta t}(t^{n}))-V({\mathbf{u}}_{\Delta t}(t^{n-1}))\big{\|}_{L^{1}(\Omega;\lambda)}
(using Theorem 4.11(c))
𝐮Δt(tn)𝐮Δt(tn1)L1(Ω;λ)𝐮Δt(t1)𝐮Δt(t0)L1(Ω;λ)\displaystyle\leqslant\big{\|}{\mathbf{u}}_{\Delta t}(t^{n})-{\mathbf{u}}_{\Delta t}(t^{n-1})\big{\|}_{L^{1}(\Omega;\lambda)}\leqslant\dots\leqslant\big{\|}{\mathbf{u}}_{\Delta t}(t^{1})-{\mathbf{u}}_{\Delta t}(t^{0})\big{\|}_{L^{1}(\Omega;\lambda)}
=ΔxkiDdisck|uik,1ui0|+Δx0|u0k,1u00|\displaystyle={\Delta x}\sum_{k\in{\mathscr{I}}}\sum_{i\in D_{\mathrm{disc}}^{k}}|u_{i}^{k,1}-u_{i}^{0}|+{\Delta x}_{0}|u_{0}^{k,1}-u_{0}^{0}|
=ΔtkiDdisck|Fi+1/2k,0Fi1/2k,0|+Δt|koutF1/2k,0kinF1/2k,0|\displaystyle={\Delta t}\sum_{k\in{\mathscr{I}}}\sum_{i\in D_{\mathrm{disc}}^{k}}\big{|}F_{i+{\nicefrac{{1}}{{2}}}}^{k,0}-F_{i-{\nicefrac{{1}}{{2}}}}^{k,0}\big{|}+{\Delta t}\biggl{|}\sum_{k\in{{\mathscr{I}}_{\mathrm{out}}}}F_{\nicefrac{{1}}{{2}}}^{k,0}-\sum_{k\in{{\mathscr{I}}_{\mathrm{in}}}}F_{-{\nicefrac{{1}}{{2}}}}^{k,0}\biggr{|}
=ΔxλiDdisck|uik,0ui1k,0|\displaystyle={\Delta x}\lambda\sum_{\in{\mathscr{I}}}\sum_{i\in D_{\mathrm{disc}}^{k}}\big{|}u_{i}^{k,0}-u_{i-1}^{k,0}\big{|}
+Δt|koutF1/2k,0Fk,0(u00,u00)kinF1/2k,0Fk,0(u00,u00)+koutfk(u00)fout(u00)kinfk(u00)fin(u00)|\displaystyle\quad+{\Delta t}\biggl{|}\!\begin{aligned} &\sum_{k\in{{\mathscr{I}}_{\mathrm{out}}}}F_{\nicefrac{{1}}{{2}}}^{k,0}-F^{k,0}\big{(}u_{0}^{0},u_{0}^{0}\big{)}-\sum_{k\in{{\mathscr{I}}_{\mathrm{in}}}}F_{-{\nicefrac{{1}}{{2}}}}^{k,0}-F^{k,0}(u_{0}^{0},u_{0}^{0})\\ &+\overbrace{\sum_{k\in{{\mathscr{I}}_{\mathrm{out}}}}f^{k}\big{(}u_{0}^{0}\big{)}}^{\eqqcolon f_{\mathrm{out}}(u_{0}^{0})}-\overbrace{\sum_{k\in{{\mathscr{I}}_{\mathrm{in}}}}f^{k}\big{(}u_{0}^{0}\big{)}}^{\eqqcolon f_{\mathrm{in}}(u_{0}^{0})}\biggr{|}\end{aligned}
ΔtkiDdisckLk(|uik,0ui1k,0|+|ui+1k,0uik,0|)\displaystyle\leqslant{\Delta t}\sum_{k\in{\mathscr{I}}}\sum_{i\in D_{\mathrm{disc}}^{k}}L^{k}\bigl{(}\big{|}u_{i}^{k,0}-u_{i-1}^{k,0}\big{|}+\big{|}u_{i+1}^{k,0}-u_{i}^{k,0}\big{|}\bigr{)}
+Δt(koutLk|u1k,0u00|+kinLk|u00u1k,0|+|fout(u00)fin(u00)|M)M¯\displaystyle\quad+{\Delta t}\underbrace{\Biggl{(}\sum_{k\in{{\mathscr{I}}_{\mathrm{out}}}}L^{k}\big{|}u_{1}^{k,0}-u_{0}^{0}\big{|}+\sum_{k\in{{\mathscr{I}}_{\mathrm{in}}}}L^{k}\big{|}u_{0}^{0}-u_{-1}^{k,0}\big{|}+\overbrace{\big{|}f_{\mathrm{out}}\big{(}u_{0}^{0}\big{)}-f_{\mathrm{in}}\big{(}u_{0}^{0}\big{)}\big{|}}^{\leqslant M}\Biggr{)}}_{\eqqcolon\bar{M}}
Δt(CTV(𝐮0)+M¯),\displaystyle\leqslant{\Delta t}(C\operatorname{TV}({\mathbf{u}}^{0})+\bar{M}),

where we collect all constants into the global constant CC. We can bound |fout(u00)fin(u00)|M¯\big{|}f_{\mathrm{out}}\big{(}u_{0}^{0}\big{)}-f_{\mathrm{in}}\big{(}u_{0}^{0}\big{)}\big{|}\leqslant\bar{M} with a constant M¯\bar{M}\in\mathbb{R} since fin,foutf_{\mathrm{in}},f_{\mathrm{out}} are continuous and u00Lu_{0}^{0}\in L^{\infty}. ∎

5 Convergence of finite volume schemes

We are now in place to prove convergence in the case where the flux functions fkf^{k} are strictly monotone. We do this by using the upwind method where the numerical flux functions are defined by

Fk(u,v)={fk(u)if fk is increasing,fk(v)if fk is decreasing.F^{k}(u,v)=\begin{cases}f^{k}(u)&\text{if $f^{k}$ is increasing,}\\ f^{k}(v)&\text{if $f^{k}$ is decreasing.}\end{cases}

We shall show that the set of discrete approximations is compact in L([0,);L1(Ω;λ))L^{\infty}\big{(}[0,\infty);L^{1}(\Omega;\lambda)\big{)}, and that any limit limit is an entropy solution. In particular, this convergence result establishes existence of an entropy solution. We show convergence to a weak solution by proving a Lax–Wendroff type theorem:

Theorem 5.1 (Lax–Wendroff theorem).

Fix T>0T>0. Assume that each flux function fkf^{k} is locally Lipschitz continuous and strictly monotone. Let 𝒢disc0\mathscr{G}_{\mathrm{disc}}^{0} be a class of discrete stationary solutions for the upwind method and let 𝐮Δt{\mathbf{u}}_{\Delta t} be computed from the upwind method with initial data 𝐮¯Loco(𝒢disc0)L1(Ω;λ)\bar{\mathbf{u}}\in L^{\infty}_{\mathrm{oco}}(\mathscr{G}_{\mathrm{disc}}^{0})\cap L^{1}(\Omega;\lambda). Consider a subsequence (𝐮Δt)\big{(}{\mathbf{u}}_{{\Delta t}_{\ell}}\big{)}_{\ell\in\mathbb{N}} such that Δt0{\Delta t}_{\ell}\to 0 and 𝐮Δt𝐮{\mathbf{u}}_{{\Delta t}_{\ell}}\to{\mathbf{u}} in L([0,T];L1(Ω;λ))L^{\infty}([0,T];L^{1}(\Omega;\lambda)) as kk\to\infty. Then the limit 𝐮{\mathbf{u}} is the unique entropy solution to (2.1), that is, 𝐮{\mathbf{u}} satisfies (2.10).

Proof.

We write Δx{\Delta x} and Δt{\Delta t} rather than Δx{\Delta x}_{\ell} and Δt{\Delta t}_{\ell}, and we shall show that uu satisfies the entropy condition (2.10) for every 𝐜𝒢disc0{\mathbf{c}}\in\mathscr{G}_{\mathrm{disc}}^{0}. Choosing stationary solutions 𝐜,𝐝𝒢disc0{\mathbf{c}},{\mathbf{d}}\in\mathscr{G}_{\mathrm{disc}}^{0} such that 𝐜𝐮Δt𝐝{\mathbf{c}}\leqslant{\mathbf{u}}_{\Delta t}\leqslant{\mathbf{d}} (cf. Proposition 4.9) in particular shows that uu is a weak solution.

Let 𝐜𝒢disc0{\mathbf{c}}\in\mathscr{G}_{\mathrm{disc}}^{0} and consider the Crandall–Majda numerical entropy fluxes

Qi+1/2k,n=Fk(uik,ncik,ui+1k,ncik)Fk(uik,nck,ui+1k,nck)\displaystyle Q_{i+{\nicefrac{{1}}{{2}}}}^{k,n}=F^{k}\bigl{(}u_{i}^{k,n}\vee c^{k}_{i},u_{i+1}^{k,n}\vee c^{k}_{i}\bigr{)}-F^{k}\bigl{(}u_{i}^{k,n}\wedge c^{k},u_{i+1}^{k,n}\wedge c^{k}\bigr{)}

for i=0,1,i=0,1,\dots when koutk\in{{\mathscr{I}}_{\mathrm{out}}}, and for i=,2,1i=\dots,-2,-1 when kink\in{{\mathscr{I}}_{\mathrm{in}}}, and

Q1/2n=kinQ1/2k,n,Q1/2n=koutQ1/2k,n\displaystyle Q_{-{\nicefrac{{1}}{{2}}}}^{n}=\sum_{k\in{{\mathscr{I}}_{\mathrm{in}}}}Q_{-{\nicefrac{{1}}{{2}}}}^{k,n},\qquad Q_{{\nicefrac{{1}}{{2}}}}^{n}=\sum_{k\in{{\mathscr{I}}_{\mathrm{out}}}}Q_{{\nicefrac{{1}}{{2}}}}^{k,n}

(cf. Notation 4.4 for the definition of cikc_{i}^{k}). Recalling the definition (4.5) of the update functions GkG^{k}, we see that

Gk(ui1k,nck,uik,nck,ui+1k,nck)Gk(ui1k,nck,uik,nck,ui+1k,nck)\displaystyle G^{k}\bigl{(}u_{i-1}^{k,n}\vee c^{k},u_{i}^{k,n}\vee c^{k},u_{i+1}^{k,n}\vee c^{k}\bigr{)}-G^{k}\bigl{(}u_{i-1}^{k,n}\wedge c^{k},u_{i}^{k,n}\wedge c^{k},u_{i+1}^{k,n}\wedge c^{k}\bigr{)}
=|uik,nck|ΔtΔx(Qi+1/2kQi1/2k),\displaystyle\qquad=\bigl{|}u_{i}^{k,n}-c^{k}\bigr{|}-\frac{{\Delta t}}{{\Delta x}}\bigl{(}Q_{i+{\nicefrac{{1}}{{2}}}}^{k}-Q_{i-{\nicefrac{{1}}{{2}}}}^{k}\bigr{)},

for kk\in{\mathscr{I}} and iDdiscki\in D_{\mathrm{disc}}^{k}. Hence,

|uik,n+1ck|=uik,n+1ckuik,n+1ck=Gk(ui1k,n,uik,n,ui+1k,n)ckGk(ui1k,n,uik,n,ui+1k,n)ckGk(ui1k,nck,uik,nck,ui+1k,nck)Gk(ui1k,nck,uik,nck,ui+1k,nck)=|uik,nck|ΔtΔx(Qi+1/2k,nQi1/2k,n).\begin{split}\big{|}u_{i}^{k,n+1}-c^{k}\big{|}&=u_{i}^{k,n+1}\vee c^{k}-u_{i}^{k,n+1}\wedge c^{k}\\ &=G^{k}\bigl{(}u_{i-1}^{k,n},u_{i}^{k,n},u_{i+1}^{k,n}\bigr{)}\vee c^{k}-G^{k}\bigl{(}u_{i-1}^{k,n},u_{i}^{k,n},u_{i+1}^{k,n}\bigr{)}\wedge c^{k}\\ &\leqslant G^{k}\bigl{(}u_{i-1}^{k,n}\vee c^{k},u_{i}^{k,n}\vee c^{k},u_{i+1}^{k,n}\vee c^{k}\bigr{)}\\ &\quad-G^{k}\bigl{(}u_{i-1}^{k,n}\wedge c^{k},u_{i}^{k,n}\wedge c^{k},u_{i+1}^{k,n}\wedge c^{k}\bigr{)}\\ &=\bigl{|}u_{i}^{k,n}-c^{k}\bigr{|}-\frac{{\Delta t}}{{\Delta x}}\bigl{(}Q_{i+{\nicefrac{{1}}{{2}}}}^{k,n}-Q_{i-{\nicefrac{{1}}{{2}}}}^{k,n}\bigr{)}.\end{split} (5.1)

Similarly, we find that

|u0n+1c0||u0nc0|+ΔtΔx0(Q1/2nQ1/2n)0\bigl{|}u_{0}^{n+1}-c^{0}\bigr{|}-\bigl{|}u_{0}^{n}-c^{0}\bigr{|}+\frac{{\Delta t}}{{\Delta x}_{0}}\bigl{(}Q_{\nicefrac{{1}}{{2}}}^{n}-Q_{-{\nicefrac{{1}}{{2}}}}^{n}\bigr{)}\leqslant 0 (5.2)

We choose T=MΔtT=M{\Delta t} for a natural number MM, multiply the above N+1N+1 inequalities with a test function φ\varphi and sum up to get

0\displaystyle 0 n=0MkiDdisckφik,n((|uik,n+1ck||uik,nck|)+ΔtΔx(Qi+1/2k,nQi1/2k,n))\displaystyle\geqslant\sum_{n=0}^{M}\sum_{k\in{\mathscr{I}}}\sum_{i\in D_{\mathrm{disc}}^{k}}\varphi_{i}^{k,n}\biggl{(}\bigl{(}\big{|}u_{i}^{k,n+1}-c^{k}\big{|}-\big{|}u_{i}^{k,n}-c^{k}\big{|}\bigr{)}+\frac{{\Delta t}}{{\Delta x}}\bigl{(}Q_{i+{\nicefrac{{1}}{{2}}}}^{k,n}-Q_{i-{\nicefrac{{1}}{{2}}}}^{k,n}\bigr{)}\biggr{)}
+n=0Mφ0n(N2(|u0n+1c0||u0nc0|)+ΔtΔx(koutQ1/2k,nkinQ1/2k,n)),\displaystyle\quad+\sum_{n=0}^{M}\varphi_{0}^{n}\biggl{(}\frac{N}{2}\bigl{(}\big{|}u_{0}^{n+1}-c^{0}\big{|}-\big{|}u_{0}^{n}-c^{0}\big{|}\bigr{)}+\frac{{\Delta t}}{{\Delta x}}\biggl{(}\sum_{k\in{{\mathscr{I}}_{\mathrm{out}}}}Q_{{\nicefrac{{1}}{{2}}}}^{k,n}-\sum_{k\in{{\mathscr{I}}_{\mathrm{in}}}}Q_{-{\nicefrac{{1}}{{2}}}}^{k,n}\biggr{)}\biggr{)},

where φik,n=φk(xi,tn)\varphi_{i}^{k,n}=\varphi^{k}(x_{i},t^{n}). After summation by parts we get

0\displaystyle 0 n=1MkiDdisck|uik,nck|(φik,nφik,n1)kiDdisck|uik,0ck|φik,0\displaystyle\geqslant-\sum_{n=1}^{M}\sum_{k\in{\mathscr{I}}}\sum_{i\in D_{\mathrm{disc}}^{k}}\big{|}u_{i}^{k,n}-c^{k}\big{|}\bigl{(}\varphi_{i}^{k,n}-\varphi_{i}^{k,n-1}\bigr{)}-\sum_{k\in{\mathscr{I}}}\sum_{i\in D_{\mathrm{disc}}^{k}}\big{|}u_{i}^{k,0}-c^{k}\big{|}\varphi_{i}^{k,0}
ΔtΔxn=0M(kiniDdisckQi1/2k,n(φik,nφi1k,n)+koutiDdisckQi+1/2k,n(φi+1k,nφik,n)+kinφ1k,nQ1/2k,nkoutφ1k,nQ1/2k,n)\displaystyle\quad-\frac{{\Delta t}}{{\Delta x}}\sum_{n=0}^{M}\biggl{(}\begin{aligned} &\sum_{k\in{{\mathscr{I}}_{\mathrm{in}}}}\sum_{i\in D_{\mathrm{disc}}^{k}}Q_{i-{\nicefrac{{1}}{{2}}}}^{k,n}\bigl{(}\varphi_{i}^{k,n}-\varphi_{i-1}^{k,n}\bigr{)}\\ &+\sum_{k\in{{\mathscr{I}}_{\mathrm{out}}}}\sum_{i\in D_{\mathrm{disc}}^{k}}Q_{i+{\nicefrac{{1}}{{2}}}}^{k,n}\bigl{(}\varphi_{i+1}^{k,n}-\varphi_{i}^{k,n}\bigr{)}\\ &+\sum_{k\in{{\mathscr{I}}_{\mathrm{in}}}}\varphi_{-1}^{k,n}Q_{-{\nicefrac{{1}}{{2}}}}^{k,n}-\sum_{k\in{{\mathscr{I}}_{\mathrm{out}}}}\varphi_{1}^{k,n}Q_{{\nicefrac{{1}}{{2}}}}^{k,n}\biggr{)}\end{aligned}
N2|u0nc0|φ00N2n=1M|u0nc0|(φ0nφ0n1)\displaystyle\quad-\frac{N}{2}\big{|}u_{0}^{n}-c^{0}\big{|}\varphi_{0}^{0}-\frac{N}{2}\sum_{n=1}^{M}\big{|}u_{0}^{n}-c^{0}\big{|}\bigl{(}\varphi_{0}^{n}-\varphi_{0}^{n-1}\bigr{)}
+ΔtΔxn=0M(koutQ1/2nφ0nkinQ1/2nφ0n).\displaystyle\quad+\frac{{\Delta t}}{{\Delta x}}\sum_{n=0}^{M}\biggl{(}\sum_{k\in{{\mathscr{I}}_{\mathrm{out}}}}Q_{{\nicefrac{{1}}{{2}}}}^{n}\varphi_{0}^{n}-\sum_{k\in{{\mathscr{I}}_{\mathrm{in}}}}Q_{-{\nicefrac{{1}}{{2}}}}^{n}\varphi_{0}^{n}\biggr{)}.

After shifting the ii index on the second line we get

0\displaystyle 0 ΔtΔxn=1MkiDdisck|uik,nck|(φik,nφik,n1Δt)=A1\displaystyle\geqslant-\underbrace{{\Delta t}{\Delta x}\sum_{n=1}^{M}\sum_{k\in{\mathscr{I}}}\sum_{i\in D_{\mathrm{disc}}^{k}}\big{|}u_{i}^{k,n}-c^{k}\big{|}\biggl{(}\frac{\varphi_{i}^{k,n}-\varphi_{i}^{k,n-1}}{{\Delta t}}\biggr{)}}_{=\,A_{1}}
ΔxkiDdisck|uik,0ck|φik,0=A2\displaystyle\quad-\underbrace{{\Delta x}\sum_{k\in{\mathscr{I}}}\sum_{i\in D_{\mathrm{disc}}^{k}}\big{|}u_{i}^{k,0}-c^{k}\big{|}\varphi_{i}^{k,0}}_{=\,A_{2}}
ΔtΔxn=0M(kiniDdisckQi+1/2k,n(φi+1k,nφik,nΔx)+koutiDdisckQi1/2k,n(φik,nφi1k,nΔx))=A3\displaystyle\quad-\underbrace{{\Delta t}{\Delta x}\sum_{n=0}^{M}\biggl{(}\begin{aligned} &\sum_{k\in{{\mathscr{I}}_{\mathrm{in}}}}\sum_{i\in D_{\mathrm{disc}}^{k}}Q_{i+{\nicefrac{{1}}{{2}}}}^{k,n}\biggl{(}\frac{\varphi_{i+1}^{k,n}-\varphi_{i}^{k,n}}{{\Delta x}}\biggr{)}\\ &+\sum_{k\in{{\mathscr{I}}_{\mathrm{out}}}}\sum_{i\in D_{\mathrm{disc}}^{k}}Q_{i-{\nicefrac{{1}}{{2}}}}^{k,n}\biggl{(}\frac{\varphi_{i}^{k,n}-\varphi_{i-1}^{k,n}}{{\Delta x}}\biggr{)}\biggr{)}\end{aligned}}_{=\,A_{3}}
ΔxN2|u00c0|φ00ΔtΔxN2n=1M|u0nc0|(φ0nφ0n1Δt)=A4.\displaystyle\quad-\underbrace{{\Delta x}\frac{N}{2}\big{|}u_{0}^{0}-c^{0}\big{|}\varphi_{0}^{0}-{\Delta t}{\Delta x}\frac{N}{2}\sum_{n=1}^{M}\big{|}u_{0}^{n}-c^{0}\big{|}\biggl{(}\frac{\varphi_{0}^{n}-\varphi_{0}^{n-1}}{{\Delta t}}\biggr{)}}_{=\,A_{4}}.

Taking limits we get for Δt,Δx0{\Delta t},{\Delta x}\to 0

A1k0Dk|ukck|φtk𝑑x𝑑t,\displaystyle A_{1}\to\sum_{k\in{\mathscr{I}}}\int_{0}^{\infty}\int_{D^{k}}\big{|}u^{k}-c^{k}\big{|}\varphi_{t}^{k}\,dx\,dt,

and for Δx0{\Delta x}\to 0

A2k|u0kck|(x)φk(x,0)dx,A40.\displaystyle A_{2}\to\sum_{k\in{\mathscr{I}}}\big{|}u_{0}^{k}-c^{k}\big{|}(x)\varphi^{k}(x,0)\,dx,\qquad A_{4}\to 0.

Thus, we are left with A3A_{3}. Since the scheme is the upwind method, we can write

A3\displaystyle A_{3} =ΔtΔxn=0M(kiniDdisckqckk(uik,n)(φi+1k,nφik,nΔx)+koutiDdisckqckk(uik,n)(φik,nφi1k,nΔx))\displaystyle={\Delta t}{\Delta x}\sum_{n=0}^{M}\biggl{(}\begin{aligned} &\sum_{k\in{{\mathscr{I}}_{\mathrm{in}}}}\sum_{i\in D_{\mathrm{disc}}^{k}}q_{c^{k}}^{k}\bigl{(}u_{i}^{k,n}\bigr{)}\biggl{(}\frac{\varphi_{i+1}^{k,n}-\varphi_{i}^{k,n}}{{\Delta x}}\biggr{)}\\ &+\sum_{k\in{{\mathscr{I}}_{\mathrm{out}}}}\sum_{i\in D_{\mathrm{disc}}^{k}}q_{c^{k}}^{k}\bigl{(}u_{i}^{k,n}\bigr{)}\biggl{(}\frac{\varphi_{i}^{k,n}-\varphi_{i-1}^{k,n}}{{\Delta x}}\biggr{)}\biggr{)}\end{aligned}
k0TDkqckk(uk(x,t))φx(x,t)𝑑x𝑑t\displaystyle\to\sum_{k\in{\mathscr{I}}}\int_{0}^{T}\int_{D^{k}}q_{c^{k}}^{k}\bigl{(}u^{k}(x,t)\bigr{)}\varphi_{x}(x,t)\,dx\,dt

as Δt,Δx0{\Delta t},{\Delta x}\to 0, due to the a.e. pointwise convergence of 𝐮Δt{\mathbf{u}}_{{\Delta t}} to 𝐮{\mathbf{u}}. ∎

To show compactness we want to apply Helly’s theorem:

Theorem 5.2 (Helly’s theorem, [14, p. 437]).

Let AC([a,b])A\subset C([a,b]) be a set of functions on an interval [a,b][a,b]\subset\mathbb{R} for which there exists some M>0M>0 such that

TV(v)+vMvA.\operatorname{TV}(v)+\|v\|_{\infty}\leqslant M\qquad\forall\ v\in A.

Then AA is relatively compact with respect to uniform convergence.

Now we have everything in place to proof a compactness theorem.

Theorem 5.3 (Compactness and Convergence to a Weak Solution).

Fix T>0T>0. Assume that each flux function fkf^{k} is locally Lipschitz continuous and strictly monotone. Let 𝒢disc0\mathscr{G}_{\mathrm{disc}}^{0} be a set of discrete stationary states for the upwind method. Let 𝐮Δt{\mathbf{u}}_{\Delta t} be computed from the upwind method with initial data 𝐮¯Loco(𝒢disc0)L1(Ω;λ)\bar{\mathbf{u}}\in L^{\infty}_{\mathrm{oco}}(\mathscr{G}_{\mathrm{disc}}^{0})\cap L^{1}(\Omega;\lambda), and assume that TV(𝐮¯)<\operatorname{TV}(\bar{\mathbf{u}})<\infty. Then the numerical solution {𝐮Δt}Δt>0\{{\mathbf{u}}_{\Delta t}\}_{{\Delta t}>0} converges in C([0,T],Lloc1(Ω;λ))C([0,T],L_{\mathrm{loc}}^{1}(\Omega;\lambda)) to a weak solution 𝐮{\mathbf{u}}.

Proof.

We first show convergence of the sequence of functions 𝐠Δt:Ω×[0,T]{\mathbf{g}}_{\Delta t}\colon\Omega\times[0,T]\to\mathbb{R},

𝐠Δt(x,k,t)fk(uΔtk(x,t)).{\mathbf{g}}_{\Delta t}(x,k,t)\coloneqq f^{k}(u^{k}_{\Delta t}(x,t)).

The sequence 𝐠Δt{\mathbf{g}}_{\Delta t} is uniformly LL^{\infty} bounded, by Proposition 4.9, and it is Lipschitz continuous in time:

Ω|𝐠Δt(tn+1)𝐠Δt(tn)|𝑑λ\displaystyle\int_{\Omega}\big{|}{\mathbf{g}}_{\Delta t}(t^{n+1})-{\mathbf{g}}_{\Delta t}(t^{n})\big{|}\,d\lambda CfΩ|𝐮Δt(tn+1)𝐮Δt(tn)|𝑑λ\displaystyle\leqslant C_{f}\int_{\Omega}\big{|}{\mathbf{u}}_{\Delta t}(t^{n+1})-{\mathbf{u}}_{\Delta t}(t^{n})\big{|}\,d\lambda
Cf(CTV(𝐮¯)+M¯)Δt,\displaystyle\leqslant C_{f}(C\operatorname{TV}(\bar{\mathbf{u}})+\bar{M}){\Delta t},

by Corollary 4.13. We can bound the total variation of 𝐠Δt{\mathbf{g}}_{\Delta t} by

TV(𝐠Δt(,t))\displaystyle\operatorname{TV}({\mathbf{g}}_{\Delta t}(\cdot,t)) =kiDdisck|fk(uik,n)fk(ui1k,n)|\displaystyle=\sum_{k\in{\mathscr{I}}}\sum_{i\in D_{\mathrm{disc}}^{k}}\big{|}f^{k}(u_{i}^{k,n})-f^{k}(u_{i-1}^{k,n})\big{|}
+kin|fk(u0n)fk(u1k,n)|\displaystyle\quad+\sum_{k\in{{\mathscr{I}}_{\mathrm{in}}}}\big{|}f^{k}(u_{0}^{n})-f^{k}(u_{-1}^{k,n})\big{|}
kiDdisck|fk(uik,n)fk(ui1k,n)|+N𝐠Δt\displaystyle\leqslant\sum_{k\in{\mathscr{I}}}\sum_{i\in D_{\mathrm{disc}}^{k}}\big{|}f^{k}(u_{i}^{k,n})-f^{k}(u_{i-1}^{k,n})\big{|}+N\|{\mathbf{g}}_{\Delta t}\|_{\infty}
=kiDdisck|Fi+1/2k,nFi1/2k,n|+N𝐠Δt\displaystyle=\sum_{k\in{\mathscr{I}}}\sum_{i\in D_{\mathrm{disc}}^{k}}\big{|}F_{i+{\nicefrac{{1}}{{2}}}}^{k,n}-F_{i-{\nicefrac{{1}}{{2}}}}^{k,n}\big{|}+N\|{\mathbf{g}}_{\Delta t}\|_{\infty}
=ΔxΔtkiDdisck|uik,n+1uik,n|+N𝐠Δt\displaystyle=\frac{{\Delta x}}{{\Delta t}}\sum_{k\in{\mathscr{I}}}\sum_{i\in D_{\mathrm{disc}}^{k}}\big{|}u_{i}^{k,n+1}-u_{i}^{k,n}\big{|}+N\|{\mathbf{g}}_{\Delta t}\|_{\infty}
Δx(CTV(𝐮¯)+M¯)+N𝐠Δt.\displaystyle\leqslant{\Delta x}(C\operatorname{TV}(\bar{\mathbf{u}})+\bar{M})+N\|{\mathbf{g}}_{\Delta t}\|_{\infty}.

Applying Ascoli’s compactness theorem together with Helly’s theorem, we get the existence of a subsequence Δt0{\Delta t}_{\ell}\to 0 such that 𝐠Δt𝐠{\mathbf{g}}_{{\Delta t}_{\ell}}\to{\mathbf{g}} in C([0,T],Lloc1(Ω;λ))C([0,T],L^{1}_{\mathrm{loc}}(\Omega;\lambda)) for some function 𝐠{\mathbf{g}}. The strict monotonicity of fkf^{k} implies that

𝐮Δt(x,k,t)=(fk)1(𝐠Δt(x,k,t)),{\mathbf{u}}_{\Delta t}(x,k,t)=(f^{k})^{-1}\big{(}{\mathbf{g}}_{\Delta t}(x,k,t)\big{)},

and hence, also 𝐮Δt{\mathbf{u}}_{{\Delta t}_{\ell}} converges in C([0,T],Lloc1(Ω;λ))C([0,T],L^{1}_{\mathrm{loc}}(\Omega;\lambda)) to some function 𝐮{\mathbf{u}}. Theorem 5.1 implies that 𝐮{\mathbf{u}} is the entropy solution; since this solution is unique (Theorem 3.1), the entire sequence {𝐮Δt}Δt>0\{{\mathbf{u}}_{\Delta t}\}_{{\Delta t}>0} must converge to 𝐮{\mathbf{u}}. ∎

6 Discrete Stationary Solutions for Monotone Flux Functions

So far we have shown that if a sufficiently large class of stationary and discrete stationary solutions exists, then our equations on the network are well posed and the finite volume numerical approximations converge to the entropy solution. In this section we show that such classes exist in the case where either all fluxes fkf^{k} are strictly increasing or all are strictly decreasing. We henceforth assume that all fluxes are increasing; one can attain analogous results for decreasing fluxes following the same arguments. In the following we want to investigate the sets of discrete stationary solutions implied by the upwind method.

We define

fin(u)kinfk(u),fout(u)koutfk(u)for u.f_{\mathrm{in}}(u)\coloneqq\sum_{k\in{{\mathscr{I}}_{\mathrm{in}}}}f^{k}(u),\qquad f_{\mathrm{out}}(u)\coloneqq\sum_{k\in{{\mathscr{I}}_{\mathrm{out}}}}f^{k}(u)\qquad\text{for }u\in\mathbb{R}.

It is clear that fin,foutf_{\mathrm{in}},f_{\mathrm{out}} are monotone by the monotonicity of their summand components. In particular, the two functions are invertible.

For the upwind method the conditions (4.9a) and (4.9b) become

fk(ck)\displaystyle f^{k}(c^{k}) =fk(ck)for kin,\displaystyle=f^{k}(c^{k})\qquad\text{for }k\in{{\mathscr{I}}_{\mathrm{in}}}, (6.1a)
fk(c0)\displaystyle f^{k}(c^{0}) =fk(ck)for kout.\displaystyle=f^{k}(c^{k})\qquad\text{for }k\in{{\mathscr{I}}_{\mathrm{out}}}. (6.1b)

This is equivalent to

ck\displaystyle c^{k} =ckfor kin,\displaystyle=c^{k}\qquad\text{for }k\in{{\mathscr{I}}_{\mathrm{in}}}, (6.2a)
c0\displaystyle c^{0} =ckfor kout,\displaystyle=c^{k}\qquad\text{for }k\in{{\mathscr{I}}_{\mathrm{out}}}, (6.2b)

due to the invertibility of the flux functions fkf^{k}. It is obvious as well, that for two different discrete stationary solutions 𝐜,𝐝{\mathbf{c}},{\mathbf{d}} satisfying ckdkc^{k}\leqslant d^{k} for kk\in{\mathscr{I}}, we also have c0d0c^{0}\leqslant d^{0}. Henceforth, we denote

𝒢disc0{all discrete stationary states for the upwind method}\mathscr{G}_{\mathrm{disc}}^{0}\coloneqq\bigl{\{}\text{all discrete stationary states for the upwind method}\bigr{\}}

and we let

𝒢disc{(cNin,,c1,c1,,cNout)𝐜𝒢disc0)}.\mathscr{G}_{\mathrm{disc}}\coloneqq\bigl{\{}\big{(}c^{-N_{\mathrm{in}}},\dots,c^{-1},c^{1},\dots,c^{N_{\mathrm{out}}}\big{)}\mid{\mathbf{c}}\in\mathscr{G}_{\mathrm{disc}}^{0})\bigr{\}}.

Although it might be too difficult to find a full characterization of the set Loco(𝒢)L^{\infty}_{\mathrm{oco}}(\mathscr{G}) of admissible initial data, we will be able to characterize large subsets of Loco(𝒢)L^{\infty}_{\mathrm{oco}}(\mathscr{G}). Let

Iinfin1(RinRout),Ioutfout1(RinRout)I_{\mathrm{in}}\coloneqq f_{\mathrm{in}}^{-1}(R_{\mathrm{in}}\cap R_{\mathrm{out}}),\qquad I_{\mathrm{out}}\coloneqq f_{\mathrm{out}}^{-1}(R_{\mathrm{in}}\cap R_{\mathrm{out}})

where

Rinfin(),Routfout().R_{\mathrm{in}}\coloneqq f_{\mathrm{in}}(\mathbb{R}),\qquad R_{\mathrm{out}}\coloneqq f_{\mathrm{out}}(\mathbb{R}).

By the continuity of fin,foutf_{\mathrm{in}},f_{\mathrm{out}}, the sets Iin,IoutI_{\mathrm{in}},I_{\mathrm{out}} are closed intervals.

Theorem 6.1.

We have Loco(𝒢disc)\mathscr{L}\subset L^{\infty}_{\mathrm{oco}}(\mathscr{G}_{\mathrm{disc}}), where

{𝐮L(Ω;λ)uk(x)Iinkin,uk(x)Ioutkout}.\mathscr{L}\coloneqq\Bigl{\{}{\mathbf{u}}\in L^{\infty}(\Omega;\lambda)\mid u^{k}(x)\in I_{\mathrm{in}}\ \forall\ k\in{{\mathscr{I}}_{\mathrm{in}}},\ u^{k}(x)\in I_{\mathrm{out}}\ \forall\ k\in{{\mathscr{I}}_{\mathrm{out}}}\Bigr{\}}.

In particular, if fin,foutf_{\mathrm{in}},f_{\mathrm{out}} have the same range Rin,RoutR_{\mathrm{in}},R_{\mathrm{out}}, then Loco(𝒢disc)=L(Ω;λ)L^{\infty}_{\mathrm{oco}}(\mathscr{G}_{\mathrm{disc}})=L^{\infty}(\Omega;\lambda).

Proof.

Let 𝐮{\mathbf{u}}\in\mathscr{L}. Since 𝐮L(Ω;λ){\mathbf{u}}\in L^{\infty}(\Omega;\lambda), and Iin,IoutI_{\mathrm{in}},I_{\mathrm{out}} are closed, we also have

c¯ininfxDkkinuk(x)Iin,c¯insupxDkkinuk(x)Iin\underline{c}_{\mathrm{in}}\coloneqq\inf_{\begin{subarray}{c}x\in D^{k}\\ k\in{{\mathscr{I}}_{\mathrm{in}}}\end{subarray}}u^{k}(x)\in I_{\mathrm{in}},\qquad\overline{c}_{\mathrm{in}}\coloneqq\sup_{\begin{subarray}{c}x\in D^{k}\\ k\in{{\mathscr{I}}_{\mathrm{in}}}\end{subarray}}u^{k}(x)\in I_{\mathrm{in}}

and likewise for c¯out,c¯out\underline{c}_{\mathrm{out}},\overline{c}_{\mathrm{out}}. By continuity of fin,foutf_{\mathrm{in}},f_{\mathrm{out}}, there are d¯inIin\underline{d}_{\mathrm{in}}\in I_{\mathrm{in}} and d¯outIout\underline{d}_{\mathrm{out}}\in I_{\mathrm{out}} satisfying d¯inc¯in\underline{d}_{\mathrm{in}}\leqslant\underline{c}_{\mathrm{in}} and d¯outc¯out\underline{d}_{\mathrm{out}}\leqslant\underline{c}_{\mathrm{out}} so that fin(d¯in)=fout(d¯out)f_{\mathrm{in}}(\underline{d}_{\mathrm{in}})=f_{\mathrm{out}}(\underline{d}_{\mathrm{out}}), that is, the vector 𝐝¯(d¯in,,d¯in,d¯out,,d¯out)\underline{{\mathbf{d}}}\coloneqq\bigl{(}\underline{d}_{\mathrm{in}},\dots,\underline{d}_{\mathrm{in}},\underline{d}_{\mathrm{out}},\dots,\underline{d}_{\mathrm{out}}\bigr{)} is a stationary solution. This stationary solution clearly satisfies (6.2), whence 𝐝𝒢disc0{\mathbf{d}}\in\mathscr{G}_{\mathrm{disc}}^{0}.

In a similar way one finds a stationary solution 𝐝¯(d¯in,,d¯in,d¯out,,d¯out)𝒢disc0\overline{{\mathbf{d}}}\coloneqq\bigl{(}\overline{d}_{\mathrm{in}},\dots,\overline{d}_{\mathrm{in}},\overline{d}_{\mathrm{out}},\dots,\overline{d}_{\mathrm{out}}\bigr{)}\in\mathscr{G}_{\mathrm{disc}}^{0} which bounds 𝐮{\mathbf{u}} from above. Since now

d¯inuk(x)d¯inkinandd¯outuk(x)d¯outkout\underline{d}_{\mathrm{in}}\leqslant u^{k}(x)\leqslant\overline{d}_{\mathrm{in}}\;\forall\ k\in{{\mathscr{I}}_{\mathrm{in}}}\qquad\text{and}\qquad\underline{d}_{\mathrm{out}}\leqslant u^{k}(x)\leqslant\overline{d}_{\mathrm{out}}\;\forall\ k\in{{\mathscr{I}}_{\mathrm{out}}}

we conclude that 𝐮Loco(𝒢disc){\mathbf{u}}\in L^{\infty}_{\mathrm{oco}}(\mathscr{G}_{\mathrm{disc}}). ∎

Proposition 6.2.

Consider a conservation law on a network with strictly increasing fluxes fkf^{k}. Let 𝒢disc0\mathscr{G}_{\mathrm{disc}}^{0} denote the set of all discrete stationary solutions for the upwind method. Then the set

𝒢disc{(cNin,,c1,c1,,cNout)𝐜𝒢mon0}\mathscr{G}_{\mathrm{disc}}\coloneqq\Big{\{}\big{(}c^{-{N_{\mathrm{in}}}},\dots,c^{-1},c^{1},\dots,c^{{N_{\mathrm{out}}}}\big{)}\mid{\mathbf{c}}\in\mathscr{G}^{0}_{\mathrm{mon}}\Big{\}}

is a mutually consistent, maximal set of stationary solutions.

Proof.

Every 𝐜𝒢disc{\mathbf{c}}\in\mathscr{G}_{\mathrm{disc}} is a stationary solution due to (4.8).

To prove mutual consistency of 𝒢disc\mathscr{G}_{\mathrm{disc}} we plug a discrete stationary solution 𝐝𝒢disc0{\mathbf{d}}\in\mathscr{G}_{\mathrm{disc}}^{0} into (5.1) to get for nn\in\mathbb{N},

Q1/2k,nQ3/2k,nfor kinandQ3/2k,nQ1/2k,nfor kout.Q_{-{\nicefrac{{1}}{{2}}}}^{k,n}\geqslant Q_{-{\nicefrac{{3}}{{2}}}}^{k,n}\;\text{for }k\in{\mathscr{I}}_{\mathrm{in}}\quad\text{and}\quad Q_{{\nicefrac{{3}}{{2}}}}^{k,n}\geqslant Q_{\nicefrac{{1}}{{2}}}^{k,n}\;\text{for }k\in{\mathscr{I}}_{\mathrm{out}}.

Since we are using the upwind scheme, this reduces to

qckk(dk)qc0k(d0)for kinandqc0k(d0)qckk(dk)for kout.q_{c^{k}}^{k}(d^{k})\geqslant q_{c^{0}}^{k}(d^{0})\;\text{for }k\in{\mathscr{I}}_{\mathrm{in}}\quad\text{and}\quad q_{c^{0}}^{k}(d^{0})\geqslant q^{k}_{c^{k}}(d^{k})\text{for }k\in{\mathscr{I}}_{\mathrm{out}}.

In the same manner, plugging d0d^{0} into (5.2) gives us

kinQ1/2k,nkoutQ1/2k,n.\sum_{k\in{{\mathscr{I}}_{\mathrm{in}}}}Q_{-{\nicefrac{{1}}{{2}}}}^{k,n}\geqslant\sum_{k\in{{\mathscr{I}}_{\mathrm{out}}}}Q_{\nicefrac{{1}}{{2}}}^{k,n}.

Combining these two observations, we get

kinqckk(dk)kinqc0k(d0)koutqc0k(d0)koutqckk(dk).\sum_{k\in{{\mathscr{I}}_{\mathrm{in}}}}q_{c^{k}}^{k}(d^{k})\geqslant\sum_{k\in{{\mathscr{I}}_{\mathrm{in}}}}q_{c^{0}}^{k}(d^{0})\geqslant\sum_{k\in{{\mathscr{I}}_{\mathrm{out}}}}q_{c^{0}}^{k}(d^{0})\geqslant\sum_{k\in{{\mathscr{I}}_{\mathrm{out}}}}q_{c^{k}}^{k}(d^{k}).

As 𝐜,𝐝{\mathbf{c}},{\mathbf{d}} were arbitrary, it follows that 𝒢disc\mathscr{G}_{\mathrm{disc}} is mutually consistent.

If for some vector 𝐝{\mathbf{d}}, 𝒢disc{𝐝}\mathscr{G}_{\mathrm{disc}}\cup\{{\mathbf{d}}\} is mutually consistent, we know that

kinqckk(dk)koutqckk(dk).\sum_{k\in{\mathscr{I}}_{\mathrm{in}}}q^{k}_{c^{k}}\big{(}d^{k}\big{)}\geqslant\sum_{k\in{\mathscr{I}}_{\mathrm{out}}}q^{k}_{c^{k}}\big{(}d^{k}\big{)}.

We choose ck=dkkinc^{k}=d^{k}\ \forall\ k\in{\mathscr{I}}_{\mathrm{in}} and c0=(fout)1(kinfk(ck))c^{0}=(f_{\mathrm{out}})^{-1}(\sum_{k\in{\mathscr{I}}_{\mathrm{in}}}f^{k}(c^{k})). Since all fkf^{k} are monotonically increasing, the entropy flux reduces to qckk(dk)=|fk(ck)fk(dk)|q^{k}_{c^{k}}(d^{k})=\big{|}f^{k}(c^{k})-f^{k}(d^{k})\big{|} and thus,

0kout|fk(c0)fk(dk)|,0\geqslant\sum_{k\in{\mathscr{I}}_{\mathrm{out}}}\big{|}f^{k}(c^{0})-f^{k}(d^{k})\big{|},

which implies dk=c0d^{k}=c^{0} for koutk\in{\mathscr{I}}_{\mathrm{out}}, and thus, 𝐝𝒢disc{\mathbf{d}}\in\mathscr{G}_{\mathrm{disc}}. In other words, 𝒢disc\mathscr{G}_{\mathrm{disc}} is maximal. ∎

Remark 6.3.

Due to Proposition 6.2 we now know that the doubling of variables argument in Section 3 can be applied in this case and thus, the stability result holds.

Example 6.4.

Consider the traffic flow Example 1.1 with fk(v)=αkf(v/αk)f^{k}(v)=\alpha^{k}f(v/\alpha^{k}) for αk>0\alpha^{k}>0 and ff some fixed flux, say, the Burgers flux f(v)=v2/2f(v)=v^{2}/2. Restrict the solutions to the monotone region uk0u^{k}\geqslant 0. Consider the Godunov method with the numerical flux F(a,b)=f(a)F(a,b)=f(a). The Rankine–Hugoniot condition reads

kin(ck)2αk=kout(ck)2αk.\sum_{k\in{{\mathscr{I}}_{\mathrm{in}}}}\frac{(c^{k})^{2}}{\alpha^{k}}=\sum_{k\in{{\mathscr{I}}_{\mathrm{out}}}}\frac{(c^{k})^{2}}{\alpha^{k}}.

For the discrete stationary solutions, the additional conditions (4.9) read

fk(c0)=fk(ck)for kout\displaystyle f^{k}(c^{0})=f^{k}(c^{k})\qquad\text{for }k\in{{\mathscr{I}}_{\mathrm{out}}}

(the condition for kink\in{{\mathscr{I}}_{\mathrm{in}}} automatically holds). Since fkf^{k} is strictly monotone on +\mathbb{R}_{+}, we get ck=c0c^{k}=c^{0} for all koutk\in{{\mathscr{I}}_{\mathrm{out}}}. Thus, the set of all discrete stationary solutions is

𝒢disc0={𝐜N+1:ck=c0kout,kin(ck)2αk=kout(c0)2αk}.\mathscr{G}_{\mathrm{disc}}^{0}=\Big{\{}{\mathbf{c}}\in\mathbb{R}^{N+1}\ :\ c^{k}=c^{0}\ \forall\ k\in{{\mathscr{I}}_{\mathrm{out}}},\ {\textstyle\sum_{k\in{{\mathscr{I}}_{\mathrm{in}}}}\frac{(c^{k})^{2}}{\alpha^{k}}=\sum_{k\in{{\mathscr{I}}_{\mathrm{out}}}}\frac{(c^{0})^{2}}{\alpha^{k}}}\Big{\}}.

7 Numerical Examples

We show numerical experiments for some example cases including results for linear and nonlinear as well as convex and concave fluxes. In all experiments we use a CFL number of 1/2{\nicefrac{{1}}{{2}}} – that is, Δt{\Delta t} is chosen so that there is equality in (4.7). In all experiments we compute the experimental order of convergence (EOC) as plog(ej+1/ej)log(Δxj+1/Δxj)p\approx\dfrac{\log(e^{j+1}/e^{j})}{\log({\Delta x}_{j+1}/{\Delta x}_{j})} on a series of successive grids with 2j2^{j} cells, where eje^{j} denotes the L1L^{1} error on grid level jj. The error is computed as the L1L^{1} difference to a high-resolution reference solution. All errors and EOC are displayed in Table 1.

Dout1D_{\mathrm{out}}^{1}Dout2D_{\mathrm{out}}^{2}DroundD_{\textrm{round}}Din2D_{\mathrm{in}}^{-2}vv
Figure 2: A network with a periodic edge.
Example 7.1 (Burgers’ equation with roundabout).

In this example we include a roundabout – an edge whose endpoints meet at the same vertex, as shown in Figure 2. We also include an ingoing edge and two outgoing edges, amounting to a total of two ingoing and three outgoing edges. As initial data we choose constants on the roundabout and the outgoing edges and two different constants on the independent ingoing edge. After a while the shock in the initial data on the independent ingoing edge will reach the edge and create new Riemann problems. We choose the initial data

u¯1(x)={2if 0x<0.5,2if 0.5x,u¯2=u¯1=u¯2=u¯31.\displaystyle\bar{u}^{-1}(x)=\begin{cases}2&\text{if }0\leqslant x<0.5,\\ \sqrt{2}&\text{if }0.5\leqslant x,\end{cases}\qquad\bar{u}^{-2}=\bar{u}^{1}=\bar{u}^{2}=\bar{u}^{3}\equiv 1.

We take all edges to have length 11 and choose zero Neumann boundary data on the outer boundaries. On the vertex we set u00=1u_{0}^{0}=1. On the ingoing edge with index 1-1 we have a travelling shock wave

u1(x,t)={2if 0x<122t2if 122txu^{-1}(x,t)=\begin{cases}2&\text{if }0\leqslant x<\frac{1}{2-\sqrt{2}}t\\ \sqrt{2}&\text{if }\frac{1}{2-\sqrt{2}}t\leqslant x\end{cases}

which will hit the vertex at t=112t^{*}=1-\frac{1}{\sqrt{2}}. To compute the solution after tt^{*} we compute the new vertex value c0=5/3c^{0}=\sqrt{\nicefrac{{5}}{{3}}} and therefore get the Riemann problem

uk(x,t)={5/3if x=0,1if 0<x\displaystyle u^{k}(x,t^{*})=\begin{cases}\sqrt{\nicefrac{{5}}{{3}}}&\text{if }x=0,\\ 1&\text{if }0<x\end{cases}

for k=1,2,3k=1,2,3, which results in a travelling shock wave with speed s=15/31s=\frac{1}{\sqrt{\nicefrac{{5}}{{3}}}-1}. At time t5/312t^{**}\coloneqq\sqrt{\nicefrac{{5}}{{3}}}-\frac{1}{\sqrt{2}} the travelling shock wave which originated on the roundabout edge hits the vertex once again, resulting in a new set of Riemann problems on the outgoing edge. This process will continue in a periodic fashion.

We compute up to time T=0.5T=0.5. A plot of the exact and approximate solution to this example at two different times is shown in Figure 3. The accuracy and order of convergence of the numerical approximation are shown in Table 1.

Refer to caption
Refer to caption
Figure 3: Initial state and state at t=0.7t=0.7 of a Burgers-type equation with travelling shock wave which hits the vertex at time t=112t=1-\frac{1}{\sqrt{2}}. Here, the graph includes a periodic edge.
Example 7.2.

We construct an example where we take the flux function from the traffic flow example in [13], f(u)=4u(1u)f(u)=4u(1-u), but allow for different fluxes on different edges, fk(u)=αkf(uαk)f^{k}(u)=\alpha^{k}f\big{(}\frac{u}{\alpha^{k}}\big{)} for αk>0\alpha^{k}>0, and compute on a star shaped graph with two ingoing edges and three outgoing edges like in Figure 1. The initial data is chosen so that all fluxes are strictly increasing over the range of u¯\bar{u}; thus, the fluxes fkf^{k} are in effect monotonously increasing functions. We choose constant solutions on the two ingoing roads and constant initial data on the outgoing roads which are chosen such that on one road a shock will develop, on one road the solution will stay constant over time and on one road a rarefaction wave will develop.

Solving the conditions (4.8), (4.9) for c0c^{0} yields

c0=3±94(1α1+1α2+1α3)(u11α1(u1)2+u21α2(u2)2)2(1α1+1α2+1α3).c^{0}=\frac{3\pm\sqrt{9-4\bigl{(}\frac{1}{\alpha_{1}}+\frac{1}{\alpha_{2}}+\frac{1}{\alpha_{3}}\bigr{)}\big{(}u^{-1}-\frac{1}{\alpha_{-1}}(u^{-1})^{2}+u^{-2}-\frac{1}{\alpha_{-2}}(u^{-2})^{2}\big{)}}}{2\big{(}\frac{1}{\alpha_{1}}+\frac{1}{\alpha_{2}}+\frac{1}{\alpha_{3}}\big{)}}.

For the incoming edges to have a monotonically increasing flux we impose ui12αi,u_{-i}\leqslant\frac{1}{2}\alpha_{-i}, for i=1,2i=1,2 and for outgoing edges c012min{α1,α2,α3}c^{0}\leqslant\frac{1}{2}\min\{\alpha_{1},\alpha_{2},\alpha_{3}\}. We choose α1=α2=1\alpha_{-1}=\alpha_{-2}=1, α1=α2=4\alpha_{1}=\alpha_{2}=4 and α3=2\alpha_{3}=2 with initial data

u¯1=u¯20.5,u¯10,u¯212(37),u¯31.\displaystyle\bar{u}^{-1}=\bar{u}^{-2}\equiv 0.5,\qquad\bar{u}^{1}\equiv 0,\qquad\bar{u}^{2}\equiv\frac{1}{2}\big{(}3-\sqrt{7}\big{)},\qquad\bar{u}^{3}\equiv 1.

This gives us c0=12(37)c^{0}=\frac{1}{2}(3-\sqrt{7}). On the outer boundary we choose zero Neumann boundary conditions. For u3u^{3} we will get a shock

u3(x,t)={12(37)if x<st,0if xst,u^{3}(x,t)=\begin{cases}\frac{1}{2}(3-\sqrt{7})&\text{if }x<st,\\ 0&\text{if }x\geqslant st,\end{cases}

with speed s=(37)(2374)33721,s=\frac{(3-\sqrt{7})(2-\frac{3-\sqrt{7}}{4})-3}{\frac{3-\sqrt{7}}{2}-1}, and a rarefaction wave for u1u^{1} of the form

u1(x,t)={372if x<2(71)t,1x4tif 2(71)tx<4t,0if 4tx.u^{1}(x,t)=\begin{cases}\frac{3-\sqrt{7}}{2}&\text{if }x<2(\sqrt{7}-1)t,\\ 1-\frac{x}{4t}&\text{if }2(\sqrt{7}-1)t\leqslant x<4t,\\ 0&\text{if }4t\leqslant x.\end{cases}

On edge 22 we get the constant solution u212(37)u^{2}\equiv\frac{1}{2}(3-\sqrt{7}).

We compute up to time T=0.2T=0.2. A plot of the exact and approximate solution at two different timepoints is shown in Figure 4. Accuracy and order of convergence of the numerical approximation are shown in Table 1.

Refer to caption
Refer to caption
Figure 4: Initial state at t=0t=0 and state at t=0.2t=0.2 of a traffic flow problem with an initial shock at the vertex developing a different elementary wave on each outgoing edge.

In addition to the examples described above we show errors and experimental order of convergence (EOC) for several additional examples in Table 1.

Example 7.3 (EOC: Linear advection).

We consider a linear advection equation with two ingoing edges and three outgoing edges as in Figure 1 with initial data

u¯1(x,t)={20x<0.8,10.8x,u¯21,u¯1=u¯2=u¯323,\displaystyle\bar{u}^{-1}(x,t)=\begin{cases}2&0\leqslant x<0.8,\\ 1&0.8\leqslant x,\end{cases}\qquad\bar{u}^{-2}\equiv 1,\qquad\bar{u}^{1}=\bar{u}^{2}=\bar{u}^{3}\equiv\frac{2}{3},

and Dirichlet boundary conditions adapted to the edge values. We initialize the vertex node by u00=23u_{0}^{0}=\frac{2}{3}. We compute up to time T=0.5T=0.5.

Example 7.4 (EOC: Burgers’ equation with elementary waves).

We choose u¯1=u¯21\bar{u}^{-1}=\bar{u}^{-2}\equiv 1 as initial data on the ingoing roads and u¯10\bar{u}^{1}\equiv 0, u¯22/3\bar{u}^{2}\equiv\sqrt{\nicefrac{{2}}{{3}}} and u¯32\bar{u}^{3}\equiv 2 on the outgoing edges of a star shaped graph as in Figure 1. The conditions on the numerical flux imply then 3(c0)2=2c0=3/23(c^{0})^{2}=2\Leftrightarrow c^{0}=\sqrt{\nicefrac{{3}}{{2}}}. Thus, we get the following Riemann problems on the outgoing roads:

u¯1(x)={2/3x=0,0x>0,u¯2={2/3x=0,2/3x>0,u¯3={2/3x=0,2x>0,\displaystyle\bar{u}^{1}(x)=\begin{cases}\sqrt{\nicefrac{{2}}{{3}}}&x=0,\\ 0&x>0,\end{cases}\qquad\bar{u}^{2}=\begin{cases}\sqrt{\nicefrac{{2}}{{3}}}&x=0,\\ \sqrt{\nicefrac{{2}}{{3}}}&x>0,\end{cases}\qquad\bar{u}^{3}=\begin{cases}\sqrt{\nicefrac{{2}}{{3}}}&x=0,\\ 2&x>0,\end{cases}

with zero Neumann boundary conditions at the outer edges. The solution to these problems are a shock, a constant solution and a rarefaction wave, respectively. We compute up to time T=0.3T=0.3.

Example 7.5 (EOC: Burgers’ equation with travelling shock).

We consider a Burgers-type equation with two ingoing edges and three outgoing edges as in Figure 1 with initial data

u¯1(x)={20x<0.8,10.8x,u¯21,u¯1=u¯2=u¯323,\displaystyle\bar{u}^{-1}(x)=\begin{cases}2&0\leqslant x<0.8,\\ 1&0.8\leqslant x,\end{cases}\qquad\bar{u}^{-2}\equiv 1,\qquad\bar{u}^{1}=\bar{u}^{2}=\bar{u}^{3}\equiv\sqrt{\frac{2}{3}},

with Dirichlet boundary conditions of the same value as the associated edge. On the vertex node the initial condition is chosen as u00=23u_{0}^{0}=\sqrt{\frac{2}{3}}. We compute up to T=0.5T=0.5.

Example 7.3 Example 7.5 Example 7.4 Example 7.1 Example 7.2
Grid level L1L^{1} error EOC L1L^{1} error EOC L1L^{1} error EOC L1L^{1} error EOC L1L^{1} error EOC
3 0.10877 - 0.11630 - 0.14459 - 0.07087 - 0.09904 -
4 0.05496 0.98 0.07136 0.70 0.08016 0.85 0.0546 0.38 0.04913 1.01
5 0.03649 0.59 0.04372 0.71 0.04651 0.79 0.03117 0.81 0.02844 0.79
6 0.02629 0.47 0.02255 0.96 0.02711 0.78 0.01903 0.71 0.01627 0.81
7 0.01830 0.52 0.01360 0.73 0.01495 0.86 0.01115 0.77 0.00919 0.82
8 0.01255 0.54 0.00653 1.06 0.00925 0.69 0.00644 0.79 0.00527 0.80
9 0.00883 0.51 0.00325 1.01 0.00480 0.95 0.00330 0.96 0.00268 0.98
10 0.00625 0.50 0.00160 1.02 0.00295 0.70 0.00173 0.93 0.00150 0.84
11 0.00442 0.50 0.00086 0.90 0.00152 0.96 0.00085 1.03 0.00084 0.84
12 0.00312 0.50 0.00040 1.10 0.00081 0.91 0.00042 1.02 0.00047 0.84
Table 1: L1L^{1} errors and estimated orders of convergence (EOC) for a selection of examples.

7.1 Comments on the experiments

Convergence order estimates for finite volume methods for nonlinear scalar conservation laws are due to Kuznetsov [17] for the continuous flux case and due to Badwaik, Ruf [4] for the case of monotone fluxes with points of discontinuity. In both of those cases the analytically proven convergence rate is at least Δx\sqrt{{\Delta x}}. Our numerical experiments indicate the same lower bound on the convergence rate for our numerical methods on graphs. Considering the fact that finf_{\mathrm{in}} and foutf_{\mathrm{out}} from Section 6 are monotone it might be possible to generalize the result of Badwaik and Ruf to networks.

8 Summary and Outlook

In conclusion we have defined a framework for the analysis and numerical approximation of conservation laws on networks. We extended the concepts well known from the conventional case such as weak solution, entropy solution and monotone methods to make sense on a directed graph. We defined a reasonable entropy condition under which we have shown stability and uniqueness of an analytic solution. Existence is shown by convergence of a conservative, consistent, monotone difference scheme. In an upcoming work [10] we want to address convergence of a numerical method where the fluxes fkf^{k} are not monotone but concave, as is usually found in traffic flow models. This includes deriving a sufficiently large set of stationary and discrete stationary solutions for this case. Further, we want to extend our model to include boundary conditions and derive a convergence order estimate for numerical approximations. As for future work, a generalization to systems of conservation laws would be highly desirable. One could also try to construct numerical schemes for equations incorporating diffusive fluxes like it was done in [15] on the line. Generalized models would span more complex scenarios such as blood circulation [5] in a network of veins or a river delta by the means of Euler equations and shallow water equations, respectively.

References

  • [1] B. Andreianov, G. M. Coclite, and C. Donadello. Well-posedness for vanishing viscosity solutions of scalar conservation laws on a network. Discrete and Continuous Dynamical Systems, 37(11):5913–5942, 2017.
  • [2] B. Andreianov, K. H. Karlsen, and N. H. Risebro. A theory of L1L^{1}-dissipative solvers for scalar conservation laws with discontinuous flux. Archive for Rational Mechanics and Analysis, 201:27–86, 2011.
  • [3] E. Audusse and B. Perthame. Uniqueness for scalar conservation laws with discontinuous flux via adapted entropies. Proceedings of the Royal Society of Edingburgh, 135:253–266, 2005.
  • [4] J. Badwaik and A. M. Ruf. Convergence rates of monotone schemes for conservation laws with discontinuous flux. SIAM Journal on Numerical Analysis, 58(1):607–629, 2020.
  • [5] A. Bressan, S. Canic, M. Garavello, M. Herty, and B. Piccoli. Flows on networks: recent results and perspectivees. EMS Surveys in Mathematical Sciences, 1:47–111, 2014.
  • [6] G. M. Coclite and L. di Ruvo. Vanishing viscosity for traffic on networks with degenerate diffusivity. Mediterranean Journal of Mathematics, 16, 2019.
  • [7] G. M. Coclite and C. Donadello. Vanishing viscosity on a star-shaped graph under general transmission conditions at the node. Networks and heterogeneous media, 15:197–213, 2020.
  • [8] G. M. Coclite and M. Garavello. Vanishing viscosity for traffic on networks. SIAM Journal on Mathematical Analysis, 42(4):1761–1783, 2010.
  • [9] M. G. Crandall and L. Tartar. Some relations between nonexpansive and order preserving mappings. Proceedings of the American Mathematical Society, 78(3):385–390, 1980.
  • [10] U. S. Fjordholm, M. Musch, and N. H. Risebro. Well-posedness of traffic flow models on networks. in preparation, 2021.
  • [11] M. Garavello. A review of conservation laws on networks. Networks and Heterogeneous Media, 5:565–581, 2010.
  • [12] M. Garavello and B. Piccoli. Entropy type conditions for riemann solvers at nodes. Advances in differential Equations, 16(1/2):113–144, 2011.
  • [13] H. Holden and N. H. Risebro. A mathematical model of traffic flow on a network of unidirectional roads. SIAM Journal on Mathematical Analysis, 26:999–1017, 1995.
  • [14] H. Holden and N. H. Risebro. Front Tracking for Hyperbolic Conservation Laws, volume 52 of Applied Mathematical Sciences. Springer, 2015.
  • [15] K. H. Karlsen, N. H. Risebro, and J. D. Towers. Upwind difference approximations for degenerate parabolic convection-diffusion equations with a discontinuous coefficient. IMA Journal of Numerical Analysis, 22:623–664, 2002.
  • [16] S. N. Kruzkov. First order quasilinear equaitons in several independent variables. Math. USSR Sb., 10(2):217–243, 1970.
  • [17] N. Kuznetsov. Accuracy of some approximate methods for computing the weak solutions of a first-order quasi-linear equation. USSR Computational Mathematics and Mathematical Physics, 16(6):105–119, 1976.
  • [18] M. J. Lighthill and G. B. Whitham. On kinematic waves II. A theory of traffic flow on long crowded roads. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 229:317–345, 1955.
  • [19] E. Y. Panov. Existence of strong traces for quasi-solutions of multidimensional conservation laws. Journal of Hyperbolic Differential Equations, 4(4):729–770, 2007.