This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Well-posedness of the Maxwell equations with nonlinear Ohm law

Jens A. Griepentrog and Joachim Naumann Institut für Mathematik, Humboldt-Universität zu Berlin
Unter den Linden 6, D–10099 Berlin
Abstract.

This paper is concerned with weak solutions (e,h)L2×L2(e,h)\in L^{2}\times L^{2} of the Maxwell equations with nonlinear Ohm law and under perfect conductor boundary conditions. These solutions are defined in terms of integral identities with appropriate test functions. The main result of our paper is an energy equality that holds for any weak solution (e,h)(e,h). The proof of this result makes essential use of the existence of time-continuous representatives in the equivalence classes (e,h)(e,h). As a consequence of the energy equality, we prove the well-posedness of the L2L^{2}-setting of the Maxwell equations with regard to the initial-boundary conditions under consideration. In addition, we establish the existence of a weak solution via the Faedo-Galerkin method. An appendix is devoted to the proof of a Carathéodory solution to an initial-value problem for an ordinary differential equation.

Key words and phrases:
Maxwell equations, electromagnetic energy, weak solution, well-posedness, energy equality, Faedo-Galerkin method.
2010 Mathematics Subject Classification:
35A01, 35A02, 35B45, 35Q61.
*Corresponding author

1. Introduction

Let Ω3\Omega\subset\mathbb{R}^{3} be a bounded domain with smooth boundary Γ:=Ω\Gamma:=\partial\Omega, and let 0<T<+0<T<+\infty. The evolution of an electromagnetic field in the cylinder QT=Ω×]0,T[Q_{T}=\Omega\times{]0,T[} is governed by the Maxwell equations

(1.1) t(εe)\displaystyle\partial_{t}(\varepsilon e)\, =curlhj,\displaystyle=\,\operatorname*{curl}h-j,
(1.2) t(μh)\displaystyle\partial_{t}(\mu h)\, =curle,\displaystyle=\,-\operatorname*{curl}e,

where e=e(x,t)e=e(x,t) and h=h(x,t)h=h(x,t) ((x,t)QT(x,t)\in Q_{T}) represent the electric and magnetic field, respectively. The 3×33\times 3 matrices ε=ε(x)\varepsilon=\varepsilon(x) and μ=μ(x)\mu=\mu(x) (xΩx\in\Omega) characterize the electric permittivity and the magnetic permeability, respectively, of the medium under consideration. The vector field jj denotes a current density (for details, see, e.g. [12, Ch. 1], [15, Ch. 6], [28, Teil I, §§ 3–4]).

In the present paper we consider vector fields jj of the form

j=j0(x,t)+j1(x,t,e),(x,t)QT,e3.j\,=\,j_{0}(x,t)+j_{1}(x,t,e),\quad(x,t)\in Q_{T},\quad e\in\mathbb{R}^{3}.

Here, j0=j0(x,t)j_{0}=j_{0}(x,t) represents a given current density field, while j1j_{1} characterizes the current density caused by the electric field ee. The most common constitutive relations between j1j_{1} and ee are Ohm laws.

Example 1.

The well-known linear Ohm law reads

j1=σ(x,t)e,j_{1}\,=\,\sigma(x,t)\,e,

where σ=σ(x,t)\sigma=\sigma(x,t) denotes a symmetric non-negative 3×33\times 3 matrix which describes the conductivity of the medium. If

σ(x,t)=σ0(x,t)δ(0<σ0(x,t)const,δ=(δkl)k,l=1,2,3 unit matrix),\sigma(x,t)\,=\,\sigma_{0}(x,t)\,\delta\quad\big{(}0<\sigma_{0}(x,t)\leq\mathrm{const},\quad\text{$\delta=(\delta_{kl})_{k,l=1,2,3}$ unit matrix}\big{)},

it follows U=IRU=IR, where U=|e|U=|e| voltage, I=|j1|I=|j_{1}| current and R=1/σ0(x,t)R=1/\sigma_{0}(x,t) resistance (see [28, pp. 19–20]). \Box

Example 2.

Let σ0(x,t)\sigma_{0}(x,t) and δ\delta be as above. Define

σ(x,t,|e|)=σ0(x,t)(1+|e|2)1/2δ,(x,t,e)QT×3.\sigma(x,t,|e|)\,=\,\frac{\sigma_{0}(x,t)}{(1+|e|^{2})^{1/2}}\,\delta,\quad(x,t,e)\in Q_{T}\times\mathbb{R}^{3}.

Then the nonlinear Ohm law

j1=σ(x,t,|e|)e=σ0(x,t)(1+|e|2)1/2ej_{1}\,=\,\sigma(x,t,|e|)\,e\,=\,\frac{\sigma_{0}(x,t)}{(1+|e|^{2})^{1/2}}\,e

models the effect of “asymptotic saturation of current at large voltages” in certain semi-conductors, i.e.

I=|j1|σ0(x,t)for U=|e| increasing.I=|j_{1}|\nearrow\sigma_{0}(x,t)\quad\text{for $U=|e|$ increasing}.

We note that the mapping

e1(1+|e|2)1/2e,e3,e\longmapsto\frac{1}{(1+|e|^{2})^{1/2}}\,e,\quad e\in\mathbb{R}^{3},

is strictly monotone, i.e. for all e,e¯3e,\bar{e}\in\mathbb{R}^{3}, ee¯e\neq\bar{e},

(e(1+|e|2)1/2e¯(1+|e¯|2)1/2)(ee¯)=1(1+|e|2)1/2|ee¯|2> 0if |e|=|e¯|\left(\frac{e}{(1+|e|^{2})^{1/2}}-\frac{\bar{e}}{(1+|\bar{e}|^{2})^{1/2}}\right)\cdot(e-\bar{e})\,=\,\frac{1}{(1+|e|^{2})^{1/2}}\,|e-\bar{e}|^{2}\,>\,0\quad\text{if $|e|=|\bar{e}|$}

and

(e(1+|e|2)1/2e¯(1+|e¯|2)1/2)(ee¯)(|e|(1+|e|2)1/2|e¯|(1+|e¯|2)1/2)(|e||e¯|)> 0if |e||e¯|.\quad\,\left(\frac{e}{(1+|e|^{2})^{1/2}}-\frac{\bar{e}}{(1+|\bar{e}|^{2})^{1/2}}\right)\cdot(e-\bar{e})\\[6.0pt] \geq\,\left(\frac{|e|}{(1+|e|^{2})^{1/2}}-\frac{|\bar{e}|}{(1+|\bar{e}|^{2})^{1/2}}\right)\cdot(|e|-|\bar{e}|)\,>\,0\quad\text{if $|e|\neq|\bar{e}|$}.\quad

\Box

Let σ:QT×+3×3\sigma:Q_{T}\times\mathbb{R}^{+}\longrightarrow\mathbb{R}^{3\times 3} satisfy the following two conditions

  • (a)

    growth: for all (x,t,e)QT×3(x,t,e)\in Q_{T}\times\mathbb{R}^{3},

    |σ(x,t,|e|)e|c1|e|,c1=const>0;\big{|}\sigma(x,t,|e|)\,e\big{|}\,\leq\,c_{1}|e|,\quad c_{1}=\operatorname*{const}>0;
  • (b)

    monotonicity: for all (x,t)QT(x,t)\in Q_{T} and all e,e¯3e,\bar{e}\in\mathbb{R}^{3},

    (σ(x,t,|e|)eσ(x,t,|e¯|)e¯)(ee¯) 0.\big{(}\sigma(x,t,|e|)\,e-\sigma(x,t,|\bar{e}|)\,\bar{e}\big{)}\cdot(e-\bar{e})\,\geq\,0.

Then the Ohm law

j1=σ(x,t,|e|)ej_{1}\,=\,\sigma(x,t,|e|)\,e

includes Examples 1 and 2 as special cases. For developing our L2L^{2}-theory of (1.1)–(1.4), below we further generalize conditions (a) and (b) (see hypotheses (H1)–(H3) in Section 2, and hypothesis (H7) in Section 4).

Remarks on nonlinear Ohm laws can be also found in [12, p. 14] and [31, pp. 256–257] (see also the references listed in this paper). In [16], the author studies (1.1), (1.2) with ej1(,e)e\longmapsto j_{1}(\cdot,e) monotone and of class C1C^{1}. \Box


Let n=n(x)n=n(x) denote the outward directed unit normal at xΓx\in\Gamma. We complement system (1.1), (1.2) by the boundary and initial conditions

(1.3) n×e= 0on Γ×]0,T[,\displaystyle n\times e\,=\,0\quad\text{on $\Gamma\times{]0,T[}$},
(1.4) e=e0,h=h0in Ω×{0},\displaystyle e\,=\,e_{0},\quad h\,=\,h_{0}\quad\text{in $\Omega\times\{0\}$},

where (e0,h0)(e_{0},h_{0}) are given data. Boundary condition (1.3) models a perfect conductor. A brief discussion of boundary conditions for the Maxwell equations can be found in [28, p. 30]. The author points out that both boundary condition (1.3) and the boundary condition n×h=0n\times h=0 on Γ×]0,T[\Gamma\times{]0,T[} imply vanishing of the integral ΓnSdΓ\int_{\Gamma}n\cdot S\,\mathrm{d}\Gamma (see Section 2). \Box


For notational simplicity, in what follows we write j(x,t,e)j(x,t,e) (or briefly j(e)j(e)) in place of j(x,t,e(x,t))j(x,t,e(x,t)) ((x,t)QT(x,t)\in Q_{T}).

We multiply scalarly (1.1) and (1.2) by ee and hh, respectively, and add the equations so obtained. Thus

(1.5) 12t((εe)e+(μh)h)+divS+j(e)e= 0in QT,\frac{1}{2}\,\frac{\partial}{\partial t}\big{(}(\varepsilon e)\cdot e+(\mu h)\cdot h\big{)}+\operatorname*{div}S+j(e)\cdot e\,=\,0\quad\text{in $Q_{T}$},

where

S:=e×hS\,:=\,e\times h\;

denotes the Poynting vector of (e,h)(e,h). The field SS represents the flux of electromagnetic energy through QTQ_{T}.

Integration of (1.5) over Ω×[0,t]\Omega\times[0,t] (0tT0\leq t\leq T) gives

(1.6) (t)+0tΩdivSdxds+0tΩj(e)edxds=(0),t[0,T],\mathscr{E}(t)+\int_{0}^{t}\int_{\Omega}\operatorname*{div}S\,\mathrm{d}x\,\mathrm{d}s+\int_{0}^{t}\int_{\Omega}j(e)\cdot e\,\mathrm{d}x\,\mathrm{d}s\,=\,\mathscr{E}(0),\quad t\in[0,T],

where

(t)\displaystyle\mathscr{E}(t) :=12Ω((εe)(x,t)e(x,t)+(μh)(x,t)h(x,t))dx,\displaystyle\,:=\,\frac{1}{2}\int_{\Omega}\big{(}(\varepsilon e)(x,t)\cdot e(x,t)+(\mu h)(x,t)\cdot h(x,t)\big{)}\,\mathrm{d}x,
(0)\displaystyle\mathscr{E}(0) =12Ω((εe0)(x)e0(x)+(μh0)(x)h0(x))dx\displaystyle\,=\,\frac{1}{2}\int_{\Omega}\big{(}(\varepsilon e_{0})(x)\cdot e_{0}(x)+(\mu h_{0})(x)\cdot h_{0}(x)\big{)}\,\mathrm{d}x

(cf. (1.4)). The non-negative function (t)\mathscr{E}(t) represents the electromagnetic energy of (e,h)(e,h) at time tt. Equation (1.6) is called balance of electromagnetic energy (or Poynting theorem). The term j(e)ej(e)\cdot e in equation (1.6) characterizes the conversion of electromagnetic energy into heat (see, e.g. [15, pp. 236–237], [28, pp. 25–26]).

We next combine the divergence theorem with boundary condition (1.3) to obtain

Ω(divS)(x,t)dx=Γn(x)S(x,t)dΓ= 0\int_{\Omega}(\operatorname*{div}S)(x,t)\,\mathrm{d}x\,=\,\int_{\Gamma}n(x)\cdot S(x,t)\,\mathrm{d}\Gamma\,=\,0

for all t]0,T[t\in{]0,T[}. Thus, equation (1.6) turns into the energy equality

(1.7) (t)+0tΩj(e)edxds=(0),t[0,T]\mathscr{E}(t)+\int_{0}^{t}\int_{\Omega}j(e)\cdot e\,\mathrm{d}x\,\mathrm{d}s\,=\,\mathscr{E}(0),\quad t\in[0,T]

(see, e.g. [12], [28]).

The equations (1.6) and (1.7) are fundamental to the theory of electromagnetism. This aspect has been discussed in great detail (with 3\mathbb{R}^{3} in place of Ω\Omega) by J. C. Maxwell in his celebrated work [23, pp. 486–488]. \Box

We note that the scalar function (t)\mathscr{E}(t) introduced above is well-defined (for a.e. t[0,T]t\in[0,T]) for vector fields (e,h)L2(QT)3×L2(QT)3(e,h)\in L^{2}(Q_{T})^{3}\times L^{2}(Q_{T})^{3}, provided the entries of the matrices ε()\varepsilon(\cdot) and μ()\mu(\cdot) are bounded measurable functions in Ω\Omega.

2. Weak solutions of (1.1)–(1.4)

Integral identities for classical solutions

Let Ω3\Omega\subset\mathbb{R}^{3} be a bounded domain with smooth boundary Γ\Gamma. To motivate the definition of weak solutions of (1.1)–(1.4) which will be introduced below, we consider a classical solution (e,h)C1(Q¯T)3×C1(Q¯T)3(e,h)\in C^{1}(\overline{Q}_{T})^{3}\times C^{1}(\overline{Q}_{T})^{3} of (1.1)–(1.4) and test functions (Φ,Ψ)C1(Q¯T)3×C1(Q¯T)3(\Phi,\Psi)\in C^{1}(\overline{Q}_{T})^{3}\times C^{1}(\overline{Q}_{T})^{3} such that

(2.1) Φ(,T)=Ψ(,T)= 0in Ω.\Phi(\cdot,T)\,=\,\Psi(\cdot,T)\,=\,0\quad\text{in $\Omega$}.

We multiply (1.1) and (1.2) scalarly by Φ\Phi and Ψ\Psi, respectively, integrate over QTQ_{T} and integrate by parts with respect to tt the terms t(εe)Φ\partial_{t}(\varepsilon e)\cdot\Phi and t(μh)Ψ\partial_{t}(\mu h)\cdot\Psi. Observing (2.1) and initial conditions (1.4) we obtain

(2.2) QT(εe)tΦdxdt+QT(curlh+j(e))Φdxdt=Ω(εe0)(x)Φ(x,0)dx,\displaystyle-\int_{Q_{T}}(\varepsilon e)\cdot\partial_{t}\Phi\,\mathrm{d}x\,\mathrm{d}t+\int_{Q_{T}}\big{(}{-}\operatorname*{curl}h+j(e)\big{)}\cdot\Phi\,\mathrm{d}x\,\mathrm{d}t\,=\,\int_{\Omega}(\varepsilon e_{0})(x)\cdot\Phi(x,0)\,\mathrm{d}x,
(2.3) QT(μh)tΨdxdt+QT(curle)Ψdxdt=Ω(μh0)(x)Ψ(x,0)dx.\displaystyle-\int_{Q_{T}}(\mu h)\cdot\partial_{t}\Psi\,\mathrm{d}x\,\mathrm{d}t+\int_{Q_{T}}(\operatorname*{curl}e)\cdot\Psi\,\mathrm{d}x\,\mathrm{d}t\,=\,\int_{\Omega}(\mu h_{0})(x)\cdot\Psi(x,0)\,\mathrm{d}x.

Next, we apply the Green formula

(2.4) Ω(curla)bdxΩacurlbdx=Γ(n×a)bdΓ,a,bC1(Ω¯)3\int_{\Omega}(\operatorname*{curl}a)\cdot b\,\mathrm{d}x-\int_{\Omega}a\cdot\operatorname*{curl}b\,\mathrm{d}x\,=\,\int_{\Gamma}(n\times a)\cdot b\,\mathrm{d}\Gamma,\quad a,b\in C^{1}(\overline{\Omega})^{3}

to

a=h(,t),b=Φ(,t)such thatn×Φ(,t)=0on Γ×]0,T[a=-h(\cdot,t),\quad b=\Phi(\cdot,t)\quad\text{such that}\quad n\times\Phi(\cdot,t)=0\quad\text{on $\Gamma\times{]0,T[}$}

resp.

a=e(,t)(observing (1.3)),b=Ψ(,t)a=e(\cdot,t)\quad\text{(observing~{}(1.3))},\quad b=\Psi(\cdot,t)

(t]0,T[t\in{]0,T[}) in the second integral of the left-hand side of (2.2) and (2.3). Thus, (2.2) and (2.3) turn into the integral identities

(2.5) QT(εe)tΦdxdt+QT(hcurlΦ+j(e)Φ)dxdt=Ω(εe0)(x)Φ(x,0)dx,\displaystyle-\int_{Q_{T}}(\varepsilon e)\cdot\partial_{t}\Phi\,\mathrm{d}x\,\mathrm{d}t+\int_{Q_{T}}\big{(}{-}h\cdot\operatorname*{curl}\Phi+j(e)\cdot\Phi\big{)}\,\mathrm{d}x\,\mathrm{d}t\,=\,\int_{\Omega}(\varepsilon e_{0})(x)\cdot\Phi(x,0)\,\mathrm{d}x,
(2.6) QT(μh)tΨdxdt+QTecurlΨdxdt=Ω(μh0)(x)Ψ(x,0)dx.\displaystyle-\int_{Q_{T}}(\mu h)\cdot\partial_{t}\Psi\,\mathrm{d}x\,\mathrm{d}t+\int_{Q_{T}}e\cdot\operatorname*{curl}\Psi\,\mathrm{d}x\,\mathrm{d}t\,=\,\int_{\Omega}(\mu h_{0})(x)\cdot\Psi(x,0)\,\mathrm{d}x.

If the entries of the matrices ε()\varepsilon(\cdot) and μ()\mu(\cdot) are bounded measurable functions in Ω\Omega, if j(e)L2(QT)3j(e)\in L^{2}(Q_{T})^{3} and (e0,h0)L2(Ω)3×L2(Ω)3(e_{0},h_{0})\in L^{2}(\Omega)^{3}\times L^{2}(\Omega)^{3}, then all the integrals in (2.5) and (2.6) are well-defined for (e,h)L2(QT)3×L2(QT)3(e,h)\in L^{2}(Q_{T})^{3}\times L^{2}(Q_{T})^{3} and an appropriate class of test functions (Φ,Ψ)(\Phi,\Psi). More specifically, let ΦC1(Q¯T)3\Phi\in C^{1}(\overline{Q}_{T})^{3} satisfy (2.1) and suppose that

(2.7) Ω(curlΦ(,t))zdx=ΩΦ(,t)curlzdxfor all t]0,T[ and all zC1(Ω¯)3.\int_{\Omega}(\operatorname*{curl}\Phi(\cdot,t))\cdot z\,\mathrm{d}x\,=\,\int_{\Omega}\Phi(\cdot,t)\cdot\operatorname*{curl}z\,\mathrm{d}x\quad\text{for all $t\in{]0,T[}$ and all $z\in C^{1}(\overline{\Omega})^{3}$}.

Clearly, (2.7) holds true when n×Φ=0n\times\Phi=0 on Γ×]0,T[\Gamma\times{]0,T[} (see (2.4)). We note that (2.7) does make sense regardless of whether the boundary Γ\Gamma is smooth or not.

Thus, appropriate conditions for Φ\Phi and Ψ\Psi are

curlΦL2(QT)3 satisfies (2.7),curlΨL2(QT)3.\text{$\operatorname*{curl}\Phi\in L^{2}(Q_{T})^{3}$ satisfies~{}(2.7)},\quad\operatorname*{curl}\Psi\in L^{2}(Q_{T})^{3}.

Definition of weak solutions

Let Ω3\Omega\subset\mathbb{R}^{3} be an open set. We define

V\displaystyle V :={uL2(Ω)3;there exists FL2(Ω)3 such that\displaystyle:=\Bigg{\{}u\in L^{2}(\Omega)^{3};\,\text{there exists $F\in L^{2}(\Omega)^{3}$ such that}
Ωucurlφdx=ΩFφdxfor all φCc(Ω)3},\displaystyle\qquad\int_{\Omega}u\cdot\operatorname*{curl}\varphi\,\mathrm{d}x\,=\,\int_{\Omega}F\cdot\varphi\,\mathrm{d}x\;\;\text{for all $\varphi\in C^{\infty}_{c}(\Omega)^{3}$}\Bigg{\}},

i.e., the vector field uL2(Ω)3u\in L^{2}(\Omega)^{3} is in VV, if the distribution curlu\operatorname*{curl}u can be represented by FL2(Ω)3F\in L^{2}(\Omega)^{3}. We identify this distribution with FF. The space VV is usually denoted by H(curl;Ω)H(\operatorname*{curl};\Omega). It is a Hilbert space with respect to the scalar product

(u,v)V:=Ω(uv+(curlu)curlv)dx.(u,v)_{V}\,:=\,\int_{\Omega}\big{(}u\cdot v+(\operatorname*{curl}u)\cdot\operatorname*{curl}v\big{)}\,\mathrm{d}x.

We next define the closed subspace

V0:={uV;Ω(curlu)ψdx=Ωucurlψdxfor all ψV}.V_{0}\,:=\,\Bigg{\{}u\in V;\int_{\Omega}(\operatorname*{curl}u)\cdot\psi\,\mathrm{d}x\,=\,\int_{\Omega}u\cdot\operatorname*{curl}\psi\,\mathrm{d}x\;\;\text{for all $\psi\in V$}\Bigg{\}}.

To our knowledge, the analogue of this space with H1(Ω)3H^{1}(\Omega)^{3} in place of VV has been introduced for the first time in [20, pp. 215–216] and was then used by other authors, see e.g. [16] and [30].

Remark 2.1.

1. For uL2(Ω)3u\in L^{2}(\Omega)^{3} the following conditions are equivalent:

  • (i)

    uV0u\in V_{0};

  • (ii)

    there exists G=G(u)L2(Ω)3G=G(u)\in L^{2}(\Omega)^{3} such that

    (2.8) Ωucurlψdx=ΩGψdxfor all ψV.\int_{\Omega}u\cdot\operatorname*{curl}\psi\,\mathrm{d}x\,=\,\int_{\Omega}G\cdot\psi\,\mathrm{d}x\quad\text{\emph{for all $\psi\in V$}}.

To prove this it suffices to show (ii) \Longrightarrow (i). The equation in (2.8) evidently holds for all ψCc(Ω)3\psi\in C^{\infty}_{c}(\Omega)^{3}. This means that the distribution curlu\operatorname*{curl}u is represented by GG. Hence, uVu\in V. Again appealing to (2.8) gives

Ω(curlu)ψdx=ΩGψdx=Ωucurlψdxfor all ψV,\int_{\Omega}(\operatorname*{curl}u)\cdot\psi\,\mathrm{d}x\,=\,\int_{\Omega}G\cdot\psi\,\mathrm{d}x\,=\,\int_{\Omega}u\cdot\operatorname*{curl}\psi\,\mathrm{d}x\quad\text{for all $\psi\in V$},

i.e. uV0u\in V_{0}. \Box

2. Define

W0:=closure of Cc(Ω)3 in V.W_{0}\,:=\,\text{closure of $C^{\infty}_{c}(\Omega)^{3}$ in $V$}.

It is readily seen that W0V0W_{0}\subset V_{0}. In fact, we have

W0=V0.W_{0}\,=\,V_{0}.

Following an argument by [8, Ch. IX, § 1.2, Proof of Thm. 2, p. 207], take u0V0u_{0}\in V_{0} such that (u0,w)V=0(u_{0},w)_{V}=0 for all wW0w\in W_{0}. Writing ψ0=curlu0\psi_{0}=\operatorname*{curl}u_{0} it follows

Ωψ0curlφdx=Ωu0φdxfor all φCc(Ω)3.\int_{\Omega}\psi_{0}\cdot\operatorname*{curl}\varphi\,\mathrm{d}x\,=\,-\int_{\Omega}u_{0}\cdot\varphi\,\mathrm{d}x\quad\text{for all $\varphi\in C^{\infty}_{c}(\Omega)^{3}$}.

Thus, ψ0V\psi_{0}\in V and curlψ0=u0\operatorname*{curl}\psi_{0}=-u_{0}. Therefore, by the definition of V0V_{0},

Ω|u0|2dx=Ωu0curlψ0dx=Ω(curlu0)ψ0dx=Ω|curlu0|2dx.\int_{\Omega}|u_{0}|^{2}\,\mathrm{d}x\,=\,-\int_{\Omega}u_{0}\cdot\operatorname*{curl}\psi_{0}\,\mathrm{d}x\,=\,-\int_{\Omega}(\operatorname*{curl}u_{0})\cdot\psi_{0}\,\mathrm{d}x\,=\,-\int_{\Omega}|\!\operatorname*{curl}u_{0}|^{2}\,\mathrm{d}x.

Whence, u0=0u_{0}=0. \Box

If Ω3\Omega\subset\mathbb{R}^{3} is an open set the boundary of which is locally representable by Lipschitz graphs, then the space V0V_{0} is usually denoted by H0(curl;Ω)H_{0}(\operatorname*{curl};\Omega) (cf. [14, Thm. 2.11, Thm. 2.12, pp. 34–35], [8, pp. 204–206]).

Remark 2.2.

An example of a bounded domain the boundary of which cannot be represented locally by Lipschitz graphs can be found in [24, p. 39, Fig. 3.1 (“crossed bricks”)]. Domains of this type seem to be relevant in electrical engineering. We note that our approach to the weak formulation of (1.1)–(1.4) based on the spaces VV and V0V_{0} we introduced above, does not make any assumption on the boundary of the underlying domain. In particular, this approach suits well to an energy equality of type (1.7). \Box

Remark 2.3.

Let the boundary Γ\Gamma be locally representable by Lipschitz graphs. Then there exists a linear continuous mapping γτ:VH1/2(Γ)3\gamma_{\tau}:V\longrightarrow H^{-1/2}(\Gamma)^{3} 2) 2) 2) For the definition and the properties of the spaces Hs(Γ)H^{s}(\Gamma) (s>0s>0 real) see, e.g., [26, Ch. 2, §§ 3.8, 5.4]. By z,zH1/2(Γ)3\langle z^{*},z\rangle_{H^{1/2}(\Gamma)^{3}} we denote the value of zH1/2(Γ)3z^{*}\in H^{-1/2}(\Gamma)^{3} (dual space of H1/2(Γ)3)H^{1/2}(\Gamma)^{3}) at zH1/2(Γ)3z\in H^{1/2}(\Gamma)^{3}.such that

γτ(u)=n×(u|Γ)for all uC1(Ω¯)3,\displaystyle\gamma_{\tau}(u)\,=\,n\times(u|_{\Gamma})\quad\text{for all $u\in C^{1}(\overline{\Omega})^{3}$},
Ω(curlu)ψdxΩucurlψdx=γτ(u),ψH1/2(Γ)3for all uV and all ψH1(Ω)3\displaystyle\int_{\Omega}(\operatorname*{curl}u)\cdot\psi\,\mathrm{d}x-\int_{\Omega}u\cdot\operatorname*{curl}\psi\,\mathrm{d}x\,=\,\langle\gamma_{\tau}(u),\psi\rangle_{H^{1/2}(\Gamma)^{3}}\quad\text{for all $u\in V$ and all $\psi\in H^{1}(\Omega)^{3}$}

(see, e.g. [1], [8, Ch. IX, § 1.2], [24, Thm. 3.26, Thm. 3.33]). It follows

V0={uV;γτ(u)=0in H1/2(Γ)3}.V_{0}\,=\,\big{\{}u\in V;\;\gamma_{\tau}(u)=0\;\;\text{in $H^{-1/2}(\Gamma)^{3}$}\big{\}}.

For a precise description of the image of the tangential trace mapping γτ\gamma_{\tau}, cf. [4], [5]. \Box

We introduce more notations. Let XX be a real normed space with norm ||X|\cdot|_{X}. By Lp(0,T;X)L^{p}(0,T;X) (1p+)(1\leq p\leq+\infty) we denote the vector space of equivalence classes of strongly measurable functions u:[0,T]Xu:[0,T]\longrightarrow X such that the function t|u(t)|Xt\longmapsto|u(t)|_{X} is in Lp(0,T)L^{p}(0,T). The norm on Lp(0,T;X)L^{p}(0,T;X) is given by

uLp(0,T;X):={(0T|u(t)|Xpdt)1/pif 1p<+,esssupt]0,T[|u(t)|Xif p=+,\|u\|_{L^{p}(0,T;X)}\,:=\,\begin{cases}\,\left(\displaystyle\int_{0}^{T}|u(t)|_{X}^{p}\,\mathrm{d}t\right)^{1/p}&\text{if $1\leq p<+\infty$},\\[6.0pt] \,\displaystyle\operatorname*{ess\,sup}_{t\in]0,T[}|u(t)|_{X}&\text{if $p=+\infty$},\end{cases}

(for details see, e.g. [2], [3, Appendice, pp. 137–140], [9], [32]). If XX is a Banach space, then Lp(0,T;X)L^{p}(0,T;X) does.

Let HH be a real Hilbert space with scalar product (,)H(\cdot\,,\cdot)_{H}. Then L2(0,T;H)L^{2}(0,T;H) is a Hilbert space with respect to the scalar product

(u,v)L2(0,T;H):=0T(u(t),v(t))Hdt.(u,v)_{L^{2}(0,T;H)}\,:=\,\int_{0}^{T}(u(t),v(t))_{H}\,\mathrm{d}t.

Given uLp(QT)u\in L^{p}(Q_{T}) (1p<+)(1\leq p<+\infty), we define

[u](t):=u(,t)for a.e. t[0,T].[u](t)\,:=\,u(\cdot,t)\quad\text{for a.e. $t\in[0,T]$}.

By the Fubini theorem, [u]Lp(0,T;Lp(Ω))[u]\in L^{p}(0,T;L^{p}(\Omega)) and

QT|u(x,t)|pdxdt=0T[u](t)Lp(Ω)pdt.\int_{Q_{T}}|u(x,t)|^{p}\,\mathrm{d}x\,\mathrm{d}t\,=\,\int_{0}^{T}\|[u](t)\|_{L^{p}(\Omega)}^{p}\,\mathrm{d}t.

It is easily seen that the map u[u]u\mapsto[u] is a linear isometry from Lp(QT)L^{p}(Q_{T}) onto Lp(0,T;Lp(Ω))L^{p}(0,T;L^{p}(\Omega)). Throughout our paper we identify these spaces. \Box


To introduce the notion of weak solutions of (1.1)–(1.4), we make the following hypotheses on ε\varepsilon, μ\mu in (1.1), (1.2), the field jj, and (e0,h0)(e_{0},h_{0}) in (1.4):

(H1) {the entries of the 3×3 matrices ε() and μ()are bounded measurable functions in Ω;\displaystyle\left\{\begin{aligned} \,&\text{\emph{the entries of the $3\times 3$ matrices $\varepsilon(\cdot)$ and $\mu(\cdot)$}}\\ &\text{\emph{are bounded measurable functions in $\Omega$}};\end{aligned}\right.
j(x,t,ξ)=j0(x,t)+j1(x,t,ξ),(x,t,ξ)QT×3,\displaystyle\quad j(x,t,\xi)\,=\,j_{0}(x,t)+j_{1}(x,t,\xi),\quad(x,t,\xi)\in Q_{T}\times\mathbb{R}^{3},
where
(H2) {j0L2(QT)3,j1:QT×33 is a Carathéodory function, i.e.,(x,t)j1(x,t,ξ) is measurable in QT for all ξ3,ξj1(x,t,ξ) is continuous in 3 for a.e. (x,t)QT;\displaystyle\left\{\begin{aligned} \,&\text{$j_{0}\in L^{2}(Q_{T})^{3}$},\\ &\text{$j_{1}:Q_{T}\times\mathbb{R}^{3}\longrightarrow\mathbb{R}^{3}$ \emph{is a Carath\'{e}odory function, i.e.}},\\ &\text{$(x,t)\longmapsto j_{1}(x,t,\xi)$ \emph{is measurable in $Q_{T}$ for all $\xi\in\mathbb{R}^{3}$}},\\ &\text{$\xi\longmapsto j_{1}(x,t,\xi)$ \emph{is continuous in $\mathbb{R}^{3}$ for a.e.~{}$(x,t)\in Q_{T}$}};\end{aligned}\right.
(H3) {there exists c1=const>0 such that|j1(x,t,ξ)|c1|ξ| for all (x,t,ξ)QT×3;\displaystyle\left\{\begin{aligned} \,&\text{\emph{there exists $c_{1}=\operatorname*{const}>0$ such that}}\\ &\text{$|j_{1}(x,t,\xi)|\leq c_{1}|\xi|$ \quad\emph{for all $(x,t,\xi)\in Q_{T}\times\mathbb{R}^{3}$}};\end{aligned}\right.

and

(H4) (e0,h0)L2(Ω)3×L2(Ω)3.(e_{0},h_{0})\in L^{2}(\Omega)^{3}\times L^{2}(\Omega)^{3}.
Remark 2.4.

1. Given any measurable vector field u:QT3u:Q_{T}\longrightarrow\mathbb{R}^{3}, from (H2) it follows that the mapping (x,t)j(x,t,u(x,t))(x,t)\longmapsto j(x,t,u(x,t)) is measurable in QTQ_{T}. Hence, by (H3),

j(u)=j(,,u(,))L2(QT)3for all uL2(QT)3.j(u)\,=\,j(\cdot\,,\cdot\,,u(\cdot\,,\cdot))\in L^{2}(Q_{T})^{3}\quad\text{for all $u\in L^{2}(Q_{T})^{3}$}.

2. Hypotheses (H2), (H3) on j1j_{1} include the Ohm laws considered in Examples 1 and 2 in Section 1. \Box

The following definition extends integral identities (2.5) and (2.6) to the L2L^{2}-framework.

Definition.

Let hypotheses (H1)–(H4) hold. The pair

(e,h)L2(QT)3×L2(QT)3(e,h)\in L^{2}(Q_{T})^{3}\times L^{2}(Q_{T})^{3}

is called weak solution of (1.1)–(1.4) if

(2.9) {QT(εe)tΦdxdt+QT(hcurlΦ+j(e)Φ)dxdt=Ω(εe0)(x)Φ(x,0)dxfor all ΦL2(0,T;V0) such that tΦL2(QT)3 and Φ(,T)=0 a.e. in Ω;\displaystyle\left\{\begin{aligned} &-\!\displaystyle\int_{Q_{T}}(\varepsilon e)\cdot\partial_{t}\Phi\,\mathrm{d}x\,\mathrm{d}t+\int_{Q_{T}}\!\big{(}{-}h\cdot\operatorname*{curl}\Phi+j(e)\cdot\Phi\big{)}\,\mathrm{d}x\,\mathrm{d}t\,=\,\int_{\Omega}(\varepsilon e_{0})(x)\cdot\Phi(x,0)\,\mathrm{d}x\\ &\quad\text{for all $\Phi\in L^{2}(0,T;V_{0})$ such that $\partial_{t}\Phi\in L^{2}(Q_{T})^{3}$ and $\Phi(\cdot,T)=0$ a.e.~{}in $\Omega$};\end{aligned}\right.
(2.10) {QT(μh)tΨdxdt+QTecurlΨdxdt=Ω(μh0)(x)Ψ(x,0)dxfor all ΨL2(0,T;V) such that tΨL2(QT)3 and Ψ(,T)=0 a.e. in Ω.\displaystyle\left\{\begin{aligned} &-\!\displaystyle\int_{Q_{T}}(\mu h)\cdot\partial_{t}\Psi\,\mathrm{d}x\,\mathrm{d}t+\int_{Q_{T}}e\cdot\operatorname*{curl}\Psi\,\mathrm{d}x\,\mathrm{d}t\,=\,\int_{\Omega}(\mu h_{0})(x)\cdot\Psi(x,0)\,\mathrm{d}x\\ &\quad\text{for all $\Psi\in L^{2}(0,T;V)$ such that $\partial_{t}\Psi\in L^{2}(Q_{T})^{3}$ and $\Psi(\cdot,T)=0$ a.e.~{}in $\Omega$}.\end{aligned}\right.

Let Γ=Ω\Gamma=\partial\Omega be smooth. Then from the discussion above it follows that every classical solution of (1.1)–(1.4) is a weak solution of this problem, too, cf. (2.5), (2.6). We note that our definition of weak solutions basically coincides with the definitions introduced in [10, Ch. VII, § 4.2], [11], [12, p. 326], [17].

In case of linear Ohm laws, existence theorems for weak solutions of (1.1)–(1.4) are established in [10, Ch. VII, § 4.3] (cf. also Section 5 below), [11] and [12, Ch. 7, § 8.3]. In [29], the author proves the local well-posedness of (1.1)–(1.4) for a class of nonlinear Maxwell equations in spaces of differentiable functions.

The aim of the present paper is to prove that for any initial datum (e0,h0)L2(Ω)3×L2(Ω)3(e_{0},h_{0})\in L^{2}(\Omega)^{3}\times L^{2}(\Omega)^{3} (with Ω\Omega possibly unbounded), every weak solution (e,h)L2(QT)3×L2(QT)3(e,h)\in L^{2}(Q_{T})^{3}\times L^{2}(Q_{T})^{3} of (1.1)–(1.4) in the sense of the above definition

  • has a representative in C([0,T];L2(Ω)3)×C([0,T];L2(Ω)3)C\big{(}[0,T];L^{2}(\Omega)^{3}\big{)}\times C\big{(}[0,T];L^{2}(\Omega)^{3}\big{)},

  • obeys an energy equality (which implies well-posedness) and

  • can be obtained as limit of Faedo-Galerkin approximations.

Existence of the distributional derivatives (𝜺𝒆)\boldsymbol{(\varepsilon e)^{\prime}} and (𝝁𝒉)\boldsymbol{(\mu h)^{\prime}}

We will prove that (2.9) and (2.10) imply the existence of the tt-derivatives of εe\varepsilon e and μh\mu h in the sense of vector-valued distributions. To this end, we introduce some more notation.

Let XX be a real normed space. By XX^{*} we denote the dual space of XX, and by x,xX\langle x^{*},x\rangle_{X} the dual pairing between xXx^{*}\in X^{*} and xXx\in X. Let HH be a real Hilbert space with scalar product (,)H(\cdot\,,\cdot)_{H} and suppose that XX is continuously and densely embedded into HH. We identify HH with its dual space HH^{*} via the Riesz representation theorem to obtain

HXcontinuously,\displaystyle H\subset X^{*}\quad\text{continuously},
(2.11) z,xX=(z,x)Hfor all zH and all xX\displaystyle\langle z,x\rangle_{X}\,=\,(z,x)_{H}\quad\text{for all $z\in H$ and all $x\in X$}

(cf. [32, Ch. 23, § 4]). If XX is reflexive, then HXH\subset X^{*} densely.

Next, let XX and YY be two real normed spaces such that XYX\subset Y continuously and densely. Given uL1(0,T;X)u\in L^{1}(0,T;X), we identify uu with an element in L1(0,T;Y)L^{1}(0,T;Y) and denote it by uu again. An element UL1(0,T;Y)U\in L^{1}(0,T;Y) will be called derivative of uu in the sense of distributions from [0,T][0,T] into YY if

0Tζ˙(t)u(t)dt=0Tζ(t)U(t)dtin Y\int_{0}^{T}\dot{\zeta}(t)\,u(t)\,\mathrm{d}t\,=\,-\int_{0}^{T}\zeta(t)\,U(t)\,\mathrm{d}t\quad\text{in $Y$}

for all ζCc(]0,T[)\zeta\in C_{c}^{\infty}({]0,T[}) and denoted by

u:=Uu^{\prime}\,:=\,U

(see [3, Appendice, Prop. A.6, p. 154], [9, Ch. 2.1], [21, Ch. 1, § 1.3] and [32, Ch. 23, §§ 5–6]). The derivative uu^{\prime} is uniquely determined, if YY^{*} is separable. If YY is reflexive, then there exists an absolutely continuous representative u~:[0,T]Y\tilde{u}:[0,T]\longrightarrow Y in the equivalence class L1(0,T;Y)L^{1}(0,T;Y) such that

(2.12) u~(t)=u~(0)+0tw(s)dsfor all t[0,T]\tilde{u}(t)\,=\,\tilde{u}(0)+\displaystyle\int_{0}^{t}w(s)\,\mathrm{d}s\quad\text{for all $t\in[0,T]$}

(see [3, Appendice, Prop. A.3, p. 145]).

Let XX and HH be as above and suppose that XHX\subset H continuously and densely. Then we have the following formula of integration by parts

(2.13) {for every uL1(0,T;H) such that uL1(0,T;X),0Tα(t)u(t),xXdt=α(T)u~(t)α(0)u~(0),xX0T(α˙(t)u(t),x)Hdtfor all αC1([0,T]) and all xX.\left\{\begin{aligned} &\,\text{for every $u\in L^{1}(0,T;H)$ such that $u^{\prime}\in L^{1}(0,T;X^{*})$},\\ \,&\displaystyle\int_{0}^{T}\langle\alpha(t)\,u^{\prime}(t),x\rangle_{X}\,\mathrm{d}t\,=\,\langle\alpha(T)\,\tilde{u}(t)-\alpha(0)\,\tilde{u}(0),x\rangle_{X}-\int_{0}^{T}(\dot{\alpha}(t)\,u(t),x)_{H}\,\mathrm{d}t\\ &\,\text{for all $\alpha\in C^{1}([0,T])$ and all $x\in X$}.\end{aligned}\right.

This formula is easily seen by routine arguments and observing (2.11) and (2.12). We will need (2.13) for the proof of Theorem 2.1. \Box


We make use of the above notations with

X=Vresp.X=V0,andH=L2(Ω)3,X=V\quad\text{resp.}\quad X=V_{0},\quad\text{and}\quad H=L^{2}(\Omega)^{3},

where HH is furnished with the standard scalar product

(u,v)H:=Ωu(x)v(x)dx.(u,v)_{H}\,:=\,\int_{\Omega}u(x)\cdot v(x)\,\mathrm{d}x.

Then

HVresp.HV0continuously and densely.H\subset V^{*}\quad\text{resp.}\quad H\subset V_{0}^{*}\quad\text{continuously and densely}.
Theorem 2.1.

Let hypotheses (H1)–(H4) be satisfied. Then for any weak solution

(e,h)L2(QT)3×L2(QT)3(e,h)\in L^{2}(Q_{T})^{3}\times L^{2}(Q_{T})^{3}

of (1.1)–(1.4) there exist the distributional derivatives

(2.14) (εe)L2(0,T;V0),(μh)L2(0,T;V).(\varepsilon e)^{\prime}\in L^{2}(0,T;V_{0}^{*}),\quad(\mu h)^{\prime}\in L^{2}(0,T;V^{*}).

For a.e. t[0,T]t\in[0,T] these derivatives satisfy the identities

(2.15) (εe)(t),φV0+Ω(h(,t)curlφ+j(e(,t))φ)dx= 0for all φV0,\displaystyle\langle(\varepsilon e)^{\prime}(t),\varphi\rangle_{V_{0}}+\int_{\Omega}\big{(}{-}h(\cdot,t)\cdot\operatorname*{curl}\varphi+j(e(\cdot,t))\cdot\varphi\big{)}\,\mathrm{d}x\,=\,0\quad\text{for all $\varphi\in V_{0}$},
(2.16) (μh)(t),ψV+Ωe(,t)curlψdx= 0for all ψV.\displaystyle\langle(\mu h)^{\prime}(t),\psi\rangle_{V}+\int_{\Omega}e(\cdot,t)\cdot\operatorname*{curl}\psi\,\mathrm{d}x\,=\,0\quad\text{for all $\psi\in V$}.

The absolutely continuous representatives

εe~:[0,T]V0,μh~:[0,T]V\widetilde{\varepsilon e}:[0,T]\longrightarrow V_{0}^{*},\quad\widetilde{\mu h}:[0,T]\longrightarrow V^{*}

in εe\varepsilon e, μhL2(0,T;H)\mu h\in L^{2}(0,T;H) fulfill the initial conditions

(2.17) (εe~)(0)=εe0in V0,(μh~)(0)=μh0in V.(\widetilde{\varepsilon e})(0)=\varepsilon e_{0}\;\;\text{in $V_{0}^{*}$},\quad(\widetilde{\mu h})(0)=\mu h_{0}\;\;\text{in $V^{*}$}.

Moreover, for a.e. t[0,T]t\in[0,T],

(2.18) (εe)(t)V0h(,t)H+j(e(,t))H,(μh)(t)Ve(,t)H.\|(\varepsilon e)^{\prime}(t)\|_{V_{0}^{*}}\,\leq\,\|h(\cdot,t)\|_{H}+\|j(e(\cdot,t))\|_{H},\quad\|(\mu h)^{\prime}(t)\|_{V^{*}}\,\leq\,\|e(\cdot,t)\|_{H}.
Proof.

We identify εeL2(0,T;H)\varepsilon e\in L^{2}(0,T;H) with an element of the space L2(0,T;V0)L^{2}(0,T;V_{0}^{*}) and deduce from (2.9) the existence of the distributional derivative (εe)L2(0,T;V0)(\varepsilon e)^{\prime}\in L^{2}(0,T;V_{0}^{*}) and (2.15) for a.e. t[0,T]t\in[0,T].

Define =(e,h)(L2(0,T;V0))\mathscr{F}=\mathscr{F}(e,h)\in(L^{2}(0,T;V_{0}))^{*} by

,ΦL2(0,T;V0):=QT(hcurlΦ+j(e)Φ)dxdt,ΦL2(0,T;V0).\langle\mathscr{F},\Phi\rangle_{L^{2}(0,T;V_{0})}\,:=\,\int_{Q_{T}}\big{(}{-}h\cdot\operatorname*{curl}\Phi+j(e)\cdot\Phi\big{)}\,\mathrm{d}x\,\mathrm{d}t,\quad\Phi\in L^{2}(0,T;V_{0}).

The linear isometry (L2(0,T;V0))L2(0,T;V0)(L^{2}(0,T;V_{0}))^{*}\cong L^{2}(0,T;V_{0}^{*}) enables us to identify \mathscr{F} with its isometric image in L2(0,T;V0)L^{2}(0,T;V_{0}^{*}) which will be denoted by \mathscr{F} again. Thus, (t)V0\mathscr{F}(t)\in V_{0}^{*} for a.e. t[0,T]t\in[0,T] and

,ΦL2(0,T;V0)=0T(t),Φ(t)V0dtfor all ΦL2(0,T;V0).\langle\mathscr{F},\Phi\rangle_{L^{2}(0,T;V_{0})}\,=\,\int_{0}^{T}\langle\mathscr{F}(t),\Phi(t)\rangle_{V_{0}}\,\mathrm{d}t\quad\text{for all $\Phi\in L^{2}(0,T;V_{0})$}.

Given any φV0\varphi\in V_{0} and ζCc(]0,T[)\zeta\in C_{c}^{\infty}({]0,T[}), we insert Φ=Φ(x,t)=φ(x)ζ(t)\Phi=\Phi(x,t)=\varphi(x)\,\zeta(t) ((x,t)QT(x,t)\in Q_{T}) into (2.9) to obtain

0Tζ˙(t)(εe)(t)dt,φV0\displaystyle\Bigg{\langle}\int_{0}^{T}\dot{\zeta}(t)(\varepsilon e)(t)\,\mathrm{d}t,\varphi\Bigg{\rangle}_{\!\!V_{0}} =0T(ζ˙(t)(εe)(t),φ)dHt(by [32, pp. 420–421]; (2.11))\displaystyle\,=\,\int_{0}^{T}\big{(}\dot{\zeta}(t)(\varepsilon e)(t),\varphi\big{)}{}_{H}\,\mathrm{d}t\quad\text{(by~{}[32, pp.~{}420--421]; (2.11))}
=QT(hcurlΦ+j(e)Φ)dxdt(by (2.9))\displaystyle\,=\,\int_{Q_{T}}\big{(}{-}h\cdot\operatorname*{curl}\Phi+j(e)\cdot\Phi\big{)}\,\mathrm{d}x\,\mathrm{d}t\quad\text{(by~{}(2.9))}
=,ΦL2(0,T;V0)=0Tζ(t)(t)dt,φV0.\displaystyle\,=\,\langle\mathscr{F},\Phi\rangle_{L^{2}(0,T;V_{0})}\,=\,\Bigg{\langle}\int_{0}^{T}\zeta(t)\,\mathscr{F}(t)\,\mathrm{d}t,\varphi\Bigg{\rangle}_{\!\!V_{0}}.

Hence,

0Tζ˙(t)(εe)(t)dt=0Tζ(t)(t)dtin V0,\int_{0}^{T}\dot{\zeta}(t)(\varepsilon e)(t)\,\mathrm{d}t\,=\,\int_{0}^{T}\zeta(t)\,\mathscr{F}(t)\,\mathrm{d}t\quad\text{in $V_{0}^{*}$},

i.e., εe\varepsilon e has the distributional derivative

(εe)=L2(0,T;V0).(\varepsilon e)^{\prime}\,=\,-\mathscr{F}\,\in\,L^{2}(0,T;V_{0}^{*}).

This equation is equivalent to

(2.19) (εe)(t),φV0=(t),φV0\langle(\varepsilon e)^{\prime}(t),\varphi\rangle_{V_{0}}\,=\,\langle-\mathscr{F}(t),\varphi\rangle_{V_{0}}

for a.e. t[0,T]t\in[0,T] and all φV0\varphi\in V_{0}, where the set of those tt for which (2.19) fails, does not depend on φ\varphi. Whence, (2.15).

We identify μhL2(0,T;H)\mu h\in L^{2}(0,T;H) with an element in L2(0,T;V)L^{2}(0,T;V^{*}) and define 𝒢=𝒢(e)(L2(0,T;V))\mathscr{G}=\mathscr{G}(e)\in(L^{2}(0,T;V))^{*} by

𝒢,ΨL2(0,T;V):=QTecurlΨdxdt,ΨL2(0,T;V).\langle\mathscr{G},\Psi\rangle_{L^{2}(0,T;V)}\,:=\,\int_{Q_{T}}e\cdot\operatorname*{curl}\Psi\,\mathrm{d}x\,\mathrm{d}t,\quad\Psi\in L^{2}(0,T;V).

By an analogous reasoning as above we obtain the existence of the distributional derivative

(μh)=𝒢L2(0,T;V).(\mu h)^{\prime}\,=\,-\mathscr{G}\,\in\,L^{2}(0,T;V^{*}).

This equation is equivalent to (2.16).

We identify εe\varepsilon e, μhL2(0,T;H)\mu h\in L^{2}(0,T;H) with elements in L2(0,T;V0)L^{2}(0,T;V_{0}^{*}) and L2(0,T;V)L^{2}(0,T;V^{*}), respectively. Then (2.14) implies the existence of absolutely continuous representatives from [0,T][0,T] into V0V_{0}^{*} and VV^{*}, respectively (cf. (2.12)).

We prove the first equality in (2.17). To this end, fix αC1([0,T])\alpha\in C^{1}([0,T]) such that α(0)=1\alpha(0)=1 and α(T)=0\alpha(T)=0. Given any φV0\varphi\in V_{0}, we insert Φ=Φ(x,t)=φ(x)α(t)\Phi=\Phi(x,t)=\varphi(x)\,\alpha(t) ((x,t)QT(x,t)\in Q_{T}) into (2.9), multiply (2.15) by α(t)\alpha(t) and integrate over [0,T][0,T]. It follows

(εe0,φ)H\displaystyle(\varepsilon e_{0},\varphi)_{H} =0T((εe)(t),φα˙(t))dHt+QT(hcurlφ+j(e)φ)αdxdt\displaystyle\,=\,-\int_{0}^{T}\big{(}(\varepsilon e)(t),\varphi\,\dot{\alpha}(t)\big{)}{}_{H}\,\mathrm{d}t+\int_{Q_{T}}\big{(}{-}h\cdot\operatorname*{curl}\varphi+j(e)\cdot\varphi\big{)}\,\alpha\,\mathrm{d}x\,\mathrm{d}t
=(εe~)(0),φV0(by (2.13)).\displaystyle\,=\,\langle(\widetilde{\varepsilon e})(0),\varphi\rangle_{V_{0}}\quad\text{(by~{}(2.13))}.

Whence, εe0=(εe~)(0)\varepsilon e_{0}=(\widetilde{\varepsilon e})(0) in V0V_{0}^{*}. An analogous reasoning yields the second statement in (2.17).

Finally, estimates (2.18) are readily deduced from (2.15) and (2.16). The proof of Theorem 2.1 is complete. ∎

Corollary 2.1.

Let hypotheses (H1)–(H4) hold and let (e,h)L2(QT)3×L2(QT)3(e,h)\in L^{2}(Q_{T})^{3}\times L^{2}(Q_{T})^{3} be any weak solution of (1.1)–(1.4). Then,

(a) (εe)L2(0,T;H)\displaystyle(\varepsilon e)^{\prime}\in L^{2}(0,T;H) hL2(0,T;V);\displaystyle\quad\Longleftrightarrow\quad h\in L^{2}(0,T;V);
(b) (μh)L2(0,T;H)\displaystyle(\mu h)^{\prime}\in L^{2}(0,T;H) eL2(0,T;V0).\displaystyle\quad\Longleftrightarrow\quad e\in L^{2}(0,T;V_{0}).
Proof of (a).

()(\Longrightarrow) Assume (εe)(t)H(\varepsilon e)^{\prime}(t)\in H for some t[0,T]t\in[0,T]. We may further suppose that j(e(,t))Hj(e(\cdot,t))\in H and (2.15) holds for the value tt under consideration. Thus, by (2.11),

Ωh(,t)curlφdx=Ω((εe)(t)+j(e(,t)))φdxfor all φCc(Ω)3.\int_{\Omega}h(\cdot,t)\cdot\operatorname*{curl}\varphi\,\mathrm{d}x\,=\,\int_{\Omega}\big{(}(\varepsilon e)^{\prime}(t)+j(e(\cdot,t))\big{)}\cdot\varphi\,\mathrm{d}x\quad\text{for all $\varphi\in C^{\infty}_{c}(\Omega)^{3}$}.

Whence, h(,t)Vh(\cdot,t)\in V. A routine argument gives hL2(0,T;V)h\in L^{2}(0,T;V).

()(\Longleftarrow) Let hL2(0,T;V)h\in L^{2}(0,T;V). Given any ζCc(]0,T[)\zeta\in C^{\infty}_{c}({]0,T[}), we multiply (2.15) by ζ(t)\zeta(t) and integrate over t[0,T]t\in[0,T] to obtain

(0Tζ˙(t)(εe)(t)dt,φ)H\displaystyle\Bigg{(}\int_{0}^{T}\dot{\zeta}(t)(\varepsilon e)(t)\,\mathrm{d}t,\varphi\Bigg{)}_{\!\!H} =0Tζ(t)(εe)(t)dt,φV0\displaystyle=\,\Bigg{\langle}{-}\int_{0}^{T}\zeta(t)(\varepsilon e)^{\prime}(t)\,\mathrm{d}t,\varphi\Bigg{\rangle}_{\!\!V_{0}}
=(0Tζ(t)(curlh(,t)+j(e(,t)))dt,φ)H\displaystyle=\,\Bigg{(}\int_{0}^{T}\zeta(t)\,\big{(}{-}\operatorname*{curl}h(\cdot,t)+j(e(\cdot,t))\big{)}\,\mathrm{d}t,\varphi\Bigg{)}_{\!\!H}

for any φV0\varphi\in V_{0}. Therefore,

0Tζ˙(t)(εe)(t)dt=0Tζ(t)(curlh(,t)+j(e(,t)))dt,\int_{0}^{T}\dot{\zeta}(t)(\varepsilon e)(t)\,\mathrm{d}t\,=\,\int_{0}^{T}\zeta(t)\,\big{(}{-}\operatorname*{curl}h(\cdot,t)+j(e(\cdot,t))\big{)}\,\mathrm{d}t,

i.e. (εe)L2(0,T;H)(\varepsilon e)^{\prime}\in L^{2}(0,T;H). ∎

Proof of (b).

()(\Longrightarrow) As above, assume (μh)(t)H(\mu h)^{\prime}(t)\in H and (2.16) holds for some t[0,T]t\in[0,T]. It follows

Ωe(,t)curlψdx=Ω(μh)(t)ψdxfor all ψV.\int_{\Omega}e(\cdot,t)\cdot\operatorname*{curl}\psi\,\mathrm{d}x\,=\,-\int_{\Omega}(\mu h)^{\prime}(t)\cdot\psi\,\mathrm{d}x\quad\text{for all $\psi\in V$}.

By (2.8), e(,t)V0e(\cdot,t)\in V_{0}. Again, by a routine argument we obtain eL2(0,T;V0)e\in L^{2}(0,T;V_{0}).

The implication ()(\Longleftarrow) can be proved by an argument that parallels item (a). ∎

3. Existence of tt-continuous representatives in the equivalence classes e,he,h

Besides (H1), throughout the remainder of our paper we formulate two more hypotheses for the matrices ε()\varepsilon(\cdot) and μ()\mu(\cdot):

(H5) ε(x) and μ(x) are symmetric for all xΩ;\text{\emph{$\varepsilon(x)$ and $\mu(x)$ are symmetric for all $x\in\Omega$}};
(H6) {there exist constants ε>0 and μ>0 such thatε(x)ξξε|ξ|2,μ(x)ξξμ|ξ|2for all xΩ and all ξ3.\left\{\begin{aligned} \,&\text{\emph{there exist constants $\varepsilon_{*}>0$ and $\mu_{*}>0$ such that}}\\ &\varepsilon(x)\xi\cdot\xi\geq\varepsilon_{*}|\xi|^{2},\quad\mu(x)\xi\cdot\xi\geq\mu_{*}|\xi|^{2}\quad\text{\emph{for all $x\in\Omega$ and all $\xi\in\mathbb{R}^{3}$}}.\end{aligned}\right.

The following result is fundamental to our proof of the well-posedness of (1.1)–(1.4) in the L2L^{2}-setting.

Theorem 3.1.

Assume (H1)–(H6). Then for every weak solution (e,h)L2(QT)3×L2(QT)3(e,h)\in L^{2}(Q_{T})^{3}\times L^{2}(Q_{T})^{3} of (1.1)–(1.4) there exist representatives

(3.1) e^,h^C([0,T];H)\hat{e},\hat{h}\in C([0,T];H)

in the equivalence classes e,hL2(0,T;H)e,h\in L^{2}(0,T;H) 3) 3) 3) Remember the isometry L2(QT)3L2(0,T;H)L^{2}(Q_{T})^{3}\cong L^{2}(0,T;H)., respectively, that satisfy the initial conditions

(3.2) e^(0)=e0,h^(0)=h0in H.\hat{e}(0)=e_{0},\quad\hat{h}(0)=h_{0}\quad\text{in $H$}.

We will prove this theorem via approximation of (e,h)(e,h) by time-averages. This method has been used in [19] for the proof on integral estimates for functions on QTQ_{T} (pp. 85–89) and for proving an energy equality for weak solutions of parabolic initial-boundary value problems (pp. 141–143) as well as the continuity of these solutions in tt with respect to the L2(Ω)L^{2}(\Omega)-norm (pp. 158–159).

The method of approximation of weak solutions of (1.1)–(1.4) by Steklov averages has been developed in [25]. \Box

Preliminaries

Let fLp(QT)f\in L^{p}(Q_{T}) (1p<1\leq p<\infty). We extend ff by zero for a.e. (x,t)Ω×([0,T])(x,t)\in\Omega\times(\mathbb{R}\setminus[0,T]) and denote the function so defined a.e. on Ω×\Omega\times\mathbb{R} by ff again. For λ>0\lambda>0, define the Steklov averages of ff for all t[0,T]t\in[0,T] and a.e. xΩx\in\Omega by

fλ(x,t)=1λtt+λf(x,s)ds,fλ¯(x,t)=1λtλtf(x,s)ds,f_{\lambda}(x,t)\,=\,\frac{1}{\lambda}\int_{t}^{t+\lambda}f(x,s)\,\mathrm{d}s,\quad f_{\bar{\lambda}}(x,t)\,=\,\frac{1}{\lambda}\int_{t-\lambda}^{t}f(x,s)\,\mathrm{d}s,

(cf. [19, p. 85, p. 141] (p=2p=2)). We have

(3.3) {for a.e. (x,t)QT there exist the weak derivativestfλ(x,t)=1λ(f(x,t+λ)f(x,t)),tfλ¯(x,t)=1λ(f(x,t)f(x,tλ));\left\{\begin{aligned} \,&\text{\emph{for a.e.~{}$(x,t)\in Q_{T}$ there exist the weak derivatives}}\\[3.0pt] &\partial_{t}f_{\lambda}(x,t)\,=\,\frac{1}{\lambda}\big{(}f(x,t+\lambda)-f(x,t)\big{)},\\[3.0pt] &\partial_{t}f_{\bar{\lambda}}(x,t)\,=\,\frac{1}{\lambda}\big{(}f(x,t)-f(x,t-\lambda)\big{)};\end{aligned}\right.
(3.4) {for any αCc(),QTf(x,t)(1λtλtα(s)ds)dxdt=QTfλ(x,t)α(t)dxdt,QTf(x,t)(1λtt+λα(s)ds)dxdt=QTfλ¯(x,t)α(t)dxdt;\left\{\begin{aligned} \,&\text{\emph{for any $\alpha\in C_{c}(\mathbb{R})$}},\\ &\int_{Q_{T}}f(x,t)\Bigg{(}\frac{1}{\lambda}\int_{t-\lambda}^{t}\alpha(s)\,\mathrm{d}s\Bigg{)}\,\mathrm{d}x\,\mathrm{d}t\,=\,\int_{Q_{T}}f_{\lambda}(x,t)\,\alpha(t)\,\mathrm{d}x\,\mathrm{d}t,\\ &\int_{Q_{T}}f(x,t)\Bigg{(}\frac{1}{\lambda}\int_{t}^{t+\lambda}\alpha(s)\,\mathrm{d}s\Bigg{)}\,\mathrm{d}x\,\mathrm{d}t\,=\,\int_{Q_{T}}f_{\bar{\lambda}}(x,t)\,\alpha(t)\,\mathrm{d}x\,\mathrm{d}t;\end{aligned}\right.

and

(3.5) fλfandfλ¯fin Lp(QT) as λ0f_{\lambda}\longrightarrow f\quad\text{\emph{and}}\quad f_{\bar{\lambda}}\longrightarrow f\quad\text{\emph{in $L^{p}(Q_{T})$ as $\lambda\to 0$}}

(see, e.g. [25, Appendix I, Prop. I.1] for the proof of (3.3)–(3.5) for the Steklov average fλf_{\lambda}; the same proofs work for fλ¯f_{\bar{\lambda}} with obvious changes).

Proof of Theorem 3.1

Let (e,h)L2(QT)×L2(QT)(e,h)\in L^{2}(Q_{T})\times L^{2}(Q_{T}) be any weak solution of (1.1)–(1.4). Define g(x,t):=j(x,t,e(x,t))g(x,t):=j(x,t,e(x,t)) for a.e. (x,t)QT(x,t)\in Q_{T}. By (H2), (H3), gL2(QT)g\in L^{2}(Q_{T}).

Fix real numbers T0,T1T_{0},T_{1} such that

0<T0<T1<T.0<T_{0}<T_{1}<T.

We divide the proof into three parts.

Part I. Integral identities for (eλ,hλ)(e_{\lambda},h_{\lambda}) and (eλ¯,hλ¯)(e_{\bar{\lambda}},h_{\bar{\lambda}})

Lemma 3.1 (Integral identities for (eλ,hλ)(e_{\lambda},h_{\lambda})).

For every 0<λ<TT10<\lambda<T-T_{1},

(3.6) {Ω(t(εe)λ(x,t)φ(x)hλ(x,t)curlφ(x)+gλ(x,t)φ(x))dx= 0for a.e. t[0,T1] and all φV0,\displaystyle\left\{\begin{aligned} \;&\int_{\Omega}\big{(}\partial_{t}(\varepsilon e)_{\lambda}(x,t)\cdot\varphi(x)-h_{\lambda}(x,t)\cdot\operatorname*{curl}\varphi(x)+g_{\lambda}(x,t)\cdot\varphi(x)\big{)}\,\mathrm{d}x\,=\,0\\ &\,\text{for a.e.~{}$t\in[0,T_{1}]$ and all $\varphi\in V_{0}$},\end{aligned}\right.
(3.7) {Ω(t(μh)λ(x,t)ψ(x)+eλ(x,t)curlψ(x))dx= 0for a.e. t[0,T1] and all ψV.\displaystyle\left\{\begin{aligned} \;&\int_{\Omega}\big{(}\partial_{t}(\mu h)_{\lambda}(x,t)\cdot\psi(x)+e_{\lambda}(x,t)\cdot\operatorname*{curl}\psi(x)\big{)}\,\mathrm{d}x\,=\,0\\ &\,\text{for a.e.~{}$t\in[0,T_{1}]$ and all $\psi\in V$}.\end{aligned}\right.

Moreover, for a.e. t[0,T1]t\in[0,T_{1}],

(3.8) eλ(,t)V0,hλ(,t)V,\displaystyle e_{\lambda}(\cdot,t)\in V_{0},\quad h_{\lambda}(\cdot,t)\in V,
(3.9) Ω(curleλ(x,t))hλ(x,t)dx=Ωeλ(x,t)curlhλ(x,t)dx.\displaystyle\int_{\Omega}(\operatorname*{curl}e_{\lambda}(x,t))\cdot h_{\lambda}(x,t)\,\mathrm{d}x\,=\,\int_{\Omega}e_{\lambda}(x,t)\cdot\operatorname*{curl}h_{\lambda}(x,t)\,\mathrm{d}x.
Proof.

Let αCc()\alpha\in C_{c}(\mathbb{R}) be such that supp(α)]0,T1[\operatorname*{supp}(\alpha)\subset{]0,T_{1}[}. Given φV0\varphi\in V_{0}, we consider the function

Φ(x,t)=φ(x)tλtα(s)dsfor a.e. (x,t)QT.\Phi(x,t)\,=\,\varphi(x)\int_{t-\lambda}^{t}\alpha(s)\,\mathrm{d}s\quad\text{for a.e.~{}$(x,t)\in Q_{T}$}.

Then

Φ(,t)V0for all t[0,T],Φ(x,0)=Φ(x,T)= 0for a.e. xΩ,\displaystyle\Phi(\cdot\,,t)\in V_{0}\quad\text{for all $t\in[0,T]$},\quad\Phi(x,0)\,=\,\Phi(x,T)\,=\,0\quad\text{for a.e.~{}$x\in\Omega$},
tΦ(x,t)=φ(x)(α(t)α(tλ))for a.e. (x,t)QT,\displaystyle\partial_{t}\Phi(x,t)\,=\,\varphi(x)\big{(}\alpha(t)-\alpha(t-\lambda)\big{)}\quad\text{for a.e.~{}$(x,t)\in Q_{T}$},

i.e., Φ\Phi is an admissible test function in (2.9). It follows

QT((εe)(x,t+λ)(εe)(x,t))φ(x)α(t)dxdt=QT(h(x,t)curlφ(x)g(x,t)φ(x))(tλtα(s)ds)dxdt.\int_{Q_{T}}\big{(}(\varepsilon e)(x,t+\lambda)-(\varepsilon e)(x,t)\big{)}\cdot\varphi(x)\,\alpha(t)\,\mathrm{d}x\,\mathrm{d}t\\ =\,\int_{Q_{T}}\big{(}h(x,t)\cdot\operatorname*{curl}\varphi(x)-g(x,t)\cdot\varphi(x)\big{)}\Bigg{(}\;\int_{t-\lambda}^{t}\alpha(s)\,\mathrm{d}s\Bigg{)}\,\mathrm{d}x\,\mathrm{d}t.

We divide each term of this equation by λ\lambda and make use of (3.3) and (3.4) for fλf_{\lambda} (f=εef=\varepsilon e, resp. f=hcurlφf=h\cdot\operatorname*{curl}\varphi, f=gφf=g\cdot\varphi) to obtain

QT(t(εe)λ(x,t)φ(x)hλ(x,t)curlφ(x)+gλ(x,t)φ(x))α(t)dxdt= 0.\int_{Q_{T}}\big{(}\partial_{t}(\varepsilon e)_{\lambda}(x,t)\cdot\varphi(x)-h_{\lambda}(x,t)\cdot\operatorname*{curl}\varphi(x)+g_{\lambda}(x,t)\cdot\varphi(x)\big{)}\,\alpha(t)\,\mathrm{d}x\,\mathrm{d}t\,=\,0.

The claim (3.6) follows from this equation by a routine argument. We note that the set of measure zero of those t[0,T1]t\in[0,T_{1}] for which (3.6) fails, may depend on λ\lambda but is independent of φV0\varphi\in V_{0}.

Next, given ψV\psi\in V, the function

Ψ(x,t)=ψ(x)tλtα(s)dsfor a.e. (x,t)QT\Psi(x,t)\,=\,\psi(x)\int_{t-\lambda}^{t}\alpha(s)\,\mathrm{d}s\quad\text{for a.e.~{}$(x,t)\in Q_{T}$}

is an admissible test function in (2.10). Then one obtains (3.7) by analogous arguments as for the proof of (3.6) (make use of (3.3) and (3.4) for fλf_{\lambda} (f=μhf=\mu h, resp. f=ecurlψf=e\cdot\operatorname*{curl}\psi)).

We prove eλ(,t)V0e_{\lambda}(\cdot,t)\in V_{0} for a.e. t[0,T1]t\in[0,T_{1}] such that (3.7) holds. Indeed, for any of these values of tt, we have

Ωeλ(x,t)curlψdx=Ωt(μh)λ(x,t)ψdxfor all ψV.\int_{\Omega}e_{\lambda}(x,t)\cdot\operatorname*{curl}\psi\,\mathrm{d}x\,=\,-\int_{\Omega}\partial_{t}(\mu h)_{\lambda}(x,t)\cdot\psi\,\mathrm{d}x\quad\text{for all $\psi\in V$}.

Observing that

t(μh)λ(,t)=1λ((μh)(,t+λ)(μh)(,t))L2(Ω)3,\partial_{t}(\mu h)_{\lambda}(\cdot,t)\,=\,\frac{1}{\lambda}\big{(}(\mu h)(\cdot,t+\lambda)-(\mu h)(\cdot,t)\big{)}\in L^{2}(\Omega)^{3},

it follows eλ(,t)V0e_{\lambda}(\cdot,t)\in V_{0} (see (2.8)).

To see hλ(,t)Vh_{\lambda}(\cdot,t)\in V for a.e. t[0,T1]t\in[0,T_{1}], it suffices to note that

t(εe)λ(,t)+gλ(,t)=1λ((εe)(,t+λ)(εe)(,t))+gλ(,t)L2(Ω)3\partial_{t}(\varepsilon e)_{\lambda}(\cdot,t)+g_{\lambda}(\cdot,t)\,=\,\frac{1}{\lambda}\big{(}(\varepsilon e)(\cdot,t+\lambda)-(\varepsilon e)(\cdot,t)\big{)}+g_{\lambda}(\cdot,t)\in L^{2}(\Omega)^{3}

and that (3.6) evidently holds for all φCc(Ω)3\varphi\in C^{\infty}_{c}(\Omega)^{3}. Whence, the claim (3.8).

Finally, (3.9) is a consequence of (3.8) and our definition of the space V0V_{0}. ∎

Lemma 3.2 (Integral identities for (eλ¯,hλ¯)(e_{\bar{\lambda}},h_{\bar{\lambda}})).

For every 0<λ<T00<\lambda<T_{0},

(3.10) {Ω(t(εe)λ¯(x,t)φ(x)hλ¯(x,t)curlφ(x)+gλ¯(x,t)φ(x))dx= 0for a.e. t[T0,T] and all φV0,\displaystyle\left\{\begin{aligned} \;&\int_{\Omega}\big{(}\partial_{t}(\varepsilon e)_{\bar{\lambda}}(x,t)\cdot\varphi(x)-h_{\bar{\lambda}}(x,t)\cdot\operatorname*{curl}\varphi(x)+g_{\bar{\lambda}}(x,t)\cdot\varphi(x)\big{)}\,\mathrm{d}x\,=\,0\\ &\,\text{for a.e.~{}$t\in[T_{0},T]$ and all $\varphi\in V_{0}$},\end{aligned}\right.
(3.11) {Ω(t(μh)λ¯(x,t)ψ(x)+eλ¯(x,t)curlψ(x))dx= 0for a.e. t[T0,T] and all ψV.\displaystyle\left\{\begin{aligned} \;&\int_{\Omega}\big{(}\partial_{t}(\mu h)_{\bar{\lambda}}(x,t)\cdot\psi(x)+e_{\bar{\lambda}}(x,t)\cdot\operatorname*{curl}\psi(x)\big{)}\,\mathrm{d}x\,=\,0\\ &\,\text{for a.e.~{}$t\in[T_{0},T]$ and all $\psi\in V$}.\end{aligned}\right.

Moreover, for a.e. t[T0,T]t\in[T_{0},T],

(3.12) eλ¯(,t)V0,hλ¯(,t)V,\displaystyle e_{\bar{\lambda}}(\cdot,t)\in V_{0},\quad h_{\bar{\lambda}}(\cdot,t)\in V,
(3.13) Ω(curleλ¯(x,t))hλ¯(x,t)dx=Ωeλ¯(x,t)curlhλ¯(x,t)dx.\displaystyle\int_{\Omega}(\operatorname*{curl}e_{\bar{\lambda}}(x,t))\cdot h_{\bar{\lambda}}(x,t)\,\mathrm{d}x\,=\,\int_{\Omega}e_{\bar{\lambda}}(x,t)\cdot\operatorname*{curl}h_{\bar{\lambda}}(x,t)\,\mathrm{d}x.
Proof.

Let αCc()\alpha\in C_{c}(\mathbb{R}) be such that supp(α)]T0,T[\operatorname*{supp}(\alpha)\subset{]T_{0},T[}. Given φV0\varphi\in V_{0}, we consider the function

Φ(x,t)=φ(x)tt+λα(s)dsfor a.e. (x,t)QT.\Phi(x,t)\,=\,\varphi(x)\int_{t}^{t+\lambda}\alpha(s)\,\mathrm{d}s\quad\text{for a.e.~{}$(x,t)\in Q_{T}$}.

Then

Φ(,t)V0for all t[0,T],Φ(x,0)=Φ(x,T)= 0for a.e. xΩ,\displaystyle\Phi(\cdot\,,t)\in V_{0}\quad\text{for all $t\in[0,T]$},\quad\Phi(x,0)\,=\,\Phi(x,T)\,=\,0\quad\text{for a.e.~{}$x\in\Omega$},
tΦ(x,t)=φ(x)(α(t+λ)α(t))for a.e. (x,t)QT,\displaystyle\partial_{t}\Phi(x,t)\,=\,\varphi(x)\big{(}\alpha(t+\lambda)-\alpha(t)\big{)}\quad\text{for a.e.~{}$(x,t)\in Q_{T}$},

i.e. Φ\Phi is an admissible test function in (2.9). It follows

QT((εe)(x,t)(εe)(x,tλ))φ(x)α(t)dxdt=QT(h(x,t)curlφ(x)g(x,t)φ(x))(tt+λα(s)ds)dxdt.\int_{Q_{T}}\big{(}(\varepsilon e)(x,t)-(\varepsilon e)(x,t-\lambda)\big{)}\cdot\varphi(x)\,\alpha(t)\,\mathrm{d}x\,\mathrm{d}t\\ =\,\int_{Q_{T}}\big{(}h(x,t)\cdot\operatorname*{curl}\varphi(x)-g(x,t)\cdot\varphi(x)\big{)}\Bigg{(}\int_{t}^{t+\lambda}\alpha(s)\,\mathrm{d}s\Bigg{)}\,\mathrm{d}x\,\mathrm{d}t.

We divide each term of this equation by λ\lambda and make use of (3.3) and (3.4) for fλ¯f_{\bar{\lambda}} (f=εef=\varepsilon e, resp. f=hcurlφf=h\cdot\operatorname*{curl}\varphi, f=gφf=g\cdot\varphi) to obtain

QT(t(εe)λ¯(x,t)φ(x)hλ¯(x,t)curlφ(x)+gλ¯(x,t)φ(x))α(t)dxdt= 0.\int_{Q_{T}}\big{(}\partial_{t}(\varepsilon e)_{\bar{\lambda}}(x,t)\cdot\varphi(x)-h_{\bar{\lambda}}(x,t)\cdot\operatorname*{curl}\varphi(x)+g_{\bar{\lambda}}(x,t)\cdot\varphi(x)\big{)}\,\alpha(t)\,\mathrm{d}x\,\mathrm{d}t\,=\,0.

The claim (3.10) follows from this equation by a routine argument. We note that the set of measure zero of those t[T0,T]t\in[T_{0},T] for which (3.10) fails, may depend on λ\lambda but is independent of φV0\varphi\in V_{0}.

Next, given ψV\psi\in V, the function

Ψ(x,t)=ψ(x)tt+λα(s)dsfor a.e. (x,t)QT\Psi(x,t)\,=\,\psi(x)\int_{t}^{t+\lambda}\alpha(s)\,\mathrm{d}s\quad\text{for a.e.~{}$(x,t)\in Q_{T}$}

is an admissible test function in (2.10). Then one obtains (3.11) by analogous arguments as for the proof of (3.10) (make use of (3.3) and (3.4) for fλ¯f_{\bar{\lambda}} (f=μhf=\mu h, resp. f=ecurlψf=e\cdot\operatorname*{curl}\psi)).

We prove eλ¯(,t)V0e_{\bar{\lambda}}(\cdot,t)\in V_{0} for a.e. t[T0,T]t\in[T_{0},T] such that (3.11) holds. Indeed, for any of these values of tt, we have

Ωeλ¯(x,t)curlψdx=Ωt(μh)λ¯(x,t)ψdxfor all ψV.\int_{\Omega}e_{\bar{\lambda}}(x,t)\cdot\operatorname*{curl}\psi\,\mathrm{d}x\,=\,-\int_{\Omega}\partial_{t}(\mu h)_{\bar{\lambda}}(x,t)\cdot\psi\,\mathrm{d}x\quad\text{for all $\psi\in V$}.

Observing that

t(μh)λ¯(,t)=1λ((μh)(,t)(μh)(,tλ))L2(Ω)3,\partial_{t}(\mu h)_{\bar{\lambda}}(\cdot,t)\,=\,\frac{1}{\lambda}\big{(}(\mu h)(\cdot,t)-(\mu h)(\cdot,t-\lambda)\big{)}\in L^{2}(\Omega)^{3},

it follows eλ¯(,t)V0e_{\bar{\lambda}}(\cdot,t)\in V_{0} (see (2.8)).

To see hλ¯(,t)Vh_{\bar{\lambda}}(\cdot,t)\in V for a.e. t[T0,T]t\in[T_{0},T], it suffices to note that

t(εe)λ¯(,t)+gλ¯(,t)=1λ((εe)(,t)(εe)(,tλ))+gλ¯(,t)L2(Ω)3\partial_{t}(\varepsilon e)_{\bar{\lambda}}(\cdot,t)+g_{\bar{\lambda}}(\cdot,t)\,=\,\frac{1}{\lambda}\big{(}(\varepsilon e)(\cdot,t)-(\varepsilon e)(\cdot,t-\lambda)\big{)}+g_{\bar{\lambda}}(\cdot,t)\in L^{2}(\Omega)^{3}

and that (3.10) evidently holds for all φCc(Ω)3\varphi\in C^{\infty}_{c}(\Omega)^{3}. Whence, the claim (3.12).

Finally, (3.13) is a consequence of (3.12) and our definition of the space V0V_{0}. ∎

Part II. Estimates for the differences of (eλ,hλ)(e_{\lambda},h_{\lambda}) and of (eλ¯,hλ¯)(e_{\bar{\lambda}},h_{\bar{\lambda}})

Let (λm)m(\lambda_{m})_{m\in\mathbb{N}} be any sequence of real numbers such that 0<λm<min{T0,TT1}0<\lambda_{m}<\min\{T_{0},T-T_{1}\} for all mm\in\mathbb{N}, and λm0\lambda_{m}\to 0 as mm\to\infty. Following ideas from [19, pp. 158–159], we establish estimates for the differences eλmeλne_{\lambda_{m}}-e_{\lambda_{n}}, hλmhλnh_{\lambda_{m}}-h_{\lambda_{n}} and eλ¯meλ¯ne_{\bar{\lambda}_{m}}-e_{\bar{\lambda}_{n}}, hλ¯mhλ¯nh_{\bar{\lambda}_{m}}-h_{\bar{\lambda}_{n}} which enable us to prove that (eλm)m(e_{\lambda_{m}}){}_{m\in\mathbb{N}}, (hλm)m(h_{\lambda_{m}}){}_{m\in\mathbb{N}} and (eλ¯m)m(e_{\bar{\lambda}_{m}}){}_{m\in\mathbb{N}}, (hλ¯m)m(h_{\bar{\lambda}_{m}}){}_{m\in\mathbb{N}} are Cauchy sequences in C([0,T];H)C([0,T];H). Here, crucial points are the identities (3.9) and (3.13) that we may use as well for the differences above. Moreover, applying the distributional derivatives of eλe_{\lambda}, hλh_{\lambda} makes our presentation simpler than the one in [19]. \Box

To simplify the following discussion, we introduce the weighted scalar products on HH

(u,v)Hε:=Ωε(x)u(x)v(x)dx,(u,v)Hμ:=Ωμ(x)u(x)v(x)dx.(u,v)_{H_{\varepsilon}}\,:=\,\int_{\Omega}\varepsilon(x)\,u(x)\cdot v(x)\,\mathrm{d}x,\quad(u,v)_{H_{\mu}}\,:=\,\int_{\Omega}\mu(x)\,u(x)\cdot v(x)\,\mathrm{d}x.

Both scalar products are equivalent to the standard scalar product on HH.

We consider (3.6) and (3.7) with λ=λm\lambda=\lambda_{m} and λ=λn\lambda=\lambda_{n}, form differences eλmeλne_{\lambda_{m}}-e_{\lambda_{n}} and hλmhλnh_{\lambda_{m}}-h_{\lambda_{n}}, take then φ=eλm(,t)eλn(,t)\varphi=e_{\lambda_{m}}(\cdot,t)-e_{\lambda_{n}}(\cdot,t) in (3.6) and ψ=hλm(,t)hλn(,t)\psi=h_{\lambda_{m}}(\cdot,t)-h_{\lambda_{n}}(\cdot,t) in (3.7), add the identities so obtained (cf. [19, p. 159]) and observe (3.9) with eλmeλne_{\lambda_{m}}-e_{\lambda_{n}}, hλmhλnh_{\lambda_{m}}-h_{\lambda_{n}} in place of eλe_{\lambda}, hλh_{\lambda}. This gives

(3.14) {ddτ(eλm(τ)eλn(τ)Hε2+hλm(τ)hλn(τ)Hμ2)=2(gλm(τ)gλn(τ),eλm(τ)eλn(τ))Hfor all m,n and a.e. τ[0,T1].\left\{\begin{aligned} \;&\frac{\mathrm{d}}{\mathrm{d}\tau}\Big{(}\|e_{\lambda_{m}}(\tau)-e_{\lambda_{n}}(\tau)\|^{2}_{H_{\varepsilon}}+\|h_{\lambda_{m}}(\tau)-h_{\lambda_{n}}(\tau)\|^{2}_{H_{\mu}}\Big{)}\\[3.0pt] &=\,-2\,\big{(}g_{\lambda_{m}}(\tau)-g_{\lambda_{n}}(\tau),e_{\lambda_{m}}(\tau)-e_{\lambda_{n}}(\tau)\big{)}{}_{H}\\[6.0pt] &\text{for all $m,n\in\mathbb{N}$ and a.e.~{}$\tau\in[0,T_{1}]$}.\end{aligned}\right.
Lemma 3.3.

For all mm, nn\in\mathbb{N} and all t[0,T1]t\in[0,T_{1}],

(3.15) {T1(eλm(t)eλn(t)Hε2+hλm(t)hλn(t)Hμ2)=0T1(eλm(s)eλn(s)Hε2+hλm(s)hλn(s)Hμ2)ds20T1(st(gλm(τ)gλn(τ),eλm(τ)eλn(τ))dHτ)ds.\left\{\begin{aligned} \;&T_{1}\Big{(}\|e_{\lambda_{m}}(t)-e_{\lambda_{n}}(t)\|^{2}_{H_{\varepsilon}}+\|h_{\lambda_{m}}(t)-h_{\lambda_{n}}(t)\|^{2}_{H_{\mu}}\Big{)}\\[12.0pt] &=\,\int_{0}^{T_{1}}\Big{(}\|e_{\lambda_{m}}(s)-e_{\lambda_{n}}(s)\|^{2}_{H_{\varepsilon}}+\|h_{\lambda_{m}}(s)-h_{\lambda_{n}}(s)\|^{2}_{H_{\mu}}\Big{)}\,\mathrm{d}s\\ &\quad-2\int_{0}^{T_{1}}\Bigg{(}\int_{s}^{t}\big{(}g_{\lambda_{m}}(\tau)-g_{\lambda_{n}}(\tau),e_{\lambda_{m}}(\tau)-e_{\lambda_{n}}(\tau)\big{)}{}_{H}\,\mathrm{d}\tau\Bigg{)}\,\mathrm{d}s.\;\end{aligned}\right.
Proof.

Let t]0,T1[t\in{]0,T_{1}[}. Firstly, given any s[0,t]s\in[0,t], we integrate (3.14) over the interval [s,t][s,t] to obtain

eλm(t)eλn(t)Hε2+hλm(t)hλn(t)Hμ2\displaystyle\|e_{\lambda_{m}}(t)-e_{\lambda_{n}}(t)\|^{2}_{H_{\varepsilon}}+\|h_{\lambda_{m}}(t)-h_{\lambda_{n}}(t)\|^{2}_{H_{\mu}}\, =eλm(s)eλn(s)Hε2+hλm(s)hλn(s)Hμ2\displaystyle=\,\|e_{\lambda_{m}}(s)-e_{\lambda_{n}}(s)\|^{2}_{H_{\varepsilon}}+\|h_{\lambda_{m}}(s)-h_{\lambda_{n}}(s)\|^{2}_{H_{\mu}}
2st(gλm(τ)gλn(τ),eλm(τ)eλn(τ))dHτ.\displaystyle-2\int_{s}^{t}\big{(}g_{\lambda_{m}}(\tau)-g_{\lambda_{n}}(\tau),e_{\lambda_{m}}(\tau)-e_{\lambda_{n}}(\tau)\big{)}{}_{H}\,\mathrm{d}\tau.

We now integrate this equation with respect to the variable ss over the interval [0,t][0,t]. It follows

(3.16) {t(eλm(t)eλn(t)Hε2+hλm(t)hλn(t)Hμ2)=0t(eλm(s)eλn(s)Hε2+hλm(s)hλn(s)Hμ2)ds20t(st(gλm(τ)gλn(τ),eλm(τ)eλn(τ))dHτ)ds.\left\{\begin{aligned} \;&t\,\Big{(}\|e_{\lambda_{m}}(t)-e_{\lambda_{n}}(t)\|^{2}_{H_{\varepsilon}}+\|h_{\lambda_{m}}(t)-h_{\lambda_{n}}(t)\|^{2}_{H_{\mu}}\Big{)}\\[12.0pt] &=\,\int_{0}^{t}\Big{(}\|e_{\lambda_{m}}(s)-e_{\lambda_{n}}(s)\|^{2}_{H_{\varepsilon}}+\|h_{\lambda_{m}}(s)-h_{\lambda_{n}}(s)\|^{2}_{H_{\mu}}\Big{)}\,\mathrm{d}s\\ &\quad-2\int_{0}^{t}\Bigg{(}\int_{s}^{t}\big{(}g_{\lambda_{m}}(\tau)-g_{\lambda_{n}}(\tau),e_{\lambda_{m}}(\tau)-e_{\lambda_{n}}(\tau)\big{)}{}_{H}\,\mathrm{d}\tau\Bigg{)}\,\mathrm{d}s.\end{aligned}\right.

Secondly, given any s[t,T1]s\in[t,T_{1}], we integrate (3.14) over the interval [t,s][t,s] to get

eλm(t)eλn(t)Hε2+hλm(t)hλn(t)Hμ2\displaystyle\|e_{\lambda_{m}}(t)-e_{\lambda_{n}}(t)\|^{2}_{H_{\varepsilon}}+\|h_{\lambda_{m}}(t)-h_{\lambda_{n}}(t)\|^{2}_{H_{\mu}}\, =eλm(s)eλn(s)Hε2+hλm(s)hλn(s)Hμ2\displaystyle=\,\|e_{\lambda_{m}}(s)-e_{\lambda_{n}}(s)\|^{2}_{H_{\varepsilon}}+\|h_{\lambda_{m}}(s)-h_{\lambda_{n}}(s)\|^{2}_{H_{\mu}}
+2ts(gλm(τ)gλn(τ),eλm(τ)eλn(τ))dHτ.\displaystyle+2\int_{t}^{s}\big{(}g_{\lambda_{m}}(\tau)-g_{\lambda_{n}}(\tau),e_{\lambda_{m}}(\tau)-e_{\lambda_{n}}(\tau)\big{)}{}_{H}\,\mathrm{d}\tau.

We integrate this equation with respect to the variable ss over the interval [t,T1][t,T_{1}]. This yields

(3.17) {(T1t)(eλm(t)eλn(t)Hε2+hλm(t)hλn(t)Hμ2)=tT1(eλm(s)eλn(s)Hε2+hλm(s)hλn(s)Hμ2)ds+2tT1(ts(gλm(τ)gλn(τ),eλm(τ)eλn(τ))dHτ)ds.\left\{\begin{aligned} \;&(T_{1}-t)\,\Big{(}\|e_{\lambda_{m}}(t)-e_{\lambda_{n}}(t)\|^{2}_{H_{\varepsilon}}+\|h_{\lambda_{m}}(t)-h_{\lambda_{n}}(t)\|^{2}_{H_{\mu}}\Big{)}\\[12.0pt] &=\,\int_{t}^{T_{1}}\Big{(}\|e_{\lambda_{m}}(s)-e_{\lambda_{n}}(s)\|^{2}_{H_{\varepsilon}}+\|h_{\lambda_{m}}(s)-h_{\lambda_{n}}(s)\|^{2}_{H_{\mu}}\Big{)}\,\mathrm{d}s\\ &\quad+2\int_{t}^{T_{1}}\Bigg{(}\int_{t}^{s}\big{(}g_{\lambda_{m}}(\tau)-g_{\lambda_{n}}(\tau),e_{\lambda_{m}}(\tau)-e_{\lambda_{n}}(\tau)\big{)}{}_{H}\,\mathrm{d}\tau\Bigg{)}\,\mathrm{d}s.\end{aligned}\right.

Finally, if t=0t=0 or t=T1t=T_{1}, then (3.16) resp. (3.17) are trivial. Adding (3.16) and (3.17) we obtain (3.15) for all t[0,T1]t\in[0,T_{1}]. ∎

We finish Part II with an analogue of Lemma 3.3. For this we consider integral identitities (3.10) and (3.11), and repeat the arguments which led to (3.14). Using (3.13) with eλ¯meλ¯ne_{\bar{\lambda}_{m}}-e_{\bar{\lambda}_{n}}, hλ¯mhλ¯nh_{\bar{\lambda}_{m}}-h_{\bar{\lambda}_{n}} instead of eλ¯e_{\bar{\lambda}}, hλ¯h_{\bar{\lambda}}, one obtains

(3.18) {ddτ(eλ¯m(τ)eλ¯n(τ)Hε2+hλ¯m(τ)hλ¯n(τ)Hμ2)=2(gλ¯m(τ)gλ¯n(τ),eλ¯m(τ)eλ¯n(τ))Hfor all m,n and a.e. τ[T0,T].\left\{\begin{aligned} \;&\frac{\mathrm{d}}{\mathrm{d}\tau}\Big{(}\|e_{\bar{\lambda}_{m}}(\tau)-e_{\bar{\lambda}_{n}}(\tau)\|^{2}_{H_{\varepsilon}}+\|h_{\bar{\lambda}_{m}}(\tau)-h_{\bar{\lambda}_{n}}(\tau)\|^{2}_{H_{\mu}}\Big{)}\\[3.0pt] &=\,-2\,\big{(}g_{\bar{\lambda}_{m}}(\tau)-g_{\bar{\lambda}_{n}}(\tau),e_{\bar{\lambda}_{m}}(\tau)-e_{\bar{\lambda}_{n}}(\tau)\big{)}{}_{H}\\[6.0pt] &\text{for all $m,n\in\mathbb{N}$ and a.e.~{}$\tau\in[T_{0},T]$}.\end{aligned}\right.
Lemma 3.4.

For all mm, nn\in\mathbb{N} and all t[T0,T]t\in[T_{0},T],

(3.19) {(TT0)(eλ¯m(t)eλ¯n(t)Hε2+hλ¯m(t)hλ¯n(t)Hμ2)=T0T(eλ¯m(s)eλ¯n(s)Hε2+hλ¯m(s)hλ¯n(s)Hμ2)ds2T0T(st(gλ¯m(τ)gλ¯n(τ),eλ¯m(τ)eλ¯n(τ))dHτ)ds.\left\{\begin{aligned} \;&(T-T_{0})\Big{(}\|e_{\bar{\lambda}_{m}}(t)-e_{\bar{\lambda}_{n}}(t)\|^{2}_{H_{\varepsilon}}+\|h_{\bar{\lambda}_{m}}(t)-h_{\bar{\lambda}_{n}}(t)\|^{2}_{H_{\mu}}\Big{)}\\[12.0pt] &=\,\int_{T_{0}}^{T}\Big{(}\|e_{\bar{\lambda}_{m}}(s)-e_{\bar{\lambda}_{n}}(s)\|^{2}_{H_{\varepsilon}}+\|h_{\bar{\lambda}_{m}}(s)-h_{\bar{\lambda}_{n}}(s)\|^{2}_{H_{\mu}}\Big{)}\,\mathrm{d}s\\ &\quad-2\int_{T_{0}}^{T}\Bigg{(}\int_{s}^{t}\big{(}g_{\bar{\lambda}_{m}}(\tau)-g_{\bar{\lambda}_{n}}(\tau),e_{\bar{\lambda}_{m}}(\tau)-e_{\bar{\lambda}_{n}}(\tau)\big{)}{}_{H}\,\mathrm{d}\tau\Bigg{)}\,\mathrm{d}s.\end{aligned}\right.
Proof.

Let t]T0,T[t\in{]T_{0},T[}. Firstly, given any s[T0,t]s\in[T_{0},t], we integrate (3.18) over the interval [s,t][s,t] and integrate then the equation so obtained with respect to the variable ss over the interval [T0,t][T_{0},t]. This gives

(3.20) {(tT0)(eλ¯m(t)eλ¯n(t)Hε2+hλ¯m(t)hλ¯n(t)Hμ2)=T0t(eλ¯m(s)eλ¯n(s)Hε2+hλ¯m(s)hλ¯n(s)Hμ2)ds2T0t(st(gλ¯m(τ)gλ¯n(τ),eλ¯m(τ)eλ¯n(τ))dHτ)ds.\left\{\begin{aligned} \;&(t-T_{0})\Big{(}\|e_{\bar{\lambda}_{m}}(t)-e_{\bar{\lambda}_{n}}(t)\|^{2}_{H_{\varepsilon}}+\|h_{\bar{\lambda}_{m}}(t)-h_{\bar{\lambda}_{n}}(t)\|^{2}_{H_{\mu}}\Big{)}\\[12.0pt] &=\,\int_{T_{0}}^{t}\Big{(}\|e_{\bar{\lambda}_{m}}(s)-e_{\bar{\lambda}_{n}}(s)\|^{2}_{H_{\varepsilon}}+\|h_{\bar{\lambda}_{m}}(s)-h_{\bar{\lambda}_{n}}(s)\|^{2}_{H_{\mu}}\Big{)}\,\mathrm{d}s\\ &\quad-2\int_{T_{0}}^{t}\Bigg{(}\int_{s}^{t}\big{(}g_{\bar{\lambda}_{m}}(\tau)-g_{\bar{\lambda}_{n}}(\tau),e_{\bar{\lambda}_{m}}(\tau)-e_{\bar{\lambda}_{n}}(\tau)\big{)}{}_{H}\,\mathrm{d}\tau\Bigg{)}\,\mathrm{d}s.\end{aligned}\right.

Secondly, given any s[t,T]s\in[t,T], we integrate (3.18) over the interval [t,s][t,s] and integrate then the equation obtained in this way with respect to the variable ss over the interval [t,T][t,T] to find

(3.21) {(Tt)(eλ¯m(t)eλ¯n(t)Hε2+hλ¯m(t)hλ¯n(t)Hμ2)=tT(eλ¯m(s)eλ¯n(s)Hε2+hλ¯m(s)hλ¯n(s)Hμ2)ds+2tT(ts(gλ¯m(τ)gλ¯n(τ),eλ¯m(τ)eλ¯n(τ))dHτ)ds.\left\{\begin{aligned} \;&(T-t)\,\Big{(}\|e_{\bar{\lambda}_{m}}(t)-e_{\bar{\lambda}_{n}}(t)\|^{2}_{H_{\varepsilon}}+\|h_{\bar{\lambda}_{m}}(t)-h_{\bar{\lambda}_{n}}(t)\|^{2}_{H_{\mu}}\Big{)}\\[12.0pt] &=\,\int_{t}^{T}\Big{(}\|e_{\bar{\lambda}_{m}}(s)-e_{\bar{\lambda}_{n}}(s)\|^{2}_{H_{\varepsilon}}+\|h_{\bar{\lambda}_{m}}(s)-h_{\bar{\lambda}_{n}}(s)\|^{2}_{H_{\mu}}\Big{)}\,\mathrm{d}s\\ &\quad+2\int_{t}^{T}\Bigg{(}\int_{t}^{s}\big{(}g_{\bar{\lambda}_{m}}(\tau)-g_{\bar{\lambda}_{n}}(\tau),e_{\bar{\lambda}_{m}}(\tau)-e_{\bar{\lambda}_{n}}(\tau)\big{)}{}_{H}\,\mathrm{d}\tau\Bigg{)}\,\mathrm{d}s.\end{aligned}\right.

Finally, if t=T0t=T_{0} or t=Tt=T, then (3.20) resp. (3.21) are trivial. Adding (3.20) and (3.21) we obtain (3.19) for all t[T0,T]t\in[T_{0},T]. ∎

Part III. Proof of Theorem 3.1 completed

Let (λm)m(\lambda_{m})_{m\in\mathbb{N}} be any sequence of real numbers as at the beginning of Part II. From (3.15) we infer

maxt[0,T1]eλm(t)eλn(t)Hε2+maxt[0,T1]hλm(t)hλn(t)Hμ2\displaystyle\max_{t\in[0,T_{1}]}\|e_{\lambda_{m}}(t)-e_{\lambda_{n}}(t)\|^{2}_{H_{\varepsilon}}+\max_{t\in[0,T_{1}]}\|h_{\lambda_{m}}(t)-h_{\lambda_{n}}(t)\|^{2}_{H_{\mu}}
=1T10T1(eλm(s)eλn(s)Hε2+hλm(s)hλn(s)Hμ2)ds\displaystyle=\,\frac{1}{T_{1}}\int_{0}^{T_{1}}\Big{(}\|e_{\lambda_{m}}(s)-e_{\lambda_{n}}(s)\|^{2}_{H_{\varepsilon}}+\|h_{\lambda_{m}}(s)-h_{\lambda_{n}}(s)\|^{2}_{H_{\mu}}\Big{)}\,\mathrm{d}s
+20T1gλm(τ)gλn(τ)Heλm(τ)eλn(τ)Hdτ\displaystyle\quad+2\int_{0}^{T_{1}}\|g_{\lambda_{m}}(\tau)-g_{\lambda_{n}}(\tau)\|_{H}\,\|e_{\lambda_{m}}(\tau)-e_{\lambda_{n}}(\tau)\|_{H}\,\mathrm{d}\tau

for all mm, nn\in\mathbb{N}. Observing (H6) and (3.5) we see that (eλm)m(e_{\lambda_{m}})_{m\in\mathbb{N}}, (hλm)m(h_{\lambda_{m}})_{m\in\mathbb{N}} are Cauchy sequences in C([0,T1];H)C([0,T_{1}];H). Analogously, (3.19) implies that (eλ¯m)m(e_{\bar{\lambda}_{m}})_{m\in\mathbb{N}}, (hλ¯m)m(h_{\bar{\lambda}_{m}})_{m\in\mathbb{N}} are Cauchy sequences in C([T0,T];H)C([T_{0},T];H). Thus, there exist

e¯,h¯C([0,T1];H)ande¯,h¯C([T0,T];H)\underline{e},\underline{h}\in C([0,T_{1}];H)\quad\text{and}\quad\overline{e},\overline{h}\in C([T_{0},T];H)

such that

(3.22) eλme¯andhλmh¯\displaystyle e_{\lambda_{m}}\longrightarrow\,\underline{e}\quad\text{and}\quad h_{\lambda_{m}}\longrightarrow\,\underline{h} in C([0,T1];H),\displaystyle\quad\text{in $C([0,T_{1}];H)$},
(3.23) eλ¯me¯andhλ¯mh¯\displaystyle e_{\bar{\lambda}_{m}}\longrightarrow\,\overline{e}\quad\text{and}\quad h_{\bar{\lambda}_{m}}\longrightarrow\,\overline{h} in C([T0,T];H)C([T_{0},T];H)

as mm\to\infty. A routine argument gives

e¯(t)\displaystyle\underline{e}(t) =e(t),\displaystyle\,=\,e(t), h¯(t)\displaystyle\quad\underline{h}(t) =h(t)\displaystyle\,=\,h(t) in H for a.e. t[0,T1],\displaystyle\text{in $H$ for a.e.~{}$t\in[0,T_{1}]$},
e¯(t)\displaystyle\overline{e}(t) =e(t),\displaystyle\,=\,e(t), h¯(t)\displaystyle\quad\overline{h}(t) =h(t)\displaystyle\,=\,h(t) in H for a.e. t[T0,T].\displaystyle\text{in $H$ for a.e.~{}$t\in[T_{0},T]$}.

Put T=12(T0+T1)T_{*}=\frac{1}{2}(T_{0}+T_{1}) and define

e^(t):={e¯(t)if t[0,T],e¯(t)if t[T,T];h^(t):={h¯(t)if t[0,T],h¯(t)if t[T,T].\hat{e}(t)\,:=\,\begin{cases}\underline{e}(t)&\text{if $t\in[0,T_{*}]$},\\ \overline{e}(t)&\text{if $t\in[T_{*},T]$};\end{cases}\quad\hat{h}(t)\,:=\,\begin{cases}\underline{h}(t)&\text{if $t\in[0,T_{*}]$},\\ \overline{h}(t)&\text{if $t\in[T_{*},T]$}.\end{cases}

We obtain

(3.24) e^,h^C([0,T];H),e^(t)=e(t),h^(t)=h(t)in H for a.e. t[0,T],\hat{e},\hat{h}\in C([0,T];H),\quad\hat{e}(t)=e(t),\quad\hat{h}(t)=h(t)\quad\text{in $H$ for a.e.~{}$t\in[0,T]$},

i.e. (3.1) holds.

It remains to prove e^(0)=e0\hat{e}(0)=e_{0} in HH (cf. (3.2)). The proof of h^(0)=h0\hat{h}(0)=h_{0} follows the same lines with minor modifications. Identifying εe^C([0,T];H)\varepsilon\hat{e}\in C([0,T];H) with an element in C([0,T];V0)C([0,T];V_{0}^{*}) it follows

(εe^)(t)=(εe~)(t)in V0 for all t[0,T],(\varepsilon\hat{e})(t)\,=\,(\widetilde{\varepsilon e})(t)\quad\text{in $V_{0}^{*}$ for all $t\in[0,T]$},

where εe~:[0,T]V0\widetilde{\varepsilon e}:[0,T]\longrightarrow V_{0}^{*} denotes the absolutely continuous representative in the equivalence class εeL2(0,T;V0)\varepsilon e\in L^{2}(0,T;V_{0}^{*}) (cf. Thm. 2.1). Thus, for all φV0\varphi\in V_{0},

(εe^(0),φ)H=(εe^)(0),φV0=(εe~)(0),φV0=εe0,φV0=(εe0,φ)H.(\varepsilon\hat{e}(0),\varphi)_{H}\,=\,\langle(\varepsilon\hat{e})(0),\varphi\rangle_{V_{0}}\,=\,\langle(\widetilde{\varepsilon e})(0),\varphi\rangle_{V_{0}}\,=\,\langle\varepsilon e_{0},\varphi\rangle_{V_{0}}\,=\,(\varepsilon e_{0},\varphi)_{H}.

The proof of Theorem 3.1 is complete.

4. Energy equality. Well-posedness of (1.1)–(1.4)

In this section, we prove that under the hypotheses (H1)–(H6) any weak solution of (1.1)–(1.4) obeys an energy equality. If, in addition, ξj(,,ξ)\xi\longmapsto j(\cdot,\cdot,\xi) is monotone, then the well-posedness of (1.1)–(1.4) in the framework of L2L^{2} is easily derived from the energy equality.

Besides its independent interest, this equality is fundamental to our proof of the existence of a weak solution of (1.1)–(1.4) via the Faedo-Galerkin method (see Section 5).

The following theorem is the main result of our paper.

Theorem 4.1 (Energy equality).

Assume (H1)–(H6). Let (e,h)L2(QT)3×L2(QT)3(e,h)\in L^{2}(Q_{T})^{3}\times L^{2}(Q_{T})^{3} be any weak solution of (1.1)–(1.4) and denote by

e^,h^C([0,T];H)\hat{e},\hat{h}\in C([0,T];H)

the continuous representatives in the equivalence classes e,he,h (cf. Theorem 3.1 ). Then,

(4.1) 12(e^(t)+Hε2h^(t))Hμ2+0t(j(e),e)Hds=12(e0Hε2+h0Hμ2)for all t[0,T].\frac{1}{2}\Big{(}\big{\|}\hat{e}(t)\big{\|}{}^{2}_{H_{\varepsilon}}+\big{\|}\hat{h}(t)\big{\|}{}^{2}_{H_{\mu}}\Big{)}+\int_{0}^{t}(j(e),e)_{H}\,\mathrm{d}s\,=\,\frac{1}{2}\Big{(}\|e_{0}\|^{2}_{H_{\varepsilon}}+\|h_{0}\|^{2}_{H_{\mu}}\Big{)}\quad\text{for all $t\in[0,T]$}.
Proof.

For notational simplicity, we write

^(t)=12(e^(t)+Hε2h^(t))Hμ2,t[0,T]\hat{\mathscr{E}}(t)\,=\,\frac{1}{2}\Big{(}\big{\|}\hat{e}(t)\big{\|}{}^{2}_{H_{\varepsilon}}+\big{\|}\hat{h}(t)\big{\|}{}^{2}_{H_{\mu}}\Big{)},\quad t\in[0,T]

(cf. (1.7); remember e^(0)=e0\hat{e}(0)=e_{0}, h^(0)=h0\hat{h}(0)=h_{0}).

As in Section 3, let T0T_{0}, T1T_{1} be two real numbers such that 0<T0<T1<T0<T_{0}<T_{1}<T, and let 0<λ<min{T0,TT1}0<\lambda<\min\{T_{0},T-T_{1}\}. From Lemma 3.1 it follows that

(4.2) 12(eλ(t)Hε2+hλ(t)Hμ2)+0t(gλ,eλ)Hds=12(eλ(0)Hε2+hλ(0)Hμ2)\frac{1}{2}\Big{(}\|e_{\lambda}(t)\|^{2}_{H_{\varepsilon}}+\|h_{\lambda}(t)\|^{2}_{H_{\mu}}\Big{)}+\int_{0}^{t}(g_{\lambda},e_{\lambda})_{H}\,\mathrm{d}s\,=\,\frac{1}{2}\Big{(}\|e_{\lambda}(0)\|^{2}_{H_{\varepsilon}}+\|h_{\lambda}(0)\|^{2}_{H_{\mu}}\Big{)}

for all t[0,T1]t\in[0,T_{1}] (g=j(,,e)g=j(\cdot,\cdot,e); cf. the proof of Theorem 3.1).

Let (λm)m(\lambda_{m})_{m\in\mathbb{N}} be any sequence of real numbers such that 0<λm<min{T0,TT1}0<\lambda_{m}<\min\{T_{0},T-T_{1}\} for all mm\in\mathbb{N}, and λm0\lambda_{m}\to 0 as mm\to\infty (cf. the proof of Theorem 3.1, Part II). Taking λ=λm\lambda=\lambda_{m} in (4.2) and observing (3.22) and (3.24) we obtain upon letting tend mm\to\infty in (4.2) the equality

(4.3) ^(t)+0t(j(e),e)Hds=^(0)for all t[0,T1].\hat{\mathscr{E}}(t)+\int_{0}^{t}(j(e),e)_{H}\,\mathrm{d}s\,=\,\hat{\mathscr{E}}(0)\quad\text{for all $t\in[0,T_{1}]$}.

Next, using Lemma 3.2 we find by an analogous reasoning (this time by the aid of (3.23) and (3.24))

^(t)+T0t(j(e),e)Hds=^(T0)for all t[T0,T].\hat{\mathscr{E}}(t)+\int_{T_{0}}^{t}(j(e),e)_{H}\,\mathrm{d}s\,=\,\hat{\mathscr{E}}(T_{0})\quad\text{for all $t\in[T_{0},T]$}.

It follows that, for all t[T0,T]t\in[T_{0},T],

^(t)+0t(j(e),e)Hds\displaystyle\hat{\mathscr{E}}(t)+\int_{0}^{t}(j(e),e)_{H}\,\mathrm{d}s\, =^(T0)+0T0(j(e),e)Hds\displaystyle=\,\hat{\mathscr{E}}(T_{0})+\int_{0}^{T_{0}}(j(e),e)_{H}\,\mathrm{d}s
=^(0)(by (4.3)).\displaystyle=\,\hat{\mathscr{E}}(0)\quad\text{(by~{}(4.3))}.

Whence, (4.1). ∎

Remark 4.1.

In his seminal paper [13], K. O. Friedrichs developed a theory of weak solutions for a large class of initial-boundary value problems for symmetric linear hyperbolic systems where he made use of energy integral identities. In this paper, the notion of weak solutions is introduced in terms of a limit of classical (resp. strong) solutions of the initial-value problem under consideration.

For linear Ohm laws j1=σ(x,t)ej_{1}=\sigma(x,t)\,e (see Section 1 above), problem (1.1)–(1.4) is included in the work [13].

Remark 4.2.

Suppose that hypotheses (H1)–(H6) hold true. In addition, assume

j(x,t,ξ)ξ 0for all (x,t,ξ)QT×3j(x,t,\xi)\cdot\xi\,\geq\,0\quad\text{for all $(x,t,\xi)\in Q_{T}\times\mathbb{R}^{3}$}

(cf. Examples 1 and 2 in Section 1). Then any weak solution (e,h)L2(QT)3×L2(QT)3(e,h)\in L^{2}(Q_{T})^{3}\times L^{2}(Q_{T})^{3} of (1.1)–(1.4) satisfies the energy inequality

(4.4) 12(e^(t)+Hε2h^(t))Hμ212(e0Hε2+h0Hμ2)for all t[0,T]\frac{1}{2}\Big{(}\big{\|}\hat{e}(t)\big{\|}{}^{2}_{H_{\varepsilon}}+\big{\|}\hat{h}(t)\big{\|}{}^{2}_{H_{\mu}}\Big{)}\,\leq\,\frac{1}{2}\Big{(}\|e_{0}\|^{2}_{H_{\varepsilon}}+\|h_{0}\|^{2}_{H_{\mu}}\Big{)}\quad\text{for all $t\in[0,T]$}

(cf. also [12, Corollary 7.6, p. 329]). Thus, for current density fields j=j1=σ(x,t)ej=j_{1}=\sigma(x,t)\,e (σ(x,t)\sigma(x,t) being a symmetric non-negative 3×33\times 3 matrix with bounded measurable entries), the uniqueness of weak solutions of (1.1)–(1.4) follows from (4.4). We note that this uniqueness result is a special case of Theorem 4.2 (well-posedness of (1.1)–(1.4)) provided the mapping ξj(,,e)\xi\longmapsto j(\cdot,\cdot,e) is monotone (cf. condition (b) in Section 1).

Remark 4.3.

Assume (H2), (H3) and let j=j1=σ(x)ej=j_{1}=\sigma(x)\,e, where σ(x)=(σkl(x))k,l=1,2,3\sigma(x)=(\sigma_{kl}(x))_{k,l=1,2,3} (xΩ)(x\in\Omega) is any matrix with bounded measurable entries.

Let (e,h)L2(QT)3×L2(QT)3(e,h)\in L^{2}(Q_{T})^{3}\times L^{2}(Q_{T})^{3} be a weak solution of (1.1)–(1.4) with initial data

e0=h0= 0a.e. in Ω.e_{0}\,=\,h_{0}\,=\,0\quad\text{a.e.~{}in $\Omega$}.

Then

e=h= 0a.e. in QT.e\,=\,h\,=\,0\quad\text{a.e.~{}in $Q_{T}$}.

This result has been proved in [25] by deriving an energy equality for the primitives 0te(,s)ds\int_{0}^{t}e(\cdot,s)\,\mathrm{d}s, 0th(,s)ds\int_{0}^{t}h(\cdot,s)\,\mathrm{d}s (t[0,T])(t\in[0,T]) and then applying the Gronwall lemma (cf. also [12, pp. 330–331], [21, Ch. 3, § 8.2]).

An analogous uniqueness result has been presented in [10, Ch. VII, § 4.3] the proof of which makes use of an approximation technique for weak solutions of (1.1)–(1.4) that is similar to ours in Section 3.

From Theorem 4.1 we deduce

Theorem 4.2 (Well-posedness of (1.1)–(1.4)).

Assume (H1)–(H3) and (H5), (H6). In addition, suppose that

(H7) (j(x,t,ξ)j(x,t,η))(ξη) 0for all (x,t)QT and all ξη3\big{(}j(x,t,\xi)-j(x,t,\eta)\big{)}\cdot\big{(}\xi-\eta\big{)}\,\geq\,0\quad\text{for all $(x,t)\in Q_{T}$ and all $\xi$, $\eta\in\mathbb{R}^{3}$}

(cf. condition (b) in Section 1 ).

Let (e(k),h(k))L2(QT)3×L2(QT)3\big{(}e^{(k)},h^{(k)}\big{)}\in L^{2}(Q_{T})^{3}\times L^{2}(Q_{T})^{3} (k=1,2)(k=1,2) be weak solutions of (1.1)–(1.4) that correspond to initial data (e0,(k)h0)(k)L2(Ω)3×L2(Ω)3\big{(}e_{0}{}^{(k)},h_{0}{}^{(k)}\big{)}\in L^{2}(\Omega)^{3}\times L^{2}(\Omega)^{3} (k=1,2)(k=1,2), respectively.

Then, for all t[0,T]t\in[0,T],

(4.5) e(1)(t)e(2)(t)+Hε2h(1)(t)h(2)(t)Hμ2e0(1)e0(2)+Hε2h0(1)h0(2).Hμ2\big{\|}e^{(1)}(t)-e^{(2)}(t)\big{\|}{}^{2}_{H_{\varepsilon}}+\big{\|}h^{(1)}(t)-h^{(2)}(t)\big{\|}{}^{2}_{H_{\mu}}\,\leq\,\big{\|}e_{0}{}^{(1)}-e_{0}{}^{(2)}\big{\|}{}^{2}_{H_{\varepsilon}}+\big{\|}h_{0}{}^{(1)}-h_{0}{}^{(2)}\big{\|}{}^{2}_{H_{\mu}}.

(On the left side of (4.5) the continuous representatives of e(k),h(k)e^{(k)},h^{(k)} according to Theorem 3.1 are understood, where the symbol ^\,\hat{} is omitted for notational simplicity.)

Proof.

We consider integral identities (2.9), (2.10) with (e(1),h(1))\big{(}e^{(1)},h^{(1)}\big{)} as well as (e(2),h(2))\big{(}e^{(2)},h^{(2)}\big{)} in place of (e,h)(e,h), and form the differences of the integral identities so obtained. Writing

e0=e0(1)e0,(2)h0=h0(1)h0(2)e_{0}^{*}\,=\,e_{0}{}^{(1)}-e_{0}{}^{(2)},\quad h_{0}^{*}\,=\,h_{0}{}^{(1)}-h_{0}{}^{(2)}

and

e=e(1)e(2),h=h(1)h(2),g=j(e(1))j(e(2)),e^{*}\,=\,e^{(1)}-e^{(2)},\quad h^{*}\,=\,h^{(1)}-h^{(2)},\quad g^{*}\,=\,j\big{(}e^{(1)}\big{)}-j\big{(}e^{(2)}\big{)},

we obtain

(4.6) {QT(εe)tΦdxdt+QT(hcurlΦ+gΦ)dxdt=Ω(εe0)(x)Φ(x,0)dxfor all ΦL2(0,T;V0) such that tΦL2(QT)3 and Φ(,T)=0 a.e. in Ω,\displaystyle\left\{\begin{aligned} &-\displaystyle\int_{Q_{T}}(\varepsilon e^{*})\cdot\partial_{t}\Phi\,\mathrm{d}x\,\mathrm{d}t+\int_{Q_{T}}\big{(}{-}h^{*}\cdot\operatorname*{curl}\Phi+g^{*}\cdot\Phi\big{)}\,\mathrm{d}x\,\mathrm{d}t\,=\,\int_{\Omega}(\varepsilon e_{0}^{*})(x)\cdot\Phi(x,0)\,\mathrm{d}x\\ &\quad\text{for all $\Phi\in L^{2}(0,T;V_{0})$ such that $\partial_{t}\Phi\in L^{2}(Q_{T})^{3}$ and $\Phi(\cdot,T)=0$ a.e.~{}in $\Omega$},\end{aligned}\right.
(4.7) {QT(μh)tΨdxdt+QTecurlΨdxdt=Ω(μh0)(x)Ψ(x,0)dxfor all ΨL2(0,T;V) such that tΨL2(QT)3 and Ψ(,T)=0 a.e. in Ω,\displaystyle\left\{\begin{aligned} &-\displaystyle\int_{Q_{T}}(\mu h^{*})\cdot\partial_{t}\Psi\,\mathrm{d}x\,\mathrm{d}t+\int_{Q_{T}}e^{*}\cdot\operatorname*{curl}\Psi\,\mathrm{d}x\,\mathrm{d}t\,=\,\int_{\Omega}(\mu h_{0}^{*})(x)\cdot\Psi(x,0)\,\mathrm{d}x\\ &\quad\text{for all $\Psi\in L^{2}(0,T;V)$ such that $\partial_{t}\Psi\in L^{2}(Q_{T})^{3}$ and $\Psi(\cdot,T)=0$ a.e.~{}in $\Omega$},\end{aligned}\right.

i.e. (e,h)L2(QT)3×L2(QT)3(e^{*},h^{*})\in L^{2}(Q_{T})^{3}\times L^{2}(Q_{T})^{3} is a weak solution of (1.1)–(1.4) with j=j0+j1j=j_{0}+j_{1}, j0=gj_{0}=g^{*} and j1=0j_{1}=0 (cf. (H2), (H3)). Hence, Theorem 4.1 applies to (4.6), (4.7). Then, the energy equality (4.1) reads

12(e(t)Hε2+h(t)Hμ2)+0t(g,e)Hds=12(e0Hε2+h0Hμ2)for all t[0,T].\frac{1}{2}\Big{(}\|e^{*}(t)\|^{2}_{H_{\varepsilon}}+\|h^{*}(t)\|^{2}_{H_{\mu}}\Big{)}+\int_{0}^{t}(g^{*},e^{*})_{H}\,\mathrm{d}s\,=\,\frac{1}{2}\Big{(}\|e_{0}^{*}\|^{2}_{H_{\varepsilon}}+\|h_{0}^{*}\|^{2}_{H_{\mu}}\Big{)}\quad\text{for all $t\in[0,T]$}.

Observing (H7) we obtain (4.5). The proof is complete. ∎

Remark 4.4.

Theorem 4.2 represents a special case of the notion of well-posedness of evolution problems discussed in [27, p. 404, p. 413].

5. Existence of weak solutions of (1.1)–(1.4) via the Faedo-Galerkin method

The Faedo-Galerkin method is widely used for solving evolution problems. From the wealth of literature we only refer to [21, Ch. 3, §§ 8.1–8.2], [22, Ch. 2, § 1.2] and [33, Ch. 30, §§ 1–3].

In [10, Ch. VII, §§ 4.1–4.3] the authors used this method for the proof of the existence of weak solutions of (1.1)–(1.4) with linear Ohm laws j=j1=σ0(x)ej=j_{1}=\sigma_{0}(x)\,e. The following theorem extends this result to the class of nonlinear Ohm laws we have introduced by hypotheses (H2), (H3) (cf. Section 2).

Theorem 5.1.

Assume (H1)–(H3) and (H5)–(H7). Then for every (e0,h0)H×H(e_{0},h_{0})\in H\times H there exists a weak solution

(e,h)L(0,T;H)×L(0,T;H)(e,h)\in L^{\infty}(0,T;H)\times L^{\infty}(0,T;H)

of (1.1)–(1.4) which satisfies the estimate

(5.1) e(t)Hε2+h(t)Hμ2c(e0Hε2+h0Hμ2+j0L2(QT)32)for a.e. t[0,T],\|e(t)\|^{2}_{H_{\varepsilon}}+\|h(t)\|^{2}_{H_{\mu}}\leq c\left(\|e_{0}\|^{2}_{H_{\varepsilon}}+\|h_{0}\|^{2}_{H_{\mu}}+\|j_{0}\|^{2}_{L^{2}(Q_{T})^{3}}\right)\quad\text{for a.e.~{}$t\in[0,T]$},

where c=const>0c=\operatorname*{const}>0 depends on c1c_{1} and ε\varepsilon_{*} from (H3) and (H7), respectively, and on TT.

For what follows we introduce more notations.

The separability of V0V_{0} and VV implies the existence of sequences (φk)kV0(\varphi_{k})_{k\in\mathbb{N}}\subset V_{0} and (ψk)kV(\psi_{k})_{k\in\mathbb{N}}\subset V such that

{φ1,,φm} and {ψ1,,ψm} are linearly independent for every m;\text{$\{\varphi_{1},\dots,\varphi_{m}\}$ and $\{\psi_{1},\dots,\psi_{m}\}$ are linearly independent for every $m\in\mathbb{N}$};
(5.2) m=1Xm¯=V0,m=1Ym¯=V,\overline{\bigcup_{m=1}^{\infty}X_{m}}\,=\,V_{0},\quad\overline{\bigcup_{m=1}^{\infty}Y_{m}}\,=\,V,

where

Xm:=span{φ1,,φm},Ym:=span{ψ1,,ψm}.X_{m}\,:=\,\operatorname*{span}\{\varphi_{1},\dots,\varphi_{m}\},\quad Y_{m}\,:=\,\operatorname*{span}\{\psi_{1},\dots,\psi_{m}\}.

Without any loss of generality, we may assume that

(5.3) (φk,φl)Hε=δkl,(ψk,ψl)Hμ=δklfor all k,l (δkl Kronecker’s delta).(\varphi_{k},\varphi_{l})_{H_{\varepsilon}}\,=\,\delta_{kl},\quad(\psi_{k},\psi_{l})_{H_{\mu}}\,=\,\delta_{kl}\quad\text{for all $k,l\in\mathbb{N}$ ($\delta_{kl}$ Kronecker's delta)}.

Proof of Theorem 5.1

We proceed in five steps.

Step 1. Defining Faedo-Galerkin approximations for (1.1)–(1.4)

For mm\in\mathbb{N} we define approximations by

em(t):=k=1mam,k(t)φk,hm(t):=k=1mbm,k(t)ψk,t[0,T],e_{m}(t)\,:=\,\sum_{k=1}^{m}a_{m,k}(t)\,\varphi_{k},\quad h_{m}(t)\,:=\,\sum_{k=1}^{m}b_{m,k}(t)\,\psi_{k},\quad t\in[0,T],

where the real-valued functions am,k=am,k(t)a_{m,k}=a_{m,k}(t), bm,k=bm,k(t)b_{m,k}=b_{m,k}(t) will be determined by the following system of ordinary differential equations

(5.4) a˙m,k(t)\displaystyle\dot{a}_{m,k}(t)\, =(curlhm(t)j(em(t)),φk)H\displaystyle=\,\big{(}\!\operatorname*{curl}h_{m}(t)-j(e_{m}(t)),\varphi_{k}\big{)}{}_{H}
(5.5) b˙m,k(t)\displaystyle\dot{b}_{m,k}(t)\, =(curlem(t),ψk)H\displaystyle=\,-\big{(}\!\operatorname*{curl}e_{m}(t),\psi_{k}\big{)}{}_{H}

(t[0,T]t\in[0,T], k=1,,mk=1,\dots,m).

To formulate initial conditions for (am,k,bm,k)(a_{m,k},b_{m,k}), we combine (5.2) and the density of V0V_{0} and VV in HH to obtain real numbers (αm,k,βm,k)(\alpha_{m,k},\beta_{m,k}) (k=1,,m(k=1,\dots,m) such that

k=1mαm,kφke0,k=1mβm,kψkh0in H as m.\sum_{k=1}^{m}\alpha_{m,k}\,\varphi_{k}\longrightarrow e_{0},\quad\sum_{k=1}^{m}\beta_{m,k}\,\psi_{k}\longrightarrow h_{0}\quad\text{in $H$ as $m\to\infty$}.

We now complement system (5.4), (5.5) by the initial conditions

(5.6) am,k(0)=αm,k,bm,k(0)=βm,k(k=1,,m).a_{m,k}(0)\,=\,\alpha_{m,k},\quad b_{m,k}(0)\,=\,\beta_{m,k}\quad(k=1,\dots,m).

It follows

(5.7) em(0)e0,hm(0)h0in H as m.e_{m}(0)\longrightarrow e_{0},\quad h_{m}(0)\longrightarrow h_{0}\quad\text{in $H$ as $m\to\infty$}.

We establish the existence of real-valued, absolutely continuous functions

(am,1,,am,m,bm,1,,bm,m)\big{(}a_{m,1},\dots,a_{m,m},b_{m,1},\dots,b_{m,m}\big{)}

on the interval [0,T][0,T] that satisfies equation (5.4), (5.5) for a.e. t[0,T]t\in[0,T] and attain initial values (5.6).

To this end, we introduce a mapping

fm:[0,T]×(m×m)m×mf_{m}:[0,T]\times(\mathbb{R}^{m}\times\mathbb{R}^{m})\longrightarrow\,\mathbb{R}^{m}\times\mathbb{R}^{m}

as follows. For (t,ξ,η)[0,T]×(m×m)(t,\xi,\eta)\in[0,T]\times(\mathbb{R}^{m}\times\mathbb{R}^{m}) let

fm(t,ξ,η):=(l=1m(curlψl,φ1)Hηl(j(,t,k=1mξkφk),φ1)Hl=1m(curlψl,φm)Hηl(j(,t,k=1mξkφk),φm)Hl=1m(curlφl,ψ1)Hξll=1m(curlφl,ψm)Hξl).f_{m}(t,\xi,\eta)\,:=\,\begin{pmatrix}\sum_{l=1}^{m}(\operatorname*{curl}\psi_{l},\varphi_{1})_{H}\,\eta_{l}-\big{(}j\big{(}\cdot,t,\sum_{k=1}^{m}\xi_{k}\varphi_{k}\big{)},\varphi_{1}\big{)}{}_{H}\\[3.0pt] \vdots\\[3.0pt] \sum_{l=1}^{m}(\operatorname*{curl}\psi_{l},\varphi_{m})_{H}\,\eta_{l}-\big{(}j\big{(}\cdot,t,\sum_{k=1}^{m}\xi_{k}\varphi_{k}\big{)},\varphi_{m}\big{)}{}_{H}\\[12.0pt] -\sum_{l=1}^{m}(\operatorname*{curl}\varphi_{l},\psi_{1})_{H}\,\xi_{l}\\[3.0pt] \vdots\\[3.0pt] -\sum_{l=1}^{m}(\operatorname*{curl}\varphi_{l},\psi_{m})_{H}\,\xi_{l}\end{pmatrix}.

Defining

ym:=(am,bm),y_{m}\,:=\,(a_{m},b_{m}),

we may write (5.4)–(5.6) in the form

(5.8) y˙m(t)=fm(t,ym(t))for t[0,T],\displaystyle\dot{y}_{m}(t)\,=\,f_{m}(t,y_{m}(t))\quad\text{for $t\in[0,T]$},
(5.9) ym(0)=(αm,βm)\displaystyle y_{m}(0)\,=\,(\alpha_{m},\beta_{m})

(αm\alpha_{m}, βm\beta_{m} as in (5.6)).

The following properties of fmf_{m} are readily seen:

  • (i)

    tfm(t,ξ,η)t\longmapsto f_{m}(t,\xi,\eta) is measurable on [0,T][0,T] for all (ξ,η)m×m(\xi,\eta)\in\mathbb{R}^{m}\times\mathbb{R}^{m};

  • (ii)

    (ξ,η)fm(t,ξ,η)(\xi,\eta)\longmapsto f_{m}(t,\xi,\eta) is continuous on m×m\mathbb{R}^{m}\times\mathbb{R}^{m} for a.e. t[0,T]t\in[0,T];

  • (iii)

    there exists km=const>0k_{m}=\operatorname*{const}>0 such that

    |fm(t,ξ,η)|km(j0(,t)H+|ξ|+|η|)|f_{m}(t,\xi,\eta)|\,\leq\,k_{m}\big{(}\|j_{0}(\cdot,t)\|_{H}+|\xi|+|\eta|\big{)}

    for a.e. t[0,T]t\in[0,T] and all (ξ,η)m×m(\xi,\eta)\in\mathbb{R}^{m}\times\mathbb{R}^{m}

(cf. Appendix A below). Indeed, to verify (i), (ii) it is evidently sufficient to note that the functions

(t,ξ)(j(,t,k=1mξkφk),φl),H(t,ξ)[0,T]×m,l=1,,m\textstyle(t,\xi)\longmapsto\big{(}j\big{(}\cdot,t,\sum_{k=1}^{m}\xi_{k}\varphi_{k}\big{)},\varphi_{l}\big{)}{}_{H},\quad(t,\xi)\in[0,T]\times\mathbb{R}^{m},\quad l=1,\dots,m

satisfy (i), (ii). This can be easily derived from (H2), (H3) be the aid of the Fubini theorem and the Lebesgue dominated convergence theorem. Appealing once more to these hypotheses on obtains the bounds on |fm||f_{m}| in (iii).

We are now in a position to apply an existence result for solutions to the Cauchy problem for ordinary differential equations (cf. Appendix A, Theorem A.2). From this result it follows that there exists an absolutely continuous function ym:[0,T]m×my_{m}:[0,T]\longrightarrow\mathbb{R}^{m}\times\mathbb{R}^{m} that satisfies system (5.8) for a.e. t[0,T]t\in[0,T] and attains initial value (5.9). Thus, defining functions (am,bm)(a_{m},b_{m}) by

am,k:=ym,k,bm,l:=ym,m+lfor k,l=1,,m,a_{m,k}\,:=\,y_{m,k},\quad b_{m,l}\,:=\,y_{m,m+l}\quad\text{for $k,l=1,\dots,m$},

we obtain a solution of (5.4)–(5.6).

Step 2. A-priori estimates

First, observing (5.3) we may write (5.4), (5.5) in the form

(5.10) (e˙m(s),φk)+Hε(curlhm(s)+j(em(s)),φk)H\displaystyle\big{(}\dot{e}_{m}(s),\varphi_{k}\big{)}{}_{H_{\varepsilon}}+\big{(}{-}\operatorname*{curl}h_{m}(s)+j(e_{m}(s)),\varphi_{k}\big{)}{}_{H}\, = 0,\displaystyle=\,0,
(5.11) (h˙m(s),ψl)+Hμ(curlem(s),ψl)H\displaystyle\big{(}\dot{h}_{m}(s),\psi_{l}\big{)}{}_{H_{\mu}}+\big{(}\!\operatorname*{curl}e_{m}(s),\psi_{l}\big{)}{}_{H}\, = 0\displaystyle=\,0

for a.e. s[0,T]s\in[0,T] (mm\in\mathbb{N}; k,l=1,,mk,l=1,\dots,m). We multiply (5.10) by am,k(s)a_{m,k}(s), (5.11) by bm,l(s)b_{m,l}(s), sum for k,l=1,,mk,l=1,\dots,m, make then use of the identity

Ω(curlem(s))hm(s)ds=Ωem(s)curlhm(s)ds,s[0,T],\int_{\Omega}(\operatorname*{curl}e_{m}(s))\cdot h_{m}(s)\,\mathrm{d}s\,=\,\int_{\Omega}e_{m}(s)\cdot\operatorname*{curl}h_{m}(s)\,\mathrm{d}s,\quad s\in[0,T],

integrate the equations obtained in this way over the interval [0,t][0,t] (t[0,T]t\in[0,T]) and integrate by parts with respect to ss the terms involving e˙m(s)\dot{e}_{m}(s) and h˙m(s)\dot{h}_{m}(s). To estimate the integral 0t(j(em),em)Hds\int_{0}^{t}(j(e_{m}),e_{m})_{H}\,\mathrm{d}s, we use hypotheses (H2), (H3) and (H6). It follows

em(t)Hε2+hm(t)Hμ2\displaystyle\|e_{m}(t)\|^{2}_{H_{\varepsilon}}+\|h_{m}(t)\|^{2}_{H_{\mu}}\, =em(0)Hε2+hm(0)Hμ220t(j(em),em)Hds\displaystyle=\,\|e_{m}(0)\|^{2}_{H_{\varepsilon}}+\|h_{m}(0)\|^{2}_{H_{\mu}}-2\int_{0}^{t}(j(e_{m}),e_{m})_{H}\,\mathrm{d}s
em(0)Hε2+hm(0)Hμ2+c2(j0L2(QT)32+0temHε2ds)\displaystyle\leq\,\|e_{m}(0)\|^{2}_{H_{\varepsilon}}+\|h_{m}(0)\|^{2}_{H_{\mu}}+c_{2}\Bigg{(}\|j_{0}\|^{2}_{L^{2}(Q_{T})^{3}}+\int_{0}^{t}\|e_{m}\|^{2}_{H_{\varepsilon}}\,\mathrm{d}s\Bigg{)}

for all t[0,T]t\in[0,T] (c2=const>0c_{2}=\operatorname*{const}>0 depending only on the constants c1c_{1} and ε\varepsilon_{*} from (H3) and (H6), respectively). Thus, by the Gronwall lemma (cf. Appendix A below),

(5.12) em(t)Hε2+hm(t)Hμ2c3(em(0)Hε2+hm(0)Hμ2+j0L2(QT)32)\|e_{m}(t)\|^{2}_{H_{\varepsilon}}+\|h_{m}(t)\|^{2}_{H_{\mu}}\,\leq\,c_{3}\left(\|e_{m}(0)\|^{2}_{H_{\varepsilon}}+\|h_{m}(0)\|^{2}_{H_{\mu}}+\|j_{0}\|^{2}_{L^{2}(Q_{T})^{3}}\right)

for all t[0,T]t\in[0,T] and all mm\in\mathbb{N} (c3=const>0c_{3}=\operatorname*{const}>0 depending on c2c_{2} as well as on TT).

Step 3. Passing to the limits as mm\to\infty

In view of (5.7) the right-hand side of (5.12) is uniformly bounded with respect to mm\in\mathbb{N}. Thus, from (5.12) we conclude that there exists a subsequence of (em,hm)(e_{m},h_{m}) (not relabelled) and elements

e,hL(0,T;H),v,wH,χL2(QT)3e,h\in L^{\infty}(0,T;H),\quad v,w\in H,\quad\chi\in L^{2}(Q_{T})^{3}

such that

(5.13) eme,hmhweakly* in L(0,T;H),\displaystyle e_{m}\longrightarrow e,\quad h_{m}\longrightarrow h\quad\text{weakly* in $L^{\infty}(0,T;H)$},
(5.14) em(T)v,hm(T)wweakly in H,\displaystyle e_{m}(T)\longrightarrow v,\quad h_{m}(T)\longrightarrow w\quad\text{weakly in $H$},
(5.15) j(em)χweakly in L2(QT)3\displaystyle j(e_{m})\longrightarrow\chi\quad\text{weakly in $L^{2}(Q_{T})^{3}$}

as mm\to\infty. Moreover, passing to the limits in (5.12) as mm\to\infty we find (5.1) (with c=c3c=c_{3}).

Let NN\in\mathbb{N}. Given m>Nm>N, in (5.10), (5.11) we only consider equations with indices k=1,,Nk=1,\dots,N. By the definition of XN,YNX_{N},Y_{N}, for a.e. t[0,T]t\in[0,T],

(5.16) (e˙m(t),φ)+Hε(curlhm(t)+j(em(t)),φ)H\displaystyle\big{(}\dot{e}_{m}(t),\varphi\big{)}{}_{H_{\varepsilon}}+\big{(}{-}\operatorname*{curl}h_{m}(t)+j(e_{m}(t)),\varphi\big{)}{}_{H}\, = 0\displaystyle=\,0 for any φXN,\displaystyle\text{for any $\varphi\in X_{N}$},
(5.17) (h˙m(t),ψ)+Hμ(curlem(t),ψ)H\displaystyle\big{(}\dot{h}_{m}(t),\psi\big{)}{}_{H_{\mu}}+\big{(}\!\operatorname*{curl}e_{m}(t),\psi\big{)}{}_{H}\, = 0\displaystyle=\,0 for any ψYN.\displaystyle\text{for any $\psi\in Y_{N}$}.

Next, let ζ,θC1([0,T])\zeta,\theta\in C^{1}([0,T]). We multiply (5.16) by ζ(t)\zeta(t), (5.17) by θ(t)\theta(t), integrate over the interval [0,T][0,T] and integrate by parts with respect to tt the terms involving e˙m(t)\dot{e}_{m}(t) and h˙m(t)\dot{h}_{m}(t). Using (5.7) and (5.13)–(5.15) we obtain upon letting tend mm\to\infty

(5.18) {(v,φ)Hεζ(T)(e0,φ)Hεζ(0)0T(e(t),φ)Hεζ˙(t)dt+0T((h(t),curlφ)H+(χ(t),φ)H)ζ(t)dt= 0for any φXN,\displaystyle\left\{\begin{aligned} &(v,\varphi)_{H_{\varepsilon}}\,\zeta(T)-(e_{0},\varphi)_{H_{\varepsilon}}\,\zeta(0)-\int_{0}^{T}(e(t),\varphi)_{H_{\varepsilon}}\,\dot{\zeta}(t)\,\mathrm{d}t\\ &+\int_{0}^{T}\big{(}{-}(h(t),\operatorname*{curl}\varphi)_{H}+(\chi(t),\varphi)_{H}\big{)}\,\zeta(t)\,\mathrm{d}t\,=\,0\quad\text{for any $\varphi\in X_{N}$},\end{aligned}\right.
(5.19) {(w,ψ)Hμθ(T)(h0,ψ)Hμζ(0)0T(h(t),ψ)Hμθ˙(t)dt+0T(e(t),curlψ)Hθ(t)dt= 0for any ψYN.\displaystyle\left\{\begin{aligned} &(w,\psi)_{H_{\mu}}\,\theta(T)-(h_{0},\psi)_{H_{\mu}}\,\zeta(0)-\int_{0}^{T}(h(t),\psi)_{H_{\mu}}\,\dot{\theta}(t)\,\mathrm{d}t\\ &+\int_{0}^{T}(e(t),\operatorname*{curl}\psi)_{H}\,\theta(t)\,\mathrm{d}t\,=\,0\quad\text{for any $\psi\in Y_{N}$}.\end{aligned}\right.

From (5.2) it follows that (5.18), (5.19) continue to hold true for any φV0\varphi\in V_{0} resp. ψV\psi\in V.

To proceed, let ζ,θC1([0,T])\zeta,\theta\in C^{1}([0,T]) be such that ζ(T)=θ(T)=0\zeta(T)=\theta(T)=0. Then (5.18), (5.19) can be viewed as a variant of (2.9), (2.10) with j0=χj_{0}=\chi, j1=0j_{1}=0 (take Φ(x,t)=φ(x)ζ(t)\Phi(x,t)=\varphi(x)\,\zeta(t), Ψ(x,t)=ψ(x)θ(t)\Psi(x,t)=\psi(x)\,\theta(t), (x,t)QT(x,t)\in Q_{T}). From Theorem 2.1 and its proof it follows that there exist the distributional derivatives

(εe)L2(0,T;V0),(μh)L2(0,T;V),(\varepsilon e)^{\prime}\in L^{2}(0,T;V_{0}^{*}),\quad(\mu h)^{\prime}\in L^{2}(0,T;V^{*}),

where, for a.e. t[0,T]t\in[0,T],

(5.20) (εe)(t),φV0(h(t),curlφ)H+(χ(t),φ)H\displaystyle\langle(\varepsilon e)^{\prime}(t),\varphi\rangle_{V_{0}}-(h(t),\operatorname*{curl}\varphi)_{H}+(\chi(t),\varphi)_{H}\, = 0\displaystyle=\,0 for all φV0,\displaystyle\text{for all $\varphi\in V_{0}$},
(5.21) (μh)(t),ψV+(e(t),curlψ)H\displaystyle\langle(\mu h)^{\prime}(t),\psi\rangle_{V}+(e(t),\operatorname*{curl}\psi)_{H}\, = 0\displaystyle=\,0 for all ψV.\displaystyle\text{for all $\psi\in V$}.

In addition, the continuous representatives e^,h^C([0,T];H)\hat{e},\hat{h}\in C([0,T];H) in the equivalence classes e,hL(0,T;H)e,h\in L^{\infty}(0,T;H) attain the initial values e^(0)=e0\hat{e}(0)=e_{0}, h^(0)=h0\hat{h}(0)=h_{0} in HH and satisfy the energy equality

(5.22) 12(e^(t)Hε2+h^(t)Hμ2)+0t(χ,e)Hds=12(e0Hε2+h0Hμ2)for all t[0,T]\frac{1}{2}\Big{(}\|\hat{e}(t)\|^{2}_{H_{\varepsilon}}+\|\hat{h}(t)\|^{2}_{H_{\mu}}\Big{)}+\int_{0}^{t}(\chi,e)_{H}\,\mathrm{d}s\,=\,\frac{1}{2}\Big{(}\|e_{0}\|^{2}_{H_{\varepsilon}}+\|h_{0}\|^{2}_{H_{\mu}}\Big{)}\quad\text{for all $t\in[0,T]$}

(see Theorem 3.1 and Theorem 4.1).

Step 4. Proof of v=e^(T)v=\hat{e}(T), w=h^(T)w=\hat{h}(T)

We consider (5.18), (5.19) with ζ,θC1([0,T])\zeta,\theta\in C^{1}([0,T]) satisfying ζ(0)=θ(0)=0\zeta(0)=\theta(0)=0 and ζ(T)=θ(T)=1\zeta(T)=\theta(T)=1. It follows

(5.23) {(v,φ)Hε0T(e(t),φ)Hεζ˙(t)dt+0T((h(t),curlφ)H+(χ(t),φ)H)ζ(t)dt= 0for any φV0,\displaystyle\left\{\begin{aligned} &(v,\varphi)_{H_{\varepsilon}}-\int_{0}^{T}(e(t),\varphi)_{H_{\varepsilon}}\,\dot{\zeta}(t)\,\mathrm{d}t+\int_{0}^{T}\big{(}{-}(h(t),\operatorname*{curl}\varphi)_{H}+(\chi(t),\varphi)_{H}\big{)}\,\zeta(t)\,\mathrm{d}t\,=\,0\\ &\;\text{for any $\varphi\in V_{0}$},\end{aligned}\right.
(5.24) {(w,ψ)Hμ0T(h(t),ψ)Hμθ˙(t)dt+0T(e(t),curlψ)Hθ(t)dt= 0for any ψV.\displaystyle\left\{\begin{aligned} &(w,\psi)_{H_{\mu}}-\int_{0}^{T}(h(t),\psi)_{H_{\mu}}\,\dot{\theta}(t)\,\mathrm{d}t+\int_{0}^{T}(e(t),\operatorname*{curl}\psi)_{H}\,\theta(t)\,\mathrm{d}t\,=\,0\\ &\;\text{for any $\psi\in V$}.\end{aligned}\right.

Thus, by (5.23), for any φV0\varphi\in V_{0},

(v,φ)Hε0T(e(t),φ)Hεζ˙(t)dt\displaystyle(v,\varphi)_{H_{\varepsilon}}-\int_{0}^{T}(e(t),\varphi)_{H_{\varepsilon}}\,\dot{\zeta}(t)\,\mathrm{d}t\, =0T(εe)(t),φV0(by (5.20))\displaystyle=\,\int_{0}^{T}\langle(\varepsilon e)^{\prime}(t),\varphi\rangle_{V_{0}}\quad\text{(by~{}(5.20))}
=(e^(T),φ)Hε0T(e(t),φ)Hεζ˙(t)dt\displaystyle=\,(\hat{e}(T),\varphi)_{H_{\varepsilon}}-\int_{0}^{T}(e(t),\varphi)_{H_{\varepsilon}}\,\dot{\zeta}(t)\,\mathrm{d}t

(by integration by parts (2.13), and (2.11)). Whence, v=e^(T)v=\hat{e}(T) in HH. The claim w=h^(T)w=\hat{h}(T) in HH follows from (5.24) and (5.21) by an analogous argument.

Step 5. Proof of χ=j(e)\chi=j(e)

To begin with, we note that

lim supm0T(j(em),em)Hds\displaystyle\limsup_{m\to\infty}\int_{0}^{T}(j(e_{m}),e_{m})_{H}\,\mathrm{d}s\, 12(e0Hε2+h0Hμ2)12lim infm(em(T)Hε2+hm(T)Hμ2)\displaystyle\leq\,\frac{1}{2}\Big{(}\|e_{0}\|^{2}_{H_{\varepsilon}}+\|h_{0}\|^{2}_{H_{\mu}}\Big{)}-\frac{1}{2}\liminf_{m\to\infty}\Big{(}\|e_{m}(T)\|^{2}_{H_{\varepsilon}}+\|h_{m}(T)\|^{2}_{H_{\mu}}\Big{)}
12(e0Hε2+h0Hμ2)12(e^(T)Hε2+h^(T)Hμ2)\displaystyle\leq\,\frac{1}{2}\Big{(}\|e_{0}\|^{2}_{H_{\varepsilon}}+\|h_{0}\|^{2}_{H_{\mu}}\Big{)}-\frac{1}{2}\Big{(}\|\hat{e}(T)\|^{2}_{H_{\varepsilon}}+\|\hat{h}(T)\|^{2}_{H_{\mu}}\Big{)}

(by (5.14) and v=e^(T)v=\hat{e}(T), w=h^(T)w=\hat{h}(T) (see Step 4)). Hence, using energy equality (5.22) for t=Tt=T, we get

(5.25) lim supm0T(j(em),em)Hds0T(χ,e)Hds\limsup_{m\to\infty}\int_{0}^{T}(j(e_{m}),e_{m})_{H}\,\mathrm{d}s\,\leq\,\int_{0}^{T}(\chi,e)_{H}\,\mathrm{d}s

Finally, let zL2(QT)3z\in L^{2}(Q_{T})^{3} and λ>0\lambda>0. The monontonicity of ξj(,,ξ)\xi\longmapsto j(\cdot,\cdot,\xi) (cf. (H7)) implies

0T(j(em)j(eλz),em(eλz))dHs 0.\int_{0}^{T}\big{(}j(e_{m})-j(e-\lambda z),e_{m}-(e-\lambda z)\big{)}{}_{H}\,\mathrm{d}s\,\geq\,0.

Using (5.13), (5.15) and (5.25) we find upon letting tend mm\to\infty and then dividing by λ\lambda

(5.26) 0T(χj(eλz),z)Hds 0.\int_{0}^{T}(\chi-j(e-\lambda z),z)_{H}\,\mathrm{d}s\,\geq\,0.

Now, hypotheses (H2), (H3) allow us to make use of the Lebesgue dominated convergence theorem for the passage to limit as λ0\lambda\to 0 in (5.26). It follows

χ=j(e)a.e. in QT.\chi=j(e)\quad\text{a.e.~{}in $Q_{T}$}.

The proof of Theorem 5.1 is complete.

Remark 5.1.

The uniqueness of weak solutions (e,h)(e,h) of (1.1)–(1.4) (cf. Section 4) implies the convergence of the whole sequence of Faedo-Galerkin approximations (em,hm)(e_{m},h_{m}) to (e,h)(e,h).

Remark 5.2.

We note that the mapping j:L2(QT)3L2(QT)3j:L^{2}(Q_{T})^{3}\longrightarrow L^{2}(Q_{T})^{3} is a special case of an operator of type (M)(M). Our above reasoning for proving χ=j(e)\chi=j(e) is a variant of the well-known “Minty trick” (see [22, p. 173], [33, p. 474]).

Appendix A On the solvability of the Cauchy problem for an ordinary differential equation

In this appendix, we prove the existence of a solution of the Cauchy problem

(A.1) y˙(t)=f(t,y(t))for t[0,T],y(0)=y0\dot{y}(t)\,=\,f(t,y(t))\quad\text{for $t\in[0,T]$},\quad y(0)\,=\,y_{0}

of C. Carathéodory [6, §§ 576–592] (0<T<+0<T<+\infty, y0ny_{0}\in\mathbb{R}^{n}). For this, we impose on the function f:[0,T]×nnf:[0,T]\times\mathbb{R}^{n}\longrightarrow\mathbb{R}^{n} the conditions

(a) tf(t,ξ) is measurable on [0,T] for all ξn,\displaystyle\text{$t\longmapsto f(t,\xi)$ is measurable on $[0,T]$ for all $\xi\in\mathbb{R}^{n}$},
(b) ξf(t,ξ) is continuous on n for a.e. t[0,T].\displaystyle\text{$\xi\longmapsto f(t,\xi)$ is continuous on $\mathbb{R}^{n}$ for a.e.~{}$t\in[0,T]$}.

From (a), (b) it follows that for any measurable function y:[0,T]ny:[0,T]\longrightarrow\mathbb{R}^{n} the function

tf(t,y(t)),t[0,T]t\longmapsto f(t,y(t)),\quad t\in[0,T]

is measurable on [0,T][0,T] (see [6, p. 665], [18, p. 195]). Functions that satisfy conditions (a), (b) are usually called Carathéodory functions.

Theorem A.1.

Let f:[0,T]×nnf:[0,T]\times\mathbb{R}^{n}\to\mathbb{R}^{n} satisfy conditions (a), (b) and suppose that there exists a non-negative integrable function AA defined on [0,T][0,T] such that

|f(t,ξ)|A(t)for all (t,ξ)[0,T]×n.|f(t,\xi)|\,\leq\,A(t)\quad\text{for all $(t,\xi)\in[0,T]\times\mathbb{R}^{n}$}.

Then, for every y0ny_{0}\in\mathbb{R}^{n} there exists an absolutely continuous function y:[0,T]ny:[0,T]\longrightarrow\mathbb{R}^{n} that fulfills the equation in (A.1) for a.e. t[0,T]t\in[0,T] and attains the initial value y(0)=y0y(0)=y_{0}.

For proofs see [6, pp. 668–672, Satz 2] as well as [18, pp. 193–197, Satz 1]. We note that these proofs yield in one step the existence of a solution of (A.1) on the whole interval [0,T][0,T]. In [7, pp. 43–44, Thm. 1.1], the authors prove an existence result for (A.1) on some subinterval [0,T0][0,T_{0}] (0<T0T0<T_{0}\leq T).

We now present an extension of Theorem A.1 for functions ff with a more general growth with respect to (t,ξ)(t,\xi). This result implies straightforwardly the existence of Faedo-Galerkin approximations we used in the proof of Theorem 5.1.

Theorem A.2.

Let f:[0,T]×nnf:[0,T]\times\mathbb{R}^{n}\longrightarrow\mathbb{R}^{n} satisfy conditions (a), (b) and suppose that there are a non-negative integrable function AA defined on [0,T][0,T], and C0=const>0C_{0}=\operatorname*{const}>0 such that

(c) |f(t,ξ)|A(t)+C0|ξ|for all (t,ξ)[0,T]×n.|f(t,\xi)|\,\leq\,A(t)+C_{0}|\xi|\quad\text{for all $(t,\xi)\in[0,T]\times\mathbb{R}^{n}$}.

Then the conclusion of Theorem A.1 holds true.

For proving this result we will make use of the following

Lemma (Gronwall).

Let c1,c2c_{1},c_{2} be non-negative constants. Let uu be a non-negative integrable function on [0,T][0,T] such that

u(t)c1+c20tu(s)dsfor all t[0,T].u(t)\,\leq\,c_{1}+c_{2}\int_{0}^{t}u(s)\,\mathrm{d}s\quad\text{for all $t\in[0,T]$}.

Then,

u(t)c1(1+c2texp(c2t))for all t[0,T].u(t)\,\leq\,c_{1}\big{(}1+c_{2}t\exp(c_{2}t)\big{)}\quad\text{for all $t\in[0,T]$}.
Proof of Theorem A.2.

Fix any real number

r>(1+C0Texp(C0T))0T(A(t)+C0|y0|)dtr>\big{(}1+C_{0}T\exp(C_{0}T)\big{)}\int_{0}^{T}(A(t)+C_{0}|y_{0}|)\,\mathrm{d}t

and, for any (t,ξ)[0,T]×n(t,\xi)\in[0,T]\times\mathbb{R}^{n}, define

fr(t,ξ):={f(t,ξ)if |ξy0|r,f(t,y0+rξy0|ξy0|)if |ξy0|>rf_{r}(t,\xi)\,:=\,\begin{cases}f(t,\xi)&\text{if $|\xi-y_{0}|\leq r$},\\ f\!\left(t,y_{0}+r\,\displaystyle\frac{\xi-y_{0}}{|\xi-y_{0}|}\right)&\text{if $|\xi-y_{0}|>r$}\end{cases}

(cf. [18, p. 198]). The function frf_{r} satisfies conditions (a), (b). From (c) it follows

(A.2) |fr(t,ξ)|\displaystyle|f_{r}(t,\xi)|\, A(t)+C0(|y0|+r),\displaystyle\leq\,A(t)+C_{0}(|y_{0}|+r),
(A.3) |fr(t,ξ)|\displaystyle|f_{r}(t,\xi)|\, A(t)+C0(|y0|+|ξy0|)\displaystyle\leq\,A(t)+C_{0}(|y_{0}|+|\xi-y_{0}|)

for all (t,ξ)[0,T]×n(t,\xi)\in[0,T]\times\mathbb{R}^{n}.

Observing (A.2), from Theorem A.1 we infer the existence of an absolutely continuous function yr:[0,T]ny_{r}:[0,T]\longrightarrow\mathbb{R}^{n} such that

(A.4) yr(t)=y0+0tfr(s,yr(s))dsfor all t[0,T].y_{r}(t)\,=\,y_{0}+\int_{0}^{t}f_{r}(s,y_{r}(s))\,\mathrm{d}s\quad\text{for all $t\in[0,T]$}.

By (A.3),

|yr(t)y0|0t(A(s)+C0|y0|)ds+C00t|yr(s)y0|dsfor all t[0,T].|y_{r}(t)-y_{0}|\,\leq\,\int_{0}^{t}(A(s)+C_{0}|y_{0}|)\,\mathrm{d}s+C_{0}\int_{0}^{t}|y_{r}(s)-y_{0}|\,\mathrm{d}s\quad\text{for all $t\in[0,T]$}.

Thus, by the Gronwall lemma,

|yr(t)y0|0T(A(s)+C0|y0|)ds(1+C0Texp(C0T))r|y_{r}(t)-y_{0}|\,\leq\,\int_{0}^{T}(A(s)+C_{0}|y_{0}|)\,\mathrm{d}s\,\big{(}1+C_{0}T\exp(C_{0}T)\big{)}\,\leq\,r

and therefore

fr(t,yr(t))=f(t,yr(t))for all t[0,T].f_{r}(t,y_{r}(t))\,=\,f(t,y_{r}(t))\quad\text{for all $t\in[0,T]$}.

Hence, the function y:=yry:=y_{r} satisfies (A.1) for a.e. t[0,T]t\in[0,T], and y(0)=y0y(0)=y_{0}. The proof of the theorem is complete. ∎

Finally, under significantly more general growth conditions on ff than (c) above, the existence of a solution of (A.1) on a subinterval [0,T][0,T^{*}] (0<T<T0<T^{*}<T) has been proved in [6, pp. 681–682, Satz 6] and [18, pp. 197–199, Satz 2]. For continuous functions f:[0,T]×nnf:[0,T]\times\mathbb{R}^{n}\longrightarrow\mathbb{R}^{n} which satisfy slightly more general growth conditions than (c) above, the proof of the existence of a solution of (A.1) on the whole interval [0,T][0,T] has been formulated as Problem 5 in [7, p. 61].

References

  • [1] C. Amrouche, C. Bernardi, M. Dauge, and V. Girault, Vector potentials in three-dimensional non-smooth domains. Math. Methods Appl. Sci. 21 (1998), 823–864.
  • [2] N. Bourbaki, Éléments de mathématique. Livre VI: Intégration 1–4. Hermann & Cie., Paris 1965.
  • [3] H. Brézis, Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert. North-Holland Publishing Comp., Amsterdam, London 1973.
  • [4] A. Buffa, Trace theorems on non-smooth boundaries for functional spaces related to Maxwell equations: An overview. In: C. Carstensen, S. Funken, W. Hackbusch, R. H. W. Hoppe, P. Monk (eds.), Computational Electromagnetics. Lecture Notes in Computational Science and Engineering 28. Springer-Verlag, Berlin 2003, pp. 23–34.
  • [5] A. Buffa, M. Costabel and D. Sheen, On traces for H(curl,Ω)H(\operatorname*{curl},\Omega) in Lipschitz domains. J. Math. Anal. Appl. 276 (2002), 845–867.
  • [6] C. Carathéodory, Vorlesungen über reelle Funktionen. Teubner-Verlag, Leipzig 1918. 2., erw. Aufl., Teubner-Verlag, Leipzig 1927. Reprint 2nd ed., Chelsea Publishing Comp., New York 1948.
  • [7] E. A. Coddington and N. Levinson, Theory of ordinary differential equations. McGraw-Hill Book Company, New York 1955.
  • [8] R. Dautray and J.-L. Lions, Mathematical analysis and numerical methods for science and technology. (In six volumes). Volume 3: Spectral theory and applications. Springer-Verlag, Berlin 1990.
  • [9] J. Droniou, Intégration et espaces de Sobolev à valeurs vectorielles. April 20, 2001. [https://hal. archives-ouvertes.fr/hal-01382368].
  • [10] G. Duvaut and J.-L. Lions, Les inéquations en mécanique et en physique. Dunod, Paris 1972.
  • [11] M. Eller, Stability of the anisotropic Maxwell equations with a conductivity term. Evol. Equ. Control Theory 8 (2019), 343–357.
  • [12] M. Fabrizio and A. Morro, Electromagnetism of continuous media. Mathematical modelling and applications. Oxford University Press, Oxford 2003.
  • [13] K. O. Friedrichs, Symmetric hyperbolic linear differential equations. Comm. Pure Appl. Math. 7 (1954), 345–392.
  • [14] V. Girault and P.-A. Raviart, Finite element methods for Navier-Stokes equations. Theory and algorithms. Springer-Verlag, Berlin 1986.
  • [15] J. D. Jackson, Classical electrodynamics. 2nd ed., John Wiley & Sons, New York 1975.
  • [16] F. Jochmann, Existence of weak solutions of the drift diffusion model coupled with Maxwell’s equations. J. Math. Anal. Appl. 204 (1996), 655–676.
  • [17] F. Jochmann, Energy decay of solutions of Maxwell’s equations in bounded domains. Appl. Anal. 75 (2000), 199–212.
  • [18] E. Kamke, Das Lebesgue-Stieltjes-Integral. 2., verb. Aufl., Teubner-Verlag, Leipzig 1960.
  • [19] O. A. Ladyžhenskaya, V. A. Solonnikov, and N. N. Ural’tseva, Linear and quasilinear equations of parabolic type. American Mathematical Society, Providence, Rhode Island 1968.
  • [20] R. Leis, Zur Theorie elektromagnetischer Schwingungen in anisotropen inhomogenen Medien. Math. Z. 106 (1968), 213–224.
  • [21] J. L. Lions and E. Magenes, Problèmes aux limites non homogènes et applications. Volume 1. Dunod, Paris 1968.
  • [22] J. L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod, Gauthier-Villars, Paris 1969.
  • [23] J. C. Maxwell, A dynamical theory of the electromagnetic field. Philos. Trans. Roy. Soc. 155 (1865), 459–512.
  • [24] P. Monk, Finite element methods for Maxwell’s equation. Oxford University Press, Oxford 2003.
  • [25] J. Naumann, On some properties of weak solutions to the Maxwell equations. May 14, 2021. [arXiv: 2105.07063v1].
  • [26] J. Nečas, Les méthodes directes en théorie des équations elliptiques. Academia, Prague 1967. English translation: Direct methodes in the theory of elliptic equations. Springer-Verlag, Berlin 2012.
  • [27] R. Picard, S. Trostorff and M. Waurick, Well-posedness via monotonicity – an overview. In: W. Arendt, R. Chill, Y. Tomilov (eds.), Operator Theory: Advances and Applications 250. Birkhäuser-Verlag, Cham 2015, pp. 397–452.
  • [28] A. Sommerfeld, Vorlesungen über theoretische Physik. Band III: Elektrodynamik. 5. Aufl., Akad. Verlagsgesellsch. Geest & Portig K.-G., Leipzig 1967.
  • [29] M. Spitz, Local wellposedness of nonlinear Maxwell equations with perfectly conducting boundary conditions. J. Differential Equations 266 (2019), 5012–5063.
  • [30] Ch. Weber, A local compactness theorem for Maxwell’s equation. Math. Methods Appl. Sci. 2 (1980), 12–25.
  • [31] J. Wellander, Homogenization of the Maxwell equations. Case II: Nonlinear conductivity. Appl. Math. 47 (2002), 255–283.
  • [32] E. Zeidler, Nonlinear functional analysis and its applications. II/A: Linear monotone operators. Springer-Verlag, New York 1990.
  • [33] E. Zeidler, Nonlinear functional analysis and its applications. II/B: Nonlinear monotone operators. Springer-Verlag, New York 1990.