This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Well-posedness and convergence analysis of PML method for time-dependent acoustic scattering problems over a locally rough surface

Hongxia Guo School of Mathematical Sciences and LPMC, Nankai University, 300071 Tianjin, China. ([email protected])    Guanghui Hu (Corresponding author) School of Mathematical Sciences and LPMC, Nankai University, 300071 Tianjin, China. ([email protected])
Abstract

We aim to analyze and calculate time-dependent acoustic wave scattering by a bounded obstacle and a locally perturbed non-selfintersecting curve. The scattering problem is equivalently reformulated as an initial-boundary value problem of the wave equation in a truncated bounded domain through a well-defined transparent boundary condition. Well-posedness and stability of the reduced problem are established. Numerically, we adopt the perfect matched layer (PML) scheme for simulating the propagation of perturbed waves. By designing a special absorbing medium in a semi-circular PML, we show well-posedness and stability of the truncated initial-boundary value problem. Finally, we prove that the PML solution converges exponentially to the exact solution in the physical domain. Numerical results are reported to verify the exponential convergence with respect to absorbing medium parameters and thickness of the PML.

Keywords: wave equation, well-posedness, PML, convergence.

1 Introduction

The scattering problems over a half-space with local perturbations have widely considered in the fields of radar techniques, sonar, ocean surface detection, medical detection, geophysics, outdoor sound propagation and so on. Such problems are also referred to as cavity scattering problems in the literature; see e.g. [30, 39, 1, 2] where variational and integral equation methods (see also [1, 2]) were adopted to reduce the unbounded physical domain to a truncated computational domain in the time-harmonic regime. In this paper we concern the time-dependent scattering problems governed by wave equations.

If the domain of the wave equations is unbounded, one can either use transparent/absorbing boundary conditions to minimize the spurious reflections or absorbing boundary layers, which are usually referred to perfectly matched layers (PML), to bound the unbounded physical domain by truncated computational domain in the numerical simulation. A major challenge is to construct the temporal dependence of the transparent boundary condition [21] or the artificially designed absorbing medium (see e.g.,[24]) in the PML method. The PML scheme is initially introduced by Bérenger for 2D and 3D Maxwell equations [7, 8]. The basic idea of the PML is to surround the physically computational domain by some artificial medium that absorbs outgoing waves effectively. Mathematically, a PML layer method can be equivalently formulated as a complex stretching of the external domain. Such a feature makes PML an effective for modeling a variety of wave phenomena [12, 16, 23, 36]. Due to its barely reflective absorption of out going waves, PML turns out to be very popular for simulating the propagation of waves in time domain [26, 27, 28].

For time-harmonic scattering problems, the PML formulation was introduced in [17] to locally perturbed rough surface scattering problems. We also refer the readers to [18, 25, 29] for the analysis of acoustic scattering problem in the whole space and to [13, 4] for electromagnetic scattering problems where the convergence rate depends exponentially on the absorption parameter and thickness of PML layer. In theory it is crucial to investigate well-posedness, stability, convergence of the PML formulation. This paper is concerned with the mathematical analysis and numerical simulation of the time-dependent acoustic scattering problem in a locally perturbed half space with the following issues:

(1)

well-posedeness and stability of the time-dependent problem using the Dirichlet-to-Neumann (DtN) operator;

(2)

well-posedness and long-time stability of the PML formulation in a truncated domain;

(3)

convergence of the solution of the PML formulation to that of the original problem;

(4)

numerical tests of the exponential convergence of the PML method.

To the best of our knowledge, the mathematical investigation of the convergence/error analysis of the PML problem for wave equations is far from being complete, in comparision with the vast works for time-harmonic scattering problems. Existing results mainly concern the well-posedness and stability of PML problem; see e.g., [3, 10, 9, 14] where the absorption parameter was all assumed to be a constant. Using Laplace transform and the transparent boundary conditions (TBC), the exponential convergence with respect to the thickness and the absorbing parameter has been justified in [19, 20] for time-dependent acoustic scattering problems in the whole space. Later the approach of applying Laplace transform [19, 20] has been extended to the cases of waveguides [11], periodic structures as well as electromagnetic scattering problems in the whole space [38]. See also [5, 31, 37] for the analysis of the time-dependent fluid-solid interaction problems and electromagnetic scattering problems. Nevertheless, the exponential convergence results in the aforementioned literatures are not confirmed by numerical examples. On the other hand, as far as we know, a comprehensive analysis is still missing for the PML method to the acoustic wave equation in a locally perturbed half space.

In this work, a perturbation of the half plane {x:x2>0}\{x:x_{2}>0\} can be caused by either a bounded obstacle imbedded in the background medium or a compact change of the unbounded curve x2=0x_{2}=0; see the geometry shown in Figure 1. Firstly, we adopt the approach of [19] to prove well-posedness of the scattering problem in proper time-dependent Sobolev spaces by using a well-defined TBC (Dirichlet-to-Neumann operator). We complement the earlier work [19] by describing mapping properties of the DtN operator and by connecting the TBCs defined over a finite and an infinite time period, which seem not well-addressed in the literature. Motivated by [19], a circular PML layer with special medium properties will then be defined to truncate the original problem. A first order symmetric hyperbolic system is derived for the truncated PML problem, which is similar to those considered in [19, 20, 6]. The well-posedness and stability of the truncated PML problem are justified by Laplace transform, variational method together with the energy method of [10]. The convergence of the PML scheme is based on the stability estimate of an initial-boundary value problem in the PML layer and the exponential decay of the PML extension problem to be proved using modified Bessel functions. Such a technique is also inspired [19].

This paper is organized as follows. In the subsequent Section 2, we first introduce the mathematical model and rigorous define the transparent boundary condition (TBC) to reformulate the scattering problem to an initial-boundary value problem in a truncated bounded domain. Well-posedness and stability will then be shown in Section 2.2. In Section 3, we derive a PML formulation in the half plane by complex coordinates stretching inspired by [16, 19, 20, 34] and study the well-posedness and stability for the PML problem. We analyze the exponential convergence of the PML method in the half space in Section 4. In the final Section 5, two numerical examples are reported to show the performance of the PML method.

2 Mathematical formulations

Let Γ0\Gamma_{0} be a local perturbation of the straight line {(x1,0):x1}\{(x_{1},0):x_{1}\in{\mathbb{R}}\} such that Γ0\Gamma_{0} coincides with x2=0x_{2}=0 in |x1|>R|x_{1}|>R for some R>0R>0 and that Γ0\Gamma_{0} is a non-selfintersecting C2C^{2}-smooth curve. Denote by Ω2\Omega\subset{\mathbb{R}}^{2} the unbounded domain above Γ0\Gamma_{0}, which is supposed to be filled by a homogeneous and isotropic medium with the unit mass density. Let DBR+:={xΩ:|x|<R}D\subset B_{R}^{+}:=\{x\in\Omega:|x|<R\} be a bounded domain with the Lipschitz boundary D\partial D such that the exterior of DD is connected; see Figure 1. Physically, the domain DD represents a sound soft obstacle embedded in Ω\Omega. Write +2={x2:x2>0}{\mathbb{R}}^{2}_{+}=\{x\in{\mathbb{R}}^{2}:x_{2}>0\}, ΓR+:={xΩ:|x|=R}\Gamma_{R}^{+}:=\{x\in\Omega:|x|=R\}. It is obvious that BR+B_{R}^{+} is a Lipschitz domain.

The time-dependent acoustic scattering problem with the Dirichlet boundary condition enforcing on the obstacle D\partial D and the locally perturbed rough surface Γ0\Gamma_{0} can be governed by the initial-boundary value problem of the wave equation

{t2u(x,t)Δu(x,t)=tf(x,t)in(Ω\D¯)×(0,T),u(x,t)=0on(DΓ0)×(0,T),u(x,0)=tu(x,0)=0in(Ω\D¯).\displaystyle\left\{\begin{array}[]{lll}\partial_{t}^{2}u(x,t)-\Delta u(x,t)=\partial_{t}f(x,t)&&\mbox{in}\quad(\Omega\backslash\overline{D})\times(0,T),\\ u(x,t)=0&&\mbox{on}\quad(\partial D\cup\Gamma_{0})\times(0,T),\\ u(x,0)=\partial_{t}u(x,0)=0&&\mbox{in}\quad(\Omega\backslash\overline{D}).\end{array}\right. (2.4)

Here, T>0T>0 is an arbitrarily fixed positive number, the function ff represents an acoustic source term compactly supported in BR+\D¯B_{R}^{+}\backslash\overline{D} and uu denotes the total field. In the exterior of BR+B_{R}^{+}, the total field u=uin+ure+uscu=u^{in}+u^{re}+u^{sc} can be divided into the sum of the incident field uinu^{in}, the reflected field ureu^{re} corresponding to the unperturbed scattering problem in the homogeneous half space x2>0x_{2}>0 and the scattered field uscu^{sc} caused by DD and the perturbation of the straight line x2=0x_{2}=0. The first two components of uu will be explained as follows.

Refer to caption
Figure 1: Geometry of acoustic wave scattering problem caused by a bounded obstacle DD and a locally perturbed curve Γ0\Gamma_{0}.

The incident field uinu^{in} is generated by the inhomogeneous wave equation in 2{\mathbb{R}}^{2}:

{t2u(x,t)Δu(x,t)=tf(x,t)in2,t>0,u(x,0)=tu(x,0)=0in2.\displaystyle\left\{\begin{array}[]{lll}\partial_{t}^{2}u(x,t)-\Delta u(x,t)=\partial_{t}f(x,t)&&\mbox{in}\quad{\mathbb{R}}^{2},\;t>0,\\ u(x,0)=\partial_{t}u(x,0)=0&&\mbox{in}\quad{\mathbb{R}}^{2}.\end{array}\right.

Obviously, the incident field uinu^{in} takes the explicit form

uin(x,t)=2G(x,t;y)tf(y,t)dyin2×+,\displaystyle u^{in}(x,t)=\int_{{\mathbb{R}}^{2}}G(x,t;\,y)*\partial_{t}f(y,t)\,dy\quad\mbox{in}\quad{\mathbb{R}}^{2}\times{\mathbb{R}}^{+},

where * denotes convolution between GG and tf\partial_{t}f with respect to the time tt , and

G(x,t;y):=H(t|xy|)2πt2|xy|2,\displaystyle G(x,t;\,y):=\frac{H(t-|x-y|)}{2\pi\sqrt{t^{2}-|x-y|^{2}}},

is the Green’s function of the wave operator t2Δ\partial_{t}^{2}-\Delta in the free space 2×{\mathbb{R}}^{2}\times{\mathbb{R}}. Note that HH is the Heaviside function defined by

H(t):={0,t0,1,t>0.\displaystyle H(t):=\left\{\begin{array}[]{lll}0,&&t\leq 0,\\ 1,&&t>0.\end{array}\right.

The reflected field ureu^{re} caused by the incident field uinu^{in} and the Dirichlet curve x2=0x_{2}=0 is governed by

{t2ure(x,t)Δure(x,t)=0in+2,t>0,ure(x,0)=ture(x,0)=0in+2,ure(x,t)=uin(x,t)onx2=0,t>0.\displaystyle\left\{\begin{array}[]{lll}\partial_{t}^{2}u^{re}(x,t)-\Delta u^{re}(x,t)=0&&\mbox{in}\quad{\mathbb{R}}^{2}_{+},\;t>0,\\ u^{re}(x,0)=\partial_{t}u^{re}(x,0)=0&&\mbox{in}\quad{\mathbb{R}}^{2}_{+},\\ u^{re}(x,t)=-u^{in}(x,t)&&\mbox{on}\quad x_{2}=0,t>0.\end{array}\right.

Denote by y=(y1,y2)y^{*}=(y_{1},-y_{2}) the reflection of y=(y1,y2)y=(y_{1},y_{2}) by the straight line x2=0x_{2}=0. Through simple calculations, we obtain the expression of the reflected field ureu^{re} by

ure(x,t)\displaystyle u^{re}(x,t) =\displaystyle= 2G(x,t;y)tf(y,t)dy\displaystyle-\int_{{\mathbb{R}}^{2}}G(x,t;\,y^{*})*\partial_{t}f(y,t)\,dy
=\displaystyle= 0tBR+\D¯G(xy,tτ)τf(y,τ)dydτ.\displaystyle-\int_{0}^{t}\int_{B_{R}^{+}\backslash\overline{D}}G(x-y^{*},t-\tau)\partial\tau f(y,\tau)\,dyd\tau.

Evidently, the sum uin+ureu^{in}+u^{re} denotes the total field to the unperturbed scattering problem that corresponds to uinu^{in} and the Dirichlet curve x2=0x_{2}=0. The function uscu^{sc} consists of the scattered wave from the bounded domain DD and the local perturbation {xΓ0:x20,x1}\{x\in\Gamma_{0}:x_{2}\neq 0,x_{1}\in{\mathbb{R}}\}.

Throughout this paper, we suppose that for any bounded domain Ω0\Omega_{0}, fH2(0,T;L2(Ω0))f\in H^{2}(0,T;L^{2}(\Omega_{0})) and that f|t=0=0f|_{t=0}=0, f=f~|(0,T)f=\tilde{f}|_{(0,T)} where

f~H2(0,;L2(Ω0)),f~H2(0,;L2(Ω0))fH2(0,T;L2(Ω0)).\displaystyle\tilde{f}\in H^{2}(0,\infty;L^{2}(\Omega_{0})),\quad\|\tilde{f}\|_{H^{2}(0,\infty;L^{2}(\Omega_{0}))}\leq\|f\|_{H^{2}(0,T;L^{2}(\Omega_{0}))}.

This implies that the source term tf\partial_{t}f on the right hand side of (2.4) belongs to H1(0,T;Ω\D¯)H^{1}(0,T;\Omega\backslash\overline{D}). Hence, applying the approach of J. L. Lions (see [32, Theorem 8.1, Chapter 3] and [32, Theorem 8.2, Chapter 3]) there exists a unique solution uC(0,T;H01(Ω\D¯))C1(0,T;L2(Ω\D¯))u\in C(0,T;H^{1}_{0}(\Omega\backslash\overline{D}))\cap C^{1}(0,T;L^{2}(\Omega\backslash\overline{D})) to (2.4).

2.1 A transparent boundary condition (TBC) on a semi-circle

The aim of this section is to rigorously address the Dirichlet-to-Neumann map for the wave equation (2.4) in a locally perturbed half-plane. We shall follow the spirit of [19] for a bounded sound-hard obstacle but complement the definition of DtN there by describing mapping properties in time-dependent Sobolev spaces and connecting the DtN operators defined over a finite and an infinite time period. More precisely, we shall define the time-domain boundary operator 𝒯\mathscr{T} by

𝒯u=ruonΓR+×(0,T),\displaystyle\mathscr{T}u=\partial_{r}u\quad\mbox{on}\quad\Gamma_{R}^{+}\times(0,T), (2.8)

which is called the TBC. Thus, the time-domain scattering problem (2.4) in the unbounded domain over the local rough surface can be reduced into an equivalent initial-boundary value problem in the bounded domain ΩR+:=BR+\D¯\Omega_{R}^{+}:=B_{R}^{+}\backslash\overline{D}:

{t2uΔu=tfinΩR+×(0,T),u=0on(DΓ0)×(0,T),ru=𝒯uonΓR+×(0,T),u|t=0=tu|t=0=0inΩR+.\displaystyle\left\{\begin{array}[]{lll}\partial_{t}^{2}u-\Delta u=\partial_{t}f&&\mbox{in}\quad\Omega_{R}^{+}\times(0,T),\\ u=0&&\mbox{on}\quad(\partial D\cup\Gamma_{0})\times(0,T),\\ \partial_{r}u=\mathscr{T}u&&\mbox{on}\quad\Gamma_{R}^{+}\times(0,T),\\ u|_{t=0}=\partial_{t}u|_{t=0}=0&&\mbox{in}\quad\Omega_{R}^{+}.\end{array}\right. (2.13)

In what follows we derive a representation of the boundary operator 𝒯\mathscr{T}. Let H01/2(ΓR+)H^{1/2}_{0}(\Gamma_{R}^{+}), H1/2(ΓR+)H^{1/2}(\Gamma_{R}^{+}), H1/2(ΓR+)H^{-1/2}(\Gamma_{R}^{+}), H01/2(ΓR+)H^{-1/2}_{0}(\Gamma_{R}^{+}) be Sobolev spaces defined on the open arc ΓR+\Gamma_{R}^{+}. Then H01/2(ΓR+)H^{1/2}_{0}(\Gamma_{R}^{+}) and H1/2(ΓR+)H^{-1/2}(\Gamma_{R}^{+}), H1/2(ΓR+)H^{1/2}(\Gamma_{R}^{+}) and H01/2(ΓR+)H^{-1/2}_{0}(\Gamma_{R}^{+}) are anti-linear dual spaces[33]. For uH01(BR+)u\in H^{1}_{0}(B_{R}^{+}), we have u|ΓR+H01/2(ΓR+)u|_{\Gamma_{R}^{+}}\in H^{1/2}_{0}(\Gamma_{R}^{+}).

Consider an initial-boundary value problem over a finite time period

{t2u(x,t)Δu(x,t)=0in(Ω\BR+¯)×(0,T),u(x,t)=g(x,t)onΓR+×(0,T),u(x,t)=0on(Γ0|x|>R)×(0,T),u(x,0)=tu(x,0)=0in(Ω\BR+¯)\displaystyle\left\{\begin{array}[]{lll}\partial_{t}^{2}u(x,t)-\Delta u(x,t)=0&&\mbox{in}\quad(\Omega\backslash\overline{B_{R}^{+}})\times(0,T),\\ u(x,t)=g(x,t)&&\mbox{on}\quad\Gamma_{R}^{+}\times(0,T),\\ u(x,t)=0&&\mbox{on}\quad(\Gamma_{0}\cap|x|>R)\times(0,T),\\ u(x,0)=\partial_{t}u(x,0)=0&&\mbox{in}\quad(\Omega\backslash\overline{B_{R}^{+}})\end{array}\right. (2.18)

where gC(0,T;H01/2(ΓR+))C1(0,T;H1/2(ΓR+))g\in C(0,T;H^{1/2}_{0}(\Gamma_{R}^{+}))\,\cap C^{1}(0,T;H^{-1/2}(\Gamma_{R}^{+})) satisfying g(x,0)=tg(x,0)=0g(x,0)=\partial_{t}g(x,0)=0. By [15, Chapter 7], there exists a unique solution uu to the above equations satisfying

uC(0,T;H1(Ω\BR+¯))C1(0,T;L2(Ω\BR+¯)),\displaystyle u\in C(0,T;H^{1}_{\diamond}(\Omega\backslash\overline{B_{R}^{+}}))\cap C^{1}(0,T;L^{2}(\Omega\backslash\overline{B_{R}^{+}})),

where H1(Ω\BR+¯)={uH1(Ω\BR+):u=0on{Γ0|x|>R}}H^{1}_{\diamond}(\Omega\backslash\overline{B_{R}^{+}})=\{u\in H^{1}(\Omega\backslash B_{R}^{+}):u=0\;\mbox{on}\;\{\Gamma_{0}\cap|x|>R\}\}.

Definition 2.1.

The DtN operator 𝒯:C(0,T;H01/2(ΓR+))C(0,T;H1/2(ΓR+))\mathscr{T}:C(0,T;H^{1/2}_{0}(\Gamma_{R}^{+}))\rightarrow C(0,T;H^{-1/2}(\Gamma_{R}^{+})) over a finite time period (0,T)(0,T) is defined as

𝒯g=ruonΓR+×(0,T),\displaystyle\mathscr{T}g=\partial_{r}u\quad\mbox{on}\quad\Gamma_{R}^{+}\times(0,T),

where uC(0,T;H1(Ω\BR+¯))C1(0,T;L2(Ω\BR+¯))u\in C(0,T;H^{1}_{\diamond}(\Omega\backslash\overline{B_{R}^{+}}))\cap C^{1}(0,T;L^{2}(\Omega\backslash\overline{B_{R}^{+}})) is the unique solution to (2.18).

Consider another initial-boundary value problem but over an infinite time

{t2w(x,t)Δw(x,t)=0in(Ω\BR+¯)×(0,),w(x,t)=g~(x,t)onΓR+×(0,),w(x,t)=0on(Γ0|x|>R)×(0,),w(x,0)=tw(x,0)=0in(Ω\BR+¯),\displaystyle\left\{\begin{array}[]{lll}\partial_{t}^{2}w(x,t)-\Delta w(x,t)=0&&\mbox{in}\quad(\Omega\backslash\overline{B_{R}^{+}})\times(0,\infty),\\ w(x,t)=\tilde{g}(x,t)&&\mbox{on}\quad\Gamma_{R}^{+}\times(0,\infty),\\ w(x,t)=0&&\mbox{on}\quad(\Gamma_{0}\cap|x|>R)\times(0,\infty),\\ w(x,0)=\partial_{t}w(x,0)=0&&\mbox{in}\quad(\Omega\backslash\overline{B_{R}^{+}}),\end{array}\right. (2.23)

with the initial-boundary value

g~L2(0,;H01/2(ΓR+))H1(0,;H1/2(ΓR+)),g~(x,0)=tg~(x,0)=0.\displaystyle\tilde{g}\in L^{2}(0,\infty;H^{1/2}_{0}(\Gamma_{R}^{+}))\,\cap H^{1}(0,\infty;H^{-1/2}(\Gamma_{R}^{+})),\quad\tilde{g}(x,0)=\partial_{t}\tilde{g}(x,0)=0. (2.24)
Definition 2.2.

The DtN operator 𝒯~:L2(0,;H01/2(ΓR+))L2(0,;H1/2(ΓR+))\tilde{\mathscr{T}}:L^{2}(0,\infty;H^{1/2}_{0}(\Gamma_{R}^{+}))\rightarrow L^{2}(0,\infty;H^{-1/2}(\Gamma_{R}^{+})) over the infinite time period (0,)(0,\infty) is defined as

𝒯~g~=rwonΓR+×(0,),\displaystyle\tilde{\mathscr{T}}\tilde{g}=\partial_{r}w\quad\mbox{on}\quad\Gamma_{R}^{+}\times(0,\infty),

where wL2(0,;H1(Ω\BR+¯))H1(0,;L2(Ω\BR+¯))w\in L^{2}(0,\infty;H^{1}_{\diamond}(\Omega\backslash\overline{B_{R}^{+}}))\cap H^{1}(0,\infty;L^{2}(\Omega\backslash\overline{B_{R}^{+}})) is the unique solution of (2.23).

Lemma 2.1.

Let g~\tilde{g} be the boundary value of the problem (2.18) and denote by g~\tilde{g} its zero extension to t>Tt>T. Then

𝒯~g~=𝒯ginL2(0,T;H1/2(ΓR+)).\displaystyle\tilde{\mathscr{T}}\tilde{g}=\mathscr{T}g\quad\mbox{in}\quad L^{2}(0,T;H^{-1/2}(\Gamma_{R}^{+})).
Proof.

It is obvious that the extension g~\tilde{g} fulfills the regularity and initial values specified in (2.24). Define v:=uwv:=u-w, where uu and ww are the unique solutions to (2.18) and (2.23), respectively. It then follows that

{t2v(x,t)Δv(x,t)=0in(Ω\BR+¯)×(0,T),v(x,t)=0onΓR+×(0,T),v(x,t)=0on(Γ0|x|>R)×(0,T),v(x,0)=tv(x,0)=0in(Ω\BR+¯).\displaystyle\left\{\begin{array}[]{lll}\partial_{t}^{2}v(x,t)-\Delta v(x,t)=0&&\mbox{in}\quad(\Omega\backslash\overline{B_{R}^{+}})\times(0,T),\\ v(x,t)=0&&\mbox{on}\quad\Gamma_{R}^{+}\times(0,T),\\ v(x,t)=0&&\mbox{on}\quad(\Gamma_{0}\cap|x|>R)\times(0,T),\\ v(x,0)=\partial_{t}v(x,0)=0&&\mbox{in}\quad(\Omega\backslash\overline{B_{R}^{+}}).\end{array}\right. (2.29)

By uniqueness to the above system (see e.g., [32, 15]), we get v0v\equiv 0 in (Ω\BR+¯)×(0,T)(\Omega\backslash\overline{B_{R}^{+}})\times(0,T), implying that rv=0\partial_{r}v=0 on ΓR+×(0,T)\Gamma_{R}^{+}\times(0,T). Hence, we obtain that 𝒯~g~=𝒯g\tilde{\mathscr{T}}\tilde{g}=\mathscr{T}g on ΓR+×(0,T)\Gamma_{R}^{+}\times(0,T). ∎

From the proof of Lemma 2.1 we conclude that the definition of 𝒯g\mathscr{T}g is independent of the values of gg in t>Tt>T. Below we want to derive an expression of 𝒯~\tilde{\mathscr{T}} by Laplace transform. For any ss\in{\mathbb{C}} with Re(s)>0\textnormal{Re}(s)>0, applying Laplace transform to (2.23) with respect to tt, we see that wL=(w)w_{L}=\mathscr{L}(w) satisfies the Helmoholtz equation

ΔwL+s2wL=0inΩ\BR+¯,\displaystyle-\Delta w_{L}+s^{2}w_{L}=0\quad\mbox{in}\quad\Omega\backslash\overline{B_{R}^{+}}, (2.30)

together with the radiation condition

r(wLr+swL)0asr=|x|.\displaystyle\sqrt{r}(\frac{\partial w_{L}}{\partial r}+sw_{L})\rightarrow 0\quad\mbox{as}\quad r=|x|\rightarrow\infty. (2.31)

Let 𝒢:H01/2(ΓR+)H1/2(ΓR+)\mathscr{G}:H^{1/2}_{0}(\Gamma_{R}^{+})\rightarrow H^{-1/2}(\Gamma_{R}^{+}) be the DtN operator in s-domain defined by

𝒢g~L=rwLonΓR+.\displaystyle\mathscr{G}\tilde{g}_{L}=\partial_{r}w_{L}\quad\textnormal{on}\quad\Gamma_{R}^{+}.

where wLw_{L} is the unique solution to (2.30)-(2.31) satisfying the boundary value wL=gLw_{L}=g_{L} on ΓR+\Gamma_{R}^{+} and wL=0w_{L}=0 on Γ0{x:|x|>R}\Gamma_{0}\cap\{x:|x|>R\}. Then it follows that

𝒯~=1𝒢.\tilde{\mathscr{T}}=\mathscr{L}^{-1}\circ\mathscr{G}\circ\mathscr{L}.

Next, we derive a representation of the DtN operator 𝒢\mathscr{G}. In the polar coordinates (r,θ)(r,\theta), wLw_{L} can be expanded into the series (see e.g., [19, 30, 39])

wL(r,θ;s)=n=1Kn(sr)Kn(sR)wLn(R,s)sinnθ,r>R,θ[0,π],\displaystyle w_{L}(r,\theta;s)=\sum_{n=1}^{\infty}\frac{K_{n}(sr)}{K_{n}(sR)}w^{n}_{L}(R,s)\sin{n\theta},\quad r>R,\quad\theta\in[0,\pi],

where

wLn(R,s)=2π0πwL(R,θ,s)sinnθdθ=2π0πg~L(R,θ,s)sinnθdθ.w^{n}_{L}(R,s)=\frac{2}{\pi}\int_{0}^{\pi}{w_{L}(R,\theta,s)\sin{n\theta}\,d\theta}=\frac{2}{\pi}\int_{0}^{\pi}{\tilde{g}_{L}(R,\theta,s)\sin{n\theta}\,d\theta}.

Here Kn(z)K_{n}(z) represents the modified Bessel function of order nn. A simple calculation gives

𝒢wL(R,θ,s)=wLr|ΓR+=sn=1Kn(sR)Kn(sR)wLn(R,s)sinnθ.\displaystyle\mathscr{G}w_{L}(R,\theta,s)=\frac{\partial w_{L}}{\partial r}|_{\Gamma_{R}^{+}}=s\sum_{n=1}^{\infty}\frac{K_{n}^{\prime}(sR)}{K_{n}(sR)}w^{n}_{L}(R,s)\sin{n\theta}. (2.32)

The DtN operators 𝒢\mathscr{G} and 𝒯\mathscr{T} have the following properties.

Lemma 2.2.

The operator 𝒢:H01/2(ΓR+)H1/2(ΓR+)\mathscr{G}:H^{1/2}_{0}(\Gamma_{R}^{+})\rightarrow H^{-1/2}(\Gamma_{R}^{+}) is bounded.

Proof.

By the recurrence formula of modified Bessel function

Kn(z)=Kn1(z)nzKn(z),\displaystyle K_{n}^{{}^{\prime}}(z)=-K_{n-1}(z)-\frac{n}{z}K_{n}(z),

we deduce that

|Kn(sR)Kn(sR)|=|nsR+Kn1(sR)Kn(sR)|n|s|R+1.\displaystyle\Big{|}\frac{K_{n}^{{}^{\prime}}(sR)}{K_{n}(sR)}\Big{|}=\Big{|}\frac{n}{sR}+\frac{K_{n-1}(sR)}{K_{n}(sR)}\Big{|}\leq\frac{n}{|s|R}+1.

Let |Bn|:=|Kn(sR)Kn(sR)||B_{n}|:=\Big{|}\frac{K_{n}^{{}^{\prime}}(sR)}{K_{n}(sR)}\Big{|}. Then, |Bn|Cn2+1|B_{n}|\leq C\sqrt{n^{2}+1} for some constant C>0C>0. Given ϕH01/2(ΓR+)\phi\in H^{-1/2}_{0}(\Gamma_{R}^{+}), we expand

ϕ(R,θ)=n=1ϕn(R)sinnθ,ϕn(R)=2π0πϕ(R,θ)sinnθdθ.\displaystyle\phi(R,\theta)=\sum_{n=1}^{\infty}\phi_{n}(R)\sin{n\theta},\quad\phi_{n}(R)=\frac{2}{\pi}\int_{0}^{\pi}\phi(R,\theta)\sin n\theta\,d\theta.

By the definition of 𝒢\mathscr{G}, for any ωH01/2(ΓR+)\omega\in H^{1/2}_{0}(\Gamma_{R}^{+}) it follows that

|𝒢(ω),ϕΓR+|\displaystyle\Big{|}\langle\mathscr{G}(\omega),\,\phi\rangle_{\Gamma_{R}^{+}}\Big{|} =|ΓR+sn=1Kn(sR)Kn(sR)ωn(R)sinnθn=1ϕ¯n(R)sinnθdγ|\displaystyle=\Big{|}\int_{\Gamma_{R}^{+}}s\sum_{n=1}^{\infty}\frac{K_{n}^{{}^{\prime}}(sR)}{K_{n}(sR)}\omega_{n}(R)\sin n\theta\sum_{n=1}^{\infty}\overline{\phi}_{n}(R)\sin n\theta\,d\gamma\Big{|}
=|sRn=1Kn(sR)Kn(sR)ωn(R)ϕ¯n(R)0πsin2nθdθ\displaystyle=\Big{|}sR\sum_{n=1}^{\infty}\frac{K_{n}^{{}^{\prime}}(sR)}{K_{n}(sR)}\omega_{n}(R)\overline{\phi}_{n}(R)\int_{0}^{\pi}\sin^{2}n\theta\,d\theta
=|π2sRn=1Kn(sR)Kn(sR)ωn(R)ϕ¯n(R)|\displaystyle=\Big{|}\frac{\pi}{2}sR\sum_{n=1}^{\infty}\frac{K_{n}^{{}^{\prime}}(sR)}{K_{n}(sR)}\omega_{n}(R)\overline{\phi}_{n}(R)\Big{|}
π2|s|R(n=1|Kn(sR)Kn(sR)||ωn(R)|2)1/2(n=1|Kn(sR)Kn(sR)||ϕn(R)|2)1/2\displaystyle\leq\frac{\pi}{2}|s|R\Big{(}\sum_{n=1}^{\infty}\Big{|}\frac{K_{n}^{{}^{\prime}}(sR)}{K_{n}(sR)}\Big{|}|\omega_{n}(R)|^{2}\Big{)}^{1/2}\Big{(}\sum_{n=1}^{\infty}\Big{|}\frac{K_{n}^{{}^{\prime}}(sR)}{K_{n}(sR)}\Big{|}|\phi_{n}(R)|^{2}\Big{)}^{1/2}
C(n=11+n2|ωn(R)|2)1/2(n=11+n2|ϕn(R)|2)1/2\displaystyle\leq C\Big{(}\sum_{n=1}^{\infty}\sqrt{1+n^{2}}|\omega_{n}(R)|^{2}\Big{)}^{1/2}\Big{(}\sum_{n=1}^{\infty}\sqrt{1+n^{2}}|\phi_{n}(R)|^{2}\Big{)}^{1/2}
CωH01/2(ΓR+)ϕH01/2(ΓR+).\displaystyle\leq C\|\omega\|_{H^{1/2}_{0}(\Gamma_{R}^{+})}\,\|\phi\|_{H^{1/2}_{0}(\Gamma_{R}^{+})}.

Then, we have

𝒢ωH1/2(ΓR+)=supϕH01/2(ΓR+)|𝒢(ω),ϕΓR+|ϕH01/2(ΓR+)CωH01/2(ΓR+).\displaystyle\|\mathscr{G}\omega\|_{H^{-1/2}(\Gamma_{R}^{+})}=\sup_{\phi\in H^{1/2}_{0}(\Gamma_{R}^{+})}\frac{\Big{|}\langle\mathscr{G}(\omega),\,\phi\rangle_{\Gamma_{R}^{+}}\Big{|}}{\|\phi\|_{H^{1/2}_{0}(\Gamma_{R}^{+})}}\leq C\|\omega\|_{H^{1/2}_{0}(\Gamma_{R}^{+})}.

Lemma 2.3.

It holds that, for any ωH01/2(ΓR+)\omega\in H^{1/2}_{0}(\Gamma_{R}^{+}),

Res1𝒢ω,ωΓR+0.\displaystyle-\textnormal{Re}\,\langle s^{-1}\,\mathscr{G}\omega,\,\omega\rangle_{\Gamma_{R}^{+}}\geq 0.
Proof.

Given ωH01/2(ΓR+)\omega\in H^{1/2}_{0}(\Gamma_{R}^{+}), we have

ω(R,θ)=n=1ωn(R)sinnθ,ωn(R)=2π0πω(R,θ)sinnθdθ.\displaystyle\omega(R,\theta)=\sum_{n=1}^{\infty}\omega_{n}(R)\sin{n\theta},\quad\omega_{n}(R)=\frac{2}{\pi}\int_{0}^{\pi}\omega(R,\theta)\sin n\theta\,d\theta.

It follows from the expression of 𝒢uL\mathscr{G}u_{L} (2.32) and Lemma C.1, we obtain

Res1𝒢ω,ωΓR+=\displaystyle-\textnormal{Re}\,\langle s^{-1}\,\mathscr{G}\omega,\omega\rangle_{\Gamma_{R}^{+}}= ReΓR+n=1Kn(sR)Kn(sR)ωn(R)sinnθn=1ω¯n(R)sinnθdγ\displaystyle-\textnormal{Re}\int_{\Gamma_{R}^{+}}\sum_{n=1}^{\infty}\frac{K_{n}^{{}^{\prime}}(sR)}{K_{n}(sR)}\omega_{n}(R)\sin n\theta\sum_{n=1}^{\infty}\overline{\omega}_{n}(R)\sin n\theta\,d\gamma
=\displaystyle= Rn=1Re(Kn(sR)Kn(sR))|ωn(R)|20πsin2nθdθ\displaystyle-R\sum_{n=1}^{\infty}\textnormal{Re}\Big{(}\frac{K_{n}^{{}^{\prime}}(sR)}{K_{n}(sR)}\Big{)}|\omega_{n}(R)|^{2}\int_{0}^{\pi}\sin^{2}n\theta\,d\theta
=\displaystyle= π2Rn=1Re(Kn(sR)Kn(sR))|ωn(R)|20.\displaystyle-\frac{\pi}{2}R\sum_{n=1}^{\infty}\textnormal{Re}\Big{(}\frac{K_{n}^{{}^{\prime}}(sR)}{K_{n}(sR)}\Big{)}|\omega_{n}(R)|^{2}\geq 0.

Below we write the Laplace transform variable as s=s1+is2s=s_{1}+is_{2} with s1>0s_{1}>0, s2s_{2}\in{\mathbb{R}}.

Lemma 2.4.

Let ωC(0,T;H01/2(ΓR+)C1(0,T;H1/2(ΓR+)\omega\in C(0,T;H^{1/2}_{0}({\Gamma_{R}^{+}})\cap C^{1}(0,T;H^{-1/2}({\Gamma_{R}^{+}}) with the initial values ω(, 0)=tω(, 0)=0\omega(\cdot,\,0)=\partial_{t}\omega(\cdot,\,0)=0. Then it holds that

Re0Te2s1t𝒯ω,tωΓR+𝑑t0.\displaystyle\textnormal{Re}\,\int_{0}^{T}e^{-2s_{1}t}\langle\mathscr{T}\omega,\,\partial_{t}\omega\rangle_{\Gamma_{R}^{+}}\,dt\leq 0.
Proof.

Let ω~(r,t)\tilde{\omega}(r,t) be the zero extension of ω(r,t)\omega(r,t) with respect to tt in {\mathbb{R}}. Applying the Parseval identity (A.4) and Lemmas 2.1 and 2.3, we obtain

Re0Te2s1t𝒯ω,tωΓR+𝑑t\displaystyle\textnormal{Re}\,\int_{0}^{T}e^{-2s_{1}t}\langle\mathscr{T}\omega,\,\partial_{t}\omega\rangle_{\Gamma_{R}^{+}}\,dt =Re0Te2s1tΓR+𝒯ωtω¯dγdt\displaystyle=\textnormal{Re}\,\int_{0}^{T}e^{-2s_{1}t}\int_{\Gamma_{R}^{+}}\mathscr{T}\omega\partial_{t}\overline{\omega}\,d\gamma\,dt
=ReΓR+0e2s1t𝒯~ω~tω~¯dtdγ\displaystyle=\textnormal{Re}\,\int_{\Gamma_{R}^{+}}\int_{0}^{\infty}e^{-2s_{1}t}\tilde{\mathscr{T}}\tilde{\omega}\partial_{t}\overline{\tilde{\omega}}\,dt\,d\gamma
=12πRe𝒢ω~L,sω~LΓR+𝑑s2\displaystyle=\frac{1}{2\pi}\int_{-\infty}^{\infty}\textnormal{Re}\langle\mathscr{G}\tilde{\omega}_{L},\,s\tilde{\omega}_{L}\rangle_{\Gamma_{R}^{+}}\,ds_{2}
=12π|s|2Res1𝒢ω~L,ω~LΓR+𝑑s2\displaystyle=\frac{1}{2\pi}\int_{-\infty}^{\infty}|s|^{2}\textnormal{Re}\langle s^{-1}\mathscr{G}\tilde{\omega}_{L},\,\tilde{\omega}_{L}\rangle_{\Gamma_{R}^{+}}\,ds_{2}
0.\displaystyle\leq 0.

2.2 Well-posedness in the time-domain

In the subsection, we prove well-posedness of the truncated initial-boundary value problem (2.13) in the bounded domain ΩR+\Omega_{R}^{+} by using the variational method in the Laplace domain. Taking Laplace transform of (2.13) and using f(,0)=0f(\cdot,0)=0 we obtain

{ΔuLs2uL=sfLinΩR+\D¯,uL=0onDΓ0,ruL=𝒢uLonΓR+.\displaystyle\left\{\begin{array}[]{lll}\Delta u_{L}-s^{2}u_{L}=sf_{L}&&\mbox{in}\quad\Omega_{R}^{+}\backslash\overline{D},\\ u_{L}=0&&\mbox{on}\quad\partial D\cup\Gamma_{0},\\ \partial_{r}u_{L}=\mathscr{G}u_{L}&&\mbox{on}\quad\Gamma_{R}^{+}.\end{array}\right. (2.36)

We formulate the variational formulation of problem (2.36) and show its well-posedness in the space XR:={uH1(ΩR+):u=0onDΓ0}X_{R}:=\{u\in H^{1}(\Omega_{R}^{+}):u=0\;\mbox{on}\;\partial D\cup\Gamma_{0}\}. Multiplying the Helmholtz equation in (2.36) by the complex conjugate of a test function vXRv\in X_{R}, applying the Green’s formula with the boundary conditions on ΓR+Γ0D\Gamma_{R}^{+}\cup\Gamma_{0}\cup\partial D, we arrive at

a(uL,v)=ΩR+fLv¯𝑑xfor allvXR,\displaystyle a(u_{L},\,v)=\int_{\Omega_{R}^{+}}f_{L}\,\overline{v}\,dx\quad\mbox{for all}\quad v\in X_{R}, (2.37)

where the sesquilinear form a(,)a(\cdot,\cdot) is defined as

a(uL,v)=ΩR+(1suLv¯+suLv¯)𝑑xs1𝒢uL,vΓR+.\displaystyle a(u_{L},\,v)=\int_{\Omega_{R}^{+}}\left(\frac{1}{s}\nabla u_{L}\cdot\nabla\overline{v}+su_{L}\overline{v}\right)\,dx-\langle s^{-1}\mathscr{G}u_{L},\,v\rangle_{\Gamma_{R}^{+}}.
Lemma 2.5.

The variational problem (2.37) has a unique solution uLXRu_{L}\in X_{R} with the following stability estimate

uLL2(ΩR+)+suLL2(ΩR+)C(1+|s|)|s|s1fLL2(ΩR+),\displaystyle\|\nabla u_{L}\|_{L^{2}(\Omega_{R}^{+})}+\|su_{L}\|_{L^{2}(\Omega_{R}^{+})}\leq C\frac{(1+|s|)|s|}{s_{1}}\|f_{L}\|_{L^{2}(\Omega_{R}^{+})}, (2.38)

where CC is a constant independent of ss.

Proof.

(i) We first prove that a(,)a(\cdot,\,\cdot) is continuous and strictly coercive. Using the Cauchy-Schwarz inequality, the boundedness of 𝒢\mathscr{G} in Lemma 2.2 and the trace theorem, we obtain

|a(uL,v)|\displaystyle|a(u_{L},\,v)| \displaystyle\leq |s|1uLL2(ΩR+)vL2(ΩR+)+|s|uLL2(ΩR+)vL2(ΩR+)\displaystyle|s|^{-1}\|\nabla u_{L}\|_{L^{2}(\Omega_{R}^{+})}\|\nabla v\|_{L^{2}(\Omega_{R}^{+})}+|s|\|u_{L}\|_{L^{2}(\Omega_{R}^{+})}\|v\|_{L^{2}(\Omega_{R}^{+})}
+|s|1𝒢uLH1/2(ΓR+)vH1/2(ΓR+)\displaystyle+|s|^{-1}\|\mathscr{G}u_{L}\|_{H^{-1/2}(\Gamma_{R}^{+})}\|v\|_{H^{1/2}(\Gamma_{R}^{+})}
\displaystyle\leq CuLH1(ΩR+)vH1(ΩR+)+CuLH1(ΩR+)vH1(ΩR+)\displaystyle C\|u_{L}\|_{H^{1}(\Omega_{R}^{+})}\|v\|_{H^{1}(\Omega_{R}^{+})}+C\|u_{L}\|_{H^{1}(\Omega_{R}^{+})}\|v\|_{H^{1}(\Omega_{R}^{+})}
CuLH1/2(ΓR+)vH1/2(ΓR+)\displaystyle C\|u_{L}\|_{H^{1/2}(\Gamma_{R}^{+})}\|v\|_{H^{1/2}(\Gamma_{R}^{+})}
\displaystyle\leq CuLH1(ΩR+)vH1(ΩR+).\displaystyle C\|u_{L}\|_{H^{1}(\Omega_{R}^{+})}\|v\|_{H^{1}(\Omega_{R}^{+})}.

Setting v=uLv=u_{L}, it follows from the expression of the sesquilinear form a(,)a(\cdot,\cdot) that

a(uL,uL)=ΩR+1s|uL|2+s|uL|2dxs1𝒢uL,uLΓR+.\displaystyle a(u_{L},\,u_{L})=\int_{\Omega_{R}^{+}}\frac{1}{s}|\nabla u_{L}|^{2}+s|u_{L}|^{2}\,dx-\langle s^{-1}\mathscr{G}u_{L},\,u_{L}\rangle_{\Gamma_{R}^{+}}.

Taking the real part of the above equation and using Lemma 2.3 we have

Re(a(uL,uL))\displaystyle\textnormal{Re}(a(u_{L},\,u_{L})) =\displaystyle= ΩR+s1|s|2|uL|2+s1|uL|2dxRes1𝒢uL,uLΓR+\displaystyle\int_{\Omega_{R}^{+}}\frac{s_{1}}{|s|^{2}}|\nabla u_{L}|^{2}+s_{1}|u_{L}|^{2}\,dx-\textnormal{Re}\langle s^{-1}\mathscr{G}u_{L},\,u_{L}\rangle_{\Gamma_{R}^{+}} (2.39)
\displaystyle\geq ΩR+s1|s|2|uL|2+s1|uL|2dx\displaystyle\int_{\Omega_{R}^{+}}\frac{s_{1}}{|s|^{2}}|\nabla u_{L}|^{2}+s_{1}|u_{L}|^{2}\,dx
\displaystyle\geq s1|s|2(uLL2(ΩR+)2+suLL2(ΩR+)2).\displaystyle\frac{s_{1}}{|s|^{2}}\left(\|\nabla u_{L}\|_{L^{2}(\Omega_{R}^{+})}^{2}+\|su_{L}\|_{L^{2}(\Omega_{R}^{+})}^{2}\right).

Hence, by the Lax-Milgram Lemma, the variational problem (2.37) has a unique solution uLXRu_{L}\in X_{R}.

(ii) Combining (2.37) with the Cauchy-Schwarz inequality, it follows that

|a(uL,uL)|\displaystyle|a(u_{L},\,u_{L})| \displaystyle\leq 1|s|fLL2(ΩR+)suLL2(ΩR+)\displaystyle\frac{1}{|s|}\|f_{L}\|_{L^{2}(\Omega_{R}^{+})}\|su_{L}\|_{L^{2}(\Omega_{R}^{+})} (2.40)
\displaystyle\leq 1|s|fLL2(ΩR+)suLH1(ΩR+)\displaystyle\frac{1}{|s|}\|f_{L}\|_{L^{2}(\Omega_{R}^{+})}\|su_{L}\|_{H^{1}(\Omega_{R}^{+})}
\displaystyle\leq 1|s|fLL2(ΩR+)(|s|2uLL2(ΩR+)2+suLL2(ΩR+)2)1/2\displaystyle\frac{1}{|s|}\|f_{L}\|_{L^{2}(\Omega_{R}^{+})}\left(|s|^{2}\|\nabla u_{L}\|_{L^{2}(\Omega_{R}^{+})}^{2}+\|su_{L}\|_{L^{2}(\Omega_{R}^{+})}^{2}\right)^{1/2}
\displaystyle\leq C1+|s||s|fLL2(ΩR+)(uLL2(ΩR+)2+suLL2(ΩR+)2)1/2.\displaystyle C\frac{1+|s|}{|s|}\|f_{L}\|_{L^{2}(\Omega_{R}^{+})}\left(\|\nabla u_{L}\|_{L^{2}(\Omega_{R}^{+})}^{2}+\|su_{L}\|_{L^{2}(\Omega_{R}^{+})}^{2}\right)^{1/2}.

Combining (2.39) and (2.40) yields

s1|s|2(uLL2(ΩR+)2+suLL2(ΩR+)2)\displaystyle\frac{s_{1}}{|s|^{2}}\left(\|\nabla u_{L}\|_{L^{2}(\Omega_{R}^{+})}^{2}+\|su_{L}\|_{L^{2}(\Omega_{R}^{+})}^{2}\right)
\displaystyle\leq Re(a(uL,uL))\displaystyle\textnormal{Re}(a(u_{L},\,u_{L}))
\displaystyle\leq |a(uL,uL)|\displaystyle|a(u_{L},\,u_{L})|
\displaystyle\leq C1+|s||s|fLL2(ΩR+)(uLL2(ΩR+)2+suLL2(ΩR+)2)1/2.\displaystyle C\frac{1+|s|}{|s|}\|f_{L}\|_{L^{2}(\Omega_{R}^{+})}\left(\|\nabla u_{L}\|_{L^{2}(\Omega_{R}^{+})}^{2}+\|su_{L}\|_{L^{2}(\Omega_{R}^{+})}^{2}\right)^{1/2}.

Then, using the Cauchy-Schwarz inequality, we have

uLL2(ΩR+)+suLL2(ΩR+)\displaystyle\|\nabla u_{L}\|_{L^{2}(\Omega_{R}^{+})}+\|su_{L}\|_{L^{2}(\Omega_{R}^{+})} \displaystyle\leq (uLL2(ΩR+)2+suLL2(ΩR+)2)1/2\displaystyle\left(\|\nabla u_{L}\|_{L^{2}(\Omega_{R}^{+})}^{2}+\|su_{L}\|_{L^{2}(\Omega_{R}^{+})}^{2}\right)^{1/2}
\displaystyle\leq C(1+|s|)|s|s1fLL2(ΩR+),\displaystyle C\frac{(1+|s|)|s|}{s_{1}}\|f_{L}\|_{L^{2}(\Omega_{R}^{+})},

which completes the proof of the stability estimate. ∎

Theorem 2.1.

The initial boundary value problem (2.13) has a unique solution

u(x,t)L2(0,T;XR)H1(0,T;L2(ΩR+)),\displaystyle u(x,t)\in L^{2}(0,T;X_{R})\cap H^{1}(0,T;L^{2}(\Omega_{R}^{+})),

which satisfies the stability estimate

max0tT(tuL2(ΩR+)+uL2(ΩR+))CtfL1(0,T;L2(ΩR+)).\displaystyle\max_{0\leq t\leq T}\Big{(}\|\partial_{t}u\|_{L^{2}(\Omega_{R}^{+})}+\|\nabla u\|_{L^{2}(\Omega_{R}^{+})}\Big{)}\leq C\|\partial_{t}f\|_{L^{1}(0,T;L^{2}(\Omega_{R}^{+}))}.
Proof.

We first prove existence and uniqueness of solutions to (2.13). Simple calculations show that

0TtuL2(ΩR+)2+uL2(ΩR+)2dt\displaystyle\int_{0}^{T}\|\partial_{t}u\|_{L^{2}(\Omega_{R}^{+})}^{2}+\|\nabla u\|_{L^{2}(\Omega_{R}^{+})}^{2}\,dt
\displaystyle\leq C0e2s1t(tuL2(ΩR+)2+uL2(ΩR+)2)𝑑t.\displaystyle C\int_{0}^{\infty}e^{-2s_{1}t}\Big{(}\|\partial_{t}u\|_{L^{2}(\Omega_{R}^{+})}^{2}+\|\nabla u\|_{L^{2}(\Omega_{R}^{+})}^{2}\Big{)}\,dt.

Hence it suffices to estimate the integral

0e2s1t(tuL2(ΩR+)2+uL2(ΩR+)2)𝑑t.\displaystyle\int_{0}^{\infty}e^{-2s_{1}t}\Big{(}\|\partial_{t}u\|_{L^{2}(\Omega_{R}^{+})}^{2}+\|\nabla u\|_{L^{2}(\Omega_{R}^{+})}^{2}\Big{)}\,dt.

Based on the stability estimate of uLu_{L} in Lemma 2.5, we derive from [35, Lemma 44.1] that uLu_{L} is a holomorphic function of ss on the half plane s1>ζ0>0s_{1}>\zeta_{0}>0, where ζ0\zeta_{0} is any positive constant. Thus, by Lemma A.2, the inverse Laplace transform of uLu_{L} exists and is supported in [0,)[0,\infty).

Set u=1(uL)u=\mathscr{L}^{-1}(u_{L}). Applying the Parseval identity (A.4) and the stability estimate (2.38) in Lemma 2.5 and using the Cauchy-Schwarz inequality, we obtain

0e2s1t(tuL2(ΩR+)2+uL2(ΩR+)2)𝑑t\displaystyle\int_{0}^{\infty}e^{-2s_{1}t}(\|\partial_{t}u\|_{L^{2}(\Omega_{R}^{+})}^{2}+\|\nabla u\|_{L^{2}(\Omega_{R}^{+})}^{2})\,dt
=\displaystyle= 12π+suLL2(ΩR+2+uLL2(ΩR+)2)ds2\displaystyle\frac{1}{2\pi}\int_{-\infty}^{+\infty}\|su_{L}\|_{L^{2}(\Omega_{R}^{+}}^{2}+\|\nabla u_{L}\|_{L^{2}(\Omega_{R}^{+})}^{2})\,ds_{2}
\displaystyle\leq C1s12+(1+|s|)2|s|2fLL2(ΩR+)2𝑑s2\displaystyle C\frac{1}{s_{1}^{2}}\int_{-\infty}^{+\infty}(1+|s|)^{2}|s|^{2}\|f_{L}\|_{L^{2}(\Omega_{R}^{+})}^{2}\,ds_{2}
\displaystyle\leq C1s12+s2fLL2(ΩR+)2+sfLL2(ΩR+)2ds2\displaystyle C\frac{1}{s_{1}^{2}}\int_{-\infty}^{+\infty}\|s^{2}f_{L}\|_{L^{2}(\Omega_{R}^{+})}^{2}+\|sf_{L}\|_{L^{2}(\Omega_{R}^{+})}^{2}\,ds_{2}
\displaystyle\leq C1s120e2s1t(t2fL2(ΩR+)2+tfL2(ΩR+)2)𝑑t.\displaystyle C\frac{1}{s_{1}^{2}}\int_{0}^{\infty}e^{-2s_{1}t}\left(\|\partial_{t}^{2}f\|_{L^{2}(\Omega_{R}^{+})}^{2}+\|\partial_{t}f\|_{L^{2}(\Omega_{R}^{+})}^{2}\right)\,dt.

This together with the Poincaré inequality proves

uL2(0,T;XR)H1(0,T;L2(ΩR+)).\displaystyle u\in L^{2}(0,T;X_{R})\cap H^{1}(0,T;L^{2}(\Omega_{R}^{+})).

To prove the stability estimate, we define the energy function

E(t):=12(tuL2(ΩR+)2+uL2(ΩR+)2),0<t<T.\displaystyle E(t):=\frac{1}{2}\left(\|\partial_{t}u\|_{L^{2}(\Omega_{R}^{+})}^{2}+\|\nabla u\|_{L^{2}(\Omega_{R}^{+})}^{2}\right),\quad 0<t<T.

It is obvious that

E(t)E(0)=0tE(τ)𝑑τ.\displaystyle E(t)-E(0)=\int_{0}^{t}E^{\prime}(\tau)\,d\tau.

Recalling the wave equation in (2.13) and applying integration by parts, we obtain

0te2s1τE(τ)𝑑τ=\displaystyle\int_{0}^{t}e^{-2s_{1}\tau}E^{\prime}(\tau)\,d\tau\quad= Re0te2s1τΩR+ττuτu¯+u(τu¯)dxdτ\displaystyle\mbox{Re}\int_{0}^{t}e^{-2s_{1}\tau}\int_{\Omega_{R}^{+}}\partial_{\tau\tau}u\partial_{\tau}\overline{u}+\nabla u\cdot\nabla(\partial_{\tau}\overline{u})\,dxd\tau
=\displaystyle= Re0te2s1τΩR+(Δu+τf)τu¯+u(τu¯)dxdτ\displaystyle\mbox{Re}\int_{0}^{t}e^{-2s_{1}\tau}\int_{\Omega_{R}^{+}}(\Delta u+\partial_{\tau}f)\partial_{\tau}\overline{u}+\nabla u\cdot\nabla(\partial_{\tau}\overline{u})\,dxd\tau
=\displaystyle= Re0te2s1τ𝒯u,τu¯ΓR+𝑑τ\displaystyle\mbox{Re}\int_{0}^{t}e^{-2s_{1}\tau}\langle\mathscr{T}u,\,\partial_{\tau}\overline{u}\rangle_{\Gamma_{R}^{+}}\,d\tau (2.41)
+Re0te2s1τ(τf,τu¯)L2(ΩR+)𝑑τ.\displaystyle+\mbox{Re}\int_{0}^{t}e^{-2s_{1}\tau}(\partial_{\tau}f,\,\partial_{\tau}\overline{u})_{L^{2}(\Omega_{R}^{+})}\,d\tau.

Applying integration by parts on the left hand side of (2.2) and using E(0)=0E(0)=0 together with Lemma 2.4, we obtain

e2s1tE(t)+2s10te2s1τE(τ)𝑑τ\displaystyle e^{-2s_{1}t}E(t)+2s_{1}\int_{0}^{t}e^{-2s_{1}\tau}E(\tau)\,d\tau
\displaystyle\leq Re0te2s1τ(τf,τu¯)L2(ΩR+)𝑑τ\displaystyle\mbox{Re}\int_{0}^{t}e^{-2s_{1}\tau}(\partial_{\tau}f,\,\partial_{\tau}\overline{u})_{L^{2}(\Omega_{R}^{+})}\,d\tau
\displaystyle\leq 0Tes1ttfL2(ΩR+)es1ttuL2(ΩR+)𝑑t\displaystyle\int_{0}^{T}\|e^{-s_{1}t}\partial_{t}f\|_{L^{2}(\Omega_{R}^{+})}\,\|e^{-s_{1}t}\partial_{t}u\|_{L^{2}(\Omega_{R}^{+})}dt
\displaystyle\leq max0tTes1ttuL2(ΩR+)es1ttfL1(0,T;L2(ΩR+))\displaystyle\max_{0\leq t\leq T}\|e^{-s_{1}t}\partial_{t}u\|_{L^{2}(\Omega_{R}^{+})}\,\|e^{-s_{1}t}\partial_{t}f\|_{L^{1}(0,T;L^{2}(\Omega_{R}^{+}))}
\displaystyle\leq εmax0tTes1ttuL2(ΩR+)2+14εes1ttfL1(0,T;L2(ΩR+))2.\displaystyle\varepsilon\max_{0\leq t\leq T}\|e^{-s_{1}t}\partial_{t}u\|_{L^{2}(\Omega_{R}^{+})}^{2}+\frac{1}{4\varepsilon}\,\|e^{-s_{1}t}\partial_{t}f\|_{L^{1}(0,T;L^{2}(\Omega_{R}^{+}))}^{2}.

Letting s10s_{1}\rightarrow 0, choosing ε>0\varepsilon>0 small enough and applying Cauchy-Schwartz inequality, we finally get

max0tT(tuL2(ΩR+)+uL2(ΩR+))\displaystyle\max_{0\leq t\leq T}\Big{(}\|\partial_{t}u\|_{L^{2}(\Omega_{R}^{+})}+\|\nabla u\|_{L^{2}(\Omega_{R}^{+})}\Big{)}
\displaystyle\leq Cmax0tT(tuL2(ΩR+)2+uL2(ΩR+)2)1/2\displaystyle C\max_{0\leq t\leq T}\Big{(}\|\partial_{t}u\|_{L^{2}(\Omega_{R}^{+})}^{2}+\|\nabla u\|_{L^{2}(\Omega_{R}^{+})}^{2}\Big{)}^{1/2}
\displaystyle\leq CtfL1(0,T;L2(ΩR+)).\displaystyle C\|\partial_{t}f\|_{L^{1}(0,T;L^{2}(\Omega_{R}^{+}))}.

This completes the stability estimate. ∎

3 The time-domain PML problem

Inspired by the PML approach for bounded obstacles [19, 20], we present in this section the time-domain PML formulation in a perturbed half-plane and then show the well-posedness and stability of the PML problem by applying the Laplace transform together with the variational and energy methods.

3.1 Well-posedness of the PML problem

We surround the domain ΩR+\Omega_{R}^{+} with a PML layer

ΩPML+:=Bρ+\BR+¯=:{xΩ:R<|x|<ρ},\Omega_{PML}^{+}:=B_{\rho}^{+}\backslash\overline{B_{R}^{+}}=:\{x\in\Omega:R<|x|<\rho\},

where Bρ+:={xΩ:|x|<ρ}B_{\rho}^{+}:=\{x\in\Omega:|x|<\rho\}. We denote Ωρ+:=Bρ+\D¯\Omega_{\rho}^{+}:=B_{\rho}^{+}\backslash\overline{D} the truncated PML domain with the exterior boundary Γρ+:={xΩ:|x|=ρ}\Gamma_{\rho}^{+}:=\{x\in\Omega:|x|=\rho\}. Let s1=Re(s)>0s_{1}=\textnormal{Re}(s)>0 for ss\in{\mathbb{C}}. Define the medium parameter in the PML layer as

α(r)={1,rR,1+s1σ(r),r>R,\displaystyle\alpha(r)=\left\{\begin{array}[]{lll}1,&&r\leq R,\\ 1+s^{-1}\sigma(r),&&r>R,\end{array}\right.

where r=|x|r=|x|, σ=0\sigma=0 for rRr\leq R and σ>0\sigma>0 for r>Rr>R.

In what follows, we will derive the PML formulation by a complex transformation of variables. Denote by r~\tilde{r} the complex radius

r~=0rα(τ)𝑑τ=rβ(r),\displaystyle\tilde{r}=\int_{0}^{r}\alpha(\tau)\,d\tau=r\beta(r),

where β(r)=r10rα(τ)𝑑τ\beta(r)=r^{-1}\int_{0}^{r}\alpha(\tau)\,d\tau. It is obvious that β(r)=1+s1σ^(r)\beta(r)=1+s^{-1}\hat{\sigma}(r) for rRr\geq R, where σ^(r)=r10rσ(τ)𝑑τ\hat{\sigma}(r)=r^{-1}\int_{0}^{r}\sigma(\tau)\,d\tau. To derive the PML equations, we need to transform the exterior problem (2.13) into the s-domain. On ΓR+\Gamma_{R}^{+}, the Laplace transform of uu can be expanded into the series,

uL(R,s)=n=1uLn(R,s)sinnθ,uLn(R,s)=2π0πuL(R,θ,s)sinnθdθ.\displaystyle u_{L}(R,s)=\sum_{n=1}^{\infty}u^{n}_{L}(R,s)\sin{n\theta},\quad u^{n}_{L}(R,s)=\frac{2}{\pi}\int_{0}^{\pi}{u_{L}(R,\theta,s)\sin{n\theta}\,d\theta}.

Then, let us define the PML extension u~L\tilde{u}_{L} in the s-domain as

u~L(r,θ,s)=n=1Kn(sr~)Kn(sR)u~Ln(R,s)sinnθ,r>R.\displaystyle\tilde{u}_{L}(r,\theta,s)=\sum_{n=1}^{\infty}\frac{K_{n}(s\tilde{r})}{K_{n}(sR)}\tilde{u}^{n}_{L}(R,s)\sin{n\theta},\quad r>R.

Since Kn(z)(π2z)1/2ezK_{n}(z)\backsim(\frac{\pi}{2z})^{1/2}e^{-z} as |z||z|\rightarrow\infty, u~L(r,θ,s)\tilde{u}_{L}(r,\theta,s) decays exponentially for large r~\tilde{r}. It is easy to see that u~L\tilde{u}_{L} satisfies 1r~r~(r~r~)u~L1r~22θ2u~L+s2u~L=0-\frac{1}{\tilde{r}}\frac{\partial}{\partial\tilde{r}}(\tilde{r}\frac{\partial}{\partial\tilde{r}})\tilde{u}_{L}-\frac{1}{\tilde{r}^{2}}\frac{\partial^{2}}{\partial\theta^{2}}\tilde{u}_{L}+s^{2}\tilde{u}_{L}=0 in Ω\BR+¯\Omega\backslash\overline{B_{R}^{+}}. Since r~=rβ\tilde{r}=r\beta and dr~=αdrd\tilde{r}=\alpha dr, we obtain

(Au~L)+s2αβu~L=0,xΩ\BR+¯\displaystyle-\nabla\cdot(A\nabla\tilde{u}_{L})+s^{2}\alpha\beta\tilde{u}_{L}=0,\quad x\in\Omega\backslash\overline{B_{R}^{+}} (3.2)

where A=diag{β/α,α/β}A=\textnormal{diag}\{\beta/\alpha,\alpha/\beta\} is a complex matrix and Au~L=βαu~Lrer+αβru~LθeθA\nabla\tilde{u}_{L}=\frac{\beta}{\alpha}\frac{\partial\tilde{u}_{L}}{\partial r}\textbf{e}_{r}+\frac{\alpha}{\beta r}\frac{\partial\tilde{u}_{L}}{\partial\theta}\textbf{e}_{\theta}. Here er\textbf{e}_{r} and eθ\textbf{e}_{\theta} are the unit vectors in polar coordinates.

Next, we will deduce the PML system in the time-domain by applying the inverse Laplace transform to (3.2). Since AA, α\alpha and β\beta are complex, to simplify the inverse Laplace transform, we introduce the auxiliary functions

p~L:=1su~L,u~L:=1sσu~L,p~L:=Ap~L,\displaystyle\tilde{p}_{L}^{*}:=-\frac{1}{s}\nabla\tilde{u}_{L},\quad\tilde{u}_{L}^{*}:=\frac{1}{s}\sigma\tilde{u}_{L},\quad\tilde{p}_{L}:=A\tilde{p}_{L}^{*}, (3.3)

to transform (3.2) into a first order system.

In Ω\BR+¯\Omega\backslash\overline{B_{R}^{+}}, define

u~:=1(u~L),p~:=1(p~L),u~:=1(u~L),p~:=1(p~L),\displaystyle\tilde{u}:=\mathscr{L}^{-1}(\tilde{u}_{L}),\;\tilde{p}:=\mathscr{L}^{-1}(\tilde{p}_{L}),\;\tilde{u}^{*}:=\mathscr{L}^{-1}(\tilde{u}_{L}^{*}),\;\tilde{p}^{*}:=\mathscr{L}^{-1}(\tilde{p}_{L}^{*}),

with the zero initial conditions

u~|t=0=0,p~|t=0=0,u~|t=0=0,p~|t=0=0.\displaystyle\tilde{u}|_{t=0}=0,\;\tilde{p}|_{t=0}=0,\;\tilde{u}^{*}|_{t=0}=0,\;\tilde{p}^{*}|_{t=0}=0.

Taking the inverse Laplace transform to (3.2) and (3.3) and using the zero initial conditions, we can write the PML system for xΩ\BR+¯x\in\Omega\backslash\overline{B_{R}^{+}} as

{tu~+(σ+σ^)u~+σu~+p~=0,tp~=u~,tu~=σu~,tp~+Λ1p~=tp~+Λ2p~,\displaystyle\left\{\begin{array}[]{lll}\partial_{t}\tilde{u}+(\sigma+\hat{\sigma})\tilde{u}+\sigma\tilde{u}^{*}+\nabla\cdot\tilde{p}=0,\\ \partial_{t}\tilde{p}^{*}=-\nabla\tilde{u},\quad\partial_{t}\tilde{u}^{*}=\sigma\tilde{u},\\ \partial_{t}\tilde{p}+\Lambda_{1}\tilde{p}=\partial_{t}\tilde{p}^{*}+\Lambda_{2}\tilde{p}^{*},\end{array}\right. (3.7)

where sα=s+σs\alpha=s+\sigma, sβ=s+σ^s\beta=s+\hat{\sigma}, Λ1=MTdiag{σ,σ^}M\Lambda_{1}={M^{T}}\textnormal{diag}\{\sigma,\hat{\sigma}\}{M} and Λ2=MTdiag{σ^,σ}M\Lambda_{2}={M^{T}}\textnormal{diag}\{\hat{\sigma},\sigma\}{M} with

M:=(cosθsinθsinθcosθ).\displaystyle M:=\left(\begin{array}[]{rrl}\cos\theta&&\sin\theta\\ -\sin\theta&&\cos\theta\end{array}\right).

Since the above PML system (3.7) is a first order system, it is necessary to reduce equivalently the time-domain scattering problem (2.13) in the half space into a first order PDE system:

{tu=p+f(x,t)inΩR+×(0,T),tp=uinΩR+×(0,T),u=0on(DΓ0)×(0,T),px^+𝒯(0tu𝑑τ)=0,onΓR+×(0,T),u|t=0=p|t=0=0inΩR+.\displaystyle\left\{\begin{array}[]{lll}\partial_{t}u=-\nabla\cdot p+f(x,t)&&\quad\mbox{in}\quad\Omega_{R}^{+}\times(0,T),\\ \partial_{t}p=-\nabla u&&\quad\mbox{in}\quad\Omega_{R}^{+}\times(0,T),\\ u=0&&\quad\mbox{on}\quad(\partial D\cup\Gamma_{0})\times(0,T),\\ p\cdot\hat{x}+\mathscr{T}(\int_{0}^{t}u\,d\tau)=0,&&\quad\mbox{on}\quad\Gamma_{R}^{+}\times(0,T),\\ u|_{t=0}=p|_{t=0}=0&&\quad\mbox{in}\quad\Omega_{R}^{+}.\end{array}\right. (3.14)

Below we derive the DtN boundary condition on ΓR+×(0,T)\Gamma_{R}^{+}\times(0,T). Taking Laplace transform to the second equation of (3.14), we obtain that

pL+1suL=0.\displaystyle p_{L}+\frac{1}{s}\nabla u_{L}=0.

Then, multiplying the above equation by x^=x/|x|\hat{x}=x/|x| on ΓR+\Gamma_{R}^{+} and using the DtN boundary condition ruL=𝒢uL\partial_{r}u_{L}=\mathscr{G}u_{L}, it follows that

pLx^+1s𝒢uL=0onΓR+.\displaystyle p_{L}\cdot\hat{x}+\frac{1}{s}\mathscr{G}u_{L}=0\quad\mbox{on}\quad\Gamma_{R}^{+}. (3.15)

Taking inverse Laplace transform to (3.15) and using (A.3), we have

px^+𝒯(0tu𝑑τ)=0onΓR+×(0,T).\displaystyle p\cdot\hat{x}+\mathscr{T}\left(\int_{0}^{t}u\,d\tau\right)=0\quad\mbox{on}\quad\Gamma_{R}^{+}\times(0,T). (3.16)

Further, since σ(R)=σ^(R)=0\sigma(R)=\hat{\sigma}(R)=0, we get α=β=1\alpha=\beta=1 on ΓR+\Gamma_{R}^{+} and thus u~=u\tilde{u}=u and p~=p\tilde{p}=p on ΓR+\Gamma_{R}^{+}. Therefore, (u~,p~\tilde{u},\tilde{p}) can be viewed as the extension of the solution of the problem (2.4). Setting u~=u\tilde{u}=u and p~=p\tilde{p}=p in ΩR+\Omega_{R}^{+}, we can reformulate the truncated PML problem in Ωρ+\Omega_{\rho}^{+} as

tu~+(σ+σ^)u~+σu~+p~=f\displaystyle\partial_{t}\tilde{u}+(\sigma+\hat{\sigma})\tilde{u}+\sigma\tilde{u}^{*}+\nabla\cdot\tilde{p}=f\quad inΩρ+×(0,T),\displaystyle\mbox{in}\quad\Omega_{\rho}^{+}\times(0,T), (3.17a)
tp~=u~,tu~=σu~\displaystyle\partial_{t}\tilde{p}^{*}=-\nabla\tilde{u},\quad\partial_{t}\tilde{u}^{*}=\sigma\tilde{u}\quad inΩρ+×(0,T),\displaystyle\mbox{in}\quad\Omega_{\rho}^{+}\times(0,T), (3.17b)
tp~+Λ1p~=tp~+Λ2p~\displaystyle\partial_{t}\tilde{p}+\Lambda_{1}\tilde{p}=\partial_{t}\tilde{p}^{*}+\Lambda_{2}\tilde{p}^{*}\quad inΩρ+×(0,T),\displaystyle\mbox{in}\quad\Omega_{\rho}^{+}\times(0,T), (3.17c)
u~=0\displaystyle\tilde{u}=0\quad on(DΓ0)×(0,T),\displaystyle\mbox{on}\quad(\partial D\cup\Gamma_{0})\times(0,T), (3.17d)
u~=0\displaystyle\tilde{u}=0\quad onΓρ+×(0,T),\displaystyle\mbox{on}\quad\Gamma_{\rho}^{+}\times(0,T), (3.17e)
u~|t=0=p~|t=0=u~|t=0=p~|t=0\displaystyle\tilde{u}|_{t=0}=\tilde{p}|_{t=0}=\tilde{u}^{*}|_{t=0}=\tilde{p}^{*}|_{t=0}\quad inΩρ+.\displaystyle\mbox{in}\quad\Omega_{\rho}^{+}. (3.17f)

The well-posedness of truncated PML problem will be proved by applying Laplace transform and the variational method. In the rest of this paper, we assume that σ(r)\sigma(r) is monotonically increasing on [R,ρ][R,\rho] such that σRσσρ\sigma_{R}\leq\sigma\leq\sigma_{\rho}. First, we take Laplace transform to (3.17) with ss\in{\mathbb{C}} and then eliminate p~L\tilde{p}_{L}, u~L\tilde{u}_{L}^{*} and p~L\tilde{p}_{L}^{*}, to obtain

{(Au~L)+s2αβu~L=sfLinΩρ+×(0,T),u~L=0onDΓ0,u~L=0onΓρ+.\displaystyle\left\{\begin{array}[]{lll}-\nabla\cdot(A\nabla\tilde{u}_{L})+s^{2}\alpha\beta\tilde{u}_{L}=sf_{L}&&\mbox{in}\quad\Omega_{\rho}^{+}\times(0,T),\\ \tilde{u}_{L}=0&&\mbox{on}\quad\partial D\cup\Gamma_{0},\\ \tilde{u}_{L}=0&&\mbox{on}\quad\Gamma_{\rho}^{+}.\end{array}\right. (3.21)

It is easy to derive the variational formulation of (3.21): find a solution u~LH01(Ωρ+)\tilde{u}_{L}\in H_{0}^{1}(\Omega_{\rho}^{+}) such that

a~(u~L,v)=Ωρ+sfLv¯𝑑x,for allvH01(Ωρ+)\displaystyle\tilde{a}(\tilde{u}_{L},v)=\int_{\Omega_{\rho}^{+}}sf_{L}\overline{v}dx,\quad\mbox{for all}\;v\in H_{0}^{1}(\Omega_{\rho}^{+}) (3.22)

where the sesquilinear form a~(,):H01(Ωρ+)×H01(Ωρ+)\tilde{a}(\cdot,\,\cdot):H_{0}^{1}(\Omega_{\rho}^{+})\times H_{0}^{1}(\Omega_{\rho}^{+})\rightarrow{\mathbb{C}} is defined as

a~(u~L,v)=Ωρ+Au~Lv¯+s2αβu~Lv¯dx.\displaystyle\tilde{a}(\tilde{u}_{L},v)=\int_{\Omega_{\rho}^{+}}A\nabla\tilde{u}_{L}\cdot\nabla\overline{v}+s^{2}\alpha\beta\tilde{u}_{L}\overline{v}\,dx.

We will prove the well-posedness of (3.21). The proof of the first inequality in the subsequent lemma is similar to that in [19, Lemma 4.1] where the PML layer is defined as an annular domain in the free space 2{\mathbb{R}}^{2} and σ\sigma is a positive constant.

Lemma 3.1.

For any u~LH01(Ωρ+)\tilde{u}_{L}\in H_{0}^{1}(\Omega_{\rho}^{+}), it holds that

  • (a)

    Re[a~(uL,uL)]+s2s1+σρIm[a~(uL,uL)]s12(s1+σρ)2(AuLL2(Ωρ+)2+sαβuLL2(Ωρ+)2)\textnormal{Re}[\tilde{a}(u_{L},u_{L})]+\frac{s_{2}}{s_{1}+\sigma_{\rho}}\textnormal{Im}[\tilde{a}(u_{L},u_{L})]\geq\frac{s_{1}^{2}}{(s_{1}+\sigma_{\rho})^{2}}\big{(}\|A\nabla u_{L}\|_{L^{2}(\Omega_{\rho}^{+})}^{2}+\|s\alpha\beta u_{L}\|_{L^{2}(\Omega_{\rho}^{+})}^{2}\big{)},

  • (b)

    |a~(uL,uL)|(s1s1+σρ)2s1|s||s1s+σρ|2(uLL2(Ωρ+)2+suLL2(Ωρ+)2)|\tilde{a}(u_{L},u_{L})|\geq\Big{(}\frac{s_{1}}{s_{1}+\sigma_{\rho}}\Big{)}^{2}\frac{s_{1}}{|s|}|\frac{s_{1}}{s+\sigma_{\rho}}|^{2}\big{(}\|\nabla u_{L}\|_{L^{2}(\Omega_{\rho}^{+})}^{2}+\|su_{L}\|_{L^{2}(\Omega_{\rho}^{+})}^{2}\big{)}.

Proof.

It suffices to prove (b). For any u~LH01(Ωρ+)\tilde{u}_{L}\in H_{0}^{1}(\Omega_{\rho}^{+}), applying (a) we have

|a~(uL,uL)|\displaystyle|\tilde{a}(u_{L},u_{L})| \displaystyle\geq 1|s|Re[sa~(uL,uL)]\displaystyle\frac{1}{|s|}\mbox{Re}[s\tilde{a}(u_{L},u_{L})]
\displaystyle\geq s1|s|(Re[a~(uL,uL)]+s2s1Im[a~(uL,uL)])\displaystyle\frac{s_{1}}{|s|}\left(\textnormal{Re}[\tilde{a}(u_{L},u_{L})]+\frac{s_{2}}{s_{1}}\textnormal{Im}[\tilde{a}(u_{L},u_{L})]\right)
\displaystyle\geq s1|s|(Re[a~(uL,uL)]+s2s1+σρIm[a~(uL,uL)])\displaystyle\frac{s_{1}}{|s|}\left(\textnormal{Re}[\tilde{a}(u_{L},u_{L})]+\frac{s_{2}}{s_{1}+\sigma_{\rho}}\textnormal{Im}[\tilde{a}(u_{L},u_{L})]\right)
\displaystyle\geq s1|s|(s1s1+σρ)2(AuLL2(Ωρ+)2+sαβuLL2(Ωρ+)2)\displaystyle\frac{s_{1}}{|s|}\left(\frac{s_{1}}{s_{1}+\sigma_{\rho}}\right)^{2}\left(\|A\nabla u_{L}\|_{L^{2}(\Omega_{\rho}^{+})}^{2}+\|s\alpha\beta u_{L}\|_{L^{2}(\Omega_{\rho}^{+})}^{2}\right)
\displaystyle\geq (s1s1+σρ)2s1|s||s1s+σρ|2(uLL2(Ωρ+)2+suLL2(Ωρ+)2).\displaystyle\Big{(}\frac{s_{1}}{s_{1}+\sigma_{\rho}}\Big{)}^{2}\frac{s_{1}}{|s|}\Big{|}\frac{s_{1}}{s+\sigma_{\rho}}\Big{|}^{2}\left(\|\nabla u_{L}\|_{L^{2}(\Omega_{\rho}^{+})}^{2}+\|su_{L}\|_{L^{2}(\Omega_{\rho}^{+})}^{2}\right).

This completes the proof. ∎

Lemma 3.2.

The variational problem (3.22) has a unique solution u~LH01(ΩR+)\tilde{u}_{L}\in H_{0}^{1}(\Omega_{R}^{+}) with the following stability estimates

AuLL2(Ωρ+)+sαβuLL2(Ωρ+)\displaystyle\|A\nabla u_{L}\|_{L^{2}(\Omega_{\rho}^{+})}+\|s\alpha\beta u_{L}\|_{L^{2}(\Omega_{\rho}^{+})} \displaystyle\leq C(|s|s1)1/2(1+σρs1)fLL2(Ωρ+),\displaystyle C\left(\frac{|s|}{s_{1}}\right)^{1/2}\left(1+\frac{\sigma_{\rho}}{s_{1}}\right)\|f_{L}\|_{L^{2}(\Omega_{\rho}^{+})}, (3.23)
uLL2(Ωρ+)+suLL2(Ωρ+)\displaystyle\|\nabla u_{L}\|_{L^{2}(\Omega_{\rho}^{+})}+\|su_{L}\|_{L^{2}(\Omega_{\rho}^{+})} \displaystyle\leq C(|s|s1)1/2(1+σρs1)|s+σρ|s1fLL2(Ωρ+),\displaystyle C\left(\frac{|s|}{s_{1}}\right)^{1/2}\left(1+\frac{\sigma_{\rho}}{s_{1}}\right)\frac{|s+\sigma_{\rho}|}{s_{1}}\|f_{L}\|_{L^{2}(\Omega_{\rho}^{+})}, (3.24)

where CC is a constant independent of ss.

Proof.

The first part of the lemma follows easily from the Lax-Milgram lemma and the strictly coercivity of a~(,)\tilde{a}(\cdot,\,\cdot) in Lemma 3.1. Further, the stability estimates (3.23) and (3.24) follow from (3.22), Lemma 3.1 and the Cauchy-Schwartz inequality. ∎

The well-posedness of PML problem (3.17) in the time domain can be established by applying Lemma 3.2.

Theorem 3.1.

The truncated PML problem (3.17) in the time domain has a unique solution (u,p,u,p)(u,p,u^{*},p^{*}) such that

uL2(0,T;H01(Ωρ+))H1(0,T;L2(Ωρ+)),\displaystyle u\in L^{2}(0,T;H_{0}^{1}(\Omega_{\rho}^{+}))\cap H^{1}(0,T;L^{2}(\Omega_{\rho}^{+})),\quad uH1(0,T;L2(Ωρ+)),\displaystyle u^{*}\in H^{1}(0,T;L^{2}(\Omega_{\rho}^{+})),
pL2(0,T;H(div,Ωρ+))H1(0,T;L2(Ωρ+)),\displaystyle p\in L^{2}(0,T;H(\textnormal{div},\Omega_{\rho}^{+}))\cap H^{1}(0,T;L^{2}(\Omega_{\rho}^{+})),\quad pH1(0,T;L2(Ωρ+)).\displaystyle p^{*}\in H^{1}(0,T;L^{2}(\Omega_{\rho}^{+})).
Proof.

By simple calculations, we can obtain

0TtuL2(Ωρ+)2+uL2(Ωρ+)2dt\displaystyle\int_{0}^{T}\|\partial_{t}u\|_{L^{2}(\Omega_{\rho}^{+})}^{2}+\|\nabla u\|_{L^{2}(\Omega_{\rho}^{+})}^{2}\,dt
\displaystyle\leq C0e2s1t(tuL2(Ωρ+)2+uL2(Ωρ+)2)𝑑t.\displaystyle C\int_{0}^{\infty}e^{-2s_{1}t}(\|\partial_{t}u\|_{L^{2}(\Omega_{\rho}^{+})}^{2}+\|\nabla u\|_{L^{2}(\Omega_{\rho}^{+})}^{2})\,dt.

Hence it suffices to estimate the integral

0e2s1t(tuL2Ωρ+)2+uL2(Ωρ+)2)𝑑t.\displaystyle\int_{0}^{\infty}e^{-2s_{1}t}(\|\partial_{t}u\|_{L^{2}\Omega_{\rho}^{+})}^{2}+\|\nabla u\|_{L^{2}(\Omega_{\rho}^{+})}^{2})\,dt.

Using the stability estimate of uLu_{L} in Lemma 3.2, we duduce from [35, Lemma 44.1] that uLu_{L} is a holomorphic function of ss on the half plane s1>ζ0>0s_{1}>\zeta_{0}>0, where ζ0\zeta_{0} is any positive constant. Thus, by Lemma A.2, the inverse Laplace transform of uLu_{L} exists and is supported in [0,][0,\infty].

Set u=1(uL)u=\mathscr{L}^{-1}(u_{L}). One deduces from the Parseval identity (A.4), stability estimate (3.24) and the Cauchy-Schwartz inequality that

0e2s1t(tuL2(Ωρ+)2+uL2(Ωρ+)2)𝑑t\displaystyle\int_{0}^{\infty}e^{-2s_{1}t}(\|\partial_{t}u\|_{L^{2}(\Omega_{\rho}^{+})}^{2}+\|\nabla u\|_{L^{2}(\Omega_{\rho}^{+})}^{2})\,dt
=\displaystyle= 12π+suLL2(Ωρ+)2+uLL2(Ωρ+)2)ds2\displaystyle\frac{1}{2\pi}\int_{-\infty}^{+\infty}\|su_{L}\|_{L^{2}(\Omega_{\rho}^{+})}^{2}+\|\nabla u_{L}\|_{L^{2}(\Omega_{\rho}^{+})}^{2})\,ds_{2}
\displaystyle\leq C1s13(1+σρs1)2+|s||s+σρ|2fLL2(Ωρ+)2𝑑s2\displaystyle C\frac{1}{s_{1}^{3}}\left(1+\frac{\sigma_{\rho}}{s_{1}}\right)^{2}\int_{-\infty}^{+\infty}|s||s+\sigma_{\rho}|^{2}\|f_{L}\|_{L^{2}(\Omega_{\rho}^{+})}^{2}\,ds_{2}
=\displaystyle= C1s13(1+σρs1)2+s(s+σρ)fLL2(Ωρ+)(s+σρ)fLL2(Ωρ+)𝑑s2\displaystyle C\frac{1}{s_{1}^{3}}\left(1+\frac{\sigma_{\rho}}{s_{1}}\right)^{2}\int_{-\infty}^{+\infty}\|s(s+\sigma_{\rho})f_{L}\|_{L^{2}(\Omega_{\rho}^{+})}\|(s+\sigma_{\rho})f_{L}\|_{L^{2}(\Omega_{\rho}^{+})}\,ds_{2}
\displaystyle\leq C1s13(1+σρs1)20+e2s1tttf+σρtfL2(Ωρ+)tf+σρfL2(Ωρ+)𝑑t\displaystyle C\frac{1}{s_{1}^{3}}\left(1+\frac{\sigma_{\rho}}{s_{1}}\right)^{2}\int_{0}^{+\infty}e^{-2s_{1}t}\|\partial_{tt}f+\sigma_{\rho}\partial_{t}f\|_{L^{2}(\Omega_{\rho}^{+})}\|\partial_{t}f+\sigma_{\rho}f\|_{L^{2}(\Omega_{\rho}^{+})}\,dt
\displaystyle\leq C1s13(1+σρs1)20+e2s1t(ttfL2(Ωρ+)tfL2(Ωρ+)\displaystyle C\frac{1}{s_{1}^{3}}\left(1+\frac{\sigma_{\rho}}{s_{1}}\right)^{2}\int_{0}^{+\infty}e^{-2s_{1}t}\Big{(}\|\partial_{tt}f\|_{L^{2}(\Omega_{\rho}^{+})}\|\partial_{t}f\|_{L^{2}(\Omega_{\rho}^{+})}
+σρttfL2(Ωρ+)fL2(Ωρ+)+σρtfL2(Ωρ+)2+σρ2tfL2(Ωρ+)fL2(Ωρ+))dt\displaystyle+\sigma_{\rho}\|\partial_{tt}f\|_{L^{2}(\Omega_{\rho}^{+})}\|f\|_{L^{2}(\Omega_{\rho}^{+})}+\sigma_{\rho}\|\partial_{t}f\|_{L^{2}(\Omega_{\rho}^{+})}^{2}+\sigma_{\rho}^{2}\|\partial_{t}f\|_{L^{2}(\Omega_{\rho}^{+})}\|f\|_{L^{2}(\Omega_{\rho}^{+})}\Big{)}\,dt
\displaystyle\leq C1s13(1+σρs1)20+e2s1t((1+σρ)ttfL2(Ωρ+)2+σρ(1+σρ+σρ2)tfL2(Ωρ+)2\displaystyle C\frac{1}{s_{1}^{3}}\left(1+\frac{\sigma_{\rho}}{s_{1}}\right)^{2}\int_{0}^{+\infty}e^{-2s_{1}t}\Big{(}(1+\sigma_{\rho})\|\partial_{tt}f\|_{L^{2}(\Omega_{\rho}^{+})}^{2}+\sigma_{\rho}(1+\sigma_{\rho}+\sigma_{\rho}^{2})\|\partial_{t}f\|_{L^{2}(\Omega_{\rho}^{+})}^{2}
+(1+σρ)fL2(Ωρ+)2)dt.\displaystyle+(1+\sigma_{\rho})\|f\|_{L^{2}(\Omega_{\rho}^{+})}^{2}\Big{)}\,dt.

This together with the Poincaré inequality proves

uL2(0,T;H01(Ωρ+))H1(0,T;L2(Ωρ+)).\displaystyle u\in L^{2}(0,T;H_{0}^{1}(\Omega_{\rho}^{+}))\cap H^{1}(0,T;L^{2}(\Omega_{\rho}^{+})).

From (3.3) and the first equation of (3.21), we obtain

spL=AuL,pL=sαβuL+fL.\displaystyle sp_{L}=-A\nabla u_{L},\quad\nabla\cdot p_{L}=-s\alpha\beta u_{L}+f_{L}. (3.25)

By the first equation of (3.25) and stability estimate (3.23), we deduce from [35, Lemma 44.1] that pLp_{L} is holomorphic function of ss on the half plane s1>ζ0>0s_{1}>\zeta_{0}>0, where ζ0\zeta_{0} is any positive constant. Thus, by Lemma A.2, it follows from that the inverse Laplace transform of pLp_{L} exists and is supported in [0,][0,\infty]. Then, using the Parseval identity (A.4), Cauchy inequality with ε\varepsilon and stability estimate (3.23), we can obtain

0e2s1t(tpL2(Ωρ+)2+pL2(Ωρ+)2)𝑑t\displaystyle\int_{0}^{\infty}e^{-2s_{1}t}\left(\|\partial_{t}p\|_{L^{2}(\Omega_{\rho}^{+})}^{2}+\|\nabla\cdot p\|_{L^{2}(\Omega_{\rho}^{+})}^{2}\right)\,dt
=\displaystyle= 12π+spLL2(Ωρ+)2+pLL2(Ωρ+)2ds2\displaystyle\frac{1}{2\pi}\int_{-\infty}^{+\infty}\|sp_{L}\|_{L^{2}(\Omega_{\rho}^{+})}^{2}+\|\nabla\cdot p_{L}\|_{L^{2}(\Omega_{\rho}^{+})}^{2}\,ds_{2}
=\displaystyle= 12π+AuLL2(Ωρ+)2+sαβuL+fLL2(Ωρ+)2ds2\displaystyle\frac{1}{2\pi}\int_{-\infty}^{+\infty}\|A\nabla u_{L}\|_{L^{2}(\Omega_{\rho}^{+})}^{2}+\|s\alpha\beta u_{L}+f_{L}\|_{L^{2}(\Omega_{\rho}^{+})}^{2}\,ds_{2}
\displaystyle\leq C12π+AuLL2(Ωρ+)2+sαβuLL2(Ωρ+)2+fLL2(Ωρ+)2ds2\displaystyle C\frac{1}{2\pi}\int_{-\infty}^{+\infty}\|A\nabla u_{L}\|_{L^{2}(\Omega_{\rho}^{+})}^{2}+\|s\alpha\beta u_{L}\|_{L^{2}(\Omega_{\rho}^{+})}^{2}+\|f_{L}\|_{L^{2}(\Omega_{\rho}^{+})}^{2}\,ds_{2}
\displaystyle\leq C12π+|s|s1(1+σρs1)2fLL2(Ωρ+)2+fLL2(Ωρ+)2ds2\displaystyle C\frac{1}{2\pi}\int_{-\infty}^{+\infty}\frac{|s|}{s_{1}}\left(1+\frac{\sigma_{\rho}}{s_{1}}\right)^{2}\|f_{L}\|_{L^{2}(\Omega_{\rho}^{+})}^{2}+\|f_{L}\|_{L^{2}(\Omega_{\rho}^{+})}^{2}\,ds_{2}
\displaystyle\leq C0+e2s1t(1s1(1+σρs1)2tfL2(Ωρ+)fL2(Ωρ+)+fL2(Ωρ+)2)𝑑t\displaystyle C\int_{0}^{+\infty}e^{-2s_{1}t}\left(\frac{1}{s_{1}}\left(1+\frac{\sigma_{\rho}}{s_{1}}\right)^{2}\|\partial_{t}f\|_{L^{2}(\Omega_{\rho}^{+})}\|f\|_{L^{2}(\Omega_{\rho}^{+})}+\|f\|_{L^{2}(\Omega_{\rho}^{+})}^{2}\right)\,dt
\displaystyle\leq C0+e2s1t(1s1(1+σρs1)2tfL2(Ωρ+)2+(1s1(1+σρs1)2+1)fL2(Ωρ+)2)𝑑t.\displaystyle C\int_{0}^{+\infty}e^{-2s_{1}t}\left(\frac{1}{s_{1}}\left(1+\frac{\sigma_{\rho}}{s_{1}}\right)^{2}\|\partial_{t}f\|_{L^{2}(\Omega_{\rho}^{+})}^{2}+\Big{(}\frac{1}{s_{1}}\left(1+\frac{\sigma_{\rho}}{s_{1}}\right)^{2}+1\Big{)}\|f\|_{L^{2}(\Omega_{\rho}^{+})}^{2}\right)\,dt.

Hence,

pL2(0,T;H(div,Ωρ+))H1(0,T;L2(Ωρ+)).\displaystyle p\;\in\;L^{2}(0,T;H(\textnormal{div},\Omega_{\rho}^{+}))\cap H^{1}(0,T;L^{2}(\Omega_{\rho}^{+})).

By the second equation of (3.17b) and Poinca´\acute{a}re’s inequality, we see

0e2s1ttuL2(Ωρ+)2𝑑t\displaystyle\int_{0}^{\infty}e^{-2s_{1}t}\|\partial_{t}u^{*}\|_{L^{2}(\Omega_{\rho}^{+})}^{2}\,dt
\displaystyle\leq 0e2s1tσρ2uL2(Ωρ+)2𝑑t\displaystyle\int_{0}^{\infty}e^{-2s_{1}t}\sigma_{\rho}^{2}\|u\|_{L^{2}(\Omega_{\rho}^{+})}^{2}\,dt
\displaystyle\leq C0e2s1tσρ2(uL2(Ωρ+)2)𝑑t\displaystyle C\int_{0}^{\infty}e^{-2s_{1}t}\sigma_{\rho}^{2}\left(\|\nabla u\|_{L^{2}(\Omega_{\rho}^{+})}^{2}\right)\,dt
\displaystyle\leq C0e2s1tσρ2(uL2(Ωρ+)2+tuL2(Ωρ+)2)𝑑t.\displaystyle C\int_{0}^{\infty}e^{-2s_{1}t}\sigma_{\rho}^{2}\left(\|\nabla u\|_{L^{2}(\Omega_{\rho}^{+})}^{2}+\|\partial_{t}u\|_{L^{2}(\Omega_{\rho}^{+})}^{2}\right)\,dt.

Then, in view of the solution space for uu, we know uH1(0,T;L2(Ωρ+))u^{*}\;\in\;H^{1}(0,T;L^{2}(\Omega_{\rho}^{+})). Similarly, from the first equation of (3.17b), we know tpL2(Ωρ+)2=uL2(Ωρ+)2\|\partial_{t}p^{*}\|_{L^{2}(\Omega_{\rho}^{+})}^{2}=\|\nabla u\|_{L^{2}(\Omega_{\rho}^{+})}^{2}, which implies pH1(0,T;L2(Ωρ+))p^{*}\;\in\;H^{1}(0,T;L^{2}(\Omega_{\rho}^{+})). ∎

3.2 Stability of the truncated PML problem

The aim of this subsection is to prove the stability of the PML problem (3.17) with σ=σ^\sigma=\hat{\sigma}. We first present an auxiliary stability estimate.

Theorem 3.2.

Let (u,p,u,p)(u,p,u^{*},p^{*}) be the solution of the truncated PML problem (3.17). Then there holds the stability estimate

max0tT(tu+σuL2(Ωρ+)+tp+σpL2(Ωρ+)+tu+σuL2(Ωρ+))\displaystyle\max_{0\leq t\leq T}\left(\|\partial_{t}u+\sigma u\|_{L^{2}(\Omega_{\rho}^{+})}+\|\partial_{t}p+\sigma p\|_{L^{2}(\Omega_{\rho}^{+})}+\|\partial_{t}u^{*}+\sigma u^{*}\|_{L^{2}(\Omega_{\rho}^{+})}\right)
\displaystyle\leq C0Ttf+σfL2(Ωρ+)𝑑t,\displaystyle C\int_{0}^{T}\|\partial_{t}f+\sigma f\|_{L^{2}(\Omega_{\rho}^{+})}\,dt,

where the constant CC is independent of σ\sigma and TT.

Proof.

We apply to equation (3.17a) the operator t+σ\partial_{t}+\sigma to get

t2u+(tp+σp)+(σ+σ^)(tu+σu)+σ^(tu+σu)=tf+σf.\displaystyle\partial_{t}^{2}u+\nabla\cdot\left(\partial_{t}p+\sigma p\right)+(\sigma+\hat{\sigma})\left(\partial_{t}u+\sigma u\right)+\hat{\sigma}\left(\partial_{t}u^{*}+\sigma u^{*}\right)=\partial_{t}f+\sigma f.

Multiplying the above equation by tu+σu\partial_{t}u+\sigma u and integrating over Ωρ+\Omega_{\rho}^{+} yield

12ddttu+σuL2(Ωρ+)2+12ddttu+σuL2(Ωρ+)2+((tp+σp),tu+σu)Ωρ++((σ+σ^)(tu+σu),(tu+σu))Ωρ+=(tf+σf,tu+σu)Ωρ+.\displaystyle\begin{aligned} &\frac{1}{2}\frac{d}{dt}\|\partial_{t}u+\sigma u\|_{L^{2}(\Omega_{\rho}^{+})}^{2}+\frac{1}{2}\frac{d}{dt}\|\partial_{t}u^{*}+\sigma u^{*}\|_{L^{2}(\Omega_{\rho}^{+})}^{2}+\left(\nabla\cdot(\partial_{t}p+\sigma p),\,\partial_{t}u+\sigma u\right)_{\Omega_{\rho}^{+}}\\ &+\left((\sigma+\hat{\sigma})(\partial_{t}u+\sigma u),\,(\partial_{t}u+\sigma u)\right)_{\Omega_{\rho}^{+}}=\left(\partial_{t}f+\sigma f,\,\partial_{t}u+\sigma u\right)_{\Omega_{\rho}^{+}}.\end{aligned} (3.26)

Since

0t((σ+σ^)(τu+σu),(τu+σu))Ωρ+𝑑τ0,\displaystyle\int_{0}^{t}\left((\sigma+\hat{\sigma})(\partial_{\tau}u+\sigma u),\,(\partial_{\tau}u+\sigma u)\right)_{\Omega_{\rho}^{+}}\,d\tau\geq 0,

integrating (LABEL:eq:st-1) from 0 to tt and applying Green’s first identity, we obtain

12tu+σuL2(Ωρ+)2+12tu+σuL2(Ωρ+)20t((τp+σp),(τu+σu))Ωρ+𝑑τ12tu|t=0L2(Ωρ+)2+12tu|t=0L2(Ωρ+)2+0t(τf+σf,τu+σu)Ωρ+𝑑τ.\displaystyle\begin{aligned} &\frac{1}{2}\|\partial_{t}u+\sigma u\|_{L^{2}(\Omega_{\rho}^{+})}^{2}+\frac{1}{2}\|\partial_{t}u^{*}+\sigma u^{*}\|_{L^{2}(\Omega_{\rho}^{+})}^{2}-\int_{0}^{t}\left((\partial_{\tau}p+\sigma p),\,\nabla(\partial_{\tau}u+\sigma u)\right)_{\Omega_{\rho}^{+}}\,d\tau\\ \leq&\frac{1}{2}\|\partial_{t}u|_{t=0}\|_{L^{2}(\Omega_{\rho}^{+})}^{2}+\frac{1}{2}\|\partial_{t}u^{*}|_{t=0}\|_{L^{2}(\Omega_{\rho}^{+})}^{2}+\int_{0}^{t}\left(\partial_{\tau}f+\sigma f,\,\partial_{\tau}u+\sigma u\right)_{\Omega_{\rho}^{+}}\,d\tau.\end{aligned} (3.27)

Here we have used the fact that u|t=0=u|t=0=0u|_{t=0}=u^{*}|_{t=0}=0. We then apply t\partial_{t} to the first equation of (3.17b) and (3.17c) and eliminate the term with pp^{*}. This gives

t2p+Λ1tp+Λ2u+tu=0.\displaystyle\partial_{t}^{2}p+\Lambda_{1}\partial_{t}p+\Lambda_{2}\nabla u+\nabla\partial_{t}u=0.

Multiplying the above equation by tp+σp\partial_{t}p+\sigma p and integrating over Ωρ+\Omega_{\rho}^{+} yield

12ddttp+σpL2(Ωρ+)2+((tu+σu),(tp+σp))Ωρ++((Λ1σI)tp,(tp+σp))Ωρ+=0.\displaystyle\begin{aligned} &\frac{1}{2}\frac{d}{dt}\|\partial_{t}p+\sigma p\|_{L^{2}(\Omega_{\rho}^{+})}^{2}+\left(\nabla(\partial_{t}u+\sigma u),\,(\partial_{t}p+\sigma p)\right)_{\Omega_{\rho}^{+}}\\ &+\left((\Lambda_{1}-\sigma I)\partial_{t}p,\,(\partial_{t}p+\sigma p)\right)_{\Omega_{\rho}^{+}}=0.\end{aligned} (3.28)

Since σ=σ^\sigma=\hat{\sigma}, we have Λ1=Λ2=σI\Lambda_{1}=\Lambda_{2}=\sigma I and Λ1σI=0\Lambda_{1}-\sigma I=0. Thus it follows from (3.28) that

12tp+σpL2(Ωρ+)2+0t((τu+σu),(τp+σp))Ωρ+𝑑τ=tp|t=0L2(Ωρ+)2.\displaystyle\frac{1}{2}\|\partial_{t}p+\sigma p\|_{L^{2}(\Omega_{\rho}^{+})}^{2}+\int_{0}^{t}\left(\nabla(\partial_{\tau}u+\sigma u),\,(\partial_{\tau}p+\sigma p)\right)_{\Omega_{\rho}^{+}}\,d\tau=\|\partial_{t}p|_{t=0}\|_{L^{2}(\Omega_{\rho}^{+})}^{2}. (3.29)

Adding (3.27) and (3.29) we get

12tu+σuL2(Ωρ+)2+12tu+σuL2(Ωρ+)2+12tp+σpL2(Ωρ+)2\displaystyle\frac{1}{2}\|\partial_{t}u+\sigma u\|_{L^{2}(\Omega_{\rho}^{+})}^{2}+\frac{1}{2}\|\partial_{t}u^{*}+\sigma u^{*}\|_{L^{2}(\Omega_{\rho}^{+})}^{2}+\frac{1}{2}\|\partial_{t}p+\sigma p\|_{L^{2}(\Omega_{\rho}^{+})}^{2}
\displaystyle\leq 12tu|t=0L2(Ωρ+)2+12tu|t=0L2(Ωρ+)2\displaystyle\frac{1}{2}\|\partial_{t}u|_{t=0}\|_{L^{2}(\Omega_{\rho}^{+})}^{2}+\frac{1}{2}\|\partial_{t}u^{*}|_{t=0}\|_{L^{2}(\Omega_{\rho}^{+})}^{2}
+tp|t=0L2(Ωρ+)2+0t(τf+σf,τu+σu)Ωρ+𝑑τ.\displaystyle+\|\partial_{t}p|_{t=0}\|_{L^{2}(\Omega_{\rho}^{+})}^{2}+\int_{0}^{t}\left(\partial_{\tau}f+\sigma f,\,\partial_{\tau}u+\sigma u\right)_{\Omega_{\rho}^{+}}\,d\tau.

It follows from the compatibility conditions in (3.17a)-(3.17b) and the initial conditions (3.17f) that

tu|t=0=f|t=0=0,tu|t=0=0,tp|t=0=0.\partial_{t}u|_{t=0}=f|_{t=0}=0,\quad\partial_{t}u^{*}|_{t=0}=0,\quad\partial_{t}p|_{t=0}=0. (3.30)

Applying the Cauchy inequality with ε\varepsilon, we have

max0tT(tu+σuL2(Ωρ+)+tp+σpL2(Ωρ+)+tu+σuL2(Ωρ+))\displaystyle\max_{0\leq t\leq T}\left(\|\partial_{t}u+\sigma u\|_{L^{2}(\Omega_{\rho}^{+})}+\|\partial_{t}p+\sigma p\|_{L^{2}(\Omega_{\rho}^{+})}+\|\partial_{t}u^{*}+\sigma u^{*}\|_{L^{2}(\Omega_{\rho}^{+})}\right)
\displaystyle\leq C0Ttf+σfL2(Ωρ+)𝑑t.\displaystyle C\int_{0}^{T}\|\partial_{t}f+\sigma f\|_{L^{2}(\Omega_{\rho}^{+})}\,dt.

The following lemma will be used to prove the stability of truncated PML problem (3.17) which can be directly obtained from [20, Lemma 3.2].

Lemma 3.3.

It holds that

max0tTσuL2(Ωρ+)max0tTtu+σuL2(Ωρ+).\displaystyle\max_{0\leq t\leq T}\|\sigma u\|_{L^{2}(\Omega_{\rho}^{+})}\leq\max_{0\leq t\leq T}\|\partial_{t}u+\sigma u\|_{L^{2}(\Omega_{\rho}^{+})}.

The main result of this subsection is stated as follows.

Theorem 3.3.

The solution (u,p,u,p)(u,p,u^{*},p^{*}) to the truncated PML problem (3.17) satisfies the stability estimate

max0tT(tuL2(Ωρ+)+tpL2(Ωρ+)+tuL2(Ωρ+)++tpL2(Ωρ+))\displaystyle\max_{0\leq t\leq T}\left(\|\partial_{t}u\|_{L^{2}(\Omega_{\rho}^{+})}+\|\partial_{t}p\|_{L^{2}(\Omega_{\rho}^{+})}+\|\partial_{t}u^{*}\|_{L^{2}(\Omega_{\rho}^{+})}++\|\partial_{t}p^{*}\|_{L^{2}(\Omega_{\rho}^{+})}\right)
\displaystyle\leq C0Ttf+σfL2(Ωρ+)𝑑t.\displaystyle C\int_{0}^{T}\|\partial_{t}f+\sigma f\|_{L^{2}(\Omega_{\rho}^{+})}\,dt.
Proof.

It follows from Lemma 3.3 that

max0tTtuL2(Ωρ+)\displaystyle\max_{0\leq t\leq T}\|\partial_{t}u\|_{L^{2}(\Omega_{\rho}^{+})} \displaystyle\leq max0tTtu+σuL2(Ωρ+)+max0tTσuL2(Ωρ+)\displaystyle\max_{0\leq t\leq T}\|\partial_{t}u+\sigma u\|_{L^{2}(\Omega_{\rho}^{+})}+\max_{0\leq t\leq T}\|\sigma u\|_{L^{2}(\Omega_{\rho}^{+})}
\displaystyle\leq 2max0tTtu+σuL2(Ωρ+).\displaystyle 2\max_{0\leq t\leq T}\|\partial_{t}u+\sigma u\|_{L^{2}(\Omega_{\rho}^{+})}.

Similarly, we obtain

max0tTtpL2(Ωρ+)\displaystyle\max_{0\leq t\leq T}\|\partial_{t}p\|_{L^{2}(\Omega_{\rho}^{+})} \displaystyle\leq 2max0tTtp+σpL2(Ωρ+).\displaystyle 2\max_{0\leq t\leq T}\|\partial_{t}p+\sigma p\|_{L^{2}(\Omega_{\rho}^{+})}.

Using (3.17b) and Lemma 3.3,

max0tTtuL2(Ωρ+)=max0tTσuL2(Ωρ+)max0tTtu+σuL2(Ωρ+).\displaystyle\max_{0\leq t\leq T}\|\partial_{t}u^{*}\|_{L^{2}(\Omega_{\rho}^{+})}=\max_{0\leq t\leq T}\|\sigma u\|_{L^{2}(\Omega_{\rho}^{+})}\leq\max_{0\leq t\leq T}\|\partial_{t}u+\sigma u\|_{L^{2}(\Omega_{\rho}^{+})}.

By (3.17c) and Lemma 3.3, one deduces

max0tTtpL2(Ωρ+)\displaystyle\max_{0\leq t\leq T}\|\partial_{t}p^{*}\|_{L^{2}(\Omega_{\rho}^{+})}\;\; \displaystyle\leq 2max0tTtp+σpL2(Ωρ+)\displaystyle 2\max_{0\leq t\leq T}\|\partial_{t}p^{*}+\sigma p^{*}\|_{L^{2}(\Omega_{\rho}^{+})}
=\displaystyle= 2max0tTtp+σpL2(Ωρ+).\displaystyle 2\max_{0\leq t\leq T}\|\partial_{t}p+\sigma p\|_{L^{2}(\Omega_{\rho}^{+})}.

The desired estimate of Theorem 3.3 follows from Theorem 3.2 and the above estimates. ∎

4 Convergence of PML method

In this section, we shall prove convergence of the PML method. First, we discuss the stability of an auxiliary problem for (u~,p~,u~,p~)(\tilde{u},\tilde{p},\tilde{u}^{*},\tilde{p}^{*}) over the PML layer ΩPML+\Omega_{PML}^{+}. Consider

{tu~+(σ+σ^)u~+σu~+p~=0inΩPML+×(0,T),tp~=u~tu~=σu~inΩPML+×(0,T),tp~+Λ1p~=tp~+Λ2p~inΩPML+×(0,T),u~=0on(ΓR+Γ0)×(0,T),u~=ξonΓρ+×(0,T)u~|t=0=p~|t=0=u~|t=0=p~|t=0inΩPML+.\displaystyle\left\{\begin{array}[]{lll}\partial_{t}\tilde{u}+(\sigma+\hat{\sigma})\tilde{u}+\sigma\tilde{u}^{*}+\nabla\cdot\tilde{p}=0&&\mbox{in}\quad\Omega_{PML}^{+}\times(0,T),\\ \partial_{t}\tilde{p}^{*}=-\nabla\tilde{u}\quad\partial_{t}\tilde{u}^{*}=-\sigma\tilde{u}&&\mbox{in}\quad\Omega_{PML}^{+}\times(0,T),\\ \partial_{t}\tilde{p}+\Lambda_{1}\tilde{p}=\partial_{t}\tilde{p}^{*}+\Lambda_{2}\tilde{p}^{*}&&\mbox{in}\quad\Omega_{PML}^{+}\times(0,T),\\ \tilde{u}=0&&\mbox{on}\quad(\Gamma_{R}^{+}\cup\Gamma_{0})\times(0,T),\\ \tilde{u}=\xi&&\mbox{on}\quad\Gamma_{\rho}^{+}\times(0,T)\\ \tilde{u}|_{t=0}=\tilde{p}|_{t=0}=\tilde{u}^{*}|_{t=0}=\tilde{p}^{*}|_{t=0}&&\mbox{in}\quad\Omega_{PML}^{+}.\end{array}\right. (4.7)

Below we prove a trace lemma which will be used in proving the stability of the above auxiliary problem (4.7).

Lemma 4.1.

Let ξH2(0,T;H01/2(Γρ+))\xi\in H^{2}(0,T;H^{1/2}_{0}(\Gamma_{\rho}^{+})). Then there exists a function ζH2(0,T;H1(ΩPML+))\zeta\in H^{2}(0,T;\\ H^{1}(\Omega_{PML}^{+})) such that ζ=0\zeta=0 on ΓR+×(0,T)\Gamma_{R}^{+}\times(0,T), ζ=ξ\zeta=\xi on Γρ+×(0,T)\Gamma_{\rho}^{+}\times(0,T) and

t2ζL2(0,T;L2(ΩPML+))Cρ1/2t2ξL2(0,T;H1/2(Γρ+)),\displaystyle\|\partial_{t}^{2}\zeta\|_{L^{2}(0,T;L^{2}(\Omega_{PML}^{+}))}\leq C\rho^{1/2}\|\partial_{t}^{2}\xi\|_{L^{2}(0,T;H^{-1/2}(\Gamma_{\rho}^{+}))}, (4.8)
tζL2(0,T;L2(ΩPML+))Cρ1/2tξL2(0,T;H01/2(Γρ+)).\displaystyle\|\nabla\partial_{t}\zeta\|_{L^{2}(0,T;L^{2}(\Omega_{PML}^{+}))}\leq C\rho^{-1/2}\|\partial_{t}\xi\|_{L^{2}(0,T;H^{1/2}_{0}(\Gamma_{\rho}^{+}))}. (4.9)
Proof.

Expand ξ(θ,t)\xi(\theta,t) as follows

ξ(θ,t)=n=1ξn(t)sinnθ,ξn=2π0πξ(θ,t)sinnθdθ.\displaystyle\xi(\theta,t)=\sum_{n=1}^{\infty}\xi_{n}(t)\sin n\theta,\quad\xi_{n}=\frac{2}{\pi}\int_{0}^{\pi}\xi(\theta,t)\sin n\theta\,d\theta.

Let χnC[R,ρ]\chi_{n}\in C^{\infty}[R,\rho] such that χn(ρ)=1\chi_{n}(\rho)=1, 0χn(r)10\leq\chi_{n}(r)\leq 1, |χn|Cδn1|\chi_{n}^{{}^{\prime}}|\leq C\delta_{n}^{-1} for r[R,ρ]r\in[R,\rho], and supp(χn)(ρδn,ρ)(\chi_{n})\subset(\rho-\delta_{n},\rho), where δn=(ρR)/1+n2\delta_{n}=(\rho-R)/\sqrt{1+n^{2}}, nn\in{\mathbb{Z}}. Define the function

ζ(t,r,θ):=n=1ξn(t)χn(r)sinnθ.\displaystyle\zeta(t,r,\theta):=\sum_{n=1}^{\infty}\xi_{n}(t)\chi_{n}(r)\sin n\theta.

Then, it is clear that ζ=0\zeta=0 on ΓR+×(0,T)\Gamma_{R}^{+}\times(0,T), ζ=ξ\zeta=\xi on Γρ+×(0,T)\Gamma_{\rho}^{+}\times(0,T). It is obvious that

0Tt2ζL2(ΩPML+)2𝑑t\displaystyle\int_{0}^{T}\|\partial_{t}^{2}\zeta\|_{L^{2}(\Omega_{PML}^{+})}^{2}\,dt =\displaystyle= 0T0πRρ|n=1ξn′′(t)χn(r)sinnθ|2r𝑑r𝑑θ𝑑t\displaystyle\int_{0}^{T}\int_{0}^{\pi}\int_{R}^{\rho}\Big{|}\sum_{n=1}^{\infty}\xi_{n}^{{}^{\prime\prime}}(t)\chi_{n}(r)\sin n\theta\Big{|}^{2}r\,drd\theta dt
=\displaystyle= 0Tπ2n=1Rρ|ξn′′(t)|2|χn(r)|2r𝑑r𝑑t\displaystyle\int_{0}^{T}\frac{\pi}{2}\sum_{n=1}^{\infty}\int_{R}^{\rho}\big{|}\xi_{n}^{{}^{\prime\prime}}(t)\big{|}^{2}\big{|}\chi_{n}(r)\big{|}^{2}r\,drdt
\displaystyle\leq 0Tπ2n=1ρδnρ|ξn′′(t)|2r𝑑r𝑑t\displaystyle\int_{0}^{T}\frac{\pi}{2}\sum_{n=1}^{\infty}\int_{\rho-\delta_{n}}^{\rho}\big{|}\xi_{n}^{{}^{\prime\prime}}(t)\big{|}^{2}r\,drdt
\displaystyle\leq 0Tπ2ρn=1δn|ξn′′(t)|2dt\displaystyle\int_{0}^{T}\frac{\pi}{2}\rho\sum_{n=1}^{\infty}\delta_{n}\big{|}\xi_{n}^{{}^{\prime\prime}}(t)\big{|}^{2}\,dt
\displaystyle\leq 0T|ρR|t2ξH1/2(Γρ+)2𝑑t\displaystyle\int_{0}^{T}|\rho-R|\|\partial_{t}^{2}\xi\|_{H^{-1/2}(\Gamma_{\rho}^{+})}^{2}\,dt
\displaystyle\leq Cρt2ξL2(0,T;H1/2(Γρ+))2.\displaystyle C\rho\|\partial_{t}^{2}\xi\|_{L^{2}(0,T;H^{-1/2}(\Gamma_{\rho}^{+}))}^{2}.

This proves (4.8). Similarly, one can prove (4.9). ∎

Theorem 4.2 below describes the stability of the solution to the problem (4.7) in ΩPML+\Omega_{PML}^{+}. It can be easily proved by combining Lemmas 3.2 and 4.1 together with the Parseval identity. Since the proof is quite similar to [19, Theorem 4.3], we omit the detailed proof.

Lemma 4.2.

Let s1=1/Ts_{1}=1/T, (ϕ,Φ,ϕ,Φ)(\phi,\Phi,\phi^{*},\Phi^{*}) be the solution of the PML problem (4.7) in ΩPML+\Omega_{PML}^{+}. Then

tΦL2(0,T;L2(ΩPML+))+ΦL2(0,T;L2(ΩPML+))\displaystyle\|\partial_{t}\Phi\|_{L^{2}(0,T;L^{2}(\Omega_{PML}^{+}))}+\|\nabla\cdot\Phi\|_{L^{2}(0,T;L^{2}(\Omega_{PML}^{+}))}
\displaystyle\leq (1+σT)2T(ρt2ξL2(0,T;H1/2(Γρ+))+ρ1tξL2(0,T;H01/2(Γρ+))).\displaystyle(1+\sigma T)^{2}T\left(\rho\|\partial_{t}^{2}\xi\|_{L^{2}(0,T;H^{-1/2}(\Gamma_{\rho}^{+}))}+\rho^{-1}\|\partial_{t}\xi\|_{L^{2}(0,T;H^{1/2}_{0}(\Gamma_{\rho}^{+}))}\right).

We also need an estimate for the convolution proved in [19, Lemma 5.2].

Lemma 4.3.

Let g1g_{1}, g2g_{2} \in L2(0,T)L^{2}(0,T). For any Re(s)=s1>0\textnormal{Re}(s)=s_{1}>0, it holds that

g1g2L2(0,T)es1t(max<s2<+|(g1)(s1+is2)|)g2L2(0,T).\displaystyle\|g_{1}\ast g_{2}\|_{L^{2}(0,T)}\leq e^{s_{1}t}\left(\max_{-\infty<s_{2}<+\infty}|\mathscr{L}(g_{1})(s_{1}+is_{2})|\right)\|g_{2}\|_{L^{2}(0,T)}. (4.10)

The following result follows directly from the proof of Lemma 2.4.

Lemma 4.4.

Given t0t\geq 0 and ωL2(0,T;H01/2(ΓR+))\omega\in L^{2}(0,T;H^{1/2}_{0}(\Gamma_{R}^{+})) with the initial condition ω(,0)=0\omega(\cdot,0)=0, it holds that

Re0te2s1τ𝒯(0τω(x,η)𝑑η),ω(x,η)𝑑τ0.\displaystyle-\textnormal{Re}\int_{0}^{t}e^{-2s_{1}\tau}\Big{\langle}\mathscr{T}\left(\int_{0}^{\tau}\omega(x,\eta)\,d\eta\right),\,\omega(x,\eta)\Big{\rangle}\,d\tau\geq 0.

Now, we are ready to verify the exponential convergence of the time-domain PML method.

Theorem 4.1.

Let (u,p)(u,p) and (u^,p^,u^,p^)(\hat{u},\hat{p},\hat{u}^{*},\hat{p}^{*}) be the solution of the problems (3.14) and (3.7) with s1=T1s_{1}=T^{-1}, respectively. Then

max0tT(uu^L2(ΩR+)+pp^L2(ΩR+))\displaystyle\max_{0\leq t\leq T}\left(\|u-\hat{u}\|_{L^{2}(\Omega_{R}^{+})}+\|p-\hat{p}\|_{L^{2}(\Omega_{R}^{+})}\right)
\displaystyle\leq C(1+σT)2ρT3/2eρσ^(ρ)(1R2ρ2)t2u^L2(0,T;H1/2(ΓR+))\displaystyle C\,(1+\sigma T)^{2}\rho T^{3/2}e^{-\rho\hat{\sigma}(\rho)\left(1-\frac{R^{2}}{\rho^{2}}\right)}\|\partial_{t}^{2}\hat{u}\|_{L^{2}(0,T;H^{-1/2}(\Gamma_{R}^{+}))}
+C(1+σT)2ρ1T3/2eρσ^(ρ)(1R2ρ2)tu^L2(0,T;H01/2(ΓR+)),\displaystyle+C\,(1+\sigma T)^{2}\rho^{-1}T^{3/2}e^{-\rho\hat{\sigma}(\rho)\left(1-\frac{R^{2}}{\rho^{2}}\right)}\|\partial_{t}\hat{u}\|_{L^{2}(0,T;H^{1/2}_{0}(\Gamma_{R}^{+}))},

where C>0C>0 is a constant.

Proof.

By (3.14) and (3.17a)-(3.17b), it follows that

(uu^)t+(pp^)=0\displaystyle\frac{\partial(u-\hat{u})}{\partial t}+\nabla\cdot(p-\hat{p})=0\quad inΩR+×(0,T),\displaystyle\mbox{in}\;\Omega_{R}^{+}\times(0,T), (4.11)
(pp^)t+(uu^)=0\displaystyle\frac{\partial(p-\hat{p})}{\partial t}+\nabla(u-\hat{u})=0\quad inΩR+×(0,T).\displaystyle\mbox{in}\;\Omega_{R}^{+}\times(0,T). (4.12)

Multiplying both sides of (4.11) by a test function vXRv\in X_{R}, using the DtN boundary condition (3.16) and Green’s first formula, we obtain

((uu^)t,v)ΩR+(pp^,v)ΩR+𝒯(0t(uu^)𝑑τ),vΓR+=p^x^+𝒯(0tu^𝑑τ),vΓR+.\displaystyle\begin{aligned} &\Big{(}\frac{\partial(u-\hat{u})}{\partial t},\,v\Big{)}_{\Omega_{R}^{+}}-(p-\hat{p},\,\nabla v)_{\Omega_{R}^{+}}-\Big{\langle}\mathscr{T}\Big{(}\int_{0}^{t}(u-\hat{u})\,d\tau\Big{)},\,v\Big{\rangle}_{\Gamma_{R}^{+}}\\ =&\Big{\langle}\hat{p}\cdot\hat{x}+\mathscr{T}\Big{(}\int_{0}^{t}\hat{u}\,d\tau\Big{)},\,v\Big{\rangle}_{\Gamma_{R}^{+}}.\end{aligned} (4.13)

Define

ω:=uu^,ω:=0tuu^dτ.\displaystyle\omega:=u-\hat{u},\quad\omega^{*}:=\int_{0}^{t}u-\hat{u}\,d\tau.

Taking v=ωv=\omega in (4.13) and applying (4.13) with pp^|t=0=0p-\hat{p}|_{t=0}=0, we have

12ddt(ωL2(ΩR+)2+ωL2(ΩR+)2)𝒯(ω),ωΓR+=p^x^+𝒯(0tu^𝑑τ),ωΓR+.\displaystyle\frac{1}{2}\frac{d}{dt}\Big{(}\|\omega\|_{L^{2}(\Omega_{R}^{+})}^{2}+\|\nabla\omega^{*}\|_{L^{2}(\Omega_{R}^{+})}^{2}\Big{)}-\langle\mathscr{T}(\omega^{*}),\,\omega\rangle_{\Gamma_{R}^{+}}=\Big{\langle}\hat{p}\cdot\hat{x}+\mathscr{T}\Big{(}\int_{0}^{t}\hat{u}\,d\tau\Big{)},\,\omega\Big{\rangle}_{\Gamma_{R}^{+}}. (4.14)

Denote the spaces

X(0,T;ΩR+):={vL(0,T;L2(ΩR+)),v=0tv𝑑tL(0,T;H1(ΩR+))},\displaystyle X(0,T;\Omega_{R}^{+}):=\Big{\{}v\in L^{\infty}(0,T;L^{2}(\Omega_{R}^{+})),\,v^{*}=\int_{0}^{t}v\,dt\in L^{\infty}(0,T;H^{1}(\Omega_{R}^{+}))\Big{\}},
Y(0,T;ΓR+):={ϕ:0Tϕ,vΓR+𝑑t<,vX(0,T;ΩR+)}.\displaystyle Y(0,T;\Gamma_{R}^{+}):=\Big{\{}\phi:\int_{0}^{T}\langle\phi,\,v\rangle_{\Gamma_{R}^{+}}\,dt<\infty,\forall\;v\in X(0,T;\Omega_{R}^{+})\Big{\}}.

It is clear that X(0,T;ΩR+)X(0,T;\Omega_{R}^{+}) and Y(0,T;ΓR+)Y(0,T;\Gamma_{R}^{+}) are Banach spaces with the norms, respectively

vX(0,T;ΩR+)=sup0tT(vL2(ΩR+)2+vL2(ΩR+)2)1/2,\displaystyle\|v\|_{X(0,T;\Omega_{R}^{+})}=\sup_{0\leq t\leq T}\Big{(}\|v\|_{L^{2}(\Omega_{R}^{+})}^{2}+\|\nabla v^{*}\|_{L^{2}(\Omega_{R}^{+})}^{2}\Big{)}^{1/2}, (4.15)
ϕY(0,T;ΓR+)=supvX(0,T;ΩR+)|0Tϕ,vΓR+𝑑t|vX(0,T;ΩR+).\displaystyle\|\phi\|_{Y(0,T;\Gamma_{R}^{+})}=\sup_{v\in X(0,T;\Omega_{R}^{+})}\frac{\Big{|}\int_{0}^{T}\langle\phi,\,v\rangle_{\Gamma_{R}^{+}}\,dt\Big{|}}{\|v\|_{X(0,T;\Omega_{R}^{+})}}. (4.16)

Multiplying both sides of (4.14) by e2s1te^{-2s_{1}t} and then integrating from 0 to tt. Since ω|t=0=ω|t=0=0\omega|_{t=0}=\omega^{*}|_{t=0}=0, taking the real part of the resulting identity and using Lemma 4.4 and trace theorem, we obtain

es1tωX(0,T;ΩR+)2\displaystyle\|e^{-s_{1}t}\omega\|_{{X(0,T;\Omega_{R}^{+})}}^{2}\leq Ces1t(p^x^+𝒯(0tu^𝑑τ))Y(0,T;ΓR+)es1tωY(0,T;ΓR+)\displaystyle C\Big{\|}e^{-s_{1}t}\Big{(}\hat{p}\cdot\hat{x}+\mathscr{T}\Big{(}\int_{0}^{t}\hat{u}\,d\tau\Big{)}\Big{)}\Big{\|}_{Y(0,T;\Gamma_{R}^{+})}\,\|e^{-s_{1}t}\omega\|_{Y(0,T;\Gamma_{R}^{+})}
\displaystyle\leq Ces1t(p^x^+𝒯(0tu^𝑑τ))Y(0,T;ΓR+)es1tωX(0,T;ΩR+).\displaystyle C\|e^{-s_{1}t}\Big{(}\hat{p}\cdot\hat{x}+\mathscr{T}\Big{(}\int_{0}^{t}\hat{u}\,d\tau\Big{)}\Big{)}\Big{\|}_{Y(0,T;\Gamma_{R}^{+})}\,\|e^{-s_{1}t}\omega\|_{X(0,T;\Omega_{R}^{+})}.

Hence, by taking s10s_{1}\rightarrow 0

sup0tT(ωL2(ΩR+)2+ωL2(ΩR+)2)Cp^x^+𝒯(0tu^𝑑τ)Y(0,T;ΓR+).\displaystyle\sup_{0\leq t\leq T}\Big{(}\|\omega\|_{L^{2}(\Omega_{R}^{+})}^{2}+\|\nabla\omega^{*}\|_{L^{2}(\Omega_{R}^{+})}^{2}\Big{)}\leq C\Big{\|}\hat{p}\cdot\hat{x}+\mathscr{T}\Big{(}\int_{0}^{t}\hat{u}\,d\tau\Big{)}\Big{\|}_{Y(0,T;\Gamma_{R}^{+})}. (4.17)

It is clear that 𝒯(0tu^𝑑τ)=p^~x^\mathscr{T}\Big{(}\int_{0}^{t}\hat{u}\,d\tau\Big{)}=-\tilde{\hat{p}}\cdot\hat{x} on ΓR+\Gamma_{R}^{+}, where p^~\tilde{\hat{p}} defines the PML extension of p^\hat{p}. Hence, in order to estimate p^x^+𝒯(0tu^𝑑τ)Y(0,T;ΓR+)\Big{\|}\hat{p}\cdot\hat{x}+\mathscr{T}\Big{(}\int_{0}^{t}\hat{u}\,d\tau\Big{)}\Big{\|}_{Y(0,T;\Gamma_{R}^{+})}, it suffices to estimate (p^p^~)x^Y(0,T;ΓR+)\|(\hat{p}-\tilde{\hat{p}})\cdot\hat{x}\|_{Y(0,T;\Gamma_{R}^{+})}. Since any function vX(0,T;ΩR+)v\in X(0,T;\Omega_{R}^{+}) can be extended into ΩPML+×(0,T)\Omega_{PML}^{+}\times(0,T) such that v=0v=0 on Γρ+×(0,T)\Gamma_{\rho}^{+}\times(0,T) and vX(0,T;ΩR+)CvX(0,T;ΩPML+)\|v\|_{X(0,T;\Omega_{R}^{+})}\leq C\|v\|_{X(0,T;\Omega_{PML}^{+})}, it follows by (4.16) that

(p^p^~)x^Y(0,T;ΓR+)=supvX(0,T;ΩR+)|0Tϕ,vΓR+𝑑t|vX(0,T;ΩR+)supvX(0,T;ΩR+)|0Tϕ,vΓR+𝑑t|vX(0,T;ΩPML+).\displaystyle\begin{aligned} \|(\hat{p}-\tilde{\hat{p}})\cdot\hat{x}\|_{Y(0,T;\Gamma_{R}^{+})}=&&\sup_{v\in X(0,T;\Omega_{R}^{+})}\frac{\Big{|}\int_{0}^{T}\langle\phi,\,v\rangle_{\Gamma_{R}^{+}}\,dt\Big{|}}{\|v\|_{X(0,T;\Omega_{R}^{+})}}\\ \leq&&\sup_{v\in X(0,T;\Omega_{R}^{+})}\frac{\Big{|}\int_{0}^{T}\langle\phi,\,v\rangle_{\Gamma_{R}^{+}}\,dt\Big{|}}{\|v\|_{X(0,T;\Omega_{PML}^{+})}}.\end{aligned} (4.18)

For any vX(0,T;ΩPML+)v\in X(0,T;\Omega_{PML}^{+}) it has that v=0v=0 on Γρ+\Gamma_{\rho}^{+}, and then, by divergence theorem,

0T(p^p^~)x^,vΓR+𝑑t=0T[((p^p^~),v)ΩPML++(p^p^~,v)ΩPML+]𝑑t.\displaystyle\int_{0}^{T}\langle(\hat{p}-\tilde{\hat{p}})\cdot\hat{x},\,v\rangle_{\Gamma_{R}^{+}}\,dt=\int_{0}^{T}\Big{[}(\nabla\cdot(\hat{p}-\tilde{\hat{p}}),\,v)_{\Omega_{PML}^{+}}+(\hat{p}-\tilde{\hat{p}},\,\nabla v)_{\Omega_{PML}^{+}}\Big{]}\,dt. (4.19)

Now, it follows that, for any vX(0,T;ΩPML+)v\in X(0,T;\Omega_{PML}^{+}), by the definition of vv^{*} and the initial condition p^p^~|t=0=0\hat{p}-\tilde{\hat{p}}|_{t=0}=0,

|0T(p^p^~,v)ΩPML+𝑑t|=(p^p^~,v)ΩPML+|0T0T(t(p^p^~),v)ΩPML+𝑑t2max0tTvL2(ΩPML+)0Tt(p^p^~)L2(ΩPML+)𝑑t.\displaystyle\begin{aligned} \Big{|}\int_{0}^{T}(\hat{p}-\tilde{\hat{p}},\,\nabla v)_{\Omega_{PML}^{+}}\,dt\Big{|}=&&(\hat{p}-\tilde{\hat{p}},\,\nabla v^{*})_{\Omega_{PML}^{+}}\Big{|}_{0}^{T}-\int_{0}^{T}(\partial_{t}(\hat{p}-\tilde{\hat{p}}),\,\nabla v^{*})_{\Omega_{PML}^{+}}\,dt\\ \leq&&2\max_{0\leq t\leq T}\|\nabla v^{*}\|_{L^{2}(\Omega_{PML}^{+})}\int_{0}^{T}\|\partial_{t}(\hat{p}-\tilde{\hat{p}})\|_{L^{2}(\Omega_{PML}^{+})}\,dt.\end{aligned} (4.20)

Combining (4.18), (4.19), (4.20) and using the Cauchy-Schwartz inequality, we have

(p^p^~)x^Y(0,T;ΓR+)C0T(p^p^~)L2(ΩPML+)+t(p^p^~)L2(ΩPML+)dt.\displaystyle\|(\hat{p}-\tilde{\hat{p}})\cdot\hat{x}\|_{Y(0,T;\Gamma_{R}^{+})}\leq C\int_{0}^{T}\|\nabla\cdot(\hat{p}-\tilde{\hat{p}})\|_{L^{2}(\Omega_{PML}^{+})}+\|\partial_{t}(\hat{p}-\tilde{\hat{p}})\|_{L^{2}(\Omega_{PML}^{+})}\,dt.

This together with (4.17) leads to

sup0tT(ωL2(ΩR+)2+ωL2(ΩR+)2)\displaystyle\sup_{0\leq t\leq T}\Big{(}\|\omega\|_{L^{2}(\Omega_{R}^{+})}^{2}+\|\nabla\omega^{*}\|_{L^{2}(\Omega_{R}^{+})}^{2}\Big{)}
\displaystyle\leq C0T(p^p^~)L2(ΩPML+)+t(p^p^~)L2(ΩPML+)dt.\displaystyle C\int_{0}^{T}\|\nabla\cdot(\hat{p}-\tilde{\hat{p}})\|_{L^{2}(\Omega_{PML}^{+})}+\|\partial_{t}(\hat{p}-\tilde{\hat{p}})\|_{L^{2}(\Omega_{PML}^{+})}\,dt.

Let (u^~,p^~,u^~,p^~)(\tilde{\hat{u}},\tilde{\hat{p}},\tilde{\hat{u}}^{*},\tilde{\hat{p}}^{*}) be the PML extension of (u^,p^,u^,p^)(\hat{u},\hat{p},\hat{u}^{*},\hat{p}^{*}). Then, (u^u^~,p^p^~,u^u^~,p^p^~)(\hat{u}-\tilde{\hat{u}},\hat{p}-\tilde{\hat{p}},\hat{u}^{*}-\tilde{\hat{u}}^{*},\hat{p}^{*}-\tilde{\hat{p}}^{*}) satisfies the problem (4.7) with ξ=u^~|Γρ+\xi=-\tilde{\hat{u}}|_{\Gamma_{\rho}^{+}}. It follows by Theorem 4.2 and Cauchy-Schwartz inequality that

sup0tT(ωL2(ΩR+)2+ωL2(ΩR+)2)C(1+σT)2T3/2(ρt2u^~L2(0,T;H1/2(Γρ+))+ρ1tu^~L2(0,T;H01/2(Γρ+))).\displaystyle\begin{aligned} &\sup_{0\leq t\leq T}\Big{(}\|\omega\|_{L^{2}(\Omega_{R}^{+})}^{2}+\|\nabla\omega^{*}\|_{L^{2}(\Omega_{R}^{+})}^{2}\Big{)}\\ \leq&\quad C(1+\sigma T)^{2}T^{3/2}\left(\rho\|\partial_{t}^{2}\tilde{\hat{u}}\|_{L^{2}(0,T;H^{-1/2}(\Gamma_{\rho}^{+}))}+\rho^{-1}\|\partial_{t}\tilde{\hat{u}}\|_{L^{2}(0,T;H^{1/2}_{0}(\Gamma_{\rho}^{+}))}\right).\end{aligned} (4.21)

Now we estimate each term on the right hand side of the above inequality. Since u^~\tilde{\hat{u}} is the PML extension of u^\hat{u} in the time-domain for r>Rr>R, it can be written as

u^~(r,θ,t)=n=1[1(Kn(sr~)Kn(sR))u^n(R,t)]sinnθ,\displaystyle\tilde{\hat{u}}(r,\theta,t)=\sum_{n=1}^{\infty}\left[\mathscr{L}^{-1}\Big{(}\frac{K_{n}^{\prime}(s\tilde{r})}{K_{n}(sR)}\Big{)}*\hat{u}_{n}(R,t)\right]\,\sin{n\theta},

where u^n(R,t)=2π0πu^(R,θ,t)sinnθdθ\hat{u}_{n}(R,t)=\frac{2}{\pi}\int_{0}^{\pi}\hat{u}(R,\theta,t)\sin n\theta\,d\theta. Since u^n(R,0)=0\hat{u}_{n}(R,0)=0, we have

tu^~=n=1[1(Kn(sr~)Kn(sR))tu^n(R,t)]sinnθ.\displaystyle\partial_{t}\tilde{\hat{u}}=\sum_{n=1}^{\infty}\left[\mathscr{L}^{-1}\Big{(}\frac{K_{n}^{\prime}(s\tilde{r})}{K_{n}(sR)}\Big{)}*\partial_{t}\hat{u}_{n}(R,t)\right]\,\sin{n\theta}.

Then, since sρ~=sρ+σ^ρs\tilde{\rho}=s\rho+\hat{\sigma}\rho, by Lemmas C.2 and 4.3, we know that for any s1>0s_{1}>0

tu^~L2(0,T;H01/2(Γρ+))2=0Ttu~H01/2(Γρ+))2𝑑t\displaystyle\|\partial_{t}\tilde{\hat{u}}\|_{L^{2}(0,T;H^{1/2}_{0}(\Gamma_{\rho}^{+}))}^{2}=\int_{0}^{T}\|\partial_{t}\tilde{u}\|_{H^{1/2}_{0}(\Gamma_{\rho}^{+}))}^{2}\,dt
=\displaystyle= 0Tπ2ρn=1(1+n2)12[1(Kn(sρ~)Kn(sR))tu^n(R,t)]2dt\displaystyle\int_{0}^{T}\frac{\pi}{2}\rho\sum_{n=1}^{\infty}(1+n^{2})^{\frac{1}{2}}\left[\mathscr{L}^{-1}\left(\frac{K_{n}^{\prime}(s\tilde{\rho})}{K_{n}(sR)}\right)*\partial_{t}\hat{u}_{n}(R,t)\right]^{2}\,dt
=\displaystyle= π2ρn=1(1+n2)121(Kn(sρ~)Kn(sR))tu^n(R,t)L2(0,T)2\displaystyle\frac{\pi}{2}\rho\sum_{n=1}^{\infty}(1+n^{2})^{\frac{1}{2}}\Big{\|}\mathscr{L}^{-1}\left(\frac{K_{n}^{\prime}(s\tilde{\rho})}{K_{n}(sR)}\right)*\partial_{t}\hat{u}_{n}(R,t)\Big{\|}^{2}_{L^{2}(0,T)}
\displaystyle\leq π2ρe2s1Tn=1(1+n2)12max<s2<+|Kn(sρ~)Kn(sR)|2tu^n(R,t)L2(0,T)2\displaystyle\frac{\pi}{2}\rho\,e^{2s_{1}T}\sum_{n=1}^{\infty}(1+n^{2})^{\frac{1}{2}}\max_{-\infty<s_{2}<+\infty}\left|\frac{K_{n}^{\prime}(s\tilde{\rho})}{K_{n}(sR)}\right|^{2}\|\partial_{t}\hat{u}_{n}(R,t)\|^{2}_{L^{2}(0,T)}
\displaystyle\leq ρRe2s1Tmax<n<+max<s2<+|Kn(sρ~)Kn(sR)|2tu^L2(0,T;H01/2(ΓR+))2\displaystyle\frac{\rho}{R}\,e^{2s_{1}T}\max_{-\infty<n<+\infty}\max_{-\infty<s_{2}<+\infty}\left|\frac{K_{n}^{\prime}(s\tilde{\rho})}{K_{n}(sR)}\right|^{2}\|\partial_{t}\hat{u}\|^{2}_{L^{2}(0,T;H^{1/2}_{0}(\Gamma_{R}^{+}))}
\displaystyle\leq ρRe2s1Te2ρσ^(ρ)(1R2ρ2)tu^L2(0,T;H01/2(ΓR+))2.\displaystyle\frac{\rho}{R}\,e^{2s_{1}T}e^{-2\rho\hat{\sigma}(\rho)\left(1-\frac{R^{2}}{\rho^{2}}\right)}\|\partial_{t}\hat{u}\|^{2}_{L^{2}(0,T;H^{1/2}_{0}(\Gamma_{R}^{+}))}.

This implies that

tu^~L2(0,T;H01/2(Γρ+))Ceρσ^(ρ)(1R2ρ2)tu^L2(0,T;H01/2(ΓR+)).\displaystyle\|\partial_{t}\tilde{\hat{u}}\|_{L^{2}(0,T;H^{1/2}_{0}(\Gamma_{\rho}^{+}))}\leq Ce^{-\rho\hat{\sigma}(\rho)\left(1-\frac{R^{2}}{\rho^{2}}\right)}\|\partial_{t}\hat{u}\|_{L^{2}(0,T;H^{1/2}_{0}(\Gamma_{R}^{+}))}. (4.22)

Analogously, we obtain

t2u^~L2(0,T;H01/2(Γρ+))Ceρσ^(ρ)(1R2ρ2)t2u^L2(0,T;H1/2(ΓR+)).\displaystyle\|\partial_{t}^{2}\tilde{\hat{u}}\|_{L^{2}(0,T;H^{-1/2}_{0}(\Gamma_{\rho}^{+}))}\leq Ce^{-\rho\hat{\sigma}(\rho)\left(1-\frac{R^{2}}{\rho^{2}}\right)}\|\partial_{t}^{2}\hat{u}\|_{L^{2}(0,T;H^{-1/2}(\Gamma_{R}^{+}))}. (4.23)

Combining (LABEL:eq:con-8) with (4.22) and (4.22), we complete the proof.

Remark 4.1.

Theorem 4.1 illustrates that the exponential convergence of error between the PML solution and the original solution can be achieved by enlarging the absorbing parameter σ\sigma or the thickness ρR\rho-R of the PML layer .

Remark 4.2.

We remark that the results in this paper can be easily extended to the Neumann boundary condition imposed on Γ0\Gamma_{0}. In the Neumann case, one should expand the solutions in terms of cosine functions in the Laplace domain and change correspondingly the solution spaces. However, we don’t know how to extend the approach to the case of the impedance boundary condition.

5 Numerical implementation

In this section, we will present two numerical examples to demonstrate the convergence of the PML method. The PML equations are discretized by the finite element method in space and finite difference in time. The computations are carried out by the software FreeFEM.

Multiply (3.17a)-(3.17c) with test functions vH01(Ωρ+)v\in H^{1}_{0}(\Omega_{\rho}^{+}), qL2(Ωρ+)q\in L^{2}(\Omega_{\rho}^{+}), vH01(Ωρ+)v^{*}\in H^{1}_{0}(\Omega_{\rho}^{+}), qL2(Ωρ+)q^{*}\in L^{2}(\Omega_{\rho}^{+}), respectively. The weak formulation of system (3.17) reads as follow: find uL2(0,T;H01(Ωρ+))u\in L^{2}(0,T;H^{1}_{0}(\Omega_{\rho}^{+})), pL2(0,T;L2(Ωρ+))p\in L^{2}(0,T;L^{2}(\Omega_{\rho}^{+})), uL2(0,T;L2(Ωρ+))u^{*}\in L^{2}(0,T;L^{2}(\Omega_{\rho}^{+})), pL2(0,T;L2(Ωρ+))p^{*}\in L^{2}(0,T;L^{2}(\Omega_{\rho}^{+})) such that

(tu~,v)Ωρ++((σ+σ^)u~,v)Ωρ++(σu~,v)Ωρ+(p~,v)Ωρ+=(f,v)Ωρ+,\displaystyle\left(\partial_{t}\tilde{u},v\right)_{\Omega_{\rho}^{+}}+((\sigma+\hat{\sigma})\tilde{u},v)_{\Omega_{\rho}^{+}}+(\sigma\tilde{u}^{*},v)_{\Omega_{\rho}^{+}}-(\tilde{p},\nabla v)_{\Omega_{\rho}^{+}}=(f,v)_{\Omega_{\rho}^{+}}, (5.1a)
(tp~,q)Ωρ++(Λ1p~,q)Ωρ+(tp~,q)Ωρ+(Λ2p~,q)Ωρ+=0,\displaystyle(\partial_{t}\tilde{p},q)_{\Omega_{\rho}^{+}}+(\Lambda_{1}\tilde{p},q)_{\Omega_{\rho}^{+}}-(\partial_{t}\tilde{p}^{*},q)_{\Omega_{\rho}^{+}}-(\Lambda_{2}\tilde{p}^{*},q)_{\Omega_{\rho}^{+}}=0, (5.1b)
(tu~,v)Ωρ+(σu~,q)Ωρ+=0,\displaystyle(\partial_{t}\tilde{u}^{*},v^{*})_{\Omega_{\rho}^{+}}-(\sigma\tilde{u},q^{*})_{\Omega_{\rho}^{+}}=0, (5.1c)
(tp~,q)Ωρ++(u~,q)Ωρ+=0,\displaystyle(\partial_{t}\tilde{p}^{*},q^{*})_{\Omega_{\rho}^{+}}+(\nabla\tilde{u},q^{*})_{\Omega_{\rho}^{+}}=0, (5.1d)
u~=0onDΓ0×(0,T),\displaystyle\tilde{u}=0\quad\mbox{on}\;\partial D\cup\Gamma_{0}\times(0,T), (5.1e)
u~=0onΓρ+×(0,T),\displaystyle\tilde{u}=0\quad\mbox{on}\;\Gamma_{\rho}^{+}\times(0,T), (5.1f)
u~|t=0=p~|t=0=u~|t=0=p~|t=0=0inΩρ+.\displaystyle\tilde{u}|_{t=0}=\tilde{p}|_{t=0}=\tilde{u}^{*}|_{t=0}=\tilde{p}^{*}|_{t=0}=0\quad\mbox{in}\;\Omega_{\rho}^{+}. (5.1g)

Solutions of the weak form (5.1) will be numerically solved by an implicit finite difference in time and a finite element method in space. Let {t0,t1,,tN}\{t_{0},t_{1},...,t_{N}\} be a partition of the time interval [0,T][0,T] and δtn=tn+1tn\delta_{t}^{n}=t_{n+1}-t_{n} be the nn-th time-step size. Let h\mathcal{M}_{h} be a regular triangulation of Ωρ+\Omega_{\rho}^{+}. We assume the elements KhK\in\mathcal{M}_{h} may have one curved edge align with Γ0Γρ+\Gamma_{0}\cup\Gamma_{\rho}^{+} so that Ωρ+=KhK\Omega_{\rho}^{+}=\cup_{K\in\mathcal{M}_{h}}K. As usual, we shall use the most simple continuous finite elements in the computation. The solutions uu, pp, uu^{*} and pp^{*} will be approximated in the finite element space P1P_{1} for piecewise linear functions, namely, the standard Taylor-Hood finite element for the velocity-pressure variables, satisfying the inf-sup condition. Denote by P0P_{0} the finite element space for piecewise constant functions. Define the spaces LhL_{h}, V~h\tilde{V}_{h}, VhV_{h} and WhW_{h} as

Lh={σL2(Ωρ+)|K𝒯h,σ|KP0},\displaystyle L_{h}=\{\sigma\in L^{2}(\Omega_{\rho}^{+})\,|\,\forall K\in\mathcal{T}_{h},\,\sigma_{|K}\in P_{0}\},
V~h={uH1(Ωρ+)|K𝒯h,u|KP1},\displaystyle\tilde{V}_{h}=\{u\in H^{1}_{\star}(\Omega_{\rho}^{+})\,|\,\forall K\in\mathcal{T}_{h},\,u_{|K}\in P_{1}\},
Vh={uH1(Ωρ+)|K𝒯h,u|KP1},\displaystyle V_{h}=\{u\in H^{1}(\Omega_{\rho}^{+})\,|\,\forall K\in\mathcal{T}_{h},\,u_{|K}\in P_{1}\},
Wh={pL2(Ωρ+)|K𝒯h,σ|KP1}.\displaystyle W_{h}=\{p\in L^{2}(\Omega_{\rho}^{+})\,|\,\forall K\in\mathcal{T}_{h},\,\sigma_{|K}\in P_{1}\}.

Let (uhn,phn,uhn,phn)V~h×(Wh)2×Vh×(Wh)2(u_{h}^{n},p_{h}^{n},u_{h}^{*n},p_{h}^{*n})\in\tilde{V}_{h}\times(W_{h})^{2}\times V_{h}\times(W_{h})^{2} be an approximation of u(tn),p(tn),u(tn)u(t_{n}),p(t_{n}),u^{*}(t_{n}) and p(tn)p^{*}(t_{n}) at the time point tnt_{n}. The approximated solution at tn+1t_{n+1}, which we denote as (uhn+1,phn+1,uhn+1,phn+1)V~h×(Wh)2×Vh×(Wh)2(u_{h}^{n+1},p_{h}^{n+1},u_{h}^{*n+1},p_{h}^{*n+1})\in\tilde{V}_{h}\times(W_{h})^{2}\times V_{h}\times(W_{h})^{2}, will be obtained by the following typical temporal scheme:

Refer to caption
Figure 2: Geometry of the computational domain where {xΩ:R<|x|<ρ}\{x\in\Omega:R<|x|<\rho\} is the PML layer.
(u~hn+1u~hnδtn,v)Ωρ++((σ+σ^)u~hn+1,v)Ωρ++(σu~hn+1,v)Ωρ+(p~hn+1,v)Ωρ+=(fn+1,v)Ωρ+,\displaystyle\left(\frac{\tilde{u}_{h}^{n+1}-\tilde{u}_{h}^{n}}{\delta_{t}^{n}},v\right)_{\Omega_{\rho}^{+}}+\left((\sigma+\hat{\sigma})\tilde{u}_{h}^{n+1},v\right)_{\Omega_{\rho}^{+}}+\left(\sigma\tilde{u}_{h}^{*n+1},v\right)_{\Omega_{\rho}^{+}}-\left(\tilde{p}_{h}^{n+1},\nabla v\right)_{\Omega_{\rho}^{+}}=\left(f^{n+1},v\right)_{\Omega_{\rho}^{+}},
(p~hn+1p~hnδtn,q)Ωρ++(Λ1p~hn+1,q)Ωρ+(tp~hn+1,q)Ωρ+(Λ2p~hn+1,q)Ωρ+=0,\displaystyle\left(\frac{\tilde{p}_{h}^{n+1}-\tilde{p}_{h}^{n}}{\delta_{t}^{n}},q\right)_{\Omega_{\rho}^{+}}+\left(\Lambda_{1}\tilde{p}_{h}^{n+1},q\right)_{\Omega_{\rho}^{+}}-\left(\partial_{t}\tilde{p}^{*n+1}_{h},q\right)_{\Omega_{\rho}^{+}}-\left(\Lambda_{2}\tilde{p}^{*n+1}_{h},q\right)_{\Omega_{\rho}^{+}}=0,
(u~hn+1u~hnδtn,v)Ωρ+(σu~hn+1,q)Ωρ+=0,\displaystyle\left(\frac{\tilde{u}_{h}^{*n+1}-\tilde{u}_{h}^{*n}}{\delta_{t}^{n}},v^{*}\right)_{\Omega_{\rho}^{+}}-\left(\sigma\tilde{u}_{h}^{n+1},q^{*}\right)_{\Omega_{\rho}^{+}}=0,
(p~hn+1p~hnδtn,q)Ωρ++(u~hn+1,q)Ωρ+=0,\displaystyle\left(\frac{\tilde{p}_{h}^{*n+1}-\tilde{p}_{h}^{*n}}{\delta_{t}^{n}},q^{*}\right)_{\Omega_{\rho}^{+}}+\left(\nabla\tilde{u}_{h}^{n+1},q^{*}\right)_{\Omega_{\rho}^{+}}=0,

where fn+1=f(tn+1)f^{n+1}=f(t_{n+1}) and the Dirichlet boundary condition is imposed on Ωρ+\partial\Omega_{\rho}^{+}.

In the following numerical examples, we suppose D=D=\emptyset. The local rough surface is given by

h(x)={0,x(,π4),0.3sin(4x),x[π4,π4],0,x(π4,).\displaystyle h(x)=\left\{\begin{array}[]{lll}0,&&x\in(-\infty,-\frac{\pi}{4}),\\ 0.3\sin(4x),&&x\in[-\frac{\pi}{4},\frac{\pi}{4}],\\ 0,&&x\in(\frac{\pi}{4},\infty).\end{array}\right.

Example 1 We consider a time harmonic source term over the local rough surface. In the computation, we take R=2R=2, ρ=3\rho=3 and set σ=σ^=10\sigma=\hat{\sigma}=10. A mesh of 92459245 vertices, 510510 edges and 1812818128 triangles is adopted and the terminal time is set at t=8t=8. The time harmonic source is supposed to be given by

f(x,t):=e|xx0|22η2πηsin(2t),η=0.1,\displaystyle f(x,t):=\frac{e^{\frac{-|x-x_{0}|^{2}}{2\eta}}}{\sqrt{2\pi}\;\eta}\,\sin(2t),\;\eta=0.1,
Refer to caption
(a) t=2t=2
Refer to caption
(b) t=4t=4
Refer to caption
(c) t=8t=8
Figure 3: Numerical solutions excited by a point source over a local rough surface at time t=2,4,8t=2,4,8, respectively.

where the excitation frequency is ω=2\omega=2 and the location of source is at x0=(0,0.5)x_{0}=(0,0.5). In Figure 3, we show the numerical solution at t=2,4,8t=2,4,8, respectively. It is observed that the waves are almost attenuated in the PML layer without reflections from the interface between the physical domain and PML layer.

To validate convergence of the PML method, we compute the relative error

Erel:=unumuexaL(0,T;L(Ωρ+))uexaL(0,T;L(Ωρ+)),\displaystyle E_{rel}:=\frac{\|u^{num}-u^{exa}\|_{L^{\infty}(0,T;L^{\infty}(\Omega_{\rho}^{+}))}}{\|u^{exa}\|_{L^{\infty}(0,T;L^{\infty}(\Omega_{\rho}^{+}))}},

where uexau^{exa} represents the numerical solution with relatively larger absorbing parameters σ\sigma, σ^\hat{\sigma} and with a larger thickness ρR\rho-R of the PML layer. Note that analytical solutions are not available in general.

Refer to caption
Figure 4: Relative error ErelE_{rel} versus PML absorbing parameter σ\sigma for fixed PML thickness ρR=1\rho-R=1. The vertical axis is logarithmically scaled.
Refer to caption
Figure 5: Relative error ErelE_{rel} versus PML thickness ρR\rho-R for fixed PML absorbing parameter σ=25\sigma=25. The vertical axis is logarithmically scaled.

Figures 4 and 5 show the decaying behavior of the relative error ErelE_{rel} as the PML absorbing parameter σ\sigma or the PML thickness ρR\rho-R increases. In Figure 4 we take the PML absorbing parameter σ\sigma varying between 55 and 2525 and fix the PML layer thickness at ρR=1\rho-R=1. Since the vertical axis is logarithmically scaled, the dashed lines indicate that the relative error ErelE_{rel} decays exponentially as σ\sigma increases for a fixed layer thickness. In Figure 5 we display the relative error versus PML thickness ρR\rho-R for fixed absorbing σ=25\sigma=25. We take the PML thickness ρR\rho-R ranging from 2.62.6 to 44. It is obvious that relative error ErelE_{rel} decays exponentially as ρR\rho-R increases for a fixed absorbing parameter.

Example 2 In this example, we consider a non-harmonic source term, that is not compactly supported with respect to the time-variable. We take R=2R=2, ρ=3.4\rho=3.4 and set σ=σ^=25\sigma=\hat{\sigma}=25. A mesh of 1150211502 vertices, 553553 edges and 2259922599 triangles is applied and the final time is set at t=10t=10. The source is of the form

f(x,t):=e|xx0|22η2πηt,η=0.1,\displaystyle f(x,t):=\frac{e^{\frac{-|x-x_{0}|^{2}}{2\eta}}}{\sqrt{2\pi}\;\eta}\,t,\;\eta=0.1,

which is located at (0,0.5)(0,0.5). We present in Figure 6 the numerical solutions at time t=3,7,10t=3,7,10, respectively. It shows that the source is excited all the time and rare reflection occurs at the interface ΓR+\Gamma_{R}^{+}.

Refer to caption
(a) t=3t=3
Refer to caption
(b) t=7t=7
Refer to caption
(c) t=10t=10
Figure 6: Numerical solutions for a point source over a local rough surface at time t=3,7,10t=3,7,10, respectively.
Refer to caption
Figure 7: Relative error ErelE_{rel} versus PML absorbing parameter σ\sigma for fixed PML thickness ρR=1.4\rho-R=1.4. The vertical axis is logarithmically scaled.
Refer to caption
Figure 8: Relative error ErelE_{rel} versus PML thickness ρR\rho-R for fixed PML absorbing parameter σ=25\sigma=25. The vertical axis is logarithmically scaled.

Figures 7 and 8 show the convergence of the relative error ErelE_{rel} versus one of the two PML parameters σ\sigma and ρR\rho-R. In Figure 7, we present the relative error ErelE_{rel} versus the PML absorbing parameter σ\sigma changing from 55 to 2525 for the fixed PML thickness ρR=1.4\rho-R=1.4. As in Example 1, we observe that ErelE_{rel} decays exponentially as σ\sigma increases. In Figure 8 we display the relative error versus the PML thickness ρR\rho-R for a fixed absorbing σ=25\sigma=25. We take the PML thickness ρR\rho-R changing from 2.42.4 to 44. It is obvious that the relative error ErelE_{rel} decays exponentially as ρR\rho-R increases.

6 Conclusion

In this paper we study the PML-method to the time domain acoustic scattering problem over a locally rough surface. We proved well-posedness of the scattering problem and the PML formulation. The long time stability of the PML formulations is obtained by the energy method. The exponential convergence of the PML solution is proved and it can be realized by either enlarging the PML absorbing parameter or the thickness of the layer. The convergence results are verified by two numerical examples.

Appendix A Laplace transform

For any s=s1+is2s=s_{1}+is_{2} with s1>0s_{1}>0, s2s_{2}\in{\mathbb{R}}, we define the Laplace transform of uu as

uL(s)=(u)(s):=0estu(t)𝑑t.\displaystyle u_{L}(s)=\mathscr{L}(u)(s):=\int_{0}^{\infty}e^{-st}u(t)\,dt.

Some properties of the Laplace transform and its inversion are listed as follows:

(dudt)\displaystyle\mathscr{L}(\frac{du}{dt}) =\displaystyle= suLu(0),\displaystyle su_{L}-u(0), (A.1)
(d2udt2)\displaystyle\mathscr{L}(\frac{d^{2}u}{dt^{2}}) =\displaystyle= s2uLsu(0)dudt(0),\displaystyle s^{2}u_{L}-su(0)-\frac{du}{dt}(0), (A.2)
0tu(τ)𝑑τ\displaystyle\int_{0}^{t}u(\tau)\,d\tau =\displaystyle= 1(s1uL(s)).\displaystyle\mathscr{L}^{-1}(s^{-1}u_{L}(s)). (A.3)

It can be verified from the inverse Laplace transform that

u(t)=1(es1t(u)(s1+is2)).\displaystyle u(t)=\mathscr{F}^{-1}(e^{s_{1}t}\mathscr{L}(u)(s_{1}+is_{2})).

where 1\mathscr{F}^{-1} denotes the inverse Fourier transform with respect to s2s_{2}.

Below is the Parseval or Plancherel identity for the Laplace transform (see [22, equation (2.46)])

Lemma A.1.

(Parseval or Plancherel Identity) If uL=(u)u_{L}=\mathscr{L}(u) and vL=(v)v_{L}=\mathscr{L}(v),then

12π+uL(s)vL(s)𝑑s2=0e2s1tu(t)v(t)𝑑t,\displaystyle\frac{1}{2\pi}\int_{-\infty}^{+\infty}u_{L}(s)\,v_{L}(s)\,ds_{2}=\int_{0}^{\infty}e^{-2s_{1}t}u(t)\,v(t)\,dt, (A.4)

for all s1>s0s_{1}>s_{0}, where s0s_{0} is abscissa of convergence for Laplace transform of uu and vv.

The following lemma refers to [35, Theorem 43.1].

Lemma A.2.

let ω˘(s)\breve{\omega}(s) denote a holomorphic function in the half complex plane Re(s)>σ0\textnormal{Re}(s)>\sigma_{0} for some σ0\sigma_{0}\in{\mathbb{R}}, valued in the Banach space {\mathcal{E}}. The following conditions are equivelent:

there is a distribution ω𝒟+\omega\in\mathcal{D}_{+}^{{}^{\prime}} whose Laplace transform is equal to ω˘(s)\breve{\omega}(s), where 𝒟+()\mathcal{D}^{{}^{\prime}}_{+}({\mathcal{E}}) is the space of distributions on the real line which vanish identically in the open negative half-line;

there is a σ1\sigma_{1} with σ0σ1<\sigma_{0}\leq\sigma_{1}<\infty and an integer m0m\geq 0 such that for all complex numbers ss with Re(s)>σ1\textnormal{Re}(s)>\sigma_{1} it holds that ω˘(s)C(1+|s|)m\|\breve{\omega}(s)\|_{{\mathcal{E}}}\leq C(1+|s|)^{m}.

Appendix B Sobolev spaces

For a bounded domain DD with Lipschitz continuous boundary D\partial D, define the Sobolev space

H(div,D):={uL2(D):uL2(D)}.\displaystyle H(\mbox{div},\,D):=\{u\in L^{2}(D):\nabla\cdot u\in L^{2}(D)\}.

which is a Hilbert space with the norm

uH(div,D)=(uL2(D)2+uL2(D)2)1/2.\displaystyle\|u\|_{H(\mbox{div},\,D)}=\left(\|u\|^{2}_{L^{2}(D)}+\|\nabla\cdot u\|^{2}_{L^{2}(D)}\right)^{1/2}.

The first Green formula takes the form

(u,v)D+(u,v)D=un,vDfor allu,vH(div,D)\displaystyle(\nabla\cdot u,\,v)_{D}+(u,\,\nabla v)_{D}=\langle u\cdot n,\,v\rangle_{\partial D}\quad\mbox{for all}\quad u,v\in H(\mbox{div},\,D) (B.1)

where (,)D(\cdot,\cdot)_{D} and ,D\langle\cdot,\cdot\rangle_{\partial D} denote the L2L^{2}-inner product on DD and the dual pairing product between H1/2(D)H^{-1/2}(\partial D) and H1/2(D)H^{1/2}(\partial D), respectively.

Let ΓR+\Gamma_{R}^{+} be defined as in Section 2. For any uC0(ΓR+)u\in C^{\infty}_{0}(\Gamma_{R}^{+}), we have the Fourier series expansion

u(R,θ)=n=1ansinnθ,an=2π0πu(R,θ)sinnθdθ.\displaystyle u(R,\theta)=\sum_{n=1}^{\infty}a_{n}\sin n\theta,\quad a_{n}=\frac{2}{\pi}\int_{0}^{\pi}u(R,\theta)\sin n\theta\,d\theta.

Define the trace function space H0p(ΓR+)H^{p}_{0}(\Gamma_{R}^{+}) as

H0p(ΓR+):={uL2(ΓR+):uHp(ΓR+):=(n=1(1+n2)p|an|2)1/2<+.}.\displaystyle H^{p}_{0}(\Gamma_{R}^{+}):=\left\{u\in L^{2}(\Gamma_{R}^{+}):\|u\|_{H^{p}(\Gamma_{R}^{+})}:=\left(\sum_{n=1}^{\infty}(1+n^{2})^{p}|a_{n}|^{2}\right)^{1/2}<+\infty.\right\}.

Appendix C Modified Bessel functions

We look for solutions to the Helmholz equation

Δu(x)s2u(x)=0,\displaystyle\Delta u(x)-s^{2}u(x)=0,

in the form of

u(x)=y(sr)einθ,n=0,±1,±2,,\displaystyle u(x)=y(sr)e^{in\theta},\quad n=0,\pm 1,\pm 2,\cdots,

where (r,θ)(r,\theta) are cylindrical coordinates. It is obvious that y(r)y(r) is a solution of the ordinary equation

d2ydr2+1rdydr(1+n2r2)y=0.\displaystyle\frac{d^{2}y}{dr^{2}}+\frac{1}{r}\frac{dy}{dr}-\left(1+\frac{n^{2}}{r^{2}}\right)y=0.

The modified Bessel functions of order ν\nu, which we denote by Kν(z)K_{\nu}(z), are solutions to the differential equation

z2d2ydz2+zdydz(z2+ν2)y=0.\displaystyle z^{2}\frac{d^{2}y}{dz^{2}}+z\frac{dy}{dz}-(z^{2}+\nu^{2})y=0.

Kν(z)K_{\nu}(z) satisfies the following asymptotic behavior as |z||z|\rightarrow\infty

Kν(z)(π2z)1/2ez.\displaystyle K_{\nu}(z)\sim\left(\frac{\pi}{2z}\right)^{1/2}e^{-z}.

The following estimates for the modified Bessel function Kν(z)K_{\nu}(z) have been proved in [19, Lemma 2.10 and 5.1] .

Lemma C.1.

Let s=s1+is2s=s_{1}+is_{2} with s1>0s_{1}>0, s2s_{2}\in{\mathbb{R}}. It holds that

Re(Kn(sR)Kn(sR))0.\displaystyle-\textnormal{Re}\Big{(}\frac{K_{n}^{{}^{\prime}}(sR)}{K_{n}(sR)}\Big{)}\geq 0.
Lemma C.2.

Suppose ν\nu\in{\mathbb{R}}, s=s1+is2s=s_{1}+is_{2} with s1>0s_{1}>0, s2s_{2}\in{\mathbb{R}}, ρ1>ρ2>0\rho_{1}>\rho_{2}>0 and τ>0\tau>0. It holds that

|Kν(sρ1+τ)||Kν(sρ2)|eτ(1ρ22/ρ12).\displaystyle\frac{|K_{\nu}(s\rho_{1}+\tau)|}{|K_{\nu}(s\rho_{2})|}\leq e^{-\tau(1-\rho_{2}^{2}/\rho_{1}^{2})}.

Acknowledgements

G. Hu is partially supported by the National Natural Science Foundation of China (No. 12071236) and the Fundamental Research Funds for Central Universities in China (No. 63213025).

References

  • [1] H. Ammari, G. Bao, and A. Wood, An integral equation method for the electromagnetic scattering from cavities, Math. Methods Appl. Sci., 23 (2000), pp. 1057–1072.
  • [2] H. Ammari, G. Bao, and A. Wood, Analysis of the electromagnetic scattering from a cavity, Jpn. J. Ind. Appl. Math., 19 (2002), pp. 301–310.
  • [3] D. Appelo, T. Hagstrom, and G. Kreiss, Perfectly matched layers for hyperbolic systems: General formulation, well-posedness, and stability, SIAM J. Appl. Math., 67 (2006), pp. 1–23.
  • [4] G. Bao, and H. Wu, Convergence analysis of the PML problems for time-harmonic Maxwell’s equations, SIAM J. Numer. Anal., 43(2005), pp. 2121–2143.
  • [5] G. Bao, Y. Gao, and P. Li, Time-domain analysis of an acoustic-elastic interaction problem, Arch. Rational Mech. Anal., 229(2018), pp. 835–884.
  • [6] G. Bao, Y. Gao, and P. Li, Time-domain analysis of an acoustic-elastic interaction problem, Arch. Rational Mech. Anal. 229 (2018), PP. 835-884.
  • [7] J. P. Bérenger, A perfectly matched layer for the absorption of electromagnetic waves, J. Comput. Phys., 114(1994), pp. 185–200.
  • [8] J. P. Bérenger, Three-dimensional perfectly matched layer for the absorption of electromagnetic waves, J. Comput. Phys., 127(1996), pp. 363–379.
  • [9] E. Bécache, S. Fauqueux, and P. Joly, Stability of perfectly matched layers, group velocities and anisotropic waves, J. Comput. Phys., 188 (2003), pp. 399–433.
  • [10] E. Bécache and P. Joly, On the analysis of Bérenger’s perfectly matched layers for Maxwell equations, M2AN Math. Model. Numer. Anal., 36 (2002), pp. 87–119.
  • [11] E. Bécache and M. Kachanovska, Stability and convergence analysis of time-domain perfectly matched layers for the wave equation in waveguides, SIAM J. Numer. Anal. , 59(2021), pp.2004–2039.
  • [12] J. H. Bramble, and J. E. Pasciak, Analysis of a finite PML approximation for the three dimensional time-harmonic Maxwell and acoustic scattering problems, Math. Comp. 76 (2007), pp. 597–614.
  • [13] J. H. Bramble, and J. E. Pasciak, Analysis of a finite element PML approximation for the three dimensional time-harmonic Maxwell problem, Math. Comp., 77 (2008), pp. 1–10.
  • [14] J. H. Bramble, and J. E. Pasciak, Analysis of a Cartesian PML approximation to acoustic scattering problems in 2{\mathbb{R}}^{2} and 3{\mathbb{R}}^{3}, Math. Comp., 247 (2013), pp. 209-230.
  • [15] H. Brezis, Functional analysis, sobolev spaces and partial differential equations, Springer, 2010.
  • [16] W. Chew, and W. Weedon, A 3-D perfectly matched medium from modified Maxwell’s equation with stretched coordinates, Microw. Opt. Tech. Lett.,7(1994), pp. 599-604.
  • [17] Y. Chen, P. Li, and X. Yuan, An adaptive finite element PML method for the open cavity scattering problems, Commun. Comput. Phys., 29 (2021), pp. 1505-1540.
  • [18] Z. Chen, and W. Zheng, Convergence of the uniaxial perfectly matched layer method for time- harmonic scattering problems in two-layered media, SIAM J. Numer. Anal., 48 (2010), pp. 2158-2185.
  • [19] Z.Chen, Convergence of the time-domain perfectly matched layer method for acoustic scattering problems, International Journal of Numerical Analysis and Modeling, 6 (2009), pp. 124–146.
  • [20] Z. Chen, and X. Wu, Long-time stability and convergence of the uniaxial perfectly matched layer method for time-domain acoustic scattering problems, SIAM J. Numer. Anal. 50(2012), pp. 2632-2655.
  • [21] Z. Chen and J. Nedelec, On Maxwell equations with the transparent boundary condition, J. Comput. Math., 26(2008), pp. 284-296.
  • [22] A. M. Cohen, Numerical methods for Laplace Transform inversion, Numer. Methods Algorithms, 5, Springer, New York, 2007.
  • [23] F. Collino, and, P. Monk, The perfectly matched layer in curvilinear coordinates, SIAM J.Sci. Comput. 19(1998), pp. 1061–1090.
  • [24] J. Diaz, and, P. Joly, A time domain analysis of PML models in acoustics.Comput. Methods Appl. Mech. Eng. 195(2006), pp. 3820–3853.
  • [25] T. Hohage, F. Schmidt, and L. Zschiedrich, Solving time-harmonic scattering problems based on the pole condition II: Convergence of the PML method, SIAM J. Math. Anal., 35(2003), pp. 547-560.
  • [26] A. T. De Hoop, P. M. Van den Berg, and, R. F. Remis, Absorbing boundary conditions and perfectly matched layers-analytic time-domain performance analysis, IEEE Trans. Magn. 38(2002), 657–660.
  • [27] P. Joly, Variational methods for time-dependent wave propagation problems, Lecture Notes in Computational Science and Engineering, 31(2003), pp. 201–264.
  • [28] P. Joly, An elementary introduction to the construction and the analysis of perfectly matched layers for time domain wave propagation, SeMA Journal, 57(2012), pp. 5-48.
  • [29] M. Lassas, and E. Somersalo, On the existence and convergence of the solution of PML equations, Computing, 60 (1998), pp. 229-241.
  • [30] P. Li, A survey of open cavity scattering problems, J. Comp. Math., 36 (2018), pp. 1–16.
  • [31] P. Li, L. Wang, and A. Wood, Analysis of transient electromagnetic scattering from a three-dimensional open cavity, SIAM J. Appl. Math., 75(2015), pp. 1674-1699.
  • [32] J. L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and Applications, Vol. I, Springer-Verlag, New York-Heidelberg, 1972.
  • [33] W. Mclean, Strongly elliptic system and boundary integral equations, Cambridge University Press, 2000.
  • [34] P. G. Petropoulos, Reflectionless sponge layers as absorbing boundary conditions forthe numerical solutions of Maxwellequation in Rectangular, cylindrical, and sopherical coordinates, SIAM J. Appl. Math., 60(2000), PP. 1037-1058.
  • [35] F. Tréves, Basic linear partial differential equations, Ann. of Math., 47(1975), pp. 202–212.
  • [36] E. Turkel, and, A. Yefet, Absorbing PML boundary layers for wave-like equations. Appl. Numer. Math. 27(1998), pp. 533–557.
  • [37] C. K. Wei, and J. Q. Yang, Analysis of a time-dependent fluid-solid interaction problem above a local rough surface, Sci China Math, 62 (2019).
  • [38] C. K. Wei, J. Q. Yang, and B. Zhang, Convergence analysis of the PML method for time-domain electromagnetic scattering problems, SIAM J. Numer. Anal, 58(2020), pp. 1918-1940.
  • [39] A. Wood, Analysis of electromagnetic scattering from an overfilled cavity in the ground plane, J.Comput. Phys., 215 (2006), pp. 630–641.