This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

11institutetext: N. M. Markovich 22institutetext: V.A.Trapeznikov Institute of Control Sciences, Russian Academy of Sciences, Profsoyuznaya 65, 117997 Moscow, Russia
Tel.: +007-495-3348820
Fax: +007-495-3342016
22email: [email protected]

WEIGHTED MAXIMA AND SUMS OF NON-STATIONARY RANDOM LENGTH SEQUENCES IN HEAVY-TAILED MODELS

Natalia M. Markovich
(Received: date / Accepted: date)
Abstract

The sums and maxima of weighted non-stationary random length sequences of regularly varying random variables may have the same tail and extremal indices, Markovich and Rodionov (2020). The main constraints are that there exists a unique series in a scheme of series with the minimum tail index, the tail of the term number is lighter than the tail of the terms and the weights are positive constants. These assumptions are changed here: a bounded random number of series is allowed to have the minimum tail index, the tail of the term number may be heavier than the tail of the terms and the weights may be real-valued. Then we derive the tail and extremal indices of the weighted non-stationary random length sequences under the new assumptions.

Keywords:
Random length sequences non-stationarity regularly varying tail extremal index tail index real-valued weights
pacs:
60G70 62G32

1 Introduction

Random length sequences and distribution tails of their sums and maxima attract the interest of many researchers due to numerous applications including queues, branching processes and random networks, see Asmussen and Foss (2018), Jessen and Mikosch (2006), Goldaeva and Lebedev (2018), Lebedev (2015a, 2015b), Markovich and Rodionov (2020), Olvera-Cravioto (2012), Robert and Segers (2008), Tillier and Wintenberger (2018).

Considering weighted sums and maxima we aim to extend the results obtained in Markovich and Rodionov (2020). As in the latter paper, we deal with a doubly-indexed array {Yn,i:n,i1}\{Y_{n,i}:n,i\geq 1\} of nonnegative random variables (r.v.s) in which the ”row index” nn corresponds to the time, and the ”column index” ii enumerates the series. On the same probability space, the existence of a sequence of non-negative integer-valued r.v.s {Nn:n1}\{N_{n}:n\geq 1\} is assumed. Let {Yn,i:n1}\{Y_{n,i}:n\geq 1\} be a strict-sense stationary sequence with the extremal index θi\theta_{i} having a regularly varying tail

P{Yn,i>x}\displaystyle P\{Y_{n,i}>x\} =\displaystyle= i(x)xki\displaystyle\ell_{i}(x)x^{-k_{i}} (1)

with tail index ki>0k_{i}>0 and a slowly varying function i(x)\ell_{i}(x) for any i1i\geq 1. There are no assumptions on the dependence structure in ii.

Definition 1

A strictly stationary sequence {Yn}n1\{Y_{n}\}_{n\geq 1} with distribution function F(x)F(x) and Mn=j=1nYj=maxjYjM_{n}=\bigvee_{j=1}^{n}Y_{j}=\max_{j}Y_{j} is said to have the extremal index θ[0,1]\theta\in[0,1] if for each 0<τ<0<\tau<\infty there exists a sequence of real numbers un=un(τ)u_{n}=u_{n}(\tau) such that

limnn(1F(un))=τ,\displaystyle\lim_{n\to\infty}n(1-F(u_{n}))=\tau, (2)
limnP{Mnun}=eτθ\lim_{n\to\infty}P\{M_{n}\leq u_{n}\}=e^{-\tau\theta} (3)

hold (Leadbetter et al. (1983), p.63).

I.i.d. r.v.s {Yn}\{Y_{n}\} give θ=1\theta=1. The converse may be incorrect. An extremal index that is close to zero implies a kind of a strong local dependence.

In Markovich and Rodionov (2020), the weighted sums and maxima

Yn(z,Nn)=max(z1Yn,1,,zNnYn,Nn),\displaystyle Y_{n}^{*}(z,N_{n})=\max(z_{1}Y_{n,1},...,z_{N_{n}}Y_{n,N_{n}}), (4)
Yn(z,Nn)=z1Yn,1++zNnYn,Nn\displaystyle~{}~{}Y_{n}(z,N_{n})=z_{1}Y_{n,1}+...+z_{N_{n}}Y_{n,N_{n}}

for positive constants z1,z2,z_{1},z_{2},... and regularly varying {Yn,i:n1}\{Y_{n,i}:n\geq 1\} were considered. A similar result was obtained in Goldaeva (2013) for the same weights and for random sequences of a fixed length l1l\geq 1 and when {Yn,i:n1}\{Y_{n,i}:n\geq 1\} have a power-type tail, i.e. P(Yn,i>x)c(i)xkiP(Y_{n,i}>x)\sim c^{(i)}x^{-k_{i}} as xx\to\infty,111The symbol \sim means asymptotically equal to or f(x)g(x)f(x)\sim g(x) \Leftrightarrow f(x)/g(x)1f(x)/g(x)\rightarrow 1 as xax\rightarrow a, xMx\in M where the functions f(x)f(x) and g(x)g(x) are defined on some set MM and aa is a limit point of MM. where c(i)c^{(i)} is a positive constant for each fixed ii.
Let us recall Theorem 4 derived in Markovich and Rodionov (2020) and{Yn,i:n1}\{Y_{n,i}:n\geq 1\} related to sums and maxima (4) in the following Theorem 1.2. It is assumed that the ”column” sequences {Yn,i:i1}\{Y_{n,i}:i\geq 1\} have stationary distribution tails (1) in nn with positive tail indices {k1,k2,}\{k_{1},k_{2},...\} and extremal indices {θ1,θ2,}\{\theta_{1},\theta_{2},...\} for each fixed ii. Here {i(x)}\{\ell_{i}(x)\} are restricted by the condition: for all A>1A>1, δ>0\delta>0 there exists x0(A,δ)x_{0}(A,\delta) such that for all i1i\geq 1

i(x)Axδ,x>x0(A,δ)\displaystyle\ell_{i}(x)\leq Ax^{\delta},\ \ x>x_{0}(A,\delta) (5)

holds. NnN_{n} has a regularly varying distribution with the tail index α>0,\alpha>0, that is

P(Nn>x)=xα~n(x).\displaystyle P(N_{n}>x)=x^{-\alpha}\tilde{\ell}_{n}(x). (6)

There is a minimum tail index k1k_{1} and k:=limninf2ilnki,k:=\lim_{n\to\infty}\inf_{2\leq i\leq l_{n}}k_{i},

ln=[nχ],\displaystyle l_{n}=[n^{\chi}],\qquad (7)

and χ\chi satisfies

0<χ<χ0,χ0=kk1k1(k+1).0<\chi<\chi_{0},\qquad\chi_{0}=\frac{k-k_{1}}{k_{1}(k+1)}. (8)

An arbitrary dependence structure between {Yn,i}\{Y_{n,i}\} and {Nn}\{N_{n}\} is allowed. The tail of NnN_{n} does not dominate the tail of the most heavy-tailed term Yn,1Y_{n,1}. Let (x)\ell(x) be such that 1(x)=k1(x)\ell_{1}(x)=\ell^{-k_{1}}(x) and (x)\ell^{\sharp}(x) be the de Brujin conjugate of (x)\ell(x) (see Bingham et al. (1987)). Let

un\displaystyle u_{n} =\displaystyle= yn1/k11(n),y>0,\displaystyle yn^{1/k_{1}}\ell_{1}^{\sharp}(n),~{}~{}y>0, (9)

where we denote 1(x)=(x1/k1)\ell_{1}^{\sharp}(x)=\ell^{\sharp}(x^{1/k_{1}}) and the positive weights {zi}\{z_{i}\} are bounded.

Theorem 1.1

(Markovich and Rodionov 2020) Let k1<kk_{1}<k, (5), (7) and (8) hold. Then the sequences Yn(z,ln)Y_{n}^{*}(z,l_{n}) and Yn(z,ln)Y_{n}(z,l_{n}) have the same tail index k1k_{1} and the same extremal index θ1\theta_{1}.

Theorem 1.2 follows by Theorem 1.1.

Theorem 1.2

(Markovich and Rodionov 2020) Let the sets of slowly varying functions {~n(x)}n1\{\tilde{\ell}_{n}(x)\}_{n\geq 1} in (6) and {i(x)}i1\{\ell_{i}(x)\}_{i\geq 1} in (1) satisfy the condition (5). Suppose that k1<kk_{1}<k and

P{Nn>ln}\displaystyle P\{N_{n}>l_{n}\} =\displaystyle= o(P{Yn,1>un}),n\displaystyle o\left(P\{Y_{n,1}>u_{n}\}\right),~{}~{}n\to\infty (10)

hold, where the sequence lnl_{n} satisfies (7) and (8). Then the sequences Yn(z,Nn)Y_{n}^{*}(z,N_{n}) and Yn(z,Nn)Y_{n}(z,N_{n}) have the same tail index k1k_{1} and the same extremal index θ1\theta_{1}.

Remark 1

By the proof of the latter theorems it follows that if the ”column” series with a minimum tail index k1k_{1} is unique, then the tail distributions of the sequences Yn(z,Nn)Y_{n}^{*}(z,N_{n}) and Yn(z,Nn)Y_{n}(z,N_{n}) are asymptotically equivalent to its distribution tail. This is enough for Yn(z,Nn)Y_{n}^{*}(z,N_{n}) and Yn(z,Nn)Y_{n}(z,N_{n}) to have an extremal index θ1\theta_{1}, despite both sequences may be non-stationary distributed due to an arbitrary dependence between the ”column” sequences.

Our objectives are to revise Theorem 1.2 for the case when a random number of ”column” series may have the minimum tail index both for positive and real-valued constant weights in (4). Moreover, we observe how the results may change under the opposite assumption

P{Yn,1>un}\displaystyle P\{Y_{n,1}>u_{n}\} =\displaystyle= o(P{Nn>ln}),n\displaystyle o\left(P\{N_{n}>l_{n}\}\right),~{}~{}n\to\infty (11)

instead of (10).
We use the following notations

Mn(i)\displaystyle M_{n}^{(i)} =\displaystyle= max{Y1,i,Y2,i,,Yn,i},i{1,..,ln},\displaystyle\max\{Y_{1,i},Y_{2,i},...,Y_{n,i}\},~{}i\in\{1,..,l_{n}\},
Mn(z,ln)\displaystyle M_{n}(z,l_{n}) =\displaystyle= max{Y1(z,ln),Y2(z,ln),,Yn(z,ln)},\displaystyle\max\{Y_{1}(z,l_{n}),Y_{2}(z,l_{n}),...,Y_{n}(z,l_{n})\},
Mn(z,ln)\displaystyle M_{n}^{*}(z,l_{n}) =\displaystyle= max{Y1(z,ln),,Yn(z,ln)}=max{z1Mn(1),,zlnMn(ln)},n1.\displaystyle\max\{Y_{1}^{*}(z,l_{n}),...,Y_{n}^{*}(z,l_{n})\}=\max\{z_{1}M_{n}^{(1)},...,z_{l_{n}}M_{n}^{(l_{n})}\},~{}~{}n\geq 1.

The paper is organized as follows. The revision of Theorems 1.1 and 1.2 by Theorems 2.1 and 2.2 for fixed and random numbers of the most heavy-tailed ”column” series and positive weights in (4) is given in Section 2.1. The same revision for real-valued weights is given in Section 2.2. The revision of Theorem 1.2 for a heavy-tailed number NnN_{n} of light-tailed terms is stated in Section 2.3. The proofs are given in Section 3.

2 Main Results

2.1 Revision of Theorem 1.2 for positive constant weights

We revise Theorem 1.2 by Theorem 2.2 allowing a random bounded number d1d\geq 1 of series to have a minimum tail index. To this end, we extend Theorem 1.1 by Theorem 2.1. Theorem 1.1 covers the case d=1d=1. We assume in Theorem 2.1 that d>1d>1 is fixed and ki=k1k_{i}=k_{1}, i{1,,d}i\in\{1,...,d\}, 1dln11\leq d\leq l_{n}-1, k1<k=kd+1k_{1}<k=k_{d+1}, where

k\displaystyle k :=\displaystyle:= limninfd+1ilnki\displaystyle\lim_{n\to\infty}\inf_{d+1\leq i\leq l_{n}}k_{i} (12)

holds. We introduce the following conditions:

  1. (A1)

    The stationary sequences {Yn,i}n1\{Y_{n,i}\}_{n\geq 1}, i{1,,d}i\in\{1,...,d\} are mutually independent, and independent of the sequences {Yn,i}n1\{Y_{n,i}\}_{n\geq 1}, i{d+1,,ln}i\in\{d+1,...,l_{n}\}.

  2. (A2)

    Assume {Yn,i}n1\{Y_{n,i}\}_{n\geq 1}, i{1,,d}i\in\{1,...,d\} satisfy the following conditions as xx\to\infty

    P{Yn,i>x}xk11(x)\displaystyle\frac{P\{Y_{n,i}>x\}}{x^{-k_{1}}\ell_{1}(x)} \displaystyle\rightarrow ci,i{1,,d},\displaystyle c_{i},~{}~{}i\in\{1,...,d\}, (13)

    for some non-negative numbers cic_{i},

    P{Yn,i>x,Yn,j>x}xk11(x)\displaystyle\frac{P\{Y_{n,i}>x,Y_{n,j}>x\}}{x^{-k_{1}}\ell_{1}(x)} \displaystyle\rightarrow 0,ij,i,j{1,,d}.\displaystyle 0,~{}~{}i\neq j,~{}~{}i,j\in\{1,...,d\}. (14)

    By Lemma 2.1 in Davis and Resnik (1996) in conditions (A2) it holds

    P{i=1dYn,i>x}xk11(x)\displaystyle\frac{P\{\sum_{i=1}^{d}Y_{n,i}>x\}}{x^{-k_{1}}\ell_{1}(x)} \displaystyle\rightarrow i=1dci,x\displaystyle\sum_{i=1}^{d}c_{i},~{}~{}x\to\infty (15)

    for any n1n\geq 1.

  3. (A3)

    Assume that for each n1n\geq 1 there exists i{1,,d}i\in\{1,...,d\} such that

    P{max1jd,ji(zjYn,j)>x,ziYn,ix}=o(P{ziYn,i>x}),x\displaystyle P\{\max_{1\leq j\leq d,j\neq i}(z_{j}Y_{n,j})>x,z_{i}Y_{n,i}\leq x\}=o(P\{z_{i}Y_{n,i}>x\}),~{}~{}x\to\infty (16)

    holds.

  4. (A4)

    Assume that there exists i{1,,d}i\in\{1,...,d\} such that it holds

    P{max1jd,ji(zjMn(j))>un,ziMn(i)un}=o(1),n.\displaystyle P\{\max_{1\leq j\leq d,j\neq i}(z_{j}M_{n}^{(j)})>u_{n},z_{i}M_{n}^{(i)}\leq u_{n}\}=o(1),~{}~{}n\to\infty. (17)
Example 1

Let z1Yn,1z2Yn,2zdYn,dz_{1}Y_{n,1}\geq z_{2}Y_{n,2}\geq...\geq z_{d}Y_{n,d} for a given n1n\geq 1 hold. If z1Yn,1xz_{1}Y_{n,1}\leq x holds, then ziYn,ixz_{i}Y_{n,i}\leq x for all i{2,3,,d}i\in\{2,3,...,d\} and P{max2jd(zjYn,j)>x,z1Yn,1x}=0P\{\max_{2\leq j\leq d}(z_{j}Y_{n,j})>x,z_{1}Y_{n,1}\leq x\}=0 follows. Since for any ”row” sequence {ziYn,i:i1}\{z_{i}Y_{n,i}:i\geq 1\} there is a maximum term, the condition (16) follows.

Example 2

The assumption (17) is particularly valid for the following dd ”column” sequences. Let elements of each ”column” sequence be sums of the corresponding elements of all previous ”columns”, i.e. Yn,i=j=1i1Yn,jY_{n,i}=\sum_{j=1}^{i-1}Y_{n,j} and z1z2zdz_{1}\leq z_{2}\leq...\leq z_{d}. Each of the dd ”column” sequences has the tail index k1k_{1} that follows from the statement of Theorem 2.1. Since Mn(1)=Mn(2)<Mn(3)<<Mn(d)M_{n}^{(1)}=M_{n}^{(2)}<M_{n}^{(3)}<...<M_{n}^{(d)} holds, then j=1d1P{zjMn(j)>un,zj+1Mn(j+1)un,,zdMn(d)un}=0\sum_{j=1}^{d-1}P\{z_{j}M_{n}^{(j)}>u_{n},z_{j+1}M_{n}^{(j+1)}\leq u_{n},...,z_{d}M_{n}^{(d)}\leq u_{n}\}=0 or equivalently (17) for i=di=d follow. In the same way, (17) is valid for all dd ”column” sequences such that Mn(1)Mn(2)Mn(3)Mn(d)M_{n}^{(1)}\leq M_{n}^{(2)}\leq M_{n}^{(3)}\leq...\leq M_{n}^{(d)} holds.

Let unu_{n} in Theorem 2.1 be as in (9).

Theorem 2.1

Let (5) hold for all d+1ilnd+1\leq i\leq l_{n}, (7), (8) be satisfied. If, in addition, (A1) or (A2) holds, then Yn(z,ln)Y_{n}^{*}(z,l_{n}) and Yn(z,ln)Y_{n}(z,l_{n}) have tail index k1k_{1}. If, instead of (A1) or (A2), (A3) holds, then Yn(z,ln)Y_{n}^{*}(z,l_{n}) has the same tail index.

  1. 1.

    If (A1) holds, then Yn(z,ln)Y_{n}^{*}(z,l_{n}) and Yn(z,ln)Y_{n}(z,l_{n}) have the same extremal index

    θ(z)\displaystyle\theta(z) =\displaystyle= j=1dθjzjk1/j=1dzjk1.\displaystyle\sum_{j=1}^{d}\theta_{j}z_{j}^{k_{1}}/\sum_{j=1}^{d}z_{j}^{k_{1}}. (18)
  2. 2.

    If (A4) holds, then Yn(z,ln)Y_{n}^{*}(z,l_{n}) has the extremal index θi\theta_{i}. If, additionally to (A4), (A2) holds, then Yn(z,ln)Y_{n}(z,l_{n}) has the same extremal index as Yn(z,ln)Y_{n}^{*}(z,l_{n}).

Remark 2

An arbitrary dependence among elements of the dd ”columns” series with the minimum tail index in Item 2 of Theorem 2.1 (for instance, elements of odd ”row” sequences coincide and elements of the even rows are i.i.d.) leads to the non-stationary sequences of maxima Yn(z,ln)Y_{n}^{*}(z,l_{n}) and sums Yn(z,ln)Y_{n}(z,l_{n}). However, the extremal index of Yn(z,ln)Y_{n}^{*}(z,l_{n}) exists in case of (17) due to the asymptotic equivalence of the distributions of Mn(z,d)M_{n}^{*}(z,d) and Mn(i)M_{n}^{(i)}.

Now we reformulate Theorem 1.2.

Theorem 2.2

Let the sets of slowly varying functions {i(x)}d+1iln\{\ell_{i}(x)\}_{d+1\leq i\leq l_{n}} in (1) and {~n(x)}n1\{\tilde{\ell}_{n}(x)\}_{n\geq 1} in (6) satisfy the condition (5) and (7), (8), (10) hold. Assume that dd and {Yn,i}\{Y_{n,i}\} are independent.

  1. (i)

    Let dd be a bounded discrete r.v. such that 1<d<dn=min(C,ln)1<d<d_{n}=\min(C,l_{n}), C>1C>1 holds.

    1. (a)

      If (A1) or (A2) for any d{2,3,,dn1}d\in\{2,3,...,\lfloor d_{n}-1\rfloor\} holds and NnN_{n} and {Yn,i}\{Y_{n,i}\} are independent, then Yn(z,Nn)Y_{n}(z,N_{n}) and Yn(z,Nn)Y^{*}_{n}(z,N_{n}) have the tail index k1k_{1}. If, instead of (A1) and (A2), (A3) holds, then Yn(z,Nn)Y_{n}^{*}(z,N_{n}) has the same tail index.

    2. (b)

      If (A4) where in (17) dd is replaced by dn1\lfloor d_{n}-1\rfloor holds, then Yn(z,Nn)Y_{n}^{*}(z,N_{n}) has the extremal index θi\theta_{i}. If, in addition, (A1) (or (A2)) for any d{2,3,,dn1}d\in\{2,3,...,\lfloor d_{n}-1\rfloor\} holds, then Yn(z,Nn)Y_{n}(z,N_{n}) has the same extremal index.

  2. (ii)

    Suppose that d>1d>1 is a bounded discrete r.v. equal to a positive integer a.s.. Then all statements of Item (i) are fulfilled.

2.2 Revision of Theorem 1.2 for real-valued constant weights

Let us consider (4) for real-valued constant weights. The sums and maxima may be partitioned into negative and positive parts

Yn(z,Nn+,Nn)=max(Yn+(z+,Nn+),Yn(z,Nn))=Yn+(z+,Nn+),\displaystyle Y_{n}^{*}(z,N_{n}^{+},N_{n}^{-})=\max(Y_{n}^{*+}(z^{+},N_{n}^{+}),Y_{n}^{*-}(z^{-},N_{n}^{-}))=Y_{n}^{*+}(z^{+},N_{n}^{+}),
Yn(z,Nn+,Nn)=min(Yn+(z+,Nn+),Yn(z,Nn))=Yn(z,Nn),\displaystyle Y_{n}^{**}(z,N_{n}^{+},N_{n}^{-})=\min(Y_{n}^{*+}(z^{+},N_{n}^{+}),Y_{n}^{*-}(z^{-},N_{n}^{-}))=Y_{n}^{*-}(z^{-},N_{n}^{-}),
Yn(z,Nn+,Nn)=Yn+(z+,Nn+)+Yn(z,Nn),\displaystyle~{}~{}Y_{n}(z,N_{n}^{+},N_{n}^{-})=Y_{n}^{+}(z^{+},N_{n}^{+})+Y_{n}^{-}(z^{-},N_{n}^{-}), (19)

where the terms marked by ’++’ and ’-’ correspond to sums and maxima with positive and negative weights and the corresponding random numbers of terms Nn+N_{n}^{+} and NnN_{n}^{-}. Nn±N_{n}^{\pm} satisfies (6). For brevity we denote in the section Yn(z,Nn+,Nn)Y_{n}^{*}(z,N_{n}^{+},N_{n}^{-}), Yn(z,Nn+,Nn)Y_{n}^{**}(z,N_{n}^{+},N_{n}^{-}) and Yn(z,Nn+,Nn)Y_{n}(z,N_{n}^{+},N_{n}^{-}) as Yn(z,Nn)Y_{n}^{*}(z,N_{n}), Yn(z,Nn)Y_{n}^{**}(z,N_{n}) and Yn(z,Nn)Y_{n}(z,N_{n}), respectively.
We avoid to use only positive weights, the case derived in Markovich and Rodionov (2020), or only negative weights since then P{Yn(z,Nn)>un}=P{Yn(z,Nn)>un}=0P\{Y_{n}^{*}(z,N_{n})>u_{n}\}=P\{Y_{n}^{*}(z^{-},N_{n}^{-})>u_{n}\}=0 and P{Yn(z,Nn)>un}=P{Yn(z,Nn)>un}=0P\{Y_{n}(z,N_{n})>u_{n}\}=P\{Y_{n}^{-}(z^{-},N_{n}^{-})>u_{n}\}=0 hold for positive unu_{n}.
We assume that the number of column subsequences ln+l_{n^{+}} and lnl_{n^{-}} of lnl_{n} such that ln++ln=lnl_{n^{+}}+l_{n^{-}}=l_{n}, n±n^{\pm}\in\mathbb{N}, n±n^{\pm}\to\infty for positive and negative weights, respectively, satisfy conditions similar to (7) and (8), i.e.

ln±=[n±χ±],\displaystyle l_{n^{\pm}}=[{n^{\pm}}^{\chi^{\pm}}],\qquad (20)

and χ±\chi^{\pm} satisfies

0<χ±<χ0±,χ0±=k±k1±k1±(k±+1),0<\chi^{\pm}<\chi_{0}^{\pm},\qquad\chi_{0}^{\pm}=\frac{k^{\pm}-k_{1}^{\pm}}{k_{1}^{\pm}(k^{\pm}+1)}, (21)

where

k+:=limninfd++1iln+ki+,k:=limninfd+1ilnki,\displaystyle k^{+}:=\lim_{n\to\infty}\inf_{d^{+}+1\leq i\leq l_{n^{+}}}k_{i}^{+},\qquad k^{-}:=\lim_{n\to\infty}\inf_{d^{-}+1\leq i\leq l_{n^{-}}}k_{i}^{-}, (22)

Without loss of generality, we assume that the first d+d^{+} and dd^{-}, 1d±ln±11\leq d^{\pm}\leq l_{n^{\pm}}-1, series in the corresponding subsequences have the minimum tail indices k1+k_{1}^{+} and k1k_{1}^{-}, k1±<k±k_{1}^{\pm}<k^{\pm}, respectively.
By (2.2) all statements of Theorems 1.2 and 2.2 regarding the maximum Yn(z,Nn)Y_{n}^{*}(z,N_{n}) (or Yn(z,Nn)-Y_{n}^{**}(z,N_{n})) are fulfilled with a replacement of k1k_{1} by the minimum tail index k1+k_{1}^{+} (or k1k_{1}^{-}) of the positive (or negative) weighted column sequences subject to the required assumptions.

2.2.1 A unique ”column” series with a minimum tail index

Let there be a unique column with a positive weight which has a minimum tail index k1+k_{1}^{+} and the extremal index θ1+\theta_{1}^{+}, and similarly, there be a unique column with a negative weight which has a minimum tail index k1k_{1}^{-} and the extremal index θ1\theta_{1}^{-}. We select unu_{n} similar as in Theorem 1.2, i.e. un+=yn1/k1+1(n)u_{n}^{+}=yn^{1/k_{1}^{+}}\ell^{\sharp}_{1}(n) or un=yn1/k11(n)u_{n}^{-}=yn^{1/k_{1}^{-}}\ell^{\sharp}_{1}(n) for y>0y>0. Let us denote the column series with the minimum tail indices k1+k_{1}^{+} and k1k_{1}^{-} as Yn,1+Y_{n,1}^{+} and Yn,1Y_{n,1}^{-}, respectively.

Corollary 1

Let the sets of slowly varying functions {i(x)}i1\{\ell_{i}(x)\}_{i\geq 1} in (1) and {~n(x)}n1\{\tilde{\ell}_{n}(x)\}_{n\geq 1} in (6) satisfy the condition (5) and k1±<k±k_{1}^{\pm}<k^{\pm} hold. Suppose that

P{Nn±>ln±}\displaystyle P\{N_{n}^{\pm}>l_{n^{\pm}}\} =\displaystyle= o(P{Yn,1±>un±}),n,\displaystyle o\left(P\{Y_{n,1}^{\pm}>u_{n}^{\pm}\}\right),~{}~{}n\to\infty, (23)

holds, where the subsequences ln±l_{n^{\pm}} satisfy (20) and (21).

  1. 1.

    If k1+k1k_{1}^{+}\leq k_{1}^{-} holds, then the sequences Yn(z,Nn)Y_{n}^{*}(z,N_{n}) and Yn(z,Nn)Y_{n}(z,N_{n}) have the same tail index k1+k_{1}^{+} and the same extremal index θ1+\theta_{1}^{+} for un+u_{n}^{+}, and their extremal indices do not exist for unu_{n}^{-}.

  2. 2.

    If k1k1+k_{1}^{-}\leq k_{1}^{+} holds, then the sequences Yn(z,Nn)-Y_{n}^{**}(z,N_{n}) and Yn(z,Nn)-Y_{n}(z,N_{n}) have the same tail index k1k_{1}^{-} and the same extremal index θ1\theta_{1}^{-} for unu_{n}^{-}, and their extremal indices do not exist for un+u_{n}^{+}.

2.2.2 A random number of ”column” series with a minimum tail index

Let a random number of column series have a minimum tail index.

Corollary 2

Let the conditions of Theorem 2.2 with (23) instead of (10) be fulfilled, d+d^{+} and dd^{-} be bounded discrete r.v.s such that d±<dn±=min(C±,ln±)d^{\pm}<d_{n}^{\pm}=\min(C^{\pm},l_{n}^{\pm}), C±>1C^{\pm}>1 hold and d+d^{+} and dd^{-} be independent of {Yn,i}\{Y_{n,i}\}.

  1. 1.

    If k1+k1k_{1}^{+}\leq k_{1}^{-} holds, then all statements of Theorem 2.2 are fulfilled for sequences Yn(z,Nn)Y_{n}^{*}(z,N_{n}) and Yn(z,Nn)Y_{n}(z,N_{n}) for un+u_{n}^{+}, and the extremal index of Yn(z,Nn)Y_{n}^{*}(z,N_{n}) and Yn(z,Nn)Y_{n}(z,N_{n}) does not exist for unu_{n}^{-}.

  2. 2.

    If k1k1+k_{1}^{-}\leq k_{1}^{+} holds, then all statements of the previous case are fulfilled by substituting Yn(z,Nn)Y_{n}(z,N_{n}) by Yn(z,Nn)-Y_{n}(z,N_{n}), Yn(z,Nn)Y_{n}^{*}(z,N_{n}) by Yn(z,Nn)-Y_{n}^{**}(z,N_{n}), k1+k_{1}^{+} by k1k_{1}^{-} and un±u_{n}^{\pm} by unu_{n}^{\mp} symmetrically.

2.3 Revision of Theorem 1.2 for a heavy-tailed number of light-tailed terms

The assumption (10) is crucial for the proof of Theorem 1.2. We will replace the latter assumption with an opposite one and derive new statements for a unique column sequence and a random number of column sequences with a minimum tail index for positive weights.

2.3.1 A unique ”column” series with a minimum tail index

Theorem 2.3

Let the conditions of Theorem 1.2 be fulfilled apart of (10) and the sequence lnl_{n} satisfy (7) and (8).
(i) Assume (11) and

αχ0\displaystyle\alpha\chi_{0} >\displaystyle> 1+αk1δ,\displaystyle 1+\frac{\alpha}{k_{1}}\delta^{*}, (24)

for δ>0\delta^{*}>0 hold, where α>0\alpha>0 be the tail index of NnN_{n}. Then the sequences Yn(z,Nn)Y_{n}^{*}(z,N_{n}) and Yn(z,Nn)Y_{n}(z,N_{n}) have the same tail index k1k_{1} and if

αχ0\displaystyle\alpha\chi_{0} >\displaystyle> 1+12(1αχ),\displaystyle 1+\frac{1}{2}(1-\alpha\chi), (25)

holds, then the same extremal index θ1\theta_{1}.
(ii) Assume

P{Nn>ln}\displaystyle P\{N_{n}>l_{n}\} =\displaystyle= P{z1Yn,1>un}(1+o(1))\displaystyle P\{z_{1}Y_{n,1}>u_{n}\}(1+o(1)) (26)

holds, and NnN_{n} is regularly varying (6). Then Yn(z,Nn)Y_{n}^{*}(z,N_{n}) and Yn(z,Nn)Y_{n}(z,N_{n}) have the same tail index k1k_{1} and the extremal index θ1\theta_{1}.

2.3.2 A random number of ”column” series with a minimum tail index

Theorem 2.4

Let the conditions of Theorem 2.2 be fulfilled, but (10) is substituted by (11) and (24). Then all statements of Theorem 2.2 regarding tail and extremal indices are fulfilled.

3 Proofs

3.1 Proof of Theorem 2.1

The proof extends Theorem 3 in Markovich and Rodionov (2020). We just indicate the modifications. The numeration of Theorem 3 in Markovich and Rodionov (2020) is preserved throughout the proof. For brevity, we denote in this section Yn(z)=Yn(z,ln)Y_{n}(z)=Y_{n}(z,l_{n}), Yn(z)=Yn(z,ln)Y_{n}^{*}(z)=Y_{n}^{*}(z,l_{n}), Mn(z)=Mn(z,ln)M_{n}(z)=M_{n}(z,l_{n}) and Mn(z)=Mn(z,ln)M_{n}^{*}(z)=M_{n}^{*}(z,l_{n}).
The right-hand side of (12) in Markovich and Rodionov (2020) can be rewritten as

P{Yn(z)>un}\displaystyle\!\!\!\!P\{Y_{n}(z)>u_{n}\} \displaystyle\leq P{i=1dziYn,i>un(1ε)}+i=d+1lnP{ziYn,i>unεi},\displaystyle P\{\sum_{i=1}^{d}z_{i}Y_{n,i}>u_{n}(1-\varepsilon)\}+\sum_{i=d+1}^{l_{n}}P\{z_{i}Y_{n,i}>u_{n}\varepsilon_{i}\}, (27)

where i=1lnεi=1\sum_{i=1}^{l_{n}}\varepsilon_{i}=1 holds and {εi}\{\varepsilon_{i}\} is a sequence of positive elements. Let us denote ε=i=d+1lnεi\varepsilon=\sum_{i=d+1}^{l_{n}}\varepsilon_{i}. One may take εi\varepsilon_{i}, i{d+1,,ln}i\in\{d+1,...,l_{n}\}, in such a way to satisfy εi0\varepsilon_{i}\to 0 and ε0\varepsilon\to 0 as nn\to\infty. Choosing {εi=1/lnη+1}\{\varepsilon_{i}=1/l_{n}^{\eta+1}\}, η>0\eta>0 as in Lemma 1 in Markovich and Rodionov (2020) one can derive (13) in Markovich and Rodionov (2020) substituting 22 by d+1d+1, namely, it holds

i=d+1lnP{ziYn,i>unεi}=o(1/n),n.\displaystyle\sum_{i=d+1}^{l_{n}}P\{z_{i}Y_{n,i}>u_{n}\varepsilon_{i}\}=o(1/n),\qquad n\to\infty. (28)

To prove the latter, we need to assume (5) for d+1ilnd+1\leq i\leq l_{n}. For the selected unu_{n} we have

P{z1Yn,1>un}=(z1/y)k1n1(1+o(1)),n.\displaystyle P\{z_{1}Y_{n,1}>u_{n}\}=(z_{1}/y)^{k_{1}}n^{-1}(1+o(1)),~{}~{}n\to\infty. (29)

We obtain

P{i=1dziYn,i>un(1ε)}i=1dP{ziYn,i>un(1ε)εi}\displaystyle P\{\sum_{i=1}^{d}z_{i}Y_{n,i}>u_{n}(1-\varepsilon)\}\leq\sum_{i=1}^{d}P\{z_{i}Y_{n,i}>u_{n}(1-\varepsilon)\varepsilon_{i}^{*}\} (30)
=\displaystyle= n1(y(1ε))k1i=1d(ziεi)k1(1+o(1))=(zy(1ε))k1n1(1+o(1)),\displaystyle\frac{n^{-1}}{(y(1-\varepsilon))^{k_{1}}}\sum_{i=1}^{d}\left(\frac{z_{i}}{\varepsilon_{i}^{*}}\right)^{k_{1}}(1+o(1))=\left(\frac{z^{*}}{y(1-\varepsilon)}\right)^{k_{1}}n^{-1}(1+o(1)),

where i=1dεi=1\sum_{i=1}^{d}\varepsilon_{i}^{*}=1 and (z)k1=i=1d(zi/εi)k1(z^{*})^{k_{1}}=\sum_{i=1}^{d}\left(z_{i}/\varepsilon_{i}^{*}\right)^{k_{1}} hold. By (27)-(30) it follows

(z1/y)k1n1(1+o(1))=P{z1Yn,1>un}P{Yn(z)>un}\displaystyle\left(z_{1}/y\right)^{k_{1}}n^{-1}(1+o(1))=P\{z_{1}Y_{n,1}>u_{n}\}\leq P\{Y_{n}^{*}(z)>u_{n}\} (31)
\displaystyle\leq P{Yn(z)>un}(z/y(1ε))k1n1(1+o(1))+o(1/n).\displaystyle P\{Y_{n}(z)>u_{n}\}\leq\left(z^{*}/y(1-\varepsilon)\right)^{k_{1}}n^{-1}(1+o(1))+o(1/n).

If the condition (A2) holds and replacing xx in (15) by unu_{n}, we get for any m1m\geq 1

P{i=1dziYm,i>un}\displaystyle P\{\sum_{i=1}^{d}z_{i}Y_{m,i}>u_{n}\} =\displaystyle= n1i=1d(ziy)k1ci(1+o(1))\displaystyle n^{-1}\sum_{i=1}^{d}\left(\frac{z_{i}}{y}\right)^{k_{1}}c_{i}(1+o(1))

since by (13) and (29)

P{ziYn,i>un}P{z1Yn,1>un}\displaystyle\frac{P\{z_{i}Y_{n,i}>u_{n}\}}{P\{z_{1}Y_{n,1}>u_{n}\}} =\displaystyle= (ziz1)k1ci(1+o(1)),n,i=1,2,,d.\displaystyle\left(\frac{z_{i}}{z_{1}}\right)^{k_{1}}c_{i}(1+o(1)),~{}~{}n\to\infty,~{}~{}i=1,2,...,d.

By (27) and (28) this implies

limnnP{Yn(z)>un}\displaystyle\lim_{n\to\infty}nP\{Y_{n}(z)>u_{n}\} =\displaystyle= limnnP{Yn(z)>un}=i=1d(ziy)k1ci.\displaystyle\lim_{n\to\infty}nP\{Y_{n}^{*}(z)>u_{n}\}=\sum_{i=1}^{d}\left(\frac{z_{i}}{y}\right)^{k_{1}}c_{i}. (32)

The latter is valid for Ym(z)Y_{m}^{*}(z) by (13), (14) and due to

P{max(z1Ym,1,z2Ym,2)>un}\displaystyle P\{\max(z_{1}Y_{m,1},z_{2}Y_{m,2})>u_{n}\}
=\displaystyle= P{z1Ym,1>un}+P{z2Ym,2>un}P{z1Ym,1>un,z2Ym,2)>un}\displaystyle P\{z_{1}Y_{m,1}>u_{n}\}+P\{z_{2}Y_{m,2}>u_{n}\}-P\{z_{1}Y_{m,1}>u_{n},z_{2}Y_{m,2})>u_{n}\}

(the case for general dd follows by induction) and since it holds

P{Yn(z,d)>un}P{Yn(z)>un}P{Yn(z,d)>un}.\displaystyle P\{Y_{n}^{*}(z,d)>u_{n}\}\leq P\{Y_{n}^{*}(z)>u_{n}\}\leq P\{Y_{n}(z,d)>u_{n}\}.
Tail index

Let us find the tail index of Ym(z)Y_{m}(z) and Ym(z)Y_{m}^{*}(z) for all m1m\geq 1. Notice that the relation (27) remains true when replacing unu_{n} by x>0x>0. Similarly to (30) it holds

P{i=1dziYm,i>x(1ε)}\displaystyle P\{\sum_{i=1}^{d}z_{i}Y_{m,i}>x(1-\varepsilon)\} \displaystyle\leq 1(x(1ε))k1i=1d(ziεi)k1i(x)(1+o(1))\displaystyle\frac{1}{(x(1-\varepsilon))^{k_{1}}}\sum_{i=1}^{d}\left(\frac{z_{i}}{\varepsilon_{i}^{*}}\right)^{k_{1}}\ell_{i}(x)(1+o(1))
=\displaystyle= (x)xk1(1+o(1)),x,\displaystyle\frac{\ell^{*}(x)}{x^{k_{1}}}(1+o(1)),~{}~{}x\to\infty,

where (x)=i=1d(zi/(εi(1ε)))k1i(x)\ell^{*}(x)=\sum_{i=1}^{d}\left(z_{i}/(\varepsilon_{i}^{*}(1-\varepsilon))\right)^{k_{1}}\ell_{i}(x) is a slowly varying function. Formula (16) in Markovich and Rodionov (2020) is fulfilled by replacing 22 by d+1d+1 in the sum, namely,

i=d+1lmP{ziYn,i>xεi}\displaystyle\sum_{i=d+1}^{l_{m}}P\{z_{i}Y_{n,i}>x\varepsilon_{i}\} \displaystyle\leq O(xk1(1+δ)),x,\displaystyle O\left(x^{-k_{1}(1+\delta)}\right),~{}~{}x\to\infty, (33)

where δ(0,(kk1)/(k+1))\delta\in(0,(k-k_{1})/(k+1)). Then it follows that

(z1/x)k11(x)(1+o(1))=P{Ym,1(z)>x/z1}P{Ym(z)>x}\displaystyle(z_{1}/x)^{k_{1}}\ell_{1}(x)(1+o(1))=P\{Y_{m,1}(z)>x/z_{1}\}\leq P\{Y^{*}_{m}(z)>x\} (34)
\displaystyle\leq P{Ym(z)>x}P{i=1dziYm,i>x(1ε)}+i=d+1lmP{ziYn,i>xεi}\displaystyle P\{Y_{m}(z)>x\}\leq P\{\sum_{i=1}^{d}z_{i}Y_{m,i}>x(1-\varepsilon)\}+\sum_{i=d+1}^{l_{m}}P\{z_{i}Y_{n,i}>x\varepsilon_{i}\}
\displaystyle\leq (x)xk1(1+o(1)).\displaystyle\ell^{*}(x)x^{-k_{1}}(1+o(1)).

By (34) it does not follow that Ym(z)Y_{m}(z) and Ym(z)Y_{m}^{*}(z) are regularly varying.

Condition (A1)

The tail index of Yn(z)Y_{n}(z) and Yn(z)Y_{n}^{*}(z) is equal to k1k_{1} if the condition (A1) holds. Really, it follows

P{Yn(z)>x}\displaystyle P\{Y_{n}^{*}(z)>x\} =\displaystyle= i=1d(zix)k1i(x)(1+o(1)),x\displaystyle\sum_{i=1}^{d}\left(\frac{z_{i}}{x}\right)^{k_{1}}\ell_{i}(x)(1+o(1)),~{}~{}x\to\infty (35)

by (40) with replacement unu_{n} by x>0x>0, and

P{Yn(z)>x}\displaystyle\!\!\!\!\!P\{Y_{n}(z)>x\} =\displaystyle= i=1dP{ziYi>x}(1+o(1))=i=1d(zix)k1i(x)(1+o(1))\displaystyle\sum_{i=1}^{d}P\{z_{i}Y_{i}>x\}(1+o(1))=\sum_{i=1}^{d}\left(\frac{z_{i}}{x}\right)^{k_{1}}\ell_{i}(x)(1+o(1)) (36)

as xx\to\infty by Lemma 3.1 in Jessen and Mikosch (2006) due to independence of the first dd ”column” sequences.

Conditions (A2)

In conditions (A2) and due to (15), (33), (34) we get

P{Ym(z)>x}=xk11(x)i=1dzik1ci(1+o(1))\displaystyle P\{Y_{m}(z)>x\}=x^{-k_{1}}\ell_{1}(x)\sum_{i=1}^{d}z_{i}^{k_{1}}c_{i}(1+o(1)) (37)

since P{Ym(z)>x}P{i=1dziYm,i>x}P\{Y_{m}(z)>x\}\geq P\{\sum_{i=1}^{d}z_{i}Y_{m,i}>x\}. The same is valid for Ym(z)Y_{m}^{*}(z) by (13) and (14) in the same way as above. Hence, Ym(z)Y_{m}(z) and Ym(z)Y_{m}^{*}(z) have the same tail index k1k_{1} for arbitrary (fixed) m1m\geq 1.

Condition (A3)

We have for all m2m\geq 2

P{Ym(z)>x}=P{z1Ym,1>x}+i=2lmP{ziYm,i>x,max1ji1zjYm,jx}.\displaystyle P\{Y_{m}^{*}(z)>x\}=P\{z_{1}Y_{m,1}>x\}+\sum_{i=2}^{l_{m}}P\{z_{i}Y_{m,i}>x,\max_{1\leq j\leq i-1}z_{j}Y_{m,j}\leq x\}.

Let us denote

P{ziYm,i>x,max1ji1zjYm,jx}\displaystyle P\{z_{i}Y_{m,i}>x,\max_{1\leq j\leq i-1}z_{j}Y_{m,j}\leq x\} =\displaystyle= ξi.\displaystyle\xi_{i}. (38)

We obtain

i=2lmξi\displaystyle\sum_{i=2}^{l_{m}}\xi_{i} =\displaystyle= i=2dξi+i=d+1lmξi.\displaystyle\sum_{i=2}^{d}\xi_{i}+\sum_{i=d+1}^{l_{m}}\xi_{i}.

By (33) we have

i=d+1lmξii=d+1lmP{ziYm,i>x}O(xk1(1+δ)),x.\displaystyle\sum_{i=d+1}^{l_{m}}\xi_{i}\leq\sum_{i=d+1}^{l_{m}}P\{z_{i}Y_{m,i}>x\}\leq O\left(x^{-k_{1}(1+\delta)}\right),~{}x\to\infty.

By (16) it holds

i=2dξi\displaystyle\sum_{i=2}^{d}\xi_{i} =\displaystyle= i=2dP{ziYm,i>x,max1ji1zjYm,jx}\displaystyle\sum_{i=2}^{d}P\{z_{i}Y_{m,i}>x,\max_{1\leq j\leq i-1}z_{j}Y_{m,j}\leq x\}
=\displaystyle= P{max2jd(zjYm,j)>x,z1Ym,1x}=o(P{z1Ym,1x}),x.\displaystyle P\{\max_{2\leq j\leq d}(z_{j}Y_{m,j})>x,z_{1}Y_{m,1}\leq x\}=o(P\{z_{1}Y_{m,1}\leq x\}),~{}~{}x\to\infty.

Then it follows

P{Ym(z))>x}=P{z1Ym,1>x}(1+o(1))=(z1/x)k11(x)(1+o(1))\displaystyle\!\!\!\!\!\!\!\!\!\!\!\!\!P\{Y^{*}_{m}(z))>x\}=P\{z_{1}Y_{m,1}>x\}(1+o(1))=(z_{1}/x)^{k_{1}}\ell_{1}(x)(1+o(1))

and Ym(z)Y^{*}_{m}(z) has tail index k1k_{1}.

The extremal index for dd independent ”column” sequences

Let us assume that the condition (A1) hold. Due to independence we have

P{Mn(z)un}=j=1dP{zjMn(j)un}P{zd+1Mn(d+1)un,,zlnMn(ln)un}.\displaystyle P\{M_{n}^{*}(z)\leq u_{n}\}=\prod_{j=1}^{d}P\{z_{j}M_{n}^{(j)}\leq u_{n}\}P\{z_{d+1}M_{n}^{(d+1)}\leq u_{n},...,z_{l_{n}}M_{n}^{(l_{n})}\leq u_{n}\}.

Since the extremal index of the sequence {Yn,j}n1\{Y_{n,j}\}_{n\geq 1}, 1jd1\leq j\leq d is assumed to be equal to θj,\theta_{j}, by (3) and (29) we get

limnj=1dP{zjMn(j)un}\displaystyle\lim_{n\to\infty}\prod_{j=1}^{d}P\{z_{j}M_{n}^{(j)}\leq u_{n}\} =\displaystyle= exp(j=1dθj(zj/y)k1).\displaystyle\exp(-\sum_{j=1}^{d}\theta_{j}(z_{j}/y)^{k_{1}}).

By (19) and (21) in Markovich and Rodionov (2020) where d+2d+2 replaces 22 when indexing the sums and by (3), we obtain

P{zd+1Mn(d+1)un,,zlnMn(ln)un}=P{zd+1Mn(d+1)un}(1+o(1))1\displaystyle P\{z_{d+1}M_{n}^{(d+1)}\leq u_{n},...,z_{l_{n}}M_{n}^{(l_{n})}\leq u_{n}\}=\!P\{z_{d+1}M_{n}^{(d+1)}\leq u_{n}\}(1+o(1))\to 1

assuming k=kd+1k=k_{d+1}, since

nP{zd+1Yn,d+1>un}=nnkd+1/k1(zd+1/y)kd+1(n)(1+o(1))0\displaystyle nP\{z_{d+1}Y_{n,d+1}>u_{n}\}=n\cdot n^{-k_{d+1}/k_{1}}(z_{d+1}/y)^{k_{d+1}}\ell(n)(1+o(1))\to 0

as nn\to\infty due to kd+1>k1k_{d+1}>k_{1} holds. We obtain

limnnP{Yn(z)>un}=j=1d(zjy)k1\displaystyle\lim_{n\to\infty}nP\{Y_{n}^{*}(z)>u_{n}\}=\sum_{j=1}^{d}\left(\frac{z_{j}}{y}\right)^{k_{1}} (39)

since it holds

P{Yn(z)>un}=P{max(z1Yn,1,,zdYn,d,zd+1Yn,d+1,,zlnYn,ln)>un}\displaystyle P\{Y_{n}^{*}(z)>u_{n}\}=P\{\max(z_{1}Y_{n,1},...,z_{d}Y_{n,d},z_{d+1}Y_{n,d+1},...,z_{l_{n}}Y_{n,l_{n}})>u_{n}\}
=\displaystyle= 1i=1d(1P{ziYn,i>un})(1P{max(zd+1Yn,d+1,,zlnYn,ln)>un}).\displaystyle 1-\prod_{i=1}^{d}(1-P\{z_{i}Y_{n,i}>u_{n}\})(1-P\{\max(z_{d+1}Y_{n,d+1},...,z_{l_{n}}Y_{n,l_{n}})>u_{n}\}).

By

i=1d(1P{ziYn,i>un})=1i=1dP{ziYn,i>un}\displaystyle\prod_{i=1}^{d}(1-P\{z_{i}Y_{n,i}>u_{n}\})=1-\sum_{i=1}^{d}P\{z_{i}Y_{n,i}>u_{n}\}
+\displaystyle+ i<jP{ziYn,i>un}P{zjYn,j>un}(1)d1i=1dP{ziYn,i>un}\displaystyle\sum_{i<j}P\{z_{i}Y_{n,i}>u_{n}\}P\{z_{j}Y_{n,j}>u_{n}\}-...-(-1)^{d-1}\prod_{i=1}^{d}P\{z_{i}Y_{n,i}>u_{n}\}
=\displaystyle= (1i=1dP{ziYn,i>un})(1+o(1)),n\displaystyle\left(1-\sum_{i=1}^{d}P\{z_{i}Y_{n,i}>u_{n}\}\right)(1+o(1)),~{}~{}n\to\infty

and by (29) it follows

P{Yn(z)>un}\displaystyle P\{Y_{n}^{*}(z)>u_{n}\} (40)
=\displaystyle= (i=1dP{ziYn,i>un}+P{max(zd+1Yn,d+1,,zlnYn,ln)>un})(1+o(1))\displaystyle\!\!\!\left(\sum_{i=1}^{d}P\{z_{i}Y_{n,i}>u_{n}\}+P\{\max(z_{d+1}Y_{n,d+1},...,z_{l_{n}}Y_{n,l_{n}})>u_{n}\}\right)\cdot(1+o(1))
=\displaystyle= i=1d(ziy)k1n1(1+o(1))+o(1/n)\displaystyle\sum_{i=1}^{d}\left(\frac{z_{i}}{y}\right)^{k_{1}}\cdot n^{-1}(1+o(1))+o(1/n)

due to (9), (12), (13) and Lemma 1 in Markovich and Rodionov (2020) and k=kd+1k=k_{d+1}. By Lemma 3.1 in Jessen and Mikosch (2006) it follows

limnnP{Yn(z)>un}=i=1d(ziy)k1.\displaystyle\lim_{n\to\infty}nP\{Y_{n}(z)>u_{n}\}=\sum_{i=1}^{d}\left(\frac{z_{i}}{y}\right)^{k_{1}}. (41)

By (39) and

P{Mn(z)un}=exp(j=1dθj(zj/y)k1)(1+o(1))\displaystyle P\{M_{n}^{*}(z)\leq u_{n}\}=\exp(-\sum_{j=1}^{d}\theta_{j}(z_{j}/y)^{k_{1}})(1+o(1))

we obtain that the extremal index of Yn(z)Y_{n}^{*}(z) is equal to (18). In the same way as in the proof of Theorem 3 in Markovich and Rodionov (2020) one can show that Yn(z)Y_{n}(z) has the same extremal index. Really, we obtain

0P{Mn(z)un}P{Mn(z)un}\displaystyle 0\leq P\{M_{n}^{*}(z)\leq u_{n}\}-P\{M_{n}(z)\leq u_{n}\} (42)
=\displaystyle= j=1n1P{Mn(z)un,Yj(z)>un,Yj+1(z)un,,Yn(z)un}\displaystyle\sum_{j=1}^{n-1}P\{M_{n}^{*}(z)\leq u_{n},Y_{j}(z)>u_{n},Y_{j+1}(z)\leq u_{n},...,Y_{n}(z)\leq u_{n}\}
+\displaystyle+ P{Mn(z)un,Yn(z)>un}\displaystyle P\{M_{n}^{*}(z)\leq u_{n},Y_{n}(z)>u_{n}\}
\displaystyle\leq j=1nP{Yj(z)un,Yj(z)>un}.\displaystyle\sum_{j=1}^{n}P\{Y_{j}^{*}(z)\leq u_{n},Y_{j}(z)>u_{n}\}.

It follows

P{Yj(z)un,Yj(z)>un}\displaystyle\!\!\!\!\!\!\!\!\!\!P\{Y_{j}^{*}(z)\leq u_{n},Y_{j}(z)>u_{n}\} =\displaystyle= P{Yj(z)>un}P{Yj(z)>un}=o(n1)\displaystyle P\{Y_{j}(z)>u_{n}\}-P\{Y_{j}^{*}(z)>u_{n}\}=o(n^{-1}) (43)

by (40) and (41) for jnj\leq n.

The extremal index for dd dependent ”column” sequences

We find the extremal index of the sequences Yn(z)Y_{n}^{*}(z) and Yn(z)Y_{n}(z) if there is the dependence of {Yn,i}n1\{Y_{n,i}\}_{n\geq 1} in ii.
Let us rewrite (19) in Markovich and Rodionov (2020) as

P{Mn(z,d)un}i=d+1lnP{ziMn(i)>un}\displaystyle P\{M_{n}^{*}(z,d)\leq u_{n}\}-\sum_{i=d+1}^{l_{n}}P\{z_{i}M_{n}^{(i)}>u_{n}\} (44)
\displaystyle\leq P{z1Mn(1)un,,zlnMn(ln)un}=P{Mn(z)un}\displaystyle P\{z_{1}M_{n}^{(1)}\leq u_{n},...,z_{l_{n}}M_{n}^{(l_{n})}\leq u_{n}\}=P\{M_{n}^{*}(z)\leq u_{n}\}
\displaystyle\leq P{Mn(z,d)un}P{zdMn(d)un}.\displaystyle P\{M_{n}^{*}(z,d)\leq u_{n}\}\leq P\{z_{d}M_{n}^{(d)}\leq u_{n}\}.

By (21) in Markovich and Rodionov (2020) and assuming (5), we have

i=d+1lnP{ziMn(i)>un}\displaystyle\sum_{i=d+1}^{l_{n}}P\{z_{i}M_{n}^{(i)}>u_{n}\} =\displaystyle= o(1),n.\displaystyle o(1),~{}~{}n\to\infty. (45)

It holds

P{Mn(z,d)un}=1P{Mn(z,d)>un}=1P{zdMn(d)>un}\displaystyle P\{M_{n}^{*}(z,d)\leq u_{n}\}=1-P\{M_{n}^{*}(z,d)>u_{n}\}=1-P\{z_{d}M_{n}^{(d)}>u_{n}\}
\displaystyle- j=1d1P{zjMn(j)>un,maxj+1id(ziMn(i))un}.\displaystyle\sum_{j=1}^{d-1}P\{z_{j}M_{n}^{(j)}>u_{n},\max_{j+1\leq i\leq d}(z_{i}M_{n}^{(i)})\leq u_{n}\}.

Note that j=1d1P{zjMn(j)>un,maxj+1id(ziMn(i))un}=o(1)\sum_{j=1}^{d-1}P\{z_{j}M_{n}^{(j)}>u_{n},\max_{j+1\leq i\leq d}(z_{i}M_{n}^{(i)})\leq u_{n}\}=o(1) is equivalent to (17) for i=di=d. If (17) holds, then we get

P{Mn(z,d)un}=P{zdMn(d)un}+o(1),n.\displaystyle P\{M_{n}^{*}(z,d)\leq u_{n}\}=P\{z_{d}M_{n}^{(d)}\leq u_{n}\}+o(1),~{}~{}n\to\infty.

Then by (44) and (45) the expression

P{Mn(z)un}\displaystyle P\{M_{n}^{*}(z)\leq u_{n}\} =\displaystyle= P{zdMn(d)un}(1+o(1))\displaystyle P\{z_{d}M_{n}^{(d)}\leq u_{n}\}(1+o(1))
=\displaystyle= exp(θd(zd/y)k1)(1+o(1))\displaystyle\exp(-\theta_{d}(z_{d}/y)^{k_{1}})(1+o(1))

that is required to obtain the extremal index θd\theta_{d} for Yn(z)Y_{n}^{*}(z) follows by (3) and (29). For some i{1,,d}i\in\{1,...,d\} such that (17) holds, Yn(z)Y_{n}^{*}(z) has the extremal index θi\theta_{i} for reasons of symmetry. The same result holds for Yn(z)Y_{n}(z) due to (32), (42) and (43) if the conditions (A2) are additionally fulfilled.

3.2 Proof of Theorem 2.2

3.2.1 Case (i)

Tail index

Similarly to the proof of Theorem 4 in Markovich and Rodionov (2020) we have for all m1m\geq 1

(z1/x)k11(x)(1+o(1))P{z1Yn,1>x}P{Ym(z,Nm)>x}\displaystyle(z_{1}/x)^{k_{1}}\ell_{1}(x)(1+o(1))\leq P\{z_{1}Y_{n,1}>x\}\leq P\{Y_{m}^{*}(z,N_{m})>x\} (46)
\displaystyle\leq P{Ym(z,Nm)>x}P{Ym(z,l(x))>x}+P{Nm>l(x)},\displaystyle P\{Y_{m}(z,N_{m})>x\}\leq P\{Y_{m}(z,l(x))>x\}+P\{N_{m}>l(x)\},

where l(x)l(x) is selected in such a way to neglect the term P{Nm>l(x)}P\{N_{m}>l(x)\} taking into account (6). Namely, lml_{m} is replaced by an arbitrary natural number l=l(x)l=l(x) and for all sufficiently large xx we set l(x)=[xk1/α+δ1]l(x)=[x^{k_{1}/\alpha+\delta_{1}}] with δ1>0\delta_{1}>0.
We get

P{Ym(z,l(x))>x}=P{z1Yn,1>x}+i=2lP{ziYn,i>x,max1ji1zjYn,jx}.\displaystyle P\{Y_{m}^{*}(z,l(x))>x\}=P\{z_{1}Y_{n,1}>x\}+\sum_{i=2}^{l}P\{z_{i}Y_{n,i}>x,\max_{1\leq j\leq i-1}z_{j}Y_{n,j}\leq x\}.
Condition (A3)

Using notation (38) we obtain

i=2lξi\displaystyle\sum_{i=2}^{l}\xi_{i} =\displaystyle= s=2dn1(i=2sξi+i=s+1lξi)P{d=s}\displaystyle\sum_{s=2}^{\lfloor d_{n}-1\rfloor}\left(\sum_{i=2}^{s}\xi_{i}+\sum_{i=s+1}^{l}\xi_{i}\right)P\{d=s\} (48)

since dd and {Yn,i}\{Y_{n,i}\} are assumed to be independent and 1<d<dn=min(C,ln)1<d<d_{n}=\min(C,l_{n}) holds. By (33) we have

i=s+1lξii=s+1lP{ziYn,i>x}O(xk1(1+δ)),x,\displaystyle\sum_{i=s+1}^{l}\xi_{i}\leq\sum_{i=s+1}^{l}P\{z_{i}Y_{n,i}>x\}\leq O\left(x^{-k_{1}(1+\delta)}\right),~{}x\to\infty, (49)

with δ(0,k1χ0)\delta\in(0,k_{1}\chi_{0}). By (A3) it holds

i=2sξi\displaystyle\sum_{i=2}^{s}\xi_{i} =\displaystyle= i=2sP{ziYn,i>x,max1ji1zjYn,jx}\displaystyle\sum_{i=2}^{s}P\{z_{i}Y_{n,i}>x,\max_{1\leq j\leq i-1}z_{j}Y_{n,j}\leq x\} (50)
=\displaystyle= P{max2js(zjYn,j)>x,z1Yn,1x}=o(P{Yn,1>x})\displaystyle P\{\max_{2\leq j\leq s}(z_{j}Y_{n,j})>x,z_{1}Y_{n,1}\leq x\}=o(P\{Y_{n,1}>x\})

for any s{2,3,,dn1}s\in\{2,3,...,\lfloor d_{n}-1\rfloor\} as xx\to\infty.
By (3.2.1)-(50) it follows

P{Ym(z,l(x))>x}=P{z1Yn,1>x}(1+o(1))=(z1/x)k11(x)(1+o(1)).\displaystyle P\{Y^{*}_{m}(z,l(x))>x\}=P\{z_{1}Y_{n,1}>x\}(1+o(1))=(z_{1}/x)^{k_{1}}\ell_{1}(x)(1+o(1)). (51)

Then by (46) P{Ym(z,Nm)>x}P\{Y_{m}^{*}(z,N_{m})>x\} has the tail index k1k_{1}.

Condition (A1) (or (A2)) and the independence of NmN_{m} and {Ym,i}\{Y_{m,i}\}

If, in addition to condition (A1) or (A2), NmN_{m} and {Ym,i}\{Y_{m,i}\} are assumed to be independent, then P{Ym(z,Nm)>x}P\{Y_{m}(z,N_{m})>x\} and P{Ym(z,Nm)>x}P\{Y^{*}_{m}(z,N_{m})>x\} have the same tail index k1k_{1}. Really, by (33), (35), (36) (or (37)) we get for m1m\geq 1

P{Ym(z,Nm)>x}\displaystyle P\{Y_{m}(z,N_{m})>x\} (52)
=\displaystyle= i=1P{Ym(z,i)>x}P{Nm=i}=xk1Ω(dm,k1)(1+o(1)),\displaystyle\sum_{i=1}^{\infty}P\{Y_{m}(z,i)>x\}P\{N_{m}=i\}=x^{-k_{1}}\Omega(d_{m},k_{1})(1+o(1)),

where

Ω(dm,k1)=\displaystyle\Omega(d_{m},k_{1})=
i=1s=2dm1(j=1szjk1j(x)𝟏{i>s}+j=1izjk1j(x)𝟏{is})P{d=s}P{Nm=i}.\displaystyle\!\!\!\!\!\sum_{i=1}^{\infty}\sum_{s=2}^{\lfloor d_{m}-1\rfloor}\left(\sum_{j=1}^{s}z_{j}^{k_{1}}\ell_{j}(x)\mathbf{1}\{i>s\}+\sum_{j=1}^{i}z_{j}^{k_{1}}\ell_{j}(x)\mathbf{1}\{i\leq s\}\right)P\{d=s\}P\{N_{m}=i\}.

The same is valid for P{Ym(z,Nm)>x}P\{Y^{*}_{m}(z,N_{m})>x\} by the same reasons.

Extremal index

Let us find the extremal index of Yn(z,Nn)Y_{n}^{*}(z,N_{n}) and Yn(z,Nn)Y_{n}(z,N_{n}). We use formula (31) in Markovich and Rodionov (2020)

P{z1Mn(1)>un}\displaystyle P\{z_{1}M_{n}^{(1)}>u_{n}\} \displaystyle\leq P{Mn(z,Nn)>un}\displaystyle P\{M_{n}^{*}(z,N_{n})>u_{n}\} (53)
\displaystyle\leq P{Mn(z,l~n)>un}+P{N>l~n}\displaystyle P\{M_{n}^{*}(z,\tilde{l}_{n})>u_{n}\}+P\{N>\tilde{l}_{n}\}
\displaystyle\leq P{Mn(z,l~n)>un}+i=1nP{Ni>l~n},\displaystyle P\{M_{n}^{*}(z,\tilde{l}_{n})>u_{n}\}+\sum_{i=1}^{n}P\{N_{i}>\tilde{l}_{n}\},

where l~n>ln\tilde{l}_{n}>l_{n} is selected such that the term i=1nP{Ni>l~n}O(n1α(χ+δ))=o(1)\sum_{i=1}^{n}P\{N_{i}>\tilde{l}_{n}\}\leq O(n^{1-\alpha(\chi+\delta)})=o(1) is neglected as nn\to\infty, i.e.

l~n=nχ+2δ,δ=(χ0χ)/3.\displaystyle\tilde{l}_{n}=n^{\chi+2\delta},\qquad\delta=(\chi_{0}-\chi)/3. (54)

Similarly to (3.2.1) we get

P{Mn(z,l~n)>un}\displaystyle P\{M_{n}^{*}(z,\tilde{l}_{n})>u_{n}\} =\displaystyle= P{z1Mn(1)>un}\displaystyle P\{z_{1}M_{n}^{(1)}>u_{n}\}
+\displaystyle+ i=2l~nP{ziMn(i)>un,max1ji1zjMn(j)un}.\displaystyle\sum_{i=2}^{\tilde{l}_{n}}P\{z_{i}M_{n}^{(i)}>u_{n},\max_{1\leq j\leq i-1}z_{j}M_{n}^{(j)}\leq u_{n}\}.

Denoting P{ziMn(i)>un,max1ji1zjMn(j)un}P\{z_{i}M_{n}^{(i)}>u_{n},\max_{1\leq j\leq i-1}z_{j}M_{n}^{(j)}\leq u_{n}\} as ζi\zeta_{i} and splitting the sum i=2l~n\sum_{i=2}^{\tilde{l}_{n}} as in (48), we obtain

s=2dn1i=2sζiP{d=s}=o(1)\displaystyle\sum_{s=2}^{\lfloor d_{n}-1\rfloor}\sum_{i=2}^{s}\zeta_{i}P\{d=s\}=o(1)

by (17) and

s=2dn1i=s+1l~nζiP{d=s}=o(1)\displaystyle\sum_{s=2}^{\lfloor d_{n}-1\rfloor}\sum_{i=s+1}^{\tilde{l}_{n}}\zeta_{i}P\{d=s\}=o(1)

by (45) as nn\to\infty. (45) is valid for l~n\tilde{l}_{n} since χ+2δ<χ0\chi+2\delta<\chi_{0}. Hence, it follows

P{Mn(z,l~n)>un}=P{z1Mn(1)>un}(1+o(1)).\displaystyle P\{M_{n}^{*}(z,\tilde{l}_{n})>u_{n}\}=P\{z_{1}M_{n}^{(1)}>u_{n}\}(1+o(1)). (55)

Then by (53)

P{Mn(z,Nn)>un}=P{z1Mn(1)>un}(1+o(1))\displaystyle P\{M_{n}^{*}(z,N_{n})>u_{n}\}=P\{z_{1}M_{n}^{(1)}>u_{n}\}(1+o(1))

follows and the extremal index of Yn(z,Nn)Y_{n}^{*}(z,N_{n}) is equal to θ1\theta_{1} (or for reasons of symmetry to θi\theta_{i} for some i{1,,d}i\in\{1,...,d\} such that (17) holds). Yn(z,Nn)Y_{n}(z,N_{n}) has the same extremal index since P{Mn(z,Nn)>un}P{Mn(z,Nn)>un}P{Mn(z,l~n)>un}+i=1nP{Ni>l~n}P\{M_{n}^{*}(z,N_{n})>u_{n}\}\leq P\{M_{n}(z,N_{n})>u_{n}\}\leq P\{M_{n}(z,\tilde{l}_{n})>u_{n}\}+\sum_{i=1}^{n}P\{N_{i}>\tilde{l}_{n}\} by (53) holds, and since, in addition, the condition (A1) or (A2) is assumed due to (32), (39), (41), (42) and (43).

3.2.2 Case (ii)

Let d=d0d=d_{0} a.s. Then the same statements as in Case (i) follow. It is enough to replace ss in formulas of Case (i) by d0d_{0} with probability one.

3.3 Proof of Corollary 1

3.3.1 Case k1+k1k_{1}^{+}\leq k_{1}^{-}

We assume that there is a unique ”column” series with a minimum tail index k1+k_{1}^{+}. One can derive that

P{Yn(z,Nn)>un+}=(z1+/y)k1+n1(1+o(1)),\displaystyle P\{Y_{n}(z,N_{n})>u_{n}^{+}\}=(z_{1}^{+}/y)^{k_{1}^{+}}n^{-1}(1+o(1)),
P{Yn(z,Nn)>un}=(z1+/y)k1+nk1+/k1(1+o(1))\displaystyle P\{Y_{n}(z,N_{n})>u_{n}^{-}\}=(z_{1}^{+}/y)^{k_{1}^{+}}n^{-k_{1}^{+}/k_{1}^{-}}(1+o(1)) (56)

as nn\to\infty. Really, since Yn(z,Nn)Yn+(z+,Nn+)Y_{n}(z,N_{n})\leq Y_{n}^{+}(z^{+},N_{n}^{+}) holds, then by (23), (29), (31) with d=1d=1 it holds

P{Yn(z,Nn)>un+}P{Yn+(z+,ln+)>un+}+P{Nn+>ln+}\displaystyle P\{Y_{n}(z,N_{n})>u_{n}^{+}\}\leq P\{Y_{n}^{+}(z^{+},l_{n^{+}})>u_{n}^{+}\}+P\{N_{n}^{+}>l_{n^{+}}\} (57)
=\displaystyle= P{Yn+(z+,ln+)>un+}(1+o(1))=(z1+/y)k1+n1(1+o(1)),\displaystyle P\{Y_{n}^{+}(z^{+},l_{n^{+}})>u_{n}^{+}\}(1+o(1))=(z_{1}^{+}/y)^{k_{1}^{+}}n^{-1}(1+o(1)),
P{Yn(z,Nn)>un}\displaystyle P\{Y_{n}(z,N_{n})>u_{n}^{-}\} \displaystyle\leq P{Yn+(z+,ln+)>un}(1+o(1))\displaystyle P\{Y_{n}^{+}(z^{+},l_{n^{+}})>u_{n}^{-}\}(1+o(1)) (58)
=\displaystyle= (z1+/y)k1+nk1+/k1(1+o(1)).\displaystyle(z_{1}^{+}/y)^{k_{1}^{+}}n^{-k_{1}^{+}/k_{1}^{-}}(1+o(1)).

Let us obtain the lower bounds of P{Yn(z,Nn)>un±}P\{Y_{n}(z,N_{n})>u_{n}^{\pm}\}. Since it holds

P{Yn(z,Nn)>un+ε}\displaystyle P\{-Y_{n}^{-}(z^{-},N_{n}^{-})>u_{n}^{+}\varepsilon\}
=\displaystyle= P{Yn(z,Nn)>un+ε,Nnln}+P{Yn(z,Nn)>un+ε,Nn>ln}\displaystyle P\{-Y_{n}^{-}(z^{-},N_{n}^{-})>u_{n}^{+}\varepsilon,N_{n}^{-}\leq l_{n^{-}}\}+P\{-Y_{n}^{-}(z^{-},N_{n})>u_{n}^{+}\varepsilon,N_{n}^{-}>l_{n^{-}}\}
\displaystyle\leq P{Yn(|z|,ln)>un+ε}+P{Nn>ln}\displaystyle P\{Y_{n}^{-}(|z^{-}|,l_{n^{-}})>u_{n}^{+}\varepsilon\}+P\{N_{n}^{-}>l_{n^{-}}\}

and by (23), (29), (31) we get for arbitrary ε>0\varepsilon>0, d=1d=1 and k1+k1k_{1}^{+}\leq k_{1}^{-}

P{Yn(z,Nn)>un+}=P{Yn+(z+,Nn+)+Yn(z,Nn)>un+}\displaystyle P\{Y_{n}(z,N_{n})>u_{n}^{+}\}=P\{Y_{n}^{+}(z^{+},N_{n}^{+})+Y_{n}^{-}(z^{-},N_{n}^{-})>u_{n}^{+}\} (59)
\displaystyle\geq P{Yn+(z+,Nn+)>un+(1+ε),0<Yn(z,Nn)un+ε}\displaystyle P\{Y_{n}^{+}(z^{+},N_{n}^{+})>u_{n}^{+}(1+\varepsilon),0<-Y_{n}^{-}(z^{-},N_{n}^{-})\leq u_{n}^{+}\varepsilon\}
\displaystyle\geq P{Yn+(z+,Nn+)>un+(1+ε)}P{Yn(z,Nn)>un+ε}\displaystyle P\{Y_{n}^{+}(z^{+},N_{n}^{+})>u_{n}^{+}(1+\varepsilon)\}-P\{-Y_{n}^{-}(z^{-},N_{n}^{-})>u_{n}^{+}\varepsilon\}
\displaystyle\geq P{z1+Yn,1>un+(1+ε)}P{Yn(|z|,ln)>un+ε}P{Nn>ln}\displaystyle P\{z_{1}^{+}Y_{n,1}>u_{n}^{+}(1+\varepsilon)\}-P\{Y_{n}^{-}(|z^{-}|,l_{n^{-}})>u_{n}^{+}\varepsilon\}-P\{N_{n}^{-}>l_{n^{-}}\}
=\displaystyle= ((z1+y(1+ε))k1+n1(|z1|yε)k1nk1/k1+)(1+o(1))\displaystyle\left(\left(\frac{z_{1}^{+}}{y(1+\varepsilon)}\right)^{k_{1}^{+}}n^{-1}-\left(\frac{|z_{1}^{-}|}{y\varepsilon}\right)^{k_{1}^{-}}n^{-k_{1}^{-}/k_{1}^{+}}\right)(1+o(1))
=\displaystyle= (z1+y(1+ε))k1+n1(1+o(1)),\displaystyle\left(\frac{z_{1}^{+}}{y(1+\varepsilon)}\right)^{k_{1}^{+}}n^{-1}(1+o(1)),
P{Yn(z,Nn)>un}\displaystyle P\{Y_{n}(z,N_{n})>u_{n}^{-}\} \displaystyle\geq ((z1+y(1+ε))k1+nk1+/k1(|z1|yε)k1n1)(1+o(1))\displaystyle\left(\left(\frac{z_{1}^{+}}{y(1+\varepsilon)}\right)^{k_{1}^{+}}n^{-k_{1}^{+}/k_{1}^{-}}-\left(\frac{|z_{1}^{-}|}{y\varepsilon}\right)^{k_{1}^{-}}n^{-1}\right)(1+o(1)) (60)
=\displaystyle= (z1+y(1+ε))k1+nk1+/k1(1+o(1)).\displaystyle\left(\frac{z_{1}^{+}}{y(1+\varepsilon)}\right)^{k_{1}^{+}}n^{-k_{1}^{+}/k_{1}^{-}}(1+o(1)).

In the same way, (3.3.1) is true for Yn(z,Nn)Y^{*}_{n}(z,N_{n}).

Tail index

Let us show that the sequence Yn(z,Nn)Y_{n}(z,N_{n}) in (2.2) has the tail index k1+k_{1}^{+} for k1+k1k_{1}^{+}\leq k_{1}^{-}. As in the proof of Theorem 2.2 let us replace lm±l_{m^{\pm}} by an arbitrary natural number l±=l±(x)=[xk1±/α+δ1]l^{\pm}=l^{\pm}(x)=[x^{k_{1}^{\pm}/\alpha+\delta_{1}}] with δ1>0\delta_{1}>0 for all sufficiently large xx. By Theorem 1.1 we have

P{Ym(z,Nm)>x}P{Ym+(z+,l+(x))>x}+P{Nm+>l+(x)}\displaystyle P\{Y_{m}(z,N_{m})>x\}\leq P\{Y_{m}^{+}(z^{+},l^{+}(x))>x\}+P\{N_{m}^{+}>l^{+}(x)\} (61)
=\displaystyle= (z1+/x)k1+1(x)(1+o(1))+xk1+αδ1~m(xk1+/α+δ1)\displaystyle(z_{1}^{+}/x)^{k_{1}^{+}}\ell_{1}(x)(1+o(1))+x^{-k_{1}^{+}-\alpha\delta_{1}}\widetilde{\ell}_{m}(x^{k_{1}^{+}/\alpha+\delta_{1}})
=\displaystyle= (z1+/x)k1+1(x)(1+o(1))\displaystyle(z_{1}^{+}/x)^{k_{1}^{+}}\ell_{1}(x)(1+o(1))

as xx\to\infty for all m1m\geq 1. On the other hand, we get similarly to (59)

P{Ym(z,Nm)>x}\displaystyle P\{Y_{m}(z,N_{m})>x\} (62)
\displaystyle\geq P{z1+Ym,1>x(1+ε)}P{Ym(|z|,lm)>xε}P{Nm>lm}\displaystyle P\{z_{1}^{+}Y_{m,1}>x(1+\varepsilon)\}-P\{Y_{m}^{-}(|z^{-}|,l_{m^{-}})>x\varepsilon\}-P\{N_{m}^{-}>l_{m^{-}}\}
=\displaystyle= ((z1+x(1+ε))k1+(|z1|xε)k1)1(x)(1+o(1))xk1αδ1~m(xk1/α+δ1)\displaystyle\left(\left(\frac{z_{1}^{+}}{x(1+\varepsilon)}\right)^{k_{1}^{+}}-\left(\frac{|z_{1}^{-}|}{x\varepsilon}\right)^{k_{1}^{-}}\right)\ell_{1}(x)(1+o(1))-x^{-k_{1}^{-}-\alpha\delta_{1}}\widetilde{\ell}_{m}(x^{k_{1}^{-}/\alpha+\delta_{1}})
=\displaystyle= (z1+/x)k1+1(x)(1+o(1)).\displaystyle(z_{1}^{+}/x)^{k_{1}^{+}}\ell_{1}(x)(1+o(1)).

The same is valid for Ym(z,Nm)Y^{*}_{m}(z,N_{m}). Then the first statement follows.

Extremal index

By (3.3.1) the extremal index of Yn(z,Nn)Y_{n}(z,N_{n}) and of Yn(z,Nn)Y^{*}_{n}(z,N_{n}) does not exist for unu_{n}^{-} due to (2).
By (2.2) and Theorem 1.2 it follows that Yn(z,Nn)Y_{n}^{*}(z,N_{n}) has the extremal index θ1+\theta^{+}_{1} corresponding to k1+k_{1}^{+} for un+u_{n}^{+}. The same holds for Yn(z,Nn)Y_{n}(z,N_{n}) since by (42) and (53)

P{Mn(z,Nn)un}\displaystyle P\{M_{n}^{*}(z,N_{n})\leq u_{n}\} =\displaystyle= P{Mn(z,Nn)un}(1+o(1))\displaystyle P\{M_{n}(z,N_{n})\leq u_{n}\}(1+o(1)) (63)

follows. Really, similarly to (42) we get

0\displaystyle 0 \displaystyle\leq P{Mn(z,ln)un}P{Mn(z,ln)un}\displaystyle P\{M_{n}^{*}(z,l_{n})\leq u_{n}\}-P\{M_{n}(z,l_{n})\leq u_{n}\}
\displaystyle\leq j=1nP{Yj+(z+)un,Yj(z)+Yj+(z+)>un}\displaystyle\sum_{j=1}^{n}P\{Y_{j}^{*+}(z^{+})\leq u_{n},Y_{j}^{-}(z^{-})+Y_{j}^{+}(z^{+})>u_{n}\}
\displaystyle\leq j=1nP{Yj+(z+)un,Yj+(z+)>un},\displaystyle\sum_{j=1}^{n}P\{Y_{j}^{*+}(z^{+})\leq u_{n},Y_{j}^{+}(z^{+})>u_{n}\},

where Yn(z)Y_{n}(z) and Yn(z)Y_{n}^{*}(z) denote Yn(z,ln)Y_{n}(z,l_{n}) and Yn(z,ln)Y_{n}^{*}(z,l_{n}). We obtain

P{Yj+(z+)un,Yj+(z+)>un}=P{Yj+(z+)>un}P{Yj+(z+)>un}\displaystyle P\{Y_{j}^{*+}(z^{+})\leq u_{n},Y_{j}^{+}(z^{+})>u_{n}\}=P\{Y_{j}^{+}(z^{+})>u_{n}\}-P\{Y_{j}^{*+}(z^{+})>u_{n}\} (64)
\displaystyle\leq P{Yn+(z+)>un}P{z1+Yn,1>un}=o(1/n)\displaystyle P\{Y_{n}^{+}(z^{+})>u_{n}\}-P\{z_{1}^{+}Y_{n,1}>u_{n}\}=o(1/n)

by (29) and (31) with d=1d=1. Then P{Mn(z,ln)un+}=P{Mn(z,ln)un+}(1+o(1))P\{M_{n}^{*}(z,l_{n})\leq u_{n}^{+}\}=P\{M_{n}(z,l_{n})\leq u_{n}^{+}\}(1+o(1)) holds and by (22) in Markovich and Rodionov (2020) P{Mn(z,ln)un+}=P{z1Mn(1)un+}(1+o(1))P\{M_{n}^{*}(z,l_{n})\leq u_{n}^{+}\}=P\{z_{1}M_{n}^{(1)}\leq u_{n}^{+}\}(1+o(1)) holds. Then (63) follows by (53).

3.3.2 Case k1k1+k_{1}^{-}\leq k_{1}^{+}

We assume that there is a unique ”column” series with the minimum tail index k1k_{1}^{-}. Similarly to (3.3.1) one can get

P{Yn(z,Nn)>un}=(|z1|/y)k1n1(1+o(1)),\displaystyle P\{-Y_{n}(z,N_{n})>u_{n}^{-}\}=(|z_{1}^{-}|/y)^{k_{1}^{-}}n^{-1}(1+o(1)),
P{Yn(z,Nn)>un+}=(|z1|/y)k1nk1/k1+(1+o(1)),n,\displaystyle P\{-Y_{n}(z,N_{n})>u_{n}^{+}\}=(|z_{1}^{-}|/y)^{k_{1}^{-}}n^{-k_{1}^{-}/k_{1}^{+}}(1+o(1)),~{}~{}n\to\infty, (65)

and by (61), (62) for all m1m\geq 1

P{Ym(z,Nm)>x}=(|z1|/x)k11(x)(1+o(1))\displaystyle P\{-Y_{m}(z,N_{m})>x\}=(|z_{1}^{-}|/x)^{k_{1}^{-}}\ell_{1}(x)(1+o(1))

as xx\to\infty. The same is valid for Yn(z,Nn)-Y_{n}^{**}(z,N_{n}). Then Yn(z,Nn)-Y_{n}(z,N_{n}) and Yn(z,Nn)-Y_{n}^{**}(z,N_{n}) in (2.2) have the same tail index k1k_{1}^{-}.
By (3.3.2) the extremal indices of Yn(z,Nn)-Y_{n}(z,N_{n}) and Yn(z,Nn)-Y_{n}^{**}(z,N_{n}) do not exist for un+u_{n}^{+} due to (2). In the same way as for the case k1+k1k_{1}^{+}\leq k_{1}^{-} one can derive that Yn(z,Nn)-Y_{n}(z,N_{n}) and Yn(z,Nn)-Y_{n}^{**}(z,N_{n}) have the same extremal index equal to θ1\theta^{-}_{1} for un=unu_{n}=u_{n}^{-}.

3.4 Proof of Corollary 2

3.4.1 Case k1+k1k_{1}^{+}\leq k_{1}^{-}

By (2.2) all statements of Theorem 2.2 for Yn(z,Nn)Y_{n}^{*}(z,N_{n}) regarding the tail index and the extremal index in case of un=un+u_{n}=u_{n}^{+} are fulfilled. It remains to show the same for Yn(z,Nn)Y_{n}(z,N_{n}).

Tail index

One can derive that the tail index of Yn(z,Nn)Y_{n}(z,N_{n}) is given by k1+k_{1}^{+} in the same way as in Theorem 2.2 assuming that Nm±N_{m}^{\pm} and {Ym,i±}\{Y^{\pm}_{m,i}\} are independent and (A1) (or (A2)) holds. Really, by (52) and similarly to (59) we get

P{Ym(z,Nm)>x}P{Ym+(z+,Nm+)>x}=xk1+1(x)Ω(dm+,k1+)(1+o(1)),\displaystyle P\{Y_{m}(z,N_{m})>x\}\leq P\{Y^{+}_{m}(z^{+},N^{+}_{m})>x\}=x^{-k^{+}_{1}}\ell_{1}(x)\Omega(d^{+}_{m},k^{+}_{1})(1+o(1)),
P{Ym(z,Nm)>x}\displaystyle P\{Y_{m}(z,N_{m})>x\} \displaystyle\geq P{Ym+(z+,Nm+)>x(1+ε)}P{Ym(z,Nm)>xε}\displaystyle P\{Y_{m}^{+}(z^{+},N_{m}^{+})>x(1+\varepsilon)\}-P\{-Y_{m}^{-}(z^{-},N_{m}^{-})>x\varepsilon\}
=\displaystyle= P{Ym+(z+,Nm+)>x(1+ε)}P{Ym(|z|,Nm)>xε}\displaystyle P\{Y_{m}^{+}(z^{+},N_{m}^{+})>x(1+\varepsilon)\}-P\{Y_{m}^{-}(|z^{-}|,N_{m}^{-})>x\varepsilon\}
=\displaystyle= (xk1+1(x)Ω(dm+,k1+)xk11(x)Ω(dm,k1))(1+o(1))\displaystyle(x^{-k^{+}_{1}}\ell_{1}(x)\Omega(d^{+}_{m},k^{+}_{1})-x^{-k^{-}_{1}}\ell_{1}(x)\Omega(d^{-}_{m},k^{-}_{1}))(1+o(1))
=\displaystyle= xk1+1(x)Ω(dm+,k1+)(1+o(1))\displaystyle x^{-k^{+}_{1}}\ell_{1}(x)\Omega(d^{+}_{m},k^{+}_{1})(1+o(1))

for any m1m\geq 1.

Extremal index

Let us find the extremal index of Yn(z,Nn)Y_{n}(z,N_{n}). Since Yn(z,Nn)Yn+(z+,Nn+)Y_{n}(z,N_{n})\leq Y_{n}^{+}(z^{+},N_{n}^{+}) holds, then it follows by (23), (29), (31) and (58)

P{Yn(z,Nn)>un}(z+y(1ε))k1+nk1+/k1(1+o(1))+o(1/n),\displaystyle P\{Y_{n}(z,N_{n})>u_{n}^{-}\}\leq\left(\frac{z^{*+}}{y(1-\varepsilon)}\right)^{k_{1}^{+}}n^{-k_{1}^{+}/k_{1}^{-}}(1+o(1))+o(1/n), (66)

where (z+)k1+=i=1d+(zi+/εi)k1+(z^{*+})^{k_{1}^{+}}=\sum_{i=1}^{d^{+}}(z_{i}^{+}/\varepsilon_{i}^{*})^{k_{1}^{+}}, un±u_{n}^{\pm} are determined as in Corollary 1. By (60) we obtain

P{Yn(z,Nn)>un}(z1+y)k1+nk1+/k1(1+o(1)).\displaystyle P\{Y_{n}(z,N_{n})>u_{n}^{-}\}\geq\left(\frac{z_{1}^{+}}{y}\right)^{k_{1}^{+}}n^{-k_{1}^{+}/k_{1}^{-}}(1+o(1)). (67)

The extremal index of Yn(z,Nn)Y_{n}^{*}(z,N_{n}) and Yn(z,Nn)Y_{n}(z,N_{n}) does not exist for unu_{n}^{-} due to (2), (66) and (67). Yn(z,Nn)Y_{n}(z,N_{n}) has the same extremal index as Yn(z,Nn)Y^{*}_{n}(z,N_{n}) for un+u_{n}^{+} since (63) holds. Really, note that

P{Mn(z,ln)un+}=P{Mn(z,ln)un+}(1+o(1))\displaystyle P\{M_{n}^{*}(z,l_{n})\leq u_{n}^{+}\}=P\{M_{n}(z,l_{n})\leq u_{n}^{+}\}(1+o(1)) (68)

holds since (64) is fulfilled by (A1) (see, (39), (41)) or (A2) (see, (32)). Then (63) follows by (53) and (55) in the same way as in Theorem 2.2.

3.4.2 Case k1k1+k_{1}^{-}\leq k_{1}^{+}

The proof of the tail index for Yn(z,Nn)-Y_{n}(z,N_{n}) and Yn(z,Nn)-Y_{n}^{**}(z,N_{n}) is similar to the previous case. The extremal index of Yn(z,Nn)-Y_{n}(z,N_{n}) and Yn(z,Nn)-Y_{n}^{**}(z,N_{n}) does not exist for un+u_{n}^{+}. The extremal index for Yn(z,Nn)-Y_{n}(z,N_{n}) and Yn(z,Nn)-Y_{n}^{**}(z,N_{n}) and un=unu_{n}=u_{n}^{-} is determined symmetrically as for the case k1+k1k_{1}^{+}\leq k_{1}^{-}.

3.5 Proof of Theorem 2.3

The proof is similar to that of Theorem 1.2. We only indicate the modifications.

Case (i)

In conditions of Theorem 1.2 it holds

P{Yn(z,ln)>un}\displaystyle P\{Y_{n}(z,l_{n})>u_{n}\} =\displaystyle= P{Yn(z,ln)>un}(1+o(1))=P{z1Yn,1>un}(1+o(1))\displaystyle P\{Y_{n}^{*}(z,l_{n})>u_{n}\}(1+o(1))=P\{z_{1}Y_{n,1}>u_{n}\}(1+o(1)) (69)
=\displaystyle= (z1/y)k1n1(1+o(1))\displaystyle(z_{1}/y)^{k_{1}}n^{-1}(1+o(1))

as n\ n\to\infty (see also (8) and (10) in Markovich and Rodionov (2020)). Hence, (11) implies

P{Yn(z,ln)>un}\displaystyle P\{Y_{n}(z,l_{n})>u_{n}\} =\displaystyle= o(P{Nn>ln}).\displaystyle o\left(P\{N_{n}>l_{n}\}\right).

Indeed, αχ<1\alpha\chi<1 follows by (11).

Tail index

Let us find the tail index of Yn(z,Nn)Y^{*}_{n}(z,N_{n}) and Yn(z,Nn)Y_{n}(z,N_{n}). The claim αχ0>1\alpha\chi_{0}>1 is required in Theorem 1.2 for the following result derived in formula (15) in Markovich and Rodionov (2020)

P{Ym(z,lm)>x}=P{Ym(z,lm)>x}(1+o(1))\displaystyle P\{Y_{m}(z,l_{m})>x\}=P\{Y_{m}^{*}(z,l_{m})>x\}(1+o(1))
=\displaystyle= P{Ym,1>x/z1}(1+o(1))=(z1/x)k11(x)(1+o(1))\displaystyle P\{Y_{m,1}>x/z_{1}\}(1+o(1))=(z_{1}/x)^{k_{1}}\ell_{1}(x)(1+o(1))

for any fixed m1m\geq 1 and as xx\to\infty. To this end, we use l(x)=[xk1/α+δ1]l(x)=[x^{k_{1}/\alpha+\delta_{1}}] with δ1>0\delta_{1}>0 to replace lml_{m} in (16) by Markovich and Rodionov (2020) for sufficiently large xx such that l(x)<xk1χ0δ2l(x)<x^{k_{1}\chi_{0}-\delta_{2}} with arbitrary δ2(0,k1χ0)\delta_{2}\in(0,k_{1}\chi_{0}), where δ1+δ2=δ\delta_{1}+\delta_{2}=\delta^{*}, δ\delta^{*} is determined by (24). Thus, by (24) xk1/α+δ1<xk1χ0δ2x^{k_{1}/\alpha+\delta_{1}}<x^{k_{1}\chi_{0}-\delta_{2}} holds for x>1x>1. In the same way as in (34) for d=1d=1 and by (1) we have

P{Ym(z,Nm)>x}\displaystyle P\{Y_{m}^{*}(z,N_{m})>x\} \displaystyle\leq P{Ym(z,Nm)>x}\displaystyle P\{Y_{m}(z,N_{m})>x\}
\displaystyle\leq P{Ym(z,l(x))>x}+P{Nm>l(x)}\displaystyle P\{Y_{m}(z,l(x))>x\}+P\{N_{m}>l(x)\}
=\displaystyle= (z1/x)k11(x)(1+o(1))+xk1αδ1~m(xk1/α+δ1)\displaystyle(z_{1}/x)^{k_{1}}\ell_{1}(x)(1+o(1))+x^{-k_{1}-\alpha\delta_{1}}\tilde{\ell}_{m}(x^{k_{1}/\alpha+\delta_{1}})
=\displaystyle= (z1/x)k11(x)(1+o(1)),\displaystyle(z_{1}/x)^{k_{1}}\ell_{1}(x)(1+o(1)),
P{Ym(z,Nm)>x}\displaystyle P\{Y_{m}^{*}(z,N_{m})>x\} \displaystyle\geq P{Ym,1>x/z1}(1+o(1))\displaystyle P\{Y_{m,1}>x/z_{1}\}(1+o(1)) (71)
=\displaystyle= (z1/x)k11(x)(1+o(1))\displaystyle(z_{1}/x)^{k_{1}}\ell_{1}(x)(1+o(1))

as xx\to\infty. Then the first statement of (i) in Theorem 2.3 follows.

Extremal index

Let us find the extremal index of Ym(z,Nm)Y_{m}(z,N_{m}) and Ym(z,Nm)Y_{m}^{*}(z,N_{m}). Let us use l~n\widetilde{l}_{n} as in (54). By (7) l~n>ln\widetilde{l}_{n}>l_{n} follows and (69) holds for l~n\widetilde{l}_{n} since χ+2δ<χ0\chi+2\delta<\chi_{0} holds. By (6), (7), (11), (29), (69) we have

(z1/y)k1n1(1+o(1))=P{z1Yn,1>un}P{Yn(z,Nn)>un}\displaystyle(z_{1}/y)^{k_{1}}n^{-1}(1+o(1))=P\{z_{1}Y_{n,1}>u_{n}\}\leq P\{Y^{*}_{n}(z,N_{n})>u_{n}\}
\displaystyle\leq P{Yn(z,Nn)>un}P{Yn(z,l~n)>un}+P{Nn>l~n}\displaystyle P\{Y_{n}(z,N_{n})>u_{n}\}\leq P\{Y_{n}(z,\widetilde{l}_{n})>u_{n}\}+P\{N_{n}>\widetilde{l}_{n}\}
\displaystyle\leq (z1/y)k1n1(1+o(1))+nα(χ+2δ)~n(nχ+2δ)\displaystyle(z_{1}/y)^{k_{1}}n^{-1}(1+o(1))+n^{-\alpha(\chi+2\delta)}\tilde{\ell}_{n}(n^{\chi+2\delta})
=\displaystyle= (z1/y)k1n1(1+o(1)),n\displaystyle(z_{1}/y)^{k_{1}}n^{-1}(1+o(1)),~{}~{}n\to\infty

since

α(χ+2δ)>1\displaystyle\alpha(\chi+2\delta)>1 (72)

is valid by (25) and αχ<1\alpha\chi<1.
Let us denote l~n=nχ+2.5δ\tilde{l}_{n}^{*}=n^{\chi+2.5\delta}. By (31) in Markovich and Rodionov (2020) we get

P{z1Mn(1)>un}\displaystyle P\{z_{1}M_{n}^{(1)}>u_{n}\} \displaystyle\leq P{Mn(z,Nn)>un}P{Mn(z,l~n)>un}+P{N>l~n}\displaystyle P\{M_{n}^{*}(z,N_{n})>u_{n}\}\leq P\{M_{n}^{*}(z,\tilde{l}_{n}^{*})>u_{n}\}+P\{N>\tilde{l}_{n}^{*}\} (73)
\displaystyle\leq P{Mn(z,l~n)>un}+i=1nP{Ni>l~n}.\displaystyle P\{M_{n}^{*}(z,\tilde{l}_{n}^{*})>u_{n}\}+\sum_{i=1}^{n}P\{N_{i}>\tilde{l}_{n}^{*}\}.

We get

i=1nP{Ni>l~n}\displaystyle\sum_{i=1}^{n}P\{N_{i}>\tilde{l}_{n}^{*}\} =\displaystyle= i=1nnα(χ+2δ)n0.5αδ~i(nχ+2.5δ)\displaystyle\sum_{i=1}^{n}n^{-\alpha(\chi+2\delta)}n^{-0.5\alpha\delta}\tilde{\ell}_{i}(n^{\chi+2.5\delta}) (74)
\displaystyle\leq O(n1α(χ+2δ))=o(1)\displaystyle O(n^{1-\alpha(\chi+2\delta)})=o(1)

since n0.5αδ~i(nχ+2.5δ)0n^{-0.5\alpha\delta}\tilde{\ell}_{i}(n^{\chi+2.5\delta})\to 0 uniformly for all i{1,,n}i\in\{1,...,n\} as nn\to\infty and (72) holds. By (22) in Markovich and Rodionov (2020), i.e. P{Mn(z)un}=P{z1Mn(1)un}(1+o(1))P\{M_{n}^{*}(z)\leq u_{n}\}=P\{z_{1}M_{n}^{(1)}\leq u_{n}\}(1+o(1)), (73) and (74) it follows

limnP{Mn(z,Nn)un}=exp{θ1(z1/y)k1}\displaystyle\lim_{n\to\infty}P\{M_{n}^{*}(z,N_{n})\leq u_{n}\}=\exp\{-\theta_{1}(z_{1}/y)^{k_{1}}\}

and the extremal index of Yn(z,Nn)Y^{*}_{n}(z,N_{n}) is equal to θ1\theta_{1} by (69). It remains to show the same for Yn(z,Nn)Y_{n}(z,N_{n}). To this end, one can derive

limnP{Mn(z,Nn)un}\displaystyle\lim_{n\to\infty}P\{M_{n}(z,N_{n})\leq u_{n}\} =\displaystyle= limnP{Mn(z,Nn)un}\displaystyle\lim_{n\to\infty}P\{M_{n}^{*}(z,N_{n})\leq u_{n}\}

by (73), (74) and since P{Mn(z)un}=P{Mn(z)un}(1+o(1))P\{M_{n}^{*}(z)\leq u_{n}\}=P\{M_{n}(z)\leq u_{n}\}(1+o(1)) holds by (23) in Markovich and Rodionov (2020).

Case (ii)

The tail index of P{Ym(z,Nm)>x}P\{Y_{m}(z,N_{m})>x\} and P{Ym(z,Nm)>x}P\{Y_{m}^{*}(z,N_{m})>x\} is equal to k1k_{1} by (3.5) and (71). Let us find their extremal index. By (26) αχ=1\alpha\chi=1 and then (74) hold. Thus, the statements of Item (i) regarding the extremal index are fulfilled.

3.6 Proof of Theorem 2.4

Tail index

If (A3) holds, then Yn(z,Nn)Y_{n}^{*}(z,N_{n}) has the tail index k1k_{1} by (51) and (3.5). As in the proof of Theorem 2.2 the sequences Yn(z,Nn)Y_{n}^{*}(z,N_{n}) and Yn(z,Nn)Y_{n}(z,N_{n}) have the same tail index k1k_{1} if NnN_{n} and {Yn,i}\{Y_{n,i}\} are independent and (A1) (or (A2)) holds by (52).

Extremal index

By (55), (72), (73) and (74) it follows P{Mn(z,Nn)>un}=P{z1Mn(1)>un}(1+o(1))P\{M^{*}_{n}(z,N_{n})>u_{n}\}=P\{z_{1}M^{(1)}_{n}>u_{n}\}(1+o(1)). The same is valid for P{Mn(z,Nn)P\{M_{n}(z,N_{n}) by the same reasoning as in Theorem 2.2.

Acknowledgements.
The author was supported by the Russian Science Foundation (grant No. 22-21-00177). The author would like to thank Igor Rodionov for his useful comments.

References

  • (1) Asmussen, S., Foss, S.: Regular variation in a fixed-point problem for single- and multi-class branching processes and queues. Branching Processes and Applied Probability. Papers in Honour of Peter Jagers. Adv. Appl. Prob. 50A, 47-61 (2018)
  • (2) Bingham, N. H., Goldie, C. M., Teugels, J. L.: Regular variation, Cambridge university press, Cambridge (1987)
  • (3) Davis, R. A., Resnick, S. I.: Limit Theory for Bilinear Processes with Heavy-Tailed Noise. The Annals of Applied Probability, 6(4), 1191-1210 (1996)
  • (4) Jessen, A. H., Mikosch, T.: Regularly varying functions. Publ. Inst. Math. (Beograd) (N.S.) 80, 171-192 (2006)
  • (5) Goldaeva, A. A.: Indices of multivariate recurrent stochastic sequences. In book ed. Shiryaev A. N.: Modern problem of mathematics and mechanics VIII(3), 42-51, Moscow State University ISBN 978–5–211–05652–7 (2013) (in Russian)
  • (6) Goldaeva, A. A., Lebedev, A. V.: On extremal indices greater than one for a scheme of series. Lith. Math. J. 58, 384-398 (2018)
  • (7) Leadbetter, M.R., Lingren, G., Rootze´\acute{e}n, H.: Extremes and Related Properties of Random Sequence and Processes. ch.3, Springer, New York (1983)
  • (8) Lebedev, A. V.: Activity maxima in some models of information networks with random weights and heavy tails. Problems of Information Transmission 51(1), 66-74 (2015a)
  • (9) Lebedev, A. V.: Extremal indices in the series scheme and their applications. Informatics Appl. 9(3), 39-54. (in Russian) (2015b)
  • (10) Markovich, N.M., Rodionov I.V. Maxima and sums of non-stationary random length sequences. Extremes, 23(3), 451-464 DOI: 10.1007/s10687-020-00372-5 (2020)
  • (11) Olvera-Cravioto, M.: Asymptotics for weighted random sums. Adv. Appl. Prob. 44(4), 1142-1172 (2012)
  • (12) Robert, C.Y., Segers, J.: Tails of random sums of a heavy-tailed number of light-tailed terms. Insurance: Mathematics and Economics. 43, 85-92 (2008)
  • (13) Tillier, C., Wintenberger, O.: Regular variation of a random length sequence of random variables and application to risk assessment. Extremes. 21, 27-56 (2018)