This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Weight-finite modules over the quantum affine and double quantum affine algebras of type 𝔞1\mathfrak{a}_{1}

E. Mounzer  and  R. Zegers Université Paris-Saclay, CNRS, IJCLab, 91405, Orsay, France [email protected]
Abstract.

We define the categories of weight-finite modules over the type 𝔞1\mathfrak{a}_{1} quantum affine algebra U˙q(𝔞1)\dot{\mathrm{U}}_{q}(\mathfrak{a}_{1}) and over the type 𝔞1\mathfrak{a}_{1} double quantum affine algebra U¨q(𝔞1)\ddot{\mathrm{U}}_{q}(\mathfrak{a}_{1}) that we introduced in [MZ19]. In both cases, we classify the simple objects in those categories. In the quantum affine case, we prove that they coincide with the simple finite-dimensional U˙q(𝔞1)\dot{\mathrm{U}}_{q}(\mathfrak{a}_{1})-modules which were classified by Chari and Pressley in terms of their highest (rational and \ell-dominant) \ell-weights or, equivalently, by their Drinfel’d polynomials. In the double quantum affine case, we show that simple weight-finite modules are classified by their (tt-dominant) highest tt-weight spaces, a family of simple modules over the subalgebra U¨q0(𝔞1)\ddot{\mathrm{U}}_{q}^{0}(\mathfrak{a}_{1}) of U¨q(𝔞1)\ddot{\mathrm{U}}_{q}(\mathfrak{a}_{1}) which is conjecturally isomorphic to a split extension of the elliptic Hall algebra. The proof of the classification, in the double quantum affine case, relies on the construction of a double quantum affine analogue of the evaluation modules that appear in the quantum affine setting.

1. Introduction

The representation theory of quantum affine algebras is a vast and extremely rich theory which is still the subject of an intense research activity after more than three decades. The recent discovery of its relevance to the monoidal categorification of cluster algebras provides one of the latest and most striking illustrations of it – see [HL19] for a review on that subject. Probably standing as one of the most significant breakthroughs in the early days of this research area, the classification of the simple finite-dimensional modules over the quantum affine algebra of type 𝔞1\mathfrak{a}_{1}, Uq(𝔞˙1)\mathrm{U}_{q}(\dot{\mathfrak{a}}_{1}), is due to Chari and Pressley [CP91]. It relies, on one hand, on a careful analysis of the \ell-weight structure of those modules made possible by the existence of Drinfel’d’s presentation U˙q(𝔞1)\dot{\mathrm{U}}_{q}(\mathfrak{a}_{1}) of Uq(𝔞˙1)\mathrm{U}_{q}(\dot{\mathfrak{a}}_{1}) – see [Dam93] for the proof that U˙q(𝔞1)Uq(𝔞˙1)\dot{\mathrm{U}}_{q}(\mathfrak{a}_{1})\cong\mathrm{U}_{q}(\dot{\mathfrak{a}}_{1}) – and, on the other hand, on the existence of evaluation modules, proven earlier by Jimbo, [Jim86]. This seminal work paved the way for a more systematic study of the representation theory of quantum affine algebras of all Cartan types, leading to the development of powerful tools such as qq-characters, (q,t)(q,t)-characters and, consequently, to a much better understanding of the categories 𝐅𝐢𝐧𝐌𝐨𝐝\mathrm{\bf FinMod} of their finite-dimensional modules that recently culminated with the realization that the Grothendieck rings of certain subcategories of the categories 𝐅𝐢𝐧𝐌𝐨𝐝\mathrm{\bf FinMod} actually have the structure of a cluster algebra, [HL10].

By contrast, it is fair to say that the representation theory of quantum toroidal algebras, which were initially introduced in type 𝔞n\mathfrak{a}_{n} by Ginzburg, Kapranov and Vasserot [GKV95] and later generalized to higher rank types, is significantly less well understood and remains, to this date, much more mysterious – although see [Her09] for a review and references therein. In our previous work, [MZ19], we constructed a new (topological) Hopf algebra U¨q(𝔞1)\ddot{\mathrm{U}}_{q}(\mathfrak{a}_{1}), called double quantum affinization of type 𝔞1\mathfrak{a}_{1}, and proved that its completion (in an appropriate topology) is bicontinuously isomorphic to (a corresponding completion) of the quantum toroidal algebra U˙q(𝔞˙1)\dot{\mathrm{U}}_{q}(\dot{\mathfrak{a}}_{1}). Whereas U˙q(𝔞˙1)\dot{\mathrm{U}}_{q}(\dot{\mathfrak{a}}_{1}) is naturally graded over ×Q˙{\mathbb{Z}}\times\dot{Q}, where Q˙\dot{Q} stands for the root lattice of the untwisted affine root system 𝔞˙1\dot{\mathfrak{a}}_{1} of type A1(1)A_{1}^{(1)}, U˙q(𝔞˙1)\dot{\mathrm{U}}_{q}(\dot{\mathfrak{a}}_{1}) is naturally graded over 2×Q{\mathbb{Z}}^{2}\times Q, where QQ stands for the root lattice of the finite root system 𝔞1\mathfrak{a}_{1} of type A1A_{1}. Thus U¨q(𝔞1)\ddot{\mathrm{U}}_{q}(\mathfrak{a}_{1}) turns out to be to U˙q(𝔞˙1)\dot{\mathrm{U}}_{q}(\dot{\mathfrak{a}}_{1}) what U˙q(𝔞1)\dot{\mathrm{U}}_{q}(\mathfrak{a}_{1}) is to Uq(𝔞˙1)\mathrm{U}_{q}(\dot{\mathfrak{a}}_{1}), i.e. its Drinfel’d presentation. The latter, in the quantum affine case, has a natural triangular decomposition which allows one to define an adapted class of highest weight modules, namely highest \ell-weight modules, in which finite-dimensional modules are singled out by the particular form of their highest \ell-weights. Therefore, it is only natural to ask the question of whether U¨q(𝔞1)\ddot{\mathrm{U}}_{q}(\mathfrak{a}_{1}) plays a similar role for the representation theory of U˙q(𝔞˙1)\dot{\mathrm{U}}_{q}(\dot{\mathfrak{a}}_{1}), leading, in particular, to a new notion of highest weight modules. We answer positively that question and introduce the corresponding notion of highest tt-weight modules. Schematically, whereas the transition from the classical Lie theoretic weights to \ell-weights can be regarded as trading numbers for (rational) functions, the transition from \ell-weights to tt-weights can be regarded as trading (rational) functions for entire modules over the non-commutative U¨q0(𝔞1)\ddot{\mathrm{U}}_{q}^{0}(\mathfrak{a}_{1})-subalgebra of U¨q(𝔞1)\ddot{\mathrm{U}}_{q}(\mathfrak{a}_{1}). That substitution can be interpreted from the perspective of a conjecture in [MZ19], stating that U¨q0(𝔞1)\ddot{\mathrm{U}}_{q}^{0}(\mathfrak{a}_{1}) is isomorphic to a split extension of the elliptic Hall algebra q4,q2,q2\mathcal{E}_{q^{-4},q^{2},q^{2}} which was initially defined by Miki, in [Mik07], as a (q,γ)(q,\gamma)-analogue of the W1+W_{1+\infty} algebra and reappeared later on in different guises; the quantum continuous 𝔤𝔩\mathfrak{gl}_{\infty} algebra in [FFJ+11], the Hall algebra of the category of coherent sheaves on some elliptic curve in [Sch12], or the quantum toroidal algebra associated with 𝔤𝔩1\mathfrak{gl}_{1} in [FJMM12] and in subsequent works by Feigin et al. Our conjecture is actually supported by the existence of an algebra homomorphism between q4,q2,q2\mathcal{E}_{q^{-4},q^{2},q^{2}} and U¨q0(𝔞1)\ddot{\mathrm{U}}_{q}^{0}(\mathfrak{a}_{1}) which we promote, in the present paper, to a (continuous) homomorphism of (topological) Hopf algebras. Intuitively, the weights adapted to our new triangular decomposition can therefore be regarded as representations of a quantized algebra of functions on a non-commutative 2-torus.

On the other hand, unless the value of some scalar depending on the deformation parameter is taken to be a root of unity, the question of the existence of finite-dimensional modules over quantum toroidal algebras of type 𝔞n2\mathfrak{a}_{n\geq 2} was already answered negatively by Varagnolo and Vasserot in [VV96]. However, it is possible to push further the analogy with the quantum affine situation by defining another type of finiteness condition, namely weight-finiteness. It turns out that, in type 11, i.e. when the central charges act trivially, U¨q0(𝔞1)\ddot{\mathrm{U}}_{q}^{0}(\mathfrak{a}_{1}) admits an infinite dimensional abelian subalgebra that, itself, admits as a subalgebra the Cartan subalgebra Uq0(𝔞1)\mathrm{U}_{q}^{0}(\mathfrak{a}_{1}) of the Drinfel’d-Jimbo quantum algebra Uq(𝔞1)\mathrm{U}_{q}(\mathfrak{a}_{1}) of type 𝔞1\mathfrak{a}_{1}. Hence, we can assign classical Lie theoretic weights to the tt-weight spaces of our modules and declare that a U¨q(𝔞1)\ddot{\mathrm{U}}_{q}^{\prime}(\mathfrak{a}_{1})-module is weight-finite whenever it has only finitely many classical weights. The same notion is readily defined for modules over U˙q(𝔞1)\dot{\mathrm{U}}_{q}(\mathfrak{a}_{1}) and we then focus on 𝐖𝐅𝐢𝐧𝐌𝐨𝐝˙\mathrm{\bf WFinMod\,\dot{}} (resp. 𝐖𝐅𝐢𝐧𝐌𝐨𝐝\mathrm{\bf WFinMod}), i.e. the full subcategory of the category 𝐌𝐨𝐝˙\mathrm{\bf Mod\,\dot{}} (resp. 𝐌𝐨𝐝\mathrm{\bf Mod}) of U¨q(𝔞1)\ddot{\mathrm{U}}_{q}(\mathfrak{a}_{1})-modules (resp. U˙q(𝔞1)\dot{\mathrm{U}}_{q}(\mathfrak{a}_{1})-modules) whose modules are weight-finite. Of course, the widely studied category 𝐅𝐢𝐧𝐌𝐨𝐝\mathrm{\bf FinMod} of finite-dimensional U˙q(𝔞1)\dot{\mathrm{U}}_{q}(\mathfrak{a}_{1})-modules is a full subcategory of 𝐖𝐅𝐢𝐧𝐌𝐨𝐝\mathrm{\bf WFinMod}. The main results of the present paper consist in showing that, on one hand, the simple objects in 𝐖𝐅𝐢𝐧𝐌𝐨𝐝\mathrm{\bf WFinMod} are all finite-dimensional and therefore coincide with the simple finite-dimensional U˙q(𝔞1)\dot{\mathrm{U}}_{q}(\mathfrak{a}_{1})-modules classified by Chari and Pressley, and, on the other hand, in classifying the simple objects in 𝐖𝐅𝐢𝐧𝐌𝐨𝐝˙\mathrm{\bf WFinMod\,\dot{}} in terms of their highest tt-weight spaces. These results clearly establish 𝐖𝐅𝐢𝐧𝐌𝐨𝐝˙\mathrm{\bf WFinMod\,\dot{}} as the natural quantum toroidal analogue of 𝐅𝐢𝐧𝐌𝐨𝐝\mathrm{\bf FinMod} and suggest studying further its structure and, in particular, the structure of its Grothendieck ring. Another natural development at this point would be to generalize to the quantum toroidal setting the interesting classes of U˙q(𝔞1)\dot{\mathrm{U}}_{q}(\mathfrak{a}_{1})-modules outside of 𝐅𝐢𝐧𝐌𝐨𝐝\mathrm{\bf FinMod}, for example by constructing a quantum toroidal analogue of category 𝒪\mathcal{O}. We leave these questions for future work.

The present paper is organized as follows. In section 2, we briefly review classic results about the quantum affine algebra U˙q(𝔞1)\dot{\mathrm{U}}_{q}(\mathfrak{a}_{1}) and its finite-dimensional modules. Then, we prove that simple objects in 𝐖𝐅𝐢𝐧𝐌𝐨𝐝\mathrm{\bf WFinMod} are actually finite-dimensional. In section 3, we review the main relevant results of [MZ19] and establish a few new results, as relevant for the subsequent sections. We define highest tt-weight modules in section 4 and, by thoroughly analyzing their structure, we establish one implication in our classification theorem, namely theorem 4.21. The opposite implication is established in section 5 by explicitly constructing a quantum toroidal analogue of the quantum affine evaluation modules. That construction is obtained after proving the existence of an evaluation homomorphism between U¨q(𝔞1)\ddot{\mathrm{U}}_{q}(\mathfrak{a}_{1}) and an evaluation algebra built as a double semi-direct product of U˙q(𝔞1)\dot{\mathrm{U}}_{q}(\mathfrak{a}_{1}) with the completions of some Heisenberg algebras. The evaluation modules are then obtained by pulling back induced modules over the evaluation algebra along the evaluation homomorphism.

Notations and conventions

We let ={0,1,}{\mathbb{N}}=\{0,1,\dots\} be the set of natural integers including 0. We denote by ×{\mathbb{N}}^{\times} the set {0}{\mathbb{N}}-\{0\}. For every mnm\leq n\in{\mathbb{N}}, we denote by m,n={m,m+1,,n}\llbracket m,n\rrbracket=\{m,m+1,\dots,n\}. We also let n=1,n{\llbracket n\rrbracket}=\llbracket 1,n\rrbracket for every nn\in{\mathbb{N}}. For every m,n×m,n\in{\mathbb{N}}^{\times}, we let

Cm(n):={λ=(λ1,,λm)(×)m:λ1++λm=n},C_{m}(n):=\left\{\lambda=(\lambda_{1},\dots,\lambda_{m})\in\left({\mathbb{N}}^{\times}\right)^{m}:\lambda_{1}+\dots+\lambda_{m}=n\right\}\,,

denote the set of mm-compositions of nn, i.e. of compositions of nn having mm summands.

We let sign:{1,0,1}{\rm sign}:{\mathbb{Z}}\to\{-1,0,1\} be defined by setting, for any nn\in{\mathbb{Z}},

sign(n)={1if n<0;0if n=0;1if n>0.{\rm sign}(n)=\begin{cases}-1&\mbox{if $n<0$;}\\ 0&\mbox{if $n=0$;}\\ 1&\mbox{if $n>0$.}\end{cases}

We assume throughout that 𝕂\mathbb{K} is an algebraically closed field of characteristic 0 and we let 𝔽:=𝕂(q)\mathbb{F}:=\mathbb{K}(q) denote the field of rational functions over 𝕂\mathbb{K} in the formal variable qq. As usual, we let 𝕂×=𝕂{0}\mathbb{K}^{\times}=\mathbb{K}-\{0\} and 𝔽×=𝔽{0}\mathbb{F}^{\times}=\mathbb{F}-\{0\}. Whenever we wish to evaluate qq to some element of 𝕂×\mathbb{K}^{\times}, we shall always do so under the restriction that 1q×1\notin q^{{\mathbb{Z}}^{\times}}. For every m,nm,n\in{\mathbb{N}}, we define the following elements of 𝔽\mathbb{F}

[n]q:=qnqnqq1,[n]q!:={[n]q[n1]q[1]qif n×;1if n=0;(nm)q:=[n]q![m]q![nm]q!.[n]_{q}:=\frac{q^{n}-q^{-n}}{q-q^{-1}}\,,\qquad[n]_{q}^{!}:=\begin{cases}[n]_{q}[n-1]_{q}\cdots[1]_{q}&\mbox{if $n\in{\mathbb{N}}^{\times}$;}\\ 1&\mbox{if $n=0$;}\end{cases}\qquad{n\choose m}_{q}:=\frac{[n]_{q}^{!}}{[m]_{q}^{!}[n-m]_{q}^{!}}\,. (1.1)

We shall say that a polynomial P(z)𝔽[z]P(z)\in\mathbb{F}[z] is monic if P(0)=1P(0)=1. For every rational function P(z)/Q(z)P(z)/Q(z), where P(z)P(z) and Q(z)Q(z) are relatively prime polynomials, we denote by

(P(z)Q(z))|z|1(resp.(P(z)Q(z))|z|11)\left(\frac{P(z)}{Q(z)}\right)_{|z|\ll 1}\qquad(\mbox{resp.}\left(\frac{P(z)}{Q(z)}\right)_{|z|^{-1}\ll 1})

the Laurent series of P(z)/Q(z)P(z)/Q(z) at 0 (resp. at \infty).

We shall let

[A,B]ba=aABbBA,{}_{a}\left[A,B\right]_{b}=aAB-bBA\,,

for any symbols aa, bb, AA and BB provided the r.h.s of the above equations makes sense.

The Dynkin diagrams and correponding Cartan matrices of the root systems 𝔞1\mathfrak{a}_{1} and 𝔞˙1\dot{\mathfrak{a}}_{1} are reminded in the following table.

Type Dynkin diagram Simple roots Cartan matrix
𝔞1\mathfrak{a}_{1} 11 Φ={α1}\Phi=\{\alpha_{1}\} (2)(2)
𝔞˙1\dot{\mathfrak{a}}_{1} 011 Φ˙={α0,α1}\dot{\Phi}=\{\alpha_{0},\alpha_{1}\} (2222)\begin{pmatrix}2&-2\\ -2&2\end{pmatrix}

2. Weight-finite modules over the quantum affine algebra U˙q(𝔞1)\dot{\mathrm{U}}_{q}(\mathfrak{a}_{1})

2.1. The quantum affine algebra U˙q(𝔞1)\dot{\mathrm{U}}_{q}(\mathfrak{a}_{1})

Definition 2.1.

The quantum affine algebra U˙q(𝔞1)\dot{\mathrm{U}}_{q}(\mathfrak{a}_{1}) is the associative 𝕂(q)\mathbb{K}(q)-algebra generated by

{D,D1,C1/2,C1/2,k1,n+,k1,n,x1,m+,x1,m:m,n}\left\{D,D^{-1},C^{1/2},C^{-1/2},k_{1,n}^{+},k_{1,-n}^{-},x_{1,m}^{+},x_{1,m}^{-}:m\in{\mathbb{Z}},n\in{\mathbb{N}}\right\}

subject to the following relations

C±1/2 is centralC±1/2C1/2=1D±1D1=1\mbox{$C^{\pm 1/2}$ is central}\qquad C^{\pm 1/2}C^{\mp 1/2}=1\qquad D^{\pm 1}D^{\mp 1}=1 (2.1)
D𝐤1±(z)D1=𝐤1±(zq1)D𝐱1±(z)D1=𝐱1±(zq1)D{\bf k}_{1}^{\pm}(z)D^{-1}={\bf k}_{1}^{\pm}(zq^{-1})\qquad D{\bf x}_{1}^{\pm}(z)D^{-1}={\bf x}_{1}^{\pm}(zq^{-1}) (2.2)
𝐤1±(z1)𝐤1±(z2)=𝐤1±(z2)𝐤1±(z1){\bf k}_{1}^{\pm}(z_{1}){\bf k}_{1}^{\pm}(z_{2})={\bf k}_{1}^{\pm}(z_{2}){\bf k}_{1}^{\pm}(z_{1}) (2.3)
𝐤1(z1)𝐤1+(z2)=G(C1z1/z2)G+(Cz1/z2)𝐤1+(z2)𝐤1(z1)=1modz1/z2{\bf k}_{1}^{-}(z_{1}){\bf k}_{1}^{+}(z_{2})=G^{-}(C^{-1}z_{1}/z_{2})G^{+}(Cz_{1}/z_{2}){\bf k}_{1}^{+}(z_{2}){\bf k}_{1}^{-}(z_{1})=1\mod z_{1}/z_{2} (2.4)
G(C1/2z2/z1)𝐤1+(z1)𝐱1±(z2)=𝐱1±(z2)𝐤1+(z1)G^{\mp}(C^{\mp 1/2}z_{2}/z_{1}){\bf k}_{1}^{+}(z_{1}){\bf x}_{1}^{\pm}(z_{2})={\bf x}_{1}^{\pm}(z_{2}){\bf k}_{1}^{+}(z_{1}) (2.5)
𝐤1(z1)𝐱1±(z2)=G(C1/2z1/z2)𝐱1±(z2)𝐤1(z1){\bf k}_{1}^{-}(z_{1}){\bf x}_{1}^{\pm}(z_{2})=G^{\mp}(C^{\mp 1/2}z_{1}/z_{2}){\bf x}_{1}^{\pm}(z_{2}){\bf k}_{1}^{-}(z_{1}) (2.6)
(z1q±2z2)𝐱1±(z1)𝐱1±(z2)=(z1q±2z2)𝐱1±(z2)𝐱1±(z1)(z_{1}-q^{\pm 2}z_{2}){\bf x}_{1}^{\pm}(z_{1}){\bf x}_{1}^{\pm}(z_{2})=(z_{1}q^{\pm 2}-z_{2}){\bf x}_{1}^{\pm}(z_{2}){\bf x}_{1}^{\pm}(z_{1}) (2.7)
[𝐱1+(z1),𝐱1(z2)]=1qq1[δ(z1Cz2)𝐤1+(z1C1/2)δ(z1Cz2)𝐤1(z2C1/2)][{\bf x}_{1}^{+}(z_{1}),{\bf x}_{1}^{-}(z_{2})]=\frac{1}{q-q^{-1}}\left[\delta\left(\frac{z_{1}}{Cz_{2}}\right){\bf k}_{1}^{+}(z_{1}C^{-1/2})-\delta\left(\frac{z_{1}C}{z_{2}}\right){\bf k}_{1}^{-}(z_{2}C^{-1/2})\right] (2.8)

where we define the following U˙q(𝔞˙1)\dot{\mathrm{U}}_{q}(\dot{\mathfrak{a}}_{1})-valued formal distributions

𝐱1±(z):=mx1,m±zmU˙q(𝔞˙1)[[z,z1]];{\bf x}_{1}^{\pm}(z):=\sum_{m\in{\mathbb{Z}}}x^{\pm}_{1,m}z^{-m}\in\dot{\mathrm{U}}_{q}(\dot{\mathfrak{a}}_{1})[[z,z^{-1}]]\,; (2.9)
𝐤1±(z):=nk1,±n±znU˙q(𝔞˙1)[[z1]],{\bf k}_{1}^{\pm}(z):=\sum_{n\in{\mathbb{N}}}k_{1,\pm n}^{\pm}z^{\mp n}\in\dot{\mathrm{U}}_{q}(\dot{\mathfrak{a}}_{1})[[z^{\mp 1}]]\,, (2.10)

for every i,jI˙i,j\in\dot{I}, we define the following 𝔽\mathbb{F}-valued formal power series

G±(z):=q±cij+(qq1)[±cij]qm×q±mcijzm𝔽[[z]]G^{\pm}(z):=q^{\pm c_{ij}}+(q-q^{-1})[\pm c_{ij}]_{q}\sum_{m\in{\mathbb{N}}^{\times}}q^{\pm mc_{ij}}z^{m}\in\mathbb{F}[[z]] (2.11)

and

δ(z):=mzm𝔽[[z,z1]]\delta(z):=\sum_{m\in{\mathbb{Z}}}z^{m}\in\mathbb{F}[[z,z^{-1}]] (2.12)

is an 𝔽\mathbb{F}-valued formal distribution. We denote by U˙q(𝔞1)\dot{\mathrm{U}}_{q}^{\prime}({\mathfrak{a}}_{1}) the subalgebra of U˙q(𝔞1)\dot{\mathrm{U}}_{q}({\mathfrak{a}}_{1}) generated by

{C1/2,C1/2,k1,n+,k1,n,x1,m+,x1,m:m,n}.\left\{C^{1/2},C^{-1/2},k_{1,n}^{+},k_{1,-n}^{-},x_{1,m}^{+},x_{1,m}^{-}:m\in{\mathbb{Z}},n\in{\mathbb{N}}\right\}\,.

We denote by U˙q0(𝔞1)\dot{\mathrm{U}}_{q}^{0}({\mathfrak{a}}_{1}) the subalgebra of U˙q(𝔞1)\dot{\mathrm{U}}_{q}^{\prime}({\mathfrak{a}}_{1}) generated by

{C1/2,C1/2,k1,n+,k1,n:n}.\left\{C^{1/2},C^{-1/2},k_{1,n}^{+},k_{1,-n}^{-}:n\in{\mathbb{N}}\right\}\,.

We let U˙q(𝔞1)\dot{\mathrm{U}}_{q}^{\geq}(\mathfrak{a}_{1}) (resp. U˙q(𝔞1)\dot{\mathrm{U}}_{q}^{\leq}(\mathfrak{a}_{1})) denote the subalgebra of U˙q(𝔞1)\dot{\mathrm{U}}_{q}^{\prime}(\mathfrak{a}_{1}) generated by

{C1/2,C1/2,k1,n+,k1,n,x1,m+:m,n}\left\{C^{1/2},C^{-1/2},k_{1,n}^{+},k_{1,-n}^{-},x_{1,m}^{+}:m\in{\mathbb{Z}},n\in{\mathbb{N}}\right\}

(resp.

{C1/2,C1/2,k1,n+,k1,n,x1,m:m,n}\left\{C^{1/2},C^{-1/2},k_{1,n}^{+},k_{1,-n}^{-},x_{1,m}^{-}:m\in{\mathbb{Z}},n\in{\mathbb{N}}\right\}

). We let U˙q(𝔞1)˘\dot{\mathrm{U}}_{q}(\mathfrak{a}_{1})\,\breve{} denote the 𝔽\mathbb{F}-algebra generated by the same generators as U˙q(𝔞1)\dot{\mathrm{U}}_{q}^{\prime}({\mathfrak{a}}_{1}), subject to the relations (2.3 - 2.7) – i.e. we omit relation (2.8). We define the type 𝔞1\mathfrak{a}_{1} quantum loop algebra Uq(L𝔞1)\mathrm{U}_{q}(\mathrm{L}\mathfrak{a}_{1}) as the quotient of U˙q(𝔞1)\dot{\mathrm{U}}_{q}^{\prime}({\mathfrak{a}}_{1}) by its two-sided ideal (C1/21)(C^{1/2}-1) generated by {C1/21,C1/21}\left\{C^{1/2}-1,C^{-1/2}-1\right\}. Similarly, we let Uq(L𝔞1)=U˙q(𝔞1)/(C1/21)\mathrm{U}_{q}^{\geq}(\mathrm{L}\mathfrak{a}_{1})=\dot{\mathrm{U}}_{q}^{\geq}(\mathfrak{a}_{1})/(C^{1/2}-1) and Uq(L𝔞1)=U˙q(𝔞1)/(C1/21)\mathrm{U}_{q}^{\leq}(\mathrm{L}\mathfrak{a}_{1})=\dot{\mathrm{U}}_{q}^{\leq}(\mathfrak{a}_{1})/(C^{1/2}-1). We eventually set U˘q(L𝔞1)=U˙q(𝔞1)˘/(C1/21)\breve{\mathrm{U}}_{q}(\mathrm{L}\mathfrak{a}_{1})=\dot{\mathrm{U}}_{q}(\mathfrak{a}_{1})\,\breve{}/(C^{1/2}-1).

Obviously,

Proposition 2.2.

There exists a surjective 𝔽\mathbb{F}-algebra homomorphism U˘q(L𝔞1)Uq(L𝔞1)\breve{\mathrm{U}}_{q}(\mathrm{L}\mathfrak{a}_{1})\to\mathrm{U}_{q}(\mathrm{L}\mathfrak{a}_{1}).

2.2. Finite dimensional U˙q(𝔞1)\dot{\mathrm{U}}_{q}^{\prime}({\mathfrak{a}}_{1})-modules

Let 𝐌𝐨𝐝\mathrm{\bf Mod} be the category of U˙q(𝔞1)\dot{\mathrm{U}}_{q}^{\prime}(\mathfrak{a}_{1})-modules. We denote by 𝐅𝐢𝐧𝐌𝐨𝐝\mathrm{\bf FinMod} the full subcategory of 𝐌𝐨𝐝\mathrm{\bf Mod} whose objects are finite-dimensional. Following [CP91], we make the following

Definition 2.3.

We shall say that a U˙q(𝔞1)\dot{\mathrm{U}}_{q}^{\prime}(\mathfrak{a}_{1})-module MM is:

  • a weight module if k1,0+k_{1,0}^{+} acts semisimply on MM;

  • of type 11 if it is a weight module and C1/2C^{1/2} acts on MM as id{\mathrm{id}};

  • highest \ell-weight if it is of type 11 and there exists vM{0}v\in M-\{0\} such that

    𝐱1+(z).v=0,𝐤1±(z).v=κ±(z)v{\bf x}_{1}^{+}(z).v=0\,,\qquad{\bf k}_{1}^{\pm}(z).v=\kappa^{\pm}(z)v

    for some κ±(z)𝔽[[z1]]\kappa^{\pm}(z)\in\mathbb{F}[[z^{\mp 1}]] and M=U˙q(𝔞1).vM=\dot{\mathrm{U}}_{q}^{\prime}({\mathfrak{a}}_{1}).v. We shall refer to any such vv as a highest \ell-weight vector and to 𝜿=(κ+(z),κ(z)){\boldsymbol{\kappa}}=(\kappa^{+}(z),\kappa^{-}(z)) as the corresponding highest \ell-weight.

Clearly, type 11 U˙q(𝔞1)\dot{\mathrm{U}}_{q}^{\prime}({\mathfrak{a}}_{1})-modules coincide with Uq(L𝔞1)\mathrm{U}_{q}(\mathrm{L}\mathfrak{a}_{1})-modules.

Definition 2.4.

For every 𝜿𝔽[[z1]]×𝔽[[z]]{\boldsymbol{\kappa}}\in\mathbb{F}[[z^{-1}]]\times\mathbb{F}[[z]], we construct a one-dimensional Uq(L𝔞1)\mathrm{U}_{q}^{\geq}(\mathrm{L}\mathfrak{a}_{1})-module 𝔽𝜿𝔽\mathbb{F}_{\boldsymbol{\kappa}}\cong\mathbb{F} by setting

𝐱1+(z).1=0,and𝐤1±(z).1=κ±(z).{\bf x}_{1}^{+}(z).1=0\,,\qquad\mbox{and}\qquad{\bf k}_{1}^{\pm}(z).1=\kappa^{\pm}(z)\,.

We then define the universal highest \ell-weight U˙q(𝔞1)\dot{\mathrm{U}}_{q}^{\prime}({\mathfrak{a}}_{1})-module with highest \ell-weight 𝜿{\boldsymbol{\kappa}} by setting

M(𝜿):=Uq(L𝔞1)Uq(L𝔞1)𝔽𝜿M({\boldsymbol{\kappa}}):=\mathrm{U}_{q}(\mathrm{L}\mathfrak{a}_{1})\underset{\mathrm{U}_{q}^{\geq}(\mathrm{L}\mathfrak{a}_{1})}{\otimes}\mathbb{F}_{\boldsymbol{\kappa}}

as Uq(L𝔞1)\mathrm{U}_{q}(\mathrm{L}\mathfrak{a}_{1})-modules. Let N(𝜿)N({\boldsymbol{\kappa}}) be the maximal Uq(L𝔞1)\mathrm{U}_{q}(\mathrm{L}\mathfrak{a}_{1})-submodule of M(𝜿)M({\boldsymbol{\kappa}}) such that N(𝜿)𝔽𝜿={0}N({\boldsymbol{\kappa}})\cap\mathbb{F}_{\boldsymbol{\kappa}}=\{0\} and set

L(𝜿):=M(𝜿)/N(𝜿).L({\boldsymbol{\kappa}}):=M({\boldsymbol{\kappa}})/N({\boldsymbol{\kappa}})\,.

By construction, L(𝜿)L({\boldsymbol{\kappa}}) is a simple highest \ell-weight Uq(L𝔞1)\mathrm{U}_{q}(\mathrm{L}\mathfrak{a}_{1})-module with highest \ell-weight 𝜿{\boldsymbol{\kappa}}. It is unique up to isomorphisms.

The simple objects in 𝐅𝐢𝐧𝐌𝐨𝐝\mathrm{\bf FinMod} were classified by Chari and Pressley in [CP91]. The main result is the following

Theorem 2.5 (Chari-Pressley).

The following hold:

  1. i.

    any simple finite-dimensional U˙q(𝔞1)\dot{\mathrm{U}}_{q}^{\prime}(\mathfrak{a}_{1})-module MM can be obtained by twisting a simple finite-dimensional U˙q(𝔞1)\dot{\mathrm{U}}_{q}^{\prime}(\mathfrak{a}_{1})-module of type 11 with an algebra automorphism of Aut(U˙q(𝔞1))\mathrm{Aut}(\dot{\mathrm{U}}_{q}^{\prime}(\mathfrak{a}_{1}));

  2. ii.

    every simple finite dimensional U˙q(𝔞1)\dot{\mathrm{U}}_{q}^{\prime}(\mathfrak{a}_{1})-module of type 11 is highest \ell-weight;

  3. iii.

    the simple highest \ell-weight module L(𝜿)L({\boldsymbol{\kappa}}) is finite-dimensional if and only if

    κ±(z)=qdeg(P)(P(q2/z)P(1/z))|z|11,\kappa^{\pm}(z)=q^{\deg(P)}\left(\frac{P(q^{-2}/z)}{P(1/z)}\right)_{|z|^{\mp 1}\ll 1}\,,

    for some monic polynomial P(1/z)𝔽[z1]P(1/z)\in\mathbb{F}[z^{-1}] called Drinfel’d polynomial of L(𝜿)L({\boldsymbol{\kappa}}).

Proof.

The proof can be found in [CP91]. ∎

Up to isomorphisms, the simple objects in 𝐅𝐢𝐧𝐌𝐨𝐝\mathrm{\bf FinMod} are uniquely parametrized by their Drinfel’d polynomials and we shall therefore denote by L(P)L(P) the (isomorphism class of the) simple U˙q(𝔞1)\dot{\mathrm{U}}_{q}^{\prime}({\mathfrak{a}}_{1})-module with Drinfel’d polynomial PP. Note that the roles of U˙q(𝔞1)\dot{\mathrm{U}}_{q}^{\geq}(\mathfrak{a}_{1}) and U˙q(𝔞1)\dot{\mathrm{U}}_{q}^{\leq}(\mathfrak{a}_{1}) in the above constructions are clearly symmetrical and we could have equivalently considered lowest \ell-weight modules. In particular, point iii of the above theorem immediately translates into

Proposition 2.6.

The simple lowest \ell-weight module with lowest \ell-weight 𝛋=(κ+(z),κ(z))𝔽[[z1]]×𝔽[[z]]{\boldsymbol{\kappa}}=(\kappa^{+}(z),\kappa^{-}(z))\in\mathbb{F}[[z^{-1}]]\times\mathbb{F}[[z]] is finite-dimensional if and only if

κ±(z)=qdeg(P)(P(1/z)P(q2/z))|z|11,\kappa^{\pm}(z)=q^{-\deg(P)}\left(\frac{P(1/z)}{P(q^{-2}/z)}\right)_{|z|^{\mp 1}\ll 1}\,,

for some monic polynomial P(1/z)𝔽[z1]P(1/z)\in\mathbb{F}[z^{-1}]. In the latter case, we denote it by L¯(P)\bar{L}(P).

2.3. Weight-finite simple Uq(L𝔞1)\mathrm{U}_{q}(\mathrm{L}\mathfrak{a}_{1})-modules

We now wish to consider a slightly broader family of modules over U˙q(𝔞1)\dot{\mathrm{U}}_{q}^{\prime}({\mathfrak{a}}_{1}). In particular, we want to allow these modules to be infinite-dimensional, while retaining some of the nice features of finite dimensional U˙q(𝔞1)\dot{\mathrm{U}}_{q}^{\prime}({\mathfrak{a}}_{1})-modules such as the fact that they decompose into \ell-weight spaces. This is achieved by introducing the following notion.

Definition 2.7.

We shall say that a (not necessarily finite-dimensional) U˙q(𝔞1)\dot{\mathrm{U}}_{q}^{\prime}({\mathfrak{a}}_{1})-module MM is \ell-weight if there exists a countable set {Mα:αA}\left\{M_{\alpha}:\alpha\in A\right\} of indecomposable locally finite-dimensional U˙q0(𝔞1)\dot{\mathrm{U}}_{q}^{0}({\mathfrak{a}}_{1})-modules, called the \ell-weight spaces of MM, such that, as U˙q0(𝔞1)\dot{\mathrm{U}}_{q}^{0}({\mathfrak{a}}_{1})-modules,

MαAMα.M\cong\bigoplus_{\alpha\in A}M_{\alpha}\,.

We shall say that MM is of type 11 if C1/2C^{1/2} acts on MM by id{\mathrm{id}}.

Definition-Proposition 2.8.

Let MM be an \ell-weight U˙q(𝔞1)\dot{\mathrm{U}}_{q}^{\prime}({\mathfrak{a}}_{1})-module. Then:

  1. i.

    C2C^{2} acts as id{\mathrm{id}} over MM;

  2. ii.

    for every \ell-weight space MαM_{\alpha}, αA\alpha\in A, of MM, there exists κα,0𝔽×\kappa_{\alpha,0}\in\mathbb{F}^{\times} and (κα,±m±)m×𝔽×(\kappa^{\pm}_{\alpha,\pm m})_{m\in{\mathbb{N}}^{\times}}\in\mathbb{F}^{{\mathbb{N}}^{\times}} such that

    Mα{vM:n×,m(k1,±m±κα,±m±id)n.v=0},M_{\alpha}\subseteq\left\{v\in M:\exists n\in{\mathbb{N}}^{\times}\,,\forall m\in{\mathbb{N}}\quad\left(k^{\pm}_{1,\pm m}-\kappa^{\pm}_{\alpha,\pm m}{\mathrm{id}}\right)^{n}.v=0\right\}\,,

    where we have set κα,0±=κα,0±1\kappa^{\pm}_{\alpha,0}=\kappa_{\alpha,0}^{\pm 1}.

We let Sp(M)={κα,0:αA}\mathrm{Sp}(M)=\left\{\kappa_{\alpha,0}:\alpha\in A\right\} and refer to the formal power series

κα±(z)=mκα,±m±zm\kappa^{\pm}_{\alpha}(z)=\sum_{m\in{\mathbb{N}}}\kappa^{\pm}_{\alpha,\pm m}z^{\mp m}

as the \ell-weight of the \ell-weight space MαM_{\alpha}.

Proof.

Let MαM_{\alpha} be an \ell-weight space of MM and let vMα{0}v\in M_{\alpha}-\{0\}. By definition, there exists a finite dimensional U˙q0(𝔞1)\dot{\mathrm{U}}_{q}^{0}(\mathfrak{a}_{1})-submodule M~α\tilde{M}_{\alpha} of MαM_{\alpha} such that vM~αv\in\tilde{M}_{\alpha}. Over M~α\tilde{M}_{\alpha}, CC must admit an eigenvector and, since CC is central, it follows that CC acts over M~α\tilde{M}_{\alpha} by a scalar mutliple of id{\mathrm{id}}. Assume for a contradiction that CC1C-C^{-1} does not act by multiplication by zero. Then, it is possible to pull back M~α\tilde{M}_{\alpha} into a finite-dimensional module over the Weyl algebra 𝒜1(𝕂)=𝕂x,y/(xyyx1)\mathcal{A}_{1}(\mathbb{K})=\mathbb{K}\langle x,y\rangle/(xy-yx-1) by the obvious algebra homomorphism 𝒜1(𝕂)U˙q0(𝔞1)\mathcal{A}_{1}(\mathbb{K})\hookrightarrow\dot{\mathrm{U}}_{q}^{0}(\mathfrak{a}_{1}). But the Weyl algebra is known to admit no finite-dimensional modules. A contradiction. It follows that C2C^{2} acts as id{\mathrm{id}} over M~α\tilde{M}_{\alpha}. But this could be repeated for any non-zero vector in any \ell-weight space of MM. i follows. As for ii, observe that, as a consequence of i and of the defining relations (2.3) and (2.4), {k1,m+,k1,m:m}\left\{k^{+}_{1,m},k^{-}_{1,-m}:m\in{\mathbb{N}}\right\} acts by a family of commuting linear operators over MM. Thus ii follows from the decomposition of locally finite-dimensional vector spaces into the generalized eigenspaces of a commuting family of linear operators; the indecomposability of MαM_{\alpha} further imposing that it coincides with a single block in a single generalized eigenspace. ∎

Remark 2.9.

It is worth emphasizing that definition 2.7 and definition-proposition 2.8 straightforwardly generalize to (topological) modules over any (topological) algebra 𝒜\mathcal{A} containing U˙q0(𝔞1)\dot{\mathrm{U}}_{q}^{0}(\mathfrak{a}_{1}) as a (closed) subalgebra.

Definition 2.10.

We shall say that an \ell-weight U˙q(𝔞1)\dot{\mathrm{U}}_{q}^{\prime}({\mathfrak{a}}_{1})-module MM is weight-finite if Sp(M)Sp(M) is a finite set. We let 𝐖𝐅𝐢𝐧𝐌𝐨𝐝\mathrm{\bf WFinMod} denote the full subcategory of the category 𝐌𝐨𝐝\mathrm{\bf Mod} of U˙q(𝔞1)\dot{\mathrm{U}}_{q}^{\prime}({\mathfrak{a}}_{1})-modules whose objects are weight-finite.

Clearly, finite dimensional U˙q(𝔞1)\dot{\mathrm{U}}_{q}^{\prime}({\mathfrak{a}}_{1})-modules are objects in 𝐖𝐅𝐢𝐧𝐌𝐨𝐝\mathrm{\bf WFinMod}, but not every object in 𝐖𝐅𝐢𝐧𝐌𝐨𝐝\mathrm{\bf WFinMod} is in 𝐅𝐢𝐧𝐌𝐨𝐝\mathrm{\bf FinMod}. However we have

Theorem 2.11.

The following hold:

  1. i.

    every simple \ell-weight U˙q(𝔞1)\dot{\mathrm{U}}_{q}^{\prime}(\mathfrak{a}_{1})-module can be obtained by twisting a simple \ell-weight U˙q(𝔞1)\dot{\mathrm{U}}_{q}^{\prime}(\mathfrak{a}_{1})-module of type 11 with an algebra automorphism of Aut(U˙q(𝔞1))\mathrm{Aut}(\dot{\mathrm{U}}_{q}(\mathfrak{a}_{1}));

  2. ii.

    every weight-finite simple Uq(L𝔞1)\mathrm{U}_{q}(\mathrm{L}\mathfrak{a}_{1})-module is highest \ell-weight;

  3. iii.

    every weight-finite simple Uq(L𝔞1)\mathrm{U}_{q}(\mathrm{L}\mathfrak{a}_{1})-module is finite dimensional.

Proof.

In view of definition-proposition 2.8, C2C^{2} acts as id{\mathrm{id}} over MM. Since the latter is simple and since C1/2C^{1/2} is central, it is clear that CC acts over MM either as id{\mathrm{id}} or as id-{\mathrm{id}}. In the former case, there is nothing to do; whereas in the latter, upon twisting as in the finite-dimensional case – see [CP91] –, we can ensure that C1/2C^{1/2} acts as id{\mathrm{id}}. This proves i. As for ii, the same proof as for part ii of theorem 2.5 can be used. So, we eventually prove iii. Let MM be a weight-finite simple Uq(L𝔞1)\mathrm{U}_{q}(\mathrm{L}\mathfrak{a}_{1})-module. By ii it is highest \ell-weight. Hence, there exists vM{0}v\in M-\{0\} such that MUq(L𝔞1).vM\cong\mathrm{U}_{q}(\mathrm{L}\mathfrak{a}_{1}).v, 𝐱1+(z).v=0{\bf x}_{1}^{+}(z).v=0\, and 𝐤1±(z).v=κ±(z)v{\bf k}_{1}^{\pm}(z).v=\kappa^{\pm}(z)v, for some κ±(z)𝔽[[z1]]\kappa^{\pm}(z)\in\mathbb{F}[[z^{\mp 1}]] with resz1,z2z11z21κ+(z1)κ(z2)=1.\operatorname*{res}_{z_{1},z_{2}}z_{1}^{-1}z_{2}^{-1}\kappa^{+}(z_{1})\kappa^{-}(z_{2})=1\,. The triangular decomposition of Uq(L𝔞1)\mathrm{U}_{q}(\mathrm{L}\mathfrak{a}_{1}) implies that M=Uq(L𝔞1).vM=\mathrm{U}_{q}^{-}(\mathrm{L}\mathfrak{a}_{1}).v and, setting for every nn\in{\mathbb{N}}

v(z1,,zn)=𝐱1(z1)𝐱1(zn).v,v(z_{1},\dots,z_{n})={\bf x}_{1}^{-}(z_{1})\cdots{\bf x}_{1}^{-}(z_{n}).v\,, (2.13)

it is clear that

{vm1,,mn=resz1,,znz11m1zn1mnv(z1,,zn):n,m1,,mn}\left\{v_{m_{1},\dots,m_{n}}=\operatorname*{res}_{z_{1},\dots,z_{n}}z_{1}^{-1-m_{1}}\cdots z_{n}^{-1-m_{n}}v(z_{1},\dots,z_{n}):n\in{\mathbb{N}},m_{1},\dots,m_{n}\in{\mathbb{Z}}\right\} (2.14)

is a spanning set of MM. The defining relations (2.5) and (2.6) of Uq(L𝔞1)\mathrm{U}_{q}(\mathrm{L}\mathfrak{a}_{1}) easily imply that, for every nn\in{\mathbb{N}},

𝐤1±(z).v(z1,,zn)=κ±(z)p=1nG((zp/z)1)v(z1,,zn){\bf k}_{1}^{\pm}(z).v(z_{1},\dots,z_{n})=\kappa^{\pm}(z)\prod_{p=1}^{n}G^{\mp}\left(\left(z_{p}/z\right)^{\mp 1}\right)v(z_{1},\dots,z_{n}) (2.15)

and, in particular,

k0±.v(z1,,zn)=(κ0+)±1q2nv(z1,,zn).k^{\pm}_{0}.v(z_{1},\dots,z_{n})=(\kappa^{+}_{0})^{\pm 1}q^{-2n}v(z_{1},\dots,z_{n})\,.

Therefore, MM being weight-finite, there must exist an NN\in{\mathbb{N}} such that

𝐱1(z).v(z1,,zN)=0.{\bf x}_{1}^{-}(z).v(z_{1},\dots,z_{N})=0\,. (2.16)

Making use of (2.8), one easily proves that, for every nNn\in{\llbracket N\rrbracket}

𝐱1+(z).v(z0,,zn)\displaystyle{\bf x}_{1}^{+}(z).v(z_{0},\dots,z_{n}) =\displaystyle= 1qq1p=0nδ(zpz)[κ+(z)r=p+1nG(zr/z)\displaystyle\frac{1}{q-q^{-1}}\sum_{p=0}^{n}\delta\left(\frac{z_{p}}{z}\right)\left[\kappa^{+}(z)\prod_{r=p+1}^{n}G^{-}(z_{r}/z)\right.
κ(z)r=p+1nG+(z/zr)]v(z0,,zp^,,zn),\displaystyle\qquad\qquad\qquad\qquad\qquad\qquad\qquad\left.-\kappa^{-}(z)\prod_{r=p+1}^{n}G^{+}(z/z_{r})\right]v(z_{0},\dots,\widehat{z_{p}},\dots,z_{n})\,,

where a hat over a variable indicates that that variable should be omitted. Combining (2.16) and (2.8), we get

𝐱1(z0)𝐱1+(z).v(z1,,zN)\displaystyle-{\bf x}_{1}^{-}(z_{0}){\bf x}_{1}^{+}(z).v(z_{1},\dots,z_{N}) =\displaystyle= [𝐱1+(z),𝐱1(z0)].v(z1,,zN)\displaystyle[{\bf x}_{1}^{+}(z),{\bf x}_{1}^{-}(z_{0})].v(z_{1},\dots,z_{N})
=\displaystyle= 1qq1δ(z0z)[κ+(z)p=1NG(zp/z)κ(z)p=1NG+(z/zp)]v(z1,,zN).\displaystyle\frac{1}{q-q^{-1}}\delta\left(\frac{z_{0}}{z}\right)\left[\kappa^{+}(z)\prod_{p=1}^{N}G^{-}(z_{p}/z)-\kappa^{-}(z)\prod_{p=1}^{N}G^{+}(z/z_{p})\right]v(z_{1},\dots,z_{N})\,.

Making use of (2.3) and (2.13), the above equation eventually yields

p=0Nδ(zpz)[κ+(zp)r=p+1NG(zr/zp)κ(zp)r=p+1NG+(zp/zr)]v(z0,,zp^,,zN)=0.\sum_{p=0}^{N}\delta\left(\frac{z_{p}}{z}\right)\left[\kappa^{+}(z_{p})\prod_{r=p+1}^{N}G^{-}(z_{r}/z_{p})-\kappa^{-}(z_{p})\prod_{r=p+1}^{N}G^{+}(z_{p}/z_{r})\right]v(z_{0},\dots,\widehat{z_{p}},\dots,z_{N})=0\,.

Acting on the l.h.s of the above equation with 𝐱1+(ζN)𝐱1+(ζ1){\bf x}_{1}^{+}(\zeta_{N})\cdots{\bf x}_{1}^{+}(\zeta_{1}) and making repeated use of (2.3), one easily shows that

σSN+1i=0Nδ(ziζσ(i))[κ+(zi)r=i+1σ(r)>σ(i)NG(zr/zi)κ(zi)r=i+1σ(r)>σ(i)NG+(zi/zr)]v=0.\sum_{\sigma\in S_{N+1}}\prod_{i=0}^{N}\delta\left(\frac{z_{i}}{\zeta_{\sigma(i)}}\right)\left[\kappa^{+}(z_{i})\prod_{\begin{subarray}{c}r=i+1\\ \sigma(r)>\sigma(i)\end{subarray}}^{N}G^{-}(z_{r}/z_{i})-\kappa^{-}(z_{i})\prod_{\begin{subarray}{c}r=i+1\\ \sigma(r)>\sigma(i)\end{subarray}}^{N}G^{+}(z_{i}/z_{r})\right]v=0\,. (2.18)

Since v0v\neq 0, its prefactor in the above equation must vanish. Now, it is clear that multiplication of the latter by j=0N1(z0ζj)\prod_{j=0}^{N-1}(z_{0}-\zeta_{j}) annihilates all the summands with σ\sigma such that σ(0)N\sigma(0)\neq N. Similarly, multiplication by i=01j=0N2(ziζj)\prod_{i=0}^{1}\prod_{j=0}^{N-2}(z_{i}-\zeta_{j}) annihilates all the summands with σ\sigma such that σ(0)N\sigma(0)\neq N and σ(1)N1\sigma(1)\neq N-1. Repeating the argument finitely many times, we arrive at the fact that multiplication by i=0Nj=0Ni1(ziζj)\prod_{i=0}^{N}\prod_{j=0}^{N-i-1}(z_{i}-\zeta_{j}) annihilates all the summands with σ(N,N1,,0)\sigma\neq(N,N-1,\dots,0), so that, eventually,

0=i=0Nδ(ziζNi)j=0Ni1(ziζj)[κ+(zi)κ(zi)]=i=0Nδ(ziζNi)j=0Ni1(zizNj)[κ+(zi)κ(zi)].0=\prod_{i=0}^{N}\delta\left(\frac{z_{i}}{\zeta_{N-i}}\right)\prod_{j=0}^{N-i-1}(z_{i}-\zeta_{j})\left[\kappa^{+}(z_{i})-\kappa^{-}(z_{i})\right]=\prod_{i=0}^{N}\delta\left(\frac{z_{i}}{\zeta_{N-i}}\right)\prod_{j=0}^{N-i-1}(z_{i}-z_{N-j})\left[\kappa^{+}(z_{i})-\kappa^{-}(z_{i})\right]\,.

Taking the zeroth order term in ζj\zeta_{j} for j=0,,Nj=0,\dots,N, we get

0\displaystyle 0 =\displaystyle= i=0Nj=i+1N(zizj)[κ+(zi)κ(zi)]\displaystyle\prod_{i=0}^{N}\prod_{j=i+1}^{N}(z_{i}-z_{j})\left[\kappa^{+}(z_{i})-\kappa^{-}(z_{i})\right]
=\displaystyle= |[κ+(z0)κ(z0)][κ+(z1)κ(z1)][κ+(zN)κ(zN)]z0[κ+(z0)κ(z0)]z1[κ+(z1)κ(z1)]zN[κ+(zN)κ(zN)]z0N1[κ+(z0)κ(z0)]z1N1[κ+(z1)κ(z1)]zNN1[κ+(zN)κ(zN)]|.\displaystyle\begin{vmatrix}\left[\kappa^{+}(z_{0})-\kappa^{-}(z_{0})\right]&\left[\kappa^{+}(z_{1})-\kappa^{-}(z_{1})\right]&\dots&\left[\kappa^{+}(z_{N})-\kappa^{-}(z_{N})\right]\\ z_{0}\left[\kappa^{+}(z_{0})-\kappa^{-}(z_{0})\right]&z_{1}\left[\kappa^{+}(z_{1})-\kappa^{-}(z_{1})\right]&\dots&z_{N}\left[\kappa^{+}(z_{N})-\kappa^{-}(z_{N})\right]\\ \vdots&\vdots&\dots&\vdots\\ z_{0}^{N-1}\left[\kappa^{+}(z_{0})-\kappa^{-}(z_{0})\right]&z_{1}^{N-1}\left[\kappa^{+}(z_{1})-\kappa^{-}(z_{1})\right]&\dots&z_{N}^{N-1}\left[\kappa^{+}(z_{N})-\kappa^{-}(z_{N})\right]\end{vmatrix}\,.

Hence, the rows of the matrix on the r.h.s. of the above equation are linearly dependent and it follows that there exists a P(z)𝔽[z]{0}P(z)\in\mathbb{F}[z]-\{0\} of degree at most N1N-1, such that

P(z)[κ+(z)κ(z)]=0.P(z)\left[\kappa^{+}(z)-\kappa^{-}(z)\right]=0\,. (2.19)

As a consequence, there clearly exists Q(z)𝔽[z]Q(z)\in\mathbb{F}[z] such that degQ=degP\deg Q=\deg P and

κ±(z)=(Q(z)P(z))|z|11.\kappa^{\pm}(z)=\left(\frac{Q(z)}{P(z)}\right)_{|z|^{\mp 1}\ll 1}\,.

Now considering (2.3) with n=0n=0 and multiplying it by P(z0)P(z_{0}) obviously yields

𝐱1+(z).P(z0)v(z0)=0.{\bf x}_{1}^{+}(z).P(z_{0})v(z_{0})=0\,. (2.20)

Set for very mm\in{\mathbb{Z}}, wm=resz0z01mP(z0)v(z0)w_{m}=\operatorname*{res}_{z_{0}}z_{0}^{-1-m}P(z_{0})v(z_{0}). Then, (2.20), together with (2.15) for n=1n=1, implies that

mU˙q(𝔞1).wm\bigoplus_{m\in{\mathbb{Z}}}\dot{\mathrm{U}}_{q}(\mathfrak{a}_{1}).w_{m}

is a strict submodule of the simple Uq(L𝔞1)\mathrm{U}_{q}(\mathrm{L}\mathfrak{a}_{1})-module MM and it follows that wm=0w_{m}=0 for every mm\in{\mathbb{Z}}. All the vectors in {vm:m}\left\{v_{m}:m\in{\mathbb{Z}}\right\} – see (2.14) – can therefore be expressed as linear combinations of the vectors in, say, {v1,,vdeg(P)}\left\{v_{1},\dots,v_{\deg(P)}\right\} and the linear span of {vm:m}\left\{v_{m}:m\in{\mathbb{Z}}\right\} turns out to be finite dimensional. Repeating that argument finitely many times for the linear spans of {vm1,,mp:m1,,mp}\left\{v_{m_{1},\dots,m_{p}}:m_{1},\dots,m_{p}\in{\mathbb{Z}}\right\} with p=1,,Np=1,\dots,N eventually concludes the proof. ∎

Corollary 2.12.

Let MM be a weight-finite simple highest (resp. lowest) \ell-weight Uq(L𝔞1)\mathrm{U}_{q}(\mathrm{L}\mathfrak{a}_{1})-module. Then ML(P)M\cong L(P) (resp. ML¯(P)M\cong\bar{L}(P)), for some monic polynomial PP.

Proof.

In the highest \ell-weight case, this follows directly by the previous theorem and the classification of the simple finite dimensional Uq(L𝔞1)\mathrm{U}_{q}(\mathrm{L}\mathfrak{a}_{1})-modules, theorem 2.5. In the lowest \ell-weight case, see proposition 2.6. ∎

3. Double quantum affinization of type 𝔞1\mathfrak{a}_{1}

3.1. Definition of U¨q(𝔞1)\ddot{\mathrm{U}}_{q}(\mathfrak{a}_{1})

Definition 3.1.

The double quantum affinization U¨q(𝔞1)\ddot{\mathrm{U}}_{q}(\mathfrak{a}_{1}) of type 𝔞1\mathfrak{a}_{1} is defined as the 𝔽\mathbb{F}-algebra generated by

{D1,D11,D2,D21,C1/2,C1/2,𝖼m+,𝖼m,𝖪1,0,m+,𝖪1,0,m,𝖪1,n,r+,𝖪1,n,r,𝖷1,r,s+,𝖷1,r,s:m,n×,r,s}\{{{\textsf{D}}}_{1},{{\textsf{D}}}_{1}^{-1},{{\textsf{D}}}_{2},{{\textsf{D}}}_{2}^{-1},{{\textsf{C}}}^{1/2},{{\textsf{C}}}^{-1/2},{\mathsf{c}}^{+}_{m},{\mathsf{c}}^{-}_{-m},{\mathsf{K}}^{+}_{1,0,m},{\mathsf{K}}^{-}_{1,0,-m},{\mathsf{K}}^{+}_{1,n,r},{\mathsf{K}}^{-}_{1,-n,r},{\mathsf{X}}_{1,r,s}^{+},{\mathsf{X}}_{1,r,s}^{-}:m\in{\mathbb{N}},n\in{\mathbb{N}}^{\times},r,s\in{\mathbb{Z}}\}

subject to the relations

C±1/2{{\textsf{C}}}^{\pm 1/2} and c±(z){\textbf{{c}}}^{\pm}(z) are central (3.1)
resv,w1vwc±(v)c(w)=1,\operatorname*{res}_{v,w}\frac{1}{vw}{\textbf{{c}}}^{\pm}(v){\textbf{{c}}}^{\mp}(w)=1\,, (3.2)
D1±1D11=1D2±1D21=1D1D2=D2D1{{\textsf{D}}}^{\pm 1}_{1}{{\textsf{D}}}^{\mp 1}_{1}=1\qquad{{\textsf{D}}}^{\pm 1}_{2}{{\textsf{D}}}^{\mp 1}_{2}=1\qquad{{\textsf{D}}}_{1}{{\textsf{D}}}_{2}={{\textsf{D}}}_{2}{{\textsf{D}}}_{1} (3.3)
D1K1,±m±(z)D11=q±mK1,±m±(z)D1X1,r±(z)D11=qrX1,r±(z),{{\textsf{D}}}_{1}{\textbf{{K}}}^{\pm}_{1,\pm m}(z){{\textsf{D}}}_{1}^{-1}=q^{\pm m}{\textbf{{K}}}^{\pm}_{1,\pm m}(z)\qquad{{\textsf{D}}}_{1}{\textbf{{X}}}_{1,r}^{\pm}(z){{\textsf{D}}}_{1}^{-1}=q^{r}{\textbf{{X}}}_{1,r}^{\pm}(z)\,, (3.4)
D2K1,±m±(z)D21=K1,±m±(zq1)D2X1,r±(z)D21=X1,r±(zq1),{{\textsf{D}}}_{2}{\textbf{{K}}}^{\pm}_{1,\pm m}(z){{\textsf{D}}}_{2}^{-1}={\textbf{{K}}}^{\pm}_{1,\pm m}(zq^{-1})\qquad{{\textsf{D}}}_{2}{\textbf{{X}}}_{1,r}^{\pm}(z){{\textsf{D}}}_{2}^{-1}={\textbf{{X}}}_{1,r}^{\pm}(zq^{-1})\,, (3.5)
resv,w1vwK1,0±(v)K1,0(w)=1,\operatorname*{res}_{v,w}\frac{1}{vw}{\textbf{{K}}}^{\pm}_{1,0}(v){\textbf{{K}}}^{\mp}_{1,0}(w)=1\,, (3.6)
(vq±2z)(vq2(mn1)z)K1,±m±(v)K1,±n±(z)=(vq±2z)(vq2q2(mn)z)K1,±n±(z)K1,±m±(v),(v-q^{\pm 2}z)(v-q^{2(m-n\mp 1)}z){\textbf{{K}}}^{\pm}_{1,\pm m}(v){\textbf{{K}}}^{\pm}_{1,\pm n}(z)=(vq^{\pm 2}-z)(vq^{\mp 2}-q^{2(m-n)}z){\textbf{{K}}}^{\pm}_{1,\pm n}(z){\textbf{{K}}}^{\pm}_{1,\pm m}(v)\,, (3.7)
(Cq2(1m)vw)(q2(n1)vCw)K1,m+(v)K1,n(w)=(Cq2mvq2w)(q2nvCq2w)K1,n(w)K1,m+(v),({{\textsf{C}}}q^{2(1-m)}v-w)(q^{2(n-1)}v-{{\textsf{C}}}w){\textbf{{K}}}^{+}_{1,m}(v){\textbf{{K}}}^{-}_{1,-n}(w)=({{\textsf{C}}}q^{-2m}v-q^{2}w)(q^{2n}v-{{\textsf{C}}}q^{-2}w){\textbf{{K}}}^{-}_{1,-n}(w){\textbf{{K}}}^{+}_{1,m}(v)\,, (3.8)
(vq±2z)K1,±m±(v)X1,r±(z)=(q±2vz)X1,r±(z)K1,±m±(v),(v-q^{\pm 2}z){\textbf{{K}}}^{\pm}_{1,\pm m}(v){\textbf{{X}}}_{1,r}^{\pm}(z)=(q^{\pm 2}v-z){\textbf{{X}}}_{1,r}^{\pm}(z){\textbf{{K}}}^{\pm}_{1,\pm m}(v)\,, (3.9)
(Cvq2(m1)z)K1,±m±(v)X1,r(z)=(Cq2vq2mz)X1,r(z)K1,±m±(v),({{\textsf{C}}}v-q^{2(m\mp 1)}z){\textbf{{K}}}^{\pm}_{1,\pm m}(v){\textbf{{X}}}_{1,r}^{\mp}(z)=({{\textsf{C}}}q^{\mp 2}v-q^{2m}z){\textbf{{X}}}_{1,r}^{\mp}(z){\textbf{{K}}}^{\pm}_{1,\pm m}(v)\,, (3.10)
(vq±2w)X1,r±(v)X1,s±(w)=(vq±2w)X1,s±(w)X1,r±(v),(v-q^{\pm 2}w){\textbf{{X}}}_{1,r}^{\pm}(v){\textbf{{X}}}_{1,s}^{\pm}(w)=(vq^{\pm 2}-w){\textbf{{X}}}_{1,s}^{\pm}(w){\textbf{{X}}}_{1,r}^{\pm}(v)\,, (3.11)
[X1,r+(v),X1,s(z)]\displaystyle[{\textbf{{X}}}_{1,r}^{+}(v),{\textbf{{X}}}_{1,s}^{-}(z)] =\displaystyle= 1qq1{δ(Cvq2(r+s)z)p=1|s|c(C1/2q(2p1)sign(s)1z)sign(s)K1,r+s+(v)\displaystyle\frac{1}{q-q^{-1}}\left\{\delta\left(\frac{{{\textsf{C}}}v}{q^{2(r+s)}z}\right)\prod_{p=1}^{|s|}{\textbf{{c}}}^{-}\left({{\textsf{C}}}^{-1/2}q^{\left(2p-1\right){\rm sign}(s)-1}z\right)^{-{\rm sign}(s)}{\textbf{{K}}}^{+}_{1,r+s}(v)\right. (3.12)
δ(C1vq2(r+s)z)p=1|r|c+(C1/2q(12p)sign(r)1v)sign(r)K1,r+s(z)},\displaystyle\left.-\delta\left(\frac{{{\textsf{C}}}^{-1}v}{q^{2(r+s)}z}\right)\prod_{p=1}^{|r|}{\textbf{{c}}}^{+}\left({{\textsf{C}}}^{-1/2}q^{\left(1-2p\right){\rm sign}(r)-1}v\right)^{{\rm sign}(r)}{\textbf{{K}}}^{-}_{1,r+s}(z)\right\}\,,

where m,nm,n\in{\mathbb{N}}, r,sr,s\in{\mathbb{Z}} and we have set

c±(z)=m𝖼±m±zm,{\textbf{{c}}}^{\pm}(z)=\sum_{m\in{\mathbb{N}}}{\mathsf{c}}^{\pm}_{\pm m}z^{\mp m}\,, (3.13)
K1,0±(z)=m𝖪1,0,±m±z±m,{\textbf{{K}}}^{\pm}_{1,0}(z)=\sum_{m\in{\mathbb{N}}}{\mathsf{K}}^{\pm}_{1,0,\pm m}z^{\pm m}\,, (3.14)

and, for every m×m\in{\mathbb{N}}^{\times} and rr\in{\mathbb{Z}},

K1,±m±(z)=s𝖪1,±m,s±zs,{\textbf{{K}}}^{\pm}_{1,\pm m}(z)=\sum_{s\in{\mathbb{Z}}}{\mathsf{K}}^{\pm}_{1,\pm m,s}z^{-s}\,, (3.15)
X1,r±(z)=s𝖷1,r,s±zs.{\textbf{{X}}}_{1,r}^{\pm}(z)=\sum_{s\in{\mathbb{Z}}}{\mathsf{X}}_{1,r,s}^{\pm}z^{-s}\,. (3.16)

In (3.12), we further assume that K1,m±(z)=0{\textbf{{K}}}^{\pm}_{1,\mp m}(z)=0 for every m×m\in{\mathbb{N}}^{\times}.

Definition 3.2.

We denote by U¨q(𝔞1)\ddot{\mathrm{U}}_{q}^{\prime}(\mathfrak{a}_{1}) the subalgebra of U¨q(𝔞1)\ddot{\mathrm{U}}_{q}(\mathfrak{a}_{1}) generated by

{D2,D21,C1/2,C1/2,𝖼m+,𝖼m,𝖪1,0,m+,𝖪1,0,m,𝖪1,n,r+,𝖪1,n,r,𝖷1,r,s+,𝖷1,r,s:m,n×,r,s},\{{{\textsf{D}}}_{2},{{\textsf{D}}}_{2}^{-1},{{\textsf{C}}}^{1/2},{{\textsf{C}}}^{-1/2},{\mathsf{c}}^{+}_{m},{\mathsf{c}}^{-}_{-m},{\mathsf{K}}^{+}_{1,0,m},{\mathsf{K}}^{-}_{1,0,-m},{\mathsf{K}}^{+}_{1,n,r},{\mathsf{K}}^{-}_{1,-n,r},{\mathsf{X}}_{1,r,s}^{+},{\mathsf{X}}_{1,r,s}^{-}:m\in{\mathbb{N}},n\in{\mathbb{N}}^{\times},r,s\in{\mathbb{Z}}\}\,,

i.e. the subalgebra generated by all the generators of U¨q(𝔞1)\ddot{\mathrm{U}}_{q}(\mathfrak{a}_{1}) except D1{{\textsf{D}}}_{1} and D11{{\textsf{D}}}_{1}^{-1}. We shall denote by

ȷ:U¨q(𝔞1)U¨q(𝔞1)\jmath:\ddot{\mathrm{U}}_{q}^{\prime}(\mathfrak{a}_{1})\hookrightarrow\ddot{\mathrm{U}}_{q}(\mathfrak{a}_{1})

the natural injective algebra homomorphism.

Definition 3.3.

We denote by U¨q0(𝔞1)\ddot{\mathrm{U}}_{q}^{0}(\mathfrak{a}_{1}) the subalgebra of U¨q(𝔞1)\ddot{\mathrm{U}}_{q}(\mathfrak{a}_{1}) generated by

{C1/2,C1/2,𝖼m+,𝖼m,𝖪1,0,m+,𝖪1,0,m,𝖪1,n,r+,𝖪1,n,r:m,n×,r}\left\{{{\textsf{C}}}^{1/2},{{\textsf{C}}}^{-1/2},{\mathsf{c}}^{+}_{m},{\mathsf{c}}^{-}_{-m},{\mathsf{K}}^{+}_{1,0,m},{\mathsf{K}}^{-}_{1,0,-m},{\mathsf{K}}^{+}_{1,n,r},{\mathsf{K}}^{-}_{1,-n,r}:m\in{\mathbb{N}},n\in{\mathbb{N}}^{\times},r\in{\mathbb{Z}}\right\}

and by U¨q0,0(𝔞1)\ddot{\mathrm{U}}_{q}^{0,0}(\mathfrak{a}_{1}) the subalgebra of U¨q0(𝔞1)\ddot{\mathrm{U}}_{q}^{0}(\mathfrak{a}_{1}) generated by

{C1/2,C1/2,𝖼m+,𝖼m,𝖪1,0,m+,𝖪1,0,m:m}.\left\{{{\textsf{C}}}^{1/2},{{\textsf{C}}}^{-1/2},{\mathsf{c}}^{+}_{m},{\mathsf{c}}^{-}_{-m},{\mathsf{K}}^{+}_{1,0,m},{\mathsf{K}}^{-}_{1,0,-m}:m\in{\mathbb{N}}\right\}\,.

Similarly, we denote by U¨q±(𝔞1)\ddot{\mathrm{U}}_{q}^{\pm}(\mathfrak{a}_{1}) the subalgebra of U¨q(𝔞1)\ddot{\mathrm{U}}_{q}(\mathfrak{a}_{1}) generated by {𝖷1,r,s±:r,s}\left\{{\mathsf{X}}_{1,r,s}^{\pm}:r,s\in{\mathbb{Z}}\right\}. We eventually denote by U¨q(𝔞1)\ddot{\mathrm{U}}_{q}^{\geq}(\mathfrak{a}_{1}) (resp. U¨q(𝔞1)\ddot{\mathrm{U}}_{q}^{\leq}(\mathfrak{a}_{1})) the subalgebra of U¨q(𝔞1)\ddot{\mathrm{U}}_{q}(\mathfrak{a}_{1}) generated by

{C1/2,C1/2,𝖼m+,𝖼m,𝖪1,0,m+,𝖪1,0,m,𝖪1,n,r+,𝖪1,n,r,𝖷1,r,s+:m,n×,r,s}\left\{{{\textsf{C}}}^{1/2},{{\textsf{C}}}^{-1/2},{\mathsf{c}}^{+}_{m},{\mathsf{c}}^{-}_{-m},{\mathsf{K}}^{+}_{1,0,m},{\mathsf{K}}^{-}_{1,0,-m},{\mathsf{K}}^{+}_{1,n,r},{\mathsf{K}}^{-}_{1,-n,r},{\mathsf{X}}_{1,r,s}^{+}:m\in{\mathbb{N}},n\in{\mathbb{N}}^{\times},r,s\in{\mathbb{Z}}\right\}

(resp.

{C1/2,C1/2,𝖼m+,𝖼m,𝖪1,0,m+,𝖪1,0,m,𝖪1,n,r+,𝖪1,n,r,𝖷1,r,s:m,n×,r,s}\left\{{{\textsf{C}}}^{1/2},{{\textsf{C}}}^{-1/2},{\mathsf{c}}^{+}_{m},{\mathsf{c}}^{-}_{-m},{\mathsf{K}}^{+}_{1,0,m},{\mathsf{K}}^{-}_{1,0,-m},{\mathsf{K}}^{+}_{1,n,r},{\mathsf{K}}^{-}_{1,-n,r},{\mathsf{X}}_{1,r,s}^{-}:m\in{\mathbb{N}},n\in{\mathbb{N}}^{\times},r,s\in{\mathbb{Z}}\right\}

)

Remark 3.4.

Obviously, U¨q±(𝔞1)\ddot{\mathrm{U}}_{q}^{\pm}(\mathfrak{a}_{1}) is graded over Q±Q^{\pm} whereas U¨q(𝔞1)\ddot{\mathrm{U}}_{q}(\mathfrak{a}_{1}) is graded over the root lattice QQ of 𝔞1\mathfrak{a}_{1}. U¨q(𝔞1)\ddot{\mathrm{U}}_{q}(\mathfrak{a}_{1}) is also graded over 2=(1)×(2){\mathbb{Z}}^{2}={\mathbb{Z}}_{(1)}\times{\mathbb{Z}}_{(2)};

U¨q(𝔞1)=(n1,n2)2U¨q(𝔞1)(n1,n2),\ddot{\mathrm{U}}_{q}(\mathfrak{a}_{1})=\bigoplus_{(n_{1},n_{2})\in{\mathbb{Z}}^{2}}\ddot{\mathrm{U}}_{q}(\mathfrak{a}_{1})_{(n_{1},n_{2})}\,,

where, for every (n1,n2)2(n_{1},n_{2})\in{\mathbb{Z}}^{2}, we let

U¨q(𝔞1)(n1,n2)={xU¨q(𝔞1):D1xD11=qn1x,D2xD21=qn2x}.\ddot{\mathrm{U}}_{q}(\mathfrak{a}_{1})_{(n_{1},n_{2})}=\left\{x\in\ddot{\mathrm{U}}_{q}(\mathfrak{a}_{1}):{{\textsf{D}}}_{1}x{{\textsf{D}}}_{1}^{-1}=q^{n_{1}}x,\quad{{\textsf{D}}}_{2}x{{\textsf{D}}}_{2}^{-1}=q^{n_{2}}x\right\}\,.
Proposition 3.5.

The set {C1/2,C1/2,𝖪1,0,m+,𝖪1,0,m:m}\left\{{{\textsf{C}}}^{1/2},{{\textsf{C}}}^{-1/2},{\mathsf{K}}^{+}_{1,0,m},{\mathsf{K}}^{-}_{1,0,-m}:m\in{\mathbb{N}}\right\} generates a subalgebra of U¨q0,0(𝔞1)\ddot{\mathrm{U}}_{q}^{0,0}(\mathfrak{a}_{1}) that is isomorphic to U˙q0(𝔞1)\dot{\mathrm{U}}_{q}^{0}(\mathfrak{a}_{1}).

Proof.

This can be directly checked from the defining relations. Otherwise, it suffices to observe that the algebra isomorphism Ψ^:U˙^q(𝔞˙1)U¨q(𝔞1)^\widehat{\Psi}:\widehat{\dot{\mathrm{U}}}_{q}(\dot{\mathfrak{a}}_{1})\to\widehat{\ddot{\mathrm{U}}_{q}^{\prime}(\mathfrak{a}_{1})} – see theorem 3.22 – restricts on that set to

Ψ^(C±1/2)=C±1/2andΨ^(𝐤1±(z))=K1,0(C1/2z).\widehat{\Psi}(C^{\pm 1/2})={{\textsf{C}}}^{\pm 1/2}\qquad\mbox{and}\qquad\widehat{\Psi}({\bf k}_{1}^{\pm}(z))=-{\textbf{{K}}}^{\mp}_{1,0}({{\textsf{C}}}^{-1/2}z)\,.

3.2. U¨q(𝔞1)\ddot{\mathrm{U}}_{q}(\mathfrak{a}_{1}) as a topological algebra

Because of relation (3.12), the definition of U¨q(𝔞1)\ddot{\mathrm{U}}_{q}(\mathfrak{a}_{1}) is not purely algebraic. Indeed, the r.h.s. of (3.12) involves two infinite series. One way to make sense of that relation is to equip U¨q(𝔞1)\ddot{\mathrm{U}}_{q}(\mathfrak{a}_{1}) – and, for later use, its tensor powers – with a topology, such that both series be convergent in the corresponding completion U¨q(𝔞1)^\widehat{\ddot{\mathrm{U}}_{q}(\mathfrak{a}_{1})} of U¨q(𝔞1)\ddot{\mathrm{U}}_{q}(\mathfrak{a}_{1}). Making use of the natural (2){\mathbb{Z}}_{(2)}-grading of the tensor algebras U¨q(𝔞1)m\ddot{\mathrm{U}}_{q}(\mathfrak{a}_{1})^{\otimes m}, m×m\in{\mathbb{N}}^{\times}, we let, for every nn\in{\mathbb{N}},

Ω˙n(m):=rnsnU¨q(𝔞1)m(U¨q(𝔞1)m)rU¨q(𝔞1)m(U¨q(𝔞1)m)sU¨q(𝔞1)m.\dot{\Omega}_{n}^{(m)}:=\bigoplus_{\begin{subarray}{c}r\geq n\\ s\geq n\end{subarray}}\ddot{\mathrm{U}}_{q}(\mathfrak{a}_{1})^{\otimes m}\cdot\left(\ddot{\mathrm{U}}_{q}(\mathfrak{a}_{1})^{\otimes m}\right)_{-r}\cdot\ddot{\mathrm{U}}_{q}(\mathfrak{a}_{1})^{\otimes m}\cdot\left(\ddot{\mathrm{U}}_{q}(\mathfrak{a}_{1})^{\otimes m}\right)_{s}\cdot\ddot{\mathrm{U}}_{q}(\mathfrak{a}_{1})^{\otimes m}\,.

One easily checks that

Proposition 3.6.

The following hold true for every m×m\in{\mathbb{N}}^{\times}:

  1. i.

    For every nn\in{\mathbb{N}}, Ω˙n(m)\dot{\Omega}_{n}^{(m)} is a two-sided ideal of U¨q(𝔞1)\ddot{\mathrm{U}}_{q}({\mathfrak{a}}_{1});

  2. ii.

    For every nn\in{\mathbb{N}}, Ω˙n(m)Ω˙n+1(m)\dot{\Omega}_{n}^{(m)}\supseteq\dot{\Omega}_{n+1}^{(m)};

  3. iii.

    Ω˙0(m):=nΩ˙n(m)=U¨q(𝔞1)\dot{\Omega}_{0}^{(m)}:=\bigcup_{n\in{\mathbb{N}}}\dot{\Omega}_{n}^{(m)}=\ddot{\mathrm{U}}_{q}({\mathfrak{a}}_{1});

  4. iv.

    nΩ˙n(m)={0}\bigcap_{n\in{\mathbb{N}}}\dot{\Omega}_{n}^{(m)}=\{0\};

  5. v.

    For every n,pn,p\in{\mathbb{N}}, Ω˙n(m)+Ω˙p(m)Ω˙min(n,p)\dot{\Omega}_{n}^{(m)}+\dot{\Omega}_{p}^{(m)}\subseteq\dot{\Omega}_{\min(n,p)};

  6. vi.

    For every n,pn,p\in{\mathbb{N}}, Ω˙n(m)Ω˙p(m)Ω˙max(n,p)\dot{\Omega}_{n}^{(m)}\cdot\dot{\Omega}_{p}^{(m)}\subseteq\dot{\Omega}_{\max(n,p)}.

Proof.

See [MZ19] for a proof in the U˙q(𝔞˙1)\dot{\mathrm{U}}_{q}(\dot{\mathfrak{a}}_{1}) case that can be transposed to the present situation. ∎

Definition-Proposition 3.7.

We endow U¨q(𝔞1)\ddot{\mathrm{U}}_{q}({\mathfrak{a}}_{1}) with the topology τ\tau whose open sets are either \emptyset or nonempty subsets 𝒪U¨q(𝔞1)\mathcal{O}\subseteq\ddot{\mathrm{U}}_{q}({\mathfrak{a}}_{1}) such that for every x𝒪x\in\mathcal{O}, x+Ω˙n𝒪x+\dot{\Omega}_{n}\subseteq\mathcal{O} for some nn\in{\mathbb{N}}. Similarly, we endow each tensor power U¨q(𝔞1)m2\ddot{\mathrm{U}}_{q}({\mathfrak{a}}_{1})^{\otimes m\geq 2} with the topology induced by {Ω˙n(m):n}\{\dot{\Omega}_{n}^{(m)}:n\in{\mathbb{N}}\}. These turn U¨q(𝔞1)\ddot{\mathrm{U}}_{q}({\mathfrak{a}}_{1}) into a (separated) topological algebra. We then let U¨q(𝔞1)^\widehat{\ddot{\mathrm{U}}_{q}({\mathfrak{a}}_{1})} denote its completion and we extend by continuity to U¨q(𝔞1)^\widehat{\ddot{\mathrm{U}}_{q}({\mathfrak{a}}_{1})} all the (anti)-automorphisms defined over U¨q(𝔞1)\ddot{\mathrm{U}}_{q}({\mathfrak{a}}_{1}) and its subalgebras in the previous section In particular, we extend ȷ:U¨q(𝔞1)U¨q(𝔞1)\jmath:{\ddot{\mathrm{U}}_{q}^{\prime}(\mathfrak{a}_{1})}\hookrightarrow\ddot{\mathrm{U}}_{q}(\mathfrak{a}_{1}) into

ȷ^:U¨q(𝔞1)^U¨q(𝔞1)^.\widehat{\jmath}:\widehat{\ddot{\mathrm{U}}_{q}^{\prime}(\mathfrak{a}_{1})}\hookrightarrow\widehat{\ddot{\mathrm{U}}_{q}(\mathfrak{a}_{1})}\,.

Similarly, we denote with a hat the completion of any subalgebra of U¨q(𝔞1)^\widehat{\ddot{\mathrm{U}}_{q}(\mathfrak{a}_{1})}, like e.g. U¨q(𝔞1)^\widehat{\ddot{\mathrm{U}}_{q}^{-}(\mathfrak{a}_{1})}, U¨q0(𝔞1)^\widehat{\ddot{\mathrm{U}}_{q}^{0}(\mathfrak{a}_{1})} and U¨q+(𝔞1)^\widehat{\ddot{\mathrm{U}}_{q}^{+}(\mathfrak{a}_{1})}. We eventually denote by U¨q(𝔞1)^m2\ddot{\mathrm{U}}_{q}({\mathfrak{a}}_{1})^{\widehat{\otimes}m\geq 2} the corresponding completions of U¨q(𝔞1)m2\ddot{\mathrm{U}}_{q}({\mathfrak{a}}_{1})^{\otimes m\geq 2}.

Proof.

This was proven in [MZ19]. ∎

Remark 3.8.

As was noted in [MZ19], the above defined topology is actually ultrametrizable.

3.3. The double quantum loop algebra

An alternative way to make sense of relations (3.12) consists in observing that U¨q(𝔞1)\ddot{\mathrm{U}}_{q}(\mathfrak{a}_{1}) is proalgebraic. Indeed, for every NN\in{\mathbb{N}}, let U¨q(𝔞1)(N)\ddot{\mathrm{U}}_{q}(\mathfrak{a}_{1})^{(N)} be the 𝔽\mathbb{F}-algebra generated by

{C1/2,C1/2,𝖼n+,𝖼n,𝖪1,0,m+,𝖪1,0,m,𝖪1,p,r+,𝖪1,p,r,𝖷1,r,s+,𝖷1,r,s:m,n0,N,p×,r,s}\{{{\textsf{C}}}^{1/2},{{\textsf{C}}}^{-1/2},{\mathsf{c}}^{+}_{n},{\mathsf{c}}^{-}_{-n},{\mathsf{K}}^{+}_{1,0,m},{\mathsf{K}}^{-}_{1,0,-m},{\mathsf{K}}^{+}_{1,p,r},{\mathsf{K}}^{-}_{1,-p,r},{\mathsf{X}}_{1,r,s}^{+},{\mathsf{X}}_{1,r,s}^{-}:m\in{\mathbb{N}},n\in\llbracket 0,N\rrbracket,p\in{\mathbb{N}}^{\times},r,s\in{\mathbb{Z}}\}

subject to relations ((3.1) – (3.12)), where, this time,

c±(z)=m=0N𝖼±m±zm.{\textbf{{c}}}^{\pm}(z)=\sum_{m=0}^{N}{\mathsf{c}}^{\pm}_{\pm m}z^{\mp m}\,. (3.17)

Now clearly, each U¨q(𝔞1)(N)\ddot{\mathrm{U}}_{q}(\mathfrak{a}_{1})^{(N)} is algebraic since the sums on the r.h.s. of (3.12) are both finite – whenever c±(z)1{\textbf{{c}}}^{\pm}(z)^{-1} is involved, just multiply through by c±(z){\textbf{{c}}}^{\pm}(z) to get an equivalent algebraic relation. Moreover, letting N\mathcal{I}_{N} be the two-sided ideal of U¨q(𝔞1)(N)\ddot{\mathrm{U}}_{q}(\mathfrak{a}_{1})^{(N)} generated by {𝖼N+,𝖼N}\{{\mathsf{c}}^{+}_{N},{\mathsf{c}}^{-}_{-N}\} (resp. {𝖼0+1,𝖼01}\{{\mathsf{c}}^{+}_{0}-1,{\mathsf{c}}^{-}_{0}-1\}) for every N>1N>1 (resp. for N=0N=0), we obviously have a surjective algebra homomorphism

U¨q(𝔞1)(N)U¨q(𝔞1)(N1)U¨q(𝔞1)(N)N\ddot{\mathrm{U}}_{q}(\mathfrak{a}_{1})^{(N)}\longrightarrow\ddot{\mathrm{U}}_{q}(\mathfrak{a}_{1})^{(N-1)}\cong\frac{\ddot{\mathrm{U}}_{q}(\mathfrak{a}_{1})^{(N)}}{\mathcal{I}_{N}} (3.18)

and we can define U¨q(𝔞1)\ddot{\mathrm{U}}_{q}(\mathfrak{a}_{1}) as the inverse limit

U¨q(𝔞1)=limU¨q(𝔞1)(N)\ddot{\mathrm{U}}_{q}(\mathfrak{a}_{1})=\lim_{\longleftarrow}\ddot{\mathrm{U}}_{q}(\mathfrak{a}_{1})^{(N)}

of the system of algebras

U¨q(𝔞1)(N)U¨q(𝔞1)(N1)U¨q(𝔞1)(0)U¨q(𝔞1)(1).\cdots\longrightarrow\ddot{\mathrm{U}}_{q}(\mathfrak{a}_{1})^{(N)}\longrightarrow\ddot{\mathrm{U}}_{q}(\mathfrak{a}_{1})^{(N-1)}\longrightarrow\cdots\longrightarrow\ddot{\mathrm{U}}_{q}(\mathfrak{a}_{1})^{(0)}\longrightarrow\ddot{\mathrm{U}}_{q}(\mathfrak{a}_{1})^{(-1)}\,.
Definition 3.9.

We shall refer to the quotient of U¨q(𝔞1)(1)\ddot{\mathrm{U}}_{q}(\mathfrak{a}_{1})^{(-1)} by the two-sided ideal generated by {C1/21}\left\{{{\textsf{C}}}^{1/2}-1\right\} as the double quantum loop algebra of type 𝔞1\mathfrak{a}_{1} and denote it by L¨q(𝔞1)\ddot{\mathrm{L}}_{q}(\mathfrak{a}_{1}). Correspondingly, we denote by L¨q±(𝔞1)\ddot{\mathrm{L}}_{q}^{\pm}(\mathfrak{a}_{1}) and L¨q0(𝔞1)\ddot{\mathrm{L}}_{q}^{0}(\mathfrak{a}_{1}), the subalgebras of L¨q(𝔞1)\ddot{\mathrm{L}}_{q}(\mathfrak{a}_{1}) respectively generated by {𝖷1,r,s±:r,s}\left\{{\mathsf{X}}_{1,r,s}^{\pm}:r,s\in{\mathbb{Z}}\right\} and

{𝖪1,0,m+,𝖪1,0,m,𝖪1,n,r+,𝖪1,n,r:m,n×,r}.\left\{{\mathsf{K}}^{+}_{1,0,m},{\mathsf{K}}^{-}_{1,0,-m},{\mathsf{K}}^{+}_{1,n,r},{\mathsf{K}}^{-}_{1,-n,r}:m\in{\mathbb{N}},n\in{\mathbb{N}}^{\times},r\in{\mathbb{Z}}\right\}\,.

We denote by L¨q0,0(𝔞1)\ddot{\mathrm{L}}_{q}^{0,0}(\mathfrak{a}_{1}) the subalgebra of L¨q0(𝔞1)\ddot{\mathrm{L}}_{q}^{0}(\mathfrak{a}_{1}) generated by

{𝖪1,0,m+,𝖪1,0,m:m}.\left\{{\mathsf{K}}^{+}_{1,0,m},{\mathsf{K}}^{-}_{1,0,-m}:m\in{\mathbb{N}}\right\}\,.

It is worth emphasizing that L¨q0,0(𝔞1)\ddot{\mathrm{L}}_{q}^{0,0}(\mathfrak{a}_{1}) is abelian.

3.4. Triangular decomposition of U¨q(𝔞1)^\widehat{\ddot{\mathrm{U}}_{q}^{\prime}(\mathfrak{a}_{1})}

In [MZ19], we proved that U¨q(𝔞1)^\widehat{\ddot{\mathrm{U}}_{q}^{\prime}(\mathfrak{a}_{1})} has a triangular decomposition in the following sense.

Definition 3.10.

Let AA be a complete topological algebra with closed subalgebras A±A^{\pm} and A0A^{0}. We shall say that (A,A0,A+)(A^{-},A^{0},A^{+}) is a triangular decomposition of AA if the multiplication induces a bicontinuous isomorphism of vector spaces A^A0^A+AA^{-}\widehat{\otimes}A^{0}\widehat{\otimes}A^{+}\stackrel{{\scriptstyle\sim}}{{\rightarrow}}A.

Recalling the definitions of U¨q±(𝔞1)\ddot{\mathrm{U}}_{q}^{\pm}(\mathfrak{a}_{1}) and U¨q0(𝔞1)\ddot{\mathrm{U}}_{q}^{0}(\mathfrak{a}_{1}) from definition 3.1, we have

Proposition 3.11.

(U¨q(𝔞1),U¨q0(𝔞1),U¨q+(𝔞1))(\ddot{\mathrm{U}}_{q}^{-}(\mathfrak{a}_{1}),\ddot{\mathrm{U}}_{q}^{0}(\mathfrak{a}_{1}),\ddot{\mathrm{U}}_{q}^{+}(\mathfrak{a}_{1})) is a triangular decomposition of U¨q(𝔞1)^\widehat{\ddot{\mathrm{U}}_{q}^{\prime}(\mathfrak{a}_{1})} and U¨q±(𝔞1)\ddot{\mathrm{U}}_{q}^{\pm}(\mathfrak{a}_{1}) is bicontinuously isomorphic to the algebra generated by {𝖷1,r,s±:r,s}\{{\mathsf{X}}_{1,r,s}^{\pm}:r,s\in{\mathbb{Z}}\} subject to relation (3.11).

Proof.

See [MZ19].∎

3.5. The closed subalgebra U¨q0(𝔞1)^\widehat{\ddot{\mathrm{U}}_{q}^{0}({\mathfrak{a}}_{1})} as a topological Hopf algebra

Definition 3.12.

In U¨q0(𝔞1)^\widehat{\ddot{\mathrm{U}}_{q}^{0}(\mathfrak{a}_{1})}, we define

p±(z)=m𝗉±m±zm=c±(z)K1,0(C1/2z)1K1,0(C1/2zq2){\textbf{{p}}}^{\pm}(z)=\sum_{m\in{\mathbb{N}}}{\mathsf{p}}^{\pm}_{\pm m}z^{\mp m}={\textbf{{c}}}^{\pm}(z){\textbf{{K}}}^{\mp}_{1,0}({{\textsf{C}}}^{-1/2}z)^{-1}{\textbf{{K}}}^{\mp}_{1,0}({{\textsf{C}}}^{-1/2}zq^{2}) (3.19)

and for every m×m\in{\mathbb{N}}^{\times},

t1,m+(z)=n𝗍1,m,n+zn=1qq1K1,0+(zq2m)1K1,m+(z),{\textbf{{t}}}^{+}_{1,m}(z)=\sum_{n\in{\mathbb{N}}}{\mathsf{t}}^{+}_{1,m,n}z^{-n}=-\frac{1}{q-q^{-1}}{\textbf{{K}}}^{+}_{1,0}(zq^{-2m})^{-1}{\textbf{{K}}}^{+}_{1,m}(z)\,, (3.20)
t1,m(z)=n𝗍1,m,nzn=1qq1K1,m(z)K1,0(zq2m)1.{\textbf{{t}}}^{-}_{1,-m}(z)=\sum_{n\in{\mathbb{N}}}{\mathsf{t}}^{-}_{1,-m,n}z^{n}=\frac{1}{q-q^{-1}}{\textbf{{K}}}^{-}_{1,-m}(z){\textbf{{K}}}^{-}_{1,0}(zq^{-2m})^{-1}\,. (3.21)

Then, we let U¨q0+(𝔞1){\ddot{\mathrm{U}}_{q}^{0^{+}}(\mathfrak{a}_{1})} be the subalgebra of U¨q0(𝔞1)^\widehat{\ddot{\mathrm{U}}_{q}^{0}(\mathfrak{a}_{1})} generated by

{C1/2,C1/2,𝗉m+,𝗉m,𝗍1,p,n+,𝗍1,p,n:m,n,p×}.\{{{\textsf{C}}}^{1/2},{{\textsf{C}}}^{-1/2},{\mathsf{p}}^{+}_{m},{\mathsf{p}}^{-}_{-m},{\mathsf{t}}^{+}_{1,p,n},{\mathsf{t}}^{-}_{1,-p,n}:m\in{\mathbb{N}},n\in{\mathbb{Z}},p\in{\mathbb{N}}^{\times}\}\,.

and we let U¨q0+(𝔞1)^\widehat{\ddot{\mathrm{U}}_{q}^{0^{+}}(\mathfrak{a}_{1})} be its completion in the inherited topology.

Clearly, the closed subalgebra U¨q0(𝔞1)^\widehat{\ddot{\mathrm{U}}_{q}^{0}(\mathfrak{a}_{1})} can be presented as in definition 3.3 or, equivalently, in terms of the generators in

{C1/2,C1/2,𝖼m+,𝖼m,𝗉m+,𝗉m,𝗍1,p,n+,𝗍1,p,n:m,n,p×}.\{{{\textsf{C}}}^{1/2},{{\textsf{C}}}^{-1/2},{\mathsf{c}}^{+}_{m},{\mathsf{c}}^{-}_{-m},{\mathsf{p}}^{+}_{m},{\mathsf{p}}^{-}_{-m},{\mathsf{t}}^{+}_{1,p,n},{\mathsf{t}}^{-}_{1,-p,n}:m\in{\mathbb{N}},n\in{\mathbb{Z}},p\in{\mathbb{N}}^{\times}\}\,.

In section 3.10, we will endow U¨q(𝔞1)^\widehat{\ddot{\mathrm{U}}_{q}^{\prime}(\mathfrak{a}_{1})} with a topological Hopf algebraic structure. It turns out that, for that structure, the closed subalgebra U¨q0(𝔞1)^\widehat{\ddot{\mathrm{U}}_{q}^{0}({\mathfrak{a}}_{1})} is not a closed Hopf subalgebra of U¨q(𝔞1)^\widehat{\ddot{\mathrm{U}}_{q}(\mathfrak{a}_{1})}. However, it is possible to endow U¨q0(𝔞1)^\widehat{\ddot{\mathrm{U}}_{q}^{0}(\mathfrak{a}_{1})} with its own topological Hopf algebraic structure as follows.

Definition-Proposition 3.13.

We endow U¨q0(𝔞1)^\widehat{\ddot{\mathrm{U}}_{q}^{0}({\mathfrak{a}}_{1})} with:

  1. i.

    the comultiplication Δ0:U¨^q0(𝔞1)U¨q0(𝔞1)^U¨q0(𝔞1)\Delta^{0}:\widehat{\ddot{\mathrm{U}}}_{q}^{0}({\mathfrak{a}}_{1})\to\ddot{\mathrm{U}}_{q}^{0}({\mathfrak{a}}_{1})\widehat{\otimes}\ddot{\mathrm{U}}_{q}^{0}({\mathfrak{a}}_{1}) defined by

    Δ0(C±1/2)=C±1/2C±1/2\Delta^{0}({{\textsf{C}}}^{\pm 1/2})={{\textsf{C}}}^{\pm 1/2}\otimes{{\textsf{C}}}^{\pm 1/2} (3.22)
    Δ0(c±(z))=c±(zC(2)±1/2)c±(zC(1)1/2),\Delta^{0}({\textbf{{c}}}^{\pm}(z))={\textbf{{c}}}^{\pm}(z{{\textsf{C}}}_{(2)}^{\pm 1/2})\otimes{\textbf{{c}}}^{\pm}(z{{\textsf{C}}}_{(1)}^{\mp 1/2})\,, (3.23)
    Δ0(p±(z))=p±(zC(2)±1/2)p±(zC(1)1/2),\Delta^{0}({\textbf{{p}}}^{\pm}(z))={\textbf{{p}}}^{\pm}(z{{\textsf{C}}}_{(2)}^{\pm 1/2})\otimes{\textbf{{p}}}^{\pm}(z{{\textsf{C}}}_{(1)}^{\mp 1/2})\,, (3.24)
    Δ0(t1,m+(z))\displaystyle\Delta^{0}({\textbf{{t}}}^{+}_{1,m}(z)) =\displaystyle= t1,m+(z)1+k=1mp(zq2kC(1)1/2)^t1,m+(zC(1))\displaystyle{\textbf{{t}}}^{+}_{1,m}(z)\otimes 1+\prod_{k=1}^{m}{\textbf{{p}}}^{-}(zq^{-2k}{{\textsf{C}}}_{(1)}^{1/2})\widehat{\otimes}{\textbf{{t}}}^{+}_{1,m}(z{{\textsf{C}}}_{(1)}) (3.25)
    (qq1)k=1m1l=k+1mp(zq2lC(1)1/2)t1,k+(z)^t1,mk+(zq2kC(1)),\displaystyle-(q-q^{-1})\sum_{k=1}^{m-1}\prod_{l=k+1}^{m}{\textbf{{p}}}^{-}(zq^{-2l}{{\textsf{C}}}_{(1)}^{1/2}){\textbf{{t}}}^{+}_{1,k}(z)\widehat{\otimes}{\textbf{{t}}}^{+}_{1,m-k}(zq^{-2k}{{\textsf{C}}}_{(1)})\,,
    Δ0(t1,m(z))\displaystyle\Delta^{0}({\textbf{{t}}}^{-}_{1,-m}(z)) =\displaystyle= t1,m(zC(2))^k=1mp+(zq2kC(2)1/2)+1t1,m(z)\displaystyle{\textbf{{t}}}^{-}_{1,-m}(z{{\textsf{C}}}_{(2)})\widehat{\otimes}\prod_{k=1}^{m}{\textbf{{p}}}^{+}(zq^{-2k}{{\textsf{C}}}_{(2)}^{1/2})+1\otimes{\textbf{{t}}}^{-}_{1,-m}(z) (3.26)
    +(qq1)k=1m1t1,(mk)(zq2kC(2))^t1,m(z)l=+1mp+(zq2lC(2)1/2),\displaystyle+(q-q^{-1})\sum_{k=1}^{m-1}{\textbf{{t}}}^{-}_{1,-(m-k)}(zq^{-2k}{{\textsf{C}}}_{(2)})\widehat{\otimes}{\textbf{{t}}}^{-}_{1,-m}(z)\prod_{l=+1}^{m}{\textbf{{p}}}^{+}(zq^{-2l}{{\textsf{C}}}_{(2)}^{1/2})\,,

    for every mm\in{\mathbb{N}}, where C(1)±1/2=C±1/21{{\textsf{C}}}_{(1)}^{\pm 1/2}={{\textsf{C}}}^{\pm 1/2}\otimes 1 and C(2)±1/2=1C±1/2{{\textsf{C}}}_{(2)}^{\pm 1/2}=1\otimes{{\textsf{C}}}^{\pm 1/2},

  2. ii.

    the counit ε(C)=ε0(c±(z))=ε0(p±(z))=1\varepsilon({{\textsf{C}}})=\varepsilon^{0}({\textbf{{c}}}^{\pm}(z))=\varepsilon^{0}({\textbf{{p}}}^{\pm}(z))=1, ε0(t1,±m±(z))=0\varepsilon^{0}({\textbf{{t}}}^{\pm}_{1,\pm m}(z))=0, for every mm\in{\mathbb{N}},

  3. iii.

    and the antipode defined by

    S0(C±1/2)=C1/2,S^{0}({{\textsf{C}}}^{\pm 1/2})={{\textsf{C}}}^{\mp 1/2}\,, (3.27)
    S0(c±(z))=c±(z)1,S^{0}({\textbf{{c}}}^{\pm}(z))={\textbf{{c}}}^{\pm}(z)^{-1}\,, (3.28)
    S0(p±(z))=p±(z)1,S^{0}({\textbf{{p}}}^{\pm}(z))={\textbf{{p}}}^{\pm}(z)^{-1}\,, (3.29)
    S0(t1,m+(z))=k=1mp(zq2kC1/2)1n=1mλCn(m)(1)n1cm,λt1,λ+(zC1),S^{0}({\textbf{{t}}}^{+}_{1,m}(z))=-\prod_{k=1}^{m}{\textbf{{p}}}^{-}(zq^{-2k}{{\textsf{C}}}^{-1/2})^{-1}\sum_{n=1}^{m}\sum_{\lambda\in C_{n}(m)}(-1)^{n-1}c_{m,\lambda}{\textbf{{t}}}^{+}_{1,\lambda}(z{{\textsf{C}}}^{-1})\,, (3.30)
    S0(t1,m(z))=n=1mλCn(m)cm,λt1,λ(zC1)k=1mp+(zq2k)1,S^{0}({\textbf{{t}}}^{-}_{1,-m}(z))=-\sum_{n=1}^{m}\sum_{\lambda\in C_{n}(m)}c_{m,\lambda}{\textbf{{t}}}^{-}_{1,-\lambda}(z{{\textsf{C}}}^{-1})\prod_{k=1}^{m}{\textbf{{p}}}^{+}(zq^{-2k})^{-1}\,, (3.31)

    where we have set, for every m×m\in{\mathbb{N}}^{\times} and every λCn(m)\lambda\in C_{n}(m),

    cm,λ=(qq1)n1[m+1]q[m1]qi=1n[λi1]q[λi+1]qc_{m,\lambda}=(q-q^{-1})^{n-1}\frac{[m+1]_{q}}{[m-1]_{q}}\prod_{i=1}^{n}\frac{[\lambda_{i}-1]_{q}}{[\lambda_{i}+1]_{q}}

    and

    t1,λ+(zC1)=int1,λi+(zq2k=i+1nλkC1),{\textbf{{t}}}^{+}_{1,\lambda}(z{{\textsf{C}}}^{-1})=\overleftarrow{\prod_{i\in{\llbracket n\rrbracket}}}{\textbf{{t}}}^{+}_{1,\lambda_{i}}(zq^{-2\sum_{k=i+1}^{n}\lambda_{k}}{{\textsf{C}}}^{-1})\,,
    t1,λ(zC1)=int1,λi(zq2k=i+1nλkC1).{\textbf{{t}}}^{-}_{1,-\lambda}(z{{\textsf{C}}}^{-1})=\overrightarrow{\prod_{i\in{\llbracket n\rrbracket}}}{\textbf{{t}}}^{-}_{1,-\lambda_{i}}(zq^{-2\sum_{k=i+1}^{n}\lambda_{k}}{{\textsf{C}}}^{-1})\,.

    for every mm\in{\mathbb{N}}.

With these operations, U¨^q0(𝔞1)\widehat{\ddot{\mathrm{U}}}_{q}^{0}({\mathfrak{a}}_{1}) is a topological Hopf algebra.

Proof.

One easily checks that Δ0\Delta^{0} as defined by (3.223.26) is compatible with the defining relations of U¨^q0(𝔞1)\widehat{\ddot{\mathrm{U}}}_{q}^{0}({\mathfrak{a}}_{1}) and that S0S^{0} is compatible with both the multiplication and the comultiplication. ∎

In that presentation, one readily checks that

Proposition 3.14.

U¨q0+(𝔞1)^\widehat{\ddot{\mathrm{U}}_{q}^{0^{+}}(\mathfrak{a}_{1})} is a closed Hopf subalgebra of U¨^q0(𝔞1)\widehat{\ddot{\mathrm{U}}}_{q}^{0}({\mathfrak{a}}_{1}).

Proof.

U¨q0+(𝔞1)^\widehat{\ddot{\mathrm{U}}_{q}^{0^{+}}(\mathfrak{a}_{1})} is a closed subalgebra of U¨^q0(𝔞1)\widehat{\ddot{\mathrm{U}}}_{q}^{0}({\mathfrak{a}}_{1}) and it is clearly stable under Δ0\Delta^{0} and S0S^{0}. ∎

3.6. The closed subalgebra U¨q0(𝔞1)^\widehat{\ddot{\mathrm{U}}_{q}^{0}({\mathfrak{a}}_{1})} and the elliptic Hall algebra

As emphasized in [MZ19], another remarkable feature of U¨q(𝔞1)^\widehat{\ddot{\mathrm{U}}_{q}^{\prime}(\mathfrak{a}_{1})} and, more particularly of its closed subalgebra U¨q0(𝔞1)^\widehat{\ddot{\mathrm{U}}_{q}^{0}(\mathfrak{a}_{1})}, is the existence of an algebra homomorphism onto it, from the elliptic Hall algebra that we now define.

Definition 3.15.

Let q1,q2,q3q_{1},q_{2},q_{3} be three (dependent) formal variables such that q1q2q3=1q_{1}q_{2}q_{3}=1. The elliptic Hall algebra q1,q2,q3\mathcal{E}_{q_{1},q_{2},q_{3}} is the (q1,q2,q3){\mathbb{Q}}(q_{1},q_{2},q_{3})-algebra generated by {C1/2,1/2,ψm+,ψm,en+,en:m,n}\left\{C^{1/2},{\mathbb{C}}^{-1/2},\psi^{+}_{m},\psi^{-}_{-m},e^{+}_{n},e^{-}_{n}:m\in{\mathbb{N}},n\in{\mathbb{Z}}\right\}, with ψ0±\psi^{\pm}_{0} invertible, subject to the relations

C±1/2C^{\pm 1/2} is central , (3.32)
𝝍±(z)𝝍±(w)=𝝍±(w)𝝍±(z),{\boldsymbol{\psi}}^{\pm}(z){\boldsymbol{\psi}}^{\pm}(w)={\boldsymbol{\psi}}^{\pm}(w){\boldsymbol{\psi}}^{\pm}(z)\,, (3.33)
g(Cz,w)g(Cw,z)𝝍+(z)𝝍(w)=g(z,Cw)g(w,Cz)𝝍(w)𝝍+(z),g(Cz,w)g(Cw,z){\boldsymbol{\psi}}^{+}(z){\boldsymbol{\psi}}^{-}(w)=g(z,Cw)g(w,Cz){\boldsymbol{\psi}}^{-}(w){\boldsymbol{\psi}}^{+}(z)\,, (3.34)
g(C1±12z,w)𝝍±(z)e+(w)=g(w,C1±12z)e+(w)𝝍±(z),g(C^{\frac{1\pm 1}{2}}z,w){\boldsymbol{\psi}}^{\pm}(z){\textbf{{e}}}^{+}(w)=-g(w,C^{\frac{1\pm 1}{2}}z){\textbf{{e}}}^{+}(w){\boldsymbol{\psi}}^{\pm}(z)\,, (3.35)
g(w,C112z)𝝍±(z)e(w)=g(C112z,w)e(w)𝝍±(z),g(w,C^{\frac{1\mp 1}{2}}z){\boldsymbol{\psi}}^{\pm}(z){\textbf{{e}}}^{-}(w)=-g(C^{\frac{1\mp 1}{2}}z,w){\textbf{{e}}}^{-}(w){\boldsymbol{\psi}}^{\pm}(z)\,, (3.36)
[e+(z),e(w)]=1g(1,1)[δ(Cwz)𝝍+(w)δ(wCz)𝝍(z)],[{\textbf{{e}}}^{+}(z),{\textbf{{e}}}^{-}(w)]=\frac{1}{g(1,1)}\left[\delta\left(\frac{Cw}{z}\right){\boldsymbol{\psi}}^{+}(w)-\delta\left(\frac{w}{Cz}\right){\boldsymbol{\psi}}^{-}(z)\right]\,, (3.37)
g(z,w)e+(z)e+(w)=g(w,z)e+(w)e+(z),g(z,w){\textbf{{e}}}^{+}(z){\textbf{{e}}}^{+}(w)=-g(w,z){\textbf{{e}}}^{+}(w){\textbf{{e}}}^{+}(z)\,, (3.38)
g(w,z)e(z)e(w)=g(z,w)e(w)e(z),g(w,z){\textbf{{e}}}^{-}(z){\textbf{{e}}}^{-}(w)=-g(z,w){\textbf{{e}}}^{-}(w){\textbf{{e}}}^{-}(z)\,, (3.39)
resv,w,z(vwz)m(v+z)(w2vz)e±(v)e±(w)e±(z)=0,\operatorname*{res}_{v,w,z}(vwz)^{m}(v+z)(w^{2}-vz){\textbf{{e}}}^{\pm}(v){\textbf{{e}}}^{\pm}(w){\textbf{{e}}}^{\pm}(z)=0\,, (3.40)

where mm\in{\mathbb{Z}} and we have introduced

g(z,w)=(zq1w)(zq2w)(zq3w),g(z,w)=(z-q_{1}w)(z-q_{2}w)(z-q_{3}w)\,, (3.41)
𝝍±(z)=mψ±m±zm,{\boldsymbol{\psi}}^{\pm}(z)=\sum_{m\in{\mathbb{N}}}\psi^{\pm}_{\pm m}z^{\mp m}\,, (3.42)
e±(z)=mem±zm.{\textbf{{e}}}^{\pm}(z)=\sum_{m\in{\mathbb{Z}}}e^{\pm}_{m}z^{-m}\,. (3.43)
Remark 3.16.

The elliptic Hall algebra q1,q2,q3\mathcal{E}_{q_{1},q_{2},q_{3}} is {\mathbb{Z}}-graded and can be equipped with a natural topology along the lines of what we did for U¨q(𝔞1)\ddot{\mathrm{U}}_{q}({\mathfrak{a}}_{1}) in section 3.2. It then becomes a topological algebra and we denote by q1,q2,q3^\widehat{\mathcal{E}_{q_{1},q_{2},q_{3}}} its completion. Similar topologies can be constructed on its tensor powers.

Definition-Proposition 3.17.

We endow q1,q2,q3^\widehat{\mathcal{E}_{q_{1},q_{2},q_{3}}} with:

  1. i.

    the comultiplication Δ:q1,q2,q3^q1,q2,q3^q1,q2,q3\Delta_{\mathcal{E}}:\widehat{\mathcal{E}_{q_{1},q_{2},q_{3}}}\to\mathcal{E}_{q_{1},q_{2},q_{3}}\widehat{\otimes}\mathcal{E}_{q_{1},q_{2},q_{3}} defined by

    Δ(𝝍±(z))=𝝍±(zC(2)1±12)𝝍±(zC(1)112),\Delta_{\mathcal{E}}({\boldsymbol{\psi}}^{\pm}(z))={\boldsymbol{\psi}}^{\pm}(zC^{\frac{1\pm 1}{2}}_{(2)})\otimes{\boldsymbol{\psi}}^{\pm}(zC^{\frac{1\mp 1}{2}}_{(1)})\,, (3.44)
    Δ(e+(z))=e+(z)1+𝝍(z)^e+(zC(1)),\Delta_{\mathcal{E}}({\textbf{{e}}}^{+}(z))={\textbf{{e}}}^{+}(z)\otimes 1+{\boldsymbol{\psi}}^{-}(z)\widehat{\otimes}{\textbf{{e}}}^{+}(zC_{(1)})\,, (3.45)
    Δ(e(z))=e(zC(2))^𝝍+(z)+1e(z),\Delta_{\mathcal{E}}({\textbf{{e}}}^{-}(z))={\textbf{{e}}}^{-}(zC_{(2)})\widehat{\otimes}{\boldsymbol{\psi}}^{+}(z)+1\otimes{\textbf{{e}}}^{-}(z)\,, (3.46)
  2. ii.

    the counit ε:q1,q2,q3^𝔽\varepsilon_{\mathcal{E}}:\widehat{\mathcal{E}_{q_{1},q_{2},q_{3}}}\to\mathbb{F} defined by ε(C±1/2)=ε(𝝍±(z))=1\varepsilon_{\mathcal{E}}(C^{\pm 1/2})=\varepsilon_{\mathcal{E}}({\boldsymbol{\psi}}^{\pm}(z))=1, ε(e±(z))=0\varepsilon_{\mathcal{E}}({\textbf{{e}}}^{\pm}(z))=0,

  3. iii.

    the antipode S:q1,q2,q3^q1,q2,q3^S_{\mathcal{E}}:\widehat{\mathcal{E}_{q_{1},q_{2},q_{3}}}\to\widehat{\mathcal{E}_{q_{1},q_{2},q_{3}}} defined by

    S(𝝍±(z))=𝝍±(zC1)1,S_{\mathcal{E}}({\boldsymbol{\psi}}^{\pm}(z))={\boldsymbol{\psi}}^{\pm}(zC^{-1})^{-1}\,, (3.47)
    S(e+(z))=𝝍(zC1)1e+(zC1),S_{\mathcal{E}}({\textbf{{e}}}^{+}(z))=-{\boldsymbol{\psi}}^{-}(zC^{-1})^{-1}{\textbf{{e}}}^{+}(zC^{-1})\,, (3.48)
    S(e(z))=e(zC1)𝝍+(zC1)1.S_{\mathcal{E}}({\textbf{{e}}}^{-}(z))=-{\textbf{{e}}}^{-}(zC^{-1}){\boldsymbol{\psi}}^{+}(zC^{-1})^{-1}\,. (3.49)

As usual, we have set C(1)±1/2=C±1/21C_{(1)}^{\pm 1/2}=C^{\pm 1/2}\otimes 1 and C(2)±1/2=1C±1/2C_{(2)}^{\pm 1/2}=1\otimes C^{\pm 1/2}. With the above defined operations, q1,q2,q3^\widehat{\mathcal{E}_{q_{1},q_{2},q_{3}}} is a topological Hopf algebra.

Proposition 3.18.

There exists a unique continuous Hopf algebra homomorphism f:q4,q2,q2^U¨q0+(𝔞1)^f:\widehat{\mathcal{E}_{q^{-4},q^{2},q^{2}}}\to\widehat{\ddot{\mathrm{U}}_{q}^{0^{+}}(\mathfrak{a}_{1})} such that

f(C1/2)=C1/2,f(C^{1/2})={{\textsf{C}}}^{1/2}\,, (3.50)
f(𝝍±(z))=p±(C1/2zq2),f({\boldsymbol{\psi}}^{\pm}(z))={\textbf{{p}}}^{\pm}({{\textsf{C}}}^{1/2}zq^{-2})\,, (3.51)
f(e+(z))=t1,1+,(z)f({\textbf{{e}}}^{+}(z))={\textbf{{t}}}^{+}_{1,1}\,,(z) (3.52)
f(e(z))=t1,1(z)(q2q2)2.f({\textbf{{e}}}^{-}(z))=\frac{{\textbf{{t}}}^{-}_{1,-1}(z)}{(q^{2}-q^{-2})^{2}}\,. (3.53)
Proof.

In [MZ19], we proved that the assignment

C1/2C1/2𝝍±(z)(q2q2)2p±(C1/2zq2),e±(z)t1,±1±(z)C^{1/2}\mapsto{{\textsf{C}}}^{1/2}\,\quad{\boldsymbol{\psi}}^{\pm}(z)\mapsto(q^{2}-q^{-2})^{2}\,{\textbf{{p}}}^{\pm}({{\textsf{C}}}^{1/2}zq^{-2})\,,\quad{\textbf{{e}}}^{\pm}(z)\mapsto{\textbf{{t}}}^{\pm}_{1,\pm 1}(z)

defined an 𝔽\mathbb{F}-algebra homomorphism. Hence, ff, which is obtained from the above assignment by rescaling the images of p±(z){\textbf{{p}}}^{\pm}(z) and e(z){\textbf{{e}}}^{-}(z), is obviously an 𝔽\mathbb{F}-algebra homomorphism. Moreover, it suffices to write (3.24), (3.25) and (3.26) with m=1m=1, to get

Δ0(p±(z))=p±(zC(2)±1/2)p±(zC(1)1/2),\Delta^{0}({\textbf{{p}}}^{\pm}(z))={\textbf{{p}}}^{\pm}(z{{\textsf{C}}}_{(2)}^{\pm 1/2})\otimes{\textbf{{p}}}^{\pm}(z{{\textsf{C}}}_{(1)}^{\mp 1/2})\,,
Δ0(t1,1+(z))=t1,1+(z)1+p(zq2C(1)1/2)^t1,1+(zC(1)),\Delta^{0}({\textbf{{t}}}^{+}_{1,1}(z))={\textbf{{t}}}^{+}_{1,1}(z)\otimes 1+{\textbf{{p}}}^{-}(zq^{-2}{{\textsf{C}}}_{(1)}^{1/2})\widehat{\otimes}{\textbf{{t}}}^{+}_{1,1}(z{{\textsf{C}}}_{(1)})\,,
Δ0(t1,1(z))=t1,1(zC(2))^p+(zq2C(2)1/2)+1t1,1(z),\Delta^{0}({\textbf{{t}}}^{-}_{1,-1}(z))={\textbf{{t}}}^{-}_{1,-1}(z{{\textsf{C}}}_{(2)})\widehat{\otimes}{\textbf{{p}}}^{+}(zq^{-2}{{\textsf{C}}}_{(2)}^{1/2})+1\otimes{\textbf{{t}}}^{-}_{1,-1}(z)\,,

as well as (3.29), (3.30) and (3.31), with m=1m=1, to get

S0(p±(z))=p±(z)1,S^{0}({\textbf{{p}}}^{\pm}(z))={\textbf{{p}}}^{\pm}(z)^{-1}\,,
S0(t1,1+(z))=p(zq2C1/2)1t1,1+(zC1),S^{0}({\textbf{{t}}}^{+}_{1,1}(z))=-{\textbf{{p}}}^{-}(zq^{-2}{{\textsf{C}}}^{-1/2})^{-1}{\textbf{{t}}}^{+}_{1,1}(z{{\textsf{C}}}^{-1})\,,
S0(t1,1(z))=t1,1(zC1)p+(zq2)1,S^{0}({\textbf{{t}}}^{-}_{1,-1}(z))=-{\textbf{{t}}}^{-}_{1,-1}(z{{\textsf{C}}}^{-1}){\textbf{{p}}}^{+}(zq^{-2})^{-1}\,,

and thus to prove that (f^f)Δ0=Δf(f\widehat{\otimes}f)\circ\Delta^{0}=\Delta_{\mathcal{E}}\circ f and fS0=Sff\circ S^{0}=S_{\mathcal{E}}\circ f as claimed. ∎

Remark 3.19.

Note that we have f(ψ0+)f(ψ0)=f(ψ0)f(ψ0+)=1f(\psi^{+}_{0})f(\psi^{-}_{0})=f(\psi^{-}_{0})f(\psi^{+}_{0})=1, meaning that ff descends to the quotient of q4,q2,q2\mathcal{E}_{q^{-4},q^{2},q^{2}} by the two-sided ideal generated by {ψ0+ψ01,ψ0ψ0+1}\{\psi^{+}_{0}\psi^{-}_{0}-1,\psi^{-}_{0}\psi^{+}_{0}-1\}. That quotient is actually Miki’s (q,γ)(q,\gamma)-analogue of the W1+W_{1+\infty} algebra [Mik07].

3.7. The quantum toroidal algebra U˙q(𝔞˙1)\dot{\mathrm{U}}_{q}(\dot{\mathfrak{a}}_{1})

Let I˙={0,1}\dot{I}=\{0,1\} be a labeling of the nodes of the Dynkin diagram of type 𝔞˙1\dot{\mathfrak{a}}_{1} and let Φ˙={α0,α1}\dot{\Phi}=\left\{\alpha_{0},\alpha_{1}\right\} be a choice of simple roots for the corresponding root system. Let Q˙±=±α0±α1\dot{Q}^{\pm}={\mathbb{Z}}^{\pm}\alpha_{0}\oplus{\mathbb{Z}}^{\pm}\alpha_{1} and let Q˙=α0α1\dot{Q}={\mathbb{Z}}\alpha_{0}\oplus{\mathbb{Z}}\alpha_{1} be the type 𝔞˙1\dot{\mathfrak{a}}_{1} root lattice.

Definition 3.20.

The quantum toroidal algebra U˙q(𝔞˙1)\dot{\mathrm{U}}_{q}(\dot{\mathfrak{a}}_{1}) is the associative 𝔽\mathbb{F}-algebra generated by the generators

{D,D1,C1/2,C1/2,ki,n+,ki,n,xi,m+,xi,m:iI˙,mZ,n}\left\{D,D^{-1},C^{1/2},C^{-1/2},k_{i,n}^{+},k_{i,-n}^{-},x_{i,m}^{+},x_{i,m}^{-}:i\in\dot{I},m\in Z,n\in{\mathbb{N}}\right\}

subject to the following relations

C±1/2 is centralC±1/2C1/2=1D±1D1=1\mbox{$C^{\pm 1/2}$ is central}\qquad C^{\pm 1/2}C^{\mp 1/2}=1\qquad D^{\pm 1}D^{\mp 1}=1 (3.54)
D𝐤i±(z)D1=𝐤i±(zq1)D𝐱i±(z)D1=𝐱i±(zq1)D{\bf k}_{i}^{\pm}(z)D^{-1}={\bf k}_{i}^{\pm}(zq^{-1})\qquad D{\bf x}_{i}^{\pm}(z)D^{-1}={\bf x}_{i}^{\pm}(zq^{-1}) (3.55)
𝐤i±(z1)𝐤j±(z2)=𝐤j±(z2)𝐤i±(z1){\bf k}_{i}^{\pm}(z_{1}){\bf k}_{j}^{\pm}(z_{2})={\bf k}_{j}^{\pm}(z_{2}){\bf k}_{i}^{\pm}(z_{1}) (3.56)
𝐤i(z1)𝐤j+(z2)=Gij(C1z1/z2)Gij+(Cz1/z2)𝐤j+(z2)𝐤i(z1)=1modz1/z2{\bf k}_{i}^{-}(z_{1}){\bf k}_{j}^{+}(z_{2})=G^{-}_{ij}(C^{-1}z_{1}/z_{2})G^{+}_{ij}(Cz_{1}/z_{2}){\bf k}_{j}^{+}(z_{2}){\bf k}_{i}^{-}(z_{1})=1\mod z_{1}/z_{2} (3.57)
Gij(C1/2z2/z1)𝐤i+(z1)𝐱j±(z2)=𝐱j±(z2)𝐤i+(z1)G_{ij}^{\mp}(C^{\mp 1/2}z_{2}/z_{1}){\bf k}_{i}^{+}(z_{1}){\bf x}_{j}^{\pm}(z_{2})={\bf x}_{j}^{\pm}(z_{2}){\bf k}_{i}^{+}(z_{1}) (3.58)
𝐤i(z1)𝐱j±(z2)=Gij(C1/2z1/z2)𝐱j±(z2)𝐤i(z1){\bf k}_{i}^{-}(z_{1}){\bf x}_{j}^{\pm}(z_{2})=G_{ij}^{\mp}(C^{\mp 1/2}z_{1}/z_{2}){\bf x}_{j}^{\pm}(z_{2}){\bf k}_{i}^{-}(z_{1}) (3.59)
(z1q±cijz2)𝐱i±(z1)𝐱j±(z2)=(z1q±cijz2)𝐱j±(z2)𝐱i±(z1)(z_{1}-q^{\pm c_{ij}}z_{2}){\bf x}_{i}^{\pm}(z_{1}){\bf x}_{j}^{\pm}(z_{2})=(z_{1}q^{\pm c_{ij}}-z_{2}){\bf x}_{j}^{\pm}(z_{2}){\bf x}_{i}^{\pm}(z_{1}) (3.60)
[𝐱i+(z1),𝐱j(z2)]=δijqq1[δ(z1Cz2)𝐤i+(z1C1/2)δ(z1Cz2)𝐤i(z2C1/2)][{\bf x}_{i}^{+}(z_{1}),{\bf x}_{j}^{-}(z_{2})]=\frac{\delta_{ij}}{q-q^{-1}}\left[\delta\left(\frac{z_{1}}{Cz_{2}}\right){\bf k}_{i}^{+}(z_{1}C^{-1/2})-\delta\left(\frac{z_{1}C}{z_{2}}\right){\bf k}_{i}^{-}(z_{2}C^{-1/2})\right] (3.61)
σS1cijk=01cij(1)k(1cijk)q𝐱i±(zσ(1))𝐱i±(zσ(k))𝐱j±(z)𝐱i±(zσ(k+1))𝐱i±(zσ(1cij))=0\sum_{\sigma\in S_{1-c_{ij}}}\sum_{k=0}^{1-c_{ij}}(-1)^{k}{{1-c_{ij}}\choose{k}}_{q}{\bf x}_{i}^{\pm}(z_{\sigma(1)})\cdots{\bf x}_{i}^{\pm}(z_{\sigma(k)}){\bf x}_{j}^{\pm}(z){\bf x}_{i}^{\pm}(z_{\sigma(k+1)})\cdots{\bf x}_{i}^{\pm}(z_{\sigma(1-c_{ij})})=0 (3.62)

where, for every iI˙i\in\dot{I}, we define the following U˙q(𝔞˙1)\dot{\mathrm{U}}_{q}(\dot{\mathfrak{a}}_{1})-valued formal distributions

𝐱i±(z):=mxi,m±zmU˙q(𝔞˙1)[[z,z1]];{\bf x}_{i}^{\pm}(z):=\sum_{m\in{\mathbb{Z}}}x^{\pm}_{i,m}z^{-m}\in\dot{\mathrm{U}}_{q}(\dot{\mathfrak{a}}_{1})[[z,z^{-1}]]\,; (3.63)
𝐤i±(z):=nki,±n±znU˙q(𝔞˙1)[[z1]],{\bf k}_{i}^{\pm}(z):=\sum_{n\in{\mathbb{N}}}k_{i,\pm n}^{\pm}z^{\mp n}\in\dot{\mathrm{U}}_{q}(\dot{\mathfrak{a}}_{1})[[z^{\mp 1}]]\,, (3.64)

for every i,jI˙i,j\in\dot{I}, we define the following 𝔽\mathbb{F}-valued formal power series

Gij±(z):=q±cij+(qq1)[±cij]qm×q±mcijzm𝔽[[z]]G_{ij}^{\pm}(z):=q^{\pm c_{ij}}+(q-q^{-1})[\pm c_{ij}]_{q}\sum_{m\in{\mathbb{N}}^{\times}}q^{\pm mc_{ij}}z^{m}\in\mathbb{F}[[z]] (3.65)

is an 𝔽\mathbb{F}-valued formal distribution,

Note that Gij±(z)G_{ij}^{\pm}(z) is invertible in 𝔽[[z]]\mathbb{F}[[z]] with inverse Gij(z)G^{\mp}_{ij}(z), i.e.

Gij±(z)Gij(z)=1,G_{ij}^{\pm}(z)G_{ij}^{\mp}(z)=1\,, (3.66)

and that it can be viewed as the power series expansion of a rational function of (z1,z2)2(z_{1},z_{2})\in{\mathbb{C}}^{2} as |z2||z1||z_{2}|\gg|z_{1}|, which we shall denote as follows

Gij±(z1/z2)=(z1qcijz2z1qcijz2)|z2||z1|.G_{ij}^{\pm}(z_{1}/z_{2})=\left(\frac{z_{1}q^{\mp c_{ij}}-z_{2}}{z_{1}-q^{\mp c_{ij}}z_{2}}\right)_{|z_{2}|\gg|z_{1}|}\,. (3.67)

Observe furthermore that we have the following useful identity in 𝔽[[z,z1]]\mathbb{F}[[z,z^{-1}]]

Gij±(z1/z2)Gij(z2/z1)qq1=[±cij]qδ(z1q±cijz2).\frac{G_{ij}^{\pm}(z_{1}/z_{2})-G_{ij}^{\mp}(z_{2}/z_{1})}{q-q^{-1}}=[\pm c_{ij}]_{q}\delta\left(\frac{z_{1}q^{\pm c_{ij}}}{z_{2}}\right)\,. (3.68)
Remark 3.21.

In type 𝔞1{\mathfrak{a}}_{1}, I˙={0,1}\dot{I}=\{0,1\}, cij=4δij2c_{ij}=4\delta_{ij}-2 and we have an additional identity, namely G10±(z)=G11(z)G_{10}^{\pm}(z)=G_{11}^{\mp}(z).

U˙q(𝔞˙1)\dot{\mathrm{U}}_{q}(\dot{\mathfrak{a}}_{1}) is obviously a {\mathbb{Z}}-graded algebra, i.e. we have

U˙q(𝔞˙1)=nU˙q(𝔞˙1)n,where for all nU˙q(𝔞˙1)n:={xU˙q(𝔞˙1):DxD1=qnx}.\dot{\mathrm{U}}_{q}(\dot{\mathfrak{a}}_{1})=\bigoplus_{n\in{\mathbb{Z}}}\dot{\mathrm{U}}_{q}(\dot{\mathfrak{a}}_{1})_{n}\,,\qquad\mbox{where for all $n\in{\mathbb{Z}}$}\qquad\dot{\mathrm{U}}_{q}(\dot{\mathfrak{a}}_{1})_{n}:=\{x\in\dot{\mathrm{U}}_{q}(\dot{\mathfrak{a}}_{1}):DxD^{-1}=q^{n}x\}\,. (3.69)

It was proven in [Her05] to admit a triangular decomposition (U˙q(𝔞˙1),U˙q0(𝔞˙1),U˙q+(𝔞˙1))(\dot{\mathrm{U}}_{q}^{-}(\dot{\mathfrak{a}}_{1}),\dot{\mathrm{U}}_{q}^{0}(\dot{\mathfrak{a}}_{1}),\dot{\mathrm{U}}_{q}^{+}(\dot{\mathfrak{a}}_{1})), where U˙q±(𝔞˙1)\dot{\mathrm{U}}_{q}^{\pm}(\dot{\mathfrak{a}}_{1}) and U˙q0(𝔞˙1)\dot{\mathrm{U}}_{q}^{0}(\dot{\mathfrak{a}}_{1}) are the subalgebras of U˙q(𝔞˙1)\dot{\mathrm{U}}_{q}(\dot{\mathfrak{a}}_{1}) respectively generated by {xi,m±:iI˙,m}\left\{x_{i,m}^{\pm}:i\in\dot{I},m\in{\mathbb{Z}}\right\} and

{C1/2,C1/2,D,D1,ki,m+,ki,m:iI˙,m}.\left\{C^{1/2},C^{-1/2},D,D^{-1},k_{i,m}^{+},k_{i,m}^{-}:i\in\dot{I},m\in{\mathbb{Z}}\right\}\,.

Observe that U˙q±(𝔞˙1)\dot{\mathrm{U}}_{q}^{\pm}(\dot{\mathfrak{a}}_{1}) admits a natural gradation over Q˙±\dot{Q}^{\pm} that we shall denote by

U˙q±(𝔞˙1)=αQ˙±U˙q±(𝔞˙1)α.\dot{\mathrm{U}}_{q}^{\pm}(\dot{\mathfrak{a}}_{1})=\bigoplus_{\alpha\in\dot{Q}^{\pm}}\dot{\mathrm{U}}_{q}^{\pm}(\dot{\mathfrak{a}}_{1})_{\alpha}\,. (3.70)

Of course U˙q(𝔞˙1)\dot{\mathrm{U}}_{q}(\dot{\mathfrak{a}}_{1}) is graded over the root lattice Q˙\dot{Q}. We finally remark that the two Dynkin diagram subalgebras U˙q(𝔞1)(0)\dot{\mathrm{U}}_{q}(\mathfrak{a}_{1})^{(0)} and U˙q(𝔞1)(1)\dot{\mathrm{U}}_{q}(\mathfrak{a}_{1})^{(1)} of U˙q(𝔞˙1)\dot{\mathrm{U}}_{q}(\dot{\mathfrak{a}}_{1}) generated by

{D,D1,C1/2,C1/2,ki,n+,ki,n,xi,m+,xi,m:mZ,n},\left\{D,D^{-1},C^{1/2},C^{-1/2},k_{i,n}^{+},k_{i,-n}^{-},x_{i,m}^{+},x_{i,m}^{-}:m\in Z,n\in{\mathbb{N}}\right\}\,,

with i=0i=0 and i=1i=1 respectively, are both isomorphic to U˙q(𝔞1)\dot{\mathrm{U}}_{q}(\mathfrak{a}_{1}), thus yielding two injective algebra homomorphisms ι(i):U˙q(𝔞1)U˙q(𝔞˙1)\iota^{(i)}:\dot{\mathrm{U}}_{q}(\mathfrak{a}_{1})\hookrightarrow\dot{\mathrm{U}}_{q}(\dot{\mathfrak{a}}_{1}). In [MZ19], making use of their natural {\mathbb{Z}}-grading, U˙q(𝔞˙1)\dot{\mathrm{U}}_{q}(\dot{\mathfrak{a}}_{1}) and all its tensor powers were endowed with a topology along the lines of what we did in section 3.2 for U¨q(𝔞1)\ddot{\mathrm{U}}_{q}(\mathfrak{a}_{1}) and its tensor powers, and subsequently completed into U˙q(𝔞˙1)^\widehat{\dot{\mathrm{U}}_{q}(\dot{\mathfrak{a}}_{1})} and U˙q(𝔞˙1)^r\dot{\mathrm{U}}_{q}(\dot{\mathfrak{a}}_{1})^{\widehat{\otimes}r}. The main result in [MZ19] is the following

Theorem 3.22.

There exists a unique bicontinuous 𝔽\mathbb{F}-algebra isomorphism Ψ^:U˙q(𝔞˙1)^U¨q(𝔞1)^\widehat{\Psi}:\widehat{\dot{\mathrm{U}}_{q}(\dot{\mathfrak{a}}_{1})}\stackrel{{\scriptstyle\sim}}{{\longrightarrow}}\widehat{\ddot{\mathrm{U}}_{q}^{\prime}(\mathfrak{a}_{1})} such that

Ψ^(D±1)=D2±1Ψ^(C±1/2)=C±1/2,\widehat{\Psi}(D^{\pm 1})={{\textsf{D}}}_{2}^{\pm 1}\qquad\widehat{\Psi}(C^{\pm 1/2})={{\textsf{C}}}^{\pm 1/2}\,,
Ψ^(𝐤0±(z))=c±(z)K1,0(C1/2z)1Ψ^(𝐤1±(z))=K1,0(C1/2z)\widehat{\Psi}({\bf k}_{0}^{\pm}(z))=-{\textbf{{c}}}^{\pm}(z){\textbf{{K}}}^{\mp}_{1,0}({{\textsf{C}}}^{-1/2}z)^{-1}\qquad\widehat{\Psi}({\bf k}_{1}^{\pm}(z))=-{\textbf{{K}}}^{\mp}_{1,0}({{\textsf{C}}}^{-1/2}z)
Ψ^(𝐱0+(z))=c(C1/2z)K1,0+(z)1X1,1(Cz)Ψ^(𝐱0(z))=X1,1+(Cz)c+(C1/2z)K1,0(z)1\widehat{\Psi}({\bf x}_{0}^{+}(z))=-{\textbf{{c}}}^{-}({{\textsf{C}}}^{1/2}z){\textbf{{K}}}^{+}_{1,0}(z)^{-1}{\textbf{{X}}}_{1,1}^{-}({{\textsf{C}}}z)\qquad\widehat{\Psi}({\bf x}_{0}^{-}(z))=-{\textbf{{X}}}_{1,-1}^{+}({{\textsf{C}}}z){\textbf{{c}}}^{+}({{\textsf{C}}}^{1/2}z){\textbf{{K}}}^{-}_{1,0}(z)^{-1}
Ψ^(𝐱1±(z))=X1,0±(z).\widehat{\Psi}({\bf x}_{1}^{\pm}(z))={\textbf{{X}}}_{1,0}^{\pm}(z)\,.
Proof.

See [MZ19] for a proof. ∎

3.8. U˙q(𝔞1)\dot{\mathrm{U}}_{q}(\mathfrak{a}_{1}) subalgebras of U¨q(𝔞1)\ddot{\mathrm{U}}_{q}(\mathfrak{a}_{1})

Interestingly, U¨q(𝔞1)\ddot{\mathrm{U}}_{q}(\mathfrak{a}_{1}) admits countably many embeddings of the quantum affine algebra U˙q(𝔞1)\dot{\mathrm{U}}_{q}(\mathfrak{a}_{1}). This is the content of the following

Proposition 3.23.

For every mm\in{\mathbb{Z}}, there exists a unique injective algebra homomorphism ιm:U˙q(𝔞1)U¨q(𝔞1)^\iota_{m}:\dot{\mathrm{U}}_{q}(\mathfrak{a}_{1})\hookrightarrow\widehat{\ddot{\mathrm{U}}_{q}^{\prime}(\mathfrak{a}_{1})} such that

ιm(C±1/2)=C±1/2ιm(D±1)=D2±1\iota_{m}(C^{\pm 1/2})={{\textsf{C}}}^{\pm 1/2}\qquad\iota_{m}(D^{\pm 1})={{\textsf{D}}}_{2}^{\pm 1} (3.71)
ιm(𝐤1±(z))=p=1|m|c±(q(12p)sign(m)1z)sign(m)K1,0(C1/2z),\iota_{m}({\bf k}_{1}^{\pm}(z))=-\prod_{p=1}^{|m|}{\textbf{{c}}}^{\pm}\left(q^{(1-2p){\rm sign}(m)-1}z\right)^{{\rm sign}(m)}{\textbf{{K}}}^{\mp}_{1,0}({{\textsf{C}}}^{-1/2}z)\,, (3.72)
ιm(𝐱1±(z))=X1,±m±(z).\iota_{m}({\bf x}_{1}^{\pm}(z))={\textbf{{X}}}_{1,\pm m}^{\pm}(z)\,. (3.73)
Proof.

See [MZ19]. ∎

We also have

Proposition 3.24.

For every iI˙={0,1}i\in\dot{I}=\{0,1\}, Ψ^ι(i)\widehat{\Psi}\circ\iota^{(i)} is an injective algebra homomorphism.

Proof.

This is obvious since Ψ^\widehat{\Psi} is an isomorphism and ι(i)\iota^{(i)} is an injective algebra homomorphism. ∎

3.9. (Anti-)Automorphisms of U¨q(𝔞1)^\widehat{\ddot{\mathrm{U}}_{q}^{\prime}(\mathfrak{a}_{1})}

U¨q(𝔞1)^\widehat{\ddot{\mathrm{U}}_{q}^{\prime}(\mathfrak{a}_{1})} naturally inherits, through Ψ^\widehat{\Psi}, all the continuous (anti-)automorphisms defined over U˙q(𝔞˙1)^\widehat{\dot{\mathrm{U}}_{q}(\dot{\mathfrak{a}}_{1})}.

Proposition 3.25.

Conjugation by Ψ^\widehat{\Psi} clearly provides a group isomorphism Aut(U˙q(𝔞˙1)^)Aut(U¨q(𝔞1)^)\mathrm{Aut}(\widehat{\dot{\mathrm{U}}_{q}(\dot{\mathfrak{a}}_{1})})\cong\mathrm{Aut}(\widehat{\ddot{\mathrm{U}}_{q}^{\prime}(\mathfrak{a}_{1})}). In particular, for every fAut(U˙q(𝔞˙1)^)f\in\mathrm{Aut}(\widehat{\dot{\mathrm{U}}_{q}(\dot{\mathfrak{a}}_{1})}), we let f˙=Ψ^fΨ^1Aut(U¨q(𝔞1)^)\dot{f}=\widehat{\Psi}\circ f\circ\widehat{\Psi}^{-1}\in\mathrm{Aut}(\widehat{\ddot{\mathrm{U}}_{q}^{\prime}(\mathfrak{a}_{1})}).

As an example, consider the Cartan anti-involution φ\varphi of U˙q(𝔞˙1)\dot{\mathrm{U}}_{q}(\dot{\mathfrak{a}}_{1}) defined in [MZ19]. It extends by continuity into an anti-involution φ^\widehat{\varphi} over U˙q(𝔞˙1)^\widehat{\dot{\mathrm{U}}_{q}(\dot{\mathfrak{a}}_{1})} which eventually yields, upon conjugation by Ψ^\widehat{\Psi}, an anti-involution φ˙\dot{\varphi} over U¨q(𝔞1)^\widehat{\ddot{\mathrm{U}}_{q}^{\prime}(\mathfrak{a}_{1})}. One can easily check – or take as a definition of φ˙\dot{\varphi} the fact – that,

φ˙(q)=q1,φ˙(D2±1)=D21,φ˙(C±1/2)=C1/2,φ˙(c±(z))=c(1/z),\dot{\varphi}(q)=q^{-1}\,,\qquad\dot{\varphi}({{\textsf{D}}}_{2}^{\pm 1})={{\textsf{D}}}_{2}^{\mp 1}\,,\qquad\dot{\varphi}({{\textsf{C}}}^{\pm 1/2})={{\textsf{C}}}^{\mp 1/2}\,,\qquad\dot{\varphi}({\textbf{{c}}}^{\pm}(z))={\textbf{{c}}}^{\mp}(1/z)\,,
φ˙(K1,±m±(z))=K1,m(1/z),φ˙(X1,r±(z))=X1,r(1/z).\dot{\varphi}({\textbf{{K}}}^{\pm}_{1,\pm m}(z))={\textbf{{K}}}^{\mp}_{1,\mp m}(1/z)\,,\qquad\dot{\varphi}({\textbf{{X}}}_{1,r}^{\pm}(z))={\textbf{{X}}}_{1,-r}^{\mp}(1/z)\,.

for every mm\in{\mathbb{N}} and every rr\in{\mathbb{Z}}.

In addition to the above, U¨q(𝔞1)^\widehat{\ddot{\mathrm{U}}_{q}^{\prime}(\mathfrak{a}_{1})} also admits the following automorphisms that will prove useful in the study of its representation theory.

Proposition 3.26.
  1. i.

    There exists a unique 𝔽\mathbb{F}-algebra automorphism τ\tau of U¨q(𝔞1)^\widehat{\ddot{\mathrm{U}}_{q}^{\prime}(\mathfrak{a}_{1})} such that, for every mm\in{\mathbb{N}} and every nn\in{\mathbb{Z}},

    τ(C)=C,τ(c±(C1/2z))=c±(C1/2z),τ(K1,±m±(z))=K1,±m±(z),τ(X1,n±(z))=X1,n±(z).\tau({{\textsf{C}}})=-{{\textsf{C}}}\,,\quad\tau({\textbf{{c}}}^{\pm}({{\textsf{C}}}^{-1/2}z))={\textbf{{c}}}^{\pm}(\mp{{\textsf{C}}}^{-1/2}z)\,,\quad\tau({\textbf{{K}}}^{\pm}_{1,\pm m}(z))={\textbf{{K}}}^{\pm}_{1,\pm m}(\mp z)\,,\quad\tau({\textbf{{X}}}_{1,n}^{\pm}(z))={\textbf{{X}}}_{1,n}^{\pm}(\mp z)\,.
  2. ii.

    There exists a unique 𝔽\mathbb{F}-algebra automorphism σ\sigma of U¨q(𝔞1)^\widehat{\ddot{\mathrm{U}}_{q}^{\prime}(\mathfrak{a}_{1})} such that

    σ(C1/2)=C1/2,σ(c±(z))=c±(z),τ(K1,±m±(z))=K1,±m±(z),τ(X1,n±(z))=X1,n±(z).\sigma({{\textsf{C}}}^{1/2})=-{{\textsf{C}}}^{1/2}\,,\quad\sigma({\textbf{{c}}}^{\pm}(z))={\textbf{{c}}}^{\pm}(z)\,,\quad\tau({\textbf{{K}}}^{\pm}_{1,\pm m}(z))={\textbf{{K}}}^{\pm}_{1,\pm m}(-z)\,,\quad\tau({\textbf{{X}}}_{1,n}^{\pm}(z))={\textbf{{X}}}_{1,n}^{\pm}(-z)\,.
Proof.

It suffices to check the defining relations of U¨q(𝔞1)^\widehat{\ddot{\mathrm{U}}_{q}(\mathfrak{a}_{1})}. ∎

3.10. Topological Hopf algebra structure on U¨q(𝔞1)^\widehat{\ddot{\mathrm{U}}_{q}^{\prime}(\mathfrak{a}_{1})}

Definition 3.27.

We endow the topological 𝔽\mathbb{F}-algebra U˙^q(𝔞˙1)\widehat{\dot{\mathrm{U}}}_{q}(\dot{\mathfrak{a}}_{1}) with:

  1. i.

    the comultiplication Δ:U˙^q(𝔞˙1)U˙q(𝔞˙1)^U˙q(𝔞˙1)\Delta:\widehat{\dot{\mathrm{U}}}_{q}(\dot{\mathfrak{a}}_{1})\to\dot{\mathrm{U}}_{q}(\dot{\mathfrak{a}}_{1})\widehat{\otimes}\dot{\mathrm{U}}_{q}(\dot{\mathfrak{a}}_{1}) defined by

    Δ(C±1/2)=C±1/2C±1/2,Δ(D±1)=D±1D±1,\Delta(C^{\pm 1/2})=C^{\pm 1/2}\otimes C^{\pm 1/2}\,,\qquad\Delta(D^{\pm 1})=D^{\pm 1}\otimes D^{\pm 1}\,, (3.74)
    Δ(𝐤i±(z))=𝐤i±(zC(2)±1/2)𝐤i±(zC(1)1/2),\Delta({\bf k}_{i}^{\pm}(z))={\bf k}_{i}^{\pm}(zC^{\pm 1/2}_{(2)})\otimes{\bf k}_{i}^{\pm}(zC^{\mp 1/2}_{(1)})\,, (3.75)
    Δ(𝐱i+(z))=𝐱i+(z)1+𝐤i(zC(1)1/2)^𝐱i+(zC(1)),\Delta({\bf x}_{i}^{+}(z))={\bf x}_{i}^{+}(z)\otimes 1+{\bf k}_{i}^{-}(zC^{1/2}_{(1)})\widehat{\otimes}{\bf x}_{i}^{+}(zC_{(1)})\,, (3.76)
    Δ(𝐱i(z))=𝐱i(zC(2))^𝐤i+(zC(2)1/2)+1𝐱i(z),\Delta({\bf x}_{i}^{-}(z))={\bf x}_{i}^{-}(zC_{(2)})\widehat{\otimes}{\bf k}_{i}^{+}(zC^{1/2}_{(2)})+1\otimes{\bf x}_{i}^{-}(z)\,, (3.77)

    where C(1)±1/2=C±1/21C^{\pm 1/2}_{(1)}=C^{\pm 1/2}\otimes 1 and C(2)±1/2=1C±1/2C^{\pm 1/2}_{(2)}=1\otimes C^{\pm 1/2};

  2. ii.

    the counit ε:U˙^q(𝔞˙1)𝔽\varepsilon:\widehat{\dot{\mathrm{U}}}_{q}(\dot{\mathfrak{a}}_{1})\to\mathbb{F}, defined by ε(D±1)=ε(C±1/2)=ε(𝐤i±(z))=1\varepsilon(D^{\pm 1})=\varepsilon(C^{\pm 1/2})=\varepsilon({\bf k}_{i}^{\pm}(z))=1, ε(𝐱i±(z))=0\varepsilon({\bf x}_{i}^{\pm}(z))=0 and;

  3. iii.

    the antipode S:U˙^q(𝔞˙1)U˙^q(𝔞˙1)S:\widehat{\dot{\mathrm{U}}}_{q}(\dot{\mathfrak{a}}_{1})\to\widehat{\dot{\mathrm{U}}}_{q}(\dot{\mathfrak{a}}_{1}), defined by S(D±1)=D1S(D^{\pm 1})=D^{\mp 1}, S(C±1/2)=C1/2S(C^{\pm 1/2})=C^{\mp 1/2} and

    S(𝐤i±(z))=𝐤i±(z)1,S(𝐱i+(z))=𝐤i(zC1/2)1𝐱i+(zC1),S(𝐱i(z))=𝐱i(zC1)𝐤i+(zC1/2)1.S({\bf k}_{i}^{\pm}(z))={\bf k}_{i}^{\pm}(z)^{-1}\,,\quad S({\bf x}_{i}^{+}(z))=-{\bf k}_{i}^{-}(zC^{-1/2})^{-1}{\bf x}_{i}^{+}(zC^{-1})\,,\quad S({\bf x}_{i}^{-}(z))=-{\bf x}_{i}^{-}(zC^{-1}){\bf k}_{i}^{+}(zC^{-1/2})^{-1}\,.

With these operations so defined and the topologies defined in section 3.7, U˙^q(𝔞˙1)\widehat{\dot{\mathrm{U}}}_{q}(\dot{\mathfrak{a}}_{1}) is a topological Hopf algebra.

In view of theorem 3.22, it is clear that U¨q(𝔞1)^\widehat{\ddot{\mathrm{U}}_{q}(\mathfrak{a}_{1})} inherits that topological Hopf algebraic structure.

Definition-Proposition 3.28.

We define

Δ˙=(Ψ^^Ψ^)ΔΨ^1,\dot{\Delta}=\left(\widehat{\Psi}\widehat{\otimes}\widehat{\Psi}\right)\circ\Delta\circ\widehat{\Psi}^{-1}\,, (3.78)
S˙=Ψ^SΨ^1,\dot{S}=\widehat{\Psi}\circ S\circ\widehat{\Psi}^{-1}\,, (3.79)
ε˙=εΨ^1.\dot{\varepsilon}=\varepsilon\circ\widehat{\Psi}^{-1}\,. (3.80)

Equipped with the above comultiplication, antipode and counit, U¨q(𝔞1)^\widehat{\ddot{\mathrm{U}}_{q}^{\prime}(\mathfrak{a}_{1})} is a topological Hopf algebra.

Before we move on to introducing tt-weight U¨q(𝔞1)\ddot{\mathrm{U}}_{q}^{\prime}(\mathfrak{a}_{1})-modules, we give the following

Lemma 3.29.

For every m×m\in{\mathbb{N}}^{\times} and every rr\in{\mathbb{Z}}, we have

  1. i.

    Δ˙(K1,±m±(z))=Δ0(K1,±m±(z))modU¨q<(𝔞1)^U¨q>(𝔞1)[[z,z1]]\dot{\Delta}({\textbf{{K}}}^{\pm}_{1,\pm m}(z))=\Delta^{0}({\textbf{{K}}}^{\pm}_{1,\pm m}(z))\mod\ddot{\mathrm{U}}_{q}^{<}(\mathfrak{a}_{1})\widehat{\otimes}\ddot{\mathrm{U}}_{q}^{>}(\mathfrak{a}_{1})[[z,z^{-1}]];

  2. ii.

    Δ˙(X1,r+(z))(U¨q>(𝔞1)^U¨q0(𝔞1)U¨q(𝔞1)^U¨q>(𝔞1))[[z,z1]]\dot{\Delta}({\textbf{{X}}}_{1,r}^{+}(z))\in\left(\ddot{\mathrm{U}}_{q}^{>}(\mathfrak{a}_{1})\widehat{\otimes}\ddot{\mathrm{U}}_{q}^{0}(\mathfrak{a}_{1})\oplus\ddot{\mathrm{U}}_{q}(\mathfrak{a}_{1})\widehat{\otimes}\ddot{\mathrm{U}}_{q}^{>}(\mathfrak{a}_{1})\right)[[z,z^{-1}]];

where we have set U¨q>(𝔞1)=U¨q(𝔞1)U¨q(𝔞1)U¨q0(𝔞1)\ddot{\mathrm{U}}_{q}^{>}(\mathfrak{a}_{1})=\ddot{\mathrm{U}}_{q}^{\geq}(\mathfrak{a}_{1})-\ddot{\mathrm{U}}_{q}^{\geq}(\mathfrak{a}_{1})\cap\ddot{\mathrm{U}}_{q}^{0}(\mathfrak{a}_{1}) and U¨q<(𝔞1)=U¨q(𝔞1)U¨q(𝔞1)U¨q0(𝔞1)\ddot{\mathrm{U}}_{q}^{<}(\mathfrak{a}_{1})=\ddot{\mathrm{U}}_{q}^{\leq}(\mathfrak{a}_{1})-\ddot{\mathrm{U}}_{q}^{\leq}(\mathfrak{a}_{1})\cap\ddot{\mathrm{U}}_{q}^{0}(\mathfrak{a}_{1}).

Proof.

We first prove i for upper choices of signs. Observe that (3.20) equivalently reads

K1,m+(z)=(qq1)K1,0+(zq2m)t1,m+(z),{\textbf{{K}}}^{+}_{1,m}(z)=-(q-q^{-1}){\textbf{{K}}}^{+}_{1,0}(zq^{-2m}){\textbf{{t}}}^{+}_{1,m}(z)\,,

for every m×m\in{\mathbb{N}}^{\times}. For every m×m\in{\mathbb{N}}^{\times}, let

𝐊1,±m±(z)=Ψ^1(K1,±m±(z))U˙q(𝔞˙1)^[[z,z1]].{\bf K}_{1,\pm m}^{\pm}(z)=\widehat{\Psi}^{-1}({\textbf{{K}}}^{\pm}_{1,\pm m}(z))\in\widehat{\dot{\mathrm{U}}_{q}(\dot{\mathfrak{a}}_{1})}[[z,z^{-1}]]\,.

In [MZ19] – see proposition-definition 4.9, definition 4.25 and eq. (4.66) –, we proved that 𝐊1,0+(z)=𝐤1(C1/2z){\bf K}_{1,0}^{+}(z)=-{\bf k}_{1}^{-}(C^{1/2}z) and that, for every m×m\in{\mathbb{N}}^{\times},

𝐊1,m+(z)=(qq1)𝐤1(C1/2zq2m)𝝍1,m+(z),{\bf K}_{1,m}^{+}(z)=(q-q^{-1}){\bf k}_{1}^{-}(C^{1/2}zq^{-2m}){\boldsymbol{\psi}}^{+}_{1,m}(z)\,,

where 𝝍1,m+(z){\boldsymbol{\psi}}^{+}_{1,m}(z) can be recursively defined by setting

[𝐱0+(w),𝐱1+(z)]G10(w/z)=δ(q2wz)𝝍1,1+(z)\left[{\bf x}_{0}^{+}(w),{\bf x}_{1}^{+}(z)\right]_{G_{10}^{-}(w/z)}=\delta\left(\frac{q^{2}w}{z}\right){\boldsymbol{\psi}}^{+}_{1,1}(z) (3.81)

and

[𝝍1,1+(w),𝝍1,m+(v)]G01(w/vq2)G11(w/v)G01(q2mv/w)G11(q2(1m)v/w)\displaystyle{}_{G^{-}_{01}(q^{-2m}v/w)G^{-}_{11}(q^{2(1-m)}v/w)}\left[{\boldsymbol{\psi}}^{+}_{1,1}(w),{\boldsymbol{\psi}}^{+}_{1,m}(v)\right]_{G^{-}_{01}(w/vq^{2})G^{-}_{11}(w/v)} =\displaystyle= [2]qδ(wvq2)𝝍1,m+1+(q2v)\displaystyle[2]_{q}\delta\left(\frac{w}{vq^{2}}\right){\boldsymbol{\psi}}^{+}_{1,m+1}(q^{2}v) (3.82)
[2]qδ(q2mwv)𝝍1,m+1+(v).\displaystyle-[2]_{q}\delta\left(\frac{q^{2m}w}{v}\right){\boldsymbol{\psi}}^{+}_{1,m+1}(v)\,.

Hence, i for m=0m=0 is clear. From (3.81) and definition 3.27, and making use of relations (3.58) and (3.59) as well as of the identity (3.68), we deduce that

Δ(𝝍1,1+(z))=𝝍1,1+(z)1+(zq2C(1)1/2)^𝝍1,1+(zC(1))[2]q(qq1)𝐤1(zC(1)1/2)𝐱0+(zq2)^𝐱1+(zC(1)),\Delta({\boldsymbol{\psi}}^{+}_{1,1}(z))={\boldsymbol{\psi}}^{+}_{1,1}(z)\otimes 1+{\boldsymbol{\wp}}^{-}(zq^{-2}C_{(1)}^{1/2})\widehat{\otimes}{\boldsymbol{\psi}}^{+}_{1,1}(zC_{(1)})-[2]_{q}(q-q^{-1}){\bf k}_{1}^{-}(zC_{(1)}^{1/2}){\bf x}_{0}^{+}(zq^{-2})\widehat{\otimes}{\bf x}_{1}^{+}(zC_{(1)})\,,

where (v)=𝐤0(v)𝐤1(vq2){\boldsymbol{\wp}}^{-}(v)={\bf k}_{0}^{-}(v){\bf k}_{1}^{-}(vq^{2}). Applying Ψ^^Ψ^\widehat{\Psi}\widehat{\otimes}\widehat{\Psi} to the first two terms obviously yields Δ0(t1,1+(z))\Delta^{0}({\textbf{{t}}}^{+}_{1,1}(z)). Since, on the other hand, Ψ^(𝐱0+(z))U¨q<(𝔞1)[[z,z1]]\widehat{\Psi}({\bf x}_{0}^{+}(z))\in\ddot{\mathrm{U}}_{q}^{<}(\mathfrak{a}_{1})[[z,z^{-1}]] – see theorem 3.22 –, applying Ψ^^Ψ^\widehat{\Psi}\widehat{\otimes}\widehat{\Psi} to the third term yields an element of U¨q<(𝔞1)^U¨q>(𝔞1)[[z,z1]]\ddot{\mathrm{U}}_{q}^{<}(\mathfrak{a}_{1})\widehat{\otimes}\ddot{\mathrm{U}}_{q}^{>}(\mathfrak{a}_{1})[[z,z^{-1}]] and it follows that i holds for m=1m=1 and for upper choices of signs. Suppose it holds for upper choices of signs and for some m×m\in{\mathbb{N}}^{\times}. Then, making use of (3.82), one easily checks that i holds for m+1m+1 and for upper choices of signs, which completes the proof of i for upper choices of signs. Now, i for lower choices of signs follows after applying φ˙\dot{\varphi} and observing that, indeed,

Δ˙φ˙=(φ˙^φ˙)Δ˙cop,andΔ0φ˙|U¨q0(𝔞1)=(φ˙^φ˙)|U¨q0(𝔞1)Δ0,cop.\dot{\Delta}\circ\dot{\varphi}=\left(\dot{\varphi}\widehat{\otimes}\dot{\varphi}\right)\circ\dot{\Delta}^{\mathrm{cop}}\,,\qquad\mbox{and}\qquad\Delta^{0}\circ\dot{\varphi}_{|\ddot{\mathrm{U}}_{q}^{0}(\mathfrak{a}_{1})}=\left(\dot{\varphi}\widehat{\otimes}\dot{\varphi}\right)_{|\ddot{\mathrm{U}}_{q}^{0}(\mathfrak{a}_{1})}\circ\Delta^{0,\mathrm{cop}}\,.

As for ii, we let, for every rr\in{\mathbb{Z}},

𝐗1,r+(z)=Ψ^1(X1,r+(z)).{\bf X}_{1,r}^{+}(z)=\widehat{\Psi}^{-1}({\textbf{{X}}}_{1,r}^{+}(z))\,.

In [MZ19] – see definition 4.1 and proposition 4.8 –, we proved that 𝐗1,r+(z){\bf X}_{1,r}^{+}(z) could be defined recursively by setting 𝐗1,0+(z)=𝐱1+(z){\bf X}_{1,0}^{+}(z)={\bf x}_{1}^{+}(z) and letting, for every rr\in{\mathbb{N}},

[𝝍1,1+(z),𝐗1,r+(v)]G10(z/vq2)G11(z/v)=[2]qδ(zvq2)𝐗1,r+1+(z)\left[{\boldsymbol{\psi}}^{+}_{1,1}(z),{\bf X}_{1,r}^{+}(v)\right]_{G_{10}^{-}(z/vq^{2})G_{11}^{-}(z/v)}=[2]_{q}\delta\left(\frac{z}{vq^{2}}\right){\bf X}_{1,r+1}^{+}(z) (3.83)

and

[𝝍1,1(z),𝐗1,r+(v)]=[2]qδ(Czv)𝐗1,(r+1)+(Cq2z)+(C1/2q2z),\left[{\boldsymbol{\psi}}^{-}_{1,-1}(z),{\bf X}_{1,-r}^{+}(v)\right]=[2]_{q}\delta\left(\frac{Cz}{v}\right){\bf X}_{1,-(r+1)}^{+}(Cq^{-2}z){\boldsymbol{\wp}}^{+}(C^{1/2}q^{-2}z)\,, (3.84)

where 𝝍1,1(z)=φ(𝝍1,1+(1/z)){\boldsymbol{\psi}}^{-}_{1,-1}(z)=\varphi({\boldsymbol{\psi}}^{+}_{1,1}(1/z)) – see proposition 4.3 in [MZ19]. Observing that (φ^φ)Δcop=Δφ\left(\varphi\widehat{\otimes}\varphi\right)\circ\Delta^{\mathrm{cop}}=\Delta\circ\varphi, we clearly get

(Ψ^^Ψ^)Δ(𝝍1,1(z))=Δ0(t1,1(z))modU¨q<(𝔞1)^U¨q>(𝔞1)[[z,z1]].\left(\widehat{\Psi}\widehat{\otimes}\widehat{\Psi}\right)\circ\Delta({\boldsymbol{\psi}}^{-}_{1,-1}(z))=\Delta^{0}({\textbf{{t}}}^{-}_{1,-1}(z))\mod\ddot{\mathrm{U}}_{q}^{<}(\mathfrak{a}_{1})\widehat{\otimes}\ddot{\mathrm{U}}_{q}^{>}(\mathfrak{a}_{1})[[z,z^{-1}]]\,.

Now, applying Ψ^^Ψ^\widehat{\Psi}\widehat{\otimes}\widehat{\Psi} to (3.76) in definition 3.27 clearly proves ii in the case r=0r=0. Assuming it holds for rr\in{\mathbb{N}}, it suffices to apply (Ψ^^Ψ^)Δ\left(\widehat{\Psi}\widehat{\otimes}\widehat{\Psi}\right)\circ\Delta to (3.83) above to prove that it also holds for r+1r+1. Similarly, if ii holds for some rr\in-{\mathbb{N}}, applying (Ψ^^Ψ^)Δ\left(\widehat{\Psi}\widehat{\otimes}\widehat{\Psi}\right)\circ\Delta to (3.84) to prove that it also holds for r1r-1. This concludes the proof. ∎

4. tt-weight U¨q(𝔞1)\ddot{\mathrm{U}}_{q}(\mathfrak{a}_{1})-modules

4.1. \ell-weight modules over U¨q0(𝔞1)\ddot{\mathrm{U}}_{q}^{0}(\mathfrak{a}_{1})

Remember that U¨q0,0(𝔞1)\ddot{\mathrm{U}}_{q}^{0,0}(\mathfrak{a}_{1}) contains a subalgebra that is isomorphic to U˙q0(𝔞1)\dot{\mathrm{U}}_{q}^{0}(\mathfrak{a}_{1}) – see proposition 3.5. Hence, in view of remark 2.9, we can repeat for modules over U¨q0(𝔞1)\ddot{\mathrm{U}}_{q}^{0}(\mathfrak{a}_{1}) what we did in section 2.3 for modules over U˙q(𝔞1)\dot{\mathrm{U}}_{q}(\mathfrak{a}_{1}). We thus make the following

Definition 4.1.

We shall say that a (topological) U¨q0(𝔞1)\ddot{\mathrm{U}}_{q}^{0}(\mathfrak{a}_{1})-module MM is \ell-weight if there exists a countable set {Mα:αA}\left\{M_{\alpha}:\alpha\in A\right\} of indecomposable locally finite-dimensional U¨q0,0(𝔞1)\ddot{\mathrm{U}}_{q}^{0,0}(\mathfrak{a}_{1})-modules called \ell-weight spaces of MM, such that, as U¨q0,0(𝔞1)\ddot{\mathrm{U}}_{q}^{0,0}(\mathfrak{a}_{1})-modules,

MαAMα.M\cong\bigoplus_{\alpha\in A}M_{\alpha}\,.

As in section 2.3, it follows that

Definition-Proposition 4.2.

Let MM be an \ell-weight U¨q0(𝔞1)\ddot{\mathrm{U}}_{q}^{0}(\mathfrak{a}_{1})-module. Then:

  1. i.

    C2{{\textsf{C}}}^{2} acts on MM by id{\mathrm{id}};

  2. ii.

    for every \ell-weight space MαM_{\alpha}, αA\alpha\in A, of MM, there exist κα,0𝔽×\kappa_{\alpha,0}\in\mathbb{F}^{\times} and sequences (κα,±m±)m×𝔽×(\kappa^{\pm}_{\alpha,\pm m})_{m\in{\mathbb{N}}^{\times}}\in\mathbb{F}^{{\mathbb{N}}^{\times}} such that

    Mα{vM:n×,m(𝖪1,0,±m±κα,±m±id)n.v=0},M_{\alpha}\subseteq\left\{v\in M:\exists n\in{\mathbb{N}}^{\times}\,,\forall m\in{\mathbb{N}}\quad\left({\mathsf{K}}^{\pm}_{1,0,\pm m}-\kappa^{\pm}_{\alpha,\pm m}{\mathrm{id}}\right)^{n}.v=0\right\}\,, (4.1)

    where we have set κα,0±=κα,0±1\kappa_{\alpha,0}^{\pm}=\kappa_{\alpha,0}^{\pm 1}.

We let Sp(M)={κα,0:αA}\mathrm{Sp}(M)=\{\kappa_{\alpha,0}:\alpha\in A\} and we shall refer to

κα±(z)=mκα,±m±z±m\kappa_{\alpha}^{\pm}(z)=\sum_{m\in{\mathbb{N}}}\kappa_{\alpha,\pm m}^{\pm}z^{\pm m}

as the \ell-weight of the \ell-weight space MαM_{\alpha}. We shall say that MM is

  • of type 11 if C1/2{{\textsf{C}}}^{1/2} acts by id{\mathrm{id}} over MM;

  • of type (1,N)(1,N) for N×N\in{\mathbb{N}}^{\times} if it is of type 11 and, for every mNm\geq N, 𝖼±m±{\mathsf{c}}^{\pm}_{\pm m} acts by multiplication 0 over MM;

  • of type (1,0)(1,0) if it is of type (1,1)(1,1) and 𝖼0±{\mathsf{c}}^{\pm}_{0} acts by id{\mathrm{id}} over MM.

Proof.

The proof follows the same arguments as the proof of definition-proposition 2.8. ∎

Proposition 4.3.

Let MM be a type 11 \ell-weight U¨q0(𝔞1)\ddot{\mathrm{U}}_{q}^{0}(\mathfrak{a}_{1})-module and let MαM_{\alpha} and MβM_{\beta} be two \ell-weight spaces of MM such that, for some m×m\in{\mathbb{N}}^{\times} and some nn\in{\mathbb{Z}}, Mα𝖪1,±m,n±.Mβ{0}M_{\alpha}\cap{\mathsf{K}}^{\pm}_{1,\pm m,n}.M_{\beta}\neq\{0\}. Then, there exists a unique a𝔽×a\in\mathbb{F}^{\times} such that:

  1. i.

    the respective \ell-weights καε(z)\kappa_{\alpha}^{\varepsilon}(z) and κβε(z)\kappa_{\beta}^{\varepsilon}(z) of MαM_{\alpha} and MβM_{\beta} be related by

    καε(z)=κβε(z)Hm,aε(z)±1,\kappa_{\alpha}^{\varepsilon}(z)=\kappa_{\beta}^{\varepsilon}(z)H_{m,a}^{\varepsilon}(z)^{\pm 1}\,,

    where ε{,+}\varepsilon\in\{-,+\} and

    Hm,a±(z)=((1q2a/z)(1q2(m1)a/z)(1q2a/z)(1q2(m+1)a/z))|z|±11;H_{m,a}^{\pm}(z)=\left(\frac{(1-q^{-2}a/z)(1-q^{-2(m-1)}a/z)}{(1-q^{2}a/z)(1-q^{-2(m+1)}a/z)}\right)_{|z|^{\pm 1}\ll 1}\,; (4.2)
  2. ii.

    (za)NMαK1,±m±(z).Mβ={0}(z-a)^{N}M_{\alpha}\cap{\textbf{{K}}}^{\pm}_{1,\pm m}(z).M_{\beta}=\{0\} for some N×N\in{\mathbb{N}}^{\times}.

Proof.

There clearly exist two bases {vi:i=1,,dimMα}\left\{v_{i}:i=1,\dots,\dim M_{\alpha}\right\} and {wi:i=1,,dimMβ}\left\{w_{i}:i=1,\dots,\dim M_{\beta}\right\} of MαM_{\alpha} and MβM_{\beta} respectively, in which

idimMα,K1,0±(z).vi=κα±(z)k=idimMαηα,i,k±(z)vk,\forall i\in{\llbracket\dim M_{\alpha}\rrbracket}\,,\qquad\qquad{\textbf{{K}}}^{\pm}_{1,0}(z).v_{i}=\kappa_{\alpha}^{\pm}(z)\sum_{k=i}^{\dim M_{\alpha}}\eta_{\alpha,i,k}^{\pm}(z)v_{k}\,,
jdimMβ,K1,0±(z).wj=κβ±(z)l=jdimMβηβ,j,l±(z)wl,\forall j\in{\llbracket\dim M_{\beta}\rrbracket}\,,\qquad\qquad{\textbf{{K}}}^{\pm}_{1,0}(z).w_{j}=\kappa_{\beta}^{\pm}(z)\sum_{l=j}^{\dim M_{\beta}}\eta_{\beta,j,l}^{\pm}(z)w_{l}\,,

for some ηα,i,k±(z),ηβ,j,l±(z)𝔽[[z±1]]\eta_{\alpha,i,k}^{\pm}(z),\eta_{\beta,j,l}^{\pm}(z)\in\mathbb{F}[[z^{\pm 1}]], with i,kdimMαi,k\in{\llbracket\dim M_{\alpha}\rrbracket} and j,ldimMβj,l\in{\llbracket\dim M_{\beta}\rrbracket}, such that ηα,i,i±(z)=1\eta_{\alpha,i,i}^{\pm}(z)=1 for every idimMαi\in{\llbracket\dim M_{\alpha}\rrbracket} and ηβ,j,j±(z)=1\eta_{\beta,j,j}^{\pm}(z)=1 for every jdimMβj\in{\llbracket\dim M_{\beta}\rrbracket}.

Now, if Mα𝖪1,±m,n±.Mβ{0}M_{\alpha}\cap{\mathsf{K}}^{\pm}_{1,\pm m,n}.M_{\beta}\neq\{0\}, there must exist a largest nonempty subset JdimMβJ\subseteq{\llbracket\dim M_{\beta}\rrbracket} such that, for every jJj\in J, MαK1,±m±(z).wj{0}M_{\alpha}\cap{\textbf{{K}}}^{\pm}_{1,\pm m}(z).w_{j}\neq\{0\}. Let j=maxJj_{*}=\max J. Obviously, for every jJj\in J, there must exist a largest nonempty subset I(j)dimMαI(j)\subseteq{\llbracket\dim M_{\alpha}\rrbracket} such that, for every jJj\in J and every iI(j)i\in I(j), 𝔽viK1,±m±(z).wj{0}\mathbb{F}v_{i}\cap{\textbf{{K}}}^{\pm}_{1,\pm m}(z).w_{j}\neq\{0\}. Let i(j)=minI(j)i_{*}(j)=\min I(j) and let for simplicity i=i(j)i_{*}=i_{*}(j_{*}). Then, for every jJj\in J,

MαK1,±m±(z).wj=iI(j)ξm,j,i±(z)vi,M_{\alpha}\cap{\textbf{{K}}}^{\pm}_{1,\pm m}(z).w_{j}=\sum_{i\in I(j)}\xi_{m,j,i}^{\pm}(z)v_{i}\,,

for some ξm,j,i±(z)𝔽[[z,z1]]{0}\xi_{m,j,i}^{\pm}(z)\in\mathbb{F}[[z,z^{-1}]]-\{0\}. When needed, we shall extend by zero the definition of ξm,j,i±(z)\xi_{m,j,i}^{\pm}(z) outside of the set of pairs {(j,i):jJ,iI(j)}\{(j,i):j\in J,i\in I(j)\}. Making use of the relations in U¨q(𝔞1)\ddot{\mathrm{U}}_{q}(\mathfrak{a}_{1}) – namely (3.7) and (3.8) –, we get, for ε{,+}\varepsilon\in\{-,+\},

(z1q±2z2)(z1q2(m1)z2)K1,±m±(z1)K1,0ε(z2).wj=(z1q±2z2)(z1q2q2mz2)K1,0ε(z2)K1,±m±(z1).wj.(z_{1}-q^{\pm 2}z_{2})(z_{1}-q^{2(m\mp 1)}z_{2}){\textbf{{K}}}^{\pm}_{1,\pm m}(z_{1}){\textbf{{K}}}^{\varepsilon}_{1,0}(z_{2}).w_{j}=(z_{1}q^{\pm 2}-z_{2})(z_{1}q^{\mp 2}-q^{2m}z_{2}){\textbf{{K}}}^{\varepsilon}_{1,0}(z_{2}){\textbf{{K}}}^{\pm}_{1,\pm m}(z_{1}).w_{j}\,.

The latter easily implies that, for every jJj\in J and every iI(j)i\in I(j),

(z1q±2z2)(z1q2(m1)z2)κβε(z2)lJljηβ,j,lε(z2)ξm,l,i±(z1)\displaystyle(z_{1}-q^{\pm 2}z_{2})(z_{1}-q^{2(m\mp 1)}z_{2})\kappa_{\beta}^{\varepsilon}(z_{2})\sum_{\begin{subarray}{c}l\in J\\ l\geq j\end{subarray}}\eta_{\beta,j,l}^{\varepsilon}(z_{2})\xi_{m,l,i}^{\pm}(z_{1})
=(z1q±2z2)(z1q2q2mz2)κα±(z2)kI(j)kiηα,k,iε(z2)ξm,j,k±(z1).\displaystyle\quad\qquad\qquad\qquad\qquad\qquad\qquad=(z_{1}q^{\pm 2}-z_{2})(z_{1}q^{\mp 2}-q^{2m}z_{2})\kappa_{\alpha}^{\pm}(z_{2})\sum_{\begin{subarray}{c}k\in I(j)\\ k\leq i\end{subarray}}\eta_{\alpha,k,i}^{\varepsilon}(z_{2})\xi_{m,j,k}^{\pm}(z_{1})\,. (4.3)

Taking i=ii=i_{*} and j=jj=j_{*} in the above equation immediately yields

[(z1q±2z2)(z1q2(m1)z2)κβε(z2)(z1q±2z2)(z1q2q2mz2)καε(z2)]ξm,j,i±(z1)=0.\left[(z_{1}-q^{\pm 2}z_{2})(z_{1}-q^{2(m\mp 1)}z_{2})\kappa_{\beta}^{\varepsilon}(z_{2})-(z_{1}q^{\pm 2}-z_{2})(z_{1}q^{\mp 2}-q^{2m}z_{2})\kappa_{\alpha}^{\varepsilon}(z_{2})\right]\xi_{m,j_{*},i_{*}}^{\pm}(z_{1})=0\,.

The latter is equivalent to the fact that, for every pp\in{\mathbb{Z}},

(ξm,j,i,p±q2mz2+ξm,j,i,p+2±)[κβε(z)καε(z)]\displaystyle\left(\xi_{m,j_{*},i_{*},p}^{\pm}q^{2m}z^{2}+\xi_{m,j_{*},i_{*},p+2}^{\pm}\right)\left[\kappa_{\beta}^{\varepsilon}(z)-\kappa_{\alpha}^{\varepsilon}(z)\right]
=ξm,j,i,p+1±z[(q2(m1)+q±2)κβε(z)(q2(m±1)+q2)καε(z)].\displaystyle\qquad\qquad\qquad\qquad\qquad\qquad=\xi_{m,j_{*},i_{*},p+1}^{\pm}z\left[(q^{2(m\mp 1)}+q^{\pm 2})\kappa_{\beta}^{\varepsilon}(z)-(q^{2(m\pm 1)}+q^{\mp 2})\kappa_{\alpha}^{\varepsilon}(z)\right]\,. (4.4)

where, as usual, we have set

ξm,j,i,p±=reszzp1ξm,j,i±(z).\xi_{m,j_{*},i_{*},p}^{\pm}=\operatorname*{res}_{z}z^{p-1}\xi_{m,j_{*},i_{*}}^{\pm}(z)\,.

Since ξm,j,i±(z)0\xi_{m,j_{*},i_{*}}^{\pm}(z)\neq 0, there must exist a pp\in{\mathbb{Z}} such that ξm,j,i,p±0\xi_{m,j_{*},i_{*},p}^{\pm}\neq 0. Assuming that ξm,j,i,p+1±=0\xi_{m,j_{*},i_{*},p+1}^{\pm}=0, one easily obtains that, on one hand κβε(z)=καε(z)\kappa_{\beta}^{\varepsilon}(z)=\kappa_{\alpha}^{\varepsilon}(z) and that, on the other hand,

[(q2(m1)+q±2)κβε(z)(q2(m±1)+q2)καε(z)]=0.\left[(q^{2(m\mp 1)}+q^{\pm 2})\kappa_{\beta}^{\varepsilon}(z)-(q^{2(m\pm 1)}+q^{\mp 2})\kappa_{\alpha}^{\varepsilon}(z)\right]=0\,.

A contradiction. By similar arguments, one eventually proves that ξm,j,i,p±0\xi_{m,j_{*},i_{*},p}^{\pm}\neq 0 for every pp\in{\mathbb{Z}}. But then dividing (4.1) by ξm,j,i,p±\xi_{m,j_{*},i_{*},p}^{\pm} we get

(q2mz2+a2)[κβε(z)καε(z)]az[(q2(m1)+q±2)κβε(z)(q2(m±1)+q2)καε(z)]=0.\left(q^{2m}z^{2}+a^{2}\right)\left[\kappa_{\beta}^{\varepsilon}(z)-\kappa_{\alpha}^{\varepsilon}(z)\right]-az\left[(q^{2(m\mp 1)}+q^{\pm 2})\kappa_{\beta}^{\varepsilon}(z)-(q^{2(m\pm 1)}+q^{\mp 2})\kappa_{\alpha}^{\varepsilon}(z)\right]=0\,.

where we have set, for every pp\in{\mathbb{Z}}, ξm,j,i,p+1±/ξm,j,i,p±=a𝔽×\xi_{m,j_{*},i_{*},p+1}^{\pm}/\xi_{m,j_{*},i_{*},p}^{\pm}=a\in\mathbb{F}^{\times} and, consequently, ξm,j,i,p+2±/ξm,j,i,p±=a2\xi_{m,j_{*},i_{*},p+2}^{\pm}/\xi_{m,j_{*},i_{*},p}^{\pm}=a^{2}. i follows. Moreover, we clearly have

ξm,j,i±(z)=Am,j,i±δ(z/a),\xi_{m,j_{*},i_{*}}^{\pm}(z)=A_{m,j_{*},i_{*}}^{\pm}\delta(z/a)\,,

for some Am,j,i±𝔽×A_{m,j_{*},i_{*}}^{\pm}\in\mathbb{F}^{\times}. More generally, we claim that,

jJ,iI(j),ξm,j,i±(z)=p=0N(i,j)Am,j,i,p±δ(p)(z/a),\forall j\in J\,,\forall i\in I(j)\,,\qquad\qquad\xi_{m,j,i}^{\pm}(z)=\sum_{p=0}^{N(i,j)}A_{m,j,i,p}^{\pm}\delta^{(p)}(z/a)\,, (4.5)

for some Am,j,i,p±𝔽A_{m,j,i,p}^{\pm}\in\mathbb{F} and some N(i,j)N(i,j)\in{\mathbb{N}}. This is proven by a finite induction on jj and ii. Indeed, making use of (4.2), we can rewrite (4.1) as

(z1q±2z2)(z1q2(m1)z2)(z2q±2a)(z2q2(m±1)a)lJljηβ,j,lε(z2)ξm,l,i±(z1)\displaystyle(z_{1}-q^{\pm 2}z_{2})(z_{1}-q^{2(m\mp 1)}z_{2})(z_{2}-q^{\pm 2}a)(z_{2}-q^{-2(m\pm 1)}a)\sum_{\begin{subarray}{c}l\in J\\ l\geq j\end{subarray}}\eta_{\beta,j,l}^{\varepsilon}(z_{2})\xi_{m,l,i}^{\pm}(z_{1})
=(z1q±2z2)(z1q2q2mz2)(z2q2a)(z2q2(m1)a)kI(j)kiηα,k,iε(z2)ξm,j,k±(z1),\displaystyle\quad\qquad=(z_{1}q^{\pm 2}-z_{2})(z_{1}q^{\mp 2}-q^{2m}z_{2})(z_{2}-q^{\mp 2}a)(z_{2}-q^{-2(m\mp 1)}a)\sum_{\begin{subarray}{c}k\in I(j)\\ k\leq i\end{subarray}}\eta_{\alpha,k,i}^{\varepsilon}(z_{2})\xi_{m,j,k}^{\pm}(z_{1})\,, (4.6)

for every jJj\in J and every iI(j)i\in I(j). Now, assume that (4.5) holds for every pair in

{(j,i):jJ,iI(j),j>j0}{(j0,i):iI(j0),ii0},\left\{(j,i):j\in J,\,i\in I(j),\quad j>j_{0}\right\}\cup\left\{(j_{0},i):i\in I(j_{0}),\quad i\leq i_{0}\right\}\,,

for some j0Jj_{0}\in J and some i0I(j0)i_{0}\in I(j_{0}) such that i0<maxI(j0)i_{0}<\max I(j_{0}). Let i0i_{0}^{\prime} be the smallest element of I(j0)I(j_{0}) such that i0<i0i_{0}<i_{0}^{\prime}. It suffices to write (4.1) for j=j0j=j_{0} and i=i0i=i_{0}^{\prime}, to get

(z1a)z2(z1aq2mz22)(q2+q2(m1)q±2q2(m±1))ξm,j0,i0±(z1)\displaystyle(z_{1}-a)z_{2}(z_{1}a-q^{2m}z_{2}^{2})(q^{\mp 2}+q^{-2(m\mp 1)}-q^{\pm 2}-q^{-2(m\pm 1)})\xi_{m,j_{0},i_{0}^{\prime}}^{\pm}(z_{1})
=(z1q±2z2)(z1q2(m1)z2)(z2q±2a)(z2q2(m±1)a)lJl>j0ηβ,j0,lε(z2)ξm,l,i0±(z1)\displaystyle\qquad=-(z_{1}-q^{\pm 2}z_{2})(z_{1}-q^{2(m\mp 1)}z_{2})(z_{2}-q^{\pm 2}a)(z_{2}-q^{-2(m\pm 1)}a)\sum_{\begin{subarray}{c}l\in J\\ l>j_{0}\end{subarray}}\eta_{\beta,j_{0},l}^{\varepsilon}(z_{2})\xi_{m,l,i_{0}^{\prime}}^{\pm}(z_{1})
+(z1q±2z2)(z1q2q2mz2)(z2q2a)(z2q2(m1)a)kI(j0)ki0ηα,k,i0ε(z2)ξm,j0,k±(z1).\displaystyle\qquad+(z_{1}q^{\pm 2}-z_{2})(z_{1}q^{\mp 2}-q^{2m}z_{2})(z_{2}-q^{\mp 2}a)(z_{2}-q^{-2(m\mp 1)}a)\sum_{\begin{subarray}{c}k\in I(j_{0})\\ k\leq i_{0}\end{subarray}}\eta_{\alpha,k,i_{0}^{\prime}}^{\varepsilon}(z_{2})\xi_{m,j_{0},k}^{\pm}(z_{1})\,. (4.7)

Combining the recursion hypothesis and lemma A.1 from the appendix, one easily concludes that (4.5) holds for the pair (j0,i0)(j_{0},i_{0}^{\prime}). Repeating the argument finitely many times, we get that it actually holds for all the pairs in {(j,i):jJ,iI(j),jj0}\left\{(j,i):j\in J,\,i\in I(j),\quad j\geq j_{0}\right\}. Now, either j0=minJj_{0}=\min J and we are done; or j0>minJj_{0}>\min J and there exists a largest j0Jj_{0}^{\prime}\in J such that j0>j0j_{0}>j_{0}^{\prime}. Writing (4.1) for j=j0j=j_{0}^{\prime} and i=i(j0)i=i_{*}(j_{0}^{\prime}), we get

(z1a)z2(z1aq2mz22)(q2+q2(m1)q±2q2(m±1))ξm,j0,i(j0)±(z1)\displaystyle(z_{1}-a)z_{2}(z_{1}a-q^{2m}z_{2}^{2})(q^{\mp 2}+q^{-2(m\mp 1)}-q^{\pm 2}-q^{-2(m\pm 1)})\xi_{m,j_{0}^{\prime},i_{*}(j_{0}^{\prime})}^{\pm}(z_{1})
=(z1q±2z2)(z1q2(m1)z2)(z2q±2a)(z2q2(m±1)a)lJlj0ηβ,j0,lε(z2)ξm,l,i(j0)±(z1).\displaystyle\qquad\qquad=-(z_{1}-q^{\pm 2}z_{2})(z_{1}-q^{2(m\mp 1)}z_{2})(z_{2}-q^{\pm 2}a)(z_{2}-q^{-2(m\pm 1)}a)\sum_{\begin{subarray}{c}l\in J\\ l\geq j_{0}\end{subarray}}\eta_{\beta,j_{0}^{\prime},l}^{\varepsilon}(z_{2})\xi_{m,l,i_{*}(j_{0}^{\prime})}^{\pm}(z_{1})\,.

Combining again the recursion hypothesis and lemma A.1, we easily get that (4.19) holds for (j0,i(j0))(j_{0}^{\prime},i_{*}(j_{0}^{\prime})). It is now clear that the claim holds for every jJj\in J and every iI(j)i\in I(j). Letting N=max{N(i,j):jJ,iI(j)}N=\max\{N(i,j):j\in J,\,i\in I(j)\}, ii follows. Furthermore, for every b𝔽{a}b\in\mathbb{F}-\{a\} and every nn\in{\mathbb{N}}, we obviously have (zb)nMαK1,±m±(z).Mβ{0}(z-b)^{n}M_{\alpha}\cap{\textbf{{K}}}^{\pm}_{1,\pm m}(z).M_{\beta}\neq\{0\}, thus making aa the only element of 𝔽\mathbb{F} satisfying ii. This concludes the proof. ∎

We let ω1\omega_{1} denote the fundamental weight of 𝔞1\mathfrak{a}_{1} and we let P=ω1P={\mathbb{Z}}\omega_{1} be the corresponding weight lattice. In view of proposition 4.3, it is natural to make the following

Definition 4.4.

Let MM be a type (1,0)(1,0) \ell-weight U¨q0(𝔞1)\ddot{\mathrm{U}}_{q}^{0}(\mathfrak{a}_{1})-module and let {Mα:αA}\left\{M_{\alpha}:\alpha\in A\right\} be the countable set of its \ell-weight spaces. We shall say that MM is rational if, for every αA\alpha\in A, there exist relatively prime monic polynomials Pα(1/z),Qα(1/z)𝔽[z1]P_{\alpha}(1/z),Q_{\alpha}(1/z)\in\mathbb{F}[z^{-1}], called Drinfel’d polynomials of MM, such that the \ell-weight κα±(z)\kappa_{\alpha}^{\pm}(z) of MαM_{\alpha} be given by

κα±(z)=qdeg(Pα)deg(Qα)(Pα(q2/z)Qα(1/z)Pα(1/z)Qα(q2/z))|z|±11.\kappa_{\alpha}^{\pm}(z)=-q^{\deg(P_{\alpha})-\deg(Q_{\alpha})}\left(\frac{P_{\alpha}(q^{-2}/z)Q_{\alpha}(1/z)}{P_{\alpha}(1/z)Q_{\alpha}(q^{-2}/z)}\right)_{|z|^{\pm 1}\ll 1}\,.

With each rational \ell-weight κα±(z)\kappa_{\alpha}^{\pm}(z) of a rational U¨q0(𝔞1)\ddot{\mathrm{U}}_{q}^{0}(\mathfrak{a}_{1})-module MM, we associate an integral weight λαP\lambda_{\alpha}\in P, by setting

λα=[deg(Pα)deg(Qα)]ω1.\lambda_{\alpha}=\left[\deg(P_{\alpha})-\deg(Q_{\alpha})\right]\omega_{1}\,.

We shall say that MM is \ell-dominant (resp. \ell-anti-dominant) if it is rational and there exists N×N\in{\mathbb{N}}^{\times} such that, for every αA\alpha\in A, deg(Pα)=N\deg(P_{\alpha})=N and deg(Qα)=0\deg(Q_{\alpha})=0 (resp. deg(Pα)=0\deg(P_{\alpha})=0 and deg(Qα)=N\deg(Q_{\alpha})=N).

Remark 4.5.

The classical weight Nω1N\omega_{1} (resp. Nω1-N\omega_{1}) associated with any \ell-dominant (resp. \ell-anti-dominant) type 11 \ell-weight rational U¨q0(𝔞1)\ddot{\mathrm{U}}_{q}^{0}(\mathfrak{a}_{1})-module MM is a dominant (resp. anti-dominant) integral weight. Note that the converse need not be true.

Remark 4.6.

The data of the \ell-weights of a rational U¨q0(𝔞1)\ddot{\mathrm{U}}_{q}^{0}(\mathfrak{a}_{1})-module is equivalent to the data of its Drinfel’d polynomials {(Pα,Qα):αA}\left\{(P_{\alpha},Q_{\alpha}):\alpha\in A\right\} which, in turn, is equivalent to the data of their finite multisets of roots {(να+,να):αA}\left\{(\nu_{\alpha}^{+},\nu_{\alpha}^{-}):\alpha\in A\right\}. The latter are finitely supported maps να±:𝔽×\nu_{\alpha}^{\pm}:\mathbb{F}^{\times}\to{\mathbb{N}} such that, for every αA\alpha\in A,

Pα(1/z)=x𝔽×(1x/z)να+(x)andQα(1/z)=x𝔽×(1x/z)να(x).P_{\alpha}(1/z)=\prod_{x\in\mathbb{F}^{\times}}\left(1-x/z\right)^{\nu_{\alpha}^{+}(x)}\qquad\mbox{and}\qquad Q_{\alpha}(1/z)=\prod_{x\in\mathbb{F}^{\times}}(1-x/z)^{\nu_{\alpha}^{-}(x)}\,.

Note that, in the above formulae, since να±\nu_{\alpha}^{\pm} is finitely supported, the products only run through the finitely many numbers in the support supp(να±)\mathrm{supp}(\nu_{\alpha}^{\pm}) of να±\nu_{\alpha}^{\pm}. Moreover, since PαP_{\alpha} and QαQ_{\alpha} are relatively prime for every αA\alpha\in A, we have supp(να+)supp(να)=\mathrm{supp}(\nu_{\alpha}^{+})\cap\mathrm{supp}(\nu_{\alpha}^{-})=\emptyset. We denote by f𝔽×{\mathbb{N}}_{f}^{\mathbb{F}^{\times}}, the set of finitely supported {\mathbb{N}}-valued maps over 𝔽×\mathbb{F}^{\times}. As is customary in the theory of qq-characters, we associate with every \ell-weight given by a pair (Pα,Qα)(P_{\alpha},Q_{\alpha}) of Drinfel’d polynomials or, equivalently, by a pair (να+,να)(\nu_{\alpha}^{+},\nu_{\alpha}^{-}) with να+,ναf𝔽×\nu_{\alpha}^{+},\nu_{\alpha}^{-}\in{\mathbb{N}}_{f}^{\mathbb{F}^{\times}} and supp(να+)supp(να)=\mathrm{supp}(\nu_{\alpha}^{+})\cap\mathrm{supp}(\nu_{\alpha}^{-})=\emptyset, a monomial

mα=Yν+ν=x𝔽×Yxνα+(x)να(x)[Ya,Ya1]a𝔽×.m_{\alpha}=Y^{\nu^{+}-\nu^{-}}=\prod_{x\in\mathbb{F}^{\times}}Y_{x}^{\nu_{\alpha}^{+}(x)-\nu_{\alpha}^{-}(x)}\in{\mathbb{Z}}[Y_{a},Y_{a}^{-1}]_{a\in\mathbb{F}^{\times}}\,.
Definition 4.7.

Let MM be an \ell-dominant U¨q0(𝔞1)\ddot{\mathrm{U}}_{q}^{0}(\mathfrak{a}_{1})-module and let MαM_{\alpha} and MβM_{\beta} be any two \ell-weight spaces of MM with respective \ell-weights

κα±(z)=qdeg(Pα)(Pα(q2/z)Pα(1/z))|z|±11andκβ±(z)=qdeg(Pβ)(Pβ(q2/z)Pβ(1/z))|z|±11,\kappa_{\alpha}^{\pm}(z)=-q^{\deg(P_{\alpha})}\left(\frac{P_{\alpha}(q^{-2}/z)}{P_{\alpha}(1/z)}\right)_{|z|^{\pm 1}\ll 1}\qquad\qquad\mbox{and}\qquad\qquad\kappa_{\beta}^{\pm}(z)=-q^{\deg(P_{\beta})}\left(\frac{P_{\beta}(q^{-2}/z)}{P_{\beta}(1/z)}\right)_{|z|^{\pm 1}\ll 1}\,,

where Pα(1/z),Pβ(1/z)𝔽[z1]P_{\alpha}(1/z),P_{\beta}(1/z)\in\mathbb{F}[z^{-1}] are two monic polynomials. By proposition 4.3.i., if Mα𝖪1,±m±(z).Mβ{0}M_{\alpha}\cap{\mathsf{K}}^{\pm}_{1,\pm m}(z).M_{\beta}\neq\{0\} for some m×m\in{\mathbb{N}}^{\times}, then there exists a unique a𝔽×a\in\mathbb{F}^{\times} such that

καε(z)=κβε(z)Hm,aε(z)±1,\kappa_{\alpha}^{\varepsilon}(z)=\kappa_{\beta}^{\varepsilon}(z)H_{m,a}^{\varepsilon}(z)^{\pm 1}\,,

where ε{,+}\varepsilon\in\{-,+\}. We shall say that MM is tt-dominant if, under the same assumptions, we have, in addition, that

Pβ(1/aq(m±m))=Pβ(1/aq2(m±m))=0.P_{\beta}(1/aq^{-(m\pm m)})=P_{\beta}(1/aq^{2-(m\pm m)})=0\,.

For every a𝔽×a\in\mathbb{F}^{\times}, we let δaf𝔽×\delta_{a}\in{\mathbb{N}}_{f}^{\mathbb{F}^{\times}} be defined by

δa(x)={1if x=a;0otherwise.\delta_{a}(x)=\begin{cases}1&\mbox{if $x=a$;}\\ 0&\mbox{otherwise.}\end{cases}

For every a𝔽×a\in\mathbb{F}^{\times}, we let a𝔽×={νf𝔽×:{a,aq2}supp(ν)}{\mathbb{N}}_{a}^{\mathbb{F}^{\times}}=\left\{\nu\in{\mathbb{N}}_{f}^{\mathbb{F}^{\times}}:\{a,aq^{2}\}\subseteq\mathrm{supp}(\nu)\right\} and we define, for every mm\in{\mathbb{Z}}, an operator Γm,a:aq2m𝔽×a𝔽×\Gamma_{m,a}:{\mathbb{N}}_{aq^{-2m}}^{\mathbb{F}^{\times}}\to{\mathbb{N}}_{a}^{\mathbb{F}^{\times}} by letting 111Although the definition of Γ±1,a±1\Gamma_{\pm 1,a}^{\pm 1} easily extends to {νf𝔽×:aq(1±1)supp(ν)}\left\{\nu\in{\mathbb{N}}_{f}^{\mathbb{F}^{\times}}:aq^{-(1\pm 1)}\in\mathrm{supp}(\nu)\right\}, we will not make use of that extension and exclusively regard Γ±1,a±1\Gamma_{\pm 1,a}^{\pm 1} as a map aq2(1±1)𝔽×aq2(11)𝔽×{\mathbb{N}}_{aq^{-2(1\pm 1)}}^{\mathbb{F}^{\times}}\to{\mathbb{N}}_{aq^{2(1\mp 1)}}^{\mathbb{F}^{\times}}., for every νaq2m𝔽×\nu\in{\mathbb{N}}_{aq^{-2m}}^{\mathbb{F}^{\times}},

Γm,a(ν)=νδaq2mδaq22m+δa+δaq2.\Gamma_{m,a}(\nu)=\nu-\delta_{aq^{-2m}}-\delta_{aq^{2-2m}}+\delta_{a}+\delta_{aq^{2}}\,.

Γm,a\Gamma_{m,a} is obviously invertible, with inverse Γm,a1:a𝔽×aq2m𝔽×\Gamma_{m,a}^{-1}:{\mathbb{N}}_{a}^{\mathbb{F}^{\times}}\to{\mathbb{N}}_{aq^{-2m}}^{\mathbb{F}^{\times}} given by Γm,a1=Γm,aq2m\Gamma_{m,a}^{-1}=\Gamma_{-m,aq^{-2m}}. Note that, for every a𝔽×a\in\mathbb{F}^{\times}, Γ0,a=id\Gamma_{0,a}={\mathrm{id}} over a𝔽×{\mathbb{N}}_{a}^{\mathbb{F}^{\times}}. Given two finite multisets ν,νf𝔽×\nu,\nu^{\prime}\in{\mathbb{N}}_{f}^{\mathbb{F}^{\times}}, we we shall say that they are equivalent and write νν\nu\sim\nu^{\prime} iff

ν=Γm1,a1Γmn,an(ν),\nu=\Gamma_{m_{1},a_{1}}\circ\dots\circ\Gamma_{m_{n},a_{n}}(\nu^{\prime})\,, (4.8)

for some nn\in{\mathbb{N}}, m1,,mnnm_{1},\dots,m_{n}\in{\mathbb{Z}}^{n} and some a1,,an𝔽×a_{1},\dots,a_{n}\in\mathbb{F}^{\times}. In writing (4.8), it is assumed that, for every p=2,,np=2,\dots,n, Γmp,apΓmn,an(ν)ap1q2mp1𝔽×\Gamma_{m_{p},a_{p}}\circ\dots\circ\Gamma_{m_{n},a_{n}}(\nu^{\prime})\in{\mathbb{N}}_{a_{p-1}q^{-2m_{p-1}}}^{\mathbb{F}^{\times}}. It is clear that \sim is an equivalence relation and we denote by [ν]f𝔽×/[\nu]\in{\mathbb{N}}_{f}^{\mathbb{F}^{\times}}/\sim the equivalence class of ν\nu in f𝔽×{\mathbb{N}}_{f}^{\mathbb{F}^{\times}}. Following remark 4.6, we naturally extend the action of Γm,a\Gamma_{m,a} to [Yb,Yb1]b𝔽×{\mathbb{Z}}[Y_{b},Y_{b}^{-1}]_{b\in\mathbb{F}^{\times}}, by setting

Γm,a(Yν)=YΓm,a(ν).\Gamma_{m,a}(Y^{\nu})=Y^{\Gamma_{m,a}(\nu)}\,.

The equivalence relation \sim similarly extends from f𝔽×{\mathbb{N}}_{f}^{\mathbb{F}^{\times}} to [Yb,Yb1]b𝔽×{\mathbb{Z}}[Y_{b},Y_{b}^{-1}]_{b\in\mathbb{F}^{\times}}. Note that, setting

Hm,a=Yaq2m1Yaq22m1YaYaq2[Yb,Yb1]b𝔽×,H_{m,a}=Y_{aq^{-2m}}^{-1}Y_{aq^{2-2m}}^{-1}Y_{a}Y_{aq^{2}}\in{\mathbb{Z}}[Y_{b},Y_{b}^{-1}]_{b\in\mathbb{F}^{\times}}\,,

for every a𝔽×a\in\mathbb{F}^{\times} and every mm\in{\mathbb{Z}}, we have, for every νa𝔽×\nu\in{\mathbb{N}}_{a}^{\mathbb{F}^{\times}}

Γm,a(Yν)=Hm,aYν.\Gamma_{m,a}(Y^{\nu})=H_{m,a}Y^{\nu}\,.
Corollary 4.8.

Let MM be a simple tt-dominant U¨q0(𝔞1)\ddot{\mathrm{U}}_{q}^{0}(\mathfrak{a}_{1})-module. Then there exists a multiset νf𝔽×\nu\in{\mathbb{N}}_{f}^{\mathbb{F}^{\times}} such that all the monomials associated with the \ell-weights of MM be in the equivalence class of YνY^{\nu}.

Proof.

By proposition 4.3, for any two \ell-weight spaces, MαM_{\alpha} and MβM_{\beta}, of an \ell-dominant U¨q0(𝔞1)\ddot{\mathrm{U}}_{q}^{0}(\mathfrak{a}_{1})-module MM, with respective \ell-weights

κα±(z)=qdeg(Pα)(Pα(q2/z)Pα(1/z))|z|±11andκβ±(z)=qdeg(Pβ)(Pβ(q2/z)Pβ(1/z))|z|±11,\kappa_{\alpha}^{\pm}(z)=-q^{\deg(P_{\alpha})}\left(\frac{P_{\alpha}(q^{-2}/z)}{P_{\alpha}(1/z)}\right)_{|z|^{\pm 1}\ll 1}\qquad\qquad\mbox{and}\qquad\qquad\kappa_{\beta}^{\pm}(z)=-q^{\deg(P_{\beta})}\left(\frac{P_{\beta}(q^{-2}/z)}{P_{\beta}(1/z)}\right)_{|z|^{\pm 1}\ll 1}\,,

if Mα𝖪1,±m,n±.Mβ{0}M_{\alpha}\cap{\mathsf{K}}^{\pm}_{1,\pm m,n}.M_{\beta}\neq\{0\} for some m×m\in{\mathbb{N}}^{\times} and some nn\in{\mathbb{Z}}, then we must have

Pα(q2/z)Pα(1/z)=Pβ(q2/z)Pβ(1/z)((1q2a/z)(1a/z)(1a/z)(1q2a/z)(1q2ma/z)(1q2(m1)a/z)(1q2(m+1)a/z)(1q2ma/z))±1,\frac{P_{\alpha}(q^{-2}/z)}{P_{\alpha}(1/z)}=\frac{P_{\beta}(q^{-2}/z)}{P_{\beta}(1/z)}\left(\frac{(1-q^{-2}a/z)(1-a/z)}{(1-a/z)(1-q^{2}a/z)}\frac{(1-q^{-2m}a/z)(1-q^{-2(m-1)}a/z)}{(1-q^{-2(m+1)}a/z)(1-q^{-2m}a/z)}\right)^{\pm 1}\,, (4.9)

for some a𝔽×a\in\mathbb{F}^{\times}. Now, assuming m>1m>1, it is clear that:

  • -

    for the upper choice of sign on the right hand side of the above equation, the last fraction line must completely cancel against factors in the first one, whereas the second one survives, eventually replacing the cancelled factors;

  • -

    for the lower choice of sign, the second fraction line must cancel against factors in the first one, whereas the last one survives, eventually replacing the cancelled factors.

If on the other hand m=1m=1, since MM is tt-dominant, we have, by definition, that aq2aq^{\mp 2} is a root of Pβ(1/z)P_{\beta}(1/z). In any case, denoting by να\nu_{\alpha} (resp. νβ\nu_{\beta}) the multiset of roots of Pα(1/z)P_{\alpha}(1/z) (resp. Pβ(1/z)P_{\beta}(1/z)), it is clear that νανβ\nu_{\alpha}\sim\nu_{\beta} and hence YναYνβY^{\nu_{\alpha}}\sim Y^{\nu_{\beta}}. Since MM is simple, there can be no non-zero \ell-weight space MβM_{\beta} of MM such that Mα𝖪1,±m,n±.Mβ={0}M_{\alpha}\cap{\mathsf{K}}^{\pm}_{1,\pm m,n}.M_{\beta}=\{0\} for every \ell-weight space MαM_{\alpha} of MM, every m×m\in{\mathbb{N}}^{\times} and every nn\in{\mathbb{Z}}. ∎

In view of definition-proposition 4.2, we can make the following

Definition 4.9.

For every monic polynomial P(1/z)𝔽[z1]P(1/z)\in\mathbb{F}[z^{-1}], denote by 𝔽P\mathbb{F}_{P} the one-dimensional U¨q0,0(𝔞1)\ddot{\mathrm{U}}_{q}^{0,0}(\mathfrak{a}_{1})-module such that

K1,0±(z).v=qdeg(P)(P(q2/z)P(1/z))|z|±11v,{\textbf{{K}}}^{\pm}_{1,0}(z).v=-q^{\deg(P)}\left(\frac{P(q^{-2}/z)}{P(1/z)}\right)_{|z|^{\pm 1}\ll 1}v\,,

for every v𝔽Pv\in\mathbb{F}_{P}. There exists a universal U¨q0(𝔞1)\ddot{\mathrm{U}}_{q}^{0}(\mathfrak{a}_{1})-module M0(P)U¨q0(𝔞1)U¨q0,0(𝔞1)^𝔽PM^{0}(P)\cong\ddot{\mathrm{U}}_{q}^{0}(\mathfrak{a}_{1})\underset{\ddot{\mathrm{U}}_{q}^{0,0}(\mathfrak{a}_{1})}{\widehat{\otimes}}\mathbb{F}_{P} that admits the \ell-weight associated with PP. Denoting by N0(P)N^{0}(P) the maximal U¨q0(𝔞1)\ddot{\mathrm{U}}_{q}^{0}(\mathfrak{a}_{1})-submodule of M0(P)M^{0}(P) such that N0(P)𝔽P={0}N^{0}(P)\cap\mathbb{F}_{P}=\{0\}, we define the unique – up to isomorphisms – simple U¨q0(𝔞1)\ddot{\mathrm{U}}_{q}^{0}(\mathfrak{a}_{1})-module L0(P)=M0(P)/N0(P)L^{0}(P)=M^{0}(P)/N^{0}(P).

Proposition 4.10.

For every simple \ell-dominant U¨q0(𝔞1)\ddot{\mathrm{U}}_{q}^{0}(\mathfrak{a}_{1})-module MM, there exists a monic polynomial P(1/z)𝔽[z1]P(1/z)\in\mathbb{F}[z^{-1}] such that ML0(P)M\cong L^{0}(P).

Proof.

Obviously, for every vM{0}v\in M-\{0\}, we have MU¨q0(𝔞1).vM\cong\ddot{\mathrm{U}}_{q}^{0}(\mathfrak{a}_{1}).v. Now since MM is \ell-dominant, vv can be chosen as an \ell-weight vector, i.e.

K1,0±(z).v=qdeg(P)(P(q2/z)P(1/z))|z|±11v{\textbf{{K}}}^{\pm}_{1,0}(z).v=-q^{\deg(P)}\left(\frac{P(q^{-2}/z)}{P(1/z)}\right)_{|z|^{\pm 1}\ll 1}v

for some monic polynomial P(1/z)𝔽[z1]P(1/z)\in\mathbb{F}[z^{-1}]. ∎

Remark 4.11.

The above proof makes it clear that if {Pα:αA}\{P_{\alpha}:\alpha\in A\} is the set of Drinfel’d polynomials of a simple \ell-dominant U¨q0(𝔞1)\ddot{\mathrm{U}}_{q}^{0}(\mathfrak{a}_{1})-module MM, then, for every αA\alpha\in A, ML0(Pα)M\cong L^{0}(P_{\alpha}).

Theorem 4.12.

For every monic polynomial P(1/z)𝔽[z1]P(1/z)\in\mathbb{F}[z^{-1}], L0(P)L^{0}(P) is tt-dominant.

Proof.

We postpone the proof of this theorem until section 5, where we construct L0(P)L^{0}(P) for every PP and directly check that it is indeed tt-dominant. ∎

Proposition 4.13.

Any topological U¨q0(𝔞1)^\widehat{\ddot{\mathrm{U}}_{q}^{0}(\mathfrak{a}_{1})}-module pulls back to a module over the elliptic Hall algebra q4,q2,q2\mathcal{E}_{q^{-4},q^{2},q^{2}}.

Proof.

It suffices to make use of the Hopf algebra homomorphism

q4,q2,q2fU¨q0+(𝔞1)U¨q0(𝔞1)^,{\mathcal{E}_{q^{-4},q^{2},q^{2}}}\stackrel{{\scriptstyle f}}{{\longrightarrow}}{\ddot{\mathrm{U}}_{q}^{0^{+}}(\mathfrak{a}_{1})}\hookrightarrow\widehat{\ddot{\mathrm{U}}_{q}^{0}(\mathfrak{a}_{1})}\,,

where ff is defined in proposition 3.18 and the second arrow is the canonical injection into U¨q0(𝔞1)^\widehat{\ddot{\mathrm{U}}_{q}^{0}(\mathfrak{a}_{1})} of its Hopf subalgebra U¨q0+(𝔞1){\ddot{\mathrm{U}}_{q}^{0^{+}}(\mathfrak{a}_{1})} – see proposition 3.12. ∎

Remark 4.14.

It is worth mentioning that, as an example of the above proposition, \ell-anti-dominant U¨q0(𝔞1)\ddot{\mathrm{U}}_{q}^{0}(\mathfrak{a}_{1})-modules pullback to a family of q4,q2,q2{\mathcal{E}_{q^{-4},q^{2},q^{2}}}-modules that were recently introduced in [DK19]. It might be interesting to investigate further the class of q4,q2,q2{\mathcal{E}_{q^{-4},q^{2},q^{2}}}-modules obtained by pulling back other (rational) U¨q0(𝔞1)\ddot{\mathrm{U}}_{q}^{0}(\mathfrak{a}_{1})-modules.

We conclude the present subsection by proving the following

Lemma 4.15.

Let MM be an \ell-dominant U¨q0(𝔞1)\ddot{\mathrm{U}}_{q}^{0}(\mathfrak{a}_{1})-module. Suppose that, for any two \ell-weight spaces MαM_{\alpha} and MβM_{\beta} of MM, with respective \ell-weights κα±(z)\kappa_{\alpha}^{\pm}(z) and κβ±(z)\kappa_{\beta}^{\pm}(z), such that MαK1,±1±(z).Mβ{0}M_{\alpha}\cap{\textbf{{K}}}^{\pm}_{1,\pm 1}(z).M_{\beta}\neq\{0\}, the unique a𝔽×a\in\mathbb{F}^{\times} such that καε(z)=κβε(z)H1,aε(z)±1\kappa_{\alpha}^{\varepsilon}(z)=\kappa_{\beta}^{\varepsilon}(z)H_{1,a}^{\varepsilon}(z)^{\pm 1}, for every ε{,+}\varepsilon\in\{-,+\}, and (za)NMαK1,±1±(z).Mβ={0}(z-a)^{N}M_{\alpha}\cap{\textbf{{K}}}^{\pm}_{1,\pm 1}(z).M_{\beta}=\{0\} for some N×N\in{\mathbb{N}}^{\times} – see proposition 4.3 – also satisfies Pβ(1/a)=0P_{\beta}(1/a)=0. Then MM is tt-dominant.

Proof.

Let MM be as above and let MαM_{\alpha} and MβM_{\beta} be two \ell-weight spaces of MM with respective \ell-weights

κα±(z)=qdeg(Pα)(Pα(q2/z)Pα(1/z))|z|±11andκβ±(z)=qdeg(Pβ)(Pβ(q2/z)Pβ(1/z))|z|±11.\kappa_{\alpha}^{\pm}(z)=-q^{\deg(P_{\alpha})}\left(\frac{P_{\alpha}(q^{-2}/z)}{P_{\alpha}(1/z)}\right)_{|z|^{\pm 1}\ll 1}\qquad\qquad\mbox{and}\qquad\qquad\kappa_{\beta}^{\pm}(z)=-q^{\deg(P_{\beta})}\left(\frac{P_{\beta}(q^{-2}/z)}{P_{\beta}(1/z)}\right)_{|z|^{\pm 1}\ll 1}\,.

Suppose that MαK1,±m±(z).Mβ{0}M_{\alpha}\cap{\textbf{{K}}}^{\pm}_{1,\pm m}(z).M_{\beta}\neq\{0\} for some m×m\in{\mathbb{N}}^{\times}. If m>1m>1, writing down καε(z)=κβε(z)Hm,aε(z)±1\kappa_{\alpha}^{\varepsilon}(z)=\kappa_{\beta}^{\varepsilon}(z)H_{m,a}^{\varepsilon}(z)^{\pm 1}, we obtain equation (4.9) as in the proof of corollary 4.8. By the same discussion as the one following equation (4.9), we conclude that Pβ(1/aq(m±m))=Pβ(1/aq2(m±m))=0P_{\beta}(1/aq^{-(m\pm m)})=P_{\beta}(1/aq^{2-(m\pm m)})=0, as needed – see definition 4.7. Finally, if m=1m=1, writing down καε(z)=κβε(z)H1,aε(z)±1\kappa_{\alpha}^{\varepsilon}(z)=\kappa_{\beta}^{\varepsilon}(z)H_{1,a}^{\varepsilon}(z)^{\pm 1}, we obtain

Pα(q2/z)Pα(1/z)=Pβ(q2/z)Pβ(1/z)((1a/z)(1q2a/z)(1q2a/z)(1q4a/z))±1.\frac{P_{\alpha}(q^{-2}/z)}{P_{\alpha}(1/z)}=\frac{P_{\beta}(q^{-2}/z)}{P_{\beta}(1/z)}\left(\frac{(1-a/z)}{(1-q^{2}a/z)}\frac{(1-q^{-2}a/z)}{(1-q^{-4}a/z)}\right)^{\pm 1}\,.

Then, it is clear that:

  • for the upper choice of sign on the right hand side of the above equation, the last fraction line must completely cancel against factors in the first one, whereas the second one survives, eventually replacing the cancelled factors;

  • for the lower choice of sign on the right hand side of the above equation, the second fraction line must completely cancel against factors in the first one, whereas the last one survives, eventually replacing the cancelled factors.

In any case, it follows that Pβ(1/aq2)=0P_{\beta}(1/aq^{\mp 2})=0. But by our assumptions on MM, we also have that Pβ(1/a)=0P_{\beta}(1/a)=0 and the tt-dominance of MM follows – see definition 4.7. ∎

4.2. tt-weight U¨q(𝔞1)\ddot{\mathrm{U}}_{q}(\mathfrak{a}_{1})-modules

Definition 4.16.

For every N×N\in{\mathbb{N}}^{\times}, we shall say that a (topological) module MM over U¨q(𝔞1)\ddot{\mathrm{U}}_{q}^{\prime}(\mathfrak{a}_{1}) is of type (1,N)(1,N) if:

  1. i.

    C±1/2{{\textsf{C}}}^{\pm 1/2} acts as id{\mathrm{id}} on MM;

  2. ii.

    𝖼±m±{\mathsf{c}}^{\pm}_{\pm m} acts by multiplication by 0 on MM, for every mNm\geq N.

We shall say that MM is of type (1,0)(1,0) if points i. and ii. above hold for every m>0m>0 and, in addition, 𝖼0±{\mathsf{c}}^{\pm}_{0} acts as id{\mathrm{id}} on MM.

Remark 4.17.

Let NN\in{\mathbb{N}}. Then the U¨q(𝔞1)\ddot{\mathrm{U}}_{q}^{\prime}(\mathfrak{a}_{1})-modules of type (1,N)(1,N) are in one-to-one correspondence with the U¨q(𝔞1)(N)/(C1/21)\ddot{\mathrm{U}}_{q}(\mathfrak{a}_{1})^{(N)}/({{\textsf{C}}}^{1/2}-1)-modules – see section 3.3 for a definition of U¨q(𝔞1)(N)\ddot{\mathrm{U}}_{q}(\mathfrak{a}_{1})^{(N)}. Obviously U¨q(𝔞1)\ddot{\mathrm{U}}_{q}(\mathfrak{a}_{1})-modules of type (1,0)(1,0) descend to modules over the double quantum loop algebra of type 𝔞1\mathfrak{a}_{1}, L¨q(𝔞1)\ddot{\mathrm{L}}_{q}(\mathfrak{a}_{1}).

Definition 4.18.

We shall say that a (topological) U¨q(𝔞1)\ddot{\mathrm{U}}_{q}(\mathfrak{a}_{1})-module MM is a tt-weight module if there exists a countable set {Mα:αA}\left\{M_{\alpha}:\alpha\in A\right\} of indecomposable \ell-weight U¨q0(𝔞1)\ddot{\mathrm{U}}_{q}^{0}({\mathfrak{a}}_{1})-modules, called tt-weight spaces of MM, such that, as (topological) U¨q0(𝔞1)\ddot{\mathrm{U}}_{q}^{0}({\mathfrak{a}}_{1})-modules,

MαAMα.M\cong\bigoplus_{\alpha\in A}M_{\alpha}\,. (4.10)

We shall say that MM is weight-finite if, regarding it as a completely decomposable U¨q0(𝔞1)\ddot{\mathrm{U}}_{q}^{0}({\mathfrak{a}}_{1})-module, its Sp(M)\mathrm{Sp}(M) is finite – see definition-proposition 4.2 for the definition of Sp\mathrm{Sp}. A vector vM{0}v\in M-\{0\} is a highest tt-weight vector of MM if vMαv\in M_{\alpha} for some αA\alpha\in A and, for every r,sr,s\in{\mathbb{Z}},

𝖷1,r,s+.v=0.{\mathsf{X}}_{1,r,s}^{+}.v=0\,. (4.11)

We shall say that MM is highest tt-weight if MU¨q(𝔞1).vM\cong\ddot{\mathrm{U}}_{q}(\mathfrak{a}_{1}).v for some highest tt-weight vector vM{0}v\in M-\{0\}.

Definition-Proposition 4.19.

Let MM be a tt-weight U¨q(𝔞1)\ddot{\mathrm{U}}_{q}(\mathfrak{a}_{1})-module that admits a highest tt-weight vector vM{0}v\in M-\{0\}. Denote by M0M_{0} the tt-weight space of MM containing vv. Then M0=U¨q0(𝔞1).vM_{0}=\ddot{\mathrm{U}}_{q}^{0}(\mathfrak{a}_{1}).v and, for every r,sr,s\in{\mathbb{Z}},

𝖷1,r,s+.M0={0}.{\mathsf{X}}_{1,r,s}^{+}.M_{0}=\{0\}\,. (4.12)

We shall say that M0M_{0} is a highest tt-weight space of MM. If in addition MM is simple, then it admits a unique – up to isomorphisms of U¨q0(𝔞1)\ddot{\mathrm{U}}_{q}^{0}(\mathfrak{a}_{1})-modules – highest tt-weight space M0M_{0}.

Proof.

It is an easy consequence of the triangular decomposition of U¨q(𝔞1)\ddot{\mathrm{U}}_{q}(\mathfrak{a}_{1}) – see proposition 3.11 – and of the root grading of U¨q(𝔞1)\ddot{\mathrm{U}}_{q}(\mathfrak{a}_{1}) that, indeed, 𝖷1,r,s+.(U¨q0(𝔞1).v)={0}{\mathsf{X}}_{1,r,s}^{+}.\left(\ddot{\mathrm{U}}_{q}^{0}(\mathfrak{a}_{1}).v\right)=\{0\}, for every r,sr,s\in{\mathbb{Z}}. Now since MM is highest tt-weight, we have MU¨q(𝔞1).vM\cong\ddot{\mathrm{U}}_{q}(\mathfrak{a}_{1}).v. By proposition 3.11, M0MU¨q(𝔞1)U¨q0(𝔞1).vM_{0}\subset M\cong\ddot{\mathrm{U}}_{q}^{-}(\mathfrak{a}_{1})\ddot{\mathrm{U}}_{q}^{0}(\mathfrak{a}_{1}).v and it follows that M0U¨q0(𝔞1).vM_{0}\cong\ddot{\mathrm{U}}_{q}^{0}(\mathfrak{a}_{1}).v. Now, assuming that MM is simple and that it admits highest tt-weight spaces M0M_{0} and M0M_{0}^{\prime}, we have that U¨q(𝔞1).M0MU¨q(𝔞1).M0\ddot{\mathrm{U}}_{q}^{-}(\mathfrak{a}_{1}).M_{0}\cong M\cong\ddot{\mathrm{U}}_{q}^{-}(\mathfrak{a}_{1}).M_{0}^{\prime} as U¨q(𝔞1)\ddot{\mathrm{U}}_{q}(\mathfrak{a}_{1})-modules. In particular, M0M0M_{0}\cong M_{0}^{\prime} as U¨q0(𝔞1)\ddot{\mathrm{U}}_{q}^{0}(\mathfrak{a}_{1})-modules. ∎

In view of the triangular decomposition of U¨q(𝔞1)\ddot{\mathrm{U}}_{q}(\mathfrak{a}_{1}) – see proposition 3.11 –, the above proposition implies that any highest tt-weight U¨q(𝔞1)\ddot{\mathrm{U}}_{q}(\mathfrak{a}_{1})-modules MM is entirely determined as MU¨q(𝔞1).M0M\cong\ddot{\mathrm{U}}_{q}^{-}(\mathfrak{a}_{1}).M_{0}, by the data of its highest tt-weight space M0M_{0}, a cyclic \ell-weight U¨q0(𝔞1)\ddot{\mathrm{U}}_{q}^{0}(\mathfrak{a}_{1})-module. Now for any vM0{0}v\in M_{0}-\{0\} such that M0U¨q0(𝔞1).vM_{0}\cong\ddot{\mathrm{U}}_{q}^{0}(\mathfrak{a}_{1}).v, let N0N_{0} be the maximal U¨q0(𝔞1)\ddot{\mathrm{U}}_{q}^{0}(\mathfrak{a}_{1})-submodule of M0M_{0} not containing vv and set L0=M0/N0L_{0}=M_{0}/N_{0} 222N0N_{0} clearly does not depend on the chosen generator vv. Indeed, if N0N_{0} contained a generator vv^{\prime} of M0M_{0}, it would contain all the others, including vv. It follows that N0N_{0} and hence L0L_{0} are both independent of vv.. Then, by construction, L0L_{0} is a simple U¨q0(𝔞1)\ddot{\mathrm{U}}_{q}^{0}(\mathfrak{a}_{1})-module such that, as U¨q(𝔞1)\ddot{\mathrm{U}}_{q}(\mathfrak{a}_{1})-modules, MU¨q(𝔞1).L0modU¨q(𝔞1).N0M\cong\ddot{\mathrm{U}}_{q}^{-}(\mathfrak{a}_{1}).L_{0}\mod\ddot{\mathrm{U}}_{q}^{-}(\mathfrak{a}_{1}).N_{0}. We therefore make the following

Definition 4.20.

We extend every simple (topological) \ell-weight U¨q0(𝔞1)\ddot{\mathrm{U}}_{q}^{0}(\mathfrak{a}_{1})-module M0M_{0} into a U¨q(𝔞1)\ddot{\mathrm{U}}_{q}^{\geq}(\mathfrak{a}_{1})-module by setting X1,r,s+.M0={0}{\textbf{{X}}}_{1,r,s}^{+}.M_{0}=\{0\} for every r,sr,s\in{\mathbb{Z}}. This being understood, we define the universal highest tt-weight U¨q(𝔞1)\ddot{\mathrm{U}}_{q}^{\prime}(\mathfrak{a}_{1})-module with highest tt-weight space M0M_{0} by setting

(M0)=U¨q(𝔞1)^U¨q(𝔞1)^M0\mathcal{M}(M_{0})=\widehat{\ddot{\mathrm{U}}_{q}^{\prime}(\mathfrak{a}_{1})}\underset{\ddot{\mathrm{U}}_{q}^{\geq}(\mathfrak{a}_{1})}{\widehat{\otimes}}M_{0}

as U¨q(𝔞1)\ddot{\mathrm{U}}_{q}^{\prime}(\mathfrak{a}_{1})-modules. Denoting by 𝒩(M0)\mathcal{N}(M_{0}) the maximal (closed) U¨q(𝔞1)\ddot{\mathrm{U}}_{q}(\mathfrak{a}_{1})-submodule of (M0)\mathcal{M}(M_{0}) such that M0𝒩(M0)={0}M_{0}\cap\mathcal{N}(M_{0})=\{0\}, we define the simple highest tt-weight U¨q(𝔞1)\ddot{\mathrm{U}}_{q}(\mathfrak{a}_{1})-module (M0)\mathcal{L}(M_{0}) with highest tt-weight space M0M_{0} by setting (M0)(M0)/𝒩(M0)\mathcal{L}(M_{0})\cong\mathcal{M}(M_{0})/\mathcal{N}(M_{0}). It is unique up to isomorphisms.

Classifying simple highest tt-weight U¨q(𝔞1)\ddot{\mathrm{U}}_{q}(\mathfrak{a}_{1})-modules therefore amounts to classifying those simple \ell-weight U¨q0(𝔞1)\ddot{\mathrm{U}}_{q}^{0}(\mathfrak{a}_{1})-modules M0M_{0} that appear as their highest tt-weight spaces. In the case of weight-finite U¨q(𝔞1)\ddot{\mathrm{U}}_{q}(\mathfrak{a}_{1})-modules, this is achieved by the following

Theorem 4.21.

The following hold:

  1. i.

    Every weight-finite simple U¨q(𝔞1)\ddot{\mathrm{U}}_{q}^{\prime}(\mathfrak{a}_{1})-module MM is highest tt-weight and can be obtained by twisting a type (1,0) weight-finite simple U¨q(𝔞1)\ddot{\mathrm{U}}_{q}(\mathfrak{a}_{1})-module with an algebra automorphism from the subgroup of Aut(U¨q(𝔞1))\mathrm{Aut}(\ddot{\mathrm{U}}_{q}^{\prime}(\mathfrak{a}_{1})) generated by the algebra automorphisms τ\tau and σ\sigma of proposition 3.26.

  2. ii.

    The type (1,0) simple highest tt-weight U¨q(𝔞1)\ddot{\mathrm{U}}_{q}^{\prime}(\mathfrak{a}_{1})-module (M0)\mathcal{L}(M_{0}) is weight-finite if and only if its highest tt-weight space M0M_{0} is a simple tt-dominant U¨q0(𝔞1)\ddot{\mathrm{U}}_{q}^{0}(\mathfrak{a}_{1})-module – see proposition-definition 4.4.

Proof.

Let MM be a weight-finite simple tt-weight U¨q(𝔞1)\ddot{\mathrm{U}}_{q}(\mathfrak{a}_{1})-module and assume for a contradiction that, for every wM{0}w\in M-\{0\}, there exist r,sr,s\in{\mathbb{Z}} such that 𝖷1,r,s+.w0{\mathsf{X}}_{1,r,s}^{+}.w\neq 0. Then, there must exist two sequences (rn)n,(sn)n(r_{n})_{n\in{\mathbb{N}}},(s_{n})_{n\in{\mathbb{N}}}\in{\mathbb{Z}}^{\mathbb{N}}, such that

0{wn=𝖷r1,s1+𝖷rn,sn+.w:n}.0\notin\left\{w_{n}={\mathsf{X}}_{r_{1},s_{1}}^{+}\dots\mathsf{X}_{r_{n},s_{n}}^{+}.w:n\in{\mathbb{N}}\right\}\,.

Choosing wM{0}w\in M-\{0\} to be an eigenvector of 𝖪1,0,0+{\mathsf{K}}^{+}_{1,0,0} with eigenvalue λ𝔽×\lambda\in\mathbb{F}^{\times} – see definition-proposition 4.2 for the existence of such a vector –, one easily sees from the relations that, for every nn\in{\mathbb{N}}, 𝖪1,0,0+.wn=λq2nwn{\mathsf{K}}^{+}_{1,0,0}.w_{n}=\lambda q^{2n}w_{n}. It follows – see definition-proposition 4.2 – that {λq2n:n}Sp(M)\{\lambda q^{2n}:n\in{\mathbb{N}}\}\subseteq\mathrm{Sp}(M). A contradiction with the weight-finiteness of MM. Thus, we conclude that there exists a highest tt-weight vector v0M{0}v_{0}\in M-\{0\} such that 𝖪1,0,0±.v0=κ0±1v0{\mathsf{K}}^{\pm}_{1,0,0}.v_{0}=\kappa_{0}^{\pm 1}v_{0} for some κ0𝔽×\kappa_{0}\in\mathbb{F}^{\times}. Obviously, MU¨q(𝔞1).v0M\cong\ddot{\mathrm{U}}_{q}(\mathfrak{a}_{1}).v_{0}, for U¨q(𝔞1).v0{0}\ddot{\mathrm{U}}_{q}(\mathfrak{a}_{1}).v_{0}\neq\{0\} is a submodule of the simple U¨q(𝔞1)\ddot{\mathrm{U}}_{q}(\mathfrak{a}_{1})-module MM. Thus MM is highest tt-weight. Denote by M0=U¨q0(𝔞1).v0M_{0}=\ddot{\mathrm{U}}_{q}^{0}(\mathfrak{a}_{1}).v_{0} its highest tt-weight space. The latter is an \ell-weight U¨q0(𝔞1)\ddot{\mathrm{U}}_{q}^{0}(\mathfrak{a}_{1})-module. As such, it completely decomposes into countably many locally finite-dimensional indecomposable U¨q0,0(𝔞1)\ddot{\mathrm{U}}_{q}^{0,0}(\mathfrak{a}_{1})-modules that constitute its \ell-weight spaces. Over any of these, C1/2{{\textsf{C}}}^{1/2} must admit an eigenvector. But since MM is simple and C1/2{{\textsf{C}}}^{1/2} is central, the latter acts over MM by a scalar multiple of id{\mathrm{id}}. It follows from definition-proposition 4.2 that C acts over MM by id{\mathrm{id}} or id-{\mathrm{id}}. In the former case, there is nothing to do; whereas in the latter, it is quite clear from proposition 3.26 that, twisting the U¨q(𝔞1)\ddot{\mathrm{U}}_{q}(\mathfrak{a}_{1}) action on MM by τ\tau, we can ensure that C acts by id{\mathrm{id}}. It follows that C1/2{{\textsf{C}}}^{1/2} acts by id{\mathrm{id}} or id-{\mathrm{id}}. Again, in the former case, there is nothing to do; whereas in the latter, twisting by σ\sigma, we can ensure that C1/2{{\textsf{C}}}^{1/2} acts by id{\mathrm{id}}. Similarly, for every mm\in{\mathbb{N}}, 𝖼±m±{\mathsf{c}}^{\pm}_{\pm m} must admit an eigenvector over any locally finite-dimensional \ell-weight space of M0M_{0}. But again, since MM is simple and 𝖼±m±{\mathsf{c}}^{\pm}_{\pm m} is central, the latter must act over MM by a scalar multiple of id{\mathrm{id}}.

In any case, in view of (3.7) and (3.8), 𝖪1,0,0±{\mathsf{K}}^{\pm}_{1,0,0} commutes with all the other generators of U¨q0(𝔞1)\ddot{\mathrm{U}}_{q}^{0}(\mathfrak{a}_{1}) and, since M0=U¨q0(𝔞1).v0M_{0}=\ddot{\mathrm{U}}_{q}^{0}(\mathfrak{a}_{1}).v_{0}, we have 𝖪1,0,0±.w=κ0±1w{\mathsf{K}}^{\pm}_{1,0,0}.w=\kappa_{0}^{\pm 1}w for every wM0w\in M_{0}. Moreover, M0M_{0} turns out to be a type 1 \ell-weight U¨q0(𝔞1)\ddot{\mathrm{U}}_{q}^{0}(\mathfrak{a}_{1})-module and, by definition-proposition 4.2,

M0αA{vM:𝖪1,0,0±.v=κ0±1vandn×,m×(𝖪1,0,±m±κα,±m±id)n.v=0}M_{0}\subseteq\bigoplus_{\alpha\in A}\left\{v\in M:{\mathsf{K}}^{\pm}_{1,0,0}.v=\kappa^{\pm 1}_{0}v\quad\mbox{and}\quad\exists n\in{\mathbb{N}}^{\times},\forall m\in{\mathbb{N}}^{\times}\quad\left({\mathsf{K}}^{\pm}_{1,0,\pm m}-\kappa^{\pm}_{\alpha,\pm m}{\mathrm{id}}\right)^{n}.v=0\right\}

for some countable set of sequences {(κα,±m±)m×𝔽×:αA}\left\{(\kappa^{\pm}_{\alpha,\pm m})_{m\in{\mathbb{N}}^{\times}}\in\mathbb{F}^{{\mathbb{N}}^{\times}}:\alpha\in A\right\}. By proposition 4.19,

𝖷1,r,s+.M0={0},{\mathsf{X}}_{1,r,s}^{+}.M_{0}=\{0\}\,, (4.13)

for every r,sr,s\in{\mathbb{Z}}. Pulling back with ι(0)\iota^{(0)} and ι(1)\iota^{(1)} respectively, we can simultaneously regard MM as a Uq(L𝔞1)\mathrm{U}_{q}(\mathrm{L}{\mathfrak{a}}_{1})-module for both of its Dynkin diagram subalgebras Uq(L𝔞1)(0)\mathrm{U}_{q}(\mathrm{L}{\mathfrak{a}}_{1})^{(0)} and Uq(L𝔞1)(1)\mathrm{U}_{q}(\mathrm{L}{\mathfrak{a}}_{1})^{(1)} – see section 3. Let vM0{0}v\in M_{0}-\{0\} be a simultaneous eigenvector of the pairwise commuting linear operators in {𝖪1,0,±m±:m}\left\{{\mathsf{K}}^{\pm}_{1,0,\pm m}:m\in{\mathbb{N}}\right\}. Equation (4.13) implies that 𝐱1+(z).v=𝐱0(z).v=0{\bf x}_{1}^{+}(z).v={\bf x}_{0}^{-}(z).v=0. Thus vv is a highest (resp. lowest) \ell-weight vector of U˙q(𝔞1)(1).v\dot{\mathrm{U}}_{q}({\mathfrak{a}}_{1})^{(1)}.v (resp. U˙q(𝔞1)(0).v\dot{\mathrm{U}}_{q}({\mathfrak{a}}_{1})^{(0)}.v). The weight finiteness of MM now allows us to apply corollary 2.12 to prove that the respective simple quotients of Uq(L𝔞1)(0).v\mathrm{U}_{q}(\mathrm{L}{\mathfrak{a}}_{1})^{(0)}.v and Uq(L𝔞1)(1).v\mathrm{U}_{q}(\mathrm{L}{\mathfrak{a}}_{1})^{(1)}.v containing vv are both finite-dimensional and isomorphic to a unique simple highest (resp. lowest) \ell-weight module L(P1)L(P_{1}) (resp. L¯(P0)\bar{L}(P_{0})). As a consequence of theorem 2.5 and of proposition 2.6, we conclude that

𝐤0±(z).v=qdeg(P0)(P0(1/z)P0(q2/z))|z|11vand𝐤1±(z).v=qdeg(P1)(P1(q2/z)P1(1/z))|z|11v,{\bf k}_{0}^{\pm}(z).v=q^{-\deg(P_{0})}\left(\frac{P_{0}(1/z)}{P_{0}(q^{-2}/z)}\right)_{|z|^{\mp 1}\ll 1}v\qquad\mbox{and}\qquad{\bf k}_{1}^{\pm}(z).v=q^{\deg(P_{1})}\left(\frac{P_{1}(q^{-2}/z)}{P_{1}(1/z)}\right)_{|z|^{\mp 1}\ll 1}v\,,

for some monic polynomials P0P_{0} and P1P_{1}. On the other hand, pulling back with ιm\iota_{m} for every mm\in{\mathbb{Z}}, we can regard MM as a Uq(L𝔞1)\mathrm{U}_{q}(\mathrm{L}{\mathfrak{a}}_{1})-module in infinitely many independent ways. Again, for every mm\in{\mathbb{Z}}, vv turns out to be a highest \ell-weight vector for a unique simple weight finite, hence finite dimensional Uq(L𝔞1)\mathrm{U}_{q}(\mathrm{L}{\mathfrak{a}}_{1})-module. As such, it satisfies

ιm(𝐤1+(z)).v=qdeg(Qm)(Qm(q2/z)Qm(1/z))|z|11v,\iota_{m}({\bf k}_{1}^{+}(z)).v=q^{\deg(Q_{m})}\left(\frac{Q_{m}(q^{-2}/z)}{Q_{m}(1/z)}\right)_{|z|^{\mp 1}\ll 1}v\,,

for some monic polynomial QmQ_{m}. Now since

ιm(𝐤1±(z))=p=1|m|c±(q(12p)sign(m)1z)sign(m)K1,0(C1/2z)\iota_{m}({\bf k}_{1}^{\pm}(z))=-\prod_{p=1}^{|m|}{\textbf{{c}}}^{\pm}\left(q^{(1-2p){\rm sign}(m)-1}z\right)^{{\rm sign}(m)}{\textbf{{K}}}^{\mp}_{1,0}({{\textsf{C}}}^{-1/2}z)

and Ψ(𝐤0±(z)𝐤1±(z))=c±(z)\Psi({\bf k}_{0}^{\pm}(z){\bf k}_{1}^{\pm}(z))={\textbf{{c}}}^{\pm}(z), we must have

qdeg(Qm)(Qm(q2/z)Qm(1/z))|z|11\displaystyle q^{\deg(Q_{m})}\left(\frac{Q_{m}(q^{-2}/z)}{Q_{m}(1/z)}\right)_{|z|^{\mp 1}\ll 1} =\displaystyle= qdeg(P1)+m(deg(P1)deg(P0))(P1(q2/z)P1(1/z))|z|11\displaystyle q^{\deg(P_{1})+m(\deg(P_{1})-\deg(P_{0}))}\left(\frac{P_{1}(q^{-2}/z)}{P_{1}(1/z)}\right)_{|z|^{\mp 1}\ll 1} (4.14)
×p=1|m|(P1(q(2p1)sign(m)1/z)P0(q(2p1)sign(m)+1/z)P1(q(2p1)sign(m)+1/z)P0(q(2p1)sign(m)1/z))|z|11\displaystyle\times\prod_{p=1}^{|m|}\left(\frac{P_{1}(q^{(2p-1){\rm sign}(m)-1}/z)P_{0}(q^{(2p-1){\rm sign}(m)+1}/z)}{P_{1}(q^{(2p-1){\rm sign}(m)+1}/z)P_{0}(q^{(2p-1){\rm sign}(m)-1}/z)}\right)_{|z|^{\mp 1}\ll 1}

for every m×m\in{\mathbb{Z}}^{\times}. In the limit as z10z^{-1}\to 0, this implies qdeg(Qm)=qdeg(P1)+m(deg(P1)deg(P0))q^{\deg(Q_{m})}=q^{\deg(P_{1})+m(\deg(P_{1})-\deg(P_{0}))} for every mm\in{\mathbb{Z}} and, consequently, deg(P0)=deg(P1)=deg(Qm)\deg(P_{0})=\deg(P_{1})=\deg(Q_{m}). After obvious simplifications, (4.14) becomes

(Qm(q2/z)Qm(1/z))|z|11=(P1(q2/z)P1(q(1±1)/z)P1(1/z)P0(q(1±1)/z)P0(q2m(1±1)/z)P1(q2m(1±1)/z))|z|11\left(\frac{Q_{m}(q^{-2}/z)}{Q_{m}(1/z)}\right)_{|z|^{\mp 1}\ll 1}=\left(\frac{P_{1}(q^{-2}/z)P_{1}(q^{-(1\pm 1)}/z)}{P_{1}(1/z)P_{0}(q^{-(1\pm 1)}/z)}\,\frac{P_{0}(q^{2m-(1\pm 1)}/z)}{P_{1}(q^{2m-(1\pm 1)}/z)}\right)_{|z|^{\mp 1}\ll 1} (4.15)

for every m×m\in{\mathbb{Z}}^{\times}. Now, z1=0z^{-1}=0 is not a root of P(1/z)P(1/z) for any monic polynomial PP. Moreover, qq being a formal parameter – in case qq is regarded as a complex number, we shall assume that 1q×1\notin q^{{\mathbb{Z}}^{\times}} –, it follows that the map z1qmz1z^{-1}\mapsto q^{m}z^{-1} has no fixed points over the set of roots of a monic polynomial. Thus, for |m||m| large enough, the respective sets of roots of P1(q2/z)P1(q(1±1)/z)P_{1}(q^{-2}/z)P_{1}(q^{-(1\pm 1)}/z) and P1(q2m(1±1)/z)P_{1}(q^{2m-(1\pm 1)}/z) are disjoint. Similarly, for |m||m| large enough, the respective sets of roots of P1(1/z)P0(q(1±1)/z)P_{1}(1/z)P_{0}(q^{-(1\pm 1)}/z) and P0(q2m(1±1)/z)P_{0}(q^{2m-(1\pm 1)}/z) are disjoint. It follows that, for |m||m| large enough, on the r.h.s. of (4.15), cancellations can only occur between factors on opposite sides of the same fraction line. Now, either P0=P1P_{0}=P_{1} or P0P1P_{0}\neq P_{1}, in which case

P1(1/z)P0(1/z)=p=1n1αp/z1βp/z,\frac{P_{1}(1/z)}{P_{0}(1/z)}=\prod_{p=1}^{n}\frac{1-\alpha_{p}/z}{1-\beta_{p}/z}\,,

for some n×n\in{\mathbb{N}}^{\times} such that ndeg(P0)=deg(P1)n\leq\deg(P_{0})=\deg(P_{1}) and some nn-tuples (αp)pn(\alpha_{p})_{p\in{\llbracket n\rrbracket}}, (βp)pn𝔽n(\beta_{p})_{p\in{\llbracket n\rrbracket}}\in\mathbb{F}^{n} such that

{αp:pn}{βp:pn}=.\left\{\alpha_{p}:p\in{\llbracket n\rrbracket}\right\}\cap\left\{\beta_{p}:p\in{\llbracket n\rrbracket}\right\}=\emptyset\,.

But then, we should have, for |m||m| large enough,

(Qm(q2/z)Qm(1/z))|z|11=(P1(q2/z)P1(1/z)p=1n1αpq(1±1)/z1βpq(1±1)/zp=1n1βpq2m(1±1)/z1αpq2m(1±1)/z)|z|11,\left(\frac{Q_{m}(q^{-2}/z)}{Q_{m}(1/z)}\right)_{|z|^{\mp 1}\ll 1}=\left(\frac{P_{1}(q^{-2}/z)}{P_{1}(1/z)}\prod_{p=1}^{n}\frac{1-\alpha_{p}q^{-(1\pm 1)}/z}{1-\beta_{p}q^{-(1\pm 1)}/z}\prod_{p=1}^{n}\frac{1-\beta_{p}q^{2m-(1\pm 1)}/z}{1-\alpha_{p}q^{2m-(1\pm 1)}/z}\right)_{|z|^{\mp 1}\ll 1}\,,

where, on the r.h.s., cancellations can only occur across the leftmost fraction line. A contradiction. i follows. As for part of ii, we shall prove it in section 5. ∎

Although we must postpone the proof of part ii of theorem 4.21, the proof above still makes it clear that

Proposition 4.22.

If a type (1,0) simple highest tt-weight U¨q(𝔞1)\ddot{\mathrm{U}}_{q}(\mathfrak{a}_{1})-module (M0)\mathcal{L}(M_{0}) is weight-finite, then its highest tt-weight space M0M_{0} is a simple \ell-dominant U¨q0(𝔞1)\ddot{\mathrm{U}}_{q}^{0}(\mathfrak{a}_{1})-module.

Proposition 4.23.

Let MM be a tt-weight U¨q(𝔞1)\ddot{\mathrm{U}}_{q}(\mathfrak{a}_{1})-module and let MαM_{\alpha} and MβM_{\beta} be two \ell-weight spaces of MM such that, for some m,nm,n\in{\mathbb{Z}}, Mα𝖷1,m,n±.Mβ{0}M_{\alpha}\cap{\mathsf{X}}_{1,m,n}^{\pm}.M_{\beta}\neq\{0\}. Then, there exists a unique a𝔽×a\in\mathbb{F}^{\times} such that:

  1. i.

    the respective \ell-weights καε(z)\kappa_{\alpha}^{\varepsilon}(z) and κβε(z)\kappa_{\beta}^{\varepsilon}(z) of MαM_{\alpha} and MβM_{\beta} be related by

    καε(z)=κβε(z)Aaε(z)±1,\kappa_{\alpha}^{\varepsilon}(z)=\kappa_{\beta}^{\varepsilon}(z)A_{a}^{\varepsilon}(z)^{\pm 1}\,, (4.16)

    where ε{,+}\varepsilon\in\{-,+\} and

    Aa±(z)=q2(1q2a/z1q2a/z)|z|±11;A_{a}^{\pm}(z)=q^{2}\left(\frac{1-q^{-2}a/z}{1-q^{2}a/z}\right)_{|z|^{\pm 1}\ll 1}\,;
  2. ii.

    (za)NMαX1,m±(z).Mβ={0}(z-a)^{N}M_{\alpha}\cap{\textbf{{X}}}_{1,m}^{\pm}(z).M_{\beta}=\{0\} for some N×N\in{\mathbb{N}}^{\times}.

Proof.

We keep the same notations as in the proof of proposition 4.3. More specifically, we have two bases {vi:i=1,,dim(Mα)}\{v_{i}:i=1,\dots,\dim(M_{\alpha})\} and {wj:j=1,,dim(Mβ)}\{w_{j}:j=1,\dots,\dim(M_{\beta})\} of MαM_{\alpha} and MβM_{\beta} respectively, in which

idimMα,K1,0±(z).vi=κα±(z)k=idimMαηα,i,k±(z)vk,\forall i\in{\llbracket\dim M_{\alpha}\rrbracket}\,,\qquad\qquad{\textbf{{K}}}^{\pm}_{1,0}(z).v_{i}=\kappa_{\alpha}^{\pm}(z)\sum_{k=i}^{\dim M_{\alpha}}\eta_{\alpha,i,k}^{\pm}(z)v_{k}\,,
jdimMβ,K1,0±(z).wj=κβ±(z)l=jdimMβηβ,j,l±(z)wl,\forall j\in{\llbracket\dim M_{\beta}\rrbracket}\,,\qquad\qquad{\textbf{{K}}}^{\pm}_{1,0}(z).w_{j}=\kappa_{\beta}^{\pm}(z)\sum_{l=j}^{\dim M_{\beta}}\eta_{\beta,j,l}^{\pm}(z)w_{l}\,,

for some ηα,i,k±(z),ηβ,j,l±(z)𝔽[[z±1]]\eta_{\alpha,i,k}^{\pm}(z),\eta_{\beta,j,l}^{\pm}(z)\in\mathbb{F}[[z^{\pm 1}]], with i,kdimMαi,k\in{\llbracket\dim M_{\alpha}\rrbracket} and j,ldimMβj,l\in{\llbracket\dim M_{\beta}\rrbracket}, such that ηα,i,i±(z)=1\eta_{\alpha,i,i}^{\pm}(z)=1 for every idimMαi\in{\llbracket\dim M_{\alpha}\rrbracket} and ηβ,j,j±(z)=1\eta_{\beta,j,j}^{\pm}(z)=1 for every jdimMβj\in{\llbracket\dim M_{\beta}\rrbracket}.

Now, if Mα𝖷1,m,n±.Mβ{0}M_{\alpha}\cap{\mathsf{X}}_{1,m,n}^{\pm}.M_{\beta}\neq\{0\}, there must exist a largest nonempty subset JdimMβJ\subseteq{\llbracket\dim M_{\beta}\rrbracket} such that, for every jJj\in J, MαX1,m±(z).wj{0}M_{\alpha}\cap{\textbf{{X}}}_{1,m}^{\pm}(z).w_{j}\neq\{0\}. Let j=maxJj_{*}=\max J. Obviously, for every jJj\in J, there must exist a largest nonempty subset I(j)dimMαI(j)\subseteq{\llbracket\dim M_{\alpha}\rrbracket} such that, for every jJj\in J and every iI(j)i\in I(j), 𝔽viX1,m±(z).wj{0}\mathbb{F}v_{i}\cap{\textbf{{X}}}_{1,m}^{\pm}(z).w_{j}\neq\{0\}. Let i(j)=minI(j)i_{*}(j)=\min I(j) and let for simplicity i=i(j)i_{*}=i_{*}(j_{*}). Then, for every jJj\in J,

MαX1,m±(z).wj=iI(j)ξm,j,i±(z)vi,M_{\alpha}\cap{\textbf{{X}}}_{1,m}^{\pm}(z).w_{j}=\sum_{i\in I(j)}\xi_{m,j,i}^{\pm}(z)v_{i}\,,

for some ξm,j,i±(z)𝔽[[z,z1]]{0}\xi_{m,j,i}^{\pm}(z)\in\mathbb{F}[[z,z^{-1}]]-\{0\}. When needed, we shall extend by zero the definition of ξm,j,i±(z)\xi_{m,j,i}^{\pm}(z) outside of the set of pairs {(j,i):jJ,iI(j)}\{(j,i):j\in J,i\in I(j)\}. Making use of the relations in U¨q(𝔞1)\ddot{\mathrm{U}}_{q}(\mathfrak{a}_{1}) – namely (3.9) and (3.10) –, we get, for every jJj\in J and every ε{,+}\varepsilon\in\{-,+\},

(z1q±2z2)X1,m±(z1)K1,0ε(z2).wj=(z1q±2z2)K1,0ε(z2)X1,m±(z1).wj.(z_{1}-q^{\pm 2}z_{2}){\textbf{{X}}}_{1,m}^{\pm}(z_{1}){\textbf{{K}}}^{\varepsilon}_{1,0}(z_{2}).w_{j}=(z_{1}q^{\pm 2}-z_{2}){\textbf{{K}}}^{\varepsilon}_{1,0}(z_{2}){\textbf{{X}}}_{1,m}^{\pm}(z_{1}).w_{j}\,.

The latter easily implies that, for every jJj\in J and every iI(j)i\in I(j),

(z1q±2z2)κβε(z2)lJljηβ,j,lε(z2)ξm,l,i±(z1)=(z1q±2z2)κα±(z2)kI(j)kiηα,k,iε(z2)ξm,j,k±(z1).(z_{1}-q^{\pm 2}z_{2})\kappa_{\beta}^{\varepsilon}(z_{2})\sum_{\begin{subarray}{c}l\in J\\ l\geq j\end{subarray}}\eta_{\beta,j,l}^{\varepsilon}(z_{2})\xi_{m,l,i}^{\pm}(z_{1})=(z_{1}q^{\pm 2}-z_{2})\kappa_{\alpha}^{\pm}(z_{2})\sum_{\begin{subarray}{c}k\in I(j)\\ k\leq i\end{subarray}}\eta_{\alpha,k,i}^{\varepsilon}(z_{2})\xi_{m,j,k}^{\pm}(z_{1})\,. (4.17)

Taking i=ii=i_{*} and j=jj=j_{*} in the above equation immediately yields

[(z1q±2z2)κβε(z2)(z1q±2z2)καε(z2)]ξm,j,i±(z1)=0.\left[(z_{1}-q^{\pm 2}z_{2})\kappa_{\beta}^{\varepsilon}(z_{2})-(z_{1}q^{\pm 2}-z_{2})\kappa_{\alpha}^{\varepsilon}(z_{2})\right]\xi_{m,j_{*},i_{*}}^{\pm}(z_{1})=0\,.

The latter is equivalent to the fact that, for every pp\in{\mathbb{Z}},

ξm,j,i,p±z(q±2κβε(z)καε(z))=ξm,j,i,p+1±(κβε(z)q±2καε(z)),\xi_{m,j_{*},i_{*},p}^{\pm}z\left(q^{\pm 2}\kappa_{\beta}^{\varepsilon}(z)-\kappa_{\alpha}^{\varepsilon}(z)\right)=\xi_{m,j_{*},i_{*},p+1}^{\pm}\left(\kappa_{\beta}^{\varepsilon}(z)-q^{\pm 2}\kappa_{\alpha}^{\varepsilon}(z)\right)\,, (4.18)

where, as usual, we have set

ξm,j,i,p±=reszzp1ξm,j,i±(z).\xi_{m,j_{*},i_{*},p}^{\pm}=\operatorname*{res}_{z}z^{p-1}\xi_{m,j_{*},i_{*}}^{\pm}(z)\,.

Since ξm,j,i±(z)0\xi_{m,j_{*},i_{*}}^{\pm}(z)\neq 0, there exists at least one -pp\in{\mathbb{Z}} such that ξm,j,i,p±0\xi_{m,j_{*},i_{*},p}^{\pm}\neq 0. Assuming that ξm,j,i,p+1±=0\xi_{m,j_{*},i_{*},p+1}^{\pm}=0, one easily derives a contradiction from (4.18) and, repeating the argument, one proves that ξm,j,i,p±0\xi_{m,j_{*},i_{*},p}^{\pm}\neq 0 for every pp\in{\mathbb{Z}}. Dividing (4.18) by ξm,j,i,p±\xi_{m,j_{*},i_{*},p}^{\pm}, one gets

z(q±2κβε(z)καε(z))=a(κβε(z)q±2καε(z)),z\left(q^{\pm 2}\kappa_{\beta}^{\varepsilon}(z)-\kappa_{\alpha}^{\varepsilon}(z)\right)=a\left(\kappa_{\beta}^{\varepsilon}(z)-q^{\pm 2}\kappa_{\alpha}^{\varepsilon}(z)\right)\,,

where we have set, for every pp\in{\mathbb{Z}}, ξm,j,i,p+1±/ξm,j,i,p±=a𝔽×\xi_{m,j_{*},i_{*},p+1}^{\pm}/\xi_{m,j_{*},i_{*},p}^{\pm}=a\in\mathbb{F}^{\times}. i. now follows. Moreover, we clearly have

ξm,j,i±(z)=Am,j,i±δ(z/a),\xi_{m,j_{*},i_{*}}^{\pm}(z)=A_{m,j_{*},i_{*}}^{\pm}\delta(z/a)\,,

for some Am,j,i±𝔽×A_{m,j_{*},i_{*}}^{\pm}\in\mathbb{F}^{\times}. More generally, we claim that,

jJ,iI(j),ξm,j,i±(z)=p=0N(i,j)Am,j,i,p±δ(p)(z/a),\forall j\in J\,,\forall i\in I(j)\,,\qquad\qquad\xi_{m,j,i}^{\pm}(z)=\sum_{p=0}^{N(i,j)}A_{m,j,i,p}^{\pm}\delta^{(p)}(z/a)\,, (4.19)

for some Am,j,i,p±𝔽A_{m,j,i,p}^{\pm}\in\mathbb{F} and some N(i,j)N(i,j)\in{\mathbb{N}}. This is proven by a finite induction on jj and ii. Indeed, making use of (4.16), we can rewrite (4.17) as

(z1q±2z2)(z2q±2a)lJljηβ,j,lε(z2)ξm,l,i±(z1)=(z1q±2z2)(q±2z2a)kI(j)kiηα,k,iε(z2)ξm,j,k±(z1),(z_{1}-q^{\pm 2}z_{2})(z_{2}-q^{\pm 2}a)\sum_{\begin{subarray}{c}l\in J\\ l\geq j\end{subarray}}\eta_{\beta,j,l}^{\varepsilon}(z_{2})\xi_{m,l,i}^{\pm}(z_{1})=(z_{1}q^{\pm 2}-z_{2})(q^{\pm 2}z_{2}-a)\sum_{\begin{subarray}{c}k\in I(j)\\ k\leq i\end{subarray}}\eta_{\alpha,k,i}^{\varepsilon}(z_{2})\xi_{m,j,k}^{\pm}(z_{1})\,, (4.20)

for every jJj\in J and every iI(j)i\in I(j). Now, assume that (4.19) holds for every pair in

{(j,i):jJ,iI(j),j>j0}{(j0,i):iI(j0),ii0},\left\{(j,i):j\in J,\,i\in I(j),\quad j>j_{0}\right\}\cup\left\{(j_{0},i):i\in I(j_{0}),\quad i\leq i_{0}\right\}\,,

for some j0Jj_{0}\in J and some i0I(j0)i_{0}\in I(j_{0}) such that i0<maxI(j0)i_{0}<\max I(j_{0}). Let i0i_{0}^{\prime} be the smallest element of I(j0)I(j_{0}) such that i0<i0i_{0}<i_{0}^{\prime}. It suffices to write (4.20) for j=j0j=j_{0} and i=i0i=i_{0}^{\prime}, to get

(z1a)z2(1q±4)ξm,j0,i0±(z1)\displaystyle(z_{1}-a)z_{2}(1-q^{\pm 4})\xi_{m,j_{0},i_{0}^{\prime}}^{\pm}(z_{1}) =\displaystyle= (z1q±2z2)(z2q±2a)lJl>j0ηβ,j0,lε(z2)ξm,l,i0±(z1)\displaystyle-(z_{1}-q^{\pm 2}z_{2})(z_{2}-q^{\pm 2}a)\sum_{\begin{subarray}{c}l\in J\\ l>j_{0}\end{subarray}}\eta_{\beta,j_{0},l}^{\varepsilon}(z_{2})\xi_{m,l,i_{0}^{\prime}}^{\pm}(z_{1}) (4.21)
+(z1q±2z2)(q±2z2a)kI(j0)ki0ηα,k,i0ε(z2)ξm,j0,k±(z1).\displaystyle+(z_{1}q^{\pm 2}-z_{2})(q^{\pm 2}z_{2}-a)\sum_{\begin{subarray}{c}k\in I(j_{0})\\ k\leq i_{0}\end{subarray}}\eta_{\alpha,k,i_{0}^{\prime}}^{\varepsilon}(z_{2})\xi_{m,j_{0},k}^{\pm}(z_{1})\,.

Combining the recursion hypothesis and lemma A.1 from the appendix, one easily concludes that (4.19) holds for the pair (j0,i0)(j_{0},i_{0}^{\prime}). Repeating the argument finitely many times, we get that it actually holds for all the pairs in {(j,i):jJ,iI(j),jj0}\left\{(j,i):j\in J,\,i\in I(j),\quad j\geq j_{0}\right\}. Now, either j0=minJj_{0}=\min J and we are done; or j0>minJj_{0}>\min J and there exists a largest j0Jj_{0}^{\prime}\in J such that j0>j0j_{0}>j_{0}^{\prime}. Writing (4.20) for j=j0j=j_{0}^{\prime} and i=i(j0)i=i_{*}(j_{0}^{\prime}), we get

(z1a)z2(1q±4)ξm,j0,i(j0)±(z1)=(z1q±2z2)(z2q±2a)lJlj0ηβ,j0,lε(z2)ξm,l,i(j0)±(z1).(z_{1}-a)z_{2}(1-q^{\pm 4})\xi_{m,j_{0}^{\prime},i_{*}(j_{0}^{\prime})}^{\pm}(z_{1})=-(z_{1}-q^{\pm 2}z_{2})(z_{2}-q^{\pm 2}a)\sum_{\begin{subarray}{c}l\in J\\ l\geq j_{0}\end{subarray}}\eta_{\beta,j_{0}^{\prime},l}^{\varepsilon}(z_{2})\xi_{m,l,i_{*}(j_{0}^{\prime})}^{\pm}(z_{1})\,.

Combining again the recursion hypothesis and lemma A.1, we easily get that (4.19) holds for (j0,i(j0))(j_{0}^{\prime},i_{*}(j_{0}^{\prime})). It is now clear that the claim holds for every jJj\in J and every iI(j)i\in I(j). Letting N=max{N(i,j):jJ,iI(j)}N=\max\{N(i,j):j\in J,\,i\in I(j)\}, ii. follows. Furthermore, for every b𝔽{a}b\in\mathbb{F}-\{a\} and every nn\in{\mathbb{N}}, we obviously have (zb)nMαX1,m±(z).Mβ{0}(z-b)^{n}M_{\alpha}\cap{\textbf{{X}}}_{1,m}^{\pm}(z).M_{\beta}\neq\{0\}, thus making aa the unique element of 𝔽\mathbb{F} satisfying ii.. ∎

Corollary 4.24.

The \ell-weights of any type (1,0)(1,0) weight-finite simple U¨q(𝔞1)\ddot{\mathrm{U}}_{q}(\mathfrak{a}_{1})-module are all rational – see definition 4.4.

Proof.

Let MM be a type (1,0)(1,0) weight-finite simple U¨q(𝔞1)\ddot{\mathrm{U}}_{q}(\mathfrak{a}_{1})-module. By proposition 4.22, its highest tt-weight space M0M_{0} is an \ell-dominant simple U¨q0(𝔞1)\ddot{\mathrm{U}}_{q}^{0}(\mathfrak{a}_{1})-module. Hence, M(M0)U¨q(𝔞1).M0M\cong\mathcal{L}(M_{0})\cong\ddot{\mathrm{U}}_{q}^{-}(\mathfrak{a}_{1}).M_{0} and it easily follows by proposition 4.23 that all the \ell-weights of (M0)\mathcal{L}(M_{0}) are of the form

κα±(z)p=1NAap±(z)1,\kappa_{\alpha}^{\pm}(z)\prod_{p=1}^{N}A_{a_{p}}^{\pm}(z)^{-1}\,,

for some NN\in{\mathbb{N}}, some a1,,aN𝔽×a_{1},\dots,a_{N}\in\mathbb{F}^{\times} and

κα±(z)=qdegPα(Pα(q2/z)Pα(1/z))|z|±11,\kappa_{\alpha}^{\pm}(z)=-q^{\deg P_{\alpha}}\left(\frac{P_{\alpha}(q^{-2}/z)}{P_{\alpha}(1/z)}\right)_{|z|^{\pm 1}\ll 1}\,,

for some monic polynomial Pα(1/z)𝔽[z1]P_{\alpha}(1/z)\in\mathbb{F}[z^{-1}]. Now, observe that

Aa±(z)1=q2(1q2a/z1q2a/z)|z|±11=q1(1q2a/z1a/z)|z|±11q1(1a/z1q2a/z)|z|±11.A_{a}^{\pm}(z)^{-1}=q^{-2}\left(\frac{1-q^{2}a/z}{1-q^{-2}a/z}\right)_{|z|^{\pm 1}\ll 1}=q^{-1}\left(\frac{1-q^{2}a/z}{1-a/z}\right)_{|z|^{\pm 1}\ll 1}q^{-1}\left(\frac{1-a/z}{1-q^{-2}a/z}\right)_{|z|^{\pm 1}\ll 1}\,.

Hence, all the \ell-weights of (M0)\mathcal{L}(M_{0}) are of the form

κβ±(z)=qdeg(Pβ)deg(Qβ)(Pβ(q2/z)Qβ(1/z)Pβ(1/z)Qβ(q2/z))|z|±11,\kappa_{\beta}^{\pm}(z)=-q^{\deg(P_{\beta})-\deg(Q_{\beta})}\left(\frac{P_{\beta}(q^{-2}/z)Q_{\beta}(1/z)}{P_{\beta}(1/z)Q_{\beta}(q^{-2}/z)}\right)_{|z|^{\pm 1}\ll 1}\,, (4.22)

for some relatively prime monic polynomials Pβ(1/z),Qβ(1/z)𝔽[z1]P_{\beta}(1/z),Q_{\beta}(1/z)\in\mathbb{F}[z^{-1}], which concludes the proof. ∎

In view of remark 4.6, we can therefore associate with any weigh-finite simple U¨q(𝔞1)\ddot{\mathrm{U}}_{q}(\mathfrak{a}_{1})-module a qq-character defined as the (formal) sum of the monomials corresponding to all its rational \ell-weights.

Proposition 4.25.

Let M0M_{0} and N0N_{0} be two tt-dominant simple U¨q0(𝔞1)\ddot{\mathrm{U}}_{q}^{0}(\mathfrak{a}_{1})-modules such that M0^N0M_{0}\widehat{\otimes}N_{0} be simple. Then:

  1. i.

    M0^N0M_{0}\widehat{\otimes}N_{0} is a simple tt-dominant U¨q0(𝔞1)\ddot{\mathrm{U}}_{q}^{0}(\mathfrak{a}_{1})-module of type (1,0)(1,0);

  2. ii.

    there exists a short exact sequence of U¨q(𝔞1)\ddot{\mathrm{U}}_{q}(\mathfrak{a}_{1})-modules

    {0}𝒩(M0)^(N0)(M0^N0){0};\{0\}\to\mathcal{N}\to\mathcal{L}(M_{0})\widehat{\otimes}\mathcal{L}(N_{0})\to\mathcal{L}(M_{0}\widehat{\otimes}N_{0})\to\{0\}\,;
  3. iii.

    if, in addition, (M0)^(N0)\mathcal{L}(M_{0})\widehat{\otimes}\mathcal{L}(N_{0}) is simple, then

    (M0)^(N0)(M0^N0).\mathcal{L}(M_{0})\widehat{\otimes}\mathcal{L}(N_{0})\cong\mathcal{L}(M_{0}\widehat{\otimes}N_{0})\,.
Proof.

M0M_{0} and N0N_{0} are both of type (1,0)(1,0) and (3.22) and (3.23) respectively imply that so is M0^N0M_{0}\widehat{\otimes}N_{0}. Similarly, they are both \ell-weight and \ell-dominant. Combining eqs. (3.19), (3.20), (3.21), (3.24), (3.25) and (3.26), we easily prove that

Δ0(K1,m+(z))=k=0ml=k+1mc(zq2lC(1)1/2)K1,k+(z)^K1,mk+(zq2kC(1)),\Delta^{0}({\textbf{{K}}}^{+}_{1,m}(z))=-\sum_{k=0}^{m}\prod_{l=k+1}^{m}{\textbf{{c}}}^{-}(zq^{-2l}{{\textsf{C}}}_{(1)}^{1/2}){\textbf{{K}}}^{+}_{1,k}(z)\widehat{\otimes}{\textbf{{K}}}^{+}_{1,m-k}(zq^{-2k}{{\textsf{C}}}_{(1)})\,, (4.23)
Δ0(K1,m(z))=k=0mK1,(mk)(zq2kC(2))^K1,k(z)l=k+1mc+(zq2lC(2)1/2),\Delta^{0}({\textbf{{K}}}^{-}_{1,-m}(z))=-\sum_{k=0}^{m}{\textbf{{K}}}^{-}_{1,-(m-k)}(zq^{-2k}{{\textsf{C}}}_{(2)})\widehat{\otimes}{\textbf{{K}}}^{-}_{1,-k}(z)\prod_{l=k+1}^{m}{\textbf{{c}}}^{+}(zq^{-2l}{{\textsf{C}}}_{(2)}^{1/2})\,, (4.24)

for every mm\in{\mathbb{N}}. In particular, taking m=0m=0, we have Δ0(K1,0±(z))=K1,0±(zC(2)112)K1,0±(zC(1)1±12)\Delta^{0}({\textbf{{K}}}^{\pm}_{1,0}(z))=-{\textbf{{K}}}^{\pm}_{1,0}(z{{\textsf{C}}}_{(2)}^{\frac{1\mp 1}{2}})\otimes{\textbf{{K}}}^{\pm}_{1,0}(z{{\textsf{C}}}_{(1)}^{\frac{1\pm 1}{2}}). It follows that, if {M0,α:αA}\left\{M_{0,\alpha}:\alpha\in A\right\} and {N0,β:βB}\left\{N_{0,\beta}:\beta\in B\right\} are the countable sets of \ell-weights of M0M_{0} and N0N_{0} respectively, with respective Drinfel’d polynomials {Pα:αA}\{P_{\alpha}:\alpha\in A\} and {Pβ:βB}\{P_{\beta}:\beta\in B\}, then {M0,αN0,β:αA,βB}\left\{M_{0,\alpha}\otimes N_{0,\beta}:\alpha\in A\,,\quad\beta\in B\right\} is the countable set of \ell-weights of M0^N0M_{0}\widehat{\otimes}N_{0}. Moreover, the latter is obviously \ell-dominant since its Drinfel’d polynomials are in {PαPβ:αAβB}\{P_{\alpha}P_{\beta}:\alpha\in A\,\quad\beta\in B\}. Now let α,αA\alpha,\alpha^{\prime}\in A, β,βB\beta,\beta^{\prime}\in B and let PαP_{\alpha}, PαP_{\alpha^{\prime}}, PβP_{\beta} and PβP_{\beta^{\prime}} be the Drinfel’d polynomials of M0,αM_{0,\alpha}, M0,αM_{0,\alpha^{\prime}}, N0,βN_{0,\beta} and N0,βN_{0,\beta^{\prime}} respectively and assume that

(M0,αN0,β)Δ0(K1,±1±(z)).(M0,αN0,β){0}.\left(M_{0,\alpha}\otimes N_{0,\beta}\right)\cap\Delta^{0}({\textbf{{K}}}^{\pm}_{1,\pm 1}(z)).\left(M_{0,\alpha^{\prime}}\otimes N_{0,\beta^{\prime}}\right)\neq\{0\}\,. (4.25)

Then, writing (4.23) and (4.24) above with m=1m=1, we get

Δ0(K1,1+(z))=c(zq2C(1)1/2)K1,0+(z)^K1,1+(zC(1))K1,1+(z)^K1,0+(zq2C(1)),\Delta^{0}({\textbf{{K}}}^{+}_{1,1}(z))=-{\textbf{{c}}}^{-}(zq^{-2}{{\textsf{C}}}_{(1)}^{1/2}){\textbf{{K}}}^{+}_{1,0}(z)\widehat{\otimes}{\textbf{{K}}}^{+}_{1,1}(z{{\textsf{C}}}_{(1)})-{\textbf{{K}}}^{+}_{1,1}(z)\widehat{\otimes}{\textbf{{K}}}^{+}_{1,0}(zq^{-2}{{\textsf{C}}}_{(1)})\,,
Δ0(K1,1(z))=K1,1(zC(2))^K1,0(z)c+(zq2C(2)1/2)K1,0(zq2C(2))^K1,1(z).\Delta^{0}({\textbf{{K}}}^{-}_{1,-1}(z))=-{\textbf{{K}}}^{-}_{1,-1}(z{{\textsf{C}}}_{(2)})\widehat{\otimes}{\textbf{{K}}}^{-}_{1,0}(z){\textbf{{c}}}^{+}(zq^{-2}{{\textsf{C}}}_{(2)}^{1/2})-{\textbf{{K}}}^{-}_{1,0}(zq^{-2}{{\textsf{C}}}_{(2)})\widehat{\otimes}{\textbf{{K}}}^{-}_{1,-1}(z)\,.

Since both M0,αM_{0,\alpha^{\prime}} and N0,βN_{0,\beta^{\prime}} are \ell-weight spaces, it follows that

Δ0(K1,±1±(z)).(M0,αN0,β)(K1,±1±(z).M0,αN0,β)(M0,αK1,±1±(z).N0,β),\Delta^{0}({\textbf{{K}}}^{\pm}_{1,\pm 1}(z)).\left(M_{0,\alpha^{\prime}}\otimes N_{0,\beta^{\prime}}\right)\subseteq\left({\textbf{{K}}}^{\pm}_{1,\pm 1}(z).M_{0,\alpha^{\prime}}\otimes N_{0,\beta^{\prime}}\right)\oplus\left(M_{0,\alpha^{\prime}}\otimes{\textbf{{K}}}^{\pm}_{1,\pm 1}(z).N_{0,\beta^{\prime}}\right)\,,

Therefore, condition (4.25) holds only if the direct sum on the r.h.s. above has a non-vanishing intersection with M0,αN0,βM_{0,\alpha}\otimes N_{0,\beta}. But since the latter is an \ell-weight space, this happens only if either M0,αK1,±1±(z).M0,α{0}M_{0,\alpha}\cap{\textbf{{K}}}^{\pm}_{1,\pm 1}(z).M_{0,\alpha^{\prime}}\neq\{0\} or N0,βK1,±1±(z).N0,β{0}N_{0,\beta}\cap{\textbf{{K}}}^{\pm}_{1,\pm 1}(z).N_{0,\beta^{\prime}}\neq\{0\}. The tt-dominance of M0M_{0} and N0N_{0} implies that for the only a𝔽×a\in\mathbb{F}^{\times} such that , either Pα(1/a)=0P_{\alpha^{\prime}}(1/a)=0 or Pβ(1/a)=0P_{\beta^{\prime}}(1/a)=0. In any case, Pα(1/a)Pβ(1/a)=0P_{\alpha^{\prime}}(1/a)P_{\beta^{\prime}}(1/a)=0 and M0^N0M_{0}\widehat{\otimes}N_{0} is tt-dominant. i follows. By lemma 3.29, it is clear that Δ˙(X1,r+(z)).(M0^N0)={0}\dot{\Delta}({\textbf{{X}}}_{1,r}^{+}(z)).\left(M_{0}\widehat{\otimes}N_{0}\right)=\{0\}. Hence M0^N0M_{0}\widehat{\otimes}N_{0} is a highest tt-weight space in (M0)^(N0)\mathcal{L}(M_{0})\widehat{\otimes}\mathcal{L}(N_{0}). Let 𝒩\mathcal{N} denote the largest closed U¨q(𝔞1)^\widehat{\ddot{\mathrm{U}}_{q}^{\prime}(\mathfrak{a}_{1})}-submodule of (M0)^(N0)\mathcal{L}(M_{0})\widehat{\otimes}\mathcal{L}(N_{0}) such that 𝒩(M0^N0)={0}\mathcal{N}\cap\left(M_{0}\widehat{\otimes}N_{0}\right)=\{0\}. ii obviously follows. iii is clear. ∎

5. An evaluation homomorphism and evaluation modules

In this section, we construct an evaluation algebra 𝒜^t\widehat{\mathcal{A}}_{t} and an FF-algebra homomorphism ev:U¨q(𝔞1)𝒜^t\mathrm{ev}:\ddot{\mathrm{U}}_{q}(\mathfrak{a}_{1})\to\widehat{\mathcal{A}}_{t}, that we shall refer to as the evaluation homomorphism.

5.1. The quantum Heisenberg algebras t+\mathcal{H}_{t}^{+} and t\mathcal{H}_{t}^{-}

Definition 5.1.

The quantum Heisenberg algebra t±\mathcal{H}_{t}^{\pm} is the Hopf algebra generated over 𝕂(t)\mathbb{K}(t) by

{γ1/2,γ1/2,α±,α±1,α±,m:m×},\left\{\gamma^{1/2},\gamma^{-1/2},\alpha_{\pm},\alpha_{\pm}^{-1},\alpha_{\pm,m}:m\in{\mathbb{Z}}^{\times}\right\}\,,

subject to the relations,

γ1/2,γ1/2,α±,α±1 are central,\gamma^{1/2},\gamma^{-1/2},\alpha_{\pm},\alpha_{\pm}^{-1}\mbox{ are central,}
[α±,m,α±,n]=δm,nm[2m]tγmγmtt1,[\alpha_{\pm,-m},\alpha_{\pm,n}]=-\frac{\delta_{m,n}}{m}[2m]_{t}\frac{\gamma^{m}-\gamma^{-m}}{t-t^{-1}}\,,

for every m,n×m,n\in{\mathbb{Z}}^{\times}, with comultiplication Δ\Delta defined by setting

Δ(γ1/2)=γ1/2γ1/2,Δ(γ1/2)=γ1/2γ1/2,\Delta(\gamma^{1/2})=\gamma^{1/2}\otimes\gamma^{1/2}\,,\qquad\Delta(\gamma^{-1/2})=\gamma^{-1/2}\otimes\gamma^{-1/2}\,,
Δ(α±)=α±α±,Δ(α±1)=α±1α±1,\Delta(\alpha_{\pm})=\alpha_{\pm}\otimes\alpha_{\pm}\,,\qquad\Delta(\alpha_{\pm}^{-1})=\alpha_{\pm}^{-1}\otimes\alpha_{\pm}^{-1}\,,
Δ(α±,m)=α±,mγ|m|/2+γ|m|/2α±,m,\Delta(\alpha_{\pm,m})=\alpha_{\pm,m}\otimes\gamma^{|m|/2}+\gamma^{-|m|/2}\otimes\alpha_{\pm,m}\,,

for every m,n×m,n\in{\mathbb{Z}}^{\times}, antipode SS defined by setting

S(γ1/2)=γ1/2,S(γ1/2)=γ1/2,S(\gamma^{1/2})=\gamma^{-1/2}\,,\qquad S(\gamma^{-1/2})=\gamma^{1/2}\,,
S(α±)=α±1,S(α±1)=α±S(\alpha_{\pm})=\alpha_{\pm}^{-1}\,,\qquad S(\alpha_{\pm}^{-1})=\alpha_{\pm}
S(α±,m)=α±,m,S(\alpha_{\pm,m})=-\alpha_{\pm,m}\,,

and counit ε\varepsilon defined by setting

ε(γ1/2)=ε(γ1/2)=ε(α±)=ε(α±1)=ε(1)=1,\varepsilon(\gamma^{1/2})=\varepsilon(\gamma^{-1/2})=\varepsilon(\alpha_{\pm})=\varepsilon(\alpha_{\pm}^{-1})=\varepsilon(1)=1\,,
ε(α±,m)=0.\varepsilon(\alpha_{\pm,m})=0\,.
Definition 5.2.

In t+\mathcal{H}_{t}^{+}, we let

𝐋+(z)=1+m×Lm+zm=exp[(tt1)m×α+,m(t2z)m],{\bf{L}}^{+}(z)=1+\sum_{m\in{\mathbb{N}}^{\times}}L^{+}_{-m}z^{m}=\exp\left[-(t-t^{-1})\sum_{m\in{\mathbb{N}}^{\times}}\alpha_{+,-m}(t^{2}z)^{m}\right]\,,
𝐑+(z)=α+(1+m×Rm+zm)=α+exp[(tt1)m×α+,m(t2z)m].{\bf{R}}^{+}(z)=\alpha_{+}\left(1+\sum_{m\in{\mathbb{N}}^{\times}}R^{+}_{m}z^{-m}\right)=\alpha_{+}\exp\left[(t-t^{-1})\sum_{m\in{\mathbb{N}}^{\times}}\alpha_{+,m}(t^{-2}z)^{-m}\right]\,.

Similarly, in t\mathcal{H}_{t}^{-}, we let

𝐋(z)=α(1+m×Lmzm)=αexp[(tt1)m×α,m(t2z)m],{\bf{L}}^{-}(z)=\alpha_{-}\left(1+\sum_{m\in{\mathbb{N}}^{\times}}L^{-}_{-m}z^{m}\right)=\alpha_{-}\exp\left[-(t-t^{-1})\sum_{m\in{\mathbb{N}}^{\times}}\alpha_{-,-m}(t^{-2}z)^{m}\right]\,,
𝐑(z)=1+m×Rmzm=exp[(tt1)m×α,m(t2z)m].{\bf{R}}^{-}(z)=1+\sum_{m\in{\mathbb{N}}^{\times}}R^{-}_{m}z^{-m}=\exp\left[(t-t^{-1})\sum_{m\in{\mathbb{N}}^{\times}}\alpha_{-,m}(t^{2}z)^{-m}\right]\,.

Then, we have the following equivalent presentation of t±\mathcal{H}_{t}^{\pm}.

Proposition 5.3.

t±\mathcal{H}_{t}^{\pm} is the Hopf algebra generated over 𝕂(t)\mathbb{K}(t) by

{γ1/2,γ1/2,Lm±,Rm±:m}\{\gamma^{1/2},\gamma^{-1/2},L^{\pm}_{-m},R^{\pm}_{m}:m\in{\mathbb{N}}\}

subject to the relations

[𝐋±(v),𝐋±(z)]=[𝐑±(v),𝐑±(z)]=0,[{\bf{L}}^{\pm}(v),{\bf{L}}^{\pm}(z)]=[{\bf{R}}^{\pm}(v),{\bf{R}}^{\pm}(z)]=0\,,
𝐑±(v)𝐋±(z)=θ±(z/v)𝐋±(z)𝐑±(v),{\bf{R}}^{\pm}(v){\bf{L}}^{\pm}(z)=\theta^{\pm}(z/v){\bf{L}}^{\pm}(z){\bf{R}}^{\pm}(v)\,,

where we have defined θ±(z)𝒵(t)[[z]]\theta^{\pm}(z)\in\mathcal{Z}(\mathcal{H}_{t})[[z]], by setting

θ±(z)=((1t2±4γz)(1t±42γ1z)(1t±42γz)(1t2±4γ1z))|z|1.\theta^{\pm}(z)=\left(\frac{(1-t^{2\pm 4}\gamma z)(1-t^{\pm 4-2}\gamma^{-1}z)}{(1-t^{\pm 4-2}\gamma z)(1-t^{2\pm 4}\gamma^{-1}z)}\right)_{|z|\ll 1}\,.

Furthermore, we have

Δ(𝐋±(z))=𝐋±(zγ(2)1/2)𝐋±(zγ(1)1/2),\Delta({\bf{L}}^{\pm}(z))={\bf{L}}^{\pm}(z\gamma^{1/2}_{(2)})\otimes{\bf{L}}^{\pm}(z\gamma^{-1/2}_{(1)})\,,
Δ(𝐑±(z))=𝐑±(zγ(2)1/2)𝐑±(zγ(1)1/2),\Delta({\bf{R}}^{\pm}(z))={\bf{R}}^{\pm}(z\gamma^{-1/2}_{(2)})\otimes{\bf{R}}^{\pm}(z\gamma^{1/2}_{(1)})\,,

where, by definition,

γ(1)1/2=γ1/21,γ(1)1/2=γ1/21,γ(2)1/2=1γ1/2,γ(2)1/2=1γ1/2\gamma^{1/2}_{(1)}=\gamma^{1/2}\otimes 1\,,\qquad\gamma^{-1/2}_{(1)}=\gamma^{-1/2}\otimes 1\,,\qquad\gamma^{1/2}_{(2)}=1\otimes\gamma^{1/2}\,,\qquad\gamma^{-1/2}_{(2)}=1\otimes\gamma^{-1/2}

and

S(𝐋±(z))=𝐋±(z)1,S(𝐑±(z))=𝐑±(z)1.S({\bf{L}}^{\pm}(z))={\bf{L}}^{\pm}(z)^{-1}\,,\qquad S({\bf{R}}^{\pm}(z))={\bf{R}}^{\pm}(z)^{-1}\,.

Finally, ε(𝐋±(z))=ε(𝐑±(z))=1\varepsilon({\bf{L}}^{\pm}(z))=\varepsilon({\bf{R}}^{\pm}(z))=1.

Proof.

This is an easy consequence of the definition of t±\mathcal{H}_{t}^{\pm}. ∎

Remark 5.4.

Observe that θ+(z)\theta^{+}(z) and θ(z)\theta^{-}(z) are not independent and that we actually have θ(z)=θ+(t8z)\theta^{-}(z)=\theta^{+}(t^{-8}z).

5.2. A PBW basis for t±\mathcal{H}_{t}^{\pm}

For every n×n\in{\mathbb{N}}^{\times}, we let Λn:={λ=(λ1,,λn)(×)n:λ1λn}\Lambda_{n}:=\{\lambda=(\lambda_{1},\dots,\lambda_{n})\in({\mathbb{N}}^{\times})^{n}:\lambda_{1}\geq\cdots\geq\lambda_{n}\} denote the set of nn-partitions. We adopt the convention that Λ0={}\Lambda_{0}=\{\emptyset\} reduces to the empty partition and we let Λ=nΛn\Lambda=\bigcup_{n\in{\mathbb{N}}}\Lambda_{n} be the set of all partitions.

Proposition 5.5.

Define, for every λΛ\lambda\in\Lambda,

Lλ±=Lλ1±Lλn±,L^{\pm}_{\lambda}=L^{\pm}_{-\lambda_{1}}\cdots L^{\pm}_{-\lambda_{n}}\,, (5.1)
Rλ±=Rλ1±Rλn±,R^{\pm}_{\lambda}=R^{\pm}_{\lambda_{1}}\cdots R^{\pm}_{\lambda_{n}}\,, (5.2)

with the convention that L±=R±=1L^{\pm}_{\emptyset}=R^{\pm}_{\emptyset}=1. Then,

{Φλ,μ±=Lλ±Rμ±:λ,μΛ}\left\{\Phi_{\lambda,\mu}^{\pm}=L^{\pm}_{\lambda}R^{\pm}_{\mu}:\lambda,\mu\in\Lambda\right\} (5.3)

is a 𝕂(t)[γ1/2,γ1/2]\mathbb{K}(t)[\gamma^{1/2},\gamma^{-1/2}]-basis for t±\mathcal{H}_{t}^{\pm}.

Proof.

The relations in t±\mathcal{H}_{t}^{\pm} read, for every m,nm,n\in{\mathbb{N}},

[Lm±,Ln±]=[Rm±,Rn±]=0,[L^{\pm}_{-m},L^{\pm}_{-n}]=[R^{\pm}_{m},R^{\pm}_{n}]=0\,,
Rm±Ln±=Ln±Rm±+p=1min(m,n)θp±Lpn±Rmp±,R^{\pm}_{m}L^{\pm}_{-n}=L^{\pm}_{-n}R^{\pm}_{m}+\sum_{p=1}^{\min(m,n)}\theta^{\pm}_{p}L^{\pm}_{p-n}R^{\pm}_{m-p}\,,

where, for every pp\in{\mathbb{N}}, θp±𝕂(t)[γ1/2,γ1/2]\theta^{\pm}_{p}\in\mathbb{K}(t)[\gamma^{1/2},\gamma^{-1/2}] can be obtained from

θ±(z)=1+p×θp±zp.\theta^{\pm}(z)=1+\sum_{p\in{\mathbb{N}}^{\times}}\theta^{\pm}_{p}z^{p}\,.

It is clear that any monomial in {Lm±,Rm±:m}\{L^{\pm}_{-m},R^{\pm}_{m}:m\in{\mathbb{N}}\} can therefore be rewritten as a linear combination with coefficients in 𝕂(t)[γ1/2,γ1/2]\mathbb{K}(t)[\gamma^{1/2},\gamma^{-1/2}] of elements in {ϕλ,μ±:λ,μΛ}\{\phi_{\lambda,\mu}^{\pm}:\lambda,\mu\in\Lambda\}. The independence of the latter is clear. ∎

A convenient way to encode the above basis elements is through t±\mathcal{H}_{t}^{\pm}-valued symmetric formal distributions. Let indeed, for every n+,n,m+,mn^{+},n^{-},m^{+},m^{-}\in{\mathbb{N}}, every n±n^{\pm}-tuple 𝒛±=(z1±,,zn±±){\boldsymbol{z}}^{\pm}=(z^{\pm}_{1},\dots,z^{\pm}_{n^{\pm}}) and every m±m^{\pm}-tuple 𝜻±=(ζ1±,,ζm±±){\boldsymbol{\zeta}}^{\pm}=(\zeta^{\pm}_{1},\dots,\zeta^{\pm}_{m^{\pm}}) of formal variables,

Φ±(𝒛±,𝜻±)=𝐋±(𝒛±)𝐑±(𝜻±),\Phi^{\pm}({\boldsymbol{z}}^{\pm},{\boldsymbol{\zeta}}^{\pm})={\bf{L}}^{\pm}({\boldsymbol{z}}^{\pm}){\bf{R}}^{\pm}({\boldsymbol{\zeta}}^{\pm})\,,

where we have set

𝐋±(𝒛±)=p=1n±𝐋±(zp±),{\bf{L}}^{\pm}({\boldsymbol{z}}^{\pm})=\prod_{p=1}^{n^{\pm}}{\bf{L}}^{\pm}(z^{\pm}_{p})\,,
𝐑±(𝜻±)=p=1m±𝐑±(ζp±),{\bf{R}}^{\pm}({\boldsymbol{\zeta}}^{\pm})=\prod_{p=1}^{m^{\pm}}{\bf{R}}^{\pm}(\zeta^{\pm}_{p})\,,

with the convention that if n±n^{\pm} (resp. m±=0m^{\pm}=0), then 𝐋±()=1{\bf{L}}^{\pm}(\emptyset)=1 (resp. 𝐑±()=1{\bf{R}}^{\pm}(\emptyset)=1). It turns out that

Φ±(𝒛±,𝜻±)t±[[𝒛±,(𝜻±)1]]Sn±×Sm±.\Phi^{\pm}({\boldsymbol{z}}^{\pm},{\boldsymbol{\zeta}}^{\pm})\in\mathcal{H}_{t}^{\pm}[[{\boldsymbol{z}}^{\pm},({\boldsymbol{\zeta}}^{\pm})^{-1}]]^{S_{n^{\pm}}\times S_{m^{\pm}}}\,.

Indeed, owing to the commutation relations in t±\mathcal{H}_{t}^{\pm}, the formal distribution Φ±(𝒛±,𝜻±)\Phi^{\pm}({\boldsymbol{z}}^{\pm},{\boldsymbol{\zeta}}^{\pm}) is symmetric in each of its argument tuples, 𝒛±{\boldsymbol{z}}^{\pm} and 𝜻±{\boldsymbol{\zeta}}^{\pm} respectively; i.e. it is invariant under the natural action of Sn±×Sm±S_{n^{\pm}}\times S_{m^{\pm}} on its arguments. It is also clear that, for every λ±Λn±\lambda^{\pm}\in\Lambda_{n^{\pm}} and μ±Λm±\mu^{\pm}\in\Lambda_{m^{\pm}},

Φλ±,μ±±=res𝒛±,𝜻±(𝒛±)1λ±(𝜻±)1+μ±Φ±(𝒛±,𝜻±),\Phi^{\pm}_{\lambda^{\pm},\mu^{\pm}}=\operatorname*{res}_{{\boldsymbol{z}}^{\pm},{\boldsymbol{\zeta}}^{\pm}}({\boldsymbol{z}}^{\pm})^{-1-\lambda^{\pm}}({\boldsymbol{\zeta}}^{\pm})^{-1+\mu^{\pm}}\Phi^{\pm}({\boldsymbol{z}}^{\pm},{\boldsymbol{\zeta}}^{\pm})\,,

where we have set

(𝒛±)1λ±=p=1n±(zp±)1λp±and(𝜻±)1+μ±=p=1m±(ζp±)1+μp±.({\boldsymbol{z}}^{\pm})^{-1-\lambda^{\pm}}=\prod_{p=1}^{n^{\pm}}(z^{\pm}_{p})^{-1-\lambda^{\pm}_{p}}\qquad\mbox{and}\qquad({\boldsymbol{\zeta}}^{\pm})^{-1+\mu^{\pm}}=\prod_{p=1}^{m^{\pm}}(\zeta^{\pm}_{p})^{-1+\mu^{\pm}_{p}}\,.

5.3. The dressing factors 𝐋m±(z){\bf{L}}_{m}^{\pm}(z) and 𝐑m±(z){\bf{R}}_{m}^{\pm}(z)

Definition 5.6.

For every m×m\in{\mathbb{Z}}^{\times}, we let

𝐋m±(z)=p=1|m|𝐋±(zt±2(12p)sign(m)+2)±sign(m){\bf{L}}_{m}^{\pm}(z)=\prod_{p=1}^{|m|}{\bf{L}}^{\pm}(zt^{\pm 2(1-2p){\rm sign}(m)+2})^{\pm{\rm sign}(m)} (5.4)
𝐑m±(z)=p=1|m|𝐑±(zt±2(12p)sign(m)+2)±sign(m){\bf{R}}_{m}^{\pm}(z)=\prod_{p=1}^{|m|}{\bf{R}}^{\pm}(zt^{\pm 2(1-2p){\rm sign}(m)+2})^{\pm{\rm sign}(m)} (5.5)

It easily follows that

Proposition 5.7.

In t±\mathcal{H}_{t}^{\pm}, for every m,n×m,n\in{\mathbb{Z}}^{\times}, we have

[𝐋m±(v),𝐋n±(z)]=[𝐑m±(v),𝐑n±(z)]=0,[{\bf{L}}_{m}^{\pm}(v),{\bf{L}}_{n}^{\pm}(z)]=[{\bf{R}}_{m}^{\pm}(v),{\bf{R}}_{n}^{\pm}(z)]=0\,,
𝐑m±(v)𝐋n±(z)=θm,n±(z/v)𝐋n±(z)𝐑m±(v),{\bf{R}}_{m}^{\pm}(v){\bf{L}}_{n}^{\pm}(z)=\theta^{\pm}_{m,n}(z/v){\bf{L}}_{n}^{\pm}(z){\bf{R}}_{m}^{\pm}(v)\,,

where we have set

θm,n±(z)=r=1|m|s=1|n|θ±(zt±2(12s)sign(n)2(12r)sign(m))sign(mn).\theta^{\pm}_{m,n}(z)=\prod_{r=1}^{|m|}\prod_{s=1}^{|n|}\theta^{\pm}(zt^{\pm 2(1-2s){\rm sign}(n)\mp 2(1-2r){\rm sign}(m)})^{{\rm sign}(mn)}\,.

Furthermore, we have, for every m×m\in{\mathbb{Z}}^{\times},

Δ(𝐋m±(z))=𝐋m±(zγ(2)1/2)𝐋m±(zγ(1)1/2),\Delta({\bf{L}}_{m}^{\pm}(z))={\bf{L}}_{m}^{\pm}(z\gamma^{1/2}_{(2)})\otimes{\bf{L}}_{m}^{\pm}(z\gamma^{-1/2}_{(1)})\,,
Δ(𝐑m±(z))=𝐑m±(zγ(2)1/2)𝐑m±(zγ(1)1/2).\Delta({\bf{R}}_{m}^{\pm}(z))={\bf{R}}_{m}^{\pm}(z\gamma^{-1/2}_{(2)})\otimes{\bf{R}}_{m}^{\pm}(z\gamma^{1/2}_{(1)})\,.

It is worth emphasizing that the 𝐋m±(z){\bf{L}}_{m}^{\pm}(z) are not indepedent for all values of m×m\in{\mathbb{Z}}^{\times} and that neither are the 𝐑m±(z){\bf{R}}_{m}^{\pm}(z). Indeed, we have

Lemma 5.8.

For every m,n×m,n\in{\mathbb{Z}}^{\times},

𝐋m±(z)1=𝐋m±(zt±4m){\bf{L}}_{-m}^{\pm}(z)^{-1}={\bf{L}}_{m}^{\pm}(zt^{\pm 4m}) (5.6)
𝐑m±(z)1=𝐑m±(zt±4m){\bf{R}}_{-m}^{\pm}(z)^{-1}={\bf{R}}_{m}^{\pm}(zt^{\pm 4m}) (5.7)
𝐋m±(zt±4m)𝐋n±(z)=𝐋m+n±(zt±4m){\bf{L}}_{m}^{\pm}(zt^{\pm 4m}){\bf{L}}_{n}^{\pm}(z)={\bf{L}}_{m+n}^{\pm}(zt^{\pm 4m}) (5.8)
𝐑m±(zt±4m)𝐑n±(z)=𝐑m+n±(zt±4m){\bf{R}}_{m}^{\pm}(zt^{\pm 4m}){\bf{R}}_{n}^{\pm}(z)={\bf{R}}_{m+n}^{\pm}(zt^{\pm 4m}) (5.9)

5.4. The algebra t\mathcal{B}_{t}

Remember the Hopf algebra U˘q(L𝔞1)\breve{\mathrm{U}}_{q}(\mathrm{L}\mathfrak{a}_{1}) from definition 3.20. It has an invertible antipode and we denote by U˘q(L𝔞1)cop\breve{\mathrm{U}}_{q}(\mathrm{L}\mathfrak{a}_{1})^{\footnotesize\mathrm{cop}} its coopposite Hopf algebra.

Proposition 5.9.

The quantum Heisenberg algebra t+\mathcal{H}_{t}^{+} (resp. t\mathcal{H}_{t}^{-}) is a left U˘t2(L𝔞1)\breve{\mathrm{U}}_{t^{2}}(\mathrm{L}\mathfrak{a}_{1})-module algebra (resp. a left U˘t2(L𝔞1)cop\breve{\mathrm{U}}_{t^{2}}(\mathrm{L}\mathfrak{a}_{1})^{\footnotesize\mathrm{cop}}-module algebra) with

𝐤1ε(v)γ1/2=𝐤1ε(v)γ1/2=0,{\bf k}_{1}^{\varepsilon}(v)\triangleright\gamma^{1/2}={\bf k}_{1}^{\varepsilon}(v)\triangleright\gamma^{-1/2}=0\,,
𝐤1ε(v)𝐋±(z)=λε,±(v,z)𝐋±(z),𝐤1ε(v)𝐑±(z)=ρε,±(v,z)𝐑±(z),{\bf k}_{1}^{\varepsilon}(v)\triangleright{\bf{L}}^{\pm}(z)=\lambda^{\varepsilon,\pm}(v,z){\bf{L}}^{\pm}(z)\,,\quad{\bf k}_{1}^{\varepsilon}(v)\triangleright{\bf{R}}^{\pm}(z)=\rho^{\varepsilon,\pm}(v,z){\bf{R}}^{\pm}(z)\,,
𝐱1ε(v)γ1/2=𝐱1ε(v)γ1/2=𝐱1ε(v)𝐋±(z)=𝐱1ε(v)𝐑±(z)=0,{\bf x}_{1}^{\varepsilon}(v)\triangleright\gamma^{1/2}={\bf x}_{1}^{\varepsilon}(v)\triangleright\gamma^{-1/2}={\bf x}_{1}^{\varepsilon}(v)\triangleright{\bf{L}}^{\pm}(z)={\bf x}_{1}^{\varepsilon}(v)\triangleright{\bf{R}}^{\pm}(z)=0\,,

for ε{,+}\varepsilon\in\{-,+\} and where we have set

λε,±(v,z)=(t22vt2±2zvt±4z)|z/v|ε11andρε,±(v,z)=(t±4vzt2±2vt(2±2)z)|z/v|ε11.\lambda^{\varepsilon,\pm}(v,z)=\left(\frac{t^{2\mp 2}v-t^{-2\pm 2}z}{v-t^{\pm 4}z}\right)_{|z/v|^{\varepsilon 1}\ll 1}\qquad\mbox{and}\qquad\rho^{\varepsilon,\pm}(v,z)=\left(\frac{t^{\pm 4}v-z}{t^{2\pm 2}v-t^{-(2\pm 2)}z}\right)_{|z/v|^{\varepsilon 1}\ll 1}\,.
Proof.

One readily checks the compatibility with the defining relations of t±\mathcal{H}_{t}^{\pm} and U˘t2(L𝔞1)\breve{\mathrm{U}}_{t^{2}}(\mathrm{L}\mathfrak{a}_{1}). ∎

Proposition 5.10.

For every m×m\in{\mathbb{Z}}^{\times} and every ε{,+}\varepsilon\in\{-,+\}, we have

𝐤1ε(v)𝐋m±(z)=λmε,±(v,z)𝐋m±(z),𝐤1ε(v)𝐑m±(z)=ρmε,±(v,z)𝐑m±(z),{\bf k}_{1}^{\varepsilon}(v)\triangleright{\bf{L}}_{m}^{\pm}(z)=\lambda^{\varepsilon,\pm}_{m}(v,z){\bf{L}}_{m}^{\pm}(z)\,,\qquad{\bf k}_{1}^{\varepsilon}(v)\triangleright{\bf{R}}_{m}^{\pm}(z)=\rho^{\varepsilon,\pm}_{m}(v,z){\bf{R}}_{m}^{\pm}(z)\,,
𝐱1ε(v)𝐋m±(z)=𝐱1ε(v)𝐑m±(z)=0,{\bf x}_{1}^{\varepsilon}(v)\triangleright{\bf{L}}_{m}^{\pm}(z)={\bf x}_{1}^{\varepsilon}(v)\triangleright{\bf{R}}_{m}^{\pm}(z)=0\,,

where we have set

λmε,±(v,z)=(t2(11)mvt±42(1±1)mzvt±4z)|z/v|ε11\lambda^{\varepsilon,\pm}_{m}(v,z)=\left(\frac{t^{-2(1\mp 1)m}v-t^{\pm 4-2(1\pm 1)m}z}{v-t^{\pm 4}z}\right)_{|z/v|^{\varepsilon 1}\ll 1}

and

ρmε,±(v,z)=(t±4vzt±42(11)mvt2(1±1)mz)|z/v|ε11.\rho^{\varepsilon,\pm}_{m}(v,z)=\left(\frac{t^{\pm 4}v-z}{t^{\pm 4-2(1\mp 1)m}v-t^{-2(1\pm 1)m}z}\right)_{|z/v|^{\varepsilon 1}\ll 1}\,.
Proof.

This is readily checked making use of definition 5.6, of the Hopf algebraic structures of U˘t2(L𝔞1)\breve{\mathrm{U}}_{t^{2}}(\mathrm{L}\mathfrak{a}_{1}) and U˘t2(L𝔞1)cop\breve{\mathrm{U}}_{t^{2}}(\mathrm{L}\mathfrak{a}_{1})^{\footnotesize\mathrm{cop}}, of the U˘t2(L𝔞1)\breve{\mathrm{U}}_{t^{2}}(\mathrm{L}\mathfrak{a}_{1})-module algebra structures of t+\mathcal{H}_{t}^{+} and of the U˘t2(L𝔞1)cop\breve{\mathrm{U}}_{t^{2}}(\mathrm{L}\mathfrak{a}_{1})^{\footnotesize\mathrm{cop}}-module algebra structure of t\mathcal{H}_{t}^{-}. ∎

Definition-Proposition 5.11.

We denote by t+U˘t2(L𝔞1)copt\mathcal{H}_{t}^{+}\rtimes\breve{\mathrm{U}}_{t^{2}}(\mathrm{L}\mathfrak{a}_{1})\stackrel{{\scriptstyle{\footnotesize\mathrm{cop}}}}{{\ltimes}}\mathcal{H}_{t}^{-} the associative 𝔽\mathbb{F}-algebra obtained by endowing t+U˘t2(L𝔞1)t\mathcal{H}_{t}^{+}\otimes\breve{\mathrm{U}}_{t^{2}}(\mathrm{L}\mathfrak{a}_{1})\otimes\mathcal{H}_{t}^{-} with the multiplication given by setting, for every h+,h+t+h_{+},h_{+}^{\prime}\in\mathcal{H}_{t}^{+}, every h,hth_{-},h_{-}^{\prime}\in\mathcal{H}_{t}^{-} and every x,xU˘t2(L𝔞1)x,x^{\prime}\in\breve{\mathrm{U}}_{t^{2}}(\mathrm{L}\mathfrak{a}_{1}),

(h+xh).(h+xh)=h+(x(1)h+)x(2)xh(x(3)h),\left(h_{+}\otimes x\otimes h_{-}\right).\left(h_{+}^{\prime}\otimes x^{\prime}\otimes h_{-}^{\prime}\right)=\sum h_{+}\left(x_{(1)}\triangleright h_{+}^{\prime}\right)\otimes x_{(2)}x^{\prime}\otimes h_{-}\left(x_{(3)}\triangleright h_{-}^{\prime}\right)\,,

– see proposition 5.10 for the definition of the U˘t2(L𝔞1)\breve{\mathrm{U}}_{t^{2}}(\mathrm{L}\mathfrak{a}_{1})-module algebra structure of t+\mathcal{H}_{t}^{+} and of the U˘t2(L𝔞1)cop\breve{\mathrm{U}}_{t^{2}}(\mathrm{L}\mathfrak{a}_{1})^{\footnotesize\mathrm{cop}}-module algebra structure of t\mathcal{H}_{t}^{-}. In that algebra, {γ1/2t,γ1/2t1}\{\gamma^{1/2}-t,\gamma^{-1/2}-t^{-1}\} generates a left ideal. The latter is actually a two-sided ideal since γ±1/2\gamma^{\pm 1/2} is central and, denoting it by (γ1/2t)(\gamma^{1/2}-t), we can set ˘t=t+U˘t2(L𝔞1)copt/(γ1/2t)\breve{\mathcal{B}}_{t}=\mathcal{H}_{t}^{+}\rtimes\breve{\mathrm{U}}_{t^{2}}(\mathrm{L}\mathfrak{a}_{1})\stackrel{{\scriptstyle{\footnotesize\mathrm{cop}}}}{{\ltimes}}\mathcal{H}_{t}^{-}/(\gamma^{1/2}-t).

Proof.

Making use of the coassociativity of the comultiplication Δ\Delta, it is very easy to prove that, with the above defined multiplication, t+U˘t2(L𝔞1)copt\mathcal{H}_{t}^{+}\rtimes\breve{\mathrm{U}}_{t^{2}}(\mathrm{L}\mathfrak{a}_{1})\stackrel{{\scriptstyle{\footnotesize\mathrm{cop}}}}{{\ltimes}}\mathcal{H}_{t}^{-} is actually an associative 𝔽\mathbb{F}-algebra. ∎

Proposition 5.12.

Setting x1x1x\mapsto 1\otimes x\otimes 1, for every xU˘t2(L𝔞1)x\in\breve{\mathrm{U}}_{t^{2}}(\mathrm{L}\mathfrak{a}_{1}), defines a unique injective 𝕂(t)\mathbb{K}(t)-algebra homomorphism U˘t2(L𝔞1)˘t\breve{\mathrm{U}}_{t^{2}}(\mathrm{L}\mathfrak{a}_{1})\hookrightarrow\breve{\mathcal{B}}_{t}. Similarly, hh11h\mapsto h\otimes 1\otimes 1 and h11hh\mapsto 1\otimes 1\otimes h define unique injective 𝕂(t)\mathbb{K}(t)-algebra homomorphisms t+˘t\mathcal{H}_{t}^{+}\hookrightarrow\breve{\mathcal{B}}_{t} and t˘t\mathcal{H}_{t}^{-}\hookrightarrow\breve{\mathcal{B}}_{t} respectively.

Remark 5.13.

We shall subsequently identify U˘t2(L𝔞1)\breve{\mathrm{U}}_{t^{2}}(\mathrm{L}\mathfrak{a}_{1}), t+\mathcal{H}_{t}^{+} and t\mathcal{H}_{t}^{-} with their respective images in ˘t\breve{\mathcal{B}}_{t} under the injective algebra homomorphisms of the above proposition.

Proposition 5.14.

In ˘t\breve{\mathcal{B}}_{t}, for every m×m\in{\mathbb{Z}}^{\times} and every ε{,+}\varepsilon\in\{-,+\}, we have the following relations

(vt±4z)(vt±4(1+mn)z)𝐑m±(v)𝐋n±(z)=(vt±4(1n)z)(vt±4(1+m)z)𝐋n±(z)𝐑m±(v),(v-t^{\pm 4}z)(v-t^{\pm 4(1+m-n)}z){\bf{R}}_{m}^{\pm}(v){\bf{L}}_{n}^{\pm}(z)=(v-t^{\pm 4(1-n)}z)(v-t^{\pm 4(1+m)}z){\bf{L}}_{n}^{\pm}(z){\bf{R}}_{m}^{\pm}(v)\,, (5.10)
(zt±4v)𝐤1ε(v)𝐋m±(z)=(zt±42(1±1)mvt2(11)m)𝐋m±(z)𝐤1ε(v),(zt^{\pm 4}-v){\bf k}_{1}^{\varepsilon}(v){\bf{L}}_{m}^{\pm}(z)=(zt^{\pm 4-2(1\pm 1)m}-vt^{-2(1\mp 1)m}){\bf{L}}_{m}^{\pm}(z){\bf k}_{1}^{\varepsilon}(v)\,, (5.11)
(zt±4v)𝐱1±(v)𝐋m±(z)=(zt±42(1±1)mvt2(11)m)𝐋m±(z)𝐱1±(v),(zt^{\pm 4}-v){\bf x}_{1}^{\pm}(v){\bf{L}}_{m}^{\pm}(z)=(zt^{\pm 4-2(1\pm 1)m}-vt^{-2(1\mp 1)m}){\bf{L}}_{m}^{\pm}(z){\bf x}_{1}^{\pm}(v)\,, (5.12)
𝐱1±(v)𝐋m(z)=𝐋m(z)𝐱1±(v),{\bf x}_{1}^{\pm}(v){\bf{L}}_{m}^{\mp}(z)={\bf{L}}_{m}^{\mp}(z){\bf x}_{1}^{\pm}(v)\,, (5.13)
(zt2(1±1)mvt±42(11)m)𝐤1ε(v)𝐑m±(z)=(zvt±4)𝐑m±(z)𝐤1ε(v),(zt^{-2(1\pm 1)m}-vt^{\pm 4-2(1\mp 1)m}){\bf k}_{1}^{\varepsilon}(v){\bf{R}}_{m}^{\pm}(z)=(z-vt^{\pm 4}){\bf{R}}_{m}^{\pm}(z){\bf k}_{1}^{\varepsilon}(v)\,, (5.14)
(zt2(1±1)mvt±42(11)m)𝐱1±(v)𝐑m±(z)=(zvt±4)𝐑m±(z)𝐱1±(v),(zt^{-2(1\pm 1)m}-vt^{\pm 4-2(1\mp 1)m}){\bf x}_{1}^{\pm}(v){\bf{R}}_{m}^{\pm}(z)=(z-vt^{\pm 4}){\bf{R}}_{m}^{\pm}(z){\bf x}_{1}^{\pm}(v)\,, (5.15)
𝐱1±(v)𝐑m(z)=𝐑m(z)𝐱1±(v),{\bf x}_{1}^{\pm}(v){\bf{R}}_{m}^{\mp}(z)={\bf{R}}_{m}^{\mp}(z){\bf x}_{1}^{\pm}(v)\,, (5.16)
Proof.

In order to prove (5.10), it suffices to check that

θ±(z)=((1z)(1t±8z)(1t±4z)2)|z|1mod\theta^{\pm}(z)=\left(\frac{(1-z)(1-t^{\pm 8}z)}{(1-t^{\pm 4}z)^{2}}\right)_{|z|\ll 1}\mod\mathcal{I}

and that subsequently, for every m,n×m,n\in{\mathbb{Z}}^{\times},

θm,n±(z)=((1t±4(1n)z)(1t±4(1+m)z)(1t±4z)(1t±4(1+mn)z))|z|1mod.\theta^{\pm}_{m,n}(z)=\left(\frac{(1-t^{\pm 4(1-n)}z)(1-t^{\pm 4(1+m)}z)}{(1-t^{\pm 4}z)(1-t^{\pm 4(1+m-n)}z)}\right)_{|z|\ll 1}\mod\mathcal{I}\,.

As for the equations (5.115.16), they immediately follow from the definitions of t+U˘t2(L𝔞1)copt\mathcal{H}_{t}^{+}\rtimes\breve{\mathrm{U}}_{t^{2}}(\mathrm{L}\mathfrak{a}_{1})\stackrel{{\scriptstyle{\footnotesize\mathrm{cop}}}}{{\ltimes}}\mathcal{H}_{t}^{-} and of the actions \triangleright of U˘t2(L𝔞1)\breve{\mathrm{U}}_{t^{2}}(\mathrm{L}\mathfrak{a}_{1}) on t+\mathcal{H}_{t}^{+} and t\mathcal{H}_{t}^{-} – see proposiiton 5.10. E.g., we have, by definition,

𝐱1+(v)𝐋m+(z)\displaystyle{\bf x}_{1}^{+}(v){\bf{L}}_{m}^{+}(z) =\displaystyle= (1𝐱1+(v)1)(𝐋m+(z)11)=(𝐱1+(v)(1)𝐋m+(z))𝐱1+(v)(2)(𝐱1+(v)(3)1)\displaystyle\left(1\otimes{\bf x}_{1}^{+}(v)\otimes 1\right)\left({\bf{L}}_{m}^{+}(z)\otimes 1\otimes 1\right)=\sum\left({\bf x}_{1}^{+}(v)_{(1)}\triangleright{\bf{L}}_{m}^{+}(z)\right)\otimes{\bf x}_{1}^{+}(v)_{(2)}\otimes\left({\bf x}_{1}^{+}(v)_{(3)}\triangleright 1\right)
=\displaystyle= (𝐱1+(v)𝐋m+(z))11+(𝐤1(v)𝐋m+(z))𝐱1+(v)1\displaystyle\left({\bf x}_{1}^{+}(v)\triangleright{\bf{L}}_{m}^{+}(z)\right)\otimes 1\otimes 1+\left({\bf k}_{1}^{-}(v)\triangleright{\bf{L}}_{m}^{+}(z)\right)\otimes{\bf x}_{1}^{+}(v)\otimes 1
+(𝐤1(v)𝐋m+(z))𝐤1(v)ε(𝐱1+(v))1\displaystyle+\left({\bf k}_{1}^{-}(v)\triangleright{\bf{L}}_{m}^{+}(z)\right)\otimes{\bf k}_{1}^{-}(v)\otimes\varepsilon({\bf x}_{1}^{+}(v))1
=\displaystyle= λm+(v,z)𝐋m+(z)𝐱1+(v),\displaystyle\lambda^{+}_{m}(v,z){\bf{L}}_{m}^{+}(z){\bf x}_{1}^{+}(v)\,,

and

𝐱1+(v)𝐋m(z)\displaystyle{\bf x}_{1}^{+}(v){\bf{L}}_{m}^{-}(z) =\displaystyle= (1𝐱1+(v)1)(11𝐋m(z))=(𝐱1+(v)(1)1)𝐱1+(v)(2)(𝐱1+(v)(3)𝐋m(z))\displaystyle\left(1\otimes{\bf x}_{1}^{+}(v)\otimes 1\right)\left(1\otimes 1\otimes{\bf{L}}_{m}^{-}(z)\right)=\sum\left({\bf x}_{1}^{+}(v)_{(1)}\triangleright 1\right)\otimes{\bf x}_{1}^{+}(v)_{(2)}\otimes\left({\bf x}_{1}^{+}(v)_{(3)}\triangleright{\bf{L}}_{m}^{-}(z)\right)
=\displaystyle= ε(𝐱1+(v))11(1𝐋m(z))+1𝐱1+(v)(1𝐋m(z))+1(𝐱1+(v)𝐋m(z))𝐤1(v)\displaystyle\varepsilon({\bf x}_{1}^{+}(v))1\otimes 1\otimes\left(1\triangleright{\bf{L}}_{m}^{-}(z)\right)+1\otimes{\bf x}_{1}^{+}(v)\otimes\left(1\triangleright{\bf{L}}_{m}^{-}(z)\right)+1\otimes\left({\bf x}_{1}^{+}(v)\triangleright{\bf{L}}_{m}^{-}(z)\right)\otimes{\bf k}_{1}^{-}(v)
=\displaystyle= 𝐋m(z)𝐱1+(v),\displaystyle{\bf{L}}_{m}^{-}(z){\bf x}_{1}^{+}(v)\,,

as claimed. ∎

Remark 5.15.

In addition to the above, we obviously have in ˘t\breve{\mathcal{B}}_{t}, all the relations of its subalgebra U˘t2(L𝔞1)\breve{\mathrm{U}}_{t^{2}}(\mathrm{L}\mathfrak{a}_{1}) and all the relations of its subalgebras t+\mathcal{H}_{t}^{+} and t\mathcal{H}_{t}^{-} modulo (γ1/2t)(\gamma^{1/2}-t).

Definition-Proposition 5.16.

Let \mathcal{I} be the left ideal of ˘t\breve{\mathcal{B}}_{t} generated by

{resz1,z2z11+mz21+n([𝐱1+(z1),𝐱1(z2)]1qq1δ(z1z2)[𝐤1+(z1)𝐤1(z1)]):m,n}.\left\{\operatorname*{res}_{z_{1},z_{2}}z_{1}^{-1+m}z_{2}^{-1+n}\left([{\bf x}_{1}^{+}(z_{1}),{\bf x}_{1}^{-}(z_{2})]-\frac{1}{q-q^{-1}}\delta\left(\frac{z_{1}}{z_{2}}\right)\left[{\bf k}_{1}^{+}(z_{1})-{\bf k}_{1}^{-}(z_{1})\right]\right):m,n\in{\mathbb{Z}}\right\}\,.

Then .˘t\mathcal{I}.\breve{\mathcal{B}}_{t}\subseteq\mathcal{I} and \mathcal{I} is a two-sided ideal of ˘t\breve{\mathcal{B}}_{t}. Set t=˘t/\mathcal{B}_{t}=\breve{\mathcal{B}}_{t}/\mathcal{I}.

Proof.

In order to prove that .˘t\mathcal{I}.\breve{\mathcal{B}}_{t}\subseteq\mathcal{I}, it suffices to prove that, for any x˘tx\in\breve{\mathcal{B}}_{t},

([𝐱1+(z1),𝐱1(z2)]1qq1δ(z1z2)[𝐤1+(z1)𝐤1(z1)])x.\left([{\bf x}_{1}^{+}(z_{1}),{\bf x}_{1}^{-}(z_{2})]-\frac{1}{q-q^{-1}}\delta\left(\frac{z_{1}}{z_{2}}\right)\left[{\bf k}_{1}^{+}(z_{1})-{\bf k}_{1}^{-}(z_{1})\right]\right)x\in\mathcal{I}\,.

The latter easily follows by inspection, making use of the relevant relations in ˘t\breve{\mathcal{B}}_{t} and U˘t2(L𝔞1)\breve{\mathrm{U}}_{t^{2}}(\mathrm{L}\mathfrak{a}_{1}), namely (5.11 - 5.16) and (2.3 - 2.7). ∎

Remark 5.17.

Thus, in addition to the relations in ˘t\breve{\mathcal{B}}_{t}, we have, in t\mathcal{B}_{t},

[𝐱1+(z1),𝐱1(z2)]=1qq1δ(z1z2)[𝐤1+(z1)𝐤1(z1)].[{\bf x}_{1}^{+}(z_{1}),{\bf x}_{1}^{-}(z_{2})]=\frac{1}{q-q^{-1}}\delta\left(\frac{z_{1}}{z_{2}}\right)\left[{\bf k}_{1}^{+}(z_{1})-{\bf k}_{1}^{-}(z_{1})\right]\,.

5.5. The completion ^t\widehat{\mathcal{B}}_{t} of t\mathcal{B}_{t}

Making use of its natural {\mathbb{Z}}-grading, we endow t\mathcal{B}_{t} with a topology, in the same way as we endowed U¨q(𝔞1)\ddot{\mathrm{U}}_{q}(\mathfrak{a}_{1}) with its topology in section 3. We denote by ^t\widehat{\mathcal{B}}_{t} the corresponding completion. Consequently, its subalgebra t±\mathcal{H}_{t}^{\pm} inherits a topology and we denote by ^t±\widehat{\mathcal{H}}_{t}^{\pm} its corresponding completion in that topology.

5.6. The shift factors

Definition 5.18.

In ^t±\widehat{\mathcal{H}}_{t}^{\pm}, we define,

𝐇±(z)=𝐋±(z)𝐑±(z).{\bf{H}}^{\pm}(z)={\bf{L}}^{\pm}(z){\bf{R}}^{\pm}(z)\,.

Similarly, for every m×m\in{\mathbb{Z}}^{\times}, we let

𝐇m±(z)=p=1|m|𝐇±(zt±2(12p)sign(m)+2)±sign(m).{\bf{H}}_{m}^{\pm}(z)=\prod_{p=1}^{|m|}{\bf{H}}^{\pm}(zt^{\pm 2(1-2p){\rm sign}(m)+2})^{\pm{\rm sign}(m)}\,.
Lemma 5.19.

For every m,n×m,n\in{\mathbb{Z}}^{\times},

𝐇m±(z)1=𝐇m±(zt±4m){\bf{H}}_{-m}^{\pm}(z)^{-1}={\bf{H}}_{m}^{\pm}(zt^{\pm 4m}) (5.17)
𝐇m±(zt±4m)𝐇n±(z)=𝐇m+n±(zt±4m){\bf{H}}_{m}^{\pm}(zt^{\pm 4m}){\bf{H}}_{n}^{\pm}(z)={\bf{H}}_{m+n}^{\pm}(zt^{\pm 4m}) (5.18)
Proof.

Follows directly from the definition in the same way as lemma 5.8. ∎

Proposition 5.20.

In ^t±\widehat{\mathcal{H}}_{t}^{\pm}, we have, for every m,n×m,n\in{\mathbb{Z}}^{\times},

𝐇m±(z)𝐇n±(v)=Θm,n±(z,v)𝐇n±(v)𝐇m±(z),{\bf{H}}_{m}^{\pm}(z){\bf{H}}_{n}^{\pm}(v)=\Theta_{m,n}^{\pm}(z,v){\bf{H}}_{n}^{\pm}(v){\bf{H}}_{m}^{\pm}(z)\,,

where

Θm,n±(z,v)=(vt±4z)(vt±4(1+nm)z)(t±4(1n)vz)(t±4(1+m)vz)(zt±4v)(zt±4(1+mn)v)(t±4(1m)zv)(t±4(1+n)zv).\Theta_{m,n}^{\pm}(z,v)=\frac{(v-t^{\pm 4}z)(v-t^{\pm 4(1+n-m)}z)(t^{\pm 4(1-n)}v-z)(t^{\pm 4(1+m)}v-z)}{(z-t^{\pm 4}v)(z-t^{\pm 4(1+m-n)}v)(t^{\pm 4(1-m)}z-v)(t^{\pm 4(1+n)}z-v)}\,.
Proof.

In view of definition 5.18 and of the relations in proposition 5.7, it is clear that commuting 𝐇m±(z){\bf{H}}_{m}^{\pm}(z) and 𝐇n±(v){\bf{H}}_{n}^{\pm}(v) amounts to commuting, on one hand 𝐋m±(z){\bf{L}}_{m}^{\pm}(z) and 𝐑n±(v){\bf{R}}_{n}^{\pm}(v) and, on the other hand, 𝐑m±(z){\bf{R}}_{m}^{\pm}(z) and 𝐋n±(v){\bf{L}}_{n}^{\pm}(v). The result follows. ∎

Proposition 5.21.

For every m×m\in{\mathbb{Z}}^{\times} and every ε{,+}\varepsilon\in\{-,+\}, we have

𝐤1ε(v)𝐇±m±(z)=Hm,zε(v)±1𝐇±m±(z),{\bf k}_{1}^{\varepsilon}(v)\triangleright{\bf{H}}_{\pm m}^{\pm}(z)=H_{m,z}^{\varepsilon}(v)^{\pm 1}{\bf{H}}_{\pm m}^{\pm}(z)\,, (5.19)
𝐱1ε(v)𝐇m±(z)=0.{\bf x}_{1}^{\varepsilon}(v)\triangleright{\bf{H}}_{m}^{\pm}(z)=0\,. (5.20)
Proof.

The left U˘t2(L𝔞1)\breve{\mathrm{U}}_{t^{2}}(\mathrm{L}\mathfrak{a}_{1})-module algebra (resp. a left U˘t2(L𝔞1)cop\breve{\mathrm{U}}_{t^{2}}(\mathrm{L}\mathfrak{a}_{1})^{\footnotesize\mathrm{cop}}-module algebra) structure of t+\mathcal{H}_{t}^{+} (resp. t\mathcal{H}_{t}^{-}) – see proposition 5.9 – is extended by continuity to ^t+\widehat{\mathcal{H}}_{t}^{+} (resp. ^t\widehat{\mathcal{H}}_{t}^{-}) Then, it suffices to check that, for every m×m\in{\mathbb{Z}}^{\times} and every ε{,+}\varepsilon\in\{-,+\},

𝐤1ε(v)𝐇±m±(z)=λ±mε,±(v,z)ρ±mε,±(v,z)𝐇±m±(z),{\bf k}_{1}^{\varepsilon}(v)\triangleright{\bf{H}}_{\pm m}^{\pm}(z)=\lambda^{\varepsilon,\pm}_{\pm m}(v,z)\rho^{\varepsilon,\pm}_{\pm m}(v,z){\bf{H}}_{\pm m}^{\pm}(z)\,,

and that

Hm,zε(v)±1=λ±mε,±(v,z)ρ±mε,±(v,z).H_{m,z}^{\varepsilon}(v)^{\pm 1}=\lambda^{\varepsilon,\pm}_{\pm m}(v,z)\rho^{\varepsilon,\pm}_{\pm m}(v,z)\,.

Corollary 5.22.

For every mm\in{\mathbb{Z}}, every pp\in{\mathbb{N}} and every ε{,+}\varepsilon\in\{-,+\}, we have

k=1p+1[𝐤1ε(vk)Hm,zε(vk)±1]p𝐇±m±(z)=0,\prod_{k=1}^{p+1}\left[{\bf k}_{1}^{\varepsilon}(v_{k})-H_{m,z}^{\varepsilon}(v_{k})^{\pm 1}\right]\triangleright\partial^{p}{\bf{H}}_{\pm m}^{\pm}(z)=0\,,
Proof.

It suffices to differentiate (5.19) pp times with respect to zz to obtain

[𝐤1ε(v)Hm,zε(v)±1id]p𝐇±m±(z)=k=0p1(pk+1)k+1zk+1[Hm,zε(v)±1]pk1𝐇±m±(z).\left[{\bf k}_{1}^{\varepsilon}(v)-H_{m,z}^{\varepsilon}(v)^{\pm 1}\,{\mathrm{id}}\right]\triangleright\partial^{p}{\bf{H}}_{\pm m}^{\pm}(z)=\sum_{k=0}^{p-1}{p\choose{k+1}}\frac{\partial^{k+1}}{\partial z^{k+1}}\left[H_{m,z}^{\varepsilon}(v)^{\pm 1}\right]\partial^{p-k-1}{\bf{H}}_{\pm m}^{\pm}(z)\,.

The claim immediately follows. ∎

Proposition 5.23.

In ^t\widehat{\mathcal{B}}_{t}, we have, for every m,n×m,n\in{\mathbb{Z}}^{\times},

𝐇m+(z)𝐇n(v)=𝐇n(v)𝐇m+(z),{\bf{H}}_{m}^{+}(z){\bf{H}}_{n}^{-}(v)={\bf{H}}_{n}^{-}(v){\bf{H}}_{m}^{+}(z)\,,
(zt±4v)(zt2(1±1)mvt±42(11)m)𝐤1ε(v)𝐇m±(z)=(zvt±4)(zt±42(1±1)mvt2(11)m)𝐇m±(z)𝐤1ε(v),(zt^{\pm 4}-v)(zt^{-2(1\pm 1)m}-vt^{\pm 4-2(1\mp 1)m}){\bf k}_{1}^{\varepsilon}(v){\bf{H}}_{m}^{\pm}(z)=(z-vt^{\pm 4})(zt^{\pm 4-2(1\pm 1)m}-vt^{-2(1\mp 1)m}){\bf{H}}_{m}^{\pm}(z){\bf k}_{1}^{\varepsilon}(v)\,,
(zt±4v)(zt2(1±1)mvt±42(11)m)𝐱1±(v)𝐇m±(z)=(zvt±4)(zt±42(1±1)mvt2(11)m)𝐇m±(z)𝐱1±(v),(zt^{\pm 4}-v)(zt^{-2(1\pm 1)m}-vt^{\pm 4-2(1\mp 1)m}){\bf x}_{1}^{\pm}(v){\bf{H}}_{m}^{\pm}(z)=(z-vt^{\pm 4})(zt^{\pm 4-2(1\pm 1)m}-vt^{-2(1\mp 1)m}){\bf{H}}_{m}^{\pm}(z){\bf x}_{1}^{\pm}(v)\,,
𝐱1±(v)𝐇m(z)=𝐇m(z)𝐱1±(v).{\bf x}_{1}^{\pm}(v){\bf{H}}_{m}^{\mp}(z)={\bf{H}}_{m}^{\mp}(z){\bf x}_{1}^{\pm}(v)\,.
Proof.

This follows immediately from [𝐋±(z),𝐋(v)]=[𝐋±(z),𝐑(v)]=[𝐑±(z),𝐑(v)]=0[{\bf{L}}^{\pm}(z),{\bf{L}}^{\mp}(v)]=[{\bf{L}}^{\pm}(z),{\bf{R}}^{\mp}(v)]=[{\bf{R}}^{\pm}(z),{\bf{R}}^{\mp}(v)]=0. ∎

5.7. The evaluation algebra 𝒜^t\widehat{\mathcal{A}}_{t}

Definition-Proposition 5.24.

Let 𝒥\mathcal{J} denote the closed left ideal of ^t\widehat{\mathcal{B}}_{t} generated by

{reszzm[𝐇(z)(𝐤1+(zt4)𝐤1(zt4))𝐇+(z)1(𝐤1+(z)𝐤1(z))]:m}.\left\{\operatorname*{res}_{z}z^{m}\left[{\bf{H}}^{-}(z)\left({\bf k}_{1}^{+}(zt^{-4})-{\bf k}_{1}^{-}(zt^{-4})\right)-{\bf{H}}^{+}(z)^{-1}\left({\bf k}_{1}^{+}(z)-{\bf k}_{1}^{-}(z)\right)\right]:m\in{\mathbb{Z}}\right\}\,. (5.21)

Then, 𝒥.^t𝒥\mathcal{J}.\widehat{\mathcal{B}}_{t}\subseteq\mathcal{J}, making 𝒥\mathcal{J} a closed two-sided ideal of ^t\widehat{\mathcal{B}}_{t}, and we let 𝒜^t=^t/𝒥\widehat{\mathcal{A}}_{t}=\widehat{\mathcal{B}}_{t}/\mathcal{J}.

Proof.

In order to prove that 𝒥.^t𝒥\mathcal{J}.\widehat{\mathcal{B}}_{t}\subseteq\mathcal{J}, it suffices to check that, for every x^tx\in\widehat{\mathcal{B}}_{t},

[𝐇(z)(𝐤1+(zt4)𝐤1(zt4))𝐇+(z)1(𝐤1+(z)𝐤1(z))]x𝒥.\left[{\bf{H}}^{-}(z)\left({\bf k}_{1}^{+}(zt^{-4})-{\bf k}_{1}^{-}(zt^{-4})\right)-{\bf{H}}^{+}(z)^{-1}\left({\bf k}_{1}^{+}(z)-{\bf k}_{1}^{-}(z)\right)\right]x\in\mathcal{J}\,.

The latter easily follows by inspection, making use of the relevant relations in ^t\widehat{\mathcal{B}}_{t}, namely (5.105.16) in proposition 5.14. ∎

Proposition 5.25.

For every mm\in{\mathbb{Z}}, the following relation holds in 𝒜^t\widehat{\mathcal{A}}_{t},

𝐇m(z)[𝐤1+(zt4m)𝐤1(zt4m)]=𝐇m+(z)1[𝐤1+(z)𝐤1(z)].{\bf{H}}_{-m}^{-}(z)\left[{\bf k}_{1}^{+}(zt^{-4m})-{\bf k}_{1}^{-}(zt^{-4m})\right]={\bf{H}}_{m}^{+}(z)^{-1}\left[{\bf k}_{1}^{+}(z)-{\bf k}_{1}^{-}(z)\right]\,. (5.22)
Proof.

We prove (5.22) for m×m\in{\mathbb{N}}^{\times} by induction. The case m=1m=1 corresponds to the vanishing of the generators of the ideal 𝒥\mathcal{J}, see (5.21). Assuming the result holds for some m×m\in{\mathbb{N}}^{\times}, we have

𝐇(m+1)(z)[𝐤1+(zt4(m+1))𝐤1(zt4(m+1))]\displaystyle{\bf{H}}_{-(m+1)}^{-}(z)\left[{\bf k}_{1}^{+}(zt^{-4(m+1)})-{\bf k}_{1}^{-}(zt^{-4(m+1)})\right] =\displaystyle= 𝐇(z)𝐇m(zt4)[𝐤1+(zt4(m+1))𝐤1(zt4(m+1))]\displaystyle{\bf{H}}^{-}(z){\bf{H}}_{-m}^{-}(zt^{-4})\left[{\bf k}_{1}^{+}(zt^{-4(m+1)})-{\bf k}_{1}^{-}(zt^{-4(m+1)})\right]
=\displaystyle= 𝐇(z)𝐇m+(zt4)1[𝐤1+(zt4)𝐤1(zt4)]\displaystyle{\bf{H}}^{-}(z){\bf{H}}_{m}^{+}(zt^{-4})^{-1}\left[{\bf k}_{1}^{+}(zt^{-4})-{\bf k}_{1}^{-}(zt^{-4})\right]
=\displaystyle= 𝐇m+(zt4)1𝐇(z)[𝐤1+(zt4)𝐤1(zt4)]\displaystyle{\bf{H}}_{m}^{+}(zt^{-4})^{-1}{\bf{H}}^{-}(z)\left[{\bf k}_{1}^{+}(zt^{-4})-{\bf k}_{1}^{-}(zt^{-4})\right]
=\displaystyle= 𝐇m+(zt4)1𝐇+(z)1[𝐤1+(z)𝐤1(z)]\displaystyle{\bf{H}}_{m}^{+}(zt^{-4})^{-1}{\bf{H}}^{+}(z)^{-1}\left[{\bf k}_{1}^{+}(z)-{\bf k}_{1}^{-}(z)\right]
=\displaystyle= 𝐇m+1+(z)1[𝐤1+(z)𝐤1(z)]\displaystyle{\bf{H}}_{m+1}^{+}(z)^{-1}\left[{\bf k}_{1}^{+}(z)-{\bf k}_{1}^{-}(z)\right]

The cases with m×m\in-{\mathbb{N}}^{\times} follow by rewriting the above equation for m×m\in{\mathbb{N}}^{\times} as

𝐇m+(z)[𝐤1+(zt4m)𝐤1(zt4m)]=𝐇m(z)1[𝐤1+(z)𝐤1(z)]{\bf{H}}_{m}^{+}(z)\left[{\bf k}_{1}^{+}(zt^{-4m})-{\bf k}_{1}^{-}(zt^{-4m})\right]={\bf{H}}_{-m}^{-}(z)^{-1}\left[{\bf k}_{1}^{+}(z)-{\bf k}_{1}^{-}(z)\right]

and making use of lemma 5.8. ∎

Remark 5.26.

In addition to the above relation, 𝒜^t\widehat{\mathcal{A}}_{t} obviously inherits the relations in ^t\widehat{\mathcal{B}}_{t} modulo 𝒥\mathcal{J}. In particular, all the relations in proposition 5.14 hold in 𝒜^t\widehat{\mathcal{A}}_{t}.

5.8. The evaluation homomorphism

Proposition 5.27.

There exists a unique continuous 𝕂\mathbb{K}-algebra homomorphism ev:U¨q(𝔞1)(1)𝒜^t\mathrm{ev}:\ddot{\mathrm{U}}_{q}(\mathfrak{a}_{1})^{(-1)}\rightarrow\widehat{\mathcal{A}}_{t} such that, for every m×m\in{\mathbb{N}}^{\times} and every nn\in{\mathbb{Z}},

ev(q)=t2,\mathrm{ev}(q)=t^{2}\,, (5.23)
ev(K1,0±(z))=𝐤1(z),\mathrm{ev}({\textbf{{K}}}^{\pm}_{1,0}(z))=-{\bf k}_{1}^{\mp}(z)\,, (5.24)
ev(K1,±m±(z))=𝐇±m±(z)[𝐤1±(zt4m)𝐤1(zt4m)],\mathrm{ev}({\textbf{{K}}}^{\pm}_{1,\pm m}(z))={\bf{H}}_{\pm m}^{\pm}(z)\left[{\bf k}_{1}^{\pm}(zt^{-4m})-{\bf k}_{1}^{\mp}(zt^{-4m})\right]\,, (5.25)
ev(X1,n±(z))=𝐇n±(z)𝐱1±(zt4n).\mathrm{ev}({\textbf{{X}}}_{1,n}^{\pm}(z))={\bf{H}}_{n}^{\pm}(z){\bf x}_{1}^{\pm}(zt^{\mp 4n})\,. (5.26)

We shall refer to ev\mathrm{ev} as the evaluation homomorphism. It is such that evι0=id\mathrm{ev}\circ\iota_{0}={\mathrm{id}} over Ut2(L𝔞1)\mathrm{U}_{t^{2}}(\mathrm{L}\mathfrak{a}_{1}).

Proof.

It suffices to check all the defining relations of U¨q(𝔞1)\ddot{\mathrm{U}}_{q}(\mathfrak{a}_{1}). E.g. we have, for every m,nm,n\in{\mathbb{Z}},

[ev(Xm+(v)),ev(Xn(z))]=1t2t2δ(vzt4(m+n))𝐇m+(v)𝐇n(z)[𝐤1+(vt4m)𝐤1(zt4n)].\left[\mathrm{ev}({\textbf{{X}}}_{m}^{+}(v)),\mathrm{ev}({\textbf{{X}}}_{n}^{-}(z))\right]=\frac{1}{t^{2}-t^{-2}}\delta\left(\frac{v}{zt^{4(m+n)}}\right){\bf{H}}_{m}^{+}(v){\bf{H}}_{n}^{-}(z)\left[{\bf k}_{1}^{+}(vt^{-4m})-{\bf k}_{1}^{-}(zt^{4n})\right]\,. (5.27)

If m+n=0m+n=0, making use of (5.22), we are done. Assuming that m+n>0m+n>0, lemma 5.8 allows us to write

𝐇m+(zt4(m+n))𝐇n(z)[𝐤1+(zt4n)𝐤1(zt4n)]\displaystyle{\bf{H}}_{m}^{+}(zt^{4(m+n)}){\bf{H}}_{n}^{-}(z)\left[{\bf k}_{1}^{+}(zt^{4n})-{\bf k}_{1}^{-}(zt^{4n})\right] =\displaystyle= 𝐇m+(zt4(m+n))𝐇n+(z)1[𝐤1+(z)𝐤1(z)]\displaystyle{\bf{H}}_{m}^{+}(zt^{4(m+n)}){\bf{H}}_{-n}^{+}(z)^{-1}\left[{\bf k}_{1}^{+}(z)-{\bf k}_{1}^{-}(z)\right]
=\displaystyle= 𝐇m+(zt4(m+n))𝐇n+(zt4n)[𝐤1+(z)𝐤1(z)]\displaystyle{\bf{H}}_{m}^{+}(zt^{4(m+n)}){\bf{H}}_{n}^{+}(zt^{4n})\left[{\bf k}_{1}^{+}(z)-{\bf k}_{1}^{-}(z)\right]
=\displaystyle= 𝐇m+n+(zt4(m+n))[𝐤1+(z)𝐤1(z)]\displaystyle{\bf{H}}_{m+n}^{+}(zt^{4(m+n)})\left[{\bf k}_{1}^{+}(z)-{\bf k}_{1}^{-}(z)\right]

so that, eventually,

[ev(Xm+(v)),ev(Xn(z))]=1t2t2δ(vzt4(m+n))ev(Km+n+(zt4(m+n))).\left[\mathrm{ev}({\textbf{{X}}}_{m}^{+}(v)),\mathrm{ev}({\textbf{{X}}}_{n}^{-}(z))\right]=\frac{1}{t^{2}-t^{-2}}\delta\left(\frac{v}{zt^{4(m+n)}}\right)\mathrm{ev}({\textbf{{K}}}^{+}_{m+n}(zt^{4(m+n)}))\,.

A similar argument proves the case m+n<0m+n<0. ∎

We have the following obvious

Corollary 5.28.

For every NN\in{\mathbb{N}} there exists an algebra homomorphism ev(N):U¨q(𝔞1)(N)𝒜^t\mathrm{ev}_{(N)}:\ddot{\mathrm{U}}_{q}(\mathfrak{a}_{1})^{(N)}\rightarrow\widehat{\mathcal{A}}_{t} making the following diagram commutative.

{\cdots}U¨q(𝔞1)(N){\ddot{\mathrm{U}}_{q}(\mathfrak{a}_{1})^{(N)}}U¨q(𝔞1)(N1){\ddot{\mathrm{U}}_{q}(\mathfrak{a}_{1})^{(N-1)}}{\cdots}U¨q(𝔞1)(1){\ddot{\mathrm{U}}_{q}(\mathfrak{a}_{1})^{(-1)}}𝒜^t{\widehat{\mathcal{A}}_{t}}ev(N)\scriptstyle{\mathrm{ev}_{(N)}}ev(N1)\scriptstyle{\mathrm{ev}_{(N-1)}}ev\scriptstyle{\mathrm{ev}}

We can furthermore define the algebra homomorphism ev():U¨q(𝔞1)𝒜^t\mathrm{ev}_{(\infty)}:\ddot{\mathrm{U}}_{q}(\mathfrak{a}_{1})\rightarrow\widehat{\mathcal{A}}_{t} by

ev()=limev(N).\mathrm{ev}_{(\infty)}=\lim_{\longleftarrow}\mathrm{ev}_{(N)}\,.

5.9. Evaluation modules

Remember the surjective algebra homomorphism U˘q(L𝔞1)Uq(L𝔞1)\breve{\mathrm{U}}_{q}(\mathrm{L}\mathfrak{a}_{1})\to{\mathrm{U}}_{q}(\mathrm{L}\mathfrak{a}_{1}) from proposition 2.2. It allows us to pull back any simple Uq(L𝔞1){\mathrm{U}}_{q}(\mathrm{L}\mathfrak{a}_{1})-module MM into a simple U˘q(L𝔞1)\breve{\mathrm{U}}_{q}(\mathrm{L}\mathfrak{a}_{1})-module. With that construction in mind, we have

Proposition 5.29.

Let MM be a simple finite dimensional Uq(L𝔞1){\mathrm{U}}_{q}(\mathrm{L}\mathfrak{a}_{1})-module. Then,

  1. i.

    ^t+M^t\widehat{\mathcal{H}}_{t}^{+}\otimes M\otimes\widehat{\mathcal{H}}_{t}^{-} is a t+U˘t2(L𝔞1)copt\mathcal{H}_{t}^{+}\rtimes\breve{\mathrm{U}}_{t^{2}}(\mathrm{L}\mathfrak{a}_{1})\stackrel{{\scriptstyle{\footnotesize\mathrm{cop}}}}{{\ltimes}}\mathcal{H}_{t}^{-}-module with the action defined by setting, for every h+,h+t+h_{+},h_{+}^{\prime}\in\mathcal{H}_{t}^{+}, every h,hth_{-},h_{-}^{\prime}\in\mathcal{H}_{t}^{-}, every xU˘t2(L𝔞1)x\in\breve{\mathrm{U}}_{t^{2}}(\mathrm{L}\mathfrak{a}_{1}) and every vMv\in M,

    (h+xh).(h+vh)=h+(x(1)h+)x(2).vh(x(3)h)(h_{+}\otimes x\otimes h_{-}).(h_{+}^{\prime}\otimes v\otimes h_{-}^{\prime})=\sum h_{+}\left(x_{(1)}\triangleright h_{+}^{\prime}\right)\otimes x_{(2)}.v\otimes h_{-}\left(x_{(3)}\triangleright h_{-}^{\prime}\right)

    and extending by continuity.

  2. ii.

    ^t+M^t\widehat{\mathcal{H}}_{t}^{+}\otimes M\otimes\widehat{\mathcal{H}}_{t}^{-} descends to a t\mathcal{B}_{t}-module.

  3. iii.

    (^t+M^t)/𝒥.(^t+M^t)\left(\widehat{\mathcal{H}}_{t}^{+}\otimes M\otimes\widehat{\mathcal{H}}_{t}^{-}\right)/\mathcal{J}.\left(\widehat{\mathcal{H}}_{t}^{+}\otimes M\otimes\widehat{\mathcal{H}}_{t}^{-}\right) is an 𝒜^t\widehat{\mathcal{A}}_{t}-module. It pulls back along ev\mathrm{ev} to a U¨q(𝔞1)\ddot{\mathrm{U}}_{q}^{\prime}(\mathfrak{a}_{1})-module that we denote by ev(M)\mathrm{ev}^{*}(M).

  4. iv.

    As a U¨q(𝔞1)\ddot{\mathrm{U}}_{q}^{\prime}(\mathfrak{a}_{1})-module, ev(M)\mathrm{ev}^{*}(M) is weight-finite.

  5. v.

    For any highest \ell-weight vector vM{0}v\in M-\{0\}, the U¨q0(𝔞1)\ddot{\mathrm{U}}_{q}^{0}(\mathfrak{a}_{1})-module

    M~0(^t+𝔽v^t)/𝒥.(^t+𝔽v^t),\tilde{M}_{0}\cong\left(\widehat{\mathcal{H}}_{t}^{+}\otimes\mathbb{F}v\otimes\widehat{\mathcal{H}}_{t}^{-}\right)/\mathcal{J}.\left(\widehat{\mathcal{H}}_{t}^{+}\otimes\mathbb{F}v\otimes\widehat{\mathcal{H}}_{t}^{-}\right)\,,

    is a highest tt-weight space of ev(M)\mathrm{ev}(M). We denote by M0M_{0} the simple quotient of M~0\tilde{M}_{0} containing vv and we let ev(M0)=U¨q(𝔞1).M0\mathrm{ev}^{*}(M_{0})=\ddot{\mathrm{U}}_{q}^{\prime}(\mathfrak{a}_{1}).M_{0}.

  6. vi.

    M0M_{0} is tt-dominant.

Proof.

i is readily checked. As for ii, it suffices to check that .(^t+M^t)={0}\mathcal{I}.\left(\widehat{\mathcal{H}}_{t}^{+}\otimes M\otimes\widehat{\mathcal{H}}_{t}^{-}\right)=\{0\}. But the latter is clear when MM is obtained by pulling back a Uq(L𝔞1){\mathrm{U}}_{q}(\mathrm{L}\mathfrak{a}_{1})-module over which the relation generating \mathcal{I} is automatically satisfied. iii is obvious. It easily follows from proposition 5.23 that, for every m×m\in{\mathbb{Z}}^{\times}, [k1,0ε,𝐇m±(z)]=0[k^{\varepsilon}_{1,0},{\bf{H}}_{m}^{\pm}(z)]=0. Hence, Sp(ev(M))=Sp(M)\mathrm{Sp}(\mathrm{ev}^{*}(M))=\mathrm{Sp}(M) and the weight finiteness of ev(M)\mathrm{ev}^{*}(M) follows from that of MM, which proves iv. It is clear that, for every rr\in{\mathbb{Z}}, we have

ev(X1,r+(z)).(t+vt)\displaystyle\mathrm{ev}({\textbf{{X}}}_{1,r}^{+}(z)).\left(\mathcal{H}_{t}^{+}\otimes v\otimes\mathcal{H}_{t}^{-}\right) =\displaystyle= 𝐇r+(z)𝐱1+(zt4r).(^t+v^t)\displaystyle{\bf{H}}_{r}^{+}(z){\bf x}_{1}^{+}(zt^{-4r}).\left(\widehat{\mathcal{H}}_{t}^{+}\otimes v\otimes\widehat{\mathcal{H}}_{t}^{-}\right)
=\displaystyle= 𝐇r+(z)(𝐱1+(zt4r)(1)^t+)𝐱1+(zt4r)(2).v(𝐱1+(zt4r)(3)^t)\displaystyle\sum{\bf{H}}_{r}^{+}(z)\left({\bf x}_{1}^{+}(zt^{-4r})_{(1)}\triangleright\widehat{\mathcal{H}}_{t}^{+}\right)\otimes{\bf x}_{1}^{+}(zt^{-4r})_{(2)}.v\otimes\left({\bf x}_{1}^{+}(zt^{-4r})_{(3)}\triangleright\widehat{\mathcal{H}}_{t}^{-}\right)
=\displaystyle= 0.\displaystyle 0\,.

v follows. Denote by P(1/z)𝔽[z1]P(1/z)\in\mathbb{F}[z^{-1}] the Drinfel’d polynomial associated with vv and let νf𝔽×\nu\in{\mathbb{N}}^{\mathbb{F}^{\times}}_{f} denote the multiset of its roots. Then,

𝐤1±(z).v=κ0(z)v,whereκ0(z)=t2deg(P)(P(t4/z)P(1/z))|z|11.{\bf k}_{1}^{\pm}(z).v=-\kappa^{\mp}_{0}(z)v\,,\qquad\mbox{where}\qquad\kappa_{0}^{\mp}(z)=-t^{2\deg(P)}\left(\frac{P(t^{-4}/z)}{P(1/z)}\right)_{|z|^{\mp 1}\ll 1}\,. (5.28)

Moreover, the partial fraction decomposition

P(t4/z)P(1/z)=a𝔽×1(1a/z)ν(a)ν(at4)=C0+a𝔽×p=1ν(a)ν(at4)Cp(a)(1a/z)p,\frac{P(t^{-4}/z)}{P(1/z)}=\prod_{a\in\mathbb{F}^{\times}}\frac{1}{(1-a/z)^{\nu(a)-\nu(at^{4})}}=C_{0}+\sum_{a\in\mathbb{F}^{\times}}\sum_{p=1}^{\nu(a)-\nu(at^{4})}\frac{C_{p}(a)}{(1-a/z)^{p}}\,,

in which C0,Cp(a)𝔽C_{0},C_{p}(a)\in\mathbb{F} and the product and sum over a𝔽×a\in\mathbb{F}^{\times} are always finite since PP only has finitely many roots, allows us to write

[𝐤1+(z)𝐤1(z)].v=t2deg(P)a𝔽×p=0ν(a)ν(at4)1(1)p+1Cp+1(a)p!ap+1δ(p)(za)v.\left[{\bf k}_{1}^{+}(z)-{\bf k}_{1}^{-}(z)\right].v=t^{2\deg(P)}\sum_{a\in\mathbb{F}^{\times}}\sum_{p=0}^{\nu(a)-\nu(at^{4})-1}\frac{(-1)^{p+1}C_{p+1}(a)}{p!\,a^{p+1}}\delta^{(p)}\left(\frac{z}{a}\right)v\,.

Letting C~p(a)=(1)p+1t2deg(P)Cp+1(a)ap1/p!\tilde{C}_{p}(a)=(-1)^{p+1}t^{2\deg(P)}C_{p+1}(a)a^{-p-1}/p! for every a𝔽×a\in\mathbb{F}^{\times} and every p0,ν(a)ν(at4)1p\in{\llbracket 0,\nu(a)-\nu(at^{4})-1\rrbracket}, it follows that, for every m×m\in{\mathbb{N}}^{\times},

ev(K1,m+(z)).(1v1)=t2deg(P)a𝔽×p=0ν(at4m)ν(at4(1m))1C~p(at4m)δ(p)(za)(𝐇m+(z)v1),\mathrm{ev}({\textbf{{K}}}^{+}_{1,m}(z)).\left(1\otimes v\otimes 1\right)=t^{2\deg(P)}\sum_{a\in\mathbb{F}^{\times}}\sum_{p=0}^{\nu(at^{-4m})-\nu(at^{4(1-m)})-1}\tilde{C}_{p}(at^{-4m})\delta^{(p)}\left(\frac{z}{a}\right)\left({\bf{H}}_{m}^{+}(z)\otimes v\otimes 1\right)\,, (5.29)
ev(K1,m(z)).(1v1)=t2deg(P)a𝔽×p=0ν(at4m)ν(at4(1m))1C~p(at4m)δ(p)(za)(1v𝐇m(z)).\mathrm{ev}({\textbf{{K}}}^{-}_{1,-m}(z)).\left(1\otimes v\otimes 1\right)=-t^{2\deg(P)}\sum_{a\in\mathbb{F}^{\times}}\sum_{p=0}^{\nu(at^{-4m})-\nu(at^{4(1-m)})-1}\tilde{C}_{p}(at^{-4m})\delta^{(p)}\left(\frac{z}{a}\right)\left(1\otimes v\otimes{\bf{H}}_{-m}^{-}(z)\right)\,. (5.30)

Now, making use of (5.24), (5.28) and of corollary 5.22, one easily shows that, for every pp\in{\mathbb{N}} and every a𝔽×a\in\mathbb{F}^{\times},

k=1p+1[ev(K1,0±(zk))Hm,a±(zk)κ0±(zk)id].(p𝐇m+(a)v1)=0,\prod_{k=1}^{p+1}\left[\mathrm{ev}({\textbf{{K}}}^{\pm}_{1,0}(z_{k}))-H^{\pm}_{m,a}(z_{k})\kappa_{0}^{\pm}(z_{k})\,{\mathrm{id}}\right].\left(\partial^{p}{\bf{H}}_{m}^{+}(a)\otimes v\otimes 1\right)=0\,,
k=1p+1[ev(K1,0±(zk))Hm,a±(zk)1κ0±(zk)id].(1vp𝐇m(a))=0,\prod_{k=1}^{p+1}\left[\mathrm{ev}({\textbf{{K}}}^{\pm}_{1,0}(z_{k}))-H^{\pm}_{m,a}(z_{k})^{-1}\kappa_{0}^{\pm}(z_{k})\,{\mathrm{id}}\right].\left(1\otimes v\otimes\partial^{p}{\bf{H}}_{-m}^{-}(a)\right)=0\,,

thus proving that p𝐇m+(a)v1\partial^{p}{\bf{H}}_{m}^{+}(a)\otimes v\otimes 1 (resp. 1vp𝐇m(a)1\otimes v\otimes\partial^{p}{\bf{H}}_{-m}^{-}(a)) is an \ell-weight vector in the \ell-weight space ev(M)κ(+,m,a)\mathrm{ev}^{*}(M)_{\kappa_{(+,m,a)}} (resp. ev(M)κ(,m,a)\mathrm{ev}^{*}(M)_{\kappa_{(-,m,a)}}) of ev(M)\mathrm{ev}^{*}(M) with \ell-weight κ(+,m,a)±(z)=κ0±(z)Hm,a±(z)\kappa_{(+,m,a)}^{\pm}(z)=\kappa_{0}^{\pm}(z)H^{\pm}_{m,a}(z) (resp. κ(,m,a)±(z)=κ0±(z)Hm,a±(z)1\kappa_{(-,m,a)}^{\pm}(z)=\kappa_{0}^{\pm}(z)H^{\pm}_{m,a}(z)^{-1}), as expected from proposition 4.3.

On the other hand,

{𝐇(z)[𝐤1+(zt4)𝐤1(zt4)]𝐇+(z)1[𝐤1+(z)𝐤1(z)]}.(1v1)\displaystyle\left\{{\bf{H}}^{-}(z)\left[{\bf k}_{1}^{+}(zt^{-4})-{\bf k}_{1}^{-}(zt^{-4})\right]-{\bf{H}}^{+}(z)^{-1}\left[{\bf k}_{1}^{+}(z)-{\bf k}_{1}^{-}(z)\right]\right\}.\left(1\otimes v\otimes 1\right)
=a𝔽×{p=0ν(at4)ν(a)1C~p(at4)δ(p)(za)(1v𝐇(z))\displaystyle\qquad\qquad\qquad\qquad=\sum_{a\in\mathbb{F}^{\times}}\left\{\sum_{p=0}^{\nu(at^{-4})-\nu(a)-1}\tilde{C}_{p}(at^{-4})\delta^{(p)}\left(\frac{z}{a}\right)\left(1\otimes v\otimes{\bf{H}}^{-}(z)\right)\right.
p=0ν(a)ν(at4)1C~p(a)δ(p)(za)(𝐇+(z)1v1)}.\displaystyle\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\left.-\sum_{p=0}^{\nu(a)-\nu(at^{4})-1}\tilde{C}_{p}(a)\delta^{(p)}\left(\frac{z}{a}\right)\left({\bf{H}}^{+}(z)^{-1}\otimes v\otimes 1\right)\right\}\,.

Thus, modulo 𝒥\mathcal{J}, we have, for every a𝔽×a\in\mathbb{F}^{\times},

p=0ν(at4)ν(a)1C~p(at4)δ(p)(za)(1v𝐇(z))=p=0ν(a)ν(at4)1C~p(a)δ(p)(za)(𝐇+(z)1v1).\sum_{p=0}^{\nu(at^{-4})-\nu(a)-1}\tilde{C}_{p}(at^{-4})\delta^{(p)}\left(\frac{z}{a}\right)\left(1\otimes v\otimes{\bf{H}}^{-}(z)\right)=\sum_{p=0}^{\nu(a)-\nu(at^{4})-1}\tilde{C}_{p}(a)\delta^{(p)}\left(\frac{z}{a}\right)\left({\bf{H}}^{+}(z)^{-1}\otimes v\otimes 1\right)\,.

The above equation makes it clear that every a𝔽×a\in\mathbb{F}^{\times} such that ν(at4)>ν(a)\nu(at^{-4})>\nu(a) is a zero of order at least ν(at4)2ν(a)+ν(at4)\nu(at^{-4})-2\nu(a)+\nu(at^{4}) of 1v𝐇(z)1\otimes v\otimes{\bf{H}}^{-}(z), unless ν(at4)ν(a)ν(a)ν(at4)\nu(at^{-4})-\nu(a)\leq\nu(a)-\nu(at^{4}). Hence, in view of (5.30), we have ev(M)κ(,1,a)ev(K1,1(z)).(1v1)=0\mathrm{ev}^{*}(M)_{\kappa_{(-,1,a)}}\cap\mathrm{ev}({\textbf{{K}}}^{-}_{1,-1}(z)).(1\otimes v\otimes 1)=0 unless aD1(ν)={x𝔽×:ν(xt4)>ν(x)>ν(xt4)}a\in{{\textsf{D}}}_{1}(\nu)=\{x\in\mathbb{F}^{\times}:\nu(xt^{-4})>\nu(x)>\nu(xt^{4})\}. But the latter implies that P(1/a)=0P(1/a)=0. A similar reasoning applies to any \ell-weight vector in M~0\tilde{M}_{0} and M~0\tilde{M}_{0} is tt-dominant by lemma 4.15. Taking the quotient of M~0\tilde{M}_{0} to M0M_{0} clearly preserves tt-dominance and vi follows. ∎

By the universality of (M0)\mathcal{M}(M_{0}) – see definition 4.20 – and the above proposition, there must exist a surjective U¨q(𝔞1)\ddot{\mathrm{U}}_{q}^{\prime}(\mathfrak{a}_{1})-module homomorphism π:(M0)ev(M0)\pi:\mathcal{M}(M_{0})\twoheadrightarrow\mathrm{ev}^{*}(M_{0}). Restricting the latter to the (closed) U¨q(𝔞1)\ddot{\mathrm{U}}_{q}^{\prime}(\mathfrak{a}_{1})-submodule 𝒩(M0)\mathcal{N}(M_{0}) of (M0)\mathcal{M}(M_{0}), we get the surjective U¨q(𝔞1)\ddot{\mathrm{U}}_{q}^{\prime}(\mathfrak{a}_{1})-module homomorphism π|𝒩(M0)\pi_{|\mathcal{N}(M_{0})}, whose image naturally injects as a U¨q(𝔞1)\ddot{\mathrm{U}}_{q}^{\prime}(\mathfrak{a}_{1})-submodule in ev(M0)\mathrm{ev}^{*}(M_{0}). The canonical short exact sequence involving 𝒩(M0)\mathcal{N}(M_{0}), (M0)\mathcal{M}(M_{0}) and the simple quotient (M0)\mathcal{L}(M_{0}) – see definition 4.20 – allows us to define a surjective U¨q(𝔞1)\ddot{\mathrm{U}}_{q}^{\prime}(\mathfrak{a}_{1})-module homomorphism π~\tilde{\pi} to get the following commutative diagram,

{0}{\{0\}}𝒩(M0){\mathcal{N}(M_{0})}(M0){\mathcal{M}(M_{0})}(M0){\mathcal{L}(M_{0})}{0}{\{0\}}{0}{\{0\}}π(𝒩(M0)){\pi(\mathcal{N}(M_{0}))}ev(M0){\mathrm{ev}^{*}(M_{0})}ev(M0)/π(𝒩(M0)){\mathrm{ev}^{*}(M_{0})/\pi(\mathcal{N}(M_{0}))}{0}{\{0\}}{0}{\{0\}}{0}{\{0\}}{0}{\{0\}}π|𝒩(M0)\scriptstyle{\pi_{|\mathcal{N}(M_{0})}}π\scriptstyle{\pi}π~\scriptstyle{\tilde{\pi}}

where columns and rows are exact. It is obvious that π~\tilde{\pi} is not identically zero and, by the simplicity of (M0)\mathcal{L}(M_{0}), we must have ker(π~)={0}\ker(\tilde{\pi})=\{0\}. Hence, π~\tilde{\pi} is a U¨q(𝔞1)\ddot{\mathrm{U}}_{q}^{\prime}(\mathfrak{a}_{1})-module isomorphism and we have constructed the simple weight-finite U¨q(𝔞1)\ddot{\mathrm{U}}_{q}^{\prime}(\mathfrak{a}_{1})-modules (M0)\mathcal{L}(M_{0}) as a quotient of the evaluation module ev(M0)\mathrm{ev}^{*}(M_{0}). To see that all the simple weight-finite U¨q(𝔞1)\ddot{\mathrm{U}}_{q}^{\prime}(\mathfrak{a}_{1})-modules (M0)\mathcal{L}(M_{0}) can be obtained in this way, it suffices to observe that, by proposition 4.10, all the simple \ell-dominant U¨q0(𝔞1)\ddot{\mathrm{U}}_{q}^{0}(\mathfrak{a}_{1})-modules are of the form L0(P)L^{0}(P) for some monic polynomial PP and that, in the construction above, one can choose any PP, simply by choosing the corresponding simple finite-dimensional Uq(L𝔞1){\mathrm{U}}_{q}(\mathrm{L}\mathfrak{a}_{1})-module MM. Therefore, as a consequence of the above proposition, the highest tt-weight space of any simple weight-finite U¨q(𝔞1)\ddot{\mathrm{U}}_{q}^{\prime}(\mathfrak{a}_{1})-modules (M0)\mathcal{L}(M_{0}) is tt-dominant. This concludes the proof of part ii of theorem 4.21 as well as that of theorem 4.12.

Appendix A A lemma about formal distributions

In this short appendix, we prove the following

Lemma A.1.

Let m{0,1}m\in\{0,1\} and nn\in{\mathbb{N}}, let A(v)𝔽[[v]]{0}A(v)\in\mathbb{F}[[v]]-\{0\} be a non-zero formal power series and let F(z)𝔽[[z,z1]]F(z)\in\mathbb{F}[[z,z^{-1}]] be a formal distribution such that

(za)(zv)mA(v)F(z)+p=0nBp(v)δ(p)(z/a)=0,(z-a)(z-v)^{m}A(v)F(z)+\sum_{p=0}^{n}B_{p}(v)\delta^{(p)}(z/a)=0\,, (A.1)

for some non-zero scalar a𝔽×a\in\mathbb{F}^{\times} and some formal power series B0(v),,Bn(v)𝔽[[v]]B_{0}(v),\dots,B_{n}(v)\in\mathbb{F}[[v]]. Then,

F(z)=p=0n+1fpδ(p)(z/a),F(z)=\sum_{p=0}^{n+1}f_{p}\delta^{(p)}(z/a)\,,

for some scalars f0,,fn+1𝔽f_{0},\dots,f_{n+1}\in\mathbb{F}.

Proof.

Consider first the case where m=0m=0. Then, multiplying (A.1) by (za)n+1(z-a)^{n+1}, we get

(za)n+2A(v)F(z)=0.(z-a)^{n+2}A(v)F(z)=0\,.

Since A(v)0A(v)\neq 0, we can specialize at a non-zero vv-mode and it follows that

F(z)=p=0n+1fpδ(p)(z/a)F(z)=\sum_{p=0}^{n+1}f_{p}\delta^{(p)}(z/a)

for some scalars f0,,fn+1𝔽f_{0},\dots,f_{n+1}\in\mathbb{F}. Now consider the case where m=1m=1. It follows from (A.1) that

(za)A(v)F(z)+(1zv)|v/z|1p=0nBp(v)δ(p)(z/a)=C(z)δ(z/v),(z-a)A(v)F(z)+\left(\frac{1}{z-v}\right)_{|v/z|\ll 1}\sum_{p=0}^{n}B_{p}(v)\delta^{(p)}(z/a)=C(z)\delta(z/v)\,,

for some formal distribution C(z)𝔽[[z,z1]]C(z)\in\mathbb{F}[[z,z^{-1}]]. But specializing the l.h.s. of the above equation to any vv-mode of the form vpv^{-p} with p×p\in{\mathbb{N}}^{\times}, we immediately get that C(z)=0C(z)=0. We are thus back to the previous case. ∎

References

  • [CP91] V. Chari and A. Pressley, Quantum affine algebras, Comm. Math. Phys. 142 (1991), 261–283.
  • [Dam93] I. Damiani, A basis of type PBW for the quantum algebra of 𝔰𝔩^2\widehat{\mathfrak{sl}}_{2}, Journal of Algebra 161 (1993), 291–310.
  • [DK19] P. Di Francesco and R. Kedem, (t, q)-deformed Q-systems, DAHA and quantum toroidal algebras via generalized Macdonald operators, Comm. Math. Phys. 369 (2019), no. 3, 867–928.
  • [FFJ+11] B. Feigin, E. Feigin, M. Jimbo, T. Miwa, and E. Mukhin, Quantum continuous 𝔤𝔩\mathfrak{gl}_{\infty} : Semiinfinite construction of representations, Kyoto J. Math. 51 (2011), no. 2, 337–364.
  • [FJMM12] B. Feigin, M. Jimbo, T. Miwa, and E. Mukhin, Quantum toroidal 𝔤𝔩1\mathfrak{gl}_{1} -algebra: Plane partitions, Kyoto J. Math. 52 (2012), no. 3, 621–659.
  • [GKV95] V. Ginzburg, M. Kapranov, and E. Vasserot, Langlands reciprocity for algebraic surfaces, Mathelatical Research Letters 2 (1995), 147–160.
  • [Her05] D. Hernandez, Representations of quantum affinizations and fusion product, Transformation groups 10 (2005), no. 2, 163–200.
  • [Her09] by same author, Quantum toroidal algebras and their representations, Selecta Mathematica 14 (2009), 701–725.
  • [HL10] D. Hernandez and B. Leclerc, Cluster algebras and quantum affine algebras, Duke Math. J. 154 (2010), no. 2, 265–341.
  • [HL19] by same author, Quantum affine algebras and cluster algebras, arXiv:1902.01432 (2019).
  • [Jim86] M. Jimbo, A q-analogue of U(gl(N+1))U(gl(N+1)), Hecke algebra, and the Yang-Baxter equation, Lett. Math. Phys. 11 (1986), no. 3, 247–252.
  • [Mik07] K. Miki, A (q,γ)(q,\gamma)-analog of the W1+W_{1+\infty} algebra, J. Math. Phys. 48 (2007), 123520.
  • [MZ19] E. Mounzer and R. Zegers, On double quantum affinization: 1. type 𝔞1\mathfrak{a}_{1}, arXiv:1903.00418 (2019).
  • [Sch12] O. Schiffmann, Drinfeld realization of the elliptic Hall algebra, J. Algebr. Comb. 35 (2012), 237–262.
  • [VV96] M. Varagnolo and E. Vasserot, Schur duality in the toroidal setting, Comm. Math. Phys. 182 (1996), no. 2, 469–483.