This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Weakly Meet sZs_{Z}-continuity and δZ\delta_{Z}-continuity

Huijun Hou    Qingguo Li School of Mathematics
Hunan University
Changsha, China
Abstract

Based on the concept of weakly meet sZs_{Z}-continuity put forward by Xu and Luo in [13], we further prove that if the subset system ZZ satisfies certain conditions, a poset is sZs_{Z}-continuous if and only if it is weakly meet sZs_{Z}-continuous and sZs_{Z}-quasicontinuous, which improves a related result given by Ruan and Xu in [10]. Meanwhile, we provide a characterization for the poset to be weakly meet sZs_{Z}-continuous, that is, a poset with a lower hereditary ZZ-Scott topology is weakly meet sZs_{Z}-continuous if and only if it is locally weakly meet sZs_{Z}-continuous. In addition, we introduce a monad on the new category 𝐏𝐎𝐒𝐄𝐓δ\mathbf{POSET_{\delta}} and characterize its EilenbergEilenberg-MooreMoore algebras concretely.

keywords:
Weakly meet sZs_{Z}-continuous poset \sepδZ\delta_{Z}-continuous poset \sepMonad\sepEilenberg\mathrm{Eilenberg}-Moore\mathrm{Moore} algebras
journal: Electronic Notes in Theoretical Informatics and Computer Sciencevolume: 2thanks: This work is supported by the National Natural Science Foundation of China (No.12231007)thanks: Email: [email protected]thanks: Corresponding author, Email: \normalshape[email protected]

1 Introduction

Recall that the concept of subset system on the category 𝐏𝐎𝐒𝐄𝐓\mathbf{POSET} of posets was proposed by Wright et al. in [12]. It originally aimed at applying posets with ZZ-set structures to problems in computer science, particularly, to fixed point semantics for programming language. In addition, the set system includes many systems of sets which we are familiar with, such as directed sets, finite sets, connected sets and so on. Later, based on the suggestion given by Wright to study the generalized counterpart of continuous poset by replacing directed sets with ZZ-sets, in [2], Baranga defined a kind of generalized way-below relation based on the ZZ-sets whose supremum exists. Furthermore, the author gave some characterizations for the ZZ-algebraic posets. Besides, Erne´\acute{e} introduced the concept of s2s_{2}-continuous posets by lending support to the cut operator of directed subsets instead of the existing sups, which is a pure order concept on posets, no longer depending on the dcpo. Recently, Zhang and Xu made use of the cut operator of directed sets again to define a new way-below relation between subsets, and then introduced s2s_{2}-quasicontinuous posets (see [14]). Combining with the notion of subset system, Xu and Luo in [13] gave the definition of sZs_{Z}-quasicontinuous posets, and then, Ruan and Xu investigated its properties in [10] concretely and mainly made the conclusion: when the subset system satisfies some conditions, a poset is sZs_{Z}-continuous if and only if it is sZs_{Z}-quasicontinuous and meet sZs_{Z}-continuous.

In this paper, we will first see that there is another characterization of sZs_{Z}-continuous posets. More precisely, in the case where the subset system ZZ satisfies certain conditions, a poset is sZs_{Z}-continuous if and only if it is sZs_{Z}-quasicontinuous and weakly meet sZs_{Z}-continuous, which is a result stronger than that given by Xu in [10], meanwhile, it reveals that the requirement of ‘σZ(P)=σZ(P)\sigma^{Z}(P)=\sigma_{Z}(P)’ is unnecessary. Then we focus on the weakly meet sZs_{Z}-continuity of a poset, and show that a poset with a lower hereditary ZZ-Scott topology is weakly meet sZs_{Z}-continuous if and only if it is locally weakly meet sZs_{Z}-continuous. In order to investigate the Γ\Gamma-faithful property, Ho and Zhao in [8] introduced a new beneath relation by the Scott closed subsets whose sups exist. Based on their work, we find there exists a monad on 𝐃𝐂𝐏𝐎\mathbf{DCPO}. Associating with the subset system, we will introduce a generalized beneath relation using the cuts of ZZ-Scott closed subsets, which is not necessary to consider whether the supremum exists. On this basis, we find a monad on the category 𝐏𝐎𝐒𝐄𝐓δ\mathbf{POSET_{\delta}} and characterize its Eilenberg-Moore algebras concretely.

2 Preliminaries

Let PP be a poset. For any AP,xPA\subseteq P,\ x\in P, we write A={pP:p{\uparrow}A=\{p\in P:p\geq a for some aA}a\in A\}, {\downarrow}AA = {pP:pa\{p\in P:p\leq a for some aA}a\in A\}. In particular, \uparrowxx = \uparrow{x}\{x\} and \downarrowxx = \downarrow{x}\{x\}. A subset APA\subseteq P is an upper set (resp., a lower set) if AA = \uparrowAA (resp., AA = \downarrowAA). Let AuA^{u} and AlA^{l} denote the sets of all upper and lower bounds of AA, respectively. The cut operator δ\delta is defined by Eδ=EulE^{\delta}=E^{ul} for all EPE\subseteq P. Obviously, if the supremum of EE exists, then xEδx\in E^{\delta} iff xsupEx\leq\sup E. If EAE\subseteq A for some subset AA of PP, let EδA={pA:pmforallmEuA}E^{\delta}\mid_{A}=\{p\in A:p\leq m\ \mathrm{for\ all}\ m\in E^{u}\cap A\}. In particular, we write EδmE^{\delta}\mid_{\mathord{\downarrow}m} as EδmE^{\delta}\mid_{m}. We denote by FfPF\subseteq_{f}P if FF is a finite subset of poset PP, and let 𝐅𝐢𝐧P={F:FfP}\mathbf{Fin}P=\{\mathord{\uparrow}F:F\subseteq_{f}P\}. A mapping 𝐦𝐢𝐧:𝐅𝐢𝐧P2P\mathbf{min}:\mathbf{Fin}P\rightarrow 2^{P} is defined by 𝐦𝐢𝐧(F)={xF:xisaminimalelementofF}\mathbf{min}(\mathord{\uparrow}F)=\{x\in F:x\ \mathrm{is\ a\ minimal\ element\ of}\ F\}.

For any T0T_{0} space XX, the partial order X\leq_{X} defined by xyx\leq y iff xx is contained in the closure of yy is called the specialization order. The topology on the poset PP generated by all principal filters x\mathord{\uparrow}x as a subbasis for the closed sets is called the lower topology and denoted by ω(P)\omega(P).

Let 𝐏𝐎𝐒𝐄𝐓\mathbf{POSET} denote the category of posets and monotone mappings. By [12], a subset system on 𝐏𝐎𝐒𝐄𝐓\mathbf{POSET} is a function ZZ which assigns to each poset, a set Z(P)Z(P) of subsets of PP such that

  • {x}Z(P)\{x\}\in Z(P) for any xPx\in P, and

  • if f:PQf:P\rightarrow Q in 𝐏𝐎𝐒𝐄𝐓\mathbf{POSET} and SZ(P)S\in Z(P), then f(S)Z(Q)f(S)\in Z(Q).

PP is called a Z-complete poset (zcpozcpo, for short), if supD\sup D exists for each DZ(P)D\in Z(P). A closure system on the set XX is a non-empty family \mathcal{E} of subsets of XX which satisfies:

  • iIAi\bigcap_{i\in I}A_{i}\in\mathcal{E} for every nonempty family {Ai}iI\{A_{i}\}_{i\in I}\subseteq\mathcal{E}, and

  • XX\in\mathcal{E}.

Definition 2.1.

Let PP be a poset and let σZ(P)={UP:forallSZ(P),SδUSU}\sigma^{Z}(P)=\{U\subseteq P:\mathrm{for\ all}\ S\in Z(P),S^{\delta}\cap U\neq\emptyset\Rightarrow S\cap U\neq\emptyset\}. The topology generated by the subbasic open subsets σZ(P)\sigma^{Z}(P) is called ZZ-Scott topology on PP and denoted by σZ(P)\sigma_{Z}(P).

Let ΓZ(P)={AP:forallSZ(P),SPSδP}\Gamma^{Z}(P)=\{A\subseteq P:\mathrm{for\ all}\ S\in Z(P),S\subseteq P\Rightarrow S^{\delta}\subseteq P\}, obviously, ΓZ(P)\Gamma^{Z}(P) is a subbasis for the closed subsets with respect to ZZ-Scott topology. We use ΓZ(P)\Gamma_{Z}(P) to denote the set composed of all closed subsets regarding ZZ-Scott topology. Note that for any UσZ(P)(AΓZ(P)),U=U(A=A)U\in\sigma^{Z}(P)(A\in\Gamma^{Z}(P)),U=\mathord{\uparrow}U(A=\mathord{\downarrow}A), so the definition above is the same as that given in [10]. Besides, the family ΓZ(P)\Gamma^{Z}(P) and ΓZ(P)\Gamma_{Z}(P) are closure systems on PP, and the closure operators can be defined as follows: For any MPM\subseteq P, clσZ(P)(M)={AΓZ(P):MA}cl_{\sigma^{Z}(P)}(M)=\bigcap\{A\in\Gamma^{Z}(P):M\subseteq A\}, clσZ(P)(M)={BΓZ(P):MB}cl_{\sigma_{Z}(P)}(M)=\bigcap\{B\in\Gamma_{Z}(P):M\subseteq B\}.

Definition 2.2.

([10]) Let PP be a poset and xP,A,BPx\in P,\ A,B\subseteq P.

  1. \normalshape(1)

    AA is called ZZ-way below BB, denoted by AZBA\ll_{Z}B, if for any SZ(P),SδBS\in Z(P),S^{\delta}\cap\mathord{\uparrow}B\neq\emptyset implies SAS\cap\mathord{\uparrow}A\neq\emptyset. FZ{x}F\ll_{Z}\{x\} is shortly written as FZxF\ll_{Z}x. Let ωZ(x)={FfP:FZx},ZA={xP:AZx},ZA={pP:aZpforsomeaA},Zx={yP:yZx}\omega_{Z}(x)=\{F\subseteq_{f}P:F\ll_{Z}x\},\Uparrow_{Z}A=\{x\in P:A\ll_{Z}x\},\ \rotatebox{-90.0}{$\twoheadleftarrow$}_{Z}A=\{p\in P:a\ll_{Z}p\ \mathrm{for\ some}\ a\in A\},\ \rotatebox{90.0}{$\twoheadleftarrow$}_{Z}x=\{y\in P:y\ll_{Z}x\}. Specifically, we write Zxy={mx:mZyinx}\rotatebox{90.0}{$\twoheadleftarrow$}_{Z}^{x}y=\{m\in\mathord{\downarrow}x:m\ll_{Z}y\ \mathrm{in}\ \mathord{\downarrow}x\}.

  2. \normalshape(2)

    PP is called a weak sZs_{Z}-continuous poset, if for all xP,x(Zx)δx\in P,x\in(\rotatebox{90.0}{$\twoheadleftarrow$}_{Z}x)^{\delta}. In addition, if ZxIZ(P)={S:SZ(P)}\rotatebox{90.0}{$\twoheadleftarrow$}_{Z}x\in I_{Z}(P)=\{\mathord{\downarrow}S:S\in Z(P)\}, then PP is called sZs_{Z}-continuous.

  3. \normalshape(3)

    PP is called an sZs_{Z}-quasicontinuous poset, if for all pPp\in P, {F:FωZ(P)}Z(𝐅𝐢𝐧P)\{\mathord{\uparrow}F:F\in\omega_{Z}(P)\}\in Z(\mathbf{Fin}P) and p={F:FωZ(P)}\mathord{\uparrow}p=\bigcap\{\mathord{\uparrow}F:F\in\omega_{Z}(P)\}.

Definition 2.3.

([15]) A subset system ZZ is hereditary if for any order embedding f:PQf:P\rightarrow Q (that is, for any x,yP,f(x)f(y)xyx,y\in P,f(x)\leq f(y)\Leftrightarrow x\leq y), DPD\subseteq P, DZ(P)D\in Z(P) if and only if f(D)Z(Q)f(D)\in Z(Q).

Definition 2.4.

([10]) Let ZZ be a subset system.

  1. \normalshape(1)

    ZZ is called unioncompleteunion\ complete, if for any poset PP, 𝒮Z(Z(P))\mathcal{S}\in Z(Z(P)), we have 𝒮Z(P)\bigcup\mathcal{S}\in Z(P).

  2. \normalshape(2)

    ZZ is said to have the finitefamilyunionpropertyfinite\ family\ union\ property, if for any poset PP, {𝒮1,𝒮2,,𝒮n}fZ(𝐅𝐢𝐧P)\{\mathcal{S}_{1},\mathcal{S}_{2},...,\mathcal{S}_{n}\}\subseteq_{f}Z(\mathbf{Fin}P), we have {i=1nAi:Ai𝒮i,i=1,2,,n}Z(𝐅𝐢𝐧P)\{\bigcup_{i=1}^{n}A_{i}:A_{i}\in\mathcal{S}_{i},i=1,2,...,n\}\in Z(\mathbf{Fin}P).

  3. \normalshape(3)

    ZZ ia said to have the property MM, if for any poset PP, F𝐅𝐢𝐧P\mathord{\uparrow}F\in\mathbf{Fin}P, we have 𝐅𝐢𝐧PF={G𝐅𝐢𝐧P:FG}Z(𝐅𝐢𝐧P)\mathord{\downarrow}_{\mathbf{Fin}P}\mathord{\uparrow}F=\{\mathord{\uparrow}G\in\mathbf{Fin}P:\mathord{\uparrow}F\subseteq\mathord{\uparrow}G\}\in Z(\mathbf{Fin}P).

Definition 2.5.

([10]) A subset system ZZ is said to have the RudinpropertyRudin\ property, if for any poset PP, E=EPE=\mathord{\uparrow}E\subseteq P, 𝒢Z(𝐅𝐢𝐧P)\mathcal{G}\in Z(\mathbf{Fin}P), 𝒢\emptyset\notin\mathcal{G}, and 𝒢E\bigcap\mathcal{G}\subseteq E. Then there exists K{𝐦𝐢𝐧(G):G𝒢}K\subseteq\bigcup\{\mathbf{min}(G):G\in\mathcal{G}\} such that

  1. (i)

    for any G𝒢G\in\mathcal{G}, K𝐦𝐢𝐧(G)K\cap\mathbf{min}(G)\neq\emptyset,

  2. (ii)

    KZ(P)K\in Z(P),

  3. (iii)

    {k:kK}E\bigcap\{\mathord{\uparrow}k:k\in K\}\subseteq E, and

  4. (iv)

    for any G,H𝒢G,H\in\mathcal{G}, GHG\subseteq H implies K𝐦𝐢𝐧(G)(K𝐦𝐢𝐧(H))K\cap\mathbf{min}(G)\subseteq\mathord{\uparrow}(K\cap\mathbf{min}(H)).

ZZ is called a RudinsubsetsystemRudin\ subset\ system, if ZZ is union-complete and possesses the Rudin property.

3 Weakly meet sZs_{Z}-continuous posets

Definition 3.1.

([10]) PP is called weakly meet sZs_{Z}-continuous if for all xPx\in P and all DZ(P)D\in Z(P) with xDδx\in D^{\delta}, we have xclσZ(P)(xD)x\in cl_{\sigma^{Z}(P)}(\mathord{\downarrow}x\cap\mathord{\downarrow}D); PP is called meet sZs_{Z}-continuous if for all xPx\in P and all DZ(P)D\in Z(P) with xDδx\in D^{\delta}, we have xclσZ(P)(xD)x\in cl_{\sigma_{Z}(P)}(\mathord{\downarrow}x\cap\mathord{\downarrow}D).

Lemma 3.2.

Let PP be a poset. The following conditions are equivalent:

  1. (1)\mathrm{(1)}

    PP is weakly meet sZs_{Z}-continuous.

  2. (2)\mathrm{(2)}

    For any xPx\in P and any UσZ(P)U\in\sigma^{Z}(P), (xU)σZ(P)\mathord{\uparrow}(\mathord{\downarrow}x\cap U)\in\sigma^{Z}(P).

Proof 3.3.

(1)(2)(1)\Rightarrow(2) Assume that DZ(P)D\in Z(P), and Dδ(xU)D^{\delta}\cap\mathord{\uparrow}(\mathord{\downarrow}x\cap U)\neq\emptyset. Then there exists an mDδm\in D^{\delta} with mUm\in U and mxm\leq x. Since PP is weakly meet sZs_{Z}-continuous, we have mclσZ(P)(mD)m\in cl_{\sigma^{Z}(P)}(\mathord{\downarrow}m\cap\mathord{\downarrow}D), which implies that DmU\mathord{\downarrow}D\cap\mathord{\downarrow}m\cap U\neq\emptyset. Thus DxU\mathord{\downarrow}D\cap\mathord{\downarrow}x\cap U\neq\emptyset by mxm\leq x. So D(xU)D\cap\mathord{\uparrow}(\mathord{\downarrow}x\cap U)\neq\emptyset and (xU)σZ(P)\mathord{\uparrow}(\mathord{\downarrow}x\cap U)\in\sigma^{Z}(P) holds.

(2)(1)(2)\Rightarrow(1) For any xPx\in P, DZ(P)D\in Z(P), if xDδx\in D^{\delta} and there is a UσZ(P)U\in\sigma^{Z}(P) such that xUx\in U, then by (2), (xU)σZ(P)\mathord{\uparrow}(\mathord{\downarrow}x\cap U)\in\sigma^{Z}(P). Since xDδ(xU)x\in D^{\delta}\cap\mathord{\uparrow}(\mathord{\downarrow}x\cap U)\neq\emptyset, we have D(xU)D\cap\mathord{\uparrow}(\mathord{\downarrow}x\cap U)\neq\emptyset, this means xUD\mathord{\downarrow}x\cap U\cap\mathord{\downarrow}D\neq\emptyset. So xclσZ(P)(xD)x\in cl_{\sigma^{Z}(P)}(\mathord{\downarrow}x\cap\mathord{\downarrow}D).

Lemma 3.4.

Let PP be a ZZ-complete semilattice. The following conditions are equivalent:

  1. (1)\mathrm{(1)}

    PP is weakly meet sZs_{Z}-continuous;

  2. (2)\mathrm{(2)}

    For any xPx\in P, DZ(P)D\in Z(P), xD={xd:dD}x\wedge\vee D=\vee\{x\wedge d:d\in D\}.

Proof 3.5.

(1)(2)(1)\Rightarrow(2) We first claim that y=(yD)y=\vee(\mathord{\downarrow}y\cap\mathord{\downarrow}D) if yDδy\in D^{\delta}. It is obvious that yy is an upper bound of yD\mathord{\downarrow}y\cap\mathord{\downarrow}D. Suppose zz is also an upper bound of yD\mathord{\downarrow}y\cap\mathord{\downarrow}D and y⩽̸zy\nleqslant z, that is, yPzy\in P\setminus\mathord{\downarrow}z. Since yclσZ(P)(yD)y\in cl_{\sigma^{Z}(P)}(\mathord{\downarrow}y\cap\mathord{\downarrow}D) by (1) and PzσZ(P)P\setminus\mathord{\downarrow}z\in\sigma^{Z}(P), we have (Pz)yD(P\setminus\mathord{\downarrow}z)\cap\mathord{\downarrow}y\cap\mathord{\downarrow}D\neq\emptyset. But this contracts the fact that yDz\mathord{\downarrow}y\cap\mathord{\downarrow}D\subseteq\mathord{\downarrow}z. Thus y=(yD)y=\vee(\mathord{\downarrow}y\cap\mathord{\downarrow}D). Now let y0=xDy_{0}=x\wedge\vee D, then y0Dδy_{0}\in D^{\delta}, which implies y0=(y0D)y_{0}=\vee(\mathord{\downarrow}y_{0}\cap\mathord{\downarrow}D). Since y0D={xd:dD}\mathord{\downarrow}y_{0}\cap\mathord{\downarrow}D=\mathord{\downarrow}\{x\wedge d:d\in D\}, we have y0={xd:dD}y_{0}=\vee\{x\wedge d:d\in D\}, that is, xD={xd:dD}x\wedge\vee D=\vee\{x\wedge d:d\in D\}.

(2)(1)(2)\Rightarrow(1) For any xPx\in P, UσZ(P)U\in\sigma^{Z}(P), we need to prove (xU)σZ(P)\mathord{\uparrow}(\mathord{\downarrow}x\cap U)\in\sigma^{Z}(P). Assume DZ(P)D\in Z(P) with Dδ(xU)D^{\delta}\cap\mathord{\uparrow}(\mathord{\downarrow}x\cap U)\neq\emptyset. Then there exists an mUm\in U, mxm\leq x and mDδm\in D^{\delta}. Thus mDm\leq\vee D and m=mD={md:dD}Um=m\wedge\vee D=\vee\{m\wedge d:d\in D\}\in U by (2). Now for mm, we define a monotone mapping φ:PP\varphi:P\rightarrow P by φ(p)=mp\varphi(p)=m\wedge p. Then φ(D)={md:dD}Z(P)\varphi(D)=\{m\wedge d:d\in D\}\in Z(P). Hence, md0Um\wedge d_{0}\in U for some d0Dd_{0}\in D as UσZ(P)U\in\sigma^{Z}(P), which implies that D(xU)D\cap\mathord{\uparrow}(\mathord{\downarrow}x\cap U)\neq\emptyset, that is, (xU)σZ(P)\mathord{\uparrow}(\mathord{\downarrow}x\cap U)\in\sigma^{Z}(P). So PP is weakly meet sZs_{Z}-continuous by Lemma 3.2.

Proposition 3.6.

Let PP be a poset. The following conditions are equivalent:

  1. (1)\mathrm{(1)}

    PP is weakly meet sZs_{Z}-continuous;

  2. (2)\mathrm{(2)}

    ΓZ(P)\Gamma^{Z}(P) is weakly meet sZs_{Z}-continuous.

Proof 3.7.

(1)(2)(1)\Rightarrow(2) By Lemma 3.4, we only need to prove that for any AΓZ(P),𝒟Z(ΓZ(P))A\in\Gamma^{Z}(P),\mathcal{D}\in Z(\Gamma^{Z}(P)), A(𝒟)={AD:D𝒟}A\wedge(\vee\mathcal{D})=\vee\{A\wedge D:D\in\mathcal{D}\}, that is, AclσZ(P)(𝒟)=clσZ(P)({AD:D𝒟})A\cap cl_{\sigma^{Z}(P)}(\bigcup\mathcal{D})=cl_{\sigma^{Z}(P)}(\bigcup\{A\cap D:D\in\mathcal{D}\}). Assume xAclσZ(P)(𝒟)x\in A\cap cl_{\sigma^{Z}(P)}(\bigcup\mathcal{D}) and UσZ(P)U\in\sigma^{Z}(P) with xUx\in U. Then we have (xU)σZ(P)\mathord{\uparrow}(\mathord{\downarrow}x\cap U)\in\sigma^{Z}(P) by Lemma 3.2. As xclσZ(P)(𝒟)x\in cl_{\sigma^{Z}(P)}(\bigcup\mathcal{D}), (xU)D0\mathord{\uparrow}(\mathord{\downarrow}x\cap U)\cap D_{0}\neq\emptyset for some D0𝒟D_{0}\in\mathcal{D}, this means AUD0A\cap U\cap D_{0}\neq\emptyset since xAx\in A and AA is a lower set. Moreover, ({AD:D𝒟})U(\bigcup\{A\cap D:D\in\mathcal{D}\})\cap U\neq\emptyset. So xclσZ(P)({AD:D𝒟})x\in cl_{\sigma^{Z}(P)}(\cup\{A\cap D:D\in\mathcal{D}\}), and AclσZ(P)(𝒟)clσZ(P)({AD:D𝒟})A\cap cl_{\sigma^{Z}(P)}(\bigcup\mathcal{D})\subseteq cl_{\sigma^{Z}(P)}(\bigcup\{A\cap D:D\in\mathcal{D}\}) holds. Obviously, the conversely inclusion holds.

(2)(1)(2)\Rightarrow(1) It is sufficient to prove that (xU)σZ(P)\mathord{\uparrow}(\mathord{\downarrow}x\cap U)\in\sigma^{Z}(P) for any xPx\in P, UσZ(P)U\in\sigma^{Z}(P). Let DZ(P)D\in Z(P) with Dδ(xU)D^{\delta}\cap\mathord{\uparrow}(\mathord{\downarrow}x\cap U)\neq\emptyset. Then there exists an mxUm\in\mathord{\downarrow}x\cap U such that mDδm\in D^{\delta}, which implies m{d:dD}δ\mathord{\downarrow}m\in\{\mathord{\downarrow}d:d\in D\}^{\delta}. In addition, we know {d:dD}Z(ΓZ(P))\{\mathord{\downarrow}d:d\in D\}\in Z(\Gamma^{Z}(P)) since the mapping ψ:PΓZ(P)\psi:P\rightarrow\Gamma^{Z}(P) defined by ψ(p)=p\psi(p)=\mathord{\downarrow}p is monotone. As ΓZ(P)\Gamma^{Z}(P) is weakly meet sZs_{Z}-continuous, we have mclσZ(ΓZ(P))({m}{d:dD})\mathord{\downarrow}m\in cl_{\sigma^{Z}(\Gamma^{Z}(P))}(\mathord{\downarrow}\{\mathord{\downarrow}m\}\cap\mathord{\downarrow}\{\mathord{\downarrow}d:d\in D\}). It is easy to verify that U={AΓZ(P):AU}σZ(ΓZ(P))\lozenge U=\{A\in\Gamma^{Z}(P):A\cap U\neq\emptyset\}\in\sigma^{Z}(\Gamma^{Z}(P)) and mU\mathord{\downarrow}m\in\lozenge U. So U{m}{d:dD}\lozenge U\cap\mathord{\downarrow}\{\mathord{\downarrow}m\}\cap\mathord{\downarrow}\{\mathord{\downarrow}d:d\in D\}\neq\emptyset, that is, CΓZ(P)C\in\Gamma^{Z}(P) belongs to this intersection. Moreover, there exists an element cCUc\in C\cap U satisfying cmxc\leq m\leq x and cd0c\leq d_{0} for some d0Dd_{0}\in D, this means D(xU)D\cap\mathord{\uparrow}(\mathord{\downarrow}x\cap U)\neq\emptyset. Hence, (xU)σZ(P)\mathord{\uparrow}(\mathord{\downarrow}x\cap U)\in\sigma^{Z}(P), and PP is weakly meet sZs_{Z}-continuous.

Lemma 3.8.

Let PP be a weakly meet sZs_{Z}-continuous poset. If FF is a finite subset of PP, then intσZ(P)(F){Zx:xF}int_{\sigma^{Z}(P)}(\mathord{\uparrow}F)\subseteq\cup\{\rotatebox{-90.0}{$\twoheadleftarrow$}_{Z}x:x\in F\}.

Proof 3.9.

Suppose F={x1,x2,,xn}F=\{x_{1},x_{2},...,x_{n}\} and there exists an element aintσZ(P)(F)a\in int_{\sigma^{Z}(P)}(\mathord{\uparrow}F), but a{xi:i=1,2,,n}a\notin\cup\{\rotatebox{-90.0}{$\twoheadleftarrow$}x_{i}:i=1,2,...,n\}. Then xiZax_{i}\leavevmode\hbox to16.67pt{\vbox to12.45pt{\pgfpicture\makeatletter\hbox{\hskip 3.333pt\lower-3.22398pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ } {{}{}}{{}}{} {}{}{}\pgfsys@moveto{0.0pt}{-2.0pt}\pgfsys@lineto{10.00002pt}{8.00002pt}\pgfsys@stroke\pgfsys@invoke{ } {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{0.00002pt}{0.5pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\ll$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}_{Z}a for any xiFx_{i}\in F, that is, there exists DiZ(P)D_{i}\in Z(P) such that aDiδa\in D_{i}^{\delta}, but xiDix_{i}\notin\mathord{\downarrow}D_{i}, for i=1,2,,ni=1,2,...,n. For D1Z(P)D_{1}\in Z(P) with aD1δa\in D_{1}^{\delta}, aclσZ(P)(aD1)a\in cl_{\sigma^{Z}(P)}(\mathord{\downarrow}a\cap\mathord{\downarrow}D_{1}) by weakly meet sZs_{Z}-continuity. Then intσZ(P)(F)aD1int_{\sigma^{Z}(P)}(\mathord{\uparrow}F)\cap\mathord{\downarrow}a\cap\mathord{\downarrow}D_{1}\neq\emptyset, which implies that there is a y1intσZ(P)(F)aD1y_{1}\in int_{\sigma^{Z}(P)}(\mathord{\uparrow}F)\cap\mathord{\downarrow}a\cap\mathord{\downarrow}D_{1}. By y1ay_{1}\leq a and aD2δa\in D_{2}^{\delta}, we have y1D2δy_{1}\in D_{2}^{\delta}. Similarly, we get that y1clσZ(P)(y1D2)y_{1}\in cl_{\sigma^{Z}(P)}(\mathord{\downarrow}y_{1}\cap\mathord{\downarrow}D_{2}) and intσZ(P)(F)y1D2int_{\sigma^{Z}(P)}(\mathord{\uparrow}F)\cap\mathord{\downarrow}y_{1}\cap\mathord{\downarrow}D_{2}\neq\emptyset. So there is a y2intσZ(P)(F)y1D2y_{2}\in int_{\sigma^{Z}(P)}(\mathord{\uparrow}F)\cap\mathord{\downarrow}y_{1}\cap\mathord{\downarrow}D_{2}. By induction, we find ynintσZ(P)(F)yn1Dny_{n}\in int_{\sigma^{Z}(P)}(\mathord{\uparrow}F)\cap\mathord{\downarrow}y_{n-1}\cap\mathord{\downarrow}D_{n}, where y0=ay_{0}=a, clearly, yni=1i=nDiy_{n}\in\bigcap_{i=1}^{i=n}\mathord{\downarrow}D_{i}. Since ynintσZ(P)(F)Fy_{n}\in int_{\sigma^{Z}(P)}(\mathord{\uparrow}F)\subseteq\mathord{\uparrow}F, ynxi0y_{n}\geq x_{i_{0}} for some i0{1,2,,n}i_{0}\in\{1,2,...,n\}, this implies xi0Di0x_{i_{0}}\in\mathord{\downarrow}D_{i_{0}}, which contradicts that xi0Di0x_{i_{0}}\notin\mathord{\downarrow}D_{i_{0}}. Hence, intσZ(P)(F){Zx:xF}int_{\sigma^{Z}(P)}(\mathord{\uparrow}F)\subseteq\cup\{\rotatebox{-90.0}{$\twoheadleftarrow$}_{Z}x:x\in F\}.

Lemma 3.10.

([10]) Let ZZ be a Rudin subset system which has the finite family union property and PP an sZs_{Z}-quasicontinuous poset. Then the following statements hold.

  1. (1)\mathrm{(1)}

    For any finite set FF in PP, ZFσZ(P)\Uparrow_{Z}F\in\sigma^{Z}(P).

  2. (2)\mathrm{(2)}

    If UPU\subseteq P, then UσZ(P)U\in\sigma^{Z}(P) if and only if for any xUx\in U, there exists FfPF\subseteq_{f}P such that xZFFUx\in\Uparrow_{Z}F\subseteq\mathord{\uparrow}F\subseteq U.

Lemma 3.11.

Let ZZ be a Rudin subset system which has the finite family union property. If PP is weakly meet sZs_{Z}-continuous and sZs_{Z}-quasicontinuous, then for any finite subset FF of PP, we have

ZF=ZF\Uparrow_{Z}F=\rotatebox{-90.0}{$\twoheadleftarrow$}_{Z}F.

Proof 3.12.

By Lemma 3.8 and Lemma 3.10, obviously, ZFZF\Uparrow_{Z}F\subseteq\rotatebox{-90.0}{$\twoheadleftarrow$}_{Z}F. And the reverse containment is easy to verify, so we omit the proof.

Proposition 3.13.

([13]) Let ZZ be a Rudin subset system which possesses MM property. If PP is an sZs_{Z}-continuous poset, then PP is sZs_{Z}-quasicontinuous, and for any pPp\in P, ωZ(p)={FfP:yZp,suchthatyF}\omega_{Z}(p)=\{F\subseteq_{f}P:\exists y\ll_{Z}p,\mathrm{such\ that}\ y\in\mathord{\uparrow}F\}.

Proposition 3.14.

([10]) Let PP be an sZs_{Z}-continuous poset. Then PP is weakly meet sZs_{Z}-continuous.

Proposition 3.15.

Let PP be a weakly meet sZs_{Z}-continuous poset. If for any x,yPx,y\in P, xyx\nleq y, there are UσZ(P)U\in\sigma^{Z}(P), Vω(P)V\in\omega(P) such that xUx\in U, yVy\in V and UV=U\cap V=\emptyset, then PP is weak sZs_{Z}-continuous.

Proof 3.16.

It suffices to prove that x(Zx)δx\in(\rotatebox{90.0}{$\twoheadleftarrow$}_{Z}x)^{\delta} for any xPx\in P. Suppose that there is a y(zx)uy\in(\rotatebox{90.0}{$\twoheadleftarrow$}_{z}x)^{u} but xyx\nleq y. Then there are UσZ(P)U\in\sigma^{Z}(P), V=PFω(P)V=P\setminus\mathord{\uparrow}F\in\omega(P) such that xUx\in U, yVy\in V and UV=U\cap V=\emptyset, so UFU\subseteq\mathord{\uparrow}F. Since (xU)σZ(P)\mathord{\uparrow}(\mathord{\downarrow}x\cap U)\in\sigma^{Z}(P) by Lemma 3.2 and x(xU)Fx\in\mathord{\uparrow}(\mathord{\downarrow}x\cap U)\subseteq\mathord{\uparrow}F, we have xintσZ(P)(F)ZFx\in int_{\sigma^{Z}(P)}(\mathord{\uparrow}F)\subseteq\rotatebox{-90.0}{$\twoheadleftarrow$}_{Z}F. Thus there is an mFm\in F such that mZxm\in\rotatebox{90.0}{$\twoheadleftarrow$}_{Z}x. It follows that mym\leq y, then yFy\in\mathord{\uparrow}F. But this contradicts that yVy\in V.

Theorem 3.17.

Let P be a poset and ZZ a Rudin subset system which possesses the finite family union property and MM property. If ZxIZ(P)\rotatebox{90.0}{$\twoheadleftarrow$}_{Z}x\in I_{Z}(P) for each xPx\in P, then the following conditions are equivalent:

  1. (1)\mathrm{(1)}

    PP is sZs_{Z}-continuous;

  2. (2)\mathrm{(2)}

    PP is weakly meet sZs_{Z}-continuous and sZs_{Z}-quasicontinuous;

  3. (3)\mathrm{(3)}

    PP is weakly meet sZs_{Z}-continuous, and for any xyx\nleq y in PP, there are UσZ(P)U\in\sigma^{Z}(P), Vω(P)V\in\omega(P) such that xUx\in U, yVy\in V and UV=U\cap V=\emptyset.

Proof 3.18.

(1)(2)(1)\Rightarrow(2) Straightforward by Proposition 3.13 and Proposition 3.14.

(2)(3)(2)\Rightarrow(3) For any xyx\nleq y, that is, yxy\notin\mathord{\uparrow}x, there is an FωZ(x)F\in\omega_{Z}(x) such that yFy\notin\mathord{\uparrow}F by (2). So we get that there are ZFσZ(P)\Uparrow_{Z}F\in\sigma^{Z}(P), PFω(P)P\setminus\mathord{\uparrow}F\in\omega(P) containing xx and yy, respectively, and ZFPF=\Uparrow_{Z}F\cap P\setminus\mathord{\uparrow}F=\emptyset.

(3)(1)(3)\Rightarrow(1) By Proposition 3.15 and ZxIZ(P)\rotatebox{90.0}{$\twoheadleftarrow$}_{Z}x\in I_{Z}(P), we know PP is sZs_{Z}-continuous.

4 Posets with lower hereditary Z-Scott topology

Definition 4.1.

Let PP be a poset. The ZZ-Scott topology on PP is called lowerhereditarylower\ hereditary if for each closed subbasis AA of PP, the ZZ-Scott topology of poset AA is precisely generated by the subbasic closed subsets of the form BAB\cap A, where BΓZ(P)B\in\Gamma^{Z}(P), that is, ΓZ(A)={BA:BΓZ(P)}\Gamma^{Z}(A)=\{B\cap A:B\in\Gamma^{Z}(P)\}.

Definition 4.2.

Let PP, QQ be two posets. A mapping f:PQf:P\rightarrow Q is called σZ\sigma^{Z}-continuous if for any AΓZ(Q)A\in\Gamma^{Z}(Q), f1(A)ΓZ(P)f^{-1}(A)\in\Gamma^{Z}(P).

It is obvious that ff is monotone if ff is σZ\sigma^{Z}-continuous.

Lemma 4.3.

Let PP and QQ be two posets and f:PQf:P\rightarrow Q. Consider the following three conditions:

  1. (1)\mathrm{(1)}

    ff is σZ\sigma^{Z}-continuous.

  2. (2)\mathrm{(2)}

    For any DZ(P)D\in Z(P), f(Dδ)f(D)δf(D^{\delta})\subseteq f(D)^{\delta}.

  3. (3)\mathrm{(3)}

    f(clσZ(P)(A))clσZ(P)(f(A))f(cl_{\sigma^{Z}(P)}(A))\subseteq cl_{\sigma^{Z}(P)}(f(A)) for each APA\subseteq P.

Then (1)(2)(3)(1)\Leftrightarrow(2)\Rightarrow(3).

Proof 4.4.

Straightforward.

Lemma 4.5.

Let PP be a poset and ZZ a subset hereditary subset system. Consider the following conditions:

  1. (1)\mathrm{(1)}

    The ZZ-Scott topology on PP is lower hereditary.

  2. (2)\mathrm{(2)}

    The inclusion map i:xPi:\mathord{\downarrow}x\rightarrow P is σZ\sigma^{Z}-continuous for any xPx\in P.

  3. (3)\mathrm{(3)}

    For any xPx\in P and DZ(x)D\in Z(\mathord{\downarrow}x), Dδx=DδD^{\delta}\mid_{x}=D^{\delta}.

  4. (4)\mathrm{(4)}

    For any AΓZ(P)A\in\Gamma^{Z}(P) and DZ(A)D\in Z(A), DδA=DδD^{\delta}\mid_{A}=D^{\delta}.

  5. (5)\mathrm{(5)}

    For any DZ(P)D\in Z(P), DuD^{u} is filtered.

Then (5)(1)(2)(3)(4)(5)\Rightarrow(1)\Leftrightarrow(2)\Leftrightarrow(3)\Leftrightarrow(4).

Proof 4.6.

It is easy to verify that (1)(2)(3)(1)\Rightarrow(2)\Rightarrow(3).

(3)(4):(3)\Rightarrow(4): It is clear that DδDδAD^{\delta}\subseteq D^{\delta}\mid_{A}. Assume mDuAm\in D^{u}\mid_{A}. Then DmD\subseteq\mathord{\downarrow}m and mAm\in A. Since ZZ is subset hereditary, DZ(m)D\in Z(\mathord{\downarrow}m). Thus we have Dδm=DδD^{\delta}\mid_{m}=D^{\delta} by (3)(3). Now we only need to prove that DδADδmD^{\delta}\mid_{A}\subseteq D^{\delta}\mid_{m}. Assume aDδAa\in D^{\delta}\mid_{A}, bDumb\in D^{u}\mid_{m}. Then bmb\leq m and bAb\in A as mAm\in A, which implies that bDuAb\in D^{u}\mid_{A}, so aba\leq b. Hence, DδADδmD^{\delta}\mid_{A}\subseteq D^{\delta}\mid_{m}.

(4)(1):(4)\Rightarrow(1): We want to prove that ΓZ(A)={AC:CΓZ(P)}\Gamma^{Z}(A)=\{A\cap C:C\in\Gamma^{Z}(P)\} for any AΓZ(P)A\in\Gamma^{Z}(P). For each BΓZ(A)B\in\Gamma^{Z}(A), let DZ(P)D\in Z(P) and DBD\subseteq B. Then DZ(A)D\in Z(A) because ZZ is subset hereditary. It follows that DδABD^{\delta}\mid_{A}\subseteq B, which means DδBD^{\delta}\subseteq B since DδA=DδD^{\delta}\mid_{A}=D^{\delta}. Thus BΓZ(P)B\in\Gamma^{Z}(P) and ΓZ(A){AC:CΓZ(P)}\Gamma^{Z}(A)\subseteq\{A\cap C:C\in\Gamma^{Z}(P)\}. Conversely, for any CΓZ(P)C\in\Gamma^{Z}(P), let DZ(A)D\in Z(A) with DACD\subseteq A\cap C. Then DZ(P)D\in Z(P) and DδACD^{\delta}\subseteq A\cap C since ACΓZ(P)A\cap C\in\Gamma^{Z}(P). This implies that DδAACD^{\delta}\mid_{A}\subseteq A\cap C. So ACΓZ(A)A\cap C\in\Gamma^{Z}(A), and hence, ΓZ(A)={AC:CΓZ(P)}\Gamma^{Z}(A)=\{A\cap C:C\in\Gamma^{Z}(P)\} holds.

(5)(3):(5)\Rightarrow(3): Clearly, DδDδxD^{\delta}\subseteq D^{\delta}\mid_{x}. Conversely, assume mDδxm\in D^{\delta}\mid_{x}, nDun\in D^{u}. Then x,nDux,n\in D^{u}. Since DuD^{u} is filtered, there is a pDup\in D^{u} such that px,np\leq x,n. This implies pDuxp\in D^{u}\mid_{x}, so mpm\leq p. It follows that mnm\leq n by pnp\leq n. Thus DδxDδD^{\delta}\mid_{x}\subseteq D^{\delta}.

Example 4.7.

The condition (5) in the above lemma is not equivalent to others. Let \mathbb{N} be the set of natural numbers and P=(˙)P=\mathbb{N}\cup(\mathbb{N}^{\partial}\dot{\cup}\mathbb{N}^{\partial}) with the partial order defined by xyx\leq y iff xyx\leq y in \mathbb{N} or xyx\leq y in \mathbb{N}^{\partial} or xx\in\mathbb{N} and y˙y\in\mathbb{N}^{\partial}\dot{\cup}\mathbb{N}^{\partial} (see Fig. 1 for a better understanding). One can easily sees that for any n˙-n\in\mathbb{N}^{\partial}\dot{\cup}\mathbb{N}^{\partial} and D=𝒟({n})D=\mathbb{N}\in\mathcal{D}({\downarrow}\{-n\}), Dδ|n=DδD^{\delta}|_{-n}=D^{\delta}, but DuD^{u} is not filtered.

1232-22-21-11-1
Figure 1:
Corollary 4.8.

Every zcpo PP has a lower hereditary ZZ-Scott topology.

Proof 4.9.

Since supD\sup D exists for any DZ(P)D\in Z(P), DuD^{u} is filtered.

Definition 4.10.

A poset PP is called locally weakly meet sZs_{Z}-continuous if x{\downarrow}x as a subposet of PP is weakly meet sZs_{Z}-continuous for each xPx\in P.

Lemma 4.11.

Let PP be a poset with a lower hereditary ZZ-Scott topology and AΓZ(P)A\in\Gamma^{Z}(P). Then for any EAE\subseteq A, we have clσZ(P)(E)=clσZ(A)(E)cl_{\sigma^{Z}(P)}(E)=cl_{\sigma^{Z}(A)}(E).

Proof 4.12.

Straightforward.

Theorem 4.13.

Let PP be a poset with a lower hereditary ZZ-Scott topology and ZZ be subset hereditary. Then PP is weakly meet sZs_{Z}-continuous if and only if PP is locally weakly meet sZs_{Z}-continuous.

Proof 4.14.

()(\Rightarrow): For any xPx\in P, let DZ(x)D\in Z(\mathord{\downarrow}x), yDδxy\in D^{\delta}\mid_{x}. Then DZ(P)D\in Z(P). Since the ZZ-Scott topology of PP is lower hereditary, by Lemma 4.5, we have Dδx=DδD^{\delta}\mid_{x}=D^{\delta}. Thus yDδy\in D^{\delta}. It follows that yclσZ(P)(yD)y\in cl_{\sigma^{Z}(P)}(\mathord{\downarrow}y\cap\mathord{\downarrow}D) by the weakly meet sZs_{Z}-continuity of PP. Therefore, yclσZ(x)(yD)y\in cl_{\sigma^{Z}(\mathord{\downarrow}x)}(\mathord{\downarrow}y\cap\mathord{\downarrow}D) by Lemma 4.11.

()(\Leftarrow): Suppose DZ(P)D\in Z(P), yDδy\in D^{\delta}. For any mDum\in D^{u}, we have DmD\subseteq\mathord{\downarrow}m and DZ(m)D\in Z(\mathord{\downarrow}m) as ZZ is subset hereditary. Since Dδ=DδmD^{\delta}=D^{\delta}\mid_{m}, we have yDδmy\in D^{\delta}\mid_{m}, which implies that yclσZ(m)(yD)y\in cl_{\sigma^{Z}(\mathord{\downarrow}m)}(\mathord{\downarrow}y\cap\mathord{\downarrow}D). So yclσZ(P)(yD)y\in cl_{\sigma^{Z}(P)}(\mathord{\downarrow}y\cap\mathord{\downarrow}D) by Lemma 4.11 again.

Proposition 4.15.

Let PP be a poset with a lower hereditary ZZ-Scott topology. If PP is weak sZs_{Z}-continuous and for any xPx\in P, yxy\in\mathord{\downarrow}x, ZxyZ(x)\rotatebox{90.0}{$\twoheadleftarrow$}_{Z}^{x}y\in Z(\mathord{\downarrow}x), then x\mathord{\downarrow}x is sZs_{Z}-continuous.

Proof 4.16.

We need to prove that y(Zxy)δxy\in(\rotatebox{90.0}{$\twoheadleftarrow$}_{Z}^{x}y)^{\delta}\mid_{x}. Since PP is weak sZs_{Z}-continuous, y(Zy)δy\in(\rotatebox{90.0}{$\twoheadleftarrow$}_{Z}y)^{\delta}. Assume mZym\ll_{Z}y, DZ(x)D\in Z(\mathord{\downarrow}x) with yDδxy\in D^{\delta}\mid_{x}. Then yDδy\in D^{\delta} since the ZZ-Scott topology on PP is lower hereditary. So mDm\in\mathord{\downarrow}D by mZym\ll_{Z}y, which implies that mZym\ll_{Z}y in x\mathord{\downarrow}x. Therefore, ZyZxy\rotatebox{90.0}{$\twoheadleftarrow$}_{Z}y\subseteq\rotatebox{90.0}{$\twoheadleftarrow$}_{Z}^{x}y. Hence, y(Zy)δ(Zxy)δ=(Zxy)δxy\in(\rotatebox{90.0}{$\twoheadleftarrow$}_{Z}y)^{\delta}\subseteq(\rotatebox{90.0}{$\twoheadleftarrow$}_{Z}^{x}y)^{\delta}=(\rotatebox{90.0}{$\twoheadleftarrow$}_{Z}^{x}y)^{\delta}\mid_{x}, where the last equality holds as ZxyZ(x)\rotatebox{90.0}{$\twoheadleftarrow$}_{Z}^{x}y\in Z(\mathord{\downarrow}x). Moreover, ZxyZ(x)\rotatebox{90.0}{$\twoheadleftarrow$}_{Z}^{x}y\in Z(\mathord{\downarrow}x) implies ZxyIZ(x)\rotatebox{90.0}{$\twoheadleftarrow$}_{Z}^{x}y\in I_{Z}(\mathord{\downarrow}x), so x\mathord{\downarrow}x is sZs_{Z}-continuous.

Proposition 4.17.

Let PP be a poset with a lower hereditary ZZ-Scott topology and ZZ be subset hereditary. If for any xPx\in P, x\mathord{\downarrow}x is sZs_{Z}-continuous and ZxZ(P)\rotatebox{90.0}{$\twoheadleftarrow$}_{Z}x\in Z(P), then PP is sZs_{Z}-continuous.

Proof 4.18.

We only need to prove that x(Zx)δx\in(\rotatebox{90.0}{$\twoheadleftarrow$}_{Z}x)^{\delta}. By assumption, x\mathord{\downarrow}x is sZs_{Z}-continuous, we have x(Zxx)δxx\in(\rotatebox{90.0}{$\twoheadleftarrow$}_{Z}^{x}x)^{\delta}\mid_{x}. Now we show that ZxxZx\rotatebox{90.0}{$\twoheadleftarrow$}_{Z}^{x}x\subseteq\rotatebox{90.0}{$\twoheadleftarrow$}_{Z}x. Let mZxm\ll_{Z}x in x\mathord{\downarrow}x and DZ(P)D\in Z(P) with xDδx\in D^{\delta}. We can find that DyD\subseteq\mathord{\downarrow}y and DZ(y)D\in Z(\mathord{\downarrow}y) for each yDuy\in D^{u}. Claim that ZxxZyx\rotatebox{90.0}{$\twoheadleftarrow$}_{Z}^{x}x\subseteq\rotatebox{90.0}{$\twoheadleftarrow$}_{Z}^{y}x. Assume aZxxa\in\rotatebox{90.0}{$\twoheadleftarrow$}_{Z}^{x}x. Since y\mathord{\downarrow}y is sZs_{Z}-continuous and xyx\in\mathord{\downarrow}y, we have ZyxZ(y)\rotatebox{90.0}{$\twoheadleftarrow$}_{Z}^{y}x\in Z(\mathord{\downarrow}y) and x(Zyx)δyx\in(\rotatebox{90.0}{$\twoheadleftarrow$}_{Z}^{y}x)^{\delta}\mid_{y}. It follows that x(Zyx)δxx\in(\rotatebox{90.0}{$\twoheadleftarrow$}_{Z}^{y}x)^{\delta}\mid_{x} as xy\mathord{\downarrow}x\subseteq\mathord{\downarrow}y. Moreover, ZyxZ(x)\rotatebox{90.0}{$\twoheadleftarrow$}_{Z}^{y}x\in Z(\mathord{\downarrow}x) as Zyxx\rotatebox{90.0}{$\twoheadleftarrow$}_{Z}^{y}x\subseteq\mathord{\downarrow}x and ZZ is subset hereditary. This implies that aZyxa\in\rotatebox{90.0}{$\twoheadleftarrow$}_{Z}^{y}x. So ZxxZyx\rotatebox{90.0}{$\twoheadleftarrow$}_{Z}^{x}x\subseteq\rotatebox{90.0}{$\twoheadleftarrow$}_{Z}^{y}x holds. Thus mZxm\ll_{Z}x in y\mathord{\downarrow}y. As xDδx\in D^{\delta} implies that xDδyx\in D^{\delta}\mid_{y}, we have mDm\in\mathord{\downarrow}D. Hence, mZxm\ll_{Z}x. Then ZxxZx\rotatebox{90.0}{$\twoheadleftarrow$}_{Z}^{x}x\subseteq\rotatebox{90.0}{$\twoheadleftarrow$}_{Z}x. It is self-evident that x(Zxx)δx(Zx)δx=(Zx)δx\in(\rotatebox{90.0}{$\twoheadleftarrow$}_{Z}^{x}x)^{\delta}\mid_{x}\subseteq(\rotatebox{90.0}{$\twoheadleftarrow$}_{Z}x)^{\delta}\mid_{x}=(\rotatebox{90.0}{$\twoheadleftarrow$}_{Z}x)^{\delta}, where the last equality holds as ZxZ(x)\rotatebox{90.0}{$\twoheadleftarrow$}_{Z}x\in Z(\mathord{\downarrow}x). So PP is sZs_{Z}-continuous.

Theorem 4.19.

Let PP be a poset with a lower hereditary ZZ-Scott topology and ZZ be subset hereditary. Then the following conditions are equivalent:

  1. (1)\mathrm{(1)}

    PP is sZs_{Z}-continuous and ZxyZ(x)\rotatebox{90.0}{$\twoheadleftarrow$}_{Z}^{x}y\in Z(\mathord{\downarrow}x) for any xPx\in P and yxy\in\mathord{\downarrow}x;

  2. (2)\mathrm{(2)}

    x\mathord{\downarrow}x is sZs_{Z}-continuous and ZxZ(P)\rotatebox{90.0}{$\twoheadleftarrow$}_{Z}x\in Z(P) for any xPx\in P.

Proof 4.20.

Straightforward by Proposition 4.15 and 4.17.

5 A monad on POSETδ

In this part, 𝐏𝐎𝐒𝐄𝐓δ\mathbf{POSET_{\delta}} denotes the category whose objects are all posets and morphisms are σZ\sigma^{Z}-continuous mappings. We will give a monad on 𝐏𝐎𝐒𝐄𝐓δ\mathbf{POSET_{\delta}} and characterize its Eilenberg-Moore algebras.

Definition 5.1.

Let PP be a poset and x,yPx,y\in P.

  1. (1)\mathrm{(1)}

    xx is called ZZ-beneathbeneath yy, denoted by xZyx\prec_{Z}y, if for any AΓZ(P)A\in\Gamma^{Z}(P) with yAδy\in A^{\delta}, xAx\in A.

  2. (2)\mathrm{(2)}

    PP is said to be δZ\delta_{Z}-continuouscontinuous if for all aPa\in P, a{mP:mZa}δa\in\{m\in P:m\prec_{Z}a\}^{\delta}.

Notice that the set {mP:mZa}ΓZ(P)\{m\in P:m\prec_{Z}a\}\in\Gamma^{Z}(P) automatically. There are some common properties about the relation Z\prec_{Z} being similar to the \ll.

Proposition 5.2.

Let PP be a poset and x,y,m,nPx,y,m,n\in P.

  1. (1)\mathrm{(1)}

    xZyx\prec_{Z}y implies xyx\leq y;

  2. (2)\mathrm{(2)}

    mxZynm\leq x\prec_{Z}y\leq n implies mZnm\prec_{Z}n;

  3. (3)\mathrm{(3)}

    if PP has a bottom 0, then 0Zx0\prec_{Z}x always holds.

Proposition 5.3.

Let PP be a poset and 𝒞ΓZ(ΓZ(P))\mathcal{C}\in\Gamma^{Z}(\Gamma^{Z}(P)). Then the supremum of 𝒞\mathcal{C} in ΓZ(P)\Gamma^{Z}(P) exists and is exactly 𝒞\bigcup\mathcal{C}.

Proof 5.4.

Clearly, it is enough to show that 𝒞ΓZ(P)\bigcup\mathcal{C}\in\Gamma^{Z}(P). For any DZ(P)D\in Z(P) with D𝒞D\subseteq\bigcup\mathcal{C}, there is Cd𝒞C_{d}\in\mathcal{C} for each dDd\in D such that dCdd\in C_{d}. Then we have dCd{\downarrow}d\subseteq C_{d} and {d:dD}𝒞\{{\downarrow}d:d\in D\}\subseteq\mathcal{C} as 𝒞\mathcal{C} is a lower set. Since the monotonicity of the mapping f:PΓZ(P)f:P\rightarrow\Gamma^{Z}(P) defined by f(p)=pf(p)={\downarrow}p implies that {d:dD}Z(ΓZ(P))\{{\downarrow}d:d\in D\}\in Z(\Gamma^{Z}(P)), {d:dD}δ𝒞\{{\downarrow}d:d\in D\}^{\delta}\subseteq\mathcal{C}. Now consider each aDδa\in D^{\delta}, we have a{d:dD}δ{\downarrow}a\in\{{\downarrow}d:d\in D\}^{\delta}, which means a𝒞{\downarrow}a\in\mathcal{C}. Thus a𝒞a\in\bigcup\mathcal{C}, and Dδ𝒞D^{\delta}\subseteq\bigcup\mathcal{C} holds.

Definition 5.5.

Let PP be a poset.

  1. (1)\mathrm{(1)}

    An element xx of PP is called ZZ-compactcompact if xZxx\prec_{Z}x. We use kZ(P)k_{Z}(P) to denote the set of all ZZ-compact elements of PP.

  2. (2)\mathrm{(2)}

    PP is called δZ\delta_{Z}-prealgebraicprealgebraic if for each xPx\in P, x{ykZ(P):yx}δx\in\{y\in k_{Z}(P):y\leq x\}^{\delta}.

Notably, we call a δZ\delta_{Z}-prealgebraicprealgebraic complete lattice a δZ\delta_{Z}-prealgebraicprealgebraic lattice for short. Obviously, ΓZ(P)\Gamma^{Z}(P) is a δZ\delta_{Z}-prealgebraicprealgebraic lattice for any poset PP.

Lemma 5.6.

Let (g,d)(g,d) be a Galois connection between two posets SS and TT, where g:STg:S\rightarrow T, d:TSd:T\rightarrow S. Then dd preserves cuts of any subset of TT, that is, d(Aδ)d(A)δd(A^{\delta})\subseteq d(A)^{\delta} for any ATA\subseteq T.

Proof 5.7.

It suffices to show that d(x)d(A)δd(x)\in d(A)^{\delta} for any xAδx\in A^{\delta}. Let yy be an upper bound of d(A)d(A). Then for each aAa\in A, we have d(a)yd(a)\leq y, and so ag(y)a\leq g(y). It follows that Ag(y)A\subseteq{\downarrow}g(y). Thus Aδg(y)A^{\delta}\subseteq{\downarrow}g(y), which implies xg(y)x\leq g(y), so d(x)yd(x)\leq y. Hence, d(x)d(A)δd(x)\in d(A)^{\delta}.

Lemma 5.8.

Let (g,d)(g,d) be a Galois connection between two posets SS and TT, where g:STg:S\rightarrow T, d:TSd:T\rightarrow S. Then for any CΓZ(S)C\in\Gamma^{Z}(S), g(C)ΓZ(T){\downarrow}g(C)\in\Gamma^{Z}(T).

Proof 5.9.

Let EE be a ZZ-set of TT with Eg(C)E\subseteq{\downarrow}g(C). Then for any eEe\in E, there is a ceCc_{e}\in C such that eg(ce)e\leq g(c_{e}), this means d(e)ced(e)\leq c_{e}. Thus d(E)Cd(E)\subseteq C and d(E)δCd(E)^{\delta}\subseteq C since CΓZ(S)C\in\Gamma^{Z}(S). The conclusion of Lemma 5.6 indicates that d(Eδ)Cd(E^{\delta})\subseteq C. Therefore, Eδd1(C)=g(C)E^{\delta}\subseteq d^{-1}(C)={\downarrow}g(C).

Lemma 5.10.

Let (g,d)(g,d) be a Galois connection between two posets SS and TT, where g:STg:S\rightarrow T, d:TSd:T\rightarrow S. Consider the following two conditions:

  1. (1)\mathrm{(1)}

    For any AΓZ(S)A\in\Gamma^{Z}(S), g(Aδ)g(A)δg(A^{\delta})\subseteq g(A)^{\delta}.

  2. (2)\mathrm{(2)}

    dd preserves the relation Z\prec_{Z}.

Then (1)(2)(1)\Rightarrow(2); if TT is δZ\delta_{Z}-continuous, then (2)(1)(2)\Rightarrow(1).

Proof 5.11.

(1)(2)(1)\Rightarrow(2): We need to show that d(x)Zd(y)d(x)\prec_{Z}d(y) for any xZyx\prec_{Z}y in TT. Let AΓZ(S)A\in\Gamma^{Z}(S) with d(y)Aδd(y)\in A^{\delta}. Then yg(m)y\leq g(m) for some mAδm\in A^{\delta}. By the condition (1), we have g(m)g(A)δg(m)\in g(A)^{\delta} and hence, yg(A)δ=(g(A))δy\in g(A)^{\delta}=({\downarrow g(A)})^{\delta}. Lemma 5.8 indicates that g(A)ΓZ(T){\downarrow}g(A)\in\Gamma^{Z}(T), then xg(A)x\in{\downarrow}g(A) as xZyx\prec_{Z}y. Thus there is an aAa\in A such that xg(a)x\leq g(a), which implies d(x)ad(x)\leq a. It follows that d(x)Ad(x)\in A. Therefore, dd preserves the relation Z\prec_{Z}.

(2)(1)(2)\Rightarrow(1): By the δZ\delta_{Z}-continuity of TT, we know g(x){yT:yZg(x)}δg(x)\in\{y\in T:y\prec_{Z}g(x)\}^{\delta} for each xAδx\in A^{\delta}. Thus in order to show g(Aδ)g(A)δg(A^{\delta})\subseteq g(A)^{\delta} for any AΓZ(S)A\in\Gamma^{Z}(S), it suffices to prove that for each xAδx\in A^{\delta}, {yT:yZg(x)}δg(A)δ\{y\in T:y\prec_{Z}g(x)\}^{\delta}\subseteq g(A)^{\delta}. For each yZg(x)y\prec_{Z}g(x), since d(y)Zd(g(x))xd(y)\prec_{Z}d(g(x))\leq x, we have d(y)Zxd(y)\prec_{Z}x. Then d(y)Ad(y)\in A because xAδx\in A^{\delta} and AΓZ(S)A\in\Gamma^{Z}(S), which implies yg(A)y\in{\downarrow}g(A). Thus {yT:yZg(x)}δ(g(A))δ=g(A)δ\{y\in T:y\prec_{Z}g(x)\}^{\delta}\subseteq({\downarrow}g(A))^{\delta}=g(A)^{\delta}.

Lemma 5.12.

If LL is a zcpozcpo, then kZ(L)k_{Z}(L) is also a zcpozcpo.

Proof 5.13.

We just need to prove that supDkZ(L)\sup D\in k_{Z}(L) for any DZ(kZ(L))D\in Z(k_{Z}(L)). Let AΓZ(L)A\in\Gamma^{Z}(L) with supDAδ\sup D\in A^{\delta}. Then DAδD\subseteq A^{\delta}, and so DAD\subseteq A by DkZ(L)D\subseteq k_{Z}(L). Thus supD=DδA{\downarrow}\sup D=D^{\delta}\subseteq A, this means supDA\sup D\in A. Hence, supDkZ(L)\sup D\in k_{Z}(L) and supkZ(L)D=supDkZ(L)\sup_{k_{Z}(L)}D=\sup D\in k_{Z}(L). It follows that kZ(L)k_{Z}(L) is a zcpozcpo.

The above lemma ensures that DδkZ(L)=DδkZ(L)D^{\delta}\mid_{k_{Z}(L)}=D^{\delta}\cap k_{Z}(L) hold. There is an example illustrating that DδkZ(L)=DδkZ(L)D^{\delta}\mid_{k_{Z}(L)}=D^{\delta}\cap k_{Z}(L) doesn’t hold if LL is not a zcpozcpo.

Example 5.14.

Let PP be the poset consist of all natural numbers \mathbb{N} and {a,b,c,d,}\{a,b,c,d,\top\}. \top is the greatest element of PP and {a,b,c,d}u\{a,b,c,d\}\subseteq\mathbb{N}^{u}, c{a,b}uc\in\{a,b\}^{u}. Now consider Z=DZ=D, where D(P)D(P) is the family of all directed subsets. It is easy to verify that kD(P)={d}k_{D}(P)=\mathbb{N}\cup\{d\}. For D(P)\mathbb{N}\in D(P), δkD(P)={d}\mathbb{N}^{\delta}\mid_{k_{D}(P)}=\mathbb{N}\cup\{d\}, however, δkD(P)=\mathbb{N}^{\delta}\cap k_{D}(P)=\mathbb{N} since δ=\mathbb{N}^{\delta}=\mathbb{N}.

We denote by δ𝐙𝐏𝐀𝐋𝐆\mathbf{\delta_{Z}PALG} the category which has all δZ\delta_{Z}-prealgebraic lattices as objects and maps that have an upper adjoint and preserve the relation Z\prec_{Z} as morphisms. Next, we will investigate the relation between the categories 𝐏𝐎𝐒𝐄𝐓δ\mathbf{POSET_{\delta}} and δ𝐙𝐏𝐀𝐋𝐆\mathbf{\delta_{Z}PALG}.

Theorem 5.15.

Let KZK_{Z} and ΓZ\Gamma^{Z} be two functors between δ𝐙𝐏𝐀𝐋𝐆\mathbf{\delta_{Z}PALG} and 𝐏𝐎𝐒𝐄𝐓δ\mathbf{POSET_{\delta}}. Here KZK_{Z} is defined by associating a δZ\delta_{Z}-prealgebraic lattice with the poset kZ(L)k_{Z}(L) and a morphism f:LMf:L\rightarrow M in δ𝐙𝐏𝐀𝐋𝐆\mathbf{\delta_{Z}PALG} with the map KZ(f):kZ(L)kZ(M)K_{Z}(f):k_{Z}(L)\rightarrow k_{Z}(M) defined by

xkZ(L)\forall x\in k_{Z}(L), KZ(f)(x)=f(x)K_{Z}(f)(x)=f(x);

ΓZ\Gamma^{Z} is defined by assigning a poset PP to the δZ\delta_{Z}-prealgebraic lattice ΓZ(L)\Gamma^{Z}(L) and the σZ\sigma^{Z}-continuous mapping g:PQg:P\rightarrow Q to ΓZ(g):ΓZ(P)ΓZ(Q)\Gamma^{Z}(g):\Gamma^{Z}(P)\rightarrow\Gamma^{Z}(Q) defined as follows:

AΓZ(P)\forall A\in\Gamma^{Z}(P), ΓZ(g)(A)=clσZ(Q)(g(A))\Gamma^{Z}(g)(A)=cl_{\sigma^{Z}(Q)}(g(A)).

Then ΓZ\Gamma^{Z} is left adjoint to KZK_{Z} with unit ηP\eta_{P} and counit ϵP\epsilon_{P} given by

ηP:PKZΓZ(P):pp\eta_{P}:P\rightarrow K_{Z}\Gamma^{Z}(P):p\mapsto{\downarrow}p, pP\forall p\in P, and

ϵL:ΓZKZ(L)L:EsupE\epsilon_{L}:\Gamma^{Z}K_{Z}(L)\rightarrow L:E\mapsto\sup E, EΓZKZ(L)\forall E\in\Gamma^{Z}K_{Z}(L),

respectively.

Proof 5.16.

Step 1: Verify that functors KZK_{Z} and ΓZ\Gamma^{Z} are well-defined by showing that KZ(f)K_{Z}(f) and ΓZ(g)\Gamma^{Z}(g) are morphisms in 𝐏𝐎𝐒𝐄𝐓δ\mathbf{POSET_{\delta}}, δ𝐙𝐏𝐀𝐋𝐆\mathbf{\delta_{Z}PALG}, respectively. We claim that KZ(f)K_{Z}(f) is σZ\sigma^{Z}-continuous, that is, KZ(f)(DδkZ(L))(KZ(f)(D))δkZ(M)K_{Z}(f)(D^{\delta}\mid_{k_{Z}(L)})\subseteq(K_{Z}(f)(D))^{\delta}\mid_{k_{Z}(M)} for any DZ(kZ(L))D\in Z(k_{Z}(L)). Since LL is a complete lattice, by Lemma 5.12, kZ(L)k_{Z}(L) is a zcpozcpo. Thus we only need to prove that KZ(f)(kZ(L)supkZ(L)D)kZ(M)supkZ(M)KZ(f)(D)K_{Z}(f)({\downarrow}_{k_{Z}(L)}\sup_{k_{Z}(L)}D)\subseteq{\downarrow}_{k_{Z}(M)}\sup_{k_{Z}(M)}K_{Z}(f)(D). More precisely, to show KZ(f)(supDkZ(L))supKZ(f)(D)kZ(M)K_{Z}(f)({\downarrow}\sup D\cap k_{Z}(L))\subseteq{\downarrow}\sup K_{Z}(f)(D)\cap k_{Z}(M). From the fact that ff has an upper adjoint, we know f(supD)=supf(D)f(\sup D)=\sup f(D) holds. So it is easy to see that

KZ(f)(supDkZ(L))\displaystyle K_{Z}(f)({\downarrow}\sup D\cap k_{Z}(L)) KZ(f)(supD)kZ(M)\displaystyle\subseteq K_{Z}(f)({\downarrow}\sup D)\cap k_{Z}(M)
f(supD)kZ(M)\displaystyle\subseteq{\downarrow}f(\sup D)\cap k_{Z}(M)
=supf(D)kZ(M)\displaystyle={\downarrow}\sup f(D)\cap k_{Z}(M)
=supKZ(f)(D)kZ(M).\displaystyle={\downarrow}\sup K_{Z}(f)(D)\cap k_{Z}(M).

Hence, KZ(f)K_{Z}(f) is σZ\sigma^{Z}-continuous.

We proceed to show ΓZ(g)\Gamma^{Z}(g) has an upper adjoint and preserves the relation Z\prec_{Z}. It is obvious that ΓZ(g)\Gamma^{Z}(g) preserves arbitrary sups in ΓZ(P)\Gamma^{Z}(P), by Corollary O\mathrm{O}-3.5 in [6], ΓZ(g)\Gamma^{Z}(g) has an upper adjoint. Moreover, the upper adjoint is given by

h:ΓZ(Q)ΓZ(P):Cg1(C)h:\Gamma^{Z}(Q)\rightarrow\Gamma^{Z}(P):C\mapsto g^{-1}(C).

By Proposition 5.3, we know for any 𝒞ΓZ(ΓZ(Q)),sup𝒞=𝒞\mathcal{C}\in\Gamma^{Z}(\Gamma^{Z}(Q)),\sup\mathcal{C}=\bigcup\mathcal{C}. It follows that

h(𝒞δ)=g1(sup𝒞)={g1(𝒞)}={g1(𝒞)}=suph(𝒞)=h(𝒞)δh(\mathcal{C}^{\delta})=g^{-1}({\downarrow}\sup\mathcal{C})={\downarrow}\{g^{-1}(\bigcup\mathcal{C})\}={\downarrow}\{\bigcup g^{-1}(\mathcal{C})\}={\downarrow}\sup h(\mathcal{C})=h(\mathcal{C})^{\delta}.

Therefore, from the conclusion of Lemma 5.10, we get that ΓZ(g)\Gamma^{Z}(g) preserves Z\prec_{Z}. So ΓZ(g)\Gamma^{Z}(g) is a morphism in δ𝐙𝐏𝐀𝐋𝐆\mathbf{\delta_{Z}PALG}.

Step 2: To show ΓZ\Gamma^{Z} is left adjoint to KZK_{Z} in detail. Obviously, ηP\eta_{P} is σZ\sigma^{Z}-continuous, that is, a morphism in 𝐏𝐎𝐒𝐄𝐓δ\mathbf{POSET_{\delta}}. Now let LL be a δZ\delta_{Z}-prealgebraic lattice and f:PKZ(L)f:P\rightarrow K_{Z}(L) σZ\sigma^{Z}-continuous. We define

f¯:ΓZ(P)L:Asupf(A)\bar{f}:\Gamma^{Z}(P)\rightarrow L:A\mapsto\sup f(A).

It is easy to find that KZ(f¯)η=fK_{Z}(\bar{f})\circ\eta=f. Thus for the remainder, we need to prove that f¯\bar{f} is a unique morphism in δ𝐙𝐏𝐀𝐋𝐆\mathbf{\delta_{Z}PALG} such that KZ(f¯)η=fK_{Z}(\bar{f})\circ\eta=f. Note that f¯\bar{f} preserves arbitrary sups in ΓZ(P)\Gamma^{Z}(P) and ΓZ(P)\Gamma^{Z}(P) is a complete lattice, so f¯\bar{f} has an upper adjoint, denoted by ff^{*}. More specifically, for any mLm\in L,

f(m)\displaystyle f^{*}(m) =supf¯1(m)\displaystyle=\sup\bar{f}^{-1}({\downarrow}m)
=sup{CΓZ(P):f¯(C)m}\displaystyle=\sup\{C\in\Gamma^{Z}(P):\bar{f}(C)\leq m\}
=sup{tΓZ(P):f¯(t)m}\displaystyle=\sup\{{\downarrow}t\in\Gamma^{Z}(P):\bar{f}({\downarrow}t)\leq m\}
=sup{tΓZ(P):f(t)m}.\displaystyle=\sup\{{\downarrow}t\in\Gamma^{Z}(P):f(t)\leq m\}.

Then again by Lemma 5.10, we check that f(Bδ)f(B)δf^{*}(B^{\delta})\subseteq f^{*}(B)^{\delta} for any BΓZ(L)B\in\Gamma^{Z}(L) to affirm f¯\bar{f} preserves Z\prec_{Z}. Since LL and ΓZ(P)\Gamma^{Z}(P) are complete lattices, we only need to prove f(supB)supf(B)f^{*}(\sup B)\leq\sup f^{*}(B). To this end, consider each xΓZ(P){\downarrow}x\in\Gamma^{Z}(P) which satisfies f(x)supBf(x)\leq\sup B, that is, f(x)Bδf(x)\in B^{\delta}. Then f(x)Bf(x)\in B as f(x)kZ(L)f(x)\in k_{Z}(L). It follows that xf(f(x)){\downarrow}x\subseteq f^{*}(f(x)), in addition, xsupf(B){\downarrow}x\subseteq\sup f^{*}(B). Thus f(supB)supf(B)f^{*}(\sup B)\leq\sup f^{*}(B) holds, hence, f(Bδ)f(B)δf^{*}(B^{\delta})\subseteq f^{*}(B)^{\delta}. Besides, clearly, f¯\bar{f} is unique. Therefore, we can conclude that ΓZ\Gamma^{Z} is left adjoint to KZK_{Z}.

Next, we will give a monad on 𝐏𝐎𝐒𝐄𝐓δ\mathbf{POSET_{\delta}}. Before this, let us recall the following conclusion:

Proposition 5.17.

[3] Let U:𝒜U:\mathcal{B}\rightarrow\mathcal{A} and F:𝒜F:\mathcal{A}\rightarrow\mathcal{B} be functors such that FF is left adjoint to UU with η:idUF\eta:id\rightarrow UF and ϵ:FUid\epsilon:FU\rightarrow id the unit and counit, respectively. Then (UF,η,UϵF)(UF,\eta,U\epsilon F) is a monad on 𝒜\mathcal{A}.

Now, by combining the above two conclusions, and KZΓZK_{Z}\Gamma^{Z} is written as δ\delta, we obtain the following.

Theorem 5.18.

The endofunctor δ\delta together with two natural transformation η:idδ\eta:id\rightarrow\delta and μ=ΓZϵKZ:δ2δ\mu=\Gamma^{Z}\epsilon K_{Z}:\delta^{2}\rightarrow\delta is a monad on the category 𝐏𝐎𝐒𝐄𝐓δ\mathbf{POSET_{\delta}}. More precisely, for each P𝐏𝐎𝐒𝐄𝐓δP\in\mathbf{POSET_{\delta}}, ηP:Pδ(P)\eta_{P}:P\rightarrow\delta(P) and μP:δ2(P)δ(P)\mu_{P}:\delta^{2}(P)\rightarrow\delta(P) are defined as:

pP,η(p)=p\forall p\in P,\eta(p)={\downarrow}p,

𝒜δ2(P),μ(𝒜)=sup𝒜\forall\mathcal{A}\in\delta^{2}(P),\mu(\mathcal{A})=\sup\mathcal{A},

respectively.

Recall that an EilenbergEilenberg-MooreMoore algebra for a monad (T,η,μ)(T,\eta,\mu) on a category 𝒞\mathcal{C} is a pair (C,ξ)(C,\xi), where ξ:TCC\xi:TC\rightarrow C is a morphism in 𝒞\mathcal{C} called a structure map which satisfies ξηC=idC\xi\circ\eta_{C}=id_{C} and ξμC=ξTξ\xi\circ\mu_{C}=\xi T\xi. In addition, we call a poset PP δcpo\delta cpo if for any Aδ(P),supAA\in\delta(P),\sup A exists.

Theorem 5.19.

There exists a structure map ξ:δ(P)P\xi:\delta(P)\rightarrow P in 𝐏𝐎𝐒𝐄𝐓δ\mathbf{POSET_{\delta}} such that (P,ξ)(P,\xi) is an EilenbergEilenberg-MooreMoore algebra of the monad (δ,η,μ)(\delta,\eta,\mu) if and only if PP is a δcpo\delta cpo.

Proof 5.20.

()(\Rightarrow): We claim that supA=ξ(A)\sup A=\xi(A) exists for any Aδ(P)A\in\delta(P). Consider each aAa\in A, from the facts that η(a)=aA\eta(a)={\downarrow}a\subseteq A and ξ\xi is order-preserving, we have ξ(η(a))ξ(A)\xi(\eta(a))\leq\xi(A). This implies aξ(A)a\leq\xi(A) since ξηP=idP\xi\circ\eta_{P}=id_{P}. Thus ξ(A)\xi(A) is an upper bound of AA. Assume that mm is another upper bound of AA, which means Am=η(m)A\subseteq{\downarrow}m=\eta(m). So ξ(A)ξ(η(m))\xi(A)\leq\xi(\eta(m)) by the monotonicity of ξ\xi again. It follows that ξ(A)m\xi(A)\leq m, and hence ξ(A)=supA\xi(A)=\sup A.

()(\Leftarrow): Since PP is a δcpo\delta cpo, we can define ξ:δ(P)P\xi:\delta(P)\rightarrow P by CsupCC\mapsto\sup C. One can easily verify that ξηP=idP\xi\circ\eta_{P}=id_{P} and ξμP=ξδξ\xi\circ\mu_{P}=\xi\delta\xi. For the remaining part, what we need to prove is that ξ\xi is a morphism in 𝐏𝐎𝐒𝐄𝐓δ\mathbf{POSET_{\delta}}, that is, ξ\xi is σZ\sigma^{Z}-continuous. To this end, let 𝒜\mathcal{A} be a ZZ-set of δ(P)\delta(P). Since for every upper bound yy of ξ(𝒜)\xi(\mathcal{A}), we have ξ(A)=supAy\xi(A)=\sup A\leq y for each A𝒜A\in\mathcal{A}, which implies AyA\subseteq{\downarrow}y and so y{\downarrow}y is an upper bound of 𝒜\mathcal{A}. Thus for every B𝒜δB\in\mathcal{A}^{\delta}, ByB\subseteq{\downarrow}y, which means ξ(B)=supBy\xi(B)=\sup B\leq y. It follows that ξ(𝒜δ)={ξ(B):B𝒜δ}ξ(𝒜)δ\xi(\mathcal{A}^{\delta})=\{\xi(B):B\in\mathcal{A}^{\delta}\}\subseteq\xi(\mathcal{A})^{\delta}. Hence, ξ\xi is σZ\sigma^{Z}-continuous.

Refer to [11], if (T,η,μ)(T,\eta,\mu) is a monad on the category 𝒞\mathcal{C}, the category 𝐓\mathbf{T}-𝐀𝐋𝐆\mathbf{ALG} consists of all TT-algebras as objects and morphisms of TT-algebras as morphisms. Here a morphism of TT-algebras between (C,ξ)(C,\xi) and (C,ξ)(C^{\prime},\xi^{\prime}) in 𝐓\mathbf{T}-𝐀𝐋𝐆\mathbf{ALG} is a morphism f:CCf:C\rightarrow C^{\prime} in 𝒞\mathcal{C} which satisfies fξ=ξTff\circ\xi=\xi^{\prime}Tf.

Combining with the characterization of δ\delta-algebras, we can deduce that f:(P,α)(Q,β)f:(P,\alpha)\rightarrow(Q,\beta) is a δ\delta-algebra morphism if and only if f(supA)=supf(A)f(\sup A)=\sup f(A) for every Aδ(P)A\in\delta(P).

References