This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Weakly framed surface configurations, Heisenberg homology and Mapping Class Group action

Awais Shaukat111Abdus Salam School of Mathematical Sciences, Lahore, Pakistan,Christian Blanchet222UniversitΓ© Paris CitΓ© and Sorbonne UniversitΓ©, CNRS, IMJ-PRG, F-75013 Paris, France
Abstract

We obtain representations of the 𝚏\mathtt{f}-based Mapping Class Group of oriented punctured surfaces from an action of mapping classes on Heisenberg homologies of a circle bundle over surface configurations.

2020 MSC: 57K20, 55R80, 55N25, 20C12, 19C09
Key words: Mapping class group, configuration spaces, Heisenberg homology.

Introduction

It is shown in [8] that the braid group of an oriented surface with one boundary component has a natural quotient isomorphic to the Heisenberg group. From this one obtains homologies with coefficients in any representation of the Heisenberg group. The Mapping Class Group acts on the local coefficients and in general there is a twisted action of the Mapping Class Groups on Heisenberg homologies. For specific representations, including the famous ShrΓΆdinger one, the Mapping Class Group action can be untwisted, producing a native representation of a central extension.

In the closed case a similar quotient exists in genus 11, but produces a version of the Heisenberg group with finite center in higher genus [9], or more involved metabelian quotients [1]. Here we will recover an homomorphism to the full Heisenberg group by replacing the surface braid group by a central extension realized using an S1S^{1}-bundle over the configuration space. Elements of this bundle will be called weakly framed configurations, and its fundamental group named the weakly framed braid group. We obtain a presentation for this newly defined group and a quotient homomorphism to an Heisenberg group with infinite cyclic center. We then define homologies of weakly framed configurations with coefficients in any representation of the Heisenberg group. Finally we construct a twisted action of what we call the 𝚏\mathtt{f}-based Mapping Class Group, a central extension of the Mapping Class Group of the punctured surface whose elements are represented by diffeomorphisms fixing the weakly framed set of punctures.

The Heisenberg group in genus gg is usually realized as a group of (g+2)Γ—(g+2)(g+2)\times(g+2) matrices. In Section 4 we introduce the linearised regular representation which achieves it as a group of (2​g+2)Γ—(2​g+2)(2g+2)\times(2g+2) matrices. Using this representation as local coefficients, we obtain a native representation (no twisting) of the 𝚏\mathtt{f}-based Mapping Class Group.

A famous result of BigelowΒ [6] and KrammerΒ [11] states that the classical braid groups which are Mapping Class Groups in genus zero are linear. Bigelow’s proof uses an homological action on the 22-points configuration space in the punctured disc. Then Bigelow and BudneyΒ [7] deduced that the mapping class group of the closed orientable surface of genus 22 is also linear. We speculate that our representations can be used for the linearity problem in higher genus.

Acknowledgements.

We are thankful for the support of the Abdus Salam School of Mathematical Sciences. This paper is part of the PhD thesis of the first author. We are grateful to Martin Palmer for very useful comments on the preliminary version of this paper.

1 Weakly framed configurations

Let Ξ£g\Sigma_{g}, gβ©Ύ1g\geqslant 1, be a closed oriented genus gg surface. For nβ©Ύ2n\geqslant 2, the unordered configuration space of nn points in Ξ£g\Sigma_{g} is

π’žn​(Ξ£g)={{c1,…,cn}βŠ‚Ξ£g∣ciβ‰ cj​ forΒ iβ‰ j}.\mathcal{C}_{n}(\Sigma_{g})=\{\{c_{1},\dots,c_{n}\}\subset\Sigma_{g}\mid c_{i}\neq c_{j}\text{ for $i\neq j$}\}.

The surface braid group is then defined as 𝔹n​(Ξ£g)=Ο€1​(π’žn​(Ξ£g),βˆ—)\mathbb{B}_{n}(\Sigma_{g})=\pi_{1}(\mathcal{C}_{n}(\Sigma_{g}),*). Here βˆ—={βˆ—1,…,βˆ—n}*=\{*_{1},\dots,*_{n}\} is a base configuration. A presentation for this group was first obtained by G. P. Scott [13] and revisited by GonzΓ‘les-Meneses [10], Bellingeri [2]. The braid group of a bounded surface has a natural quotient isomorphic to the Heisenberg group of the surface. This is proved in [8] for a surface with one boundary component. In the closed case with genus g>1g>1 a similar quotient produces a version of the Heisenberg group with finite center; see [5, Section 5, Example 1] in case nβ©Ύ3n\geqslant 3. We will recover the full Heisenberg group by using an S1S^{1}-bundle over the configuration space. Let us equip Ξ£g\Sigma_{g} with a riemannian metric (the choice is irrelevant). This determines a conformal structure on Ξ£g\Sigma_{g}, which is equivalent to a complex structure. Then the configuration space π’žn​(Ξ£g)\mathcal{C}_{n}(\Sigma_{g}) inherits a complex structure with hermitian metric and a symplectic structure.

Using the complex structure we may define various bundles over the configuration space π’žn​(Ξ£g)\mathcal{C}_{n}(\Sigma_{g}). We have the complex tangent bundle Tℂ​(π’žn​(Ξ£g))T_{\mathbb{C}}(\mathcal{C}_{n}(\Sigma_{g})), its determinant Ξ”(π’žn(Ξ£g))=Ξ›n(Tβ„‚(π’žn(Ξ£g))\Delta(\mathcal{C}_{n}(\Sigma_{g}))=\Lambda^{n}(T_{\mathbb{C}}(\mathcal{C}_{n}(\Sigma_{g})), the square determinant Ξ”2​(π’žn​(Ξ£g))=Δ​(π’žn​(Ξ£g))βŠ—2\Delta^{2}(\mathcal{C}_{n}(\Sigma_{g}))=\Delta(\mathcal{C}_{n}(\Sigma_{g}))^{\otimes 2}.

Definition 1.

a) The weakly framed configuration space π’žnπšβ€‹(Ξ£g)\mathcal{C}^{\mathtt{f}}_{n}(\Sigma_{g}) of a closed riemannian surface Ξ£g\Sigma_{g} is the unit bundle in the square determinant Ξ”2​(π’žn​(Ξ£g))\Delta^{2}(\mathcal{C}_{n}(\Sigma_{g})).
b) The weakly framed surface braid group is the fundamental group 𝔹nπšβ€‹(Ξ£g)=Ο€1​(π’žnπšβ€‹(Ξ£g),βˆ—πš)\mathbb{B}^{\mathtt{f}}_{n}(\Sigma_{g})=\pi_{1}(\mathcal{C}^{\mathtt{f}}_{n}(\Sigma_{g}),*^{\mathtt{f}}). Here βˆ—πš*^{\mathtt{f}} is a lift of the base configuration βˆ—*.

Using the symplectic structure we also have the lagrangian grassmannian bundle ℒ​(π’žn​(Ξ£g))\mathcal{L}(\mathcal{C}_{n}(\Sigma_{g})), whose fiber is the grassmanian of lagrangian nn-spaces in β„‚n=ℝ2​n\mathbb{C}^{n}=\mathbb{R}^{2n} which can be identified with U​(n)/O​(n)U(n)/O(n). We have a square determinant map det2:ℒ​(π’žn​(Ξ£g))β†’π’žnπšβ€‹(Ξ£g)\det^{2}:\mathcal{L}(\mathcal{C}_{n}(\Sigma_{g}))\rightarrow\mathcal{C}^{\mathtt{f}}_{n}(\Sigma_{g}), which allows to consider π’žnπšβ€‹(Ξ£g)\mathcal{C}^{\mathtt{f}}_{n}(\Sigma_{g}) as a quotient of the lagrangian grassmannian bundle ℒ​(π’žn​(Ξ£g))\mathcal{L}(\mathcal{C}_{n}(\Sigma_{g})).

The framed braid group of surfaces F​Bn​(Ξ£g)FB_{n}(\Sigma_{g}) is studed in [3]. It is defined as the fundamental group of the space Fn​(Ξ£g)F_{n}(\Sigma_{g}) of nn-points configurations with a unit tangent vector at each point. A framing generates a lagrangian subspace which gives a map F​Bn​(Ξ£g)→ℒ​(π’žn​(Ξ£g))FB_{n}(\Sigma_{g})\rightarrow\mathcal{L}(\mathcal{C}_{n}(\Sigma_{g})). Composing with the projection we obtain a fibration F​Bn​(Ξ£g)β†’π’žnπšβ€‹(Ξ£g)FB_{n}(\Sigma_{g})\rightarrow\mathcal{C}^{\mathtt{f}}_{n}(\Sigma_{g}) whose fiber is the kernel of det2:(S1)nβ†’S1\det^{2}:(S^{1})^{n}\rightarrow S^{1}. We can deduce an homomorphism F​Bn​(Ξ£g)→𝔹nπšβ€‹(Ξ£g)FB_{n}(\Sigma_{g})\rightarrow\mathbb{B}^{\mathtt{f}}_{n}(\Sigma_{g}) whose image is an index 22 subgroup which identifies each framing generator with F2F^{2}, where FF is the weak framing generator (see below for a definition). A presentation of our weakly framed braid group 𝔹nπšβ€‹(Ξ£g)\mathbb{B}^{\mathtt{f}}_{n}(\Sigma_{g}) can be then deduced from [3, Theorem 13]. We will give below a short proof which will clarify our conventions and choice of generators.

We fix a decomposition of Ξ£g\Sigma_{g} as a disc with 2​g2g handles of index 11, which gives Ξ£g,1\Sigma_{g,1}, completed by a final handle of index 22. The based loops, Ξ±1,…,Ξ±g,Ξ²1,…,Ξ²g\alpha_{1},\dots,\alpha_{g},\beta_{1},\dots,\beta_{g} are depicted in Figure 1.

Refer to caption
Figure 1: Model for Ξ£g\Sigma_{g}; the index 22 handle is attached along Ξ΄\delta with reversed orientation.

The boundary of the 22-handle gives a loop homotopic to Ξ΄βˆ’1\delta^{-1} with Ξ΄=Ξ²g​α¯g​β¯g​αg​…​β1​α¯1​β¯1​α1\delta=\beta_{g}\overline{\alpha}_{g}\overline{\beta}_{g}\alpha_{g}\dots\beta_{1}\overline{\alpha}_{1}\overline{\beta}_{1}\alpha_{1}, which gives the relation in Ο€1​(Ξ£g,βˆ—1)\pi_{1}(\Sigma_{g},*_{1}). Here we write the composition of loops from right to left. We fix a unit vector field XX on Ξ£g,1\Sigma_{g,1}. The loops Ξ±i\alpha_{i}, Ξ²i\beta_{i}, 1β©½iβ©½g1\leqslant i\leqslant g, represent free generators for Ο€1​(Ξ£g,1,βˆ—1)\pi_{1}(\Sigma_{g,1},*_{1}). Here the base point βˆ—1*_{1} belongs to the base configuration βˆ—*. We will use the same notation Ξ±i\alpha_{i}, Ξ²i\beta_{i}, 1β©½iβ©½g1\leqslant i\leqslant g, for the corresponding braids where the weak framing is given by the square determinant of the framing obtained using XX at each point in the configuration. We have classical (positive) generators Οƒ1\sigma_{1}, …,Οƒnβˆ’1\sigma_{n-1} where the weak framing is also given by XX. We have a weak framing generator FF, which rotate counterclockwise the framing vector by Ο€\pi around βˆ—1*_{1}. The choice of the vector field XX is irrelevant in the presentation, but will be needed when acting with mapping classes. For comparing with Bellingeri and al. relations, note that they involve the negative classical generators; see e.g. [2, Fig. 1].

Theorem 2.

For nβ©Ύ2n\geqslant 2, the weakly framed braid group is generated by Ξ±1,…,Ξ±g\alpha_{1},\dots,\alpha_{g}, Ξ²1,…,Ξ²g\beta_{1},\dots,\beta_{g}, Οƒ1\sigma_{1}, …,Οƒnβˆ’1\sigma_{n-1} , FF, with relations

{FΒ is central,(BR1) ​[Οƒi,Οƒj]=1for ​|iβˆ’j|β©Ύ2,(BR2) ​σi​σj​σi=Οƒj​σi​σjfor ​|iβˆ’j|=1,(CR1) ​[Ξ±r,Οƒi]=[Ξ²r,Οƒi]=1for ​i>1​ and all ​r,(CR2) ​[Ξ±r,Οƒ1​αr​σ1]=[Ξ²r,Οƒ1​βr​σ1]=1for all ​r,(CR3) ​[Ξ±r,Οƒ1βˆ’1​αs​σ1]=[Ξ±r,Οƒ1βˆ’1​βs​σ1]==[Ξ²r,Οƒ1βˆ’1​αs​σ1]=[Ξ²r,Οƒ1βˆ’1​βs​σ1]=1for all ​r<s,(SCR) ​σ1​βr​σ1​αr​σ1=Ξ±r​σ1​βrfor all ​r,(FR) ​βg​α¯g​β¯g​αg​…​β1​α¯1​β¯1​α1​σ1​…​σnβˆ’1​σnβˆ’1​…​σ1=F4​gβˆ’4,\begin{cases}\,\text{$F$ is central},\\ \,\text{({BR1}) }\,[\sigma_{i},\sigma_{j}]=1&\text{for }\lvert i-j\rvert\geqslant 2,\\ \,\text{({BR2}) }\,\sigma_{i}\sigma_{j}\sigma_{i}=\sigma_{j}\sigma_{i}\sigma_{j}&\text{for }\lvert i-j\rvert=1,\\ \,\text{({CR1}) }\,[\alpha_{r},\sigma_{i}]=[\beta_{r},\sigma_{i}]=1&\text{for }i>1\text{ and all }r,\\ \,\text{({CR2}) }\,[\alpha_{r},\sigma_{1}\alpha_{r}\sigma_{1}]=[\beta_{r},\sigma_{1}\beta_{r}\sigma_{1}]=1&\text{for all }r,\\ \,\text{({CR3}) }\,[\alpha_{r},\sigma^{-1}_{1}\alpha_{s}\sigma_{1}]=[\alpha_{r},\sigma^{-1}_{1}\beta_{s}\sigma_{1}]=&\\ \qquad\qquad\qquad=[\beta_{r},\sigma^{-1}_{1}\alpha_{s}\sigma_{1}]=[\beta_{r},\sigma^{-1}_{1}\beta_{s}\sigma_{1}]=1&\text{for all }r<s,\\ \,\text{({SCR}) }\,\sigma_{1}\beta_{r}\sigma_{1}\alpha_{r}\sigma_{1}=\alpha_{r}\sigma_{1}\beta_{r}&\text{for all }r,\\ \,\text{({FR}) }\,\beta_{g}\overline{\alpha}_{g}\overline{\beta}_{g}\alpha_{g}\dots\beta_{1}\overline{\alpha}_{1}\overline{\beta}_{1}\alpha_{1}\,\sigma_{1}\dots\sigma_{n-1}\sigma_{n-1}\dots\sigma_{1}=F^{4g-4},\\ \end{cases}

Proof. The braid group 𝔹n​(Ξ£g)\mathbb{B}_{n}(\Sigma_{g}) is generated by Ξ±1,…,Ξ±g,Ξ²1,…,Ξ²g\alpha_{1},\dots,\alpha_{g},\beta_{1},\dots,\beta_{g}, Οƒ1\sigma_{1}, …,Οƒnβˆ’1\sigma_{n-1} with relations B​RBR, C​RCR, S​C​RSCR and

(TR) ​βg​α¯g​β¯g​αg​…​β1​α¯1​β¯1​α1​σ1​…​σnβˆ’1​σnβˆ’1​…​σ1=1.\,\text{({TR}) }\,\beta_{g}\overline{\alpha}_{g}\overline{\beta}_{g}\alpha_{g}\dots\beta_{1}\overline{\alpha}_{1}\overline{\beta}_{1}\alpha_{1}\,\sigma_{1}\dots\sigma_{n-1}\sigma_{n-1}\dots\sigma_{1}=1.

This is a slight reformulation of [2, Theorem 1.2]. Weakly framed configurations form an oriented S1S^{1}-bundle over configurations hence the weakly framed braid group 𝔹nπšβ€‹(Ξ£g)\mathbb{B}^{\mathtt{f}}_{n}(\Sigma_{g}) is a central extension of 𝔹n​(Ξ£g)\mathbb{B}_{n}(\Sigma_{g}). It is generated by lifts of the previous generators and an extra central generator FF. The relations are obtained from those for 𝔹n​(Ξ£g)\mathbb{B}_{n}(\Sigma_{g}), by correcting with the appropriate power of FF. Let Ξ£g,1\Sigma_{g,1} be the bounded surface obtained before gluing the index 22 handle. The braid group 𝔹n​(Ξ£g,1)\mathbb{B}_{n}(\Sigma_{g,1}) has presentation with generators Ξ±1,…,Ξ±g,Ξ²1,…,Ξ²g\alpha_{1},\dots,\alpha_{g},\beta_{1},\dots,\beta_{g}, Οƒ1\sigma_{1}, …,Οƒnβˆ’1\sigma_{n-1} and relations B​RBR, C​RCR, S​C​RSCR. Using a non singular vector field XX on Ξ£g,1\Sigma_{g,1}, we obtain homomorphisms

𝔹n​(Ξ£g,1)→𝔹nπšβ€‹(Ξ£g,1)→𝔹nπšβ€‹(Ξ£g).\mathbb{B}_{n}(\Sigma_{g,1})\rightarrow\mathbb{B}^{\mathtt{f}}_{n}(\Sigma_{g,1})\rightarrow\mathbb{B}^{\mathtt{f}}_{n}(\Sigma_{g})\ .

This implies that using this lifts for the generators Ξ±1,…,Ξ±g,Ξ²1,…,Ξ²g\alpha_{1},\dots,\alpha_{g},\beta_{1},\dots,\beta_{g}, Οƒ1\sigma_{1}, …,Οƒnβˆ’1\sigma_{n-1}, relations B​RBR, C​RCR, S​C​RSCR hold in 𝔹nπšβ€‹(Ξ£g)\mathbb{B}^{\mathtt{f}}_{n}(\Sigma_{g}). It remains to check the framing correction for the last relation. The lift of the left hand side in (TR) is represented by the loop Ξ΄\delta with the framing given by XX. The loop Ξ΄\delta is turning negatively around the outside 22-cell hence the framing turns 2​gβˆ’22g-2 times along Ξ΄\delta. The square determinant turns 4​gβˆ’44g-4 times which gives relation (FR). Β Β 

2 Heisenberg homologies

In genus 11, the braid group 𝔹n​(Ξ£1)\mathbb{B}_{n}(\Sigma_{1}) quotiented by Οƒ1\sigma_{1} made central is isomorphic to the standard discrete Heisenberg group, and the construction from [8] applies. In this section we will suppose g>1g>1 and consider a version of the discrete Heisenberg group designed for our situation. The Heisenberg group β„‹g\mathcal{H}_{g} is ℀​ν×H1​(Ξ£g,β„€)\mathbb{Z}\nu\times H_{1}(\Sigma_{g},\mathbb{Z}) with Ξ½=gcd⁑(2​gβˆ’2,g+nβˆ’1)2​gβˆ’2βˆˆβ„š\nu=\frac{\gcd(2g-2,g+n-1)}{2g-2}\in\mathbb{Q}, and operation

(k,x)(l,y)=(k+l+x.y,x+y).(k,x)(l,y)=(k+l+\,x.y,x+y). (1)

It will be convenient to further embed this group in the rational or real Heisenberg groups β„‹β„š\mathcal{H}_{\mathbb{Q}}, ℋℝ\mathcal{H}_{\mathbb{R}} which motivate a formulation where the center is identified with ℀​ν\mathbb{Z}\nu rather than β„€\mathbb{Z}. For g>1g>1, we will use the notation aia_{i}, bib_{i} for the homology classes of Ξ±i\alpha_{i}, Ξ²i\beta_{i}, 1β©½iβ©½g1\leqslant i\leqslant g.

Proposition 3.

a) For each g>1g>1 and nβ©Ύ2n\geqslant 2, there is a surjective homomorphism

Ο•:𝔹nπšβ€‹(Ξ£g)-β† β„‹g\phi\colon\mathbb{B}^{\mathtt{f}}_{n}(\Sigma_{g})\relbar\joinrel\twoheadrightarrow\mathcal{H}_{g}

sending each Οƒi\sigma_{i} to u=(1,0)u=(1,0), Ξ±i\alpha_{i} to a~i=(0,ai)\tilde{a}_{i}=(0,a_{i}), Ξ²i\beta_{i} to b~i=(0,bi)\tilde{b}_{i}=(0,b_{i}) and FF to v=(g+nβˆ’12​gβˆ’2,0)v=(\frac{g+n-1}{2g-2},0).
b) The kernel of Ο•\phi is normally generated by the commutators [Οƒ1,x][\sigma_{1},x], xβˆˆπ”Ήnπšβ€‹(Ξ£g)x\in\mathbb{B}^{\mathtt{f}}_{n}(\Sigma_{g}), and Οƒ1g+nβˆ’1​F2βˆ’2​g\sigma_{1}^{g+n-1}F^{2-2g}.

Proof. For the statement a) it is enough to show that all relations in Theorem 2 are satisfied in β„‹g\mathcal{H}_{g} for the images of the generators. This is straightforward for relations (BR) and (CR). For (SCR), we get

ϕ​(Οƒ1​βs​σ1​αs​σ1)=(2,as+bs)=ϕ​(Ξ±s​σ1​βs).\phi(\sigma_{1}\beta_{s}\sigma_{1}\alpha_{s}\sigma_{1})=(2,a_{s}+b_{s})=\phi(\alpha_{s}\sigma_{1}\beta_{s}).

Denote by l​h​slhs the left hand side in relation (FR). We have

ϕ​(l​h​s)=(2​g+2​nβˆ’2,0)=ϕ​(F4​gβˆ’4).\phi(lhs)=(2g+2n-2,0)=\phi(F^{4g-4}).

The subgroup Im​(Ο•)\mathrm{Im}(\phi) is generated by u=(1,0)u=(1,0), v=(g+nβˆ’12​gβˆ’2,0)v=(\frac{g+n-1}{2g-2},0), a~i=(0,ai)\tilde{a}_{i}=(0,a_{i}), b~i=(0,bi)\tilde{b}_{i}=(0,b_{i}), 1β©½iβ©½g1\leqslant i\leqslant g, with uu and vv central and relations

ug+nβˆ’1=v2​gβˆ’2,u^{g+n-1}=v^{2g-2}\ ,
x​y=u2​x.y​y​x​ forΒ x,yΒ among theΒ a~i,b~i,.xy=u^{2x.y}yx\text{ for $x,y$ among the $\tilde{a}_{i}$,$\tilde{b}_{i}$},\ .

This subgroup contains Ξ½\nu and hence is equal to β„‹g\mathcal{H}_{g}. From the presentation in Theorem 2, we obtain that the quotient of 𝔹nπšβ€‹(Ξ£g)\mathbb{B}^{\mathtt{f}}_{n}(\Sigma_{g}) by [Οƒ1,𝔹nπšβ€‹(Ξ£g)][\sigma_{1},\mathbb{B}^{\mathtt{f}}_{n}(\Sigma_{g})] and Οƒ1g+nβˆ’1​F2βˆ’2​g\sigma_{1}^{g+n-1}F^{2-2g} is generated by Οƒ1\sigma_{1}, Ξ±1,…,Ξ±g,Ξ²1,…,Ξ²g\alpha_{1},\dots,\alpha_{g},\beta_{1},\dots,\beta_{g}, FF, with relations

{FΒ andΒ Οƒ1Β are central,(CR3) ​[Ξ±r,Ξ±s]=[Ξ±r,Ξ²s]=[Ξ²r,Ξ²s]=1for all ​r<s,(SCR) ​σ12​βr​αr=Ξ±r​βrfor all ​r,(FR) ​σ1g+nβˆ’1=F2​gβˆ’2,\begin{cases}\,\text{$F$ and $\sigma_{1}$ are central},\\ \,\text{({CR3}) }\,[\alpha_{r},\alpha_{s}]=[\alpha_{r},\beta_{s}]=[\beta_{r},\beta_{s}]=1&\text{for all }r<s,\\ \,\text{({SCR}) }\,\sigma_{1}^{2}\beta_{r}\alpha_{r}=\alpha_{r}\beta_{r}&\text{for all }r,\\ \,\text{({FR}) }\,\sigma_{1}^{g+n-1}=F^{2g-2},\\ \end{cases}

The homomorphism Ο•\phi matches the two presentations. The statement b) for the kernel follows. Β Β 

Using the homomorphism Ο•\phi we define a regular covering π’ž~nπšβ€‹(Ξ£g)\widetilde{\mathcal{C}}^{\mathtt{f}}_{n}(\Sigma_{g}) of the weakly framed configuration space π’žnπšβ€‹(Ξ£g){\mathcal{C}}^{\mathtt{f}}_{n}(\Sigma_{g}). The homology of this cover is what we call the Heisenberg homology. Deck transformations endow Heisenberg homology with a right module structure over the group ring ℀​[β„‹g]\mathbb{Z}[\mathcal{H}_{g}]. We may specialise to local coefficients as follows. Let us denote by Sβˆ—β€‹(π’ž~nπšβ€‹(Ξ£g))S_{*}(\widetilde{\mathcal{C}}^{\mathtt{f}}_{n}(\Sigma_{g})) the singular chain complex of the Heisenberg cover, which is a right ℀​[β„‹g]\mathbb{Z}[\mathcal{H}_{g}]-module. Given a representation ρ:β„‹gβ†’G​L​(V)\rho:\mathcal{H}_{g}\rightarrow GL(V), the corresponding local homology is that of the complex Sβˆ—β€‹(π’žnπšβ€‹(Ξ£),V):=Sβˆ—β€‹(π’ž~nπšβ€‹(Ξ£))βŠ—β„€β€‹[β„‹g]VS_{*}(\mathcal{C}^{\mathtt{f}}_{n}(\Sigma),V):=S_{*}(\widetilde{\mathcal{C}}^{\mathtt{f}}_{n}(\Sigma))\otimes_{\mathbb{Z}[\mathcal{H}_{g}]}V. It will be called the Heisenberg homology of weakly framed surface configurations with coefficients in VV.

It is convenient to also consider Borel-Moore homology

Hβˆ—B​M​(π’žnπšβ€‹(Ξ£g);V)=lim←T⁑Hβˆ—β€‹(π’žnπšβ€‹(Ξ£g),π’žnπšβ€‹(Ξ£g)βˆ–T𝚏;V),H_{*}^{BM}(\mathcal{C}^{\mathtt{f}}_{n}(\Sigma_{g});V)={\varprojlim_{T}}\,H_{*}(\mathcal{C}^{\mathtt{f}}_{n}(\Sigma_{g}),\mathcal{C}^{\mathtt{f}}_{n}(\Sigma_{g})\setminus T^{\mathtt{f}};V),

the inverse limit is taken over all compact subsets TβŠ‚π’žn​(Ξ£g)T\subset\mathcal{C}_{n}(\Sigma_{g}), and TπšβŠ‚π’žnπšβ€‹(Ξ£g)T^{\mathtt{f}}\subset\mathcal{C}^{\mathtt{f}}_{n}(\Sigma_{g}) denotes the corresponding weakly framed configurations.

3 Action of the 𝚏\mathtt{f}-based Mapping Class Group

Recall that βˆ—={βˆ—1,…,βˆ—n}βˆˆπ’žn(Ξ£g)*=\{*_{1},\dots,*_{n}\}\in\mathcal{C}_{n}(\Sigma_{g}), gβ©Ύ2g\geqslant 2, nβ©Ύ2n\geqslant 2, is the base nn-points configuration. We denote by 𝔐​(Ξ£g,βˆ—)\mathfrak{M}(\Sigma_{g},*) the Mapping Class Group of the punctured surface. By a theorem of Moser [12], we may work with representatives of mapping classes which are area preserving, equivalently in this dimension with symplectomorphisms. Let us denote by π’žn​(f)\mathcal{C}_{n}(f) the diffeomorphism of π’žn​(Ξ£g)\mathcal{C}_{n}(\Sigma_{g}) corresponding to a symplectomorphism ff which fixes the base configuration. It is a symplectomorphism giving an action on the lagrangian bundle ℒ​(π’žn​(Ξ£g))\mathcal{L}(\mathcal{C}_{n}(\Sigma_{g})). We obtain an induced action π’žnπšβ€‹(f)\mathcal{C}^{\mathtt{f}}_{n}(f) on the square determinant quotient π’žnπšβ€‹(Ξ£g)\mathcal{C}^{\mathtt{f}}_{n}(\Sigma_{g}). We denote by βˆ—πš*^{\mathtt{f}} the base configuration with a choice of weak framing, i.e. an inverse image of βˆ—* in π’žnπšβ€‹(Ξ£g)\mathcal{C}^{\mathtt{f}}_{n}(\Sigma_{g}). We will consider here an extension of the Mapping Class Group obtained with isotopy classes of symplectomorphism fixing the base configuration with weak framing βˆ—πš*^{\mathtt{f}}.

We fix a lift βˆ—~πšβˆˆπ’ž~nπšβ€‹(Ξ£g)\tilde{*}^{\mathtt{f}}\in\widetilde{\mathcal{C}}^{\mathtt{f}}_{n}(\Sigma_{g}) of the weakly framed base configuration βˆ—πš*^{\mathtt{f}}.

Proposition 4.

Let ff be a symplectomorphism fixing βˆ—πš*^{\mathtt{f}}, then π’žnπšβ€‹(f)\mathcal{C}^{\mathtt{f}}_{n}(f) lifts uniquely to a diffeomorphism

π’ž~nπšβ€‹(f):π’ž~nπšβ€‹(Ξ£g)β†’π’ž~nπšβ€‹(Ξ£g),\widetilde{\mathcal{C}}^{\mathtt{f}}_{n}(f):\widetilde{\mathcal{C}}^{\mathtt{f}}_{n}(\Sigma_{g})\rightarrow\widetilde{\mathcal{C}}^{\mathtt{f}}_{n}(\Sigma_{g})\ ,

which fixes βˆ—~𝚏\tilde{*}^{\mathtt{f}}.

Proof. The diffeomorphism π’žnπšβ€‹(f)\mathcal{C}^{\mathtt{f}}_{n}(f) fixes the base point βˆ—πšβˆˆπ’žn𝚏(Ξ£g)*^{\mathtt{f}}\in\mathcal{C}^{\mathtt{f}}_{n}(\Sigma_{g}). It induces an automorphism π’žnπšβ€‹(f)β™―\mathcal{C}^{\mathtt{f}}_{n}(f)_{\sharp} of 𝔹nπšβ€‹(Ξ£g)=Ο€1​(π’žnπšβ€‹(Ξ£g),βˆ—πš)\mathbb{B}^{\mathtt{f}}_{n}(\Sigma_{g})=\pi_{1}(\mathcal{C}^{\mathtt{f}}_{n}(\Sigma_{g}),*^{\mathtt{f}}) which fixes the classical generator Οƒ1\sigma_{1} and the framing generator FF. Recall that π’ž~nπšβ€‹(Ξ£g)\widetilde{\mathcal{C}}^{\mathtt{f}}_{n}(\Sigma_{g}) is the regular covering space associated with Ο•:𝔹nπšβ€‹(Ξ£g)β†’β„‹g\phi:\mathbb{B}^{\mathtt{f}}_{n}(\Sigma_{g})\rightarrow\mathcal{H}_{g}. From Proposition 3 we get that

π’žnπšβ€‹(f)♯​(Ker​(Ο•))=Ker​(Ο•),\mathcal{C}^{\mathtt{f}}_{n}(f)_{\sharp}(\mathrm{Ker}(\phi))=\mathrm{Ker}(\phi)\ ,

which proves the statement. Β Β 

The above argument also proves the following, which can be seen as an extension of similar results on surface braid groups [1, 4, 8].

Proposition 5.

There exists a unique automorphism fℋ:ℋg→ℋgf_{\mathcal{H}}\colon\mathcal{H}_{g}\rightarrow\mathcal{H}_{g}, which is identity on the center and such that the following square commutes:

𝔹nπšβ€‹(Ξ£g){\mathbb{B}^{\mathtt{f}}_{n}(\Sigma_{g})}𝔹nπšβ€‹(Ξ£g){\mathbb{B}^{\mathtt{f}}_{n}(\Sigma_{g})}β„‹g{\mathcal{H}_{g}}β„‹g{\mathcal{H}_{g}}Ο•\scriptstyle{\phi}𝔹nπšβ€‹(Ξ£)\scriptstyle{\mathbb{B}^{\mathtt{f}}_{n}(\Sigma)}Ο•\scriptstyle{\phi}fβ„‹\scriptstyle{f_{\mathcal{H}}} (2)
Definition 6.

The 𝚏\mathtt{f}-based Mapping Class Group π”πšβ€‹(Ξ£g,βˆ—πš)\mathfrak{M}^{\mathtt{f}}(\Sigma_{g},*^{\mathtt{f}}) is the group of isotopy classes of symplectomorphisms fixing the base weakly framed configuration βˆ—πš*^{\mathtt{f}}.

Proposition 7.

The group π”πšβ€‹(Ξ£g,βˆ—πš)\mathfrak{M}^{\mathtt{f}}(\Sigma_{g},*^{\mathtt{f}}) is a β„€\mathbb{Z} central extension of 𝔐​(Ξ£g,βˆ—)\mathfrak{M}(\Sigma_{g},*), with kernel generated by the half twist around the base point βˆ—1*_{1}.

Proof. We have an evaluation map from the group of symplectomorphisms fixing the base configuration βˆ—* to the fiber S1S^{1} over βˆ—* in the bundle π’žnπšβ€‹(Ξ£g)\mathcal{C}^{\mathtt{f}}_{n}(\Sigma_{g}). This is a fibration and we obtained an exact sequence

0β†’β„€=Ο€1​(S1)\displaystyle 0\rightarrow\mathbb{Z}=\pi_{1}(S^{1}) β†’π”πšβ€‹(Ξ£g,βˆ—πš)=Ο€0​(Sympπšβ€‹(Ξ£g,βˆ—πš))\displaystyle\rightarrow\mathfrak{M}^{\mathtt{f}}(\Sigma_{g},*^{\mathtt{f}})=\pi_{0}(\mathrm{Symp}^{\mathtt{f}}(\Sigma_{g},*^{\mathtt{f}}))
→𝔐​(Ξ£g,βˆ—)=Ο€0​(Symp​(Ξ£g,βˆ—))β†’1\displaystyle\rightarrow\mathfrak{M}(\Sigma_{g},*)=\pi_{0}(\mathrm{Symp}(\Sigma_{g},*))\rightarrow 1

The isotopy between the identity and the half twist around βˆ—1*_{1} rotates the framing at βˆ—1*_{1} by Ο€\pi, which generates Ο€1\pi_{1} of the fiber. This identifies the kernel generator. This half twist commutes with symplectomorphisms which are identity on a disc neighbourhood of the base configuration βˆ—*. One can check that it also commutes up to isotopy fixing βˆ—πš*^{\mathtt{f}} with symplectomorphisms supported in a disc containing βˆ—*, which are classical braids. Composing with classical braids any symplectomorphism fixing βˆ—πš*^{\mathtt{f}} is isotopic to one which is the identity on a disc neighbourhood of βˆ—*. Centrality follows. Β Β 

We denote by Aut+​(β„‹g)\mathrm{Aut}^{+}(\mathcal{H}_{g}) the group of oriented automorphisms of β„‹g\mathcal{H}_{g} which means automorphisms which are identity on the center. We have an action of the 𝚏\mathtt{f}-based Mapping Class Group on the Heisenberg group β„‹g\mathcal{H}_{g}, Ξ¨:π”πšβ€‹(Ξ£g,βˆ—πš)⟢Aut+​(β„‹g)\Psi\colon\mathfrak{M}^{\mathtt{f}}(\Sigma_{g},*^{\mathtt{f}})\longrightarrow\mathrm{Aut}^{+}(\mathcal{H}_{g}), f↦fβ„‹f\mapsto f_{\mathcal{H}}. The quotient of β„‹g\mathcal{H}_{g} by its center is equal to H1​(Ξ£g,β„€)H_{1}(\Sigma_{g},\mathbb{Z}) hence every oriented automorphism Ο„βˆˆAut+​(β„‹g)\tau\in\mathrm{Aut}^{+}(\mathcal{H}_{g}) induces an automorhism of H1​(Ξ£g,β„€)H_{1}(\Sigma_{g},\mathbb{Z}). The triviality of the action on the center implies that the induced map τ¯\overline{\tau} is symplectic, so we have an homomorphism Aut+​(β„‹g)β†’S​p​(H1​(Ξ£g,β„€))\mathrm{Aut}^{+}(\mathcal{H}_{g})\to Sp(H_{1}(\Sigma_{g},\mathbb{Z})). This homomorphism has a section and its kernel is isomorphic to Hom​(H1​(Ξ£g,β„€),℀​ν)β‰…H1​(Ξ£g,℀​ν)\mathrm{Hom}(H_{1}(\Sigma_{g},\mathbb{Z}),\mathbb{Z}\nu)\cong H^{1}(\Sigma_{g},\mathbb{Z}\nu), see [8, Lemma 16]. This identifies the group Aut+​(β„‹g)\mathrm{Aut}^{+}(\mathcal{H}_{g}) as a semidirect product

Aut+​(β„‹g)β‰…S​p​(H1​(Ξ£g))⋉H1​(Ξ£g,℀​ν).\mathrm{Aut}^{+}(\mathcal{H}_{g})\cong Sp(H_{1}(\Sigma_{g}))\ltimes H^{1}(\Sigma_{g},\mathbb{Z}\nu)\ .

The action of a 𝚏\mathtt{f}-based mapping class fβˆˆπ”πšβ€‹(Ξ£g,βˆ—πš)f\in\mathfrak{M}^{\mathtt{f}}(\Sigma_{g},*^{\mathtt{f}}) on β„‹g\mathcal{H}_{g} writes down

fβ„‹:(k,x)↦(k+Ξ΄f​(x),fβˆ—β€‹(x)),f_{\mathcal{H}}:(k,x)\mapsto(k+\delta_{f}(x),f_{*}(x))\ ,

where Ξ΄:π”πšβ€‹(Ξ£g,βˆ—πš)β†’H1​(Ξ£g,℀​ν)\delta:\mathfrak{M}^{\mathtt{f}}(\Sigma_{g},*^{\mathtt{f}})\rightarrow H^{1}(\Sigma_{g},{\mathbb{Z}}\nu) is a crossed homomorphism, i.e. for all f,gβˆˆπ”β€‹(Ξ£g)f,g\in\mathfrak{M}(\Sigma_{g}) we have Ξ΄g∘f=Ξ΄f+fβˆ—β€‹(Ξ΄g)\delta_{g\circ f}=\delta_{f}+f^{*}(\delta_{g}), see [8, Section 3.3].

From proposition 4 we obtain for fβˆˆπ”πšβ€‹(Ξ£g,βˆ—πš)f\in\mathfrak{M}^{\mathtt{f}}(\Sigma_{g},*^{\mathtt{f}}) an homology isomorphism

π’ž~nπšβ€‹(f)βˆ—:Hβˆ—β€‹(π’žnπšβ€‹(Ξ£g),β„€)⟢Hβˆ—β€‹(π’žnπšβ€‹(Ξ£g),β„€)\widetilde{\mathcal{C}}^{\mathtt{f}}_{n}(f)_{*}\colon H_{*}(\mathcal{C}^{\mathtt{f}}_{n}(\Sigma_{g}),\mathbb{Z})\longrightarrow H_{*}\bigl{(}\mathcal{C}^{\mathtt{f}}_{n}(\Sigma_{g}),\mathbb{Z}\bigr{)}

which is β„€\mathbb{Z}-linear. This provides a representation of the 𝚏\mathtt{f}-based Mapping Class Group

π”πšβ€‹(Ξ£g,βˆ—πš)β†’Aut℀​(Hβˆ—β€‹(π’žnπšβ€‹(Ξ£g),β„€)).\mathfrak{M}^{\mathtt{f}}(\Sigma_{g},*^{\mathtt{f}})\rightarrow\mathrm{Aut}_{\mathbb{Z}}(H_{*}(\mathcal{C}^{\mathtt{f}}_{n}(\Sigma_{g}),\mathbb{Z}))\ .

This representation is twisted with respect to the right ℀​[β„‹g]\mathbb{Z}[\mathcal{H}_{g}]-module structure, which means that for x∈Hβˆ—β€‹(π’žnπšβ€‹(Ξ£g),β„€)x\in H_{*}(\mathcal{C}^{\mathtt{f}}_{n}(\Sigma_{g}),\mathbb{Z}), hβˆˆβ„‹gh\in\mathcal{H}_{g}, we have

π’ž~n𝚏(f)βˆ—(x.h)=π’ž~n𝚏(f)βˆ—(x).fβ„‹(h).\widetilde{\mathcal{C}}^{\mathtt{f}}_{n}(f)_{*}(x.h)=\widetilde{\mathcal{C}}^{\mathtt{f}}_{n}(f)_{*}(x).f_{\mathcal{H}}(h)\ .

For a representation ρ:β„‹gβ†’G​L​(V)\rho:\mathcal{H}_{g}\rightarrow GL(V) and automorphism Ο„βˆˆAut+​(β„‹g)\tau\in\mathrm{Aut}^{+}(\mathcal{H}_{g}), we denote by VΟ„{}_{\tau}\!V the twisted representation Οβˆ˜Ο„\rho\circ\tau. Recall that the homology with coefficient in VV is computed from the complex Sβˆ—β€‹(π’žnπšβ€‹(Ξ£),V):=Sβˆ—β€‹(π’ž~nπšβ€‹(Ξ£g))βŠ—β„€β€‹[β„‹g]VS_{*}(\mathcal{C}^{\mathtt{f}}_{n}(\Sigma),V):=S_{*}(\widetilde{\mathcal{C}}^{\mathtt{f}}_{n}(\Sigma_{g}))\otimes_{\mathbb{Z}[\mathcal{H}_{g}]}V.

Theorem 8.

There is a natural twisted representation of the 𝚏\mathtt{f}-based Mapping Class Group π”πšβ€‹(Ξ£g,βˆ—πš)\mathfrak{M}^{\mathtt{f}}(\Sigma_{g},*^{\mathtt{f}}) on

Hβˆ—β€‹(π’žnπšβ€‹(Ξ£g),VΟ„),Ο„βˆˆAut+​(β„‹g),H_{*}\bigl{(}\mathcal{C}^{\mathtt{f}}_{n}(\Sigma_{g}),{}_{\tau}\!V\bigr{)}\ ,\quad\tau\in\mathrm{Aut}^{+}(\mathcal{H}_{g})\ ,\

where the action of fβˆˆπ”πšβ€‹(Ξ£,βˆ—πš)f\in\mathfrak{M}^{\mathtt{f}}(\Sigma,*^{\mathtt{f}}) is

π’žnπšβ€‹(f)βˆ—:Hβˆ—β€‹(π’žnπšβ€‹(Ξ£g),VΟ„βˆ˜fβ„‹)⟢Hβˆ—β€‹(π’žnπšβ€‹(Ξ£g),VΟ„)\mathcal{C}^{\mathtt{f}}_{n}(f)_{*}\colon H_{*}\bigl{(}\mathcal{C}^{\mathtt{f}}_{n}(\Sigma_{g}),{}_{\tau\circ f_{\mathcal{H}}}\!V\bigr{)}\longrightarrow H_{*}\bigl{(}\mathcal{C}^{\mathtt{f}}_{n}(\Sigma_{g}),{}_{\tau}\!V\bigr{)}

Proof. The action of π’ž~nπšβ€‹(f)\widetilde{\mathcal{C}}^{\mathtt{f}}_{n}(f) on chains is twisted with respect to the ℀​[β„‹g]\mathbb{Z}[\mathcal{H}_{g}] action, which writes down

Sβˆ—(π’ž~n𝚏(f)(zh)=Sβˆ—(π’ž~n𝚏(f)(z)fβ„‹(h),Β forΒ z∈Sβˆ—β€‹(π’ž~nπšβ€‹(Ξ£g)),Β hβˆˆβ„‹g.S_{*}(\widetilde{\mathcal{C}}^{\mathtt{f}}_{n}(f)(zh)=S_{*}(\widetilde{\mathcal{C}}^{\mathtt{f}}_{n}(f)(z)f_{\mathcal{H}}(h),\text{ for $z\in S_{*}(\widetilde{\mathcal{C}}^{\mathtt{f}}_{n}(\Sigma_{g}))$, $h\in\mathcal{H}_{g}$.}

We check that the map zβŠ—v↦Sβˆ—(π’ž~n𝚏(f)(z)βŠ—vz\otimes v\mapsto S_{*}(\widetilde{\mathcal{C}}^{\mathtt{f}}_{n}(f)(z)\otimes v induces an isomorphism

Sβˆ—β€‹(π’žnπšβ€‹(Ξ£),VΟ„βˆ˜fβ„‹)β†’Sβˆ—β€‹(π’žnπšβ€‹(Ξ£),VΟ„),S_{*}(\mathcal{C}^{\mathtt{f}}_{n}(\Sigma),{}_{\tau\circ f_{\mathcal{H}}}\!V)\rightarrow S_{*}(\mathcal{C}^{\mathtt{f}}_{n}(\Sigma),{}_{\tau}\!V)\ ,

which produces the functorial twisted action on the homologies. Β Β 

4 MCG representations from the regular action on Heisenberg group

In this section we obtain finite dimensional representations of the Mapping Class Groups from the left regular action on the Heisenberg group β„‹gβ„š\mathcal{H}_{g}^{\mathbb{Q}}. The group β„‹g\mathcal{H}_{g} is a subgroup in β„‹gβ„š\mathcal{H}_{g}^{\mathbb{Q}}. We endow β„‹gβ„š=β„šΓ—H1​(Ξ£g,β„š)\mathcal{H}_{g}^{\mathbb{Q}}=\mathbb{Q}\times H_{1}(\Sigma_{g},\mathbb{Q}) with affine structure isomorphic to β„š2​g+1\mathbb{Q}^{2g+1}. The left regular action l(k0,x0)l_{(k_{0},x_{0})} is then an affine automorphism. We decompose x0=p0+q0x_{0}=p_{0}+q_{0}, p0βˆˆΞ›a=Span​(ai,1β©½iβ©½g)p_{0}\in\Lambda_{a}=\mathrm{Span}(a_{i},1\leqslant i\leqslant g), q0βˆˆΞ›b=Span​(bi,1β©½iβ©½g)q_{0}\in\Lambda_{b}=\mathrm{Span}(b_{i},1\leqslant i\leqslant g), then the action is written

{kβ€²=k+k0+p0.qβˆ’q0.ppβ€²=p+p0qβ€²=q+q0\begin{cases}k^{\prime}=k+k_{0}+p_{0}.q-q_{0}.p\\ p^{\prime}=p+p_{0}\\ q^{\prime}=q+q_{0}\end{cases}

We consider the linearisation ρL\rho_{L} of this affine action on L=β„‹gβ„šβŠ•β„šL=\mathcal{H}_{g}^{\mathbb{Q}}\oplus\mathbb{Q}. The linear action of ρL​(k0,x0)\rho_{L}(k_{0},x_{0}) is as follows.

{kβ€²=k+t​k0+p0.qβˆ’q0.ppβ€²=p+t​p0qβ€²=q+t​q0tβ€²=t\begin{cases}k^{\prime}=k+tk_{0}+p_{0}.q-q_{0}.p\\ p^{\prime}=p+tp_{0}\\ q^{\prime}=q+tq_{0}\\ t^{\prime}=t\end{cases}

The nice feature of this representation is that the twisted representation LΟ„{}_{\tau}\!L is canonically isomorphic to LL.

Lemma 9.

For Ο„βˆˆAut+​(β„‹g)\tau\in\mathrm{Aut}^{+}(\mathcal{H}_{g}), the linear map τ×Idβ„š:L↦LΟ„\tau\times\mathrm{Id}_{\mathbb{Q}}:L\mapsto{}_{\tau}\!L gives an isomorphism of ℀​[β„‹g]\mathbb{Z}[\mathcal{H}_{g}]-module.

Proof. We first check that Ο„\tau intertwines the affine action l(k0,x0)l_{(k_{0},x_{0})} on β„‹gβ„š\mathcal{H}_{g}^{\mathbb{Q}} and the twisted affine action lτ​(k0,x0)l_{\tau(k_{0},x_{0})}. We have

lτ​(k0,x0))(k,x)=Ο„(k0,x0)(k,x)=Ο„((k0,x0)Ο„βˆ’1(k,x))=Ο„(l(k0,x0)(Ο„βˆ’1(k,x)).l_{\tau(k_{0},x_{0})})(k,x)=\tau(k_{0},x_{0})(k,x)=\\ \tau\left((k_{0},x_{0})\tau^{-1}(k,x)\right)=\tau\left(l_{(k_{0},x_{0})}(\tau^{-1}(k,x)\right)\ .

The result is written

lτ​(k0,x0)=Ο„βˆ˜l(k0,x0)βˆ˜Ο„βˆ’1.l_{\tau(k_{0},x_{0})}=\tau\circ l_{(k_{0},x_{0})}\circ\tau^{-1}\ .

After linearisation we obtain the intertwinning formula

(ρLβˆ˜Ο„)(k0,x0))=(τ×Idβ„š)∘ρL(k0,x0)∘(Ο„βˆ’1Γ—Idβ„š).(\rho_{L}\circ\tau)(k_{0},x_{0}))=(\tau\times\mathrm{Id}_{\mathbb{Q}})\circ\rho_{L}(k_{0},x_{0})\circ(\tau^{-1}\times\mathrm{Id}_{\mathbb{Q}})\ .

Β 

Composing the homology isomorphism induced by the intertwinning of representations with the twisted action from Theorem 8, we obtain a natural homological action of 𝚏\mathtt{f}-based mapping classes by automorphisms.

Theorem 10.

There is a representation

π”πš(Ξ£g)β†’Aut(Hβˆ—(π’žn𝚏(Ξ£g),L),\mathfrak{M}^{\mathtt{f}}(\Sigma_{g})\rightarrow\mathrm{Aut}(H_{*}\bigl{(}\mathcal{C}^{\mathtt{f}}_{n}(\Sigma_{g}),L\bigr{)}\ ,

which associates to fβˆˆπ”β€‹(Ξ£g)f\in\mathfrak{M}(\Sigma_{g}) the composition of the coefficient isomorphism induced by fβ„‹f_{\mathcal{H}},

Hβˆ—β€‹(π’žnπšβ€‹(Ξ£g),L)β‰…Hβˆ—β€‹(π’žnπšβ€‹(Ξ£g),Lfβ„‹),H_{*}\bigl{(}\mathcal{C}^{\mathtt{f}}_{n}(\Sigma_{g}),L\bigr{)}\cong H_{*}\bigl{(}\mathcal{C}^{\mathtt{f}}_{n}(\Sigma_{g}),{}_{f_{\mathcal{H}}}\!L\bigr{)}\ ,

with the functorial homology isomorphism

π’žnπšβ€‹(f)βˆ—:Hβˆ—β€‹(π’žnπšβ€‹(Ξ£g),Lfβ„‹)⟢Hβˆ—β€‹(π’žnπšβ€‹(Ξ£g),L).\mathcal{C}^{\mathtt{f}}_{n}(f)_{*}\colon H_{*}\bigl{(}\mathcal{C}^{\mathtt{f}}_{n}(\Sigma_{g}),{}_{f_{\mathcal{H}}}\!L\bigr{)}\longrightarrow H_{*}\bigl{(}\mathcal{C}^{\mathtt{f}}_{n}(\Sigma_{g}),L\bigr{)}\ .

5 About computation

In [8] it is proved that a relative Borel-Moore Heisenberg homology of configurations in Ξ£g,1\Sigma_{g,1} is free of finite dimension over the group ring of the Heisenberg group. The argument does not work for closed surfaces. A more careful analysis of a cell decomposition of weakly framed configurations is likely to be needed. We first quote that π’žnπšβ€‹(Ξ£g)\mathcal{C}^{\mathtt{f}}_{n}(\Sigma_{g}) has the homotopy type of a finite CW-complex. Indeed, we get the same homotopy type if we consider weakly framed configurations where points cannot be Ο΅\epsilon-closed with Ο΅\epsilon small enough, i.e we replace the condition xiβ‰ xjx_{i}\neq x_{j} by d​(xi,xj)β©ΎΟ΅d(x_{i},x_{j})\geqslant\epsilon, iβ‰ ji\neq j, and get a compact manifold with boundary π’žnΟ΅,πšβ€‹(Ξ£g)\mathcal{C}^{\epsilon,\mathtt{f}}_{n}(\Sigma_{g}). It follows that for finite dimensional representations of the Heisenberg group, the obtained homologies are finite dimensional.

It is exciting to analyse submanifolds representing cycles in Heisenberg homologies, expecting that certain family could generate a subspace invariant under Mapping Class Group action. Let us denote by π’žβˆ—1,nβˆ’1πšβ€‹(Ξ£g)\mathcal{C}^{\mathtt{f}}_{*_{1},n-1}(\Sigma_{g}) the subspace of weakly framed configurations containing the point βˆ—1*_{1}. For a partition n=n1+n2+β‹―+n2​gβˆ’1+n2​gn=n_{1}+n_{2}+\dots+n_{2g-1}+n_{2g}, we obtain a cell formed with configurations having n1n_{1}, n2n_{2}, …,n2​gβˆ’1n_{2g-1}, n2​gn_{2g} points respectively on Ξ±1\alpha_{1}, Ξ²1\beta_{1}, …, Ξ±g\alpha_{g}, Ξ²g\beta_{g}, weakly framed by the vector field XX. This gives a properly embedded cell representing an homology class in Hβˆ—B​M​(π’žnπšβ€‹(Ξ£g),π’žβˆ—1,nβˆ’1πšβ€‹(Ξ£g),V)H^{BM}_{*}\bigl{(}\mathcal{C}^{\mathtt{f}}_{n}(\Sigma_{g}),\mathcal{C}^{\mathtt{f}}_{*_{1},n-1}(\Sigma_{g}),V\bigr{)}, where π’žβˆ—1,nβˆ’1πšβ€‹(Ξ£g)\mathcal{C}^{\mathtt{f}}_{*_{1},n-1}(\Sigma_{g}) denotes the subspace of nn-points configurations containing βˆ—1*_{1}. We will obtain classes in Hn​(π’žnπšβ€‹(Ξ£g),V)H_{n}\bigl{(}\mathcal{C}^{\mathtt{f}}_{n}(\Sigma_{g}),V) by studying the kernel of the boundary map

HnB​M​(π’žnπšβ€‹(Ξ£g),π’žβˆ—1,nβˆ’1πšβ€‹(Ξ£g);V)β†’Hnβˆ’1B​M​(π’žβˆ—1,nβˆ’1πšβ€‹(Ξ£g),V).H^{BM}_{n}\bigl{(}\mathcal{C}^{\mathtt{f}}_{n}(\Sigma_{g}),\mathcal{C}^{\mathtt{f}}_{*_{1},n-1}(\Sigma_{g});V\bigr{)}\rightarrow H^{BM}_{n-1}\bigl{(}\mathcal{C}^{\mathtt{f}}_{*_{1},n-1}(\Sigma_{g}),V\bigr{)}\ .

The case n=2n=2 already looks promising.

References

  • [1] ByungΒ Hee An and KiΒ Hyoung Ko. A family of representations of braid groups on surfaces. Pacific J. Math., 247(2):257–282, 2010.
  • [2] Paolo Bellingeri. On presentations of surface braid groups. J. Algebra, 274(2):543–563, 2004.
  • [3] Paolo Bellingeri and Sylvain Gervais. Surface framed braids. Geom. Dedicata, 159:51–69, 2012.
  • [4] Paolo Bellingeri, Eddy Godelle, and John Guaschi. Abelian and metabelian quotient groups of surface braid groups. Glasg. Math. J., 59(1):119–142, 2017.
  • [5] Paolo Bellingeri, DacibergΒ Lima GonΓ§alves, and John Guaschi. Lower central series, surface braid groups, surjections and permutations. Math. Proc. Cambridge Philos. Soc., 172(2):373–399, 2022.
  • [6] StephenΒ J. Bigelow. Braid groups are linear. J. Amer. Math. Soc., 14(2):471–486, 2001.
  • [7] StephenΒ J. Bigelow and RyanΒ D. Budney. The mapping class group of a genus two surface is linear. Algebr. Geom. Topol., 1:699–708, 2001.
  • [8] Christian Blanchet, Martin Palmer, and Awais Shaukat. Heisenberg homology on surface configurations. ArXiv:2109.00515, 2021.
  • [9] Andrea Causin and Francesco Polizzi. Surface braid groups, finite Heisenberg covers and double Kodaira fibrations. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 22(3):1309–1352, 2021.
  • [10] Juan GonzΓ‘lez-Meneses. New presentations of surface braid groups. J. Knot Theory Ramifications, 10(3):431–451, 2001.
  • [11] Daan Krammer. Braid groups are linear. Ann. of Math. (2), 155(1):131–156, 2002.
  • [12] JΓΌrgen Moser. On the volume elements on a manifold. Trans. Am. Math. Soc., 120:286–294, 1965.
  • [13] G.Β P. Scott. Braid groups and the group of homeomorphisms of a surface. Proc. Cambridge Philos. Soc., 68:605–617, 1970.