This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Weak Limits of Fractional Sobolev Homeomorphisms are Almost Injective: A Note

Armin Schikorra Department of Mathematics, University of Pittsburgh, 301 Thackeray Hall, Pittsburgh, PA 15260, USA [email protected]  and  James M. Scott Department of Mathematics, University of Pittsburgh, 301 Thackeray Hall, Pittsburgh, PA 15260, USA [email protected]
Abstract.

Let Ωn\Omega\subset\mathbb{R}^{n} be an open set and fkWs,p(Ω;n)f_{k}\in W^{s,p}(\Omega;\mathbb{R}^{n}) be a sequence of homeomorphisms weakly converging to fWs,p(Ω;n)f\in W^{s,p}(\Omega;\mathbb{R}^{n}). It is known that if s=1s=1 and p>n1p>n-1 then ff is injective almost everywhere in the domain and the target. In this note we extend such results to the case s(0,1)s\in(0,1) and sp>n1sp>n-1. This in particular applies to CsC^{s}-Hölder maps.

1. Introduction and main result

The goal of this note is to prove the following theorem:

Theorem 1.1.

Let Ωn\Omega\subset\mathbb{R}^{n}, n2n\geq 2, be open and let f:Ωnf:\Omega\to\mathbb{R}^{n} be a weak Ws,pW^{s,p}-limit of Sobolev homeomorphisms fjWs,p(Ω;n)f_{j}\in W^{s,p}(\Omega;\mathbb{R}^{n}) with sp>n1sp>n-1. Then there is a representative f^\widehat{f} and a set Γn\Gamma\subset\mathbb{R}^{n} of Hausdorff dimension n1s\frac{n-1}{s} such that (f^)1(y)(\widehat{f})^{-1}(y) consists of only one point for every yf^(Ω)Γy\in\widehat{f}(\Omega)\setminus\Gamma.

For definitions we refer to the next section. An immediate corollary of Theorem 1.1 and the embedding CsWlocsε,pC^{s}\hookrightarrow W^{s-\varepsilon,p}_{loc} for any ε>0\varepsilon>0 is the following statement for Hölder maps.

Corollary 1.2.

Let Ωn\Omega\subset\mathbb{R}^{n}, n2n\geq 2 be open and let fCs(Ω;n)f\in C^{s}(\Omega;\mathbb{R}^{n}) be the pointwise limit of a sequence of equibounded homeomorphisms fjCs(Ω;n)f_{j}\in C^{s}(\Omega;\mathbb{R}^{n}). If s>nn1s>\frac{n}{n-1}, then there is a set Γn\Gamma\subset\mathbb{R}^{n} of Hausdorff dimension n1s\frac{n-1}{s} such that (f)1(y)(f)^{-1}(y) consists of only one point for every yf(Ω)Γy\in f(\Omega)\setminus\Gamma.

Observe that for sn1ns\leq\frac{n-1}{n} the above statements hold trivially.

This note is inspired by the recent work by Bouchala, Hencl, and Molchanova [4] who proved a corresponding result for s=1s=1.

Theorem 1.3 (Bouchala, Hencl, Molchanova).

Let f:Ωnf:\Omega\to\mathbb{R}^{n} be a weak limit of Sobolev homeomorphisms fjW1,p(Ω;n)f_{j}\in W^{1,p}(\Omega;\mathbb{R}^{n}) with p>n1p>n-1. Then there is a representative f^\widehat{f} and a set Γn\Gamma\subset\mathbb{R}^{n} of Hausdorff dimension n1n-1 such that (f^)1(y)(\widehat{f})^{-1}(y) consists of only one point for every yf^(Ω)Γy\in\widehat{f}(\Omega)\setminus\Gamma.

While Theorem 1.3 (and in turn our Theorem 1.1) follows an adaptation of the arguments in the seminal work by Müller and Spector [11], Bouchala, Hencl, and Molchanova [4] also provide an example of the limit case p=n1p=n-1, where a theorem such as Theorem 1.3 completely fails. Namely they showed

Theorem 1.4 (Bouchala, Hencl, Molchanova).

For n3n\geq 3 there exists f:[1,1]n[1,1]nf:[-1,1]^{n}\to[-1,1]^{n} and a strong limit of Sobolev homeomorphisms fkW1,n1([1,1]n,n)f_{k}\in W^{1,n-1}([-1,1]^{n},\mathbb{R}^{n}) with fk(x)=xf_{k}(x)=x on the boundary [1,1]n\partial[-1,1]^{n} and such that there exists a set Γ[1,1]n\Gamma\subset[-1,1]^{n} of positive Lebesgue measure and f1(y)f^{-1}(y) is a nontrivial continuum for every yΓy\in\Gamma.

As the authors of [4] mention, it may seem surprising that the Hausdorff dimension of the critical set Γ\Gamma seems to suddenly jump from n1n-1 to nn as pp changes from p>n1p>n-1 to p=n1p=n-1. This question served as one motivation to study the situation for fractional Sobolev spaces.

Let us stress that Theorem 1.1 follows a very similar argument as the s=1s=1 proof of Theorem 1.3 in [4], which in turn is a streamlined argument of known results and techniques from earlier works, see [3, 11, 12]. Indeed, a crucial fact that is used for s=1s=1 is that on “good slices” Br\partial B_{r} the fkf_{k} converge in W1,p(Br)W^{1,p}(\partial B_{r}), and so using Sobolev-Morrey embedding on these n1n-1-dimensional slices the fkf_{k} in fact converge uniformly if p>n1p>n-1. If p=n1p=n-1 this uniform convergence may fail.

The same is true if the fkf_{k} converge in Ws,p(Br)W^{s,p}(\partial B_{r}) for good slices Br\partial B_{r} and s(0,1)s\in(0,1): if sp>n1sp>n-1 then the convergence is uniform on Br\partial B_{r}, and if sp=n1sp=n-1 it may not.

But somewhat surprisingly, a result such as Theorem 1.1 and in particular Corollary 1.2 seems to be unknown to some experts, and the authors thought it important to be available in the literature.

We try to keep this note as self-contained as possible. In Section 2 we gather the main results on Sobolev spaces that we work with. In Section 3 we discuss the needed notions of degree, and show monotonicity of the degree for limits of homeomorphisms. In Section 4, we collect the corollaries for the topological image from the previous section. In Section 5 we prove our main theorem.

Acknowledgment: the authors thank Anastasia Molchanova and Daniel Campbell for informative and illuminating discussions.

AS is supported by Simons foundation, grant no 579261.

2. Preliminaries on Sobolev spaces, capacities etc.

In this section we establish notation. For s(0,1)s\in(0,1) and p(1,)p\in(1,\infty) we denote the classes of functions u:Ωnu:\Omega\to\mathbb{R}^{n} for which the Gagliardo seminorm

(2.1) [u]Ws,p(Ω)p:=ΩΩ|f(x)f(y)|p|xy|n+spdydx[u]_{W^{s,p}(\Omega)}^{p}:=\int_{\Omega}\int_{\Omega}\frac{|f(x)-f(y)|^{p}}{|x-y|^{n+sp}}\,\mathrm{d}y\,\mathrm{d}x

is finite as the fractional Sobolev spaces Ws,p(Ω;n)W^{s,p}(\Omega;\mathbb{R}^{n}), with norm uWs,p(Ω)p:=uLp(Ω)p+[u]Ws,p(Ω)p\left\|u\right\|_{W^{s,p}(\Omega)}^{p}:=\left\|u\right\|_{L^{p}(\Omega)}^{p}+[u]_{W^{s,p}(\Omega)}^{p}.

We denote the nn-dimensional Lebesgue measure of a set AnA\subset\mathbb{R}^{n} by n(A)\mathcal{L}^{n}(A), and for β>0\beta>0 we denote the β\beta-dimensional Hausdorff measure by β(A)\mathscr{H}^{\beta}(A). We use the convention ABA\precsim B whenever there exists a constant CC such that ACBA\leq CB.

Define the precise representative of a measurable function ff by

(2.2) f(x):={limr0+Br(x)f(y)dy, when the limit exists, 0, otherwise.f^{\ast}(x):=\begin{cases}\lim\limits_{r\to 0^{+}}\fint_{B_{r}(x)}f(y)\,\mathrm{d}y\,,&\quad\text{ when the limit exists, }\\ 0\,,&\quad\text{ otherwise.}\end{cases}

Many properties of the precise representative for functions in the Bessel potential spaces are accessible in the literature. The corresponding statements can then be obtained for fractional Sobolev functions via embedding theorems for the Triebel-Lizorkin spaces Fp,qsF^{s}_{p,q}; see [14]. For completeness, we gather here a summary of the statements we will need.

We denote the Bessel potential spaces Hs,pH^{s,p} by

(2.3) Hs,p(n;n):={f:nn:1((1+|ξ|2)s/2(f)(ξ))Lp(n)<},H^{s,p}(\mathbb{R}^{n};\mathbb{R}^{n}):=\left\{f:\mathbb{R}^{n}\to\mathbb{R}^{n}\,:\,\|\mathcal{F}^{-1}((1+|\xi|^{2})^{s/2}(\mathcal{F}f)(\xi))\|_{L^{p}(\mathbb{R}^{n})}<\infty\right\}\,,

where \mathcal{F} and 1\mathcal{F}^{-1} denote the Fourier transform and its inverse respectively. The following is a corollary of a classical embedding theorem for the spaces Fp,qsF^{s}_{p,q} [14, Section 2.2.3], [15, Theorem 2.14, Remark 2.4]. We are additionally using the identifications Fp,2s=Hs,pF^{s}_{p,2}=H^{s,p} and Fp,ps=Ws,pF^{s}_{p,p}=W^{s,p}.

Theorem 2.1.

Let N1N\geq 1. Let p(1,)p\in(1,\infty) and s(0,1)s\in(0,1), and suppose that t(0,1)t\in(0,1) and pt(1,)p_{t}\in(1,\infty) satisfy

sNp<t<s,pt:=NpN(st)p.s-\frac{N}{p}<t<s\,,\qquad p_{t}:=\frac{Np}{N-(s-t)p}\,.

Then

(2.4) Ws,p(N)Ht,pt(N), or [f]Ht,pt(N)[f]Ws,p(N).W^{s,p}(\mathbb{R}^{N})\hookrightarrow H^{t,p_{t}}(\mathbb{R}^{N})\,,\quad\text{ or }\quad[f]_{H^{t,p_{t}}(\mathbb{R}^{N})}\precsim[f]_{W^{s,p}(\mathbb{R}^{N})}\,.

Note that if we write the definition of ptp_{t} as

(2.5) spN=ppt(tptN),\begin{split}sp-N=\frac{p}{p_{t}}(tp_{t}-N)\,,\\ \end{split}

then it becomes clear that if sp>Nsp>N then tpt>Ntp_{t}>N for any t(0,s)t\in(0,s).

With this embedding we can prove some useful properties of the precise representative:

Proposition 2.2.

Suppose fWs,p(n;n)f\in W^{s,p}(\mathbb{R}^{n};\mathbb{R}^{n}) with sp[1,n)sp\in[1,n). Let p=npnspp^{*}=\frac{np}{n-sp}. Define

(2.6) Asp:={xn:x is not a Lebesgue point of f}.A_{sp}:=\left\{x\in\mathbb{R}^{n}\,:\,x\text{ is not a Lebesgue point of }f\right\}\,.

Then the following hold:

  1. (i)

    dim(Asp)nsp\dim_{\mathscr{H}}(A_{sp})\leq n-sp.

  2. (ii)

    For any xnAspx\in\mathbb{R}^{n}\setminus A_{sp},

    (2.7) limr0+Br(x)|f(y)f(x)|qdy=0,\lim\limits_{r\to 0^{+}}\fint_{B_{r}(x)}|f(y)-f^{\ast}(x)|^{q}\,\mathrm{d}y=0\,,

    for every q[1,p)q\in[1,p^{*}).

  3. (iii)

    If φε\varphi_{\varepsilon} is the family of standard mollifiers then

    φεf(x)f(x)\varphi_{\varepsilon}\ast f(x)\to f^{\ast}(x)

    for each xΩAspx\in\Omega\setminus A_{sp}.

Proof.

Let ε>0\varepsilon>0 be arbitrary; we will show that

(2.8) nsp+ε(Asp)=0,\mathscr{H}^{n-sp+\varepsilon}(A_{sp})=0\,,

which will imply i. We use Theorem 2.1 with N=nN=n; choose t(0,s)t\in(0,s) so that

ntpt=nsp+ε;n-tp_{t}=n-sp+\varepsilon\,;

this is possible since by definition ntpt>nspn-tp_{t}>n-sp for sp[1,n)sp\in[1,n) and for any t(0,s)t\in(0,s). Then fHt,pt(n;n)f\in H^{t,p_{t}}(\mathbb{R}^{n};\mathbb{R}^{n}) and so [1, Proposition 6.1.2, Theorem 5.1.13] implies β(Asp)=0\mathscr{H}^{\beta}(A_{sp})=0 for all βntpt=nsp+ε\beta\geq n-tp_{t}=n-sp+\varepsilon, and so (2.8) is established.

To see ii, use Theorem 2.1 with N=nN=n again; note that any q(p,p)q\in(p,p_{*}) can be written q=ptq=p_{t} for some t(0,s)t\in(0,s). Then fHt,pt(n;n)f\in H^{t,p_{t}}(\mathbb{R}^{n};\mathbb{R}^{n}) for every t(0,s)t\in(0,s), and so [1, Theorem 6.2.1] applies, which is precisely ii. We obtain (2.7) for the range q[1,p]q\in[1,p] using Hölder’s inequality.

For a proof of iii see [6, Theorem 4.1, (iv)]. ∎

Lemma 2.3.

Suppose fWs,p(n;n)f\in W^{s,p}(\mathbb{R}^{n};\mathbb{R}^{n}) with sp[1,n)sp\in[1,n), and suppose f(x)Ef^{\ast}(x)\in E for every xnMx\in\mathbb{R}^{n}\setminus M, where n(M)=0\mathcal{L}^{n}(M)=0 and EnE\subset\mathbb{R}^{n} is a closed set. Then f(x)Ef^{\ast}(x)\in E for every xnAspx\in\mathbb{R}^{n}\setminus A_{sp}.

Proof.

Suppose to the contrary, that f(x)nEf^{\ast}(x)\in\mathbb{R}^{n}\setminus E for some xnAspx\in\mathbb{R}^{n}\setminus A_{sp}. Then there exists ε>0\varepsilon>0 such that B(f(x),ε)nEB(f^{\ast}(x),\varepsilon)\subset\mathbb{R}^{n}\setminus E. By assumption that f(y)Ef^{\ast}(y)\in E for ynMy\in\mathbb{R}^{n}\setminus M

B(x,r)|f(y)f(x)|pdy=B(x,r)M|f(y)f(x)|pdyεp\fint_{B(x,r)}|f(y)-f^{\ast}(x)|^{p}\,\mathrm{d}y=\fint_{B(x,r)\setminus M}|f(y)-f^{\ast}(x)|^{p}\,\mathrm{d}y\geq\varepsilon^{p}

uniformly as r0r\to 0, which is a contradiction since ff^{\ast} satisfies (2.7) for every xnAspx\in\mathbb{R}^{n}\setminus A_{sp}. ∎

We will need information on the Hausdorff dimension of images of spheres embedded in n\mathbb{R}^{n}. The following is a special case of such a result in [9] for Bessel potential functions, which will then apply to functions in Ws,pW^{s,p} via Theorem 2.1:

Proposition 2.4 ([9], Theorem 1.1).

Let NN, KK\in\mathbb{N}, t(0,1)t\in(0,1) and q(1,)q\in(1,\infty) with tq>Ntq>N and α(0,N]\alpha\in(0,N]. Define β:=αqtqN+α\beta:=\frac{\alpha q}{tq-N+\alpha}. Suppose gHt,q(N;K)g\in H^{t,q}(\mathbb{R}^{N};\mathbb{R}^{K}) is a continuous representative and ANA\subset\mathbb{R}^{N} is a set with dim(A)α\dim_{\mathscr{H}}(A)\leq\alpha. Then dim(g(A))β\dim_{\mathscr{H}}(g(A))\leq\beta.

We then have as a corollary

Theorem 2.5.

Let n2n\geq 2, s(0,1)s\in(0,1), and p>1p>1 with n1<sp<nn-1<sp<n. Let r>0r>0, ana\in\mathbb{R}^{n} with BB(a,r)\partial B\equiv\partial B(a,r) and gWs,p(B;n)g\in W^{s,p}(\partial B;\mathbb{R}^{n}) be a continuous representative. Then dim(g(B))n1s\dim_{\mathscr{H}}(g(\partial B))\leq\frac{n-1}{s}.

Proof.

It suffices to show that

n1s+ε(g(B))=0\mathscr{H}^{\frac{n-1}{s}+\varepsilon}(g(\partial B))=0

for arbitrary ε>0\varepsilon>0 small. Cover B\partial B by sets SiS_{i} diffeomorphic to n1\mathbb{R}^{n-1} (2n2^{n} hemispheres will do), and let ψi:n1Si\psi_{i}:\mathbb{R}^{n-1}\to S_{i} be the corresponding diffeomorphisms. So Bi=1MSi\partial B\subset\bigcup_{i=1}^{M}S_{i}, and the functions

gi:=gψig_{i}:=g\circ\psi_{i}

belong to Ws,p(n1;n)W^{s,p}(\mathbb{R}^{n-1};\mathbb{R}^{n}), and hence belong to Ht,pt(n1;n)H^{t,p_{t}}(\mathbb{R}^{n-1};\mathbb{R}^{n}) by Theorem 2.1 for any t(sn1p,s)t\in(s-\frac{n-1}{p},s) and for pt=(n1)p(n1)(st)pp_{t}=\frac{(n-1)p}{(n-1)-(s-t)p}.

Applying Proposition 2.4 to each gig_{i} with q=ptq=p_{t} and N=α=n1N=\alpha=n-1 gives

γ(gi(n1))=0, for every γ>n1t,i={1,,M}.\mathscr{H}^{\gamma}(g_{i}(\mathbb{R}^{n-1}))=0\,,\quad\text{ for every }\gamma>\frac{n-1}{t}\,,\,i=\{1,\ldots,M\}\,.

Choose t<st<s close enough to ss so that n1t<n1s+ε\frac{n-1}{t}<\frac{n-1}{s}+\varepsilon. Then

n1s+ε(g(B))i=1Mn1s+ε(g(Si))=i=1Mn1s+ε(gi(n1))=0,\mathscr{H}^{\frac{n-1}{s}+\varepsilon}(g(\partial B))\leq\sum_{i=1}^{M}\mathscr{H}^{\frac{n-1}{s}+\varepsilon}(g(S_{i}))=\sum_{i=1}^{M}\mathscr{H}^{\frac{n-1}{s}+\varepsilon}(g_{i}(\mathbb{R}^{n-1}))=0\,,

as desired. ∎

Throughout this note we additionally require control of fractional Sobolev functions on spheres in n\mathbb{R}^{n}. In the local case, this control is obtained straightforwardly; for example, using Fubini’s theorem for a smooth function ff on B(a,r)¯\overline{B(a,r)}

0rB(a,ρ)|~f(ρω)|pdn1(w)dρB(a,r)|f(x)|pdx,\int_{0}^{r}\int_{\partial B(a,\rho)}|\widetilde{\nabla}f(\rho\omega)|^{p}\,\mathrm{d}\mathscr{H}^{n-1}(w)\,\mathrm{d}\rho\leq\int_{B(a,r)}|\nabla f(x)|^{p}\,\mathrm{d}x\,,

where ~f\widetilde{\nabla}f denotes the tangential derivative of f|B(a,ρ)f|_{\partial B(a,\rho)}. The following Besov-type inequality serves as a fractional analogue:

Lemma 2.6.

Let B(a,r)nB(a,r)\subset\mathbb{R}^{n}, with p[1,)p\in[1,\infty) and s(0,1)s\in(0,1). Then there exists a constant C=C(n,s,p)C=C(n,s,p) such that for every fWs,p(B(a,r);n)f\in W^{s,p}(B(a,r);\mathbb{R}^{n})

(2.9) r/2rB(a,ρ)B(a,ρ)|f(x)f(y)|p|xy|n1+spdn1(y)dn1(x)dρC[f]Ws,p(B(a,r))p.\begin{split}\int_{r/2}^{r}\int_{\partial B(a,\rho)}\int_{\partial B(a,\rho)}\frac{|f(x)-f(y)|^{p}}{|x-y|^{n-1+sp}}\,\mathrm{d}\mathscr{H}^{n-1}(y)\,\mathrm{d}\mathscr{H}^{n-1}(x)\,\mathrm{d}\rho\leq C[f]_{W^{s,p}(B(a,r))}^{p}\,.\end{split}

These types of estimates are well-known to experts (see for example [5]), but for the sake of completeness we have included the proof in the appendix, see Appendix A. The following corollary to the lemma reveals finer properties of Sobolev functions:

Corollary 2.7.

Let 1<sp<n1<sp<n, let x0Ωnx_{0}\in\Omega\subset\mathbb{R}^{n}, and suppose fWs,p(Ω;n)f\in W^{s,p}(\Omega;\mathbb{R}^{n}). Then there exists a set Nx0(0,dist(x0,Ω))N_{x_{0}}\subset(0,\operatorname*{dist}(x_{0},\partial\Omega)) with 1(Nx0)=0\mathscr{L}^{1}(N_{x_{0}})=0 such that for every r(0,dist(x0,Ω))Nx0r\in(0,\operatorname*{dist}(x_{0},\partial\Omega))\setminus N_{x_{0}} the function f|B(x0,r)f^{\ast}|_{\partial B(x_{0},r)} belongs to Ws,p(B(x0,r);n)W^{s,p}(\partial B(x_{0},r);\mathbb{R}^{n}), where ff^{\ast} is the precise representative defined in (2.2). If in addition sp>n1sp>n-1 then f|B(x0,r)f^{\ast}|_{\partial B(x_{0},r)} is continuous. In general the singular set depends on x0x_{0}.

Proof.

For ε>0\varepsilon>0 let φε\varphi^{\varepsilon} be the standard mollifier, and let fε:=φεff^{\varepsilon}:=\varphi^{\varepsilon}\ast f^{\ast}. Then fεf^{\varepsilon} converges to ff^{\ast} in Ws,p(B(x0,r))W^{s,p}(B(x_{0},r)) for any r(0,dist(x0,Ω))r\in(0,\operatorname*{dist}(x_{0},\partial\Omega)), and by Lemma 2.6

r/2r[fεf]Ws,p(B(x0,ρ))pdρC[fεf]Ws,p(B(x0,r))p0 as ε0.\int_{r/2}^{r}{[f^{\varepsilon}-f^{\ast}]_{W^{s,p}(\partial B(x_{0},\rho))}^{p}}\,\mathrm{d}\rho\leq C[f^{\varepsilon}-f^{\ast}]_{W^{s,p}(B(x_{0},r))}^{p}\to 0\text{ as }\varepsilon\to 0\,.

Thus for 1\mathscr{L}^{1}-almost every r(0,dist(x0,Ω))r\in(0,\operatorname*{dist}(x_{0},\partial\Omega)) we have that the smooth functions fε|B(x0,r)f^{\varepsilon}|_{\partial B(x_{0},r)} converge to a function grWs,p(B(x0,r))g_{r}\in W^{s,p}(\partial B(x_{0},r)). On the other hand, Proposition 2.2 applies to ff since we can find a Sobolev extension domain KK satisfying B(x0,r)KΩB(x_{0},r)\subset K\subset\Omega. Thus since sp>1sp>1 we have from Proposition 2.2iii that for every r(0,dist(x0,Ω))r\in(0,\operatorname*{dist}(x_{0},\partial\Omega))

fε(x)f(x) on B(x0,r)Asp, where n1(Asp)=0.f^{\varepsilon}(x)\to f^{\ast}(x)\text{ on }B(x_{0},r)\setminus A_{sp}\,,\text{ where }\mathscr{H}^{n-1}(A_{sp})=0\,.

Therefore for 1\mathscr{L}^{1}-almost every r(0,dist(x0,Ω))r\in(0,\operatorname*{dist}(x_{0},\partial\Omega)) the functions fε|B(x0,r)(x)f^{\varepsilon}|_{\partial B(x_{0},r)}(x) converge to f(x)f^{\ast}(x) for n1\mathscr{H}^{n-1}-almost every xB(x0,r)x\in\partial B(x_{0},r). So for 1\mathscr{L}^{1}-almost every r(0,dist(x0,Ω))r\in(0,\operatorname*{dist}(x_{0},\partial\Omega)) the function f|B(x0,r)f^{\ast}|_{\partial B(x_{0},r)} agrees with grg_{r} up to a set of n1\mathscr{H}^{n-1}-measure zero, hence f|B(x0,r)f^{\ast}|_{\partial B(x_{0},r)} belongs to Ws,p(B(x0,r))W^{s,p}(\partial B(x_{0},r)).

Now if sp>n1sp>n-1, then fεgrf^{\varepsilon}\to g_{r} locally uniformly on B(x0,r)\partial B(x_{0},r) by the Sobolev compact embedding theorem (see for example [14, Theorem 2, pg. 82], [16, Lemma 41.4]), and additionally 1(Asp)=0\mathscr{H}^{1}(A_{sp})=0. Therefore for 1\mathscr{L}^{1}-almost every r(0,dist(x0,Ω))r\in(0,\operatorname*{dist}(x_{0},\partial\Omega)) the sequence fε(x)f^{\varepsilon}(x) converges to f(x)f^{\ast}(x) for every xB(x0,r)x\in\partial B(x_{0},r), and so f(x)f^{\ast}(x) agrees with the continuous function gr(x)g_{r}(x) for every xB(x0,r)x\in\partial B(x_{0},r).

The following is an adaptation of [10, Proposition 3.1], which in turn is an extension of an argument in [17].

Proposition 2.8.

Let Ωn\Omega\subset\mathbb{R}^{n}, s(0,1)s\in(0,1) and p(1,)p\in(1,\infty) with n1<sp<nn-1<sp<n. Assume that fWs,p(Ω;n)f\in W^{s,p}(\Omega;\mathbb{R}^{n}) satisfies the following: for any x0Ωx_{0}\in\Omega there exists a set Nx0N_{x_{0}} satisfying 1(Nx0)=0\mathscr{L}^{1}(N_{x_{0}})=0 such that for all radii rr, ρ(0,dist(x0,Ω))\Nx0\rho\in(0,\operatorname*{dist}(x_{0},\Omega))\backslash N_{x_{0}} with r<ρr<\rho, there holds for some Λ1\Lambda\geq 1 independent of rr, ρ\rho and x0x_{0}

oscB(x0,r)fΛoscB(x0,ρ)f,{\rm osc}_{\partial B(x_{0},r)}f^{\ast}\leq\Lambda\,{\rm osc}_{\partial B(x_{0},\rho)}f^{\ast}\,,

where ff^{\ast} is the continuous representative of ff defined in (2.2). Then there exists a singular set ΣΩ\Sigma\subset\Omega with (nsp)+(Σ)=0\mathscr{H}^{(n-sp)_{+}}(\Sigma)=0 such that ff^{\ast} is continuous on Ω\Σ\Omega\backslash\Sigma.

Proof.

Without loss of generality assume sp<nsp<n. The case n=spn=sp can be found in [10, Proposition 3.1.], and n<spn<sp is obvious by Morrey-Sobolev embedding; see [13].

By Corollary 2.7 for any R>0R>0 with B(x0,R)ΩB(x_{0},R)\subset\Omega and 1\mathscr{L}^{1}-almost any r<ρ<Rr<\rho<R, the function f|B(x0,ρ)f^{\ast}|_{\partial B(x_{0},\rho)} belongs to Ws,p(B(x0,ρ))W^{s,p}(B(x_{0},\rho)). As in [10, Proposition 3.1], by Morrey-Sobolev embedding

(oscB(x0,r)f)pΛ(oscB(x0,ρ)f)pCρsp(n1)B(x0,ρ)B(x0,ρ)|f(x)f(y)|p|xy|(n1)+spdxdy.\left({\rm osc}_{\partial B(x_{0},r)}f^{\ast}\right)^{p}\leq\Lambda\left({\rm osc}_{\partial B(x_{0},\rho)}f^{\ast}\right)^{p}\leq C\rho^{sp-(n-1)}\int_{\partial B(x_{0},\rho)}\int_{\partial B(x_{0},\rho)}\frac{|f^{\ast}(x)-f^{\ast}(y)|^{p}}{|x-y|^{(n-1)+sp}}\,\mathrm{d}x\,\mathrm{d}y\,.

Multiplying by ρsp+(n1)\rho^{-sp+(n-1)} and integrating in ρ\rho we obtain using Lemma 2.6

c(s,p)(Rnsprnsp)(oscB(x0,r)f)p[f]Ws,p(B(x0,R))p.c(s,p)\left(R^{n-sp}-r^{n-sp}\right)\left({\rm osc}_{\partial B(x_{0},r)}f^{\ast}\right)^{p}\leq[f^{\ast}]_{W^{s,p}(B(x_{0},R))}^{p}\,.

In particular we have

(2.10) (oscB(x0,r)f)pRspn[f]Ws,p(B(x0,R))p\left({\rm osc}_{\partial B(x_{0},r)}f^{\ast}\right)^{p}\leq R^{sp-n}[f^{\ast}]_{W^{s,p}(B(x_{0},R))}^{p}

for any R(0,dist(x0,Ω))R\in(0,\operatorname*{dist}(x_{0},\partial\Omega)) and for every r(0,R/2)Nx0r\in(0,R/2)\setminus N_{x_{0}}. Let

(2.11) X:={xΩ:lim supR0+Rspn[f]Ws,p(B(x,R))p>0}.X:=\left\{x\in\Omega:\limsup_{R\to 0^{+}}R^{sp-n}[f^{\ast}]_{W^{s,p}(B(x,R))}^{p}>0\right\}\,.

By Frostman’s Lemma (see [18, Corollary 3.2.3]) we have that (nsp)+(X)=0\mathscr{H}^{(n-sp)_{+}}(X)=0.

Define Σ=AspX\Sigma=A_{sp}\cup X, where AspA_{sp} is defined in Proposition 2.2. Let x0Ω\Σx_{0}\in\Omega\backslash\Sigma and let ε>0\varepsilon>0. Observe that if for some R>0R>0

Rspn[f]Ws,p(B(x0,R))<εR^{sp-n}[f^{\ast}]_{W^{s,p}(B(x_{0},R))}<\varepsilon

then for all y0B(x0,R/2)y_{0}\in B(x_{0},R/2),

(R/2)spn[f]Ws,p(B(y0,R/2))<Cs,p,nε.(R/2)^{sp-n}[f^{\ast}]_{W^{s,p}(B(y_{0},R/2))}<C_{s,p,n}\varepsilon.

That is, from (2.10) and the definition of XX there must be some R=R(x0,ε)>0R=R(x_{0},\varepsilon)>0 such that

(2.12) supr(0,R/2)Nx0oscB(y0,r)f<εy0B(x0,R/2).\sup_{r\in(0,R/2)\setminus N_{x_{0}}}{\rm osc}_{\partial B(y_{0},r)}f^{\ast}<\varepsilon\quad\forall y_{0}\in B(x_{0},R/2)\,.

This implies

(2.13) oscB(x0,R/4)f<2ε,{\rm osc}_{B(x_{0},R/4)}f^{\ast}<2\varepsilon\,,

which is continuity. To see (2.13), without loss of generality let x0=0x_{0}=0. Let xx and yy be any two points in B(0,R/4){0}B(0,R/4)\setminus\{0\}. Then there exist r(0,|x|)r\in(0,|x|) and t(0,|y|)t\in(0,|y|) such that

oscB(rx|x|,|x|r)f<ε,oscB(ty|y|,|y|t)f<ε, and B(rx|x|,|x|r)B(ty|y|,|y|t).{\rm osc}_{\partial B(r\frac{x}{|x|},|x|-r)}f^{\ast}<\varepsilon\,,\quad{\rm osc}_{\partial B(t\frac{y}{|y|},|y|-t)}f^{\ast}<\varepsilon\,,\quad\text{ and }\partial B(r\frac{x}{|x|},|x|-r)\cap\partial B(t\frac{y}{|y|},|y|-t)\neq\emptyset\,.

If this is not the case, then by (2.12) and since the maps rB(rx/|x|,|x|r)r\mapsto\partial B(rx/|x|,|x|-r) and tB(ty/|y|,|y|t)t\mapsto\partial B(ty/|y|,|y|-t) are continuous it follows that some open interval must reside within the set Nx0N_{x_{0}}, a contradiction. Now let zB(0,R/4)z\in B(0,R/4) be a point in the intersection; we have

|f(x)f(y)||f(x)f(z)|+|f(z)f(y)|oscB(rx|x|,|x|r)f+oscB(ty|y|,|y|t)f<2ε.\begin{split}|f^{\ast}(x)-f^{\ast}(y)|&\leq|f^{\ast}(x)-f^{\ast}(z)|+|f^{\ast}(z)-f^{\ast}(y)|\\ &\leq{\rm osc}_{\partial B(r\frac{x}{|x|},|x|-r)}f^{\ast}+{\rm osc}_{\partial B(t\frac{y}{|y|},|y|-t)}f^{\ast}<2\varepsilon\,.\end{split}

This holds for any xx and yy not equal to zero. If one of the two points is the center of B(0,R/4)B(0,R/4) (without loss of generality y=0y=0) then repeat the argument with the set B(tx|x|,t)\partial B(t\frac{x}{|x|},t) for t(0,|x|)t\in(0,|x|) in place of B(ty|y|,|y|t)\partial B(t\frac{y}{|y|},|y|-t). Thus (2.13) is proved.

3. Degree and Monotonicity estimates

Let B=B(x0,r)nB=B(x_{0},r)\subset\mathbb{R}^{n} and let f:Bnf:\partial B\to\mathbb{R}^{n} be continuous. For pf(B)p\not\in f(\partial B) define the degree

deg(f,B,p):=deg𝕊n1(ψ)\deg(f,\partial B,p):=\deg_{\mathbb{S}^{n-1}}(\psi)

where

ψ:=f(xx0r)p|f(xx0r)p|:𝕊n1𝕊n1\psi:=\frac{f\left(\frac{x-x_{0}}{r}\right)-p}{\left|f\left(\frac{x-x_{0}}{r}\right)-p\right|}:\mathbb{S}^{n-1}\to\mathbb{S}^{n-1}

and deg𝕊n1\deg_{\mathbb{S}^{n-1}} computes the homotopy group of ψ\psi in πn1(𝕊n1)=\pi_{n-1}(\mathbb{S}^{n-1})=\mathbb{Z}.

The main topological ingredient is the following lemma (which is well-known). Items (i) and (iii) are essentially a rewritten version of [4, Lemma 5.1], and (ii) is a consequence of (i) motivated by [17, 7, 10].

Lemma 3.1.

Let Ωn\Omega\subset\mathbb{R}^{n} be an open set.

Assume that B1:=B(x1,r1)B_{1}:=B(x_{1},r_{1}) and B2:=B(x2,r2)ΩB_{2}:=B(x_{2},r_{2})\subset\subset\Omega are two open balls and f,fk:B1B2nf,f_{k}:\partial B_{1}\cup\partial B_{2}\to\mathbb{R}^{n} be continuous maps, kk\in\mathbb{N} such that fkf_{k} uniformly converges to ff on B1B2\partial B_{1}\cup\partial B_{2}.

If for any kk\in\mathbb{N}, the map fkf_{k} can be extended to a homeomorphism Fk:ΩnF_{k}:\Omega\to\mathbb{R}^{n} then the following hold:

  1. (i)

    If B1B2B_{1}\subset B_{2} then

    f(B1){pnf(B1):deg(f,B1,p)0}f(B2){pnf(B2):deg(f,B2,p)0}\begin{split}&f(\partial B_{1})\cup\left\{p\in\mathbb{R}^{n}\setminus f(\partial B_{1})\,:\,\deg(f,\partial B_{1},p)\neq 0\right\}\\ &\qquad\subset f(\partial B_{2})\cup\left\{p\in\mathbb{R}^{n}\setminus f(\partial B_{2})\,:\,\deg(f,\partial B_{2},p)\neq 0\right\}\end{split}
  2. (ii)

    If B1B2B_{1}\subset B_{2} then we have monotonicity of oscillation,

    oscB1f8oscB2f{\rm osc}_{\partial B_{1}}f\leq 8\,{\rm osc}_{\partial B_{2}}f

    and

    diam{pnf(B1):deg(f,B1,p)0}8oscB2f.\operatorname*{diam}\left\{p\in\mathbb{R}^{n}\setminus f(\partial B_{1})\,:\,\deg(f,\partial B_{1},p)\neq 0\right\}\leq 8\,{\rm osc}_{\partial B_{2}}f.
  3. (iii)

    If B1B2=B_{1}\cap B_{2}=\emptyset then

    {pn\f(B1):deg(f,B1,p)0}{pn\f(B2):deg(f,B2,p)0}=\left\{p\in\mathbb{R}^{n}\backslash f(\partial B_{1}):\,\deg(f,\partial B_{1},p)\neq 0\right\}\cap\left\{p\in\mathbb{R}^{n}\backslash f(\partial B_{2}):\,\deg(f,\partial B_{2},p)\neq 0\right\}=\emptyset
Proof.

To prove i, assume B1B2B_{1}\subset B_{2} and let

pf(B1){pnf(B1):deg(f,B1,p)0}.p\in f(\partial B_{1})\cup\left\{p\in\mathbb{R}^{n}\setminus f(\partial B_{1}):\,\deg(f,\partial B_{1},p)\neq 0\right\}.

If pf(B2)p\in f(\partial B_{2}) there is nothing to show, so we may assume that pf(B2)p\not\in f(\partial B_{2}). By uniform convergence pfk(B2)p\not\in f_{k}(\partial B_{2}) for all large kk.

We use a contradiction argument; assume that deg(f,B2,p)=0\deg(f,\partial B_{2},p)=0. By the uniform convergence and since pfk(B2)p\not\in f_{k}(\partial B_{2}) we have that deg(fk,B2,p)=0\deg(f_{k},\partial B_{2},p)=0 for large kk.

Let Fk:ΩnF_{k}:\Omega\to\mathbb{R}^{n} be a homeomorphism such that fk=Fk|B2f_{k}=F_{k}\Big{|}_{\partial B_{2}}. Then deg(fk,B2,p)=0\deg(f_{k},\partial B_{2},p)=0 implies that pFk(B2¯)p\not\in F_{k}(\overline{B_{2}}). Since B1¯B2\overline{B_{1}}\subset B_{2} this implies that pFk(B1¯)p\not\in F_{k}(\overline{B_{1}}) and thus

deg(fk,B1,p)=0 for large k.\deg(f_{k},\partial B_{1},p)=0\quad\text{ for large }k\,.

This leads to a contradiction as kk\to\infty unless pf(B1)p\in f(\partial B_{1}). However since Fk:B2¯nF_{k}:\overline{B_{2}}\to\mathbb{R}^{n} is a homeomorphism, it is an open map so if p(B1)\Fk(B2¯)p\in(\partial B_{1})\backslash F_{k}(\overline{B_{2}}) there must be qkB2q_{k}\in\partial B_{2} such that

dist(p,Fk(B2¯))=|pfk(qk)|.\operatorname*{dist}(p,F_{k}(\overline{B_{2}}))=|p-f_{k}(q_{k})|.

Since pf(B2)p\not\in f(\partial B_{2}), we conclude via uniform convergence that

lim infkdist(p,Fk(B2¯))>0\liminf_{k\to\infty}\operatorname*{dist}(p,F_{k}(\overline{B_{2}}))>0

and thus

dist(p,f(B1))=lim infkdist(p,fk(B1))lim infkdist(p,Fk(B2¯))>0,\operatorname*{dist}(p,f(\partial B_{1}))=\liminf_{k\to\infty}\operatorname*{dist}(p,f_{k}(\partial B_{1}))\geq\liminf_{k\to\infty}\operatorname*{dist}(p,F_{k}(\overline{B_{2}}))>0,

consequently pf(B1)p\not\in f(\partial B_{1}).

To prove ii, we have that

f(B1)f(B2){pnf(B2):deg(f,B2,p)0}.f(\partial B_{1})\subset f(\partial B_{2})\cup\left\{p\in\mathbb{R}^{n}\setminus f(\partial B_{2})\,:\,\deg(f,\partial B_{2},p)\neq 0\right\}.

Let D:=diam(f(B2))D:=\operatorname*{diam}(f(\partial B_{2})) and pick any x0B2x_{0}\in\partial B_{2}. then f(B2)B(f(x0),3D)f(\partial B_{2})\subset B(f(x_{0}),3D). Moreover, let π:nB(f(x0),4D)\pi:\mathbb{R}^{n}\to B(f(x_{0}),4D) be Lipschitz such that π|B(f(x0),3D)=id\pi\Big{|}_{B(f(x_{0}),3D)}=id. Since the degree depends only on the boundary values, for any pf(2)p\not\in f(\partial_{2}),

deg(f,B2,p)=deg(πf,B2,p).\deg(f,\partial B_{2},p)=\deg(\pi\circ f,\partial B_{2},p).

Since a necessary condition for the degree to be nonzero in a point pp is that pp belongs to the image, we conclude that

{pnf(B2):deg(f,B2,p)0}B(f(x0),4D).\left\{p\in\mathbb{R}^{n}\setminus f(\partial B_{2})\,:\,\deg(f,\partial B_{2},p)\neq 0\right\}\subset B(f(x_{0}),4D).

In conclusion, we have shown

f(B1)B(f(x0),4D)f(\partial B_{1})\subset B(f(x_{0}),4D)

and thus

diam(f(B1))8D=8diam(f(B2)).\operatorname*{diam}(f(\partial B_{1}))\leq 8D=8\operatorname*{diam}(f(\partial B_{2})).

For iii, assume that pn\(f(B1)f(B2))p\in\mathbb{R}^{n}\backslash\left(f(\partial B_{1})\cup f(\partial B_{2})\right) and

deg(f,B1,p)0,deg(f,B2,p)0.\deg(f,\partial B_{1},p)\neq 0,\quad\deg(f,\partial B_{2},p)\neq 0.

By uniform convegence, pn\(fk(B1)fk(B2))p\in\mathbb{R}^{n}\backslash\left(f_{k}(\partial B_{1})\cup f_{k}(\partial B_{2})\right) for eventually all kk\in\mathbb{N}, and

deg(fk,B1,p)0,deg(fk,B2,p)0.\deg(f_{k},\partial B_{1},p)\neq 0,\quad\deg(f_{k},\partial B_{2},p)\neq 0.

This means that pFk(B1)Fk(B2)p\in F_{k}(B_{1})\cap F_{k}(B_{2}) which is a contradiction to FkF_{k} being a homeomorphism.

4. Corollaries for Limits of Homeomorphisms

We need the following result, which is a fractional analogue of [11, Lemma 2.9]:

Lemma 4.1.

Let n2n\geq 2, and let p(1,)p\in(1,\infty) and s(0,1)s\in(0,1). Suppose that Ωn\Omega\subset\mathbb{R}^{n} is a bounded domain, and let

(4.1) fkf in Ws,p(Ω;n).f_{k}\rightharpoonup f\text{ in }W^{s,p}(\Omega;\mathbb{R}^{n})\,.

Let x0Ωx_{0}\in\Omega, and define rx0:=dist(x0,Ω)r_{x_{0}}:=\operatorname*{dist}(x_{0},\partial\Omega). Then there exists a set Nx0N_{x_{0}}\subset\mathbb{R} with 1(Nx0)=0\mathscr{L}^{1}(N_{x_{0}})=0 such that for any r(0,rx0)Nx0r\in(0,r_{x_{0}})\setminus N_{x_{0}} there exists a subsequence fkf_{k} such that

(4.2) fkf in Ws,p(B(x0,r);n).f^{\ast}_{k}\rightharpoonup f^{\ast}\text{ in }W^{s,p}(\partial B(x_{0},r);\mathbb{R}^{n})\,.

If sp>n1sp>n-1 then

(4.3) fkf on B(x0,r).f^{\ast}_{k}\rightrightarrows f^{\ast}\text{ on }\partial B(x_{0},r)\,.

In general the subsequence depends on rr.

Proof.

First, by compact embedding there is a subsequence fkff_{k}\to f in Lp(B(x0,rx0);n)L^{p}(B(x_{0},r_{x_{0}});\mathbb{R}^{n}) and so Fubini’s theorem implies

(4.4) fkf in Lp(B(x0,r);n), for every r(0,rx0)N1 with 1(N1)=0.f^{\ast}_{k}\to f^{\ast}\text{ in }L^{p}(\partial B(x_{0},r);\mathbb{R}^{n})\,,\quad\text{ for every }r\in(0,r_{x_{0}})\setminus N_{1}\text{ with }\mathscr{L}^{1}(N_{1})=0\,.

Next, define

(4.5) Φk(r):=B(x0,r)B(x0,r)|fk(x)fk(y)|p|xy|n1+spdn1(y)dn1(x),\Phi_{k}(r):=\int_{\partial B(x_{0},r)}\int_{\partial B(x_{0},r)}\frac{|f^{\ast}_{k}(x)-f^{\ast}_{k}(y)|^{p}}{|x-y|^{n-1+sp}}\,\mathrm{d}\mathscr{H}^{n-1}(y)\,\mathrm{d}\mathscr{H}^{n-1}(x)\,,

with

(4.6) Φ(r):=lim infkΦk(r).\Phi(r):=\liminf_{k\to\infty}\Phi_{k}(r)\,.

Then by Fatou’s Lemma and by Lemma 2.6

r/2rΦ(r)drlim infkr/2rΦk(r)drlim infj[fk]Ws,p(B(x0,r))p<\int_{r/2}^{r}\Phi(r)\,\mathrm{d}r\leq\liminf_{k\to\infty}\int_{r/2}^{r}\Phi_{k}(r)\,\mathrm{d}r\leq\liminf_{j\to\infty}[f^{\ast}_{k}]_{W^{s,p}(B(x_{0},r))}^{p}<\infty

for every r(0,rx0)r\in(0,r_{x_{0}}). Define N2:={r(0,rx0):Φ(r)=}N_{2}:=\left\{r\in(0,r_{x_{0}})\,:\,\Phi(r)=\infty\right\}, and define Nx0:=N1N2N_{x_{0}}:=N_{1}\cup N_{2}; note 1(Nx0)=0\mathscr{L}^{1}(N_{x_{0}})=0. Then let r(0,rx0)Nx0r\in(0,r_{x_{0}})\setminus N_{x_{0}}, and choose a subsequence (not relabeled) satisfying

Φ(r)=limkΦk(r).\Phi(r)=\lim_{k\to\infty}\Phi_{k}(r)\,.

Then fkff^{\ast}_{k}\to f^{\ast} strongly in Lp(B(x0,r);n)L^{p}(\partial B(x_{0},r);\mathbb{R}^{n}) and limk[fk]Ws,p(B(x0,r))<\lim_{k\to\infty}[f^{\ast}_{k}]_{W^{s,p}(\partial B(x_{0},r))}<\infty, and so (4.2) follows.

In the event that sp>n1sp>n-1 the uniform convergence follows from the compact Sobolev embedding theorem. ∎

The following is a corollary of the Sobolev compact embedding theorem, Lemma 3.1 and Proposition 2.8:

Corollary 4.2.

Let fkWs,p(Ω;n)f_{k}\in W^{s,p}(\Omega;\mathbb{R}^{n}) be a sequence of homeomorphisms weakly converging in Ws,p(Ω;n)W^{s,p}(\Omega;\mathbb{R}^{n}) to ff. If sp>n1sp>n-1 there exists a set ΣΩ\Sigma\subset\Omega with nsp(Σ)=0\mathscr{H}^{n-sp}(\Sigma)=0 such that

  1. (i)

    ff^{\ast} is continuous in Ω\Σ\Omega\backslash\Sigma, and

  2. (ii)

    The set{f(x)}\{f^{\ast}(x)\} coincides with the topological image (f)T(x)(f^{\ast})^{T}(x) for every xΩ\Σx\in\Omega\backslash\Sigma, where (f)T(x)(f^{\ast})^{T}(x) is defined as

    (f)T(x):=r(0,rx)\Nxf(B(x,r)){pnf(B(x,r)):deg(f,B(x,r),p)0},(f^{\ast})^{T}(x):=\bigcap_{r\in(0,r_{x})\backslash N_{x}}f^{\ast}(\partial B(x,r))\cup\{p\in\mathbb{R}^{n}\setminus f^{\ast}(\partial B(x,r))\,:\,\deg(f^{\ast},B(x,r),p)\neq 0\}\,,

    and rxr_{x} and NxN_{x} have been defined in Lemma 4.1.

Proof.

By Lemma 4.1 and Corollary 2.7, the assumptions of Lemma 3.1 are satisfied for every x1x_{1} and x2Ωx_{2}\in\Omega and for almost every r1(0,rx1)Nx1r_{1}\in(0,r_{x_{1}})\setminus N_{x_{1}} and r2(0,rx2)Nx2r_{2}\in(0,r_{x_{2}})\setminus N_{x_{2}}. It follows that the assumptions of Proposition 2.8 are satisfied, and so ff^{\ast} is continuous on a nsp\mathscr{H}^{n-sp}-null set Σ\Sigma, where Σ=AspX\Sigma=A_{sp}\cup X; see (2.6) and (2.11) for the sets’ definitions. Thus (i) is proven.

To prove (ii) it suffices to show that

  1. (a)

    f(x)(f)T(x)f^{\ast}(x)\in(f^{\ast})^{T}(x) for every xΩΣx\in\Omega\setminus\Sigma, and

  2. (b)

    the diameter of the set (f)T(x)(f^{\ast})^{T}(x) is zero for every xΩΣx\in\Omega\setminus\Sigma.

To see a we start by proving the following stronger statement:

(a’) For every x0Ω and r(0,rx0)Nx0,f(x)f(B(x0,r)){pnf(B(x0,r)):deg(f,B(x0,r),p)0} for every xB(x0,r)Σ.\begin{split}&\text{For every }x_{0}\in\Omega\text{ and }r\in(0,r_{x_{0}})\setminus N_{x_{0}}\,,\\ f^{\ast}(x)&\in f^{\ast}(\partial B(x_{0},r))\cup\{p\in\mathbb{R}^{n}\setminus f^{\ast}(\partial B(x_{0},r))\,:\,\deg(f^{\ast},B(x_{0},r),p)\neq 0\}\\ &\qquad\text{ for every }x\in B(x_{0},r)\setminus\Sigma\,.\end{split}

Then a follows easily from (a’) by choosing x0ΩΣx_{0}\in\Omega\setminus\Sigma. By definition of Σ\Sigma and by Lemma 2.3 it in turn suffices to show that

(a”) For every x0Ω and r(0,rx0)Nx0,f(x)f(B(x0,r)){pnf(B(x0,r)):deg(f,B(x0,r),p)0} for every xB(x0,r)M with n(M)=0.\begin{split}&\text{For every }x_{0}\in\Omega\text{ and }r\in(0,r_{x_{0}})\setminus N_{x_{0}}\,,\\ f^{\ast}(x)&\in f^{\ast}(\partial B(x_{0},r))\cup\{p\in\mathbb{R}^{n}\setminus f^{\ast}(\partial B(x_{0},r))\,:\,\deg(f^{\ast},B(x_{0},r),p)\neq 0\}\\ &\qquad\text{ for every }x\in B(x_{0},r)\setminus M\text{ with }\mathscr{L}^{n}(M)=0\,.\end{split}

Let δ>0\delta>0 be arbitrary. Then by the Sobolev compact embedding theorem and by Egorov’s theorem there exists a subsequence (not relabeled) fkf_{k} converging uniformly to ff^{\ast} on B(x0,r)MδB(x_{0},r)\setminus M_{\delta} with n(Mδ)<δ\mathscr{L}^{n}(M_{\delta})<\delta. Now let xΩMδx\in\Omega\setminus M_{\delta}. It suffices to show that if f(x)f(B(x0,r))f^{\ast}(x)\notin f^{\ast}(\partial B(x_{0},r)) then deg(f,B(x0,r),f(x))0\deg(f^{\ast},B(x_{0},r),f^{\ast}(x))\neq 0. Since fkff_{k}\rightrightarrows f^{\ast} on B(x0,r)\partial B(x_{0},r), f(x)fk(B(x,r))f^{\ast}(x)\notin f_{k}(\partial B(x,r)) for all kk sufficiently large. So there exists ε>0\varepsilon>0 such that B(f(x),ε)B(f^{\ast}(x),\varepsilon) does not intersect f(B(x0,r))f^{\ast}(\partial B(x_{0},r)) or fk(B(x0,r))f_{k}(\partial B(x_{0},r)) for kk sufficiently large. Then since the fkf_{k} are homeomorphisms, it must be that deg(fk,B(x0,r),p)\deg(f_{k},\partial B(x_{0},r),p) is a nonzero constant for all kk sufficiently large and for all pB(f(x),ε)p\in B(f^{\ast}(x),\varepsilon). In addition, fkff_{k}\rightrightarrows f^{\ast} on B(x0,r)MδB(x_{0},r)\setminus M_{\delta} so fk(x)B(f(x),ε)f_{k}(x)\in B(f^{\ast}(x),\varepsilon) for kk sufficiently large, uniformly in xx. Thus the continuity of the degree yields

deg(f,B(x0,r),f(x))=limkdeg(fk,B(x0,r),fk(x)).\deg(f^{\ast},B(x_{0},r),f^{\ast}(x))=\lim_{k\to\infty}\deg(f_{k},B(x_{0},r),f_{k}(x))\,.

Since deg(fk,B(x0,r),fk(x))\deg(f_{k},B(x_{0},r),f_{k}(x)) is a nonzero constant for all kk sufficiently large, we have proved that

For every x0Ω and r(0,rx0)Nx0,f(x)f(B(x0,r)){pnf(B(x0,r)):deg(f,B(x0,r),p)0} for every xB(x0,r)Mδ with n(Mδ)<δ.\begin{split}&\text{For every }x_{0}\in\Omega\text{ and }r\in(0,r_{x_{0}})\setminus N_{x_{0}}\,,\\ f^{\ast}(x)&\in f^{\ast}(\partial B(x_{0},r))\cup\{p\in\mathbb{R}^{n}\setminus f^{\ast}(\partial B(x_{0},r))\,:\,\deg(f^{\ast},B(x_{0},r),p)\neq 0\}\\ &\qquad\text{ for every }x\in B(x_{0},r)\setminus M_{\delta}\text{ with }\mathscr{L}^{n}(M_{\delta})<\delta\,.\end{split}

Since δ>0\delta>0 is arbitrary (a”) is proved.

To see b, let x0ΩΣx_{0}\in\Omega\setminus\Sigma, and let ε>0\varepsilon>0. Then by definition of the set XX there exists R=R(x0,ε)(0,rx0)R=R(x_{0},\varepsilon)\in(0,r_{x_{0}}) such that

Rspn[f]Ws,p(B(x0,R))<ε.R^{sp-n}[f^{\ast}]_{W^{s,p}(B(x_{0},R))}<\varepsilon\,.

So by Lemma 3.1 ii and (2.10)

diam(f)T(x0)diam(f(B(x0,r)){p:deg(f,B(x0,r),p)0})<Cε\operatorname*{diam}(f^{\ast})^{T}(x_{0})\leq\operatorname*{diam}\Big{(}f^{\ast}(\partial B(x_{0},r))\cup\{p\,:\,\deg(f^{\ast},B(x_{0},r),p)\neq 0\}\Big{)}<C\varepsilon

for every r(0,R/4)Nx0r\in(0,R/4)\setminus N_{x_{0}}. Therefore by definition diam(f)T(x0)<ε\operatorname*{diam}(f^{\ast})^{T}(x_{0})<\varepsilon. The proof is complete.

Remark 4.3.

We can define a representative f^\widehat{f} of ff as

(4.7) f^(x):={f(x),xΩΣ,any element of fT(x), otherwise, \widehat{f}(x):=\begin{cases}f^{\ast}(x)\,,\qquad&x\in\Omega\setminus\Sigma\,,\\ \text{any element of }f^{T}(x)\,,\qquad&\text{ otherwise, }\end{cases}

Then f^\widehat{f} agrees with ff^{\ast} everywhere outside Σ\Sigma, and f^\widehat{f} has the added property that f^(x)(f^)T(x)\widehat{f}(x)\in(\widehat{f})^{T}(x) for every xΩx\in\Omega.

5. Proof of Theorem 1.1

Proof of Theorem 1.1.

We proceed identically to [4]. Assume that f=f^f=\widehat{f}. We argue by contradiction; suppose that there is a δ>0\delta>0 such that the set

(5.1) Γ:={yn:diam(f1({y}))>0}\Gamma:=\left\{y\in\mathbb{R}^{n}\,:\,\operatorname*{diam}(f^{-1}(\{y\}))>0\right\}

satisfies n1s+δ(Γ)>0\mathscr{H}^{\frac{n-1}{s}+\delta}(\Gamma)>0. Then there exists KK\in\mathbb{N} such that the set

(5.2) ΓK:={yn:diam(f1({y}))>1K}\Gamma_{K}:=\left\{y\in\mathbb{R}^{n}\,:\,\operatorname*{diam}(f^{-1}(\{y\}))>\frac{1}{K}\right\}

satisfies n1s+δ(ΓK)>0\mathscr{H}^{\frac{n-1}{s}+\delta}(\Gamma_{K})>0, since F=kΓkF=\bigcup_{k\in\mathbb{N}}\Gamma_{k}. For each xx there exists r<12Kr<\frac{1}{2K} such that f|B(x,r)Ws,p(B(x,r);n)C0(B(x,r);n)f|_{\partial B(x,r)}\in W^{s,p}(\partial B(x,r);\mathbb{R}^{n})\cap C^{0}(\partial B(x,r);\mathbb{R}^{n}) by Corollary 4.1. Then choosing a covering of Ω\Omega with such a collection :=(B(xi,ri))i=1\mathcal{B}:=(B(x_{i},r_{i}))_{i=1}^{\infty}, by Theorem 2.5 we have dim(f(B(xi,ri)))<n1s\dim_{\mathscr{H}}(f(\partial B(x_{i},r_{i})))<\frac{n-1}{s}, so n1s+δ(f(B(xi,ri)))=0\mathscr{H}^{\frac{n-1}{s}+\delta}(f(\partial B(x_{i},r_{i})))=0. Therefore, the set

(5.3) E:=i=1f(B(xi,ri))E:=\bigcup_{i=1}^{\infty}f(\partial B(x_{i},r_{i}))

satisfies n1s+δ(E)=0\mathscr{H}^{\frac{n-1}{s}+\delta}(E)=0. We will show that ΓKE\Gamma_{K}\subset E, which contradicts the statement n1s+δ(ΓK)>0\mathscr{H}^{\frac{n-1}{s}+\delta}(\Gamma_{K})>0.

Assume yΓKEy\in\Gamma_{K}\setminus E. Then there must exist z1z_{1} and z2z_{2} in Ω\Omega with f(z1)=f(z2)=yf(z_{1})=f(z_{2})=y, with dist(z1,z2)>1K\operatorname*{dist}(z_{1},z_{2})>\frac{1}{K}. Fix an element B(xi,ri)B(x_{i},r_{i}) from the collection \mathcal{B} with z1B(xi,ri)z_{1}\in B(x_{i},r_{i}) and z2B(xi,ri)z_{2}\notin B(x_{i},r_{i}). Combining Lemma 3.1i with the fact that

f(x)fT(x)f(B(x,r)){pnf(B(x,r)):deg(f,B(x,r),p)0}f(x)\in f^{T}(x)\subset f(\partial B(x,r))\cup\{p\in\mathbb{R}^{n}\setminus f(\partial B(x,r))\,:\,\deg(f,\partial B(x,r),p)\neq 0\}

for all xΩx\in\Omega and for r(0,dist(x,Ω))Nxr\in(0,\operatorname*{dist}(x,\partial\Omega))\setminus N_{x}, we get

y=f(z1)f(B(xi,ri)){pnf(B(xi,rxi)):deg(f,B(xi,rxi),p)0}.y=f(z_{1})\in f(\partial B(x_{i},r_{i}))\cup\{p\in\mathbb{R}^{n}\setminus f(\partial B(x_{i},r_{x_{i}}))\,:\,\deg(f,B(x_{i},r_{x_{i}}),p)\neq 0\}\,.

However yEy\notin E so yf(B(xi,ri))y\notin f(\partial B(x_{i},r_{i})), and thus

y=f(z1){pnf(B(xi,rxi)):deg(f,B(xi,rxi),p)0}.y=f(z_{1})\in\{p\in\mathbb{R}^{n}\setminus f(\partial B(x_{i},r_{x_{i}}))\,:\,\deg(f,B(x_{i},r_{x_{i}}),p)\neq 0\}\,.

At the same time, a similar argument using Lemma 3.1iii gives

y=f(z2)fT(z2)n{pnf(B(xi,rxi)):deg(f,B(xi,rxi),p)0},y=f(z_{2})\in f^{T}(z_{2})\subset\mathbb{R}^{n}\setminus\{p\in\mathbb{R}^{n}\setminus f(\partial B(x_{i},r_{x_{i}}))\,:\,\deg(f,B(x_{i},r_{x_{i}}),p)\neq 0\}\,,

which is a contradiction. ∎

Appendix A Proof of Lemma 2.6

Proof.

It suffices to prove (2.9) for a=0a=0 and r=1r=1. In the case of general aa and rr we can apply (2.9) for a=0a=0, r=1r=1 to the function

g(x):=f(a+rx)Ws,p(B(0,1))g(x):=f(a+rx)\in W^{s,p}(B(0,1))

and obtain (2.9) for general aa and rr by change of variables.

Since the function f(f)Bf-(f)_{B} also belongs to Ws,p(B(0,1))W^{s,p}(B(0,1)) we can assume without loss of generality that

B(0,1)fdx=0.\fint_{B(0,1)}f\,\mathrm{d}x=0\,.

Thus by the Poincaré inequality it suffices to show that there exists a constant C=C(n,s,p)>0C=C(n,s,p)>0 such that

(A.1) 1/21𝕊n1𝕊n1ρn1sp|f(ρx)f(ρy)|p|xy|n1+spdn1(y)dn1(x)dρCfWs,p(B(0,1))p;\begin{split}\int_{1/2}^{1}\int_{\mathbb{S}^{n-1}}\int_{\mathbb{S}^{n-1}}\rho^{n-1-sp}\frac{|f(\rho x)-f(\rho y)|^{p}}{|x-y|^{n-1+sp}}\,\mathrm{d}\mathscr{H}^{n-1}(y)\,\mathrm{d}\mathscr{H}^{n-1}(x)\,\mathrm{d}\rho\leq C\left\|f\right\|_{W^{s,p}(B(0,1))}^{p}\,;\end{split}

note that we used polar coordinates to rewrite the integral.

We prove (A.1) by splitting the domain of the left-hand side integral and estimating each piece. Each domain of integration is locally homeomorphic to a Euclidean ball in n1\mathbb{R}^{n-1}, which allows us to apply translation arguments in the spirit of [2, Lemma 7.44]. Any local diffeomorphism between 𝕊n1\mathbb{S}^{n-1} and n1\mathbb{R}^{n-1} will do, but we make this argument explicit by using stereographic projection.

Step 1: To this end, define for each μ[0,1)\mu\in[0,1) the spherical cap Hμ:={x𝕊n1:xn<μ}H_{\mu}:=\{x\in\mathbb{S}^{n-1}\,:\,x_{n}<\mu\}. We will show that for every μ[0,1)\mu\in[0,1) there exists a constant C=C(n,s,p)C=C(n,s,p) such that

(A.2) 1/21HμHμρn1sp|f(ρx)f(ρy)|p|xy|n1+spdn1(y)dn1(x)dρC(1+μ1μ)1+spfWs,p(B(0,1))p.\begin{split}\int_{1/2}^{1}&\int_{H_{\mu}}\int_{H_{\mu}}\rho^{n-1-sp}\frac{|f(\rho x)-f(\rho y)|^{p}}{|x-y|^{n-1+sp}}\,\mathrm{d}\mathscr{H}^{n-1}(y)\,\mathrm{d}\mathscr{H}^{n-1}(x)\,\mathrm{d}\rho\leq C\left(\frac{1+\mu}{1-\mu}\right)^{1+sp}\left\|f\right\|_{W^{s,p}(B(0,1))}^{p}\,.\end{split}

Throughout the proof we write Bn1(0,λ)B_{n-1}(0,\lambda) for any λ>0\lambda>0 as the ball in n1\mathbb{R}^{n-1} centered at 0 of radius λ\lambda. We next establish notation for the stereographic projection ψ:n1𝕊n1{(0,,0,1)}\psi:\mathbb{R}^{n-1}\to\mathbb{S}^{n-1}\setminus\{(0,\ldots,0,1)\} to prove (A.2). Details on the stereographic projection can be found in several places, for instance [8, Appendix D.6]. We use the definition

ψ(x1,,xn1):=(2x11+|x|2,,2xn11+|x|2,|x|211+|x|2)\psi(x_{1},\ldots,x_{n-1}):=\left(\frac{2x_{1}}{1+|x|^{2}},\ldots,\frac{2x_{n-1}}{1+|x|^{2}},\frac{|x|^{2}-1}{1+|x|^{2}}\right)

so that we have the correspondence of domains

ψ(Bn1(0,λ))=Hμ, where λ=1+μ1μ.\psi(B_{n-1}(0,\lambda))=H_{\mu}\,,\quad\text{ where }\quad\lambda=\sqrt{\frac{1+\mu}{1-\mu}}\,.

The formula for the Jacobian Jψ(x):=(21+|x|2)n1J_{\psi}(x):=\left(\frac{2}{1+|x|^{2}}\right)^{n-1} will be used throughout in order to ensure that quantities such as Jψ(xy)J_{\psi}(x-y) and |Jψ(x)Jψ(y)||J_{\psi}(x)-J_{\psi}(y)| remain bounded above and below uniformly for xx and yy in Bn1(0,λ)B_{n-1}(0,\lambda), with bounds depending only on nn and λ\lambda.

To prove (A.2) we need to show that for every λ[1,)\lambda\in[1,\infty) and for every ball Bn1(0,λ)n1B_{n-1}(0,\lambda)\subset\mathbb{R}^{n-1}

(A.3) 1/21Bn1(0,λ)Bn1(0,λ)ρn1sp|f(ρψ(x))f(ρψ(y))|p|ψ(x)ψ(y)|n1+sp×Jψ(x)Jψ(y)dydxdρn,s,pλ2+2spfWs,p(B(0,1))p.\begin{split}\int_{1/2}^{1}&\int_{B_{n-1}(0,\lambda)}\int_{B_{n-1}(0,\lambda)}\rho^{n-1-sp}\frac{|f(\rho\psi(x))-f(\rho\psi(y))|^{p}}{|\psi(x)-\psi(y)|^{n-1+sp}}\\ &\qquad\times J_{\psi}(x)J_{\psi}(y)\,\mathrm{d}y\,\mathrm{d}x\,\mathrm{d}\rho\precsim_{n,s,p}\lambda^{2+2sp}\left\|f\right\|_{W^{s,p}(B(0,1))}^{p}\,.\end{split}

We proceed using a technique found in [2, Lemma 7.44]. Let σ[1/2,1]\sigma\in[1/2,1], and integrate the inequality

|f(ρψ(x))f(ρψ(y))|pp|f(ρψ(x))f(σψ(x+y2))|p+|f(σψ(x+y2))f(ρψ(y))|p\begin{split}|f(\rho\psi(x))-f(\rho\psi(y))|^{p}&\precsim_{p}|f(\rho\psi(x))-f(\sigma\psi(\textstyle{\frac{x+y}{2}}))|^{p}\\ &\qquad+|f(\sigma\psi(\textstyle{\frac{x+y}{2}}))-f(\rho\psi(y))|^{p}\end{split}

with respect to σ\sigma over the ball B(r,|ψ(x)ψ(y)|2)[12,1]B(r,\textstyle{\frac{|\psi(x)-\psi(y)|}{2}})\cap[\textstyle{\frac{1}{2}},1]\subset\mathbb{R} to get

|f(ρψ(x))f(ρψ(y))|pp1|ψ(x)ψ(y)|{|σρ||ψ(x)ψ(y)|2}[1/2,1]|f(ρψ(x))f(σψ(x+y2))|pdσ+1|ψ(x)ψ(y)|{|σρ||ψ(x)ψ(y)|2}[1/2,1]|f(σψ(x+y2))f(ρψ(y))|pdσ.\begin{split}&|f(\rho\psi(x))-f(\rho\psi(y))|^{p}\\ &\quad\precsim_{p}\frac{1}{|\psi(x)-\psi(y)|}\int_{\{|\sigma-\rho|\leq\frac{|\psi(x)-\psi(y)|}{2}\}\cap[1/2,1]}|f(\rho\psi(x))-f(\sigma\psi(\textstyle{\frac{x+y}{2}}))|^{p}\,\mathrm{d}\sigma\\ &\qquad+\frac{1}{|\psi(x)-\psi(y)|}\int_{\{|\sigma-\rho|\leq\frac{|\psi(x)-\psi(y)|}{2}\}\cap[1/2,1]}|f(\sigma\psi(\textstyle{\frac{x+y}{2}}))-f(\rho\psi(y))|^{p}\,\mathrm{d}\sigma\,.\end{split}

Set for ηn1\eta\in\mathbb{R}^{n-1}

Υ(η):={|σρ||ψ(x)ψ(y)|2}[1/2,1]|f(ρψ(η))f(σψ(x+y2))|pdσ;\Upsilon(\eta):=\int_{\{|\sigma-\rho|\leq\frac{|\psi(x)-\psi(y)|}{2}\}\cap[1/2,1]}|f(\rho\psi(\eta))-f(\sigma\psi(\textstyle{\frac{x+y}{2}}))|^{p}\,\mathrm{d}\sigma\,;

therefore

(A.4) 1/21ρn1spBn1(0,λ)Bn1(0,λ)|f(ρψ(x))f(ρψ(y))|p|ψ(x)ψ(y)|n1+spJψ(x)Jψ(y)dydxdρp1/21ρn1spBn1(0,λ)Bn1(0,λ)Υ(x)+Υ(y)|ψ(x)ψ(y)|n+spJψ(x)Jψ(y)dydxdρ:=I+II.\begin{split}&\int_{1/2}^{1}\rho^{n-1-sp}\int_{B_{n-1}(0,\lambda)}\int_{B_{n-1}(0,\lambda)}\frac{|f(\rho\psi(x))-f(\rho\psi(y))|^{p}}{|\psi(x)-\psi(y)|^{n-1+sp}}J_{\psi}(x)J_{\psi}(y)\,\mathrm{d}y\,\mathrm{d}x\,\mathrm{d}\rho\\ &\quad\precsim_{p}\int_{1/2}^{1}\rho^{n-1-sp}\int_{B_{n-1}(0,\lambda)}\int_{B_{n-1}(0,\lambda)}\frac{\Upsilon(x)+\Upsilon(y)}{|\psi(x)-\psi(y)|^{n+sp}}J_{\psi}(x)J_{\psi}(y)\,\mathrm{d}y\,\mathrm{d}x\,\mathrm{d}\rho:=\mathrm{I}+\mathrm{II}\,.\end{split}

Now by change of variables and using the formula for JψJ_{\psi} as well as the formula

|ψ(x)ψ(y)|=2|xy|(1+|x|2)1/2(1+|y|2)1/2|\psi(x)-\psi(y)|=\frac{2|x-y|}{(1+|x|^{2})^{1/2}(1+|y|^{2})^{1/2}}

which is valid for all xx, yn1y\in\mathbb{R}^{n-1}, we have

I=1/21Bn1(0,λ)Bn1(0,λ){|σρ||ψ(x)ψ(y)|2}[1/2,1]ρn1sp|f(ρψ(x))f(σψ(x+y2))|p|ψ(x)ψ(y)|n+sp×Jψ(x)Jψ(y)dσdydxdρ=1/211/21Bn1(0,λ){|2zx|λ}{|ψ(x)ψ(2zx)|2|σρ|}ρn1sp|f(ρψ(x))f(σψ(z))|p|ψ(x)ψ(2zx)|n+sp×Jψ(x)Jψ(2zx)dzdxdσdρ=12(n+sp)/21/211/21Bn1(0,λ){|2zx|λ}{|ψ(x)ψ(z)|G(x,z)|σρ|}ρn1sp|f(ρψ(x))f(σψ(z))|p|ψ(x)ψ(z)|n+sp×Jψ(x)Jψ(z)G(x,z)2+spndzdxdσdρ,\begin{split}\mathrm{I}&=\int_{1/2}^{1}\int_{B_{n-1}(0,\lambda)}\int_{B_{n-1}(0,\lambda)}\int_{\{|\sigma-\rho|\leq\frac{|\psi(x)-\psi(y)|}{2}\}\cap[1/2,1]}\rho^{n-1-sp}\frac{|f(\rho\psi(x))-f(\sigma\psi({\textstyle\frac{x+y}{2}}))|^{p}}{|\psi(x)-\psi(y)|^{n+sp}}\\ &\qquad\hskip 130.08731pt\times J_{\psi}(x)J_{\psi}(y)\,\mathrm{d}\sigma\,\mathrm{d}y\,\mathrm{d}x\,\mathrm{d}\rho\\ &=\int_{1/2}^{1}\int_{1/2}^{1}\int_{B_{n-1}(0,\lambda)}\int_{\left\{|2z-x|\leq\lambda\right\}\cap\left\{|\psi(x)-\psi(2z-x)|\geq 2|\sigma-\rho|\right\}}\rho^{n-1-sp}\frac{|f(\rho\psi(x))-f(\sigma\psi(z))|^{p}}{|\psi(x)-\psi(2z-x)|^{n+sp}}\\ &\qquad\hskip 130.08731pt\times J_{\psi}(x)J_{\psi}(2z-x)\,\mathrm{d}z\,\mathrm{d}x\,\mathrm{d}\sigma\,\mathrm{d}\rho\\ &=\frac{1}{2^{(n+sp)/2}}\int_{1/2}^{1}\int_{1/2}^{1}\int_{B_{n-1}(0,\lambda)}\int_{\left\{|2z-x|\leq\lambda\right\}\cap\left\{|\psi(x)-\psi(z)|\geq G(x,z)|\sigma-\rho|\right\}}\rho^{n-1-sp}\frac{|f(\rho\psi(x))-f(\sigma\psi(z))|^{p}}{|\psi(x)-\psi(z)|^{n+sp}}\\ &\qquad\hskip 130.08731pt\times J_{\psi}(x)J_{\psi}(z)G(x,z)^{2+sp-n}\,\mathrm{d}z\,\mathrm{d}x\,\mathrm{d}\sigma\,\mathrm{d}\rho\,,\end{split}

where

G(x,z):=(1+|2zx|21+|x|2)1/2.G(x,z):=\left(\frac{1+|2z-x|^{2}}{1+|x|^{2}}\right)^{1/2}\,.

Now, since |x|λ|x|\leq\lambda and |2zx|λ|2z-x|\leq\lambda the uniform bound 11+λ2G(x,z)1+λ2\frac{1}{\sqrt{1+\lambda^{2}}}\leq G(x,z)\leq\sqrt{1+\lambda^{2}} holds, and so I\mathrm{I} can be majorized by

(A.5) C(n,s,p)λ2+spn1/211/21Bn1(0,λ){|2zx|λ}{|ψ(x)ψ(z)||σρ|1+λ2}ρn1sp×|f(ρψ(x))f(σψ(z))|p|ψ(x)ψ(z)|n+spJψ(x)Jψ(z)dzdxdσdρ.\begin{split}&C(n,s,p)\lambda^{2+sp-n}\int_{1/2}^{1}\int_{1/2}^{1}\int_{B_{n-1}(0,\lambda)}\int_{\left\{|2z-x|\leq\lambda\right\}\cap\left\{|\psi(x)-\psi(z)|\geq\frac{|\sigma-\rho|}{\sqrt{1+\lambda^{2}}}\right\}}\rho^{n-1-sp}\\ &\qquad\hskip 86.72267pt\times\frac{|f(\rho\psi(x))-f(\sigma\psi(z))|^{p}}{|\psi(x)-\psi(z)|^{n+sp}}J_{\psi}(x)J_{\psi}(z)\,\mathrm{d}z\,\mathrm{d}x\,\mathrm{d}\sigma\,\mathrm{d}\rho\,.\end{split}

Finally, on the domain of integration in (A.5) the estimate

|ρψ(x)σψ(z)|ρ|ψ(x)ψ(z)|+|ψ(z)||ρσ||ψ(x)ψ(z)|+(1+λ2)1/2|ψ(x)ψ(z)|2λ|ψ(x)ψ(z)|\begin{split}|\rho\psi(x)-\sigma\psi(z)|&\leq\rho|\psi(x)-\psi(z)|+|\psi(z)||\rho-\sigma|\\ &\leq|\psi(x)-\psi(z)|+(1+\lambda^{2})^{1/2}|\psi(x)-\psi(z)|\leq 2\lambda|\psi(x)-\psi(z)|\end{split}

holds, and since ρ\rho and σ\sigma are bounded away from zero

ICλ2+2sp1/211/21Bn1(0,λ){|2zx|λ}{|ψ(x)ψ(z)||σρ|1+λ2}ρn1σn1×|f(ρψ(x))f(σψ(z))|p|ρψ(x)σψ(z)|n+spJψ(x)Jψ(z)dzdxdσdρCλ2+2sp0101n1n1ρn1σn1|f(ρψ(x))f(σψ(z))|p|ρψ(x)σψ(z)|n+sp×Jψ(x)Jψ(z)dzdxdσdρ=C(n,s,p)λ2+2spB(0,1)B(0,1)|f(x)f(y)|p|xy|n+spdydx.\begin{split}\mathrm{I}&\leq C\lambda^{2+2sp}\int_{1/2}^{1}\int_{1/2}^{1}\int_{B_{n-1}(0,\lambda)}\int_{\left\{|2z-x|\leq\lambda\right\}\cap\left\{|\psi(x)-\psi(z)|\geq\frac{|\sigma-\rho|}{\sqrt{1+\lambda^{2}}}\right\}}\rho^{n-1}\sigma^{n-1}\\ &\qquad\hskip 86.72267pt\times\frac{|f(\rho\psi(x))-f(\sigma\psi(z))|^{p}}{|\rho\psi(x)-\sigma\psi(z)|^{n+sp}}J_{\psi}(x)J_{\psi}(z)\,\mathrm{d}z\,\mathrm{d}x\,\mathrm{d}\sigma\,\mathrm{d}\rho\\ &\leq C\lambda^{2+2sp}\int_{0}^{1}\int_{0}^{1}\int_{\mathbb{R}^{n-1}}\int_{\mathbb{R}^{n-1}}\rho^{n-1}\sigma^{n-1}\frac{|f(\rho\psi(x))-f(\sigma\psi(z))|^{p}}{|\rho\psi(x)-\sigma\psi(z)|^{n+sp}}\\ &\qquad\hskip 86.72267pt\times J_{\psi}(x)J_{\psi}(z)\,\mathrm{d}z\,\mathrm{d}x\,\mathrm{d}\sigma\,\mathrm{d}\rho\\ &=C(n,s,p)\lambda^{2+2sp}\int_{B(0,1)}\int_{B(0,1)}\frac{|f(x)-f(y)|^{p}}{|x-y|^{n+sp}}\,\mathrm{d}y\,\mathrm{d}x\,.\end{split}

A similar estimate holds for the quantity II\mathrm{II} in (A.4). Therefore (A.3), and thus (A.2), is proved.

Step 2: We conclude the proof. Split the integral on the left-hand side of (A.1) via change of variables and symmetry as

(A.6) 1/21𝕊n1𝕊n1ρn1sp|f(ρx)f(ρy)|p|xy|n1+spdn1(y)dn1(x)dρ=1/21H0H0+1/21𝕊n1H0𝕊n1H0+21/21𝕊n1H0H0:=I+II+III.\begin{split}\int_{1/2}^{1}&\int_{\mathbb{S}^{n-1}}\int_{\mathbb{S}^{n-1}}\rho^{n-1-sp}\frac{|f(\rho x)-f(\rho y)|^{p}}{|x-y|^{n-1+sp}}\,\mathrm{d}\mathscr{H}^{n-1}(y)\,\mathrm{d}\mathscr{H}^{n-1}(x)\,\mathrm{d}\rho\\ &=\int_{1/2}^{1}\int_{H_{0}}\int_{H_{0}}\cdots+\int_{1/2}^{1}\int_{\mathbb{S}^{n-1}\setminus H_{0}}\int_{\mathbb{S}^{n-1}\setminus H_{0}}\cdots+2\int_{1/2}^{1}\int_{\mathbb{S}^{n-1}\setminus H_{0}}\int_{H_{0}}\cdots\\ &:=\mathrm{I}+\mathrm{II}+\mathrm{III}\,.\end{split}

Clearly by (A.2) with μ=0\mu=0

(A.7) In,s,p[f]Ws,p(B(0,1))p.\mathrm{I}\precsim_{n,s,p}[f]_{W^{s,p}(B(0,1))}^{p}\,.

Now, let Q:n1n1Q:\mathbb{R}^{n-1}\to\mathbb{R}^{n-1} be the matrix diag(1,1,,1,1)\operatorname{diag}(1,1,\ldots,1,-1). Setting h(x)=f(Qx)h(x)=f(Qx) for any xB1(0)x\in B_{1}(0), a change of variables gives

II=1/21H0H0ρn1sp|h(ρx)h(ρy)|p|xy|n1+spdn1(y)dn1(x)dρ.\mathrm{II}=\int_{1/2}^{1}\int_{H_{0}}\int_{H_{0}}\rho^{n-1-sp}\frac{|h(\rho x)-h(\rho y)|^{p}}{|x-y|^{n-1+sp}}\,\mathrm{d}\mathscr{H}^{n-1}(y)\,\mathrm{d}\mathscr{H}^{n-1}(x)\,\mathrm{d}\rho\,.

Thus by (A.2) with μ=0\mu=0 and by another change of variables

(A.8) IICB(0,1)B(0,1)|h(x)h(y)|p|xy|n+spdydx=CB(0,1)B(0,1)|f(x)f(y)|p|xy|n+spdydx.\mathrm{II}\leq C\int_{B(0,1)}\int_{B(0,1)}\frac{|h(x)-h(y)|^{p}}{|x-y|^{n+sp}}\,\mathrm{d}y\,\mathrm{d}x=C\int_{B(0,1)}\int_{B(0,1)}\frac{|f(x)-f(y)|^{p}}{|x-y|^{n+sp}}\,\mathrm{d}y\,\mathrm{d}x\,.

For the last integral, we have

III=21/21H1/2H0H0+21/21𝕊n1H1/2H0:=III1+III2.\begin{split}\mathrm{III}&=2\int_{1/2}^{1}\int_{H_{1/2}\setminus H_{0}}\int_{H_{0}}\cdots+2\int_{1/2}^{1}\int_{\mathbb{S}^{n-1}\setminus H_{1/2}}\int_{H_{0}}\cdots\\ &:=\mathrm{III}_{1}+\mathrm{III}_{2}\,.\end{split}

Using that H0H1/2H_{0}\subset H_{1/2} along with (A.2) for μ=1/2\mu=1/2,

(A.9) III11/21H1/2H1/2ρn1sp|f(ρx)f(ρy)|p|xy|n1+spdn1(y)dn1(x)dρ[f]Ws,p(B(0,1))p.\begin{split}\mathrm{III}_{1}&\leq\int_{1/2}^{1}\int_{H_{1/2}}\int_{H_{1/2}}\rho^{n-1-sp}\frac{|f(\rho x)-f(\rho y)|^{p}}{|x-y|^{n-1+sp}}\,\mathrm{d}\mathscr{H}^{n-1}(y)\,\mathrm{d}\mathscr{H}^{n-1}(x)\,\mathrm{d}\rho\leq[f]_{W^{s,p}(B(0,1))}^{p}\,.\end{split}

Since dist(𝕊n1H1/2¯,H0¯)=C(n)>0\operatorname*{dist}(\overline{\mathbb{S}^{n-1}\setminus H_{1/2}},\overline{H_{0}})=C(n)>0, we have that |xy|C(n)>0|x-y|\geq C(n)>0 for all x𝕊n1H1/2x\in\mathbb{S}^{n-1}\setminus H_{1/2} and for all yH0y\in H_{0}, and so the integral III2\mathrm{III}_{2} can be estimated by

(A.10) III2n,s,p1/21𝕊n1|f(ρx)|pdn1(x)dρn,s,pfLp(B(0,1)).\mathrm{III}_{2}\precsim_{n,s,p}\int_{1/2}^{1}\int_{\mathbb{S}^{n-1}}|f(\rho x)|^{p}\,\mathrm{d}\mathscr{H}^{n-1}(x)\,\mathrm{d}\rho\precsim_{n,s,p}\left\|f\right\|_{L^{p}(B(0,1))}\,.

Combining (A.6) with estimates (A.7), (A.8), (A.9) and (A.10) gives (A.1). ∎

References

  • [1] D. R. Adams and L. I. Hedberg. Function spaces and potential theory, volume 314. Springer Science & Business Media, 2012.
  • [2] R. A. Adams. Sobolev spaces, volume 65 of Pure and Applied Mathematics. Academic, New York-London, 1975.
  • [3] M. Barchiesi, D. Henao, and C. Mora-Corral. Local invertibility in Sobolev spaces with applications to nematic elastomers and magnetoelasticity. Arch. Ration. Mech. Anal., 224(2):743–816, 2017.
  • [4] O. Bouchala, S. Hencl, and A. Molchanova. Injectivity almost everywhere for weak limits of sobolev homeomorphisms, 2019.
  • [5] J. Bourgain, H. Brezis, and P. Mironescu. Lifting, degree, and distributional Jacobian revisited. Communications on Pure and Applied Mathematics: A Journal Issued by the Courant Institute of Mathematical Sciences, 58(4):529–551, 2005.
  • [6] L. C. Evans and R. F. Gariepy. Measure theory and fine properties of functions. CRC press, 2015.
  • [7] P. Goldstein, P. Hajłasz, and M. R. Pakzad. Finite distortion Sobolev mappings between manifolds are continuous. Int. Math. Res. Not. IMRN, (14):4370–4391, 2019.
  • [8] L. Grafakos. Classical Fourier Analysis, 2nd Edition, volume 249. 2008.
  • [9] S. Hencl and P. Honzík. Dimension distortion of images of sets under Sobolev mappings. Ann. Acad. Sci. Fenn. Math 40, (1):427–442, 2015.
  • [10] S. Li and A. Schikorra. Ws,nsW^{s,\frac{n}{s}}-maps with positive distributional Jacobians. Pot.A. (accepted), 2019.
  • [11] S. Müller and S. J. Spector. An existence theory for nonlinear elasticity that allows for cavitation. Arch. Rational Mech. Anal., 131(1):1–66, 1995.
  • [12] S. Müller, S. J. Spector, and Q. Tang. Invertibility and a topological property of Sobolev maps. SIAM J. Math. Anal., 27(4):959–976, 1996.
  • [13] E. D. Nezza, G. Palatucci, and E. Valdinoci. Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math., 136(5):521–573, 2012.
  • [14] T. Runst and W. Sickel. Sobolev spaces of fractional order, Nemytskij operators, and nonlinear partial differential equations, volume 3. Walter de Gruyter, 2011.
  • [15] Y. Sawano. Theory of Sesov spaces, volume 56. Springer, 2018.
  • [16] L. Tartar. An introduction to Sobolev spaces and interpolation spaces, volume 3. Springer Science & Business Media, 2007.
  • [17] V. Šverák. Regularity properties of deformations with finite energy. Arch. Rational Mech. Anal., 100(2):105–127, 1988.
  • [18] W. P. Ziemer. Weakly differentiable functions, volume 120 of Graduate Texts in Mathematics. Springer-Verlag, New York, 1989. Sobolev spaces and functions of bounded variation.