This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

\jyear

2023

[1]\fnmShiqing \surZhang

[1]\orgdivCollege of Mathematics, \orgnameSichuan University, \orgaddress\streetSouth Section 1 of the 1st Ring Road, \cityChengdu, \postcode610064, \stateSichuan, \countryChina

[2]\orgdivDepartment of Mathematics, \orgnameUniversity of Pennsylvania, \orgaddress\street209 South 33rd St, \cityPhiladelphia, \postcode19104, \statePennsylvania, \countryUSA

Weak Compactness Criterion in Wk,1W^{k,1} with an Existence Theorem of Minimizers

\fnmCheng \surChen [email protected]    \fnmMattie \surJi [email protected]    \fnmYan \surTang [email protected]    [email protected] * *
Abstract

There is a rich theory of existence theorems for minimizers over reflexive Sobolev spaces (ex. Eberlein-Šmulian theorem). However, the existence theorems for many variational problems over non-reflexive Sobolev spaces remain underexplored. In this paper, we investigate various examples of functionals over non-reflexive Sobolev spaces. To do this, we prove a weak compactness criterion in Wk,1W^{k,1} that generalizes the Dunford-Pettis theorem, which asserts that relatively weakly compact subsets of L1L^{1} coincide with equi-integrable families. As a corollary, we also extend an existence theorem of minimizers from reflexive Sobolev spaces to non-reflexive ones. This work is also benefited and streamlined by various concepts in category theory.

keywords:
Dunford-Pettis theorem, non-reflexive Sobolev space, weak compactness in Wk,1W^{k,1}, existence theorem of a minimizer, calculus of variations.
pacs:
[

MSC Classification]46N20, 46E35, 28A20, 46E30

1 Introduction and Main Results

Historically, starting from Leonhard Euler and Joseph-Louis Lagrange, a series of practical problems in natural science including Fermat’s principle, the brachistochrone problem, and Dirichlet’s principle (see ZhangShiqing, ; Brezis, ; Courant, ; Courant&Hilbert, ), can be transformed into minimizing a functional of the following form:

J(u)=Ωf(x,u(x),u(x))dx,J(u)=\int_{\Omega}f\bigl{(}x,u(x),\nabla u(x)\bigr{)}\mathrm{d}x,

where Ω\Omega is a measurable space that satisfies some smoothness conditions, and uu varies in a suitable function space, ff is uniformly integrable on Ω\Omega and known as the Lagrangian state function.

The methods for solving the above problems are collectively called the calculus of variations. These minimizers were initially considered to exist “naturally” until Karl Weierstrass constructed a counterexample (see Dacorogna, , Example 4.6 on page 122) in 1870. Since then, people have studied and obtained many existence theorems of minimizers. For example, Dirichlet’s principle was first proved in 1899 (with some strong conditions) then later extended to more general cases by David Hilbert Hilbert in 1904.

To be more precise, a real-valued functional JJ induces a preorder \preceq over its domain such that for all u,vu,v in a Banach space E:=dom(J)E:=\mathrm{dom}(J):

uv if and only if J(u)J(v).u\preceq v\text{ if and only if }J(u)\geq J(v).

A net {uα}αΛ\{u_{\alpha}\}_{\alpha\in\Lambda} equipped with the preorder above is called a decreasing net of JJ. And whether a minimizer exists is equivalent to whether there is a greatest element for each of these decreasing nets. Therefore we should pay attention to whether any decreasing sequence {un}\{u_{n}\} satisfies that

limn+J(un)=infuEJ(u)\lim_{n\to+\infty}J(u_{n})=\inf_{u\in E}J(u)

(which is so called the minimizing sequence of JJ) can reach the infimum. Considering that the real line has a natural topology and selecting “what are the continuous functions from EE to \mathbb{R}”, the topology on \mathbb{R} can be induced to EE (e.g. the norm topology and the weak topology) while keeping JJ lower semicontinuous under this topology. Since lower semicontinuous functions can reach the infimum on compact sets, if a minimizing sequence {un}\{u_{n}\} is contained in some compact set, then there exists some u¯\bar{u} in the closure of {un}\{u_{n}\} such that the functional JJ can reach the infimum at u¯\bar{u}.

In fact, the existence of minimizers depends on what domain space one chooses. Roughly speaking, the “larger” the space, the weaker the topology, the “fewer” open sets, and the easier it is for a set to be relatively compact. For aesthetic and practical reasons, one may typically expect a variational problem to have a solution as smooth as possible. However, it is usually difficult to directly find a solution with high regularity in a space with a strong topological structure. But if (weak) solutions can exist in a “larger” space, one only needs to verify that they are regular. For regularity, people have also developed many profound theories (see Evans, , Section 8.3 on page 458) and (Brezis, , Section 7.3 on page 191 and Section 9.6 on page 298), but we will only focus on existence. Arguably, Sobolev spaces (see Adams, , 3.2 on page 59) are tailor-made for this approach. By replacing classical derivatives with weak generalized derivatives, Sobolev spaces are “large” enough. But they are not too “bad” since even the smooth function space CC^{\infty} can be densely embedded in them (the Meyers-Serrin theorem Meyers ).

Assuming a functional is (weakly) lower semicontinuous in some Sobolev space, one would expect its corresponding minimizing sequence to be (weakly) relatively compact. For reflexive Sobolev spaces, we can apply the Eberlein-Šmulian theorem (see Yosida, , page 141), that is, a Banach space is reflexive if and only if any bounded set inside is weakly relatively compact. Based on this and James’s theorem James , Tang, Zhang, and Guo Tangyan have made a series of discussions on the relationship between the reflexivity of a Banach space and the existence of minimizers of a sequentially weakly lower semicontinuous functional on it. Using the Eberlein-Šmulian theorem, researchers have obtained some existence theorems of functional minimizers on reflexive Sobolev spaces. An example is Theorem 3.30 in (Dacorogna, , page 106), which can be used to prove Dirichlet’s principle as an application.

However, there are still various important practical problems whose integral functionals are defined on non-reflexive Sobolev spaces, such as the Plateau problem (see Courant, ; CourantR, ) (which is to show the existence of a minimal surface with a given boundary). Another simpler example follows:

Example 1.

(Dacorogna, , Example 4.5 on page 122 and Example 4.9 on page 124) Let uu vary in the following function space

E={uW1,1(0,1)|u(0)=0,u(1)=1},E=\{u\in W^{1,1}(0,1)|\>u(0)=0,\>u(1)=1\},

where the value of uu on the boundary is defined in the sense of the trace operator. Let J1J_{1} and J2J_{2} be the functionals

J1(u)=01u2(t)+u˙2(t)dtJ_{1}(u)=\int_{0}^{1}\sqrt{u^{2}(t)+\dot{u}^{2}(t)}\mathrm{d}t

and

J2(u)=01|u˙(t)|dt.J_{2}(u)=\int_{0}^{1}\lvert\dot{u}(t)\rvert\mathrm{d}t.

Can their respective infimum be attained in EE?

Since the Eberlein-Šmulian theorem no longer applies in this case, we need something stronger than boundedness to regain relative weak compactness. For the specific function space L1L^{1}, Nelson Dunford and Billy James Pettis obtained the following theorem in 1940.

Theorem 1 (Dunford-Pettis theorem: weak compactness criterion in L1L^{1}).

(Dunford2, , Theorem 3.2.1 on page 376), (see also Brezis, , Problem 23 on page 466) Suppose that

𝐇𝝈𝟏[Ω,]\mathbf{H_{\bm{\sigma}}^{1}}{[\Omega,\mathcal{F}]} (hypothesis):

Ω\Omega is a σ\sigma-finite measure space, and \mathcal{F} is a subset of L1(Ω)L^{1}(\Omega).

Then the following statements 𝐁𝟏𝐄𝐈𝟏𝐄𝟏\mathbf{B^{1}}\wedge\mathbf{EI^{1}}\wedge\mathbf{E_{\infty}^{1}} and 𝐂𝐰𝟏\mathbf{C_{w}^{1}} are equivalent. Here, the two statements have the following meaning.

1. 𝐁𝟏𝐄𝐈𝟏𝐄𝟏[Ω,,M,δ,ω]\mathbf{B^{1}}\wedge\mathbf{EI^{1}}\wedge\mathbf{E_{\infty}^{1}}{[\Omega,\mathcal{F},\exists M,\exists\delta,\exists\omega]}:

\mathcal{F} is an equi-integrable family.

2. 𝐂𝐰𝟏[Ω,]\mathbf{C_{w}^{1}}{[\Omega,\mathcal{F}]} (weak compactness in L1L^{1}):

the set \mathcal{F} is relatively weakly compact in L1(Ω)L^{1}(\Omega).

By an “equi-integrable family” in Theorem 1, we mean the following.

Definition 1 (equi-integrable family).

(Brezis, , 4.36 on page 129) A subset L1(Ω)\mathcal{F}\subset L^{1}(\Omega) is said to be equi-integrable if it satisfies the following three conditions:

a. 𝐁𝟏[Ω,,M]\mathbf{B^{1}}{[\Omega,\mathcal{F},\exists M]} (boundedness in L1L^{1}):

there exists M>0M\in\mathbb{R}_{>0} such that fL1(Ω)M\lVert f\rVert_{L^{1}(\Omega)}\leq M for every ff\in\mathcal{F}.

b. 𝐄𝐈𝟏[Ω,,δ]\mathbf{EI^{1}}{[\Omega,\mathcal{F},\exists\delta]} (equi-integrability):

there exists a function δ:>0>0\delta\colon\mathbb{R}_{>0}\to\mathbb{R}_{>0} such that

A|f|dλ<ε\int_{A}\lvert f\rvert\mathrm{d}\lambda<\varepsilon

for each ff\in\mathcal{F}, for any ε>0\varepsilon\in\mathbb{R}_{>0}, and for all AA which is measurable in Ω\Omega with its measure λ(A)<δ(ε)\lambda(A)<\delta(\varepsilon).

c. 𝐄𝟏[Ω,,ω]\mathbf{E_{\infty}^{1}}{[\Omega,\mathcal{F},\exists\omega]} (equi-integrability at infinity):

there exists a set-valued mapping ω\omega from >0\mathbb{R}_{>0} to 2Ω2^{\Omega} (the power set of Ω\Omega) such that ω(ε)\omega(\varepsilon) is measurable with its measure λω(ε)\lambda\circ\omega(\varepsilon) being finite, and there satisfies that

Ωω(ε)|f|dλ<ε\int_{\Omega\setminus\omega(\varepsilon)}\lvert f\rvert\mathrm{d}\lambda<\varepsilon

for every ff\in\mathcal{F} and any ε>0\varepsilon\in\mathbb{R}_{>0}.

The notation λ\lambda here and thereafter refers to the Lebesgue measures (Adams, , page 14) in real Euclidean spaces. Note that when Ω\Omega is bounded, the third condition 𝐄𝟏[Ω,,ω]\mathbf{E_{\infty}^{1}}{[\Omega,\mathcal{F},\exists\omega]} is naturally true by choosing ωΩ\omega\equiv\Omega.

Remark 1.

We mark the hypothesis and statements in the Dunford-Pettis theorem with symbols for two reasons:

1.

We do not have to repeat the sentence from beginning to end every time. For example, we can shrink the Dunford-Pettis theorem to the following form:

𝐇𝝈𝟏𝐁𝟏𝐄𝐈𝟏𝐄𝟏[Ω,,M,δ,ω]𝐇𝝈𝟏𝐂𝐰𝟏[Ω,].\mathbf{H_{\bm{\sigma}}^{1}}\wedge\mathbf{B^{1}}\wedge\mathbf{EI^{1}}\wedge\mathbf{E_{\infty}^{1}}[\Omega,\mathcal{F},\exists M,\exists\delta,\exists\omega]\Leftrightarrow\mathbf{H_{\bm{\sigma}}^{1}}\wedge\mathbf{C_{w}^{1}}[\Omega,\mathcal{F}].

We also use superscripts and subscripts to express some key information. For the full list of the types of symbols that will show up in this paper and their meaning, please see Appendix C.

2.

We can put the elements necessary for a sentence to have a specific meaning into the following brackets and emphasize them. For example, in 𝐁𝟏[Ω,,M]\mathbf{B^{1}}[\Omega,\mathcal{F},\exists M], we know that if we fix Ω\Omega and \mathcal{F} and can prove the existence of MM, then 𝐁𝟏[Ω,,M]\mathbf{B^{1}}[\Omega,\mathcal{F},\exists M] is a certain sentence. In fact, we can construct a thin category whose objects are sentences and morphisms are derivation symbols “\Rightarrow”. It does not matter if we directly treat “\Rightarrow” as “deduces” and “\Leftrightarrow” as “is equivalent to”. Obviously “\Leftrightarrow” are the isomorphisms in this category. See Appendix B for more details.

Based on the Dunford-Pettis theorem above, we will prove the following theorem on the non-reflexive Sobolev space Wk,1W^{k,1} through a technique of “disassembly and assembly”:

Theorem 2 (weak compactness criterion in Wk,1W^{k,1}).

Suppose that

𝐇𝐧.𝐨.𝐤,𝟏[Ω,]\mathbf{H^{k,1}_{n.o.}}{[\Omega,\mathcal{F}]} (hypothesis):

Ω\Omega is a non-empty open set in d\mathbb{R}^{d}, and \mathcal{F} is a subset of Wk,1(Ω)W^{k,1}(\Omega).

Then the two statements 𝐁𝐤,𝟏𝐄𝐈𝐤,𝟏𝐄𝐤,𝟏\mathbf{B^{k,1}}\wedge\mathbf{EI^{k,1}}\wedge\mathbf{E_{\infty}^{k,1}} and 𝐂𝐰𝐤,𝟏\mathbf{C_{w}^{k,1}} are equivalent. Here, the two statements have the following meaning.

1. 𝐁𝐤,𝟏𝐄𝐈𝐤,𝟏𝐄𝐤,𝟏[Ω,,M,δ,ω]\mathbf{B^{k,1}}\wedge\mathbf{EI^{k,1}}\wedge\mathbf{E_{\infty}^{k,1}}{[\Omega,\mathcal{F},\exists M,\exists\delta,\exists\omega]}:

\mathcal{F} is said to be equi-integrable under the sense of Wk,1W^{k,1} provided the following three conditions:

a. 𝐁𝐤,𝟏[Ω,,M]\mathbf{B^{k,1}}{[\Omega,\mathcal{F},\exists M]} (boundedness in Wk,1W^{k,1}):

there exists a constant M>0M\in\mathbb{R}_{>0} such that fWk,1(Ω)M\lVert f\rVert_{W^{k,1}(\Omega)}\leq M for every ff\in\mathcal{F}.

b. 𝐄𝐈𝐤,𝟏[Ω,,δ]\mathbf{EI^{k,1}}{[\Omega,\mathcal{F},\exists\delta]} (equi-integrability):

there exists a function δ:>0>0\delta\colon\mathbb{R}_{>0}\to\mathbb{R}_{>0} such that

|α|kA|Dαf|dλ<ε\sum_{\lvert\alpha\rvert\leq k}\int_{A}\lvert D^{\alpha}f\rvert\mathrm{d}\lambda<\varepsilon

for every ff\in\mathcal{F}, for any ε>0\varepsilon\in\mathbb{R}_{>0}, and for all AA which is measurable in Ω\Omega with its measure λ(A)<δ(ε)\lambda(A)<\delta(\varepsilon). Here and henceforth, α\alpha denotes a multi-index (Notation 1).

c. 𝐄𝐤,𝟏[Ω,,ω]\mathbf{E_{\infty}^{k,1}}{[\Omega,\mathcal{F},\exists\omega]} (equi-integrability at infinity):

there exists a set-valued mapping ω:>02Ω\omega\colon\mathbb{R}_{>0}\to 2^{\Omega} such that ω(ε)\omega(\varepsilon) is measurable with its measure λω(ε)\lambda\circ\omega(\varepsilon) being finite, and there satisfies that

|α|kΩω(ε)|Dαf|dλ<ε\sum_{\lvert\alpha\rvert\leq k}\int_{\Omega\setminus\omega(\varepsilon)}\lvert D^{\alpha}f\rvert\mathrm{d}\lambda<\varepsilon

for every ff\in\mathcal{F} and any ε>0\varepsilon\in\mathbb{R}_{>0}.

2. 𝐂𝐰𝐤,𝟏[Ω,]\mathbf{C_{w}^{k,1}}{[\Omega,\mathcal{F}]} (weak compactness in Wk,1W^{k,1}):

\mathcal{F} is relatively weakly compact in Wk,1(Ω)W^{k,1}(\Omega).

When k=0k=0, Theorem 2 is exactly the Dunford-Pettis theorem if one regards the notation W0,1W^{0,1} as L1L^{1}.

When Ω\Omega is bounded, the statement 𝐄𝐤,𝟏\mathbf{E_{\infty}^{k,1}} in Theorem 2 is always satisfied by taking ω(ε)Ω\omega(\varepsilon)\equiv\Omega. Moreover, if Ω\Omega satisfies the cone condition (see Adams, , Paragraph 4.6 on page 82), we have the following theorem, which can also be seen as a high-dimensional generalization of Proposition 3.1.4 in Fathi .

Theorem 3.

Suppose that

𝐇𝐛.𝐨.𝐜𝐨𝐧𝐞𝐤,𝟏[Ω,]\mathbf{H^{k,1}_{b.o.cone}}{[\Omega,\mathcal{F}]} (hypothesis):

Ω\Omega is a bounded open set in d\mathbb{R}^{d}, and Ω\Omega satisfies the cone condition. \mathcal{F} is a subset of Wk,1(Ω)W^{k,1}(\Omega).

Then the statement 𝐁𝐤,𝟏\mathbf{B^{k,1}} in Theorem 2 is equivalent to the following statement 𝐁|α|{𝟎,𝐤},𝟏\mathbf{B^{\lvert\alpha\rvert\in\{0,k\},1}}.

𝐁|α|{𝟎,𝐤},𝟏[Ω,,M]\mathbf{B^{\lvert\alpha\rvert\in\{0,k\},1}}{[\Omega,\mathcal{F},\exists M]} :

there exists a constant M>0M\in\mathbb{R}_{>0} such that

fL1(Ω)+|α|=kDαfL1(Ω)M\lVert f\rVert_{L^{1}(\Omega)}+\sum_{\lvert\alpha\rvert=k}\lVert D^{\alpha}f\rVert_{L^{1}(\Omega)}\leq M

for every ff\in\mathcal{F}.

The statement 𝐄𝐈𝐤,𝟏\mathbf{EI^{k,1}} in Theorem 2 can be replaced by the following statement 𝐄𝐈|α|=𝐤,𝟏\mathbf{EI^{\lvert\alpha\rvert=k,1}}.

𝐄𝐈|α|=𝐤,𝟏[Ω,,δ]\mathbf{EI^{\lvert\alpha\rvert=k,1}}{[\Omega,\mathcal{F},\exists\delta]} :

there exists a function δ:>0>0\delta\colon\mathbb{R}_{>0}\to\mathbb{R}_{>0} such that

|α|=kA|Dαf|dλ<ε\sum_{\lvert\alpha\rvert=k}\int_{A}\lvert D^{\alpha}f\rvert\mathrm{d}\lambda<\varepsilon

for every ff\in\mathcal{F}, for any ε>0\varepsilon\in\mathbb{R}_{>0}, and for all AA which is measurable in Ω\Omega with its measure λ(A)<δ(ε)\lambda(A)<\delta(\varepsilon).

Excitingly, this “generalized model” can also be “translated” to other well-known theorems. For example, we will generalize the Kolmogorov-M.Riesz-Fréchet theorem (see Brezis, , Corollary 4.27 on page 113) to obtain the following Corollary 4 and Corollary 5 as follows. After this, we will generalize the Ascoli-Arzelà theorem (see Brezis, , Theorem 4.25 on page 111) into Corollary 6 and Corollary 7. See Appendix A for the proofs of these corollaries.

Corollary 4 (compactness criterion in Wk,pW^{k,p}).

Suppose that

𝐇𝐤,𝐩[d,]\mathbf{H^{k,p}}{[\mathbb{R}^{d},\mathcal{F}]} (hypothesis):

\mathcal{F} is a subset of Wk,p(d)W^{k,p}(\mathbb{R}^{d}) with 1p<+1\leq p<+\infty.

Then the statements 𝐁𝐤,𝐩𝐄𝐈𝛕𝐤,𝐩𝐄𝐤,𝐩\mathbf{B^{k,p}}\wedge\mathbf{EI_{\bm{\tau}}^{k,p}}\wedge\mathbf{E_{\infty}^{k,p}} and 𝐂𝐤,𝐩\mathbf{C^{k,p}} are equivalent. Here, the two statements have the following meaning.

1. 𝐁𝐤,𝐩𝐄𝐈τ𝐤,𝐩𝐄𝐤,𝐩[d,,M,δ,ω]\mathbf{B^{k,p}}\wedge\mathbf{EI_{\bm{\tau}}^{k,p}}\wedge\mathbf{E_{\infty}^{k,p}}{[\mathbb{R}^{d},\mathcal{F},\exists M,\exists\delta,\exists\omega]}:

the following three are satisfied:

a. 𝐁𝐤,𝐩[d,,M]\mathbf{B^{k,p}}{[\mathbb{R}^{d},\mathcal{F},\exists M]} (boundedness in Wk,pW^{k,p}):

there exists a constant M>0M\in\mathbb{R}_{>0} such that fWk,p(d)M\lVert f\rVert_{W^{k,p}(\mathbb{R}^{d})}\leq M for every ff\in\mathcal{F}.

b. 𝐄𝐈τ𝐤,𝐩[d,,δ]\mathbf{EI_{\bm{\tau}}^{k,p}}{[\mathbb{R}^{d},\mathcal{F},\exists\delta]}:

there exists a function δ:>0>0\delta\colon\mathbb{R}_{>0}\to\mathbb{R}_{>0} such that

τhffWk,p(d)<ε\lVert\tau_{h}f-f\rVert_{W^{k,p}(\mathbb{R}^{d})}<\varepsilon

for every ff\in\mathcal{F}, for any ε>0\varepsilon\in\mathbb{R}_{>0}, and for all hdh\in\mathbb{R}^{d} with its norm hd<δ(ε)\lVert h\rVert_{\mathbb{R}^{d}}<\delta(\varepsilon). Here, the notation τhf(x):=f(x+h)\tau_{h}f(x):=f(x+h) is a shift of the original function ff by the vector hh.

c. 𝐄𝐤,𝐩[d,,ω]\mathbf{E_{\infty}^{k,p}}{[\mathbb{R}^{d},\mathcal{F},\exists\omega]}:

there exists a set-valued mapping ω:>02d\omega\colon\mathbb{R}_{>0}\to 2^{\mathbb{R}^{d}} such that ω(ε)\omega(\varepsilon) is measurable with its measure λω(ε)\lambda\circ\omega(\varepsilon) being finite, and there satisfies that

(|α|kdω(ε)|Dαf|pdλ)1p<ε(\sum_{\lvert\alpha\rvert\leq k}\int_{\mathbb{R}^{d}\setminus\omega(\varepsilon)}\lvert D^{\alpha}f\rvert^{p}\mathrm{d}\lambda)^{\frac{1}{p}}<\varepsilon

for every ff\in\mathcal{F} and any ε>0\varepsilon\in\mathbb{R}_{>0}.

2. 𝐂𝐤,𝐩[d,]\mathbf{C^{k,p}}{[\mathbb{R}^{d},\mathcal{F}]} (compactness in Wk,pW^{k,p}):

the set \mathcal{F} is precompact in Wk,p(d)W^{k,p}(\mathbb{R}^{d}).

Corollary 5.

Suppose that

𝐇𝐛,𝐨,𝟎𝐤,𝐩[Ω,]\mathbf{H^{k,p}_{b,o,0}}{[\Omega,\mathcal{F}]} :

Ω\Omega is a bounded open set in n\mathbb{R}^{n}, and \mathcal{F} is a subset of W0k,p(Ω)W_{0}^{k,p}(\Omega) with 1p<+1\leq p<+\infty.

Then the statement 𝐁𝐤,𝐩\mathbf{B^{k,p}} in Corollary 4 is equivalent to 𝐁|α|{𝟎,𝐤},𝐩\mathbf{B^{\lvert\alpha\rvert\in\{0,k\},p}} as follows.

𝐁|α|{𝟎,𝐤},𝐩[Ω,,M]\mathbf{B^{\lvert\alpha\rvert\in\{0,k\},p}}{[\Omega,\mathcal{F},\exists M]} :

there exists a constant M>0M\in\mathbb{R}_{>0} such that

fLp(Ω)+|α|=kDαfLp(Ω)M\lVert f\rVert_{L^{p}(\Omega)}+\sum_{\lvert\alpha\rvert=k}\lVert D^{\alpha}f\rVert_{L^{p}(\Omega)}\leq M

for every ff\in\mathcal{F}.

The statement 𝐄𝐈𝛕𝐤,𝐩\mathbf{EI_{\bm{\tau}}^{k,p}} in Corollary 4 can be replaced by the following 𝐄𝐈𝛕|α|=𝐤,𝐩\mathbf{EI_{\bm{\tau}}^{\lvert\alpha\rvert=k,p}}.

𝐄𝐈𝝉|α|=𝐤,𝐩[Ω,,δ]\mathbf{EI_{\bm{\tau}}^{\lvert\alpha\rvert=k,p}}{[\Omega,\mathcal{F},\exists\delta]}:

there exists a function δ:>0>0\delta\colon\mathbb{R}_{>0}\to\mathbb{R}_{>0} such that

|α|=kτh(Dαf)DαfLp(d)<ε\sum_{\lvert\alpha\rvert=k}\lVert\tau_{h}(D^{\alpha}f)-D^{\alpha}f\rVert_{L^{p}(\mathbb{R}^{d})}<\varepsilon

for every ff\in\mathcal{F}, for any ε>0\varepsilon\in\mathbb{R}_{>0}, and for all hdh\in\mathbb{R}^{d} with its norm hd<δ(ε)\lVert h\rVert_{\mathbb{R}^{d}}<\delta(\varepsilon). Here, the functions DαfD^{\alpha}f are extended to be 0 outside Ω\Omega.

Corollary 6 (compactness criterion in CmC^{m}).

Suppose that

𝐇𝐦[K,]\mathbf{H^{m}}{[K,\mathcal{F}]} (hypothesis):

KK is a compact metric space which satisfies the uniform CmC^{m} regularity condition (see Adams, , 4.10 on page 84), and \mathcal{F} is a subset of Cm(K)C^{m}(K).

Then the two statements 𝐁𝐦𝐄𝐂𝐦\mathbf{B^{m}}\wedge\mathbf{EC^{m}} and 𝐂𝐦\mathbf{C^{m}} are equivalent. Here, the two statements have the following meaning.

1. 𝐁𝐦𝐄𝐂𝐦[K,,M,δ]\mathbf{B^{m}}\wedge\mathbf{EC^{m}}{[K,\mathcal{F},\exists M,\exists\delta]}:

\mathcal{F} is said to be uniformly equicontinuous under the sense of CmC^{m} provided the following two conditions:

a. 𝐁𝐦[K,,M]\mathbf{B^{m}}{[K,\mathcal{F},\exists M]} (boundedness in CmC^{m}):

there exists a constant M>0M\in\mathbb{R}_{>0} such that fCm(K):=max|α|mDαfC(K)M\lVert f\rVert_{C^{m}(K)}:=\max_{\lvert\alpha\rvert\leq m}\lVert D^{\alpha}f\rVert_{C(K)}\leq M for every ff\in\mathcal{F}.

b. 𝐄𝐂𝐦[K,,δ]\mathbf{EC^{m}}{[K,\mathcal{F},\exists\delta]} (equicontinuity):

there exists a function δ:>0>0\delta\colon\mathbb{R}_{>0}\to\mathbb{R}_{>0} such that

max|α|m|(Dαf)(x1)(Dαf)(x2)|<ε\max_{\lvert\alpha\rvert\leq m}\lvert(D^{\alpha}f)(x_{1})-(D^{\alpha}f)(x_{2})\rvert<\varepsilon

for every ff\in\mathcal{F}, for any ε>0\varepsilon\in\mathbb{R}_{>0}, and for all x1x_{1} and x2x_{2} in KK with the distance between them d(x1,x2)<δ(ε)d(x_{1},x_{2})<\delta(\varepsilon).

2. 𝐂𝐦[K,]\mathbf{C^{m}}{[K,\mathcal{F}]} (compactness in CmC^{m}):

the set \mathcal{F} is precompact in Cm(K)C^{m}(K).

Corollary 7.

Statement 𝐄𝐂𝐦\mathbf{EC^{m}} in Corollary 6 can be replaced by the following 𝐄𝐂|α|=𝐦\mathbf{EC^{\lvert\alpha\rvert=m}}.

𝐄𝐂|α|=𝐦[K,,δ]\mathbf{EC^{\lvert\alpha\rvert=m}}{[K,\mathcal{F},\exists\delta]}:

there exists a function δ:>0>0\delta\colon\mathbb{R}_{>0}\to\mathbb{R}_{>0} such that

max|α|=m|(Dαf)(x1)(Dαf)(x2)|<ε\max_{\lvert\alpha\rvert=m}\lvert(D^{\alpha}f)(x_{1})-(D^{\alpha}f)(x_{2})\rvert<\varepsilon

for every ff\in\mathcal{F}, for any ε>0\varepsilon\in\mathbb{R}_{>0}, and for all x1x_{1} and x2x_{2} in KK with the distance between them d(x1,x2)<δ(ε)d(x_{1},x_{2})<\delta(\varepsilon).

Remark 2.

For an arbitrary KK satisfying 𝐇𝐦\mathbf{H^{m}} in Corollary 6, we have not been able to generalize 𝐁𝐦\mathbf{B^{m}} to only verify the boundedness of DαD^{\alpha}\mathcal{F} when |α|\lvert\alpha\rvert is 0 or mm. We considered that continuous functions are very similar to Lebesgue space LL^{\infty}, and LL^{\infty} on finite measure space can be regarded as the intersection of all LpL^{p} spaces with p[1,+)p\in[1,+\infty). For each pp, there exists a constant MpM_{p} such that

fLp(K)+|α|=kDαfLp(K)Mp\lVert f\rVert_{L^{p}(K)}+\sum_{\lvert\alpha\rvert=k}\lVert D^{\alpha}f\rVert_{L^{p}(K)}\leq M_{p}

for every ff\in\mathcal{F}. However supp[1,+)Mp\sup_{p\in[1,+\infty)}M_{p} might be ++\infty.

When KK is a subset of \mathbb{R}, the Landau–Kolmogorov inequality Landau can be considered to apply. But our topic is not interpolation inequality so we will not go into it too much.

With the compactness criterion in Wk,1W^{k,1}, we can extend some theorems that were previously proven in reflexive spaces to some non-reflexive spaces. As an application, we will prove the following theorem as an extension of Theorem 3.30 in (Dacorogna, , page 106):

Theorem 8 (an existence theorem of minimizers in W1,1W^{1,1}).

Let Ω\Omega be a bounded open subset of d\mathbb{R}^{d}, and Ω\Omega satisfies the cone condition. Let L:Ω×N×N×d{+}L\colon\Omega\times\mathbb{R}^{N}\times\mathbb{R}^{N\times d}\to\mathbb{R}\cup\{+\infty\} be a Carathéodory function (see Dacorogna, , Definition 3.5 on page 75) satisfying

L(x,u,ξ)a|ξ|+c(x)L(x,u,\xi)\geq a\lvert\xi\rvert+c(x) (1)

for almost every xΩx\in\Omega and for every (u,ξ)N×N×d(u,\xi)\in\mathbb{R}^{N}\times\mathbb{R}^{N\times d} and for some a>0a\in\mathbb{R}_{>0}, cL1(Ω)c\in L^{1}(\Omega). And let the functional

J(u)=ΩL(x,u(x),u(x))dxJ(u)=\int_{\Omega}L\bigl{(}x,u(x),\nabla u(x)\bigr{)}\mathrm{d}x

be finite at some u0W1,1(Ω)u_{0}\in W^{1,1}(\Omega). Then every minimizing sequence in u0+W01,1(Ω)u_{0}+W_{0}^{1,1}(\Omega) is bounded.

In addition, if ξL(x,u,ξ)\xi\mapsto L(x,u,\xi) is convex, and a minimizing sequence {un}\{u_{n}\} is found to satisfy the statement 𝐁𝟏,𝟏𝐄𝐈|α|=𝟏[Ω,{un},M,δ]\mathbf{B^{1,1}}\wedge\mathbf{EI^{\lvert\alpha\rvert=1}}{[\Omega,\{u_{n}\},\exists M,\exists\delta]}. Then JJ attains its minimum at some u¯u0+W01,1(Ω)\bar{u}\in u_{0}+W_{0}^{1,1}(\Omega).

Furthermore, if (u,ξ)L(x,u,ξ)(u,\xi)\mapsto L(x,u,\xi) is strictly convex for almost every xΩx\in\Omega, the minimizer is unique.

Applying Theorem 2, we can also get the following proposition:

Proposition 9.

Let the functional JJ be defined on

E={uW1,1(0,1)|u(0)=0,u(1)=1}E=\{u\in W^{1,1}(0,1)\>|\>u(0)=0,\>u(1)=1\}

with the form

J(u)=01[(k|u˙(t)|p+|u(t)|p)1p+c(t)]dtJ(u)=\int_{0}^{1}\bigl{[}\bigl{(}k\lvert\dot{u}(t)\rvert^{p}+\ell\lvert u(t)\rvert^{p}\bigr{)}^{\frac{1}{p}}+c(t)\bigr{]}\mathrm{d}t

for some k>0k\in\mathbb{R}_{>0}, 0\ell\in\mathbb{R}_{\geq 0}, cL1(0,1)c\in L^{1}(0,1) and p1p\in\mathbb{R}_{\geq 1}. Then the infimum of JJ can be achieved at some u¯E\bar{u}\in E if and only if =0\ell=0.

Moreover, if the infimum is attainable, the derivative u¯˙(t)\dot{\bar{u}}(t) is non-negative for almost every t(0,1)t\in(0,1).

Applying Proposition 9 we can directly answer the question in Example 1, that is, J1J_{1} cannot reach its infimum, but J2J_{2} can. In fact, J2J_{2} has infinitely many minimum points.

\bmhead

Outline The rest of the paper is organized as follows. In Section 2, we introduce two important definitions and prove a technical lemma (Lemma 11) that will be instrumental in the proof of Theorem 2. In Section 3, we prove Theorem 2, Theorem 8, and Proposition 9. In Appendix A, we prove Corollary 4 and Corollary 6. In Appendix B, we introduce more details about the syntactic category. In Appendix C, we provide a collection of notations and abbreviations used in this paper.

2 Definitions and Lemmas

To prove Theorem 2, we introduce an operator ι\iota (see Definition 3) that embeds the Sobolev spaces Wk,1W^{k,1} into some L1L^{1} spaces. When considering a Sobolev space Wk,1W^{k,1} defined on a non-empty open subset Ω\Omega in a real Euclidean space d\mathbb{R}^{d}, we assign a replica Ωα\Omega_{\alpha} that is “exactly the same” as the open set Ω\Omega to each multi-index α\alpha, and take the (disjoint) union of these replicas |α|kΩα=:Ω(k)\bigcup_{\lvert\alpha\rvert\leq k}\Omega_{\alpha}=:\Omega^{(k)} (see Definition 2) as the domain of the functions in the space L1L^{1}. We prove that the operator ι\iota is an isometry (see Lemma 10). By converting it into a problem about the space L1(Ω(k))L^{1}(\Omega^{(k)}), we can apply Theorem 1 to complete the proof of Theorem 2.

Definition 2 (Construction of the disjoint union Ω(k)\Omega^{(k)}).

(Adams, , 3.5 on page 61) Let Ω\Omega be a non-empty open set in d\mathbb{R}^{d}. For each α\alpha, let Ωα\Omega_{\alpha} be a different copy of Ω\Omega lying in αd\mathbb{R}_{\alpha}^{d} which is a different copy of d\mathbb{R}^{d} with respect to the multi-index α\alpha. Thus these |α|k1\sum_{\lvert\alpha\rvert\leq k}1 non-empty open sets are mutually disjoint. More mathematically, an isomorphism between Ω\Omega and Ωα\Omega_{\alpha} refers to an isometry Iα:ΩΩαI_{\alpha}\colon\Omega\to\Omega_{\alpha} that also preserves the measure:

λα({Iα(x)|xω})=:λαIα(ω)=λ(ω),for all ωΩ with ω measurable.\lambda_{\alpha}(\{I_{\alpha}(x)\>|\>x\in\omega\})=:\lambda_{\alpha}\circ I_{\alpha}(\omega)=\lambda(\omega),\>\text{for all }\omega\subset\Omega\text{ with }\omega\text{ measurable}.

Here, λα\lambda_{\alpha} denotes the Lebesgue measure in αd\mathbb{R}^{d}_{\alpha}.

The union of these |α|k1\sum_{\lvert\alpha\rvert\leq k}1 sets is denoted as

Ω(k):=|α|kΩ=|α|kΩα.\Omega^{(k)}:=\bigsqcup_{\lvert\alpha\rvert\leq k}\Omega=\bigcup_{\lvert\alpha\rvert\leq k}\Omega_{\alpha}.

The space Ω(k)\Omega^{(k)} naturally inherits the following structures from the Euclidean spaces:

Measure:

A subset ωΩ(k)\omega\subseteq\Omega^{(k)} is measurable if ωΩα\omega\cap\Omega_{\alpha} is Lebesgue measurable in αd\mathbb{R}^{d}_{\alpha} for all α\alpha. The measure of such ω\omega in Ω(k)\Omega^{(k)} is defined as the sum of the Lebesgue measures of ωΩα\omega\cap\Omega_{\alpha} taken over α\alpha, i.e.

μ(ω):=|α|kλα(ωΩα).\mu(\omega):=\sum_{\lvert\alpha\rvert\leq k}\lambda_{\alpha}(\omega\cap\Omega_{\alpha}).
Topology:

The space Ω(k)\Omega^{(k)} is equipped with the disjoint union topology, i.e., a set ω\omega is open in Ω(k)\Omega^{(k)} if and only if ωΩα\omega\cap\Omega_{\alpha} is open in αd\mathbb{R}_{\alpha}^{d} for every α\alpha.

Now we can define the isometry operator ι\iota from the Sobolev space Wk,1(Ω)W^{k,1}(\Omega) to the Lebesgue space L1(Ω(k))L^{1}(\Omega^{(k)}). In this way, we transform the discussion on the compactness of a subset of Wk,1(Ω)W^{k,1}(\Omega) into the discussion on the compactness of its image in space L1(Ω(k))L^{1}(\Omega^{(k)}).

Definition 3 (Construction of the isometric operator ι\iota).

(Adams, , 3.5 on page 61) We construct an operator ι\iota from Wk,1(Ω)W^{k,1}(\Omega) to L1(Ω(k))L^{1}(\Omega^{(k)}) as follows:

ι:Wk,1(Ω)L1(Ω(k))uιu,\begin{split}\iota\colon\quad W^{k,1}(\Omega)&\to L^{1}(\Omega^{(k)})\\ u&\mapsto\iota u,\end{split}

where ιu:Ω(k)\iota u:\Omega^{(k)}\to\mathbb{R} is given by

ιu(y)=(Dαu)Iα1(y), if yΩα.\iota u(y)=(D^{\alpha}u)\circ I_{\alpha}^{-1}(y)\text{, if $y\in\Omega_{\alpha}$}.

That is, the restriction of function ιu\iota u on each component of Ωα\Omega_{\alpha} in Ω(k)\Omega^{(k)} is given by the function DαuD^{\alpha}u.

Remark 3.

From the perspective of category theory, let the objects in an indicator category II be the multi-indies, and the morphisms are only the identities. Then Ω(k)\Omega^{(k)} is the colimit of a GG which maps each α\alpha to Ωα\Omega_{\alpha}. And L1(Ω(k))L^{1}(\Omega^{(k)}) is the limit of a (contravariant) functor FF which maps each α\alpha to L1(Ωα)L^{1}(\Omega_{\alpha}). Therefore the operator ι\iota is the unique morphism from Wk,1(Ω)W^{k,1}(\Omega) to L1(Ω(k))L^{1}(\Omega^{(k)}). See Chapter 1-3 of riehl2017category for a precise explanation of these terminologies, and see the two illustrations in Figure 1 and Figure 2.

α1\alpha_{1}α2\alpha_{2}\vdotsαn\alpha_{n}\vdots(|α|k)(|\alpha|\leq k)I:I:Ωα1\Omega_{\alpha_{1}}Ωα2\Omega_{\alpha_{2}}\vdotsΩαn\Omega_{\alpha_{n}}\vdotsΩ_\Omega_{\_}colimΩαi=Ω(k)\underrightarrow{\operatorname{colim}}\ \Omega_{\alpha_{i}}=\Omega^{(k)}

Figure 1: Illustration of Ω(k)\Omega^{(k)} - the colimit.

α1\alpha_{1}α2\alpha_{2}\vdotsαn\alpha_{n}\vdots(|α|k)(|\alpha|\leq k)I:I:L1(Ωα1)L^{1}(\Omega_{\alpha_{1}})L1(Ωα2)L^{1}(\Omega_{\alpha_{2}})\vdotsL1(Ωαn)L^{1}(\Omega_{\alpha_{n}})\vdotsL1(Ω_)L^{1}(\Omega_{\_})Wk,1(Ω)W^{k,1}(\Omega)limL1(Ωαi)\underleftarrow{\operatorname{lim}}\ L^{1}(\Omega_{\alpha_{i}})||||L1(Ω(k))L^{1}(\Omega^{(k)})DαD^{\alpha}!ι\exists!\iota

Figure 2: Illustration of L1(Ω(k))L^{1}(\Omega^{(k)}) - the limit.
Lemma 10.

The operator ι\iota is a well-defined isometry. Let WW be the range of ι\iota. WW is a closed linear subspace of L1(Ω(k))L^{1}(\Omega^{(k)}). Furthermore, Wk,1(Ω)W^{k,1}(\Omega) and WW are homeomorphic both in their norm and weak topologies.

Proof: [Proof of Lemma 10] We first check that ι\iota is well-defined. Notice that for any yΩ(k)y\in\Omega^{(k)}, there must be only one multi-index α\alpha such that yΩαy\in\Omega_{\alpha}. Furthermore, for each α\alpha, the weak generalized partial derivative DαuD^{\alpha}u is unique up to sets of measure zero in L1(Ω)L^{1}(\Omega). Thus ι\iota is well-defined.

Now we will check that ι\iota is an isometry. Indeed, we have the following equalities

ιuL1(Ω(k))=|α|kιu|ΩαL1(Ωα)=|α|kΩ|Dαu|dλ=uWk,1(Ω).\lVert\iota u\rVert_{L^{1}(\Omega^{(k)})}=\sum_{\lvert\alpha\rvert\leq k}\lVert\iota u|_{\Omega_{\alpha}}\rVert_{L^{1}(\Omega_{\alpha})}=\sum_{\lvert\alpha\rvert\leq k}\int_{\Omega}\lvert D^{\alpha}u\rvert\mathrm{d}\lambda=\lVert u\rVert_{{W^{k,1}(\Omega)}}.

Since ι\iota is an isometry between two complete metric spaces, the image of ι\iota is also complete and thus closed in L1(Ω(k))L^{1}(\Omega^{(k)}). Finally, it follows from (see Brezis, , Theorem 3.10 on page 61) that Wk,1(Ω)W^{k,1}(\Omega) and WW are homeomorphic both in their norm topologies and their weak topologies.

Following this lemma, we denote the inverse operator of ι\iota as ι1:WWk,1(Ω)\iota^{-1}\colon W\to W^{k,1}(\Omega). As a useful result, we have the following lemma.

Lemma 11.

Suppose that (the same as Theorem 2)

𝐇𝐧.𝐨.𝐤,𝟏[Ω,]\mathbf{H^{k,1}_{n.o.}}{[\Omega,\mathcal{F}]} (hypothesis):

Ω\Omega is a non-empty open set in d\mathbb{R}^{d}, and \mathcal{F} is a subset of Wk,1(Ω)W^{k,1}(\Omega).

Then the following statements are equivalent:

𝐂𝐰𝐤,𝟏[Ω,]\mathbf{C_{w}^{k,1}}{[\Omega,\mathcal{F}]} (weak compactness in Wk,1W^{k,1}):

\mathcal{F} is relatively weakly compact in Wk,1(Ω)W^{k,1}(\Omega).

𝐂𝐰𝟏[Ω(k),ι]\mathbf{C_{w}^{1}}{[\Omega^{(k)},\iota\mathcal{F}]}:

ι:={ιf|f}\iota\mathcal{F}:=\{\iota f\>|\>f\in\mathcal{F}\} is relatively weakly compact in L1(Ω(k))L^{1}(\Omega^{(k)}).

Proof: [Proof of Lemma 11.]

We first need to prove that under the hypothesis 𝐇𝐧.𝐨.𝐤,𝟏[Ω,]\mathbf{H^{k,1}_{n.o.}}{[\Omega,\mathcal{F}]}, the following two topological spaces are homeomorphic.

a.

(Wk,1(Ω),σ(Wk,1(Ω),Wk,1(Ω)))\bigl{(}W^{k,1}(\Omega),\sigma(W^{k,1}(\Omega),W^{k,1}(\Omega)^{\star})\bigr{)}: the Sobolev space Wk,1(Ω)W^{k,1}(\Omega) equipped with the weak topology.

b.

(W,σ(W,L1(Ω(k))|W))\Bigl{(}W,\sigma\bigl{(}W,L^{1}(\Omega^{(k)})^{\star}|_{W}\bigr{)}\Bigr{)}: the space WW equipped with the subspace topology induced from the weak topology of the space L1(Ω(k))L^{1}(\Omega^{(k)}), where L1(Ω(k))|W:={ϕ|W|ϕL1(Ω(k))}L^{1}(\Omega^{(k)})^{\star}|_{W}:=\{\phi|_{W}\>|\>\phi\in L^{1}(\Omega^{(k)})^{\star}\}.

Using Lemma 10, we have

(Wk,1(Ω),σ(Wk,1(Ω),Wk,1(Ω)))(W,σ(W,W)).\bigl{(}W^{k,1}(\Omega),\sigma(W^{k,1}(\Omega),W^{k,1}(\Omega)^{\star})\bigr{)}\cong\bigl{(}W,\sigma(W,W^{\star})\bigr{)}.

Next, we only need to show that

(W,σ(W,W))(W,σ(W,L1(Ω(k))|W)).\bigl{(}W,\sigma(W,W^{\star})\bigr{)}\cong\Bigl{(}W,\sigma\bigl{(}W,L^{1}(\Omega^{(k)})^{\star}|_{W}\bigr{)}\Bigr{)}.

Recall that the basis elements for the topology σ(W,W)\sigma(W,W^{\star}) can be written as

iF{wW||ψi,wwi|<ri},\bigcap_{i\in F}\{w\in W|\>\lvert\left\langle\psi_{i},w-w_{i}\right\rangle\rvert<r_{i}\}, (2)

for some finite FF, and wiWw_{i}\in W, ψiW\psi_{i}\in W^{\star}, ri>0r_{i}>0.

Using the analytic form of Hahn-Banach theorem (see Brezis, , Theorem 1.1 on page 1), we have that for every ψW\psi\in W^{\star}, there exists ϕL1(Ω(k))\phi\in L^{1}(\Omega^{(k)})^{\star} such that

ϕ,wwi=ψ,wwi,\displaystyle\left\langle\phi,w-w_{i}\right\rangle=\left\langle\psi,w-w_{i}\right\rangle, for all wW,\displaystyle\text{for all }w\in W,
ϕ,uwiψWuL1(Ω(k)),\displaystyle\left\langle\phi,u-w_{i}\right\rangle\leq\lVert\psi\rVert_{W^{\star}}\lVert u\rVert_{L^{1}(\Omega^{(k)})}, for all uL1(Ω(k)).\displaystyle\text{for all }u\in L^{1}(\Omega^{(k)}).

Thus for each ψi\psi_{i} in (2), there exists ϕiL1(Ω(k))\phi_{i}\in L^{1}(\Omega^{(k)})^{\star} such that

{wW||ψi,wwi|<ri}={wW||ϕi,wwi|<ri}\{w\in W|\>\lvert\left\langle\psi_{i},w-w_{i}\right\rangle\rvert<r_{i}\}=\{w\in W|\>\lvert\left\langle\phi_{i},w-w_{i}\right\rangle\rvert<r_{i}\}

It means that σ(W,W)\sigma(W,W^{\star}) is stronger than σ(W,L1(Ω(k))|W)\sigma(W,L^{1}(\Omega^{(k)})^{\star}|_{W}).

Besides, similarly, every open set for σ(W,L1(Ω(k)))\sigma(W,L^{1}(\Omega^{(k)})^{\star}) is a union of such sets:

iF{wW||ϕi,wwi|<ri},\bigcap_{i\in F}\{w\in W|\>\lvert\left\langle\phi_{i},w-w_{i}\right\rangle\rvert<r_{i}\}, (3)

with FF being a finite set, wiWw_{i}\in W, ϕiL1(Ω(k))\phi_{i}\in L^{1}(\Omega^{(k)})^{\star}, ri>0r_{i}>0.

Let ψi=ϕi|WW\psi_{i}=\phi_{i}|_{W}\in W^{\star} for each ϕi\phi_{i} in (3). Then,

{wW||ϕi,wwi|<ri}={wW||ψi,wwi|<ri}\{w\in W|\>\lvert\left\langle\phi_{i},w-w_{i}\right\rangle\rvert<r_{i}\}=\{w\in W|\>\lvert\left\langle\psi_{i},w-w_{i}\right\rangle\rvert<r_{i}\}

implies that σ(W,W)\sigma(W,W^{\star}) is weaker than σ(W,L1(Ω(k))|W)\sigma(W,L^{1}(\Omega^{(k)})^{\star}|_{W}).

In summary, we obtain that σ(W,W)\sigma(W,W^{\star}) and σ(W,L1(Ω(k))|W)\sigma(W,L^{1}(\Omega^{(k)})^{\star}|_{W}) have the same topological basis. Thus

(W,σ(W,L1(Ω(k))|W))(W,σ(W,W))(Wk,1(Ω),σ(Wk,1(Ω),Wk,1(Ω))).\Bigl{(}W,\sigma\bigl{(}W,L^{1}(\Omega^{(k)})^{\star}|_{W}\bigr{)}\Bigr{)}\cong\bigl{(}W,\sigma(W,W^{\star})\bigr{)}\cong\bigl{(}W^{k,1}(\Omega),\sigma(W^{k,1}(\Omega),W^{k,1}(\Omega)^{\star})\bigr{)}.

We know from Lemma 10 that WW is a closed linear subspace. Moreover, WW is weakly closed by its convexity (linearity) using Mazur’s lemma (see Yosida, , Theorem 2 on page 120). It follows that relatively compact sets for σ(W,L1(Ω(k))|W)\sigma(W,L^{1}(\Omega^{(k)})^{\star}|_{W}) coincide with relatively weakly compact sets in L1(Ω(k))L^{1}(\Omega^{(k)}). Hence \mathcal{F} is relatively weakly compact in Wk,1(Ω)W^{k,1}(\Omega) if and only if ι\iota\mathcal{F} is relatively weakly compact in L1(Ω(k))L^{1}(\Omega^{(k)}).

3 Proofs of Main Results

In this section we prove the main results in Section 1. We leave the proof of Corollary 456, and 7 to Appendix A.

Proof: [Proof of Theorem 2.] The idea is to show the following list of equivalences:

𝐇𝐧.𝐨.𝐤,𝟏𝐁𝐤,𝟏𝐄𝐈𝐤,𝟏𝐄𝐤,𝟏[Ω,,M,δ,ω]\displaystyle\mathbf{H^{k,1}_{n.o.}}\wedge\mathbf{B^{k,1}}\wedge\mathbf{EI^{k,1}}\wedge\mathbf{E_{\infty}^{k,1}}[\Omega,\mathcal{F},\exists M,\exists\delta,\exists\omega] (4)
\displaystyle\Leftrightarrow 𝐇𝐧.𝐨.𝐤,𝟏[Ω,]|α|k(𝐇𝝈𝟏𝐁𝟏𝐄𝐈𝟏𝐄𝟏[Ωα,ι|Ωα,Mα,δα,ωα])\displaystyle\mathbf{H^{k,1}_{n.o.}}[\Omega,\mathcal{F}]\wedge\bigwedge_{\lvert\alpha\rvert\leq k}(\mathbf{H_{\bm{\sigma}}^{1}}\wedge\mathbf{B^{1}}\wedge\mathbf{EI^{1}}\wedge\mathbf{E_{\infty}^{1}}[\Omega_{\alpha},\iota\mathcal{F}|_{\Omega_{\alpha}},\exists M_{\alpha},\exists\delta_{\alpha},\exists\omega_{\alpha}]) (5)
\displaystyle\Leftrightarrow 𝐇𝐧.𝐨.𝐤,𝟏[Ω,](𝐇𝝈𝟏𝐁𝟏𝐄𝐈𝟏𝐄𝟏[Ω(k),ι,M,δ,ω(k)])\displaystyle\mathbf{H^{k,1}_{n.o.}}[\Omega,\mathcal{F}]\wedge(\mathbf{H_{\bm{\sigma}}^{1}}\wedge\mathbf{B^{1}}\wedge\mathbf{EI^{1}}\wedge\mathbf{E_{\infty}^{1}}[\Omega^{(k)},\iota\mathcal{F},\exists M,\exists\delta,\exists\omega^{(k)}]) (6)
\displaystyle\Leftrightarrow 𝐇𝐧.𝐨.𝐤,𝟏[Ω,](𝐇𝝈𝟏𝐂𝐰𝟏[Ω(k),ι])\displaystyle\mathbf{H^{k,1}_{n.o.}}[\Omega,\mathcal{F}]\wedge(\mathbf{H_{\bm{\sigma}}^{1}}\wedge\mathbf{C_{w}^{1}}[\Omega^{(k)},\iota\mathcal{F}]) (7)
\displaystyle\Leftrightarrow 𝐇𝐧.𝐨.𝐤,𝟏𝐂𝐰𝐤,𝟏[Ω,]\displaystyle\mathbf{H^{k,1}_{n.o.}}\wedge\mathbf{C_{w}^{k,1}}[\Omega,\mathcal{F}] (8)

For convenience of the reader, we summarize the main idea behind proving the equivalences of these five statements in Figure 3.

\bigwedge:𝐇𝐧.𝐨.𝐤,𝟏\mathbf{H^{k,1}_{n.o.}}𝐇σ𝟏[(𝟎,,𝟎)]\mathbf{H^{1}_{\sigma}[\bullet_{(0,...,0)}]}𝐁𝟏[(𝟎,,𝟎)]\mathbf{B^{1}[\bullet_{(0,...,0)}]}𝐄𝐈𝟏[(𝟎,,𝟎)]\mathbf{EI^{1}[\bullet_{(0,...,0)}]}𝐄𝟏[(𝟎,,𝟎)]\mathbf{E^{1}_{\infty}[\bullet_{(0,...,0)}]}............𝐇σ𝟏[α]\mathbf{H^{1}_{\sigma}[\bullet_{\alpha}]}𝐁𝟏[α]\mathbf{B^{1}[\bullet_{\alpha}]}𝐄𝐈𝟏[α]\mathbf{EI^{1}[\bullet_{\alpha}]}𝐄𝟏[α]\mathbf{E^{1}_{\infty}[\bullet_{\alpha}]}............𝐇σ𝟏[(𝟎,,𝐤)]\mathbf{H^{1}_{\sigma}[\bullet_{(0,...,k)}]}𝐁𝟏[(𝟎,,𝐤)]\mathbf{B^{1}[\bullet_{(0,...,k)}]}𝐄𝐈𝟏[(𝟎,,𝐤)]\mathbf{EI^{1}[\bullet_{(0,...,k)}]}𝐄𝟏[(𝟎,,𝐤)]\mathbf{E^{1}_{\infty}[\bullet_{(0,...,k)}]}:\bigwedge:𝐇𝐧.𝐨.𝐤,𝟏\mathbf{H^{k,1}_{n.o.}}𝐂𝐖𝐤,𝟏\mathbf{C^{k,1}_{W}}:𝐇𝐧.𝐨.𝐤,𝟏\bigwedge:\mathbf{H^{k,1}_{n.o.}}𝐇σ𝟏[(𝐤)]\mathbf{H^{1}_{\sigma}[\bullet^{(k)}]}𝐂𝐖𝟏[(𝐤)]\mathbf{C^{1}_{W}[\bullet^{(k)}]}:𝐇𝐧.𝐨.𝐤,𝟏\bigwedge:\mathbf{H^{k,1}_{n.o.}}𝐇σ𝟏[(𝐤)]\mathbf{H^{1}_{\sigma}[\bullet^{(k)}]}𝐁𝟏[(𝐤)]\mathbf{B^{1}[\bullet^{(k)}]}𝐄𝐈𝟏[(𝐤)]\mathbf{EI^{1}[\bullet^{(k)}]}𝐄𝟏[(𝐤)]\mathbf{E^{1}_{\infty}[\bullet^{(k)}]}:\bigwedge:𝐇𝐧.𝐨.𝐤,𝟏\mathbf{H^{k,1}_{n.o.}}𝐁𝐤,𝟏\mathbf{B^{k,1}}𝐄𝐈𝐤,𝟏\mathbf{EI^{k,1}}𝐄𝐤,𝟏\mathbf{E^{k,1}_{\infty}}Def. of ι\iotaWeak CompactnessCriterion in Wk,1W^{k,1}Lemma 11Dunford-Pettis TheoremDef. of Ω(k)\Omega^{(k)}

Figure 3: Summary of the Proof of Theorem 2.

Now we move on to the actual proof. As a result that will be used repeatedly, we first prove that:

𝐇𝐧.𝐨.𝐤,𝟏[Ω,]𝐇𝐧.𝐨.𝐤,𝟏[Ω,]|α|k(𝐇𝝈𝟏[Ωα,ι|Ωα])𝐇𝐧.𝐨.𝐤,𝟏[Ω,]𝐇𝝈𝟏[Ω(k),ι].\begin{split}\mathbf{H^{k,1}_{n.o.}}[\Omega,\mathcal{F}]&\Leftrightarrow\mathbf{H^{k,1}_{n.o.}}[\Omega,\mathcal{F}]\wedge\bigwedge_{\lvert\alpha\rvert\leq k}(\mathbf{H_{\bm{\sigma}}^{1}}[\Omega_{\alpha},\iota\mathcal{F}|_{\Omega_{\alpha}}])\\ &\Leftrightarrow\mathbf{H^{k,1}_{n.o.}}[\Omega,\mathcal{F}]\wedge\mathbf{H_{\bm{\sigma}}^{1}}[\Omega^{(k)},\iota\mathcal{F}].\end{split} (9)

In fact, since Ωα\Omega_{\alpha} is a σ\sigma-finite measure space (as an open set in αd\mathbb{R}_{\alpha}^{d} which is isometric with d\mathbb{R}^{d}), we have 𝐇𝐧.𝐨.𝐤,𝟏[Ω,]𝐇𝝈𝟏[Ωα,ι|Ωα]\mathbf{H^{k,1}_{n.o.}}[\Omega,\mathcal{F}]\Rightarrow\mathbf{H_{\bm{\sigma}}^{1}}[\Omega_{\alpha},\iota\mathcal{F}|_{\Omega_{\alpha}}] for every α\alpha. By the definition of the general product in \mathfrak{C} (see Definition 4), we immediately obtain that:

𝐇𝐧.𝐨.𝐤,𝟏[Ω,]𝐇𝐧.𝐨.𝐤,𝟏[Ω,]|α|k(𝐇𝝈𝟏[Ωα,ι|Ωα])𝐇𝐧.𝐨.𝐤,𝟏[Ω,].\mathbf{H^{k,1}_{n.o.}}[\Omega,\mathcal{F}]\Rightarrow\mathbf{H^{k,1}_{n.o.}}[\Omega,\mathcal{F}]\wedge\bigwedge_{\lvert\alpha\rvert\leq k}(\mathbf{H_{\bm{\sigma}}^{1}}[\Omega_{\alpha},\iota\mathcal{F}|_{\Omega_{\alpha}}])\Rightarrow\mathbf{H^{k,1}_{n.o.}}[\Omega,\mathcal{F}].

Moreover, since Ω(k)\Omega^{(k)} is also a σ\sigma-finite measure space, we have

|α|k(𝐇𝝈𝟏[Ωα,ι|Ωα])𝐇𝝈𝟏[Ω(k),ι].\bigwedge_{\lvert\alpha\rvert\leq k}(\mathbf{H_{\bm{\sigma}}^{1}}[\Omega_{\alpha},\iota\mathcal{F}|_{\Omega_{\alpha}}])\Leftrightarrow\mathbf{H_{\bm{\sigma}}^{1}}[\Omega^{(k)},\iota\mathcal{F}].

Thus we get (9). Herein we show (4) \Leftrightarrow (5) \Leftrightarrow\cdots\Leftrightarrow (8) one by one. These are all simple verifications.

Proof of “(4) \Rightarrow (5)”:

Suppose 𝐇𝐧.𝐨.𝐤,𝟏𝐁𝐤,𝟏𝐄𝐈𝐤,𝟏𝐄𝐤,𝟏[Ω,,M,δ,ω]\mathbf{H^{k,1}_{n.o.}}\wedge\mathbf{B^{k,1}}\wedge\mathbf{EI^{k,1}}\wedge\mathbf{E_{\infty}^{k,1}}[\Omega,\mathcal{F},\exists M,\exists\delta,\exists\omega], and let

Mα=M,δα=δ,ωα=Iαω.M_{\alpha}=M,\>\delta_{\alpha}=\delta,\>\omega_{\alpha}=I_{\alpha}\circ\omega.

It is not difficult to verify that:

  • 1.

    For any ιf|Ωαι|Ωα:={(ιf)|Ωα|f}\iota f|_{\Omega_{\alpha}}\in\iota\mathcal{F}|_{\Omega_{\alpha}}:=\{(\iota f)|_{\Omega_{\alpha}}\>|\>f\in\mathcal{F}\}, its norm satisfies

    ιf|ΩαL1(Ωα)=DαfL1(Ω)|β|kDβfL1(Ω)=fWk,1(Ω)M=Mα,\lVert\iota f|_{\Omega_{\alpha}}\rVert_{L^{1}(\Omega_{\alpha})}=\lVert D^{\alpha}f\rVert_{L^{1}(\Omega)}\leq\sum_{\lvert\beta\rvert\leq k}\lVert D^{\beta}f\rVert_{L^{1}(\Omega)}=\lVert f\rVert_{W^{k,1}(\Omega)}\leq M=M_{\alpha},

    which implies 𝐁𝟏[Ωα,ι|Ωα,Mα]\mathbf{B^{1}}[\Omega_{\alpha},\iota\mathcal{F}|_{\Omega_{\alpha}},\exists M_{\alpha}] for every α\alpha.

  • 2.

    Similarly, for each ιf|Ωαι|Ωα\iota f|_{\Omega_{\alpha}}\in\iota\mathcal{F}|_{\Omega_{\alpha}}, for any ε>0\varepsilon\in\mathbb{R}_{>0} and for every measurable set AΩαA\subseteq\Omega_{\alpha} with its measure λα(A)<δα(ε)\lambda_{\alpha}(A)<\delta_{\alpha}(\varepsilon), since λIα1(A)=λ(A)<δα(ε)=δ(ε)\lambda\circ I_{\alpha}^{-1}(A)=\lambda(A)<\delta_{\alpha}(\varepsilon)=\delta(\varepsilon), we have

    A|ιf|Ωα|dλα=Iα1(A)|Dαf|dλ|β|kIβ1(A)|Dβf|dλ<ε.\int_{A}\lvert\iota f|_{\Omega_{\alpha}}\rvert\mathrm{d}\lambda_{\alpha}=\int_{I_{\alpha}^{-1}(A)}\lvert D^{\alpha}f\rvert\mathrm{d}\lambda\leq\sum_{\lvert\beta\rvert\leq k}\int_{I_{\beta}^{-1}(A)}\lvert D^{\beta}f\rvert\mathrm{d}\lambda<\varepsilon.

    Thus we get 𝐄𝐈𝟏[Ωα,ι|Ωα,δα]\mathbf{EI^{1}}[\Omega_{\alpha},\iota\mathcal{F}|_{\Omega_{\alpha}},\exists\delta_{\alpha}] for every α\alpha.

  • 3.

    Again, for each ιf|Ωαι|Ωα\iota f|_{\Omega_{\alpha}}\in\iota\mathcal{F}|_{\Omega_{\alpha}} and for any ε>0\varepsilon\in\mathbb{R}_{>0}, the inequality

    Ωαωα(ε)|ιf|Ωα|dλα=Ωω(ε)|Dαf|dλ|β|kΩω(ε)|Dβf|dλ<ε\int_{\Omega_{\alpha}\setminus\omega_{\alpha}(\varepsilon)}\lvert\iota f|_{\Omega_{\alpha}}\rvert\mathrm{d}\lambda_{\alpha}=\int_{\Omega\setminus\omega(\varepsilon)}\lvert D^{\alpha}f\rvert\mathrm{d}\lambda\leq\sum_{\lvert\beta\rvert\leq k}\int_{\Omega\setminus\omega(\varepsilon)}\lvert D^{\beta}f\rvert\mathrm{d}\lambda<\varepsilon

    implies 𝐄𝟏[Ωα,ι|Ωα,ωα]\mathbf{E_{\infty}^{1}}[\Omega_{\alpha},\iota\mathcal{F}|_{\Omega_{\alpha}},\exists\omega_{\alpha}] for each α\alpha.

Hence by the definition of general products, there exists the morphism “(4) \Rightarrow (5)”.

Proof of “(5) \Rightarrow (4)”:

Suppose 𝐇𝐧.𝐨.𝐤,𝟏[Ω,]|α|k(𝐇𝝈𝟏𝐁𝟏𝐄𝐈𝟏𝐄𝟏[Ωα,ι|Ωα,Mα,δα,ωα])\mathbf{H^{k,1}_{n.o.}}[\Omega,\mathcal{F}]\wedge\bigwedge_{\lvert\alpha\rvert\leq k}(\mathbf{H_{\bm{\sigma}}^{1}}\wedge\mathbf{B^{1}}\wedge\mathbf{EI^{1}}\wedge\mathbf{E_{\infty}^{1}}[\Omega_{\alpha},\iota\mathcal{F}|_{\Omega_{\alpha}},\exists M_{\alpha},\exists\delta_{\alpha},\exists\omega_{\alpha}]), and let

M=|α|kMα,δ:εmin|α|kδα(ε|α|k1),ω:ε|α|kIα1ωα(ε|α|k1).M=\sum_{\lvert\alpha\rvert\leq k}M_{\alpha},\>\delta\colon\varepsilon\mapsto\min_{\lvert\alpha\rvert\leq k}\delta_{\alpha}(\frac{\varepsilon}{\sum_{\lvert\alpha\rvert\leq k}1}),\>\omega\colon\varepsilon\mapsto\bigcup_{\lvert\alpha\rvert\leq k}I_{\alpha}^{-1}\circ\omega_{\alpha}(\frac{\varepsilon}{\sum_{\lvert\alpha\rvert\leq k}1}).

We obtain that:

  • 1.

    For any ff\in\mathcal{F}, its norm satisfies that

    fWk,1=|α|kDαfL1(Ω)=|α|kιf|ΩαL1(Ωα)|α|kMα=M,\lVert f\rVert_{W^{k,1}}=\sum_{\lvert\alpha\rvert\leq k}\lVert D^{\alpha}f\rVert_{L^{1}(\Omega)}=\sum_{\lvert\alpha\rvert\leq k}\lVert\iota f|_{\Omega_{\alpha}}\rVert_{L^{1}(\Omega_{\alpha})}\leq\sum_{\lvert\alpha\rvert\leq k}M_{\alpha}=M,

    which implies 𝐁𝐤,𝟏[Ω,,M]\mathbf{B^{k,1}}[\Omega,\mathcal{F},\exists M].

  • 2.

    For each ff\in\mathcal{F}, for any ε>0\varepsilon\in\mathbb{R}_{>0} and for every measurable set AΩA\subseteq\Omega with its measure λ(A)<δ(ε)\lambda(A)<\delta(\varepsilon), since λαIα(A)=λ(A)<δ(ε)=min|α|kδα(ε|α|k1)δα(ε|α|k1)\lambda_{\alpha}\circ I_{\alpha}(A)=\lambda(A)<\delta(\varepsilon)=\min_{\lvert\alpha\rvert\leq k}\delta_{\alpha}(\frac{\varepsilon}{\sum_{\lvert\alpha\rvert\leq k}1})\leq\delta_{\alpha}(\frac{\varepsilon}{\sum_{\lvert\alpha\rvert\leq k}1}) for all α\alpha, we have

    |α|kA|Dαf|dλ=|α|kIα(A)|ιf|Ωα|dλα<|α|kε|α|k1=ε.\sum_{\lvert\alpha\rvert\leq k}\int_{A}\lvert D^{\alpha}f\rvert\mathrm{d}\lambda=\sum_{\lvert\alpha\rvert\leq k}\int_{I_{\alpha}(A)}\lvert\iota f|_{\Omega_{\alpha}}\rvert\mathrm{d}\lambda_{\alpha}<\sum_{\lvert\alpha\rvert\leq k}\frac{\varepsilon}{\sum_{\lvert\alpha\rvert\leq k}1}=\varepsilon.

    Thus we get 𝐄𝐈𝐤,𝟏[Ω,,δ]\mathbf{EI^{k,1}}[\Omega,\mathcal{F},\exists\delta].

  • 3.

    In the same way, for each ff\in\mathcal{F} and any ε>0\varepsilon\in\mathbb{R}_{>0}, the inequality

    |α|kΩω(ε)|Dαf|dλ|α|kΩαωα(ε|α|k1)|ιf|Ωα|dλα<|α|kε|α|k1=ε\sum_{\lvert\alpha\rvert\leq k}\int_{\Omega\setminus\omega(\varepsilon)}\lvert D^{\alpha}f\rvert\mathrm{d}\lambda\leq\sum_{\lvert\alpha\rvert\leq k}\int_{\Omega_{\alpha}\setminus\omega_{\alpha}(\frac{\varepsilon}{\sum_{\lvert\alpha\rvert\leq k}1})}\lvert\iota f|_{\Omega_{\alpha}}\rvert\mathrm{d}\lambda_{\alpha}<\sum_{\lvert\alpha\rvert\leq k}\frac{\varepsilon}{\sum_{\lvert\alpha\rvert\leq k}1}=\varepsilon

    implies 𝐄𝐤,𝟏[Ω,,ω]\mathbf{E_{\infty}^{k,1}}[\Omega,\mathcal{F},\exists\omega].

Proof of “(5) \Rightarrow (6)”:

Suppose 𝐇𝐧.𝐨.𝐤,𝟏[Ω,]|α|k(𝐇𝝈𝟏𝐁𝟏𝐄𝐈𝟏𝐄𝟏[Ωα,ι|Ωα,Mα,δα,ωα])\mathbf{H^{k,1}_{n.o.}}[\Omega,\mathcal{F}]\wedge\bigwedge_{\lvert\alpha\rvert\leq k}(\mathbf{H_{\bm{\sigma}}^{1}}\wedge\mathbf{B^{1}}\wedge\mathbf{EI^{1}}\wedge\mathbf{E_{\infty}^{1}}[\Omega_{\alpha},\iota\mathcal{F}|_{\Omega_{\alpha}},\exists M_{\alpha},\exists\delta_{\alpha},\exists\omega_{\alpha}]), and let

M=|α|kMα,δ:εmin|α|kδα(ε|α|k1),ω(k):ε|α|kωα(ε|α|k1).M=\sum_{\lvert\alpha\rvert\leq k}M_{\alpha},\>\delta\colon\varepsilon\mapsto\min_{\lvert\alpha\rvert\leq k}\delta_{\alpha}(\frac{\varepsilon}{\sum_{\lvert\alpha\rvert\leq k}1}),\>\omega^{(k)}\colon\varepsilon\mapsto\bigcup_{\lvert\alpha\rvert\leq k}\omega_{\alpha}(\frac{\varepsilon}{\sum_{\lvert\alpha\rvert\leq k}1}).

Almost the same as the previous argument, we can verify that:

  • 1.

    For every ιfι\iota f\in\iota\mathcal{F}, its norm satisfies

    ιfL1(Ω(k))=|α|kιf|ΩαL1(Ωα)|α|kMα=M,\lVert\iota f\rVert_{L^{1}(\Omega^{(k)})}=\sum_{\lvert\alpha\rvert\leq k}\lVert\iota f|_{\Omega_{\alpha}}\rVert_{L^{1}(\Omega_{\alpha})}\leq\sum_{\lvert\alpha\rvert\leq k}M_{\alpha}=M,

    which implies 𝐁𝟏[Ω(k),ι,M]\mathbf{B^{1}}[\Omega^{(k)},\iota\mathcal{F},\exists M].

  • 2.

    For each ιfι\iota f\in\iota\mathcal{F}, for any ε>0\varepsilon\in\mathbb{R}_{>0}, and for every measurable set AΩ(k)A\subseteq\Omega^{(k)} with its measure μ(A)<δ(ε)\mu(A)<\delta(\varepsilon), since λα(AΩα)μ(A)<δ(ε)=min|α|kδα(ε|α|k1)δα(ε|α|k1)\lambda_{\alpha}(A\cap\Omega_{\alpha})\leq\mu(A)<\delta(\varepsilon)=\min_{\lvert\alpha\rvert\leq k}\delta_{\alpha}(\frac{\varepsilon}{\sum_{\lvert\alpha\rvert\leq k}1})\leq\delta_{\alpha}(\frac{\varepsilon}{\sum_{\lvert\alpha\rvert\leq k}1}) for all α\alpha, we have

    A|ιf|dμ=|α|kAΩα|ιf|Ωα|dλα<|α|kε|α|k1=ε.\int_{A}\lvert\iota f\rvert\mathrm{d}\mu=\sum_{\lvert\alpha\rvert\leq k}\int_{A\cap\Omega_{\alpha}}\lvert\iota f|_{\Omega_{\alpha}}\rvert\mathrm{d}\lambda_{\alpha}<\sum_{\lvert\alpha\rvert\leq k}\frac{\varepsilon}{\sum_{\lvert\alpha\rvert\leq k}1}=\varepsilon.

    Thus we get 𝐄𝐈𝟏[Ω(k),ι,δ]\mathbf{EI^{1}}[\Omega^{(k)},\iota\mathcal{F},\exists\delta].

  • 3.

    For each ιfι\iota f\in\iota\mathcal{F} and any ε>0\varepsilon\in\mathbb{R}_{>0}, we have the inequality

    Ωω(ε)|ιf|dμ=|α|kΩαωα(ε|α|k1)|ιf|Ωα|dλα<|α|kε|α|k1=ε,\int_{\Omega\setminus\omega(\varepsilon)}\lvert\iota f\rvert\mathrm{d}\mu=\sum_{\lvert\alpha\rvert\leq k}\int_{\Omega_{\alpha}\setminus\omega_{\alpha}(\frac{\varepsilon}{\sum_{\lvert\alpha\rvert\leq k}1})}\lvert\iota f|_{\Omega_{\alpha}}\rvert\mathrm{d}\lambda_{\alpha}<\sum_{\lvert\alpha\rvert\leq k}\frac{\varepsilon}{\sum_{\lvert\alpha\rvert\leq k}1}=\varepsilon,

    which leads to 𝐄𝟏[Ω(k),ι,ω(k)]\mathbf{E_{\infty}^{1}}[\Omega^{(k)},\iota\mathcal{F},\exists\omega^{(k)}] immediately.

Once again, by the definition of general products, we have “(5) \Rightarrow (6)”.

Proof of “(6) \Rightarrow (5)”:

Suppose 𝐇𝐧.𝐨.𝐤,𝟏[Ω,](𝐇𝝈𝟏𝐁𝟏𝐄𝐈𝟏𝐄𝟏[Ω(k),ι,M,δ,ω(k)])\mathbf{H^{k,1}_{n.o.}}[\Omega,\mathcal{F}]\wedge(\mathbf{H_{\bm{\sigma}}^{1}}\wedge\mathbf{B^{1}}\wedge\mathbf{EI^{1}}\wedge\mathbf{E_{\infty}^{1}}[\Omega^{(k)},\iota\mathcal{F},\exists M,\exists\delta,\exists\omega^{(k)}]), and let

Mα=M,δα=δ,ωα:εω(k)(ε)Ωα.M_{\alpha}=M,\>\delta_{\alpha}=\delta,\>\omega_{\alpha}\colon\varepsilon\mapsto\omega^{(k)}(\varepsilon)\cap\Omega_{\alpha}.

We obtain that:

  • 1.

    For every ιf|Ωαι|Ωα\iota f|_{\Omega_{\alpha}}\in\iota\mathcal{F}|_{\Omega_{\alpha}}, its norm satisfies

    ιf|ΩαL1(Ωα)ιfL1(Ω(k))M=Mα,\lVert\iota f|_{\Omega_{\alpha}}\rVert_{L^{1}(\Omega_{\alpha})}\leq\lVert\iota f\rVert_{L^{1}(\Omega^{(k)})}\leq M=M_{\alpha},

    which implies 𝐁𝟏[Ωα,ι|Ωα,Mα]\mathbf{B^{1}}[\Omega_{\alpha},\iota\mathcal{F}|_{\Omega_{\alpha}},\exists M_{\alpha}] for every α\alpha.

  • 2.

    For each ιf|Ωαι|Ωα\iota f|_{\Omega_{\alpha}}\in\iota\mathcal{F}|_{\Omega_{\alpha}}, for any ε>0\varepsilon\in\mathbb{R}_{>0}, and for every measurable set AΩαA\subseteq\Omega_{\alpha} with its measure λα(A)<δα(ε)\lambda_{\alpha}(A)<\delta_{\alpha}(\varepsilon), we have

    A|ιf|Ωα|dλα=A|ιf|dμ<ε.\int_{A}\lvert\iota f|_{\Omega_{\alpha}}\rvert\mathrm{d}\lambda_{\alpha}=\int_{A}\lvert\iota f\rvert\mathrm{d}\mu<\varepsilon.

    Thus we get 𝐄𝐈𝟏[Ωα,ι|Ωα,δα]\mathbf{EI^{1}}[\Omega_{\alpha},\iota\mathcal{F}|_{\Omega_{\alpha}},\exists\delta_{\alpha}] for every α\alpha.

  • 3.

    For each ιf|Ωαι|Ωα\iota f|_{\Omega_{\alpha}}\in\iota\mathcal{F}|_{\Omega_{\alpha}}, the inequality

    Ωαωα(ε)|ιf|Ωα|dλαΩ(k)ω(k)(ε)|ιf|dμ<ε\int_{\Omega_{\alpha}\setminus\omega_{\alpha}(\varepsilon)}\lvert\iota f|_{\Omega_{\alpha}}\rvert\mathrm{d}\lambda_{\alpha}\leq\int_{\Omega^{(k)}\setminus\omega^{(k)}(\varepsilon)}\lvert\iota f\rvert\mathrm{d}\mu<\varepsilon

    implies 𝐄𝟏[Ωα,ι|Ωα,ωα]\mathbf{E_{\infty}^{1}}[\Omega_{\alpha},\iota\mathcal{F}|_{\Omega_{\alpha}},\exists\omega_{\alpha}] for every α\alpha.

These arguments complete the proof of “(6) \Rightarrow (5)”.

Isomorphism “(6) \Leftrightarrow (7)” can be obtained immediately from Theorem 1. Using Lemma 11 and (9), isomorphism “(7) \Leftrightarrow (8)” is obvious.

Finally, the proof of Theorem 2 is completed by compositing.

Proof: [Proof of Theorem 3.] We only need to prove the following two.

1.

𝐇𝐛.𝐨.𝐜𝐨𝐧𝐞𝐤,𝟏𝐁|α|{𝟎,𝐤},𝟏[Ω,,M]𝐇𝐛.𝐨.𝐜𝐨𝐧𝐞𝐤,𝟏𝐁𝐤,𝟏[Ω,,M]\mathbf{H^{k,1}_{b.o.cone}}\wedge\mathbf{B^{\lvert\alpha\rvert\in\{0,k\},1}}{[\Omega,\mathcal{F},\exists M]}\Rightarrow\mathbf{H^{k,1}_{b.o.cone}}\wedge\mathbf{B^{k,1}}{[\Omega,\mathcal{F},\exists M^{\prime}]}.

It can be obtained directly from the interpolation inequality (see Adams, , Theorem 5.2 on page 135).

2.

𝐇𝐛.𝐨.𝐜𝐨𝐧𝐞𝐤,𝟏𝐁|α|{𝟎,𝐤},𝟏𝐄𝐈|α|=𝐤,𝟏[Ω,,M,δ]𝐇𝐛.𝐨.𝐜𝐨𝐧𝐞𝐤,𝟏𝐁|α|{𝟎,𝐤},𝟏𝐄𝐈𝐤,𝟏[Ω,,M,δ]\mathbf{H^{k,1}_{b.o.cone}}\wedge\mathbf{B^{\lvert\alpha\rvert\in\{0,k\},1}}\wedge\mathbf{EI^{\lvert\alpha\rvert=k,1}}{[\Omega,\mathcal{F},\exists M,\exists\delta]}\Rightarrow\mathbf{H^{k,1}_{b.o.cone}}\wedge\mathbf{B^{\lvert\alpha\rvert\in\{0,k\},1}}\wedge\mathbf{EI^{k,1}}{[\Omega,\mathcal{F},\exists M^{\prime},\exists\delta^{\prime}]}.

From the above discussion we already know that \mathcal{F} is bounded in Wk,1(Ω)W^{k,1}(\Omega). Applying the Rellich-Kondrachov theorem (see Adams, , Theorem 6.3 on page 168), we obtain that the embedding from Wk,1(Ω)W^{k,1}(\Omega) to Wk1,1(Ω)W^{k-1,1}(\Omega) is compact (When k=1k=1, the notation W0,1W^{0,1} is regarded as L1L^{1}). Hence ι\iota\mathcal{F} is precompact in L1(Ω(k))L^{1}(\Omega^{(k)}) and obviously, it is relatively weakly compact. By Lemma 11, we have that \mathcal{F} is relatively weakly compact in Wk,1(Ω)W^{k,1}(\Omega). Then applying Theorem 2, the statement 𝐄𝐈𝐤,𝟏[Ω,,δ]\mathbf{EI^{k,1}}{[\Omega,\mathcal{F},\exists\delta^{\prime}]} is satisfied.

Thus the proof is completed.

Proof: [Proof of Theorem 8.] Denote

Wu01,1(Ω)=u0+W01,1(Ω) and m=infuWu01,1(Ω)J(u),W_{u_{0}}^{1,1}(\Omega)=u_{0}+W_{0}^{1,1}(\Omega)\text{ and }m=\inf_{u\in W_{u_{0}}^{1,1}(\Omega)}J(u),

and observe that mJ(u0)<+m\leq J(u_{0})<+\infty. Integrating both sides of (1) with respect to xx, we have

J(u)=ΩL(x,u,u)dxaΩ|u|dx+Ωc(x)dxauL1(Ω)cL1(Ω)>.\begin{split}J(u)&=\int_{\Omega}L(x,u,\nabla u)\mathrm{d}x\geq a\int_{\Omega}\lvert\nabla u\rvert\mathrm{d}x+\int_{\Omega}c(x)\mathrm{d}x\\ &\geq a\lVert\nabla u\rVert_{L^{1}(\Omega)}-\lVert c\rVert_{L^{1}(\Omega)}>-\infty.\end{split} (10)

Next, we show that m>m>-\infty. Let u=u0+vu=u_{0}+v for some vW01,1(Ω)v\in W_{0}^{1,1}(\Omega). Invoking Poincaré’s inequality (see Brezis, , Corollary 9.19 on page 290), there exists a positive constant CC such that

vL1(Ω)CvW01,1(Ω).\lVert\nabla v\rVert_{L^{1}(\Omega)}\geq C\lVert v\rVert_{W_{0}^{1,1}(\Omega)}.

Combining with the triangle inequality, we have

uL1(Ω)+u0W1,1(Ω)uL1(Ω)+u0L1(Ω)uu0L1(Ω)Cuu0W01,1(Ω)=Cuu0W1,1(Ω)CuW1,1(Ω)Cu0W1,1(Ω).\begin{split}\lVert\nabla u\rVert_{L^{1}(\Omega)}+\lVert u_{0}\rVert_{W^{1,1}(\Omega)}&\geq\lVert\nabla u\rVert_{L^{1}(\Omega)}+\lVert\nabla u_{0}\rVert_{L^{1}(\Omega)}\\ &\geq\lVert\nabla u-\nabla u_{0}\rVert_{L^{1}(\Omega)}\\ &\geq C\lVert u-u_{0}\rVert_{W_{0}^{1,1}(\Omega)}\\ &=C\lVert u-u_{0}\rVert_{W^{1,1}(\Omega)}\\ &\geq C\lVert u\rVert_{W^{1,1}(\Omega)}-C\lVert u_{0}\rVert_{W^{1,1}(\Omega)}.\end{split}

In short,

uL1(Ω)CuW1,1(Ω)(C+1)u0W1,1(Ω).\lVert\nabla u\rVert_{L^{1}(\Omega)}\geq C\lVert u\rVert_{W^{1,1}(\Omega)}-(C+1)\lVert u_{0}\rVert_{W^{1,1}(\Omega)}. (11)

Denote

γ(a,C,u0,c)=a(C+1)u0W1,1(Ω)+cL1(Ω).\gamma(a,C,u_{0},c)=a(C+1)\lVert u_{0}\rVert_{W^{1,1}(\Omega)}+\lVert c\rVert_{L^{1}(\Omega)}.

According to (10) and (11), we obtain that

J(u)aCuW1,1(Ω)γγ,uWu01,1(Ω).J(u)\geq aC\lVert u\rVert_{W^{1,1}(\Omega)}-\gamma\geq-\gamma,\>\forall u\in W_{u_{0}}^{1,1}(\Omega). (12)

Thus we have proved that

m=infuWu01,1(Ω)J(u)γ>.m=\inf_{u\in W_{u_{0}}^{1,1}(\Omega)}J(u)\geq-\gamma>-\infty.

Hence, for an arbitrary minimizing sequence {un}Wu01,1(Ω)\{u_{n}\}\subset W_{u_{0}}^{1,1}(\Omega) and then for some integer nn sufficiently large, we obtain that

m+1J(un).m+1\geq J(u_{n}).

Combining with (12), we have

m+1aCunW1,1(Ω)γ.m+1\geq aC\lVert u_{n}\rVert_{W^{1,1}(\Omega)}-\gamma.

It means that there exists a number M=M(m,a,C,γ)<+M=M(m,a,C,\gamma)<+\infty such that

unW1,1(Ω)M.\lVert u_{n}\rVert_{W^{1,1}(\Omega)}\leq M.

If we could find some suitable sequence {un}\{u_{n}\} turning out to satisfies the statement 𝐄𝐈|α|=𝟏,𝟏\mathbf{EI^{\lvert\alpha\rvert=1,1}} in Theorem 3, we should have that {un}\{u_{n}\} is relatively weakly compact. Thus there exists a subsequence of {un}\{u_{n}\} (also denoted as {un}\{u_{n}\} for simplicity) converging weakly to some u¯Wu01,1(Ω)\bar{u}\in W_{u_{0}}^{1,1}(\Omega).

Using Theorem 3.23 in (Dacorogna, , page 96) to obtain that functional JJ is weakly lower semicontinuous, we have

lim infnJ(un)J(u¯),\liminf_{n\to\infty}J(u_{n})\geq J(\bar{u}),

which implies that JJ attained its infimum at u¯\bar{u}.

It remains to show the uniqueness of u¯\bar{u} under the condition that the function (u,ξ)L(x,u,ξ)(u,\xi)\mapsto L(x,u,\xi) is strictly convex. Here we give the proof by contradiction.

Assume that there exists v¯\bar{v} different from u¯\bar{u} but J(v¯)=J(u¯)=mJ(\bar{v})=J(\bar{u})=m. By the strict convexity, for every t(0,1)t\in(0,1), we have that

tL(x,u¯,u¯)+(1t)L(x,v¯,v¯)L(x,tu¯+(1t)v¯,tu¯+(1t)v¯)>0.tL(x,\bar{u},\nabla\bar{u})+(1-t)L(x,\bar{v},\nabla\bar{v})-L\bigl{(}x,t\bar{u}+(1-t)\bar{v},t\nabla\bar{u}+(1-t)\nabla\bar{v}\bigr{)}>0. (13)

Integrating both sides of the above inequality with respect to xx, we obtain

tJ(u¯)+(1t)J(v¯)J(tu¯+(1t)v¯)0,t(0,1).tJ(\bar{u})+(1-t)J(\bar{v})-J\bigl{(}t\bar{u}+(1-t)\bar{v}\bigr{)}\geq 0,\>\forall t\in(0,1).

Since the integrand is non-negative, the inequality above becomes an equality if and only if the integrand is 0 almost everywhere, which is in contradiction to (13). Hence we have

J(tu¯+(1t)v¯)<tJ(u¯)+(1t)J(v¯)=m,t(0,1).J(t\bar{u}+(1-t)\bar{v})<tJ(\bar{u})+(1-t)J(\bar{v})=m,\>\forall t\in(0,1).

However, it contradicts the fact that mm is the infimum. Thus, the uniqueness part has been proved. This completes the proof of the theorem.

Proof: [Proof of Proposition 9.] First, let us consider a simpler case. Suppose that there exist some a>0a\in\mathbb{R}_{>0} and b0b\in\mathbb{R}_{\geq 0} such that

L(t,u,u˙)=a|u˙|+b|u|.L(t,u,\dot{u})=a\lvert\dot{u}\rvert+b\lvert u\rvert.

We have

J(u)=01L(t,u,u˙)dt=au˙L1(0,1)+buL1(0,1).J(u)=\int_{0}^{1}L(t,u,\dot{u})\mathrm{d}t=a\lVert\dot{u}\rVert_{L^{1}(0,1)}+b\lVert u\rVert_{L^{1}(0,1)}.

Take u0(t)=tu_{0}(t)=t. Then we have that

J(u0)=a+b2<+.J(u_{0})=a+\frac{b}{2}<+\infty.

For any minimizing sequence {un}E\{u_{n}\}\subset E, using Theorem 8, {un}\{u_{n}\} is bounded. Denote

vn(t):={0,t(0,112n];un(12n(1x)),t(112n,1).v_{n}(t):=\begin{cases}0,&t\in(0,1-\frac{1}{2^{n}}]\mathchar 24635\relax\\ u_{n}\bigl{(}1-2^{n}(1-x)\bigr{)},&t\in(1-\frac{1}{2^{n}},1).\end{cases}

Obviously that v˙nL1(0,1)=u˙nL1(0,1)\lVert\dot{v}_{n}\rVert_{L^{1}(0,1)}=\lVert\dot{u}_{n}\rVert_{L^{1}(0,1)} and vnL1(0,1)=12nunL1(0,1)\lVert v_{n}\rVert_{L^{1}(0,1)}=\frac{1}{2^{n}}\lVert u_{n}\rVert_{L^{1}(0,1)}.

If b>0b>0, we have that aJ(vn)<J(un)J(u¯)a\leq J(v_{n})<J(u_{n})\to J(\bar{u}). Then {vn}\{v_{n}\} is also a minimizing sequence in EE. Since unu_{n} is bounded, we obtain that vnL1(0,1)0\lVert v_{n}\rVert_{L^{1}(0,1)}\to 0 and

limn+J(un)=limn+J(vn)=limn+au˙nL1(0,1).\lim_{n\to+\infty}J(u_{n})=\lim_{n\to+\infty}J(v_{n})=\lim_{n\to+\infty}a\lVert\dot{u}_{n}\rVert_{L^{1}(0,1)}.

And it implies that unL1(0,1)0\lVert u_{n}\rVert_{L^{1}(0,1)}\to 0. For each n>0n\in\mathbb{Z}_{>0}, denote

An:={t(0,1)|un(t)12}.A_{n}:=\{t\in(0,1)|\>u_{n}(t)\geq\frac{1}{2}\}.

Since unL1(0,1)0\lVert u_{n}\rVert_{L^{1}(0,1)}\to 0, the Lebesgue measure λ(An)0\lambda(A_{n})\to 0. But An|u˙n|dt12\int_{A_{n}}\lvert\dot{u}_{n}\rvert\mathrm{d}t\geq\frac{1}{2}, which contradicts Statement 𝐄𝐈|α|=𝟏,𝟏[(0,1),{un},δ]\mathbf{EI^{\lvert\alpha\rvert=1,1}}{[(0,1),\{u_{n}\},\exists\delta]} in Theorem 3. Hence the minimizing sequence {un}\{u_{n}\} is not relatively weakly compact in W1,1(0,1)W^{1,1}(0,1).

If b=0b=0, using the Newton-Leibniz formula, there holds the inequality

u˙L1(0,1)01u˙(t)dt=u(1)u(0)=1,\lVert\dot{u}\rVert_{L^{1}(0,1)}\geq\int_{0}^{1}\dot{u}(t)\mathrm{d}t=u(1)-u(0)=1,

with equality if and only if u˙(t)0\dot{u}(t)\geq 0 for almost everywhere in (0,1)(0,1). Obviously, every monotonically increasing function with respect to tt minimizes the functional JJ already.

In conclusion, the functional

J(u)=au˙L1(0,1)+buL1(0,1)J(u)=a\lVert\dot{u}\rVert_{L^{1}(0,1)}+b\lVert u\rVert_{L^{1}(0,1)}

has a minimal point u¯\bar{u} if and only if b=0b=0. Moreover, we also obtain that J(u¯)=aJ(\bar{u})=a and u˙(t)0\dot{u}(t)\geq 0 for almost everywhere in (0,1)(0,1).

Next, we consider the case where the integrand has the form

L(t,u,u˙)=(k|u˙|p+|u|p)1p.L(t,u,\dot{u})=(k\lvert\dot{u}\rvert^{p}+\ell\lvert u\rvert^{p})^{\frac{1}{p}}.

Thus we have

J(u)=01L(t,u,u˙)dt=01(k|u˙|p+|u|p)1pdt.J(u)=\int_{0}^{1}L(t,u,\dot{u})\mathrm{d}t=\int_{0}^{1}(k\lvert\dot{u}\rvert^{p}+\ell\lvert u\rvert^{p})^{\frac{1}{p}}\mathrm{d}t.

If 1<p<+1<p<+\infty, let a=k1p>0a=k^{\frac{1}{p}}>0 and b=1p0b=\ell^{\frac{1}{p}}\geq 0.

The following inequality will be used later:

xp+yp(x+y)p,x^{p}+y^{p}\leq(x+y)^{p}, (14)

with equality if and only if xy=0xy=0, where xx, y0y\geq 0 and p>1p>1.

We proceed to prove (14). Obviously, if xy=0xy=0, the equal sign holds, so does (14). Besides, if xy0xy\neq 0, denote k:=xyk:=\frac{x}{y}. Notice that k>0k>0 and p>1p>1, thus

xp+yp(x+y)p=xp(x+y)p+yp(x+y)p=(xyxy+1)p+(1(xy+1))p=(kk+1)p+(1k+1)p<kk+1+1k+1=1.\begin{split}\frac{x^{p}+y^{p}}{(x+y)^{p}}&=\frac{x^{p}}{(x+y)^{p}}+\frac{y^{p}}{(x+y)^{p}}=(\frac{\frac{x}{y}}{\frac{x}{y}+1})^{p}+(\frac{1}{(\frac{x}{y}+1)})^{p}\\ &=(\frac{k}{k+1})^{p}+(\frac{1}{k+1})^{p}<\frac{k}{k+1}+\frac{1}{k+1}=1.\end{split}

Hence the proof of (14) is completed.

Take x=a|u˙|x=a\lvert\dot{u}\rvert and y=b|u|y=b\lvert u\rvert in (14). We have

a|u˙|(k|u˙|p+|u|p)1p=((a|u˙|)p+(b|u|)p)1pa|u˙|+b|u|.a\lvert\dot{u}\rvert\leq(k\lvert\dot{u}\rvert^{p}+\ell\lvert u\rvert^{p})^{\frac{1}{p}}=\bigl{(}(a\lvert\dot{u}\rvert)^{p}+(b\lvert u\rvert)^{p}\bigr{)}^{\frac{1}{p}}\leq a\lvert\dot{u}\rvert+b\lvert u\rvert. (15)

Let

I(u)=01a|u˙|dt and H(u)=01(a|u˙|+b|u|)dtI(u)=\int_{0}^{1}a\lvert\dot{u}\rvert\mathrm{d}t\text{ and }H(u)=\int_{0}^{1}(a\lvert\dot{u}\rvert+b\lvert u\rvert)\mathrm{d}t

be two functionals defined on EE. According to the discussion above, the infimum of II is aa and can be achieved. Since every sequence {un}\{u_{n}\} minimizing HH satisfies that unL1(0,1)0\lVert u_{n}\rVert_{L^{1}(0,1)}\to 0, we have

infuEH(u)limn+H(un)=a+limn+bunL1(0,1)=a.\inf_{u\in E}H(u)\leq\lim_{n\to+\infty}H(u_{n})=a+\lim_{n\to+\infty}b\lVert u_{n}\rVert_{L^{1}(0,1)}=a.

Integrating each part of (15) with respect to tt, we have

I(u)J(u)H(u),uE.I(u)\leq J(u)\leq H(u),\>\forall u\in E. (16)

Hence

a=infuEI(u)infuEJ(u)infuEH(u)a.a=\inf_{u\in E}I(u)\leq\inf_{u\in E}J(u)\leq\inf_{u\in E}H(u)\leq a.

Let {un}\{u_{n}\} be a minimizing sequence of JJ satisfying unu¯u_{n}\rightharpoonup\bar{u} and J(u¯)=aJ(\bar{u})=a. According to (16), I(u¯)=aI(\bar{u})=a. It follows that

01(k|u¯˙|p+|u¯|p)1pdt=a=01a|u¯˙|dt=01(k|u¯˙|p)1pdt.\int_{0}^{1}(k\lvert\dot{\bar{u}}\rvert^{p}+\ell\lvert\bar{u}\rvert^{p})^{\frac{1}{p}}\mathrm{d}t=a=\int_{0}^{1}a\lvert\dot{\bar{u}}\rvert\mathrm{d}t=\int_{0}^{1}(k\lvert\dot{\bar{u}}\rvert^{p})^{\frac{1}{p}}\mathrm{d}t.

Therefore, =0\ell=0 is necessary for JJ to attain the infimum. It remains to show that =0\ell=0 is sufficient too.

If =0\ell=0, we have

J(u)=I(u)=01a|u˙|dt,uE.J(u)=I(u)=\int_{0}^{1}a\lvert\dot{u}\rvert\mathrm{d}t,\>\forall u\in E.

Using the Newton-Leibniz formula, for every u¯E\bar{u}\in E satisfying that u¯˙(t)0\dot{\bar{u}}(t)\geq 0 for almost everywhere in (0,1)(0,1), there holds J(u¯)=aJ(\bar{u})=a. Thus, the sufficiency is proved.

Finally, since 01c(t)dt\int_{0}^{1}c(t)\mathrm{d}t is a constant, it does not affect whether the infimum of the functional JJ can be achieved. This completes the proof of Proposition 9.

\bmhead

Acknowledgments

This work was supported partially by NSF of China, No. 12071316. We would also like to thank Professor Zhu Chaofeng from Nankai University for his discussion on whether interpolation inequalities in continuous differentiable function spaces can be applied. We also thank Professor Zhou Feng from East China Normal University for his fruitful comments about the boundary conditions of the domain Ω\Omega in each theorem. M.J. would like to thank Professor Hongjie Dong from Brown University for helpful conversation.

\bmhead

Data availability statement This manuscript has no associated data.

Statements and Declarations

\bmhead

Conflict of interest The authors declared that they have no conflicts of interest to this work.

Appendix A Proofs of Corollaries

Proof: [Proof of Corollary 4.] The proof of this corollary is almost “isomorphic” to the proof of Theorem 2.

Proof of “𝐇𝐤,𝐩𝐁𝐤,𝐩𝐄𝐈𝝉𝐤,𝐩𝐄𝐤,𝐩[d,,M,δ,ω]𝐇𝐤,𝐩𝐂𝐤,𝐩[d,]\mathbf{H^{k,p}}\wedge\mathbf{B^{k,p}}\wedge\mathbf{EI_{\bm{\tau}}^{k,p}}\wedge\mathbf{E_{\infty}^{k,p}}[\mathbb{R}^{d},\mathcal{F},\exists M,\exists\delta,\exists\omega]\Rightarrow\mathbf{H^{k,p}}\wedge\mathbf{C^{k,p}}[\mathbb{R}^{d},\mathcal{F}]”:

Of course, we suppose that 𝐇𝐤,𝐩𝐁𝐤,𝐩𝐄𝐈𝝉𝐤,𝐩𝐄𝐤,𝐩[d,,M,δ,ω]\mathbf{H^{k,p}}\wedge\mathbf{B^{k,p}}\wedge\mathbf{EI_{\bm{\tau}}^{k,p}}\wedge\mathbf{E_{\infty}^{k,p}}[\mathbb{R}^{d},\mathcal{F},\exists M,\exists\delta,\exists\omega]. Then

  • 1.

    For any ιfι\iota f\in\iota\mathcal{F}, its norm satisfies

    ιfLp(|α|kαd)=|α|kDαfLp(d)=fWk,p(d)M.\lVert\iota f\rVert_{L^{p}(\bigcup_{\lvert\alpha\rvert\leq k}\mathbb{R}^{d}_{\alpha})}=\sum_{\lvert\alpha\rvert\leq k}\lVert D^{\alpha}f\rVert_{L^{p}(\mathbb{R}^{d})}=\lVert f\rVert_{W^{k,p}(\mathbb{R}^{d})}\leq M.
  • 2.

    For any ιfι\iota f\in\iota\mathcal{F}, ε>0\forall\varepsilon\in\mathbb{R}_{>0} and hd\forall h\in\mathbb{R}^{d} with hd<δ(ε)\lVert h\rVert_{\mathbb{R}^{d}}<\delta(\varepsilon), we have

    ι(τhf)ιfLp(|α|kαd)=|α|kDα(τhf)DαfLp(d)=τhffWk,p(d)<ε.\begin{split}\lVert\iota(\tau_{h}f)-\iota f\rVert_{L^{p}(\bigcup_{\lvert\alpha\rvert\leq k}\mathbb{R}^{d}_{\alpha})}&=\sum_{\lvert\alpha\rvert\leq k}\lVert D^{\alpha}(\tau_{h}f)-D^{\alpha}f\rVert_{L^{p}(\mathbb{R}^{d})}\\ &=\lVert\tau_{h}f-f\rVert_{W^{k,p}(\mathbb{R}^{d})}<\varepsilon.\end{split}
  • 3.

    Take ω(k):ε|α|kIαω(ε)\omega^{(k)}\colon\varepsilon\mapsto\bigcup_{\lvert\alpha\rvert\leq k}I_{\alpha}\circ\omega(\varepsilon). For any ιfι\iota f\in\iota\mathcal{F} and ε>0\forall\varepsilon\in\mathbb{R}_{>0}, we have

    ιfLp((|α|kαd)ω(k)(ε))=(|α|kdω(ε)|Dαf|pdλ)1p<ε.\lVert\iota f\rVert_{L^{p}\bigl{(}(\bigcup_{\lvert\alpha\rvert\leq k}\mathbb{R}^{d}_{\alpha})\setminus\omega^{(k)}(\varepsilon)\bigr{)}}=(\sum_{\lvert\alpha\rvert\leq k}\int_{\mathbb{R}^{d}\setminus\omega(\varepsilon)}\lvert D^{\alpha}f\rvert^{p}\mathrm{d}\lambda)^{\frac{1}{p}}<\varepsilon.

Using the Kolmogorov-M.Riesz-Fréchet theorem (see Brezis, , Corollary 4.27 on page 113), we obtain that “ι\iota\mathcal{F} is precompact in Lp(|α|kαd)L^{p}(\bigcup_{\lvert\alpha\rvert\leq k}\mathbb{R}^{d}_{\alpha})”, which is equivalent to that “\mathcal{F} is precompact in Wk,p(d)W^{k,p}(\mathbb{R}^{d})”.

Proof of “𝐇𝐤,𝐩𝐂𝐤,𝐩[d,]𝐇𝐤,𝐩𝐁𝐤,𝐩𝐄𝐈𝝉𝐤,𝐩𝐄𝐤,𝐩[d,,M,δ,ω]\mathbf{H^{k,p}}\wedge\mathbf{C^{k,p}}[\mathbb{R}^{d},\mathcal{F}]\Rightarrow\mathbf{H^{k,p}}\wedge\mathbf{B^{k,p}}\wedge\mathbf{EI_{\bm{\tau}}^{k,p}}\wedge\mathbf{E_{\infty}^{k,p}}[\mathbb{R}^{d},\mathcal{F},\exists M,\exists\delta,\exists\omega]”:

Similarly, suppose we are given 𝐇𝐤,𝐩𝐂𝐤,𝐩[d,]\mathbf{H^{k,p}}\wedge\mathbf{C^{k,p}}[\mathbb{R}^{d},\mathcal{F}]. By the definition of ι\iota, we have that ι\iota\mathcal{F} is precompact in Lp(|α|kαd)L^{p}(\bigcup_{\lvert\alpha\rvert\leq k}\mathbb{R}^{d}_{\alpha}). Using the Kolmogorov-M.Riesz-Fréchet theorem again, we obtain that

  • 1.

    There exists a positive constant MM such that for any ιfι\iota f\in\iota\mathcal{F}, its norm satisfies ιfLp(|α|kαd)M\lVert\iota f\rVert_{L^{p}(\bigcup_{\lvert\alpha\rvert\leq k}\mathbb{R}^{d}_{\alpha})}\leq M. Thus we have

    fWk,p(d)=|α|kDαfLp(d)=ιfLp(|α|kαd)M,\lVert f\rVert_{W^{k,p}(\mathbb{R}^{d})}=\sum_{\lvert\alpha\rvert\leq k}\lVert D^{\alpha}f\rVert_{L^{p}(\mathbb{R}^{d})}=\lVert\iota f\rVert_{L^{p}(\bigcup_{\lvert\alpha\rvert\leq k}\mathbb{R}^{d}_{\alpha})}\leq M,

    which implies 𝐁𝐤,𝐩[d,,M]\mathbf{B^{k,p}}[\mathbb{R}^{d},\mathcal{F},\exists M].

  • 2.

    There exists a function δ:>0>0\delta\colon\mathbb{R}_{>0}\to\mathbb{R}_{>0} such that for any ιfι\iota f\in\iota\mathcal{F}, ε>0\forall\varepsilon\in\mathbb{R}_{>0} and hd\forall h\in\mathbb{R}^{d} with hd<δ(ε)\lVert h\rVert_{\mathbb{R}^{d}}<\delta(\varepsilon), there holds ι(τhf)ιfLp(|α|kαd)<ε\lVert\iota(\tau_{h}f)-\iota f\rVert_{L^{p}(\bigcup_{\lvert\alpha\rvert\leq k}\mathbb{R}^{d}_{\alpha})}<\varepsilon. Then we have

    τhffWk,p(d)=|α|kDα(τhf)DαfLp(d)=ι(τhf)ιfLp(|α|kαd)<ε.\begin{split}\lVert\tau_{h}f-f\rVert_{W^{k,p}(\mathbb{R}^{d})}&=\sum_{\lvert\alpha\rvert\leq k}\lVert D^{\alpha}(\tau_{h}f)-D^{\alpha}f\rVert_{L^{p}(\mathbb{R}^{d})}\\ &=\lVert\iota(\tau_{h}f)-\iota f\rVert_{L^{p}(\bigcup_{\lvert\alpha\rvert\leq k}\mathbb{R}^{d}_{\alpha})}<\varepsilon.\end{split}

    Thus we get 𝐄𝐈𝝉𝐤,𝐩[d,,δ]\mathbf{EI_{\bm{\tau}}^{k,p}}[\mathbb{R}^{d},\mathcal{F},\exists\delta].

  • 3.

    There exists a set-valued mapping ω(k):>02|α|kαd\omega^{(k)}\colon\mathbb{R}_{>0}\to 2^{\bigcup_{\lvert\alpha\rvert\leq k}\mathbb{R}^{d}_{\alpha}} such that for every ιfι\iota f\in\iota\mathcal{F} and ε>0\forall\varepsilon\in\mathbb{R}_{>0}, there holds ιfLp((|α|kαd)ω(k)(ε))<ε\lVert\iota f\rVert_{L^{p}\bigl{(}(\bigcup_{\lvert\alpha\rvert\leq k}\mathbb{R}^{d}_{\alpha})\setminus\omega^{(k)}(\varepsilon)\bigr{)}}<\varepsilon. Take ω:ε|α|kIα1(ω(k)(ε)α)\omega\colon\varepsilon\mapsto\bigcup_{\lvert\alpha\rvert\leq k}I_{\alpha}^{-1}\bigl{(}\omega^{(k)}(\varepsilon)\cap\mathbb{R}_{\alpha}\bigr{)}, then we have

    (|α|kdω(ε)|Dαf|pdλ)1p=(|α|k(αd(Iαω(ε)))|ιf|pdμ)1pιfLp((|α|kαd)ω(k)(ε))<ε,\begin{split}(\sum_{\lvert\alpha\rvert\leq k}\int_{\mathbb{R}^{d}\setminus\omega(\varepsilon)}\lvert D^{\alpha}f\rvert^{p}\mathrm{d}\lambda)^{\frac{1}{p}}&=(\int_{\bigcup_{\lvert\alpha\rvert\leq k}\Bigl{(}\mathbb{R}^{d}_{\alpha}\setminus\bigl{(}I_{\alpha}\circ\omega(\varepsilon)\bigr{)}\Bigr{)}}\lvert\iota f\rvert^{p}\mathrm{d}\mu)^{\frac{1}{p}}\\ &\leq\lVert\iota f\rVert_{L^{p}\bigl{(}(\bigcup_{\lvert\alpha\rvert\leq k}\mathbb{R}^{d}_{\alpha})\setminus\omega^{(k)}(\varepsilon)\bigr{)}}<\varepsilon,\end{split}

    which leads to 𝐄𝐤,𝐩[d,,ω]\mathbf{E_{\infty}^{k,p}}[\mathbb{R}^{d},\mathcal{F},\exists\omega] immediately.

The proof is completed.

Proof: [Proof of Corollary 5.] The proof of this corollary is almost “isomorphic” to the proof of Theorem 3. Similarly, we only need to prove the following two.

1.

𝐇𝐛.𝐨.0𝐤,𝐩𝐁|α|{𝟎,𝐤},𝐩[Ω,,M]𝐇𝐛.𝐨.0𝐤,𝐩𝐁𝐤,𝐩[Ω,,M]\mathbf{H^{k,p}_{b.o.0}}\wedge\mathbf{B^{\lvert\alpha\rvert\in\{0,k\},p}}{[\Omega,\mathcal{F},\exists M]}\Rightarrow\mathbf{H^{k,p}_{b.o.0}}\wedge\mathbf{B^{k,p}}{[\Omega,\mathcal{F},\exists M^{\prime}]}.

It can be obtained directly from the interpolation inequality (see Adams, , Theorem 5.2 on page 135).

2.

𝐇𝐛.𝐨.0𝐤,𝐩𝐁|α|{𝟎,𝐤},𝐩𝐄𝐈𝝉|α|=𝐤,𝐩[Ω,,M,δ]𝐇𝐛.𝐨.0𝐤,𝐩𝐁|α|{𝟎,𝐤},𝐩𝐄𝐈𝝉𝐤,𝐩[Ω,,M,δ]\mathbf{H^{k,p}_{b.o.0}}\wedge\mathbf{B^{\lvert\alpha\rvert\in\{0,k\},p}}\wedge\mathbf{EI_{\bm{\tau}}^{\lvert\alpha\rvert=k,p}}{[\Omega,\mathcal{F},\exists M,\exists\delta]}\Rightarrow\mathbf{H^{k,p}_{b.o.0}}\wedge\mathbf{B^{\lvert\alpha\rvert\in\{0,k\},p}}\wedge\mathbf{EI_{\bm{\tau}}^{k,p}}{[\Omega,\mathcal{F},\exists M^{\prime},\exists\delta^{\prime}]}.

From the above discussion we already know that \mathcal{F} is bounded in Wk,p(Ω)W^{k,p}(\Omega). Applying the Rellich-Kondrachov theorem (see Adams, , Theorem 6.3 on page 168), we obtain that the embedding from W0k,p(Ω)W_{0}^{k,p}(\Omega) to Wk1,p(Ω)W^{k-1,p}(\Omega) is compact (When k=1k=1, the notation W0,pW^{0,p} is regarded as LpL^{p}). Hence ι\iota\mathcal{F} is precompact in Lp(Ω(k))L^{p}(\Omega^{(k)}). Then applying Corollary 4, the statement 𝐄𝐈𝝉𝐤,𝐩[Ω,,M,δ]\mathbf{EI_{\bm{\tau}}^{k,p}}{[\Omega,\mathcal{F},\exists M^{\prime},\exists\delta^{\prime}]} is satisfied.

Thus the proof is completed.

Proof: [Proof of Corollary 6.] We need to fine-tune the definition of the isometric operator ι\iota so that it ”translates” from the Sobolev space to the space of continuously differentiable functions. Denote

K(m):=|α|mK=|α|mKα,K^{(m)}:=\bigsqcup_{\lvert\alpha\rvert\leq m}K=\bigcup_{\lvert\alpha\rvert\leq m}K_{\alpha},

where Kα:=Iα(K)K_{\alpha}:=I_{\alpha}(K) is a disjoint copy of KK given by the isometric mapping IαI_{\alpha}. Moreover, suppose K(m)K^{(m)} satisfies that for each fixed α\alpha there holds

diam(K):=max(x1,x2)K×Kd(x1,x2)<min(xα,xα̸)Kα×(K(m)Kα)d(xα,xα̸)<+,\mathrm{diam}(K):=\max_{(x_{1},x_{2})\in K\times K}d(x_{1},x_{2})<\min_{(x_{\alpha},x_{\not\alpha})\in K_{\alpha}\times(K^{(m)}\setminus K_{\alpha})}d(x_{\alpha},x_{\not\alpha})<+\infty,

i.e., the distance between two different “KαK_{\alpha}”s is greater than the diameter of KK but less than ++\infty, which is always easy to satisfy. By these assumptions, we have that K(m)K^{(m)} is a compact metric space. Then we denote

ι:Cm(K)C(K(m))uιu,\begin{split}\iota\colon\quad C^{m}(K)&\to C(K^{(m)})\\ u&\mapsto\iota u,\end{split}

where

ιu:K(m)y(|α|m(Dαu)Iα1)(y)i.e.y(Dαu)Iα1(y),if yKα.\begin{split}\iota u\colon\quad K^{(m)}&\to\mathbb{R}\\ y&\mapsto(\bigoplus_{\lvert\alpha\rvert\leq m}(D^{\alpha}u)\circ I_{\alpha}^{-1})(y)\\ i.e.\>y&\mapsto(D^{\alpha}u)\circ I_{\alpha}^{-1}(y),\>\text{if }y\in K_{\alpha}.\end{split}

It is easy to verify that ι\iota is well-defined. Let WW be the range of ι\iota, so WW is a closed subspace of C(K(m))C(K^{(m)}). The same arguments as in Lemma 10 remind us ι\iota is an isometry from Cm(K)C^{m}(K) to WW. We denote its inverse operator as ι1:WCm(K)\iota^{-1}\colon W\to C^{m}(K).

Proof of “𝐇𝐦𝐁𝐦𝐄𝐂𝐦[K,,M,δ]𝐇𝐦𝐂𝐦[K,]\mathbf{H^{m}}\wedge\mathbf{B^{m}}\wedge\mathbf{EC^{m}}[K,\mathcal{F},\exists M,\exists\delta]\Rightarrow\mathbf{H^{m}}\wedge\mathbf{C^{m}}[K,\mathcal{F}]”:

Suppose 𝐇𝐦𝐁𝐦𝐄𝐂𝐦[K,,M,δ]\mathbf{H^{m}}\wedge\mathbf{B^{m}}\wedge\mathbf{EC^{m}}[K,\mathcal{F},\exists M,\exists\delta]. Then

  • 1.

    For any ιfι\iota f\in\iota\mathcal{F}, its norm satisfies

    ιfC(K(m))=max|α|mDαfC(K)=fCm(K)M.\lVert\iota f\rVert_{C(K^{(m)})}=\max_{\lvert\alpha\rvert\leq m}\lVert D^{\alpha}f\rVert_{C(K)}=\lVert f\rVert_{C^{m}(K)}\leq M.
  • 2.

    Take δ(m):εmin|α|k{δ(ε),diam(K)}\delta^{(m)}\colon\varepsilon\mapsto\min_{\lvert\alpha\rvert\leq k}\{\delta(\varepsilon),\mathrm{diam}(K)\}. For any ιfι\iota f\in\iota\mathcal{F}, ε>0\forall\varepsilon\in\mathbb{R}_{>0} and y1,y2K(m)\forall y_{1},y_{2}\in K^{(m)} with d(y1,y2)<δ(m)(ε)d(y_{1},y_{2})<\delta^{(m)}(\varepsilon), since y1y_{1} and y2y_{2} must come from a same “KαK_{\alpha}” (without loss of generality, we name it KαK_{\alpha^{\prime}}), thus we have

    |ιf(y1)ιf(y2)|max|α|m|(Dαf)(Iα1(y1))(Dαf)(Iα1(y2))|<ε.\lvert\iota f(y_{1})-\iota f(y_{2})\rvert\leq\max_{\lvert\alpha\rvert\leq m}\lvert(D^{\alpha}f)\bigl{(}I_{\alpha^{\prime}}^{-1}(y_{1})\bigr{)}-(D^{\alpha}f)\bigl{(}I_{\alpha^{\prime}}^{-1}(y_{2})\bigr{)}\rvert<\varepsilon.

Using the Ascoli-Arzelà theorem (see Brezis, , Theorem 4.25 on page 111), we obtain that “ι\iota\mathcal{F} is precompact in C(K(m))C(K^{(m)})”, which is equivalent to that “\mathcal{F} is precompact in Cm(K)C^{m}(K)”.

Proof of “𝐇𝐦𝐂𝐦[K,]𝐇𝐦𝐁𝐦𝐄𝐂𝐦[K,,M,δ]\mathbf{H^{m}}\wedge\mathbf{C^{m}}[K,\mathcal{F}]\Rightarrow\mathbf{H^{m}}\wedge\mathbf{B^{m}}\wedge\mathbf{EC^{m}}[K,\mathcal{F},\exists M,\exists\delta]”:

Suppose that we are given 𝐇𝐦𝐂𝐦[K,]\mathbf{H^{m}}\wedge\mathbf{C^{m}}[K,\mathcal{F}]. By the definition of ι\iota, we have that ι\iota\mathcal{F} is precompact in C(K(m))C(K^{(m)}). Using the Ascoli-Arzelà theorem again, we obtain that

  • 1.

    There exists a positive constant MM such that for any ιfι\iota f\in\iota\mathcal{F}, its norm satisfies ιfC(K(m))M\lVert\iota f\rVert_{C(K^{(m)})}\leq M. Thus we have

    fCm(K)=max|α|mDαfC(K)=ιfC(K(m))M,\lVert f\rVert_{C^{m}(K)}=\max_{\lvert\alpha\rvert\leq m}\lVert D^{\alpha}f\rVert_{C(K)}=\lVert\iota f\rVert_{C(K^{(m)})}\leq M,

    which implies 𝐁𝐦[K,,M]\mathbf{B^{m}}[K,\mathcal{F},\exists M].

  • 2.

    There exists a function δ:>0>0\delta\colon\mathbb{R}_{>0}\to\mathbb{R}_{>0} such that for any ιfι\iota f\in\iota\mathcal{F}, ε>0\forall\varepsilon\in\mathbb{R}_{>0} and x1,x2K\forall x_{1},\>x_{2}\in K with d(x1,x2)<δ(ε)d(x_{1},x_{2})<\delta(\varepsilon) (note that d(Iα(x1),Iα(x2))=d(x1,x2)<δ(ε)d\bigl{(}I_{\alpha}(x_{1}),I_{\alpha}(x_{2})\bigr{)}=d(x_{1},x_{2})<\delta(\varepsilon)), there holds |ιfIα(x1)ιfIα(x2)|<ε\lvert\iota f\circ I_{\alpha}(x_{1})-\iota f\circ I_{\alpha}(x_{2})\rvert<\varepsilon for every α\alpha. Then we have

    max|α|m|(Dαf)(x1)(Dαf)(x2)|=max|α|m|ιfIα(x1)ιfIα(x2)|<ε.\max_{\lvert\alpha\rvert\leq m}\lvert(D^{\alpha}f)(x_{1})-(D^{\alpha}f)(x_{2})\rvert=\max_{\lvert\alpha\rvert\leq m}\lvert\iota f\circ I_{\alpha}(x_{1})-\iota f\circ I_{\alpha}(x_{2})\rvert<\varepsilon.

    Thus we get 𝐄𝐂𝐦[K,,δ]\mathbf{EC^{m}}[K,\mathcal{F},\exists\delta].

The proof is completed.

Proof: [Proof of Corollary 7.] We only need to show

𝐇𝐦𝐁𝐦𝐄𝐂|α|=𝐦[K,,M,δ]𝐇𝐦𝐁𝐦𝐄𝐂𝐦[K,,M,δ]\mathbf{H^{m}}\wedge\mathbf{B^{m}}\wedge\mathbf{EC^{\lvert\alpha\rvert=m}}{[K,\mathcal{F},\exists M,\exists\delta]}\Rightarrow\mathbf{H^{m}}\wedge\mathbf{B^{m}}\wedge\mathbf{EC^{m}}[K,\mathcal{F},\exists M,\exists\delta^{\prime}].

Note that the embedding from C1(K)C^{1}(K) to C(K)C(K) is compact. It follows that the embedding from Cm(K)C^{m}(K) to Cm1(K)C^{m-1}(K) is compact. Hence ι\iota\mathcal{F} is precompact in C(K(m))C(K^{(m)}). Then applying Corollary 6, the statement 𝐄𝐂𝐦[K,,M,δ]\mathbf{EC^{m}}[K,\mathcal{F},\exists M,\exists\delta^{\prime}] is satisfied.

The proof is completed.

Appendix B Syntactic Category

To describe and prove Theorem 2 more clearly, we introduce a few notations from category theory, but we will not be using some overly abstract concepts. Inspired by the syntactic category (see John, , page 10), we simplify sentences into symbols and make the following definition, which is different from the original meaning.

Definition 4.

Let SS be a set of sentences in some propositional language. For simplicity in this paper, we encourage the reader to think of SS as “a collection of mathematical statements with some axioms”. We define the synatic category determined by SS as the category (S)\mathfrak{C}(S) with the following data:

Objects:

The sentences in SS and those formed by connecting some elements in SS with the connectives \wedge any number of times. In particular, in this paper, all sentences represented by abbreviations are elements of SS. For example, 𝐁𝟏[Ω,,M]\mathbf{B^{1}}{[\Omega,\mathcal{F},\exists M]}, 𝐄𝐈𝟏[Ω,,δ]\mathbf{EI^{1}}{[\Omega,\mathcal{F},\exists\delta]}, 𝐄𝟏[Ω,,ω]\mathbf{E_{\infty}^{1}}{[\Omega,\mathcal{F},\exists\omega]} and 𝐁𝟏𝐄𝐈𝟏𝐄𝟏[Ω,,M,δ,ω]\mathbf{B^{1}}\wedge\mathbf{EI^{1}}\wedge\mathbf{E_{\infty}^{1}}{[\Omega,\mathcal{F},\exists M,\exists\delta,\exists\omega]} (in Theorem 1) are all in SS.

Morphisms:

For objects pp and qq, the morphism p𝑃qp\overset{P}{\Rightarrow}q coincides with a proof PP from pp to qq. For example, the Bolzano-Weierstrass (BW) theorem gives a morphism “BW\overset{\text{BW}}{\Rightarrow}” from the sentence “Set A is bounded and closed in \text{Set }A\text{ is bounded and closed in }\mathbb{R}” to the sentence “A is a compact setA\text{ is a compact set}”.

We assume that each sentence can be proved from itself without any reason, that is, ppp\overset{\varnothing}{\Rightarrow}p for every pp. Since we only focus on the existence of proofs, we will omit the information about what the proof is actually on the arrows, that is, we treat different proofs e.g. p𝑃qp\overset{P}{\Rightarrow}q and p𝑄qp\overset{Q}{\Rightarrow}q as a same morphism pqp\Rightarrow q hereafter. In other words, hom(p,q)\hom(p,q) contains at most one element for every pp and qq. It also means that (S)\mathfrak{C}(S) is a thin category.

Composites:

given two morphisms pqp\Rightarrow q and qrq\Rightarrow r, the composite prp\Rightarrow r is naturally the proof obtained by concatenating the two proofs.

Note that unlike the original definition (see John, , page 10), we do not require that the sentences of the proofs must be in SS, that is, we can use any mathematical theorem in a self-consistent axiom system as a morphism. Therefore, what elements the set SS contains does not affect whether there exists a morphism between two objects in SS. The following categorical data may be interpreted in \mathfrak{C} as follows:

Isomorphisms:

an isomorphism is a morphism ppp\Rightarrow p^{\prime} such that there exists a morphism ppp^{\prime}\Rightarrow p as the inverse. We denote isomorphisms by ppp\Leftrightarrow p^{\prime}.

General products:

(see Abramsky, , page 22) for a family of objects {pα}αΛ\{p_{\alpha}\}_{\alpha\in\Lambda}, a product is an object αΛpα\bigwedge_{\alpha\in\Lambda}p_{\alpha} with canonical proofs of conjuncts from conjunctions as projection morphisms αΛpαpα\bigwedge_{\alpha\in\Lambda}p_{\alpha}\Rightarrow p_{\alpha} for each pαp_{\alpha}. Products exist in (S)\mathfrak{C}(S) universally.

Uniqueness up to unique isomorphism:

(see Abramsky, , page 23) suppose that pp and pp^{\prime} are both general products of objects {pα}αΛ\{p_{\alpha}\}_{\alpha\in\Lambda}, then pp and pp^{\prime} are isomorphic, i.e., ppp\Leftrightarrow p^{\prime}.

Remark 4.

Dually, one may define coproducts using the connectives \vee (i.e. or).

Remark 5.

When we add a new sentence γ\gamma into SS such that the category (S)\mathfrak{C}(S) expands to (S{γ})\mathfrak{C}(S\cup\{\gamma\}), one may observe that (S)\mathfrak{C}(S) is a full subcategory of (S{γ})\mathfrak{C}(S\cup\{\gamma\}), therefore morphisms in (S)\mathfrak{C}(S) are inherited into (S{γ})\mathfrak{C}(S\cup\{\gamma\}). We can always make SS contain enough sentences, so we do not strictly define what SS contains hereafter.

Appendix C Notations and Abbreviations

The following notations and abbreviations are used in this manuscript:

λ\lambda The Lebesgue measure in real Euclidean spaces
\wedge And
\Leftrightarrow Is equivalent to
\Rightarrow Deduces
α\alpha The multi-index (see Notation 1)
|α|\lvert\alpha\rvert The length of multi-index α\alpha
DαfD^{\alpha}f The weak generalized partial derivative of ff
Ωα\Omega_{\alpha} A copy of Ω\Omega with respect to α\alpha (see Definition 2)
IαI_{\alpha} An isometry from Ω\Omega to Ωα\Omega_{\alpha}
λα\lambda_{\alpha} The Lebesgue measure in Ωα\Omega_{\alpha}
Ω(k)\Omega^{(k)} The disjoint union of all the Ωα\Omega_{\alpha} with |α|k\lvert\alpha\rvert\leq k
μ\mu The measure in Ω(k)\Omega^{(k)}
ι\iota A special isometry (see Definition 3)

𝐇\mathbf{H} Sentences for hypotheses
𝐇𝝈𝟏[Ω,]\mathbf{H_{\bm{\sigma}}^{1}}{[\Omega,\mathcal{F}]} Ω\Omega is a σ\sigma-finite measure space, and \mathcal{F} is a subset of L1(Ω)L^{1}(\Omega).
𝐇𝐧.𝐨.𝐤,𝟏[Ω,]\mathbf{H^{k,1}_{n.o.}}{[\Omega,\mathcal{F}]} Ω\Omega is a non-empty open set in d\mathbb{R}^{d}, and \mathcal{F} is a subset of Wk,1(Ω)W^{k,1}(\Omega).
𝐇𝐛.𝐨.𝐜𝐨𝐧𝐞𝐤,𝟏[Ω,]\mathbf{H^{k,1}_{b.o.cone}}{[\Omega,\mathcal{F}]} Ω\Omega is a bounded open set in d\mathbb{R}^{d}, and Ω\Omega satisfies the cone condition. \mathcal{F} is a subset of Wk,1(Ω)W^{k,1}(\Omega).
𝐇𝐤,𝐩[d,]\mathbf{H^{k,p}}{[\mathbb{R}^{d},\mathcal{F}]} \mathcal{F} is a subset of Wk,p(d)W^{k,p}(\mathbb{R}^{d}) with 1p<+1\leq p<+\infty.
𝐇𝐦[K,]\mathbf{H^{m}}{[K,\mathcal{F}]} KK is a compact metric space which satisfies the uniform CmC^{m} regularity condition, and \mathcal{F} is a subset of Cm(K)C^{m}(K).
𝐁\mathbf{B} Statement related to boundedness
𝐁𝟏[Ω,,M]\mathbf{B^{1}}{[\Omega,\mathcal{F},\exists M]} There exists M>0M\in\mathbb{R}_{>0} such that fL1(Ω)M\lVert f\rVert_{L^{1}(\Omega)}\leq M for every ff\in\mathcal{F}.
𝐁𝐤,𝐩[Ω,,M]\mathbf{B^{k,p}}{[\Omega,\mathcal{F},\exists M]} There exists M>0M\in\mathbb{R}_{>0} such that fWk,p(Ω)M\lVert f\rVert_{W^{k,p}(\Omega)}\leq M for every ff\in\mathcal{F}.
𝐁|α|{𝟎,𝐤},𝐩\mathbf{B^{\lvert\alpha\rvert\in\{0,k\},p}} [Ω,,M]{[\Omega,\mathcal{F},\exists M]} There exists a constant M>0M\in\mathbb{R}_{>0} such that fLp(Ω)+|α|=kDαfLp(Ω)M\lVert f\rVert_{L^{p}(\Omega)}+\sum_{\lvert\alpha\rvert=k}\lVert D^{\alpha}f\rVert_{L^{p}(\Omega)}\leq M for every ff\in\mathcal{F}.
𝐁𝐦[K,,M]\mathbf{B^{m}}{[K,\mathcal{F},\exists M]} There exists a constant M>0M\in\mathbb{R}_{>0} such that max|α|mDαfC(K)M\max_{\lvert\alpha\rvert\leq m}\lVert D^{\alpha}f\rVert_{C(K)}\leq M for every ff\in\mathcal{F}.

𝐄𝐂\mathbf{EC} Statement related to equi-continuity.
𝐄𝐂𝐦[K,,δ]\mathbf{EC^{m}}{[K,\mathcal{F},\exists\delta]} There exists a function δ:>0>0\delta\colon\mathbb{R}_{>0}\to\mathbb{R}_{>0} such that max|α|m|(Dαf)(x1)(Dαf)(x2)|<ε\max_{\lvert\alpha\rvert\leq m}\lvert(D^{\alpha}f)(x_{1})-(D^{\alpha}f)(x_{2})\rvert<\varepsilon for every ff\in\mathcal{F}, for any ε>0\varepsilon\in\mathbb{R}_{>0}, and for all x1x_{1} and x2x_{2} in KK with the distance between them d(x1,x2)<δ(ε)d(x_{1},x_{2})<\delta(\varepsilon).
𝐄𝐂|α|=𝐦[K,,δ]\mathbf{EC^{\lvert\alpha\rvert=m}}{[K,\mathcal{F},\exists\delta]} There exists a function δ:>0>0\delta\colon\mathbb{R}_{>0}\to\mathbb{R}_{>0} such that max|α|=m|(Dαf)(x1)(Dαf)(x2)|<ε\max_{\lvert\alpha\rvert=m}\lvert(D^{\alpha}f)(x_{1})-(D^{\alpha}f)(x_{2})\rvert<\varepsilon for every ff\in\mathcal{F}, for any ε>0\varepsilon\in\mathbb{R}_{>0}, and for all x1x_{1} and x2x_{2} in KK with the distance between them d(x1,x2)<δ(ε)d(x_{1},x_{2})<\delta(\varepsilon).
𝐄𝐈\mathbf{EI} Statement related to equi-integrability.
𝐄𝐈𝟏[Ω,,δ]\mathbf{EI^{1}}{[\Omega,\mathcal{F},\exists\delta]}. There exists a function δ:>0>0\delta\colon\mathbb{R}_{>0}\to\mathbb{R}_{>0} such that A|f|dλ<ε\int_{A}\lvert f\rvert\mathrm{d}\lambda<\varepsilon for every ff\in\mathcal{F}, for any ε>0\varepsilon\in\mathbb{R}_{>0}, and for all measurable set AΩA\subseteq\Omega with its measure λ(A)<δ(ε)\lambda(A)<\delta(\varepsilon).
𝐄𝐈𝐤,𝟏[Ω,,δ]\mathbf{EI^{k,1}}{[\Omega,\mathcal{F},\exists\delta]} There exists a function δ:>0>0\delta\colon\mathbb{R}_{>0}\to\mathbb{R}_{>0} such that |α|kA|Dαf|dλ<ε\sum_{\lvert\alpha\rvert\leq k}\int_{A}\lvert D^{\alpha}f\rvert\mathrm{d}\lambda<\varepsilon for every ff\in\mathcal{F}, for any ε>0\varepsilon\in\mathbb{R}_{>0}, and for all AA which is measurable in Ω\Omega with its measure λ(A)<δ(ε)\lambda(A)<\delta(\varepsilon).
𝐄𝐈|α|=𝐤,𝟏[Ω,,δ]\mathbf{EI^{\lvert\alpha\rvert=k,1}}{[\Omega,\mathcal{F},\exists\delta]} There exists a function δ:>0>0\delta\colon\mathbb{R}_{>0}\to\mathbb{R}_{>0} such that |α|=kA|Dαf|dλ<ε\sum_{\lvert\alpha\rvert=k}\int_{A}\lvert D^{\alpha}f\rvert\mathrm{d}\lambda<\varepsilon for every ff\in\mathcal{F}, for any ε>0\varepsilon\in\mathbb{R}_{>0}, and for all AA which is measurable in Ω\Omega with its measure λ(A)<δ(ε)\lambda(A)<\delta(\varepsilon).
𝐄𝐈𝝉𝐤,𝐩[d,,δ]\mathbf{EI_{\bm{\tau}}^{k,p}}{[\mathbb{R}^{d},\mathcal{F},\exists\delta]} There exists a function δ:>0>0\delta\colon\mathbb{R}_{>0}\to\mathbb{R}_{>0} such that τhffWk,p(d)<ε\lVert\tau_{h}f-f\rVert_{W^{k,p}(\mathbb{R}^{d})}<\varepsilon for every ff\in\mathcal{F}, for any ε>0\varepsilon\in\mathbb{R}_{>0}, and for all hdh\in\mathbb{R}^{d} with its norm hd<δ(ε)\lVert h\rVert_{\mathbb{R}^{d}}<\delta(\varepsilon).
𝐄𝐈𝝉|α|=𝐤,𝐩[Ω,,δ]\mathbf{EI_{\bm{\tau}}^{\lvert\alpha\rvert=k,p}}{[\Omega,\mathcal{F},\exists\delta]} There exists a function δ:>0>0\delta\colon\mathbb{R}_{>0}\to\mathbb{R}_{>0} such that |α|=kτh(Dαf)DαfLp(d)<ε\sum_{\lvert\alpha\rvert=k}\lVert\tau_{h}(D^{\alpha}f)-D^{\alpha}f\rVert_{L^{p}(\mathbb{R}^{d})}<\varepsilon for every ff\in\mathcal{F}, for any ε>0\varepsilon\in\mathbb{R}_{>0}, and for all hdh\in\mathbb{R}^{d} with its norm hd<δ(ε)\lVert h\rVert_{\mathbb{R}^{d}}<\delta(\varepsilon). Here, the functions DαfD^{\alpha}f are extended to be 0 outside Ω\Omega.
𝐄\mathbf{E_{\infty}} Sentences for some equi-properties at infinity
𝐄𝐤,𝐩[Ω,,ω]\mathbf{E_{\infty}^{k,p}}{[\Omega,\mathcal{F},\exists\omega]} There exists a set-valued mapping ω:>02d\omega\colon\mathbb{R}_{>0}\to 2^{\mathbb{R}^{d}} such that ω(ε)\omega(\varepsilon) is measurable with its measure λω(ε)\lambda\circ\omega(\varepsilon) being finite, and there satisfies that (|α|kdω(ε)|Dαf|pdλ)1p<ε(\sum_{\lvert\alpha\rvert\leq k}\int_{\mathbb{R}^{d}\setminus\omega(\varepsilon)}\lvert D^{\alpha}f\rvert^{p}\mathrm{d}\lambda)^{\frac{1}{p}}<\varepsilon for every ff\in\mathcal{F} and any ε>0\varepsilon\in\mathbb{R}_{>0}.
𝐄𝐤,𝐩[Ω,,ω]\mathbf{E_{\infty}^{k,p}}{[\Omega,\mathcal{F},\exists\omega]} There exists a set-valued mapping ω:>02Ω\omega\colon\mathbb{R}_{>0}\to 2^{\Omega} such that ω(ε)\omega(\varepsilon) is measurable with its measure λω(ε)\lambda\circ\omega(\varepsilon) being finite, and there satisfies that (|α|kΩω(ε)|Dαf|pdλ)1p<ε(\sum_{\lvert\alpha\rvert\leq k}\int_{\Omega\setminus\omega(\varepsilon)}\lvert D^{\alpha}f\rvert^{p}\mathrm{d}\lambda)^{\frac{1}{p}}<\varepsilon for every ff\in\mathcal{F} and any ε>0\varepsilon\in\mathbb{R}_{>0}.

𝐂\mathbf{C} Statement related to compactness
𝐂𝐰𝟏[Ω,]\mathbf{C_{w}^{1}}{[\Omega,\mathcal{F}]} \mathcal{F} is relatively weakly compact in L1(Ω)L^{1}(\Omega).
𝐂𝐰𝐤,𝟏[Ω,]\mathbf{C_{w}^{k,1}}{[\Omega,\mathcal{F}]} \mathcal{F} is relatively weakly compact in Wk,1(Ω)W^{k,1}(\Omega).
𝐂𝐤,𝐩[d,]\mathbf{C^{k,p}}{[\mathbb{R}^{d},\mathcal{F}]} \mathcal{F} is precompact in Wk,p(d)W^{k,p}(\mathbb{R}^{d}).
𝐂𝐦[K,]\mathbf{C^{m}}{[K,\mathcal{F}]} \mathcal{F} is precompact in Cm(K)C^{m}(K).
Notation 1 (multi-indices α\alpha).

(Adams, , 3.5 on page 61) Given integers d1d\geq 1 and k0k\geq 0, let

α:=(α1,α2,,αd)d\alpha:=(\alpha_{1},\alpha_{2},\ldots,\alpha_{d})\in\mathbb{N}^{d}

be a multi-index such that

|α|:=i=1dαik.\lvert\alpha\rvert:=\sum_{i=1}^{d}\alpha_{i}\leq k.

For any fWk,p(Ω)f\in W^{k,p}(\Omega) where Ωd\Omega\subset\mathbb{R}^{d}, we write

Dαf=α1x1α1α2x2α2αdxdαdfD^{\alpha}f=\frac{\partial^{\alpha_{1}}}{\partial x_{1}^{\alpha_{1}}}\frac{\partial^{\alpha_{2}}}{\partial x_{2}^{\alpha_{2}}}\cdots\frac{\partial^{\alpha_{d}}}{\partial x_{d}^{\alpha_{d}}}f

to denote the weak generalized partial derivative of ff with respect to α\alpha.

References

  • \bibcommenthead
  • (1) Zhang, S.: Functional Analysis with Applications(in Chinese). Science Press, Beijing (2018)
  • (2) Brezis, H.: Functional Analysis, Sobolev Spaces and Partial Differential Equations. Springer, New York (2011)
  • (3) Courant, R.: Dirichlet’s Principle, Conformal Mapping, and Minimal Surfaces. Springer, New York-Heidelberg (1977)
  • (4) Courant, R., Hilbert, D.: Methods of Mathematical Physics: Partial Differential Equations. John Wiley & Sons, New York-Chichester-Brisbane-Toronto-Singapore (1989)
  • (5) Dacorogna, B.: Direct Methods in the Calculus of Variations. Springer, New York (2008)
  • (6) Hilbert, D.: Über das Dirichletsche Prinzip. Math. Ann. 59, 161–186 (1904). https://doi.org/10.1007/BF01444753
  • (7) Evans, L.C.: Partial Differential Equations. American Mathematical Society, Providence, RI (2010)
  • (8) Adams, R.A., Fournier, J.J.F.: Sobolev Spaces. Elsevier/Academic Press, Amsterdam (2003)
  • (9) Meyers, N.G., Serrin, J.: H=W{H}={W}. Proc. Nat. Acad. Sci. U.S.A. 51, 1055–1056 (1964). https://doi.org/10.1073/pnas.51.6.1055
  • (10) Yosida, K.: Functional Analysis. Springer, Berlin (1995)
  • (11) James, R.C.: Characterizations of Reflexivity. Studia Mathematica 23, 205–216 (1964)
  • (12) Tang, Y., Zhang, S., Guo, T.: Some Nonlinear Characterizations of Reflexive Banach Spaces. Journal of Mathematical Analysis and Applications 519, 126736 (2023). https://doi.org/10.1016/j.jmaa.2022.126736
  • (13) Courant, R.: Plateau’s Problem and Dirichlet’s Principle. Ann. of Math. (2) 38, 679–724 (1937). https://doi.org/10.2307/1968610
  • (14) Dunford, N., Pettis, B.J.: Linear Operations on Summable Functions. Trans. Amer. Math. Soc. 47, 323–392 (1940). https://doi.org/10.2307/1989960
  • (15) Fathi, A.: Weak KAM Theorem in Lagrangian Dynamics Preliminary Version Number 10. by CUP (2008). Available at https://www.math.u-bordeaux.fr/~pthieull/Recherche/KamFaible/Publications/Fathi2008_01.pdf
  • (16) Landau, E.: Einige Ungleichungen Fur Zweimal Differentiierbare Funktionen. Proceedings of the London Mathematical Society. Second Series 13, 43–49 (1914). https://doi.org/10.1112/plms/s2-13.1.43
  • (17) Riehl, E.: Category Theory in Context. Dover Publications, New York (2017)
  • (18) Bell, J.L.: The Development of Categorical Logic. In: Gabbay, D.M., Guenthner, F. (eds.) Handbook of Philosophical Logic, vol. 12, pp. 279–360. Springer, New York (2005)
  • (19) Abramsky, S., Tzevelekos, N.: Introduction to Categories and Categorical Logic. In: Coecke, B. (ed.) New Structures for Physics, pp. 3–94. Springer, Heidelberg (2011)