This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

\ytableausetup

mathmode, boxsize=1.2em

Weak Bruhat interval modules of the 0-Hecke algebra

Woo-Seok Jung Department of Mathematics, Sogang University, Seoul 04107, Republic of Korea [email protected] Young-Hun Kim Department of Mathematics, Sogang University, Seoul 04107, Republic of Korea & Research Institute for Basic Science, Sogang University, Seoul 04107, Republic of Korea & Department of Mathematics, Ewha Womans University, Seoul 03760, Republic of Korea [email protected] So-Yeon Lee Department of Mathematics, Sogang University, Seoul 04107, Republic of Korea [email protected]  and  Young-Tak Oh Department of Mathematics, Sogang University, Seoul 04107, Republic of Korea [email protected]
Abstract.

The purpose of this paper is to provide a unified method for dealing with various 0-Hecke modules constructed using tableaux so far. To do this, we assign a 0-Hecke module to each left weak Bruhat interval, called a weak Bruhat interval module. We prove that every indecomposable summand of the 0-Hecke modules categorifying dual immaculate quasisymmetric functions, extended Schur functions, quasisymmetric Schur functions, and Young row-strict quasisymmetric Schur functions is a weak Bruhat interval module. We further study embedding into the regular representation, induction product, restriction, and (anti-)involution twists of weak Bruhat interval modules.

Key words and phrases:
0-Hecke algebra, representation, weak Bruhat order, quasisymmetric characteristic
2020 Mathematics Subject Classification:
20C08, 05E10, 05E05
All authors were supported by the National Research Foundation of Korea (NRF) grant funded by the Korean Government (NRF-2020R1F1A1A01071055). The second author was also supported by NRF grant funded by the Korean Government (NRF-2019R1A2C4069647).

1. Introduction

The 0-Hecke algebra Hn(0)H_{n}(0) is a degenerate Hecke algebra obtained from the generic Hecke algebra Hn(q)H_{n}(q) by specializing qq to 0. The representation theory of Hn(0)H_{n}(0) is very complicated, as can be inferred from the fact that it is not representation-finite for n>3n>3 (see [7, 8]). Nevertheless, it has attracted the attention of many mathematicians because of its close connection with quasi-symmetric functions. This link was discovered by Duchamp, Krob, Leclerc, and Thibon [9], who constructed an isomorphism called the quasisymmetric characteristic between the Grothendieck ring associated to 0-Hecke algebras and the ring QSym\mathrm{QSym} of quasisymmetric functions. In particular, since the mid-2010s, there have been many attempts to construct Hn(0)H_{n}(0)-modules categorifying important quasisymmetric functions using tableau models, rather than simply adding irreducible modules (for instance, see [1, 2, 21, 24, 26]).

The purpose of the present paper is to provide a method to treat these modules in a uniform manner. We start with the observation that every indecomposable direct summand of these modules has a basis isomorphic to a left weak Bruhat interval of 𝔖n\mathfrak{S}_{n} when it is equipped with the partial order \preceq defined by

TTif πσT=T for some σ𝔖n.\displaystyle T\preceq T^{\prime}\quad\text{if $\pi_{\sigma}\cdot T=T^{\prime}$ for some $\sigma\in\mathfrak{S}_{n}$}.

This leads us to consider the Hn(0)H_{n}(0)-module 𝖡(σ,ρ)\mathsf{B}(\sigma,\rho) for each weak Bruhat interval [σ,ρ]L[\sigma,\rho]_{L}, called the weak Bruhat interval module associated to [σ,ρ]L[\sigma,\rho]_{L}, whose underlying space is the \mathbb{C}-span of [σ,ρ]L[\sigma,\rho]_{L} and whose action is given by

πiγ:={γif iDesL(γ),0if iDesL(γ) and siγ[σ,ρ]L,siγif iDesL(γ) and siγ[σ,ρ]L.\pi_{i}\cdot\gamma:=\begin{cases}\gamma&\text{if $i\in\mathrm{Des}_{L}(\gamma)$},\\ 0&\text{if $i\notin\mathrm{Des}_{L}(\gamma)$ and $s_{i}\gamma\notin[\sigma,\rho]_{L}$,}\\ s_{i}\gamma&\text{if $i\notin\mathrm{Des}_{L}(\gamma)$ and $s_{i}\gamma\in[\sigma,\rho]_{L}$.}\end{cases}

In a similar point of view, we also consider the Hn(0)H_{n}(0)-module 𝖡¯(σ,ρ)\overline{\mathsf{B}}(\sigma,\rho) for each weak Bruhat interval [σ,ρ]L[\sigma,\rho]_{L}, called the negative weak Bruhat interval module associated to [σ,ρ]L[\sigma,\rho]_{L}, whose underlying space is the \mathbb{C}-span of [σ,ρ]L[\sigma,\rho]_{L} and whose action is given by

π¯iγ:={γif iDesL(γ),0if iDesL(γ) and siγ[σ,ρ]L,siγif iDesL(γ) and siγ[σ,ρ]L.\overline{\pi}_{i}\star\gamma:=\begin{cases}-\gamma&\text{if $i\in\mathrm{Des}_{L}(\gamma)$},\\ 0&\text{if $i\notin\mathrm{Des}_{L}(\gamma)$ and $s_{i}\gamma\notin[\sigma,\rho]_{L}$,}\\ s_{i}\gamma&\text{if $i\notin\mathrm{Des}_{L}(\gamma)$ and $s_{i}\gamma\in[\sigma,\rho]_{L}$.}\end{cases}

Here π¯i=πi1\overline{\pi}_{i}=\pi_{i}-1. It should be pointed out that Hivert, Novelli, and Thibon [13] introduced semi-combinatorial Hn(0)H_{n}(0)-modules associated to Yang-Baxter intervals [Yσ(τ),Yρ(τ)][Y_{\sigma}(\tau),Y_{\rho}(\tau)] to study the representation theory of 0-Ariki-Koike-Shoji algebras, and our 𝖡(σ,ρ)\mathsf{B}(\sigma,\rho) and 𝖡¯(σ,ρ)\overline{\mathsf{B}}(\sigma,\rho) can also be recovered by the τ=id\tau=\mathrm{id} and τ=w0\tau=w_{0} specialization of these modules, respectively. Here, w0w_{0} is the longest element of 𝔖n\mathfrak{S}_{n}.

The family of weak and negative weak Bruhat interval modules is very adequate to our purpose in that it contains many Hn(0)H_{n}(0)-modules of our interest such as projective indecomposable modules, irreducible modules, the specializations q=0q=0 of the Specht modules of Hn(q)H_{n}(q) in [8], and all indecomposable direct summands of the Hn(0)H_{n}(0)-modules in [1, 2, 21, 24, 26]. What is more appealing is that weak and negative weak Bruhat interval modules can be embedded into the regular representation of Hn(0)H_{n}(0) and they behave very nicely with respect to induction product, restriction, and (anti-)involution twists. Let n\mathscr{B}_{n} be the full subcategory of the category modHn(0)\mathrm{mod}\,H_{n}(0) of finite dimensional Hn(0)H_{n}(0)-modules whose objects are direct sums of weak and negative weak Bruhat interval modules up to isomorphism. From a categorical point of view, n\mathscr{B}_{n} is a good subcategory in the sense that

  • the Grothendieck group of n\mathscr{B}_{n} is isomorphic to the Grothendieck group of modHn(0)\mathrm{mod}\,H_{n}(0), and

  • the subcategory n0n\bigoplus_{n\geq 0}\mathscr{B}_{n} of n0modHn(0)\bigoplus_{n\geq 0}\mathrm{mod}\,H_{n}(0) is closed under induction product, restriction, and (anti-)involution twists.

In Section 3, we study structural properties of weak Bruhat interval modules. In the first two subsections, we present background material for weak and negative weak Bruhat interval modules and then construct an Hn(0)H_{n}(0)-module isomorphism

𝖾𝗆:𝖡(σ,ρ)Hn(0)πσπ¯ρ1w0,γπγπ¯ρ1w0for γ[σ,ρ]L\mathsf{em}:\mathsf{B}(\sigma,\rho)\rightarrow H_{n}(0)\pi_{\sigma}\overline{\pi}_{\rho^{-1}w_{0}},\quad\gamma\mapsto\pi_{\gamma}\overline{\pi}_{\rho^{-1}w_{0}}\quad\text{for $\gamma\in[\sigma,\rho]_{L}$}

(Theorem 3.5). As an immediate consequence of this isomorphism, we see that projective indecomposable modules and irreducible modules appear as weak Bruhat interval modules up to isomorphism. By a slight modification of 𝖾𝗆\mathsf{em}, we also see that the specializations q=0q=0 of the Specht modules of Hn(q)H_{n}(q) are certain involution twists of weak Bruhat interval modules (Remark 3.7). Although not covered here, the isomorphism 𝖾𝗆\mathsf{em} and its modification reveal interesting connections between certain 𝒰0(glN)\mathcal{U}_{0}(gl_{N})-modules and weak Bruhat interval modules (Section 5 (3)).

In the third subsection, we study restriction of weak Bruhat interval modules. As for induction product \boxtimes of weak Bruhat interval modules, the following formula can be derived from [13]:

𝖡(σ,ρ)𝖡(σ,ρ)𝖡(σσ,ρ¯ρ)\displaystyle\mathsf{B}(\sigma,\rho)\boxtimes\mathsf{B}(\sigma^{\prime},\rho^{\prime})\cong\mathsf{B}(\sigma\;{\bullet}\;\sigma^{\prime},~{}\rho\;\overline{\bullet}\;\rho^{\prime}) (1.1)

(see Lemma 3.8). We provide an explicit formula concerning restriction of weak Bruhat interval modules. Let ([m+n]m)\left(\begin{array}[]{c}[m+n]\\ m\end{array}\right) be the set of mm-element subsets of [m+n][m+n]. Given σ,ρ𝔖m+n\sigma,\rho\in\mathfrak{S}_{m+n}, set

𝒮σ,ρ(m):={J([m+n]m)|J=γ1([1,m])for some γ[σ,ρ]L}.\displaystyle\mathscr{S}_{\sigma,\rho}^{(m)}:=\left\{J\in\left(\begin{array}[]{c}[m+n]\\ m\end{array}\right)\;\middle|\;J=\gamma^{-1}([1,m])~{}\text{for some $\gamma\in[\sigma,\rho]_{L}$}\right\}.

With this notation, our restriction rule appears in the following form:

𝖡(σ,ρ)Hm(0)Hn(0)Hm+n(0)J𝒮σ,ρ(m)𝖡((σJ)m,(ρJ)m)𝖡((σJ)>m,(ρJ)>m)\displaystyle\mathsf{B}(\sigma,\rho)\downarrow_{H_{m}(0)\otimes H_{n}(0)}^{H_{m+n}(0)}\hskip 4.30554pt\cong\bigoplus_{J\in\mathscr{S}_{\sigma,\rho}^{(m)}}\mathsf{B}((\sigma_{\scalebox{0.55}{$J$}})_{\leq m},(\rho^{\scalebox{0.55}{$J$}})_{\leq m})\otimes\mathsf{B}((\sigma_{\scalebox{0.55}{$J$}})_{>m},(\rho^{\scalebox{0.55}{$J$}})_{>m}) (1.2)

(Theorem 3.12). For undefined notations (σJ)m(\sigma_{\scalebox{0.55}{$J$}})_{\leq m}, (ρJ)m(\rho^{\scalebox{0.55}{$J$}})_{\leq m}, (σJ)>m(\sigma_{\scalebox{0.55}{$J$}})_{>m}, and (ρJ)>m(\rho^{\scalebox{0.55}{$J$}})_{>m}, see (3.11) and (3.13). The elements in 𝒮σ,ρ(m)\mathscr{S}_{\sigma,\rho}^{(m)} parametrize the direct summands appearing in the right hand side of (1.2). It would be nice to find an easy description of this set, but it is not available at the current stage. Combining (1.1) with (1.2) yields a Mackey formula for weak Bruhat interval modules. We prove that this is a natural lift of the Mackey formula due to Bergeron and Li [3], which works for elements of the Grothendieck ring of 0-Hecke algebras, to weak Bruhat interval modules (Theorem 3.14).

In the final subsection, we describe the (anti-)involution twists of weak Bruhat interval modules for the involutions ϕ,θ\upphi,\uptheta and the anti-involution χ\upchi due to Fayers [10] and then demonstrate the patterns how these (anti-)involution twists act with respect to induction product and restriction. Here, ϕ(πi)=πni\upphi(\pi_{i})=\pi_{n-i}, θ(πi)=π¯i\uptheta(\pi_{i})=-\overline{\pi}_{i}, and χ(πi)=πi\upchi(\pi_{i})=\pi_{i} for 1in11\leq i\leq n-1. Given an Hn(0)H_{n}(0)-module MM and an (anti-)automorphism μ\mu, we denote by μ[M]\mu[M] the μ\mu-twist of MM. The precise definition can be found in (3.18) and (3.19). We prove that

ϕ[𝖡(σ,ρ)]𝖡(σw0,ρw0),θ[𝖡(σ,ρ)]𝖡¯(σ,ρ),andχ[𝖡(σ,ρ)]𝖡¯(ρw0,σw0).\upphi[\mathsf{B}(\sigma,\rho)]\cong\mathsf{B}(\sigma^{w_{0}},\rho^{w_{0}}),\quad\uptheta[\mathsf{B}(\sigma,\rho)]\cong\overline{\mathsf{B}}(\sigma,\rho),\quad\text{and}\quad\upchi[\mathsf{B}(\sigma,\rho)]\cong\overline{\mathsf{B}}(\rho w_{0},\sigma w_{0}).

Here, σw0\sigma^{w_{0}} is the conjugation of σ\sigma by w0w_{0}. Using these isomorphisms, we can also describe the twists for the compositions of ϕ,θ\upphi,\uptheta, and χ\upchi. For the full list of (anti-)involution twists, see Table 3.1 and Table 3.2. Next, we explain the patterns how the (anti-)involution twists act with respect to induction product and restriction. Let MM, NN, and LL be weak Bruhat interval modules of Hm(0)H_{m}(0), Hn(0)H_{n}(0), and Hm+n(0)H_{m+n}(0) respectively. We see that

θ[MN]θ[M]θ[N],\displaystyle\uptheta[M\boxtimes N]\cong\uptheta[M]\boxtimes\uptheta[N],
whereasϕ[MN]ϕ[N]ϕ[M],χ[MN]χ[N]χ[M]\displaystyle\text{whereas}\quad\upphi[M\boxtimes N]\cong\upphi[N]\boxtimes\upphi[M],\quad\upchi[M\boxtimes N]\cong\upchi[N]\boxtimes\upchi[M]

and

θ[LHm(0)Hn(0)Hm+n(0)]θ[L]Hm(0)Hn(0)Hm+n(0),χ[LHm(0)Hn(0)Hm+n(0)]χ[L]Hm(0)Hn(0)Hm+n(0),\displaystyle\uptheta[L\downarrow^{H_{m+n}(0)}_{H_{m}(0)\otimes H_{n}(0)}]\cong\uptheta[L]\downarrow^{H_{m+n}(0)}_{H_{m}(0)\otimes H_{n}(0)},\quad\upchi[L\downarrow^{H_{m+n}(0)}_{H_{m}(0)\otimes H_{n}(0)}]\cong\upchi[L]\downarrow^{H_{m+n}(0)}_{H_{m}(0)\otimes H_{n}(0)},
whereasϕ[LHn(0)Hm(0)Hm+n(0)]ϕ[L]Hm(0)Hn(0)Hm+n(0)\displaystyle\text{whereas}\quad\upphi[L\downarrow^{H_{m+n}(0)}_{H_{n}(0)\otimes H_{m}(0)}]\cong\upphi[L]\downarrow^{H_{m+n}(0)}_{H_{m}(0)\otimes H_{n}(0)}

(Corollary 3.18).

Section 4 is devoted to show that every indecomposable direct summand arising from the Hn(0)H_{n}(0)-modules in [1, 2, 21, 24, 26] are weak Bruhat interval modules up to isomorphism. We begin with reviewing the results in these papers. Let α\alpha be a composition of nn.

  • Tewari and van Willigenburg [24] construct an Hn(0)H_{n}(0)-module 𝐒α\mathbf{S}_{\alpha} by defining a 0-Hecke action on the set of standard reverse composition tableaux of shape α\alpha. Its image under the quasisymmetric characteristic is the quasisymmetric Schur function attached to α\alpha.

  • Let 𝛔{\boldsymbol{\upsigma}} be a permutation in 𝔖(α)\mathfrak{S}_{\ell(\alpha)}, where (α)\ell(\alpha) is the length of α\alpha. Tewari and van Willigenburg [26] construct an Hn(0)H_{n}(0)-module 𝐒α𝛔\mathbf{S}_{\alpha}^{\boldsymbol{\upsigma}} by defining a 0-Hecke action on the set SPCT𝛔(α)\mathrm{SPCT}^{\boldsymbol{\upsigma}}(\alpha) of standard permuted composition tableaux of shape α\alpha and type 𝛔{\boldsymbol{\upsigma}}. When 𝛔=id{\boldsymbol{\upsigma}}={\rm id}, this module is equal to 𝐒α\mathbf{S}_{\alpha} in [24].

  • Berg et al. [2] construct an indecomposable Hn(0)H_{n}(0)-module 𝒱α\mathcal{V}_{\alpha} by defining a 0-Hecke action on the set SIT(α)\mathrm{SIT}(\alpha) of standard immaculate tableaux of shape α\alpha. Its image under the quasisymmetric characteristic is the dual immaculate quasisymmetric function attached to α\alpha.

  • Searles [21] constructs an indecomposable Hn(0)H_{n}(0)-module XαX_{\alpha} by defining a 0-Hecke action on the set SET(α)\mathrm{SET}(\alpha) of standard extended tableaux of shape α\alpha. Its image under the quasisymmetric characteristic is the extended Schur function attached to α\alpha.

  • Bardwell and Searles [1] construct an Hn(0)H_{n}(0)-module 𝐑α\mathbf{R}_{\alpha} by defining a 0-Hecke action on the set SYRT(α)\mathrm{SYRT}(\alpha) of standard Young row-strict tableaux of shape α\alpha. Its image under the quasisymmetric characteristic is the Young row-strict quasisymmetric Schur function attached to α\alpha.

The modules 𝒱α\mathcal{V}_{\alpha} and XαX_{\alpha} are indecomposable, whereas 𝐒α𝛔\mathbf{S}_{\alpha}^{\boldsymbol{\upsigma}}, and 𝐑α\mathbf{R}_{\alpha} are not indecomposable in general. The problem of decomposing 𝐒α𝛔\mathbf{S}_{\alpha}^{\boldsymbol{\upsigma}} into indecomposables have been completely settled out by virtue of the papers [5, 15, 24, 26]. Indeed, 𝐒α𝛔\mathbf{S}_{\alpha}^{\boldsymbol{\upsigma}} has the decomposition of the form

𝐒α𝛔=E𝛔(α)𝐒α,E𝛔,\displaystyle\mathbf{S}_{\alpha}^{\boldsymbol{\upsigma}}=\bigoplus_{E\in\mathcal{E}^{\boldsymbol{\upsigma}}(\alpha)}{\mathbf{S}}^{\boldsymbol{\upsigma}}_{\alpha,E},

where 𝛔(α)\mathcal{E}^{\boldsymbol{\upsigma}}(\alpha) represents the set of equivalence classes of SPCT𝛔(α)\mathrm{SPCT}^{\boldsymbol{\upsigma}}(\alpha) under a certain distinguished equivalence relation and 𝐒α,E𝛔{\mathbf{S}}^{\boldsymbol{\upsigma}}_{\alpha,E} is the indecomposable submodule of 𝐒α𝛔\mathbf{S}_{\alpha}^{\boldsymbol{\upsigma}} spanned by EE.

To achieve our purpose, we first show that all of SIT(α)\mathrm{SIT}(\alpha), SET(α)\mathrm{SET}(\alpha), and E(𝛔(α))E(\in\mathcal{E}^{\boldsymbol{\upsigma}}(\alpha)) have the source and sink, which are written as follows:

SIT(α)\mathrm{SIT}(\alpha) SET(α)\mathrm{SET}(\alpha) EE
source 𝒯α\mathscr{T}_{\alpha} 𝖳α\mathsf{T}_{\alpha} τE\tau_{E}
sink 𝒯α\mathscr{T}^{\prime}_{\alpha} 𝖳α\mathsf{T}^{\prime}_{\alpha} τE\tau^{\prime}_{E}

For the definitions of source and sink, see Definition 4.1. Then, using the essential epimorphisms constructed in [6], we introduce two readings 𝗋𝖾𝖺𝖽\mathsf{read} and 𝗋𝖾𝖺𝖽¯\underline{\mathsf{read}}, where the former is defined on SIT(α)\mathrm{SIT}(\alpha) and SET(α)\mathrm{SET}(\alpha) and the latter is defined on each class EE. With this preparation, we prove that

𝒱α𝖡(𝗋𝖾𝖺𝖽(𝒯α),𝗋𝖾𝖺𝖽(𝒯α)),Xα𝖡(𝗋𝖾𝖺𝖽(𝖳α),𝗋𝖾𝖺𝖽(𝖳α)),\displaystyle\mathcal{V}_{\alpha}\cong\mathsf{B}(\mathsf{read}(\mathscr{T}_{\alpha}),\mathsf{read}(\mathscr{T}^{\prime}_{\alpha})),\ X_{\alpha}\cong\mathsf{B}(\mathsf{read}(\mathsf{T}_{\alpha}),\mathsf{read}(\mathsf{T}^{\prime}_{\alpha})),
and𝐒α,E𝛔𝖡(𝗋𝖾𝖺𝖽¯(τE),𝗋𝖾𝖺𝖽¯(τE))\displaystyle\text{and}\quad{\mathbf{S}}^{\boldsymbol{\upsigma}}_{\alpha,E}\cong\mathsf{B}(\underline{\mathsf{read}}(\tau_{E}^{~{}}),\underline{\mathsf{read}}(\tau^{\prime}_{E}))

(Theorem 4.4 and Theorem 4.8). It should be remarked that a reading on EE different from ours has already been introduced by Tewari and van Willigenburg [24]. They assign a reading word colτ\mathrm{col}_{\tau} to each standard reverse composition tableau τ\tau and show that (E,)(E,\preceq) is isomorphic to ([colτE,colτE]L,L)([\mathrm{col}_{\tau_{E}^{~{}}},\mathrm{col}_{\tau_{E}^{\prime}}]_{L},\preceq_{L}) as graded posets. The weak Bruhat interval module 𝖡(colτE,colτE)\mathsf{B}(\mathrm{col}_{\tau_{E}},\mathrm{col}_{\tau_{E}^{\prime}}), however, is not isomorphic to 𝐒α\mathbf{S}_{\alpha} in general (see Remark 4.9). Concerned with 𝐑α\mathbf{R}_{\alpha}, we consider its permuted version instead of itself. We introduce new combinatorial objects, called permuted standard Young row-strict tableaux of shape α\alpha and type 𝛔{\boldsymbol{\upsigma}}, and define a 0-Hecke action on them. The resulting module 𝐑α𝛔\mathbf{R}^{\boldsymbol{\upsigma}}_{\alpha} turns out to be isomorphic to the ω^{\widehat{\upomega}}-twist of 𝐒αr𝛔w0\mathbf{S}^{{\boldsymbol{\upsigma}}^{w_{0}}}_{\alpha^{\mathrm{r}}}. This enables us to transport various properties of 𝐒αr𝛔w0\mathbf{S}^{{\boldsymbol{\upsigma}}^{w_{0}}}_{\alpha^{\mathrm{r}}} to 𝐑α𝛔\mathbf{R}^{\boldsymbol{\upsigma}}_{\alpha} in a functorial way.

In the final section, we provide some future directions to pursue.

2. Preliminaries

Given any integers mm and nn, define [m,n][m,n] to be the interval {t:mtn}\{t\in\mathbb{Z}:m\leq t\leq n\} whenever mnm\leq n and the empty set \emptyset else. For simplicity, we set [n]:=[1,n][n]:=[1,n]. Unless otherwise stated, nn will denote a nonnegative integer throughout this paper.

2.1. Compositions and their diagrams

A composition α\alpha of nn, denoted by αn\alpha\models n, is a finite ordered list of positive integers (α1,α2,,αk)(\alpha_{1},\alpha_{2},\ldots,\alpha_{k}) satisfying i=1kαi=n\sum_{i=1}^{k}\alpha_{i}=n. We call αi\alpha_{i} (1ik1\leq i\leq k) a part of α\alpha, k=:(α)k=:\ell(\alpha) the length of α\alpha, and n=:|α|n=:|\alpha| the size of α\alpha. And, we define the empty composition \varnothing to be the unique composition of size and length 0.

Given α=(α1,α2,,αk)n\alpha=(\alpha_{1},\alpha_{2},\ldots,\alpha_{k})\models n and I={i1<i2<<ik}[n1]I=\{i_{1}<i_{2}<\cdots<i_{k}\}\subset[n-1], let set(α):={α1,α1+α2,,α1+α2++αk1}\mathrm{set}(\alpha):=\{\alpha_{1},\alpha_{1}+\alpha_{2},\ldots,\alpha_{1}+\alpha_{2}+\cdots+\alpha_{k-1}\} and comp(I):=(i1,i2i1,i3i2,,nik)\mathrm{comp}(I):=(i_{1},i_{2}-i_{1},i_{3}-i_{2},\ldots,n-i_{k}). The set of compositions of nn is in bijection with the set of subsets of [n1][n-1] under the correspondence αset(α)\alpha\mapsto\mathrm{set}(\alpha) (or Icomp(I)I\mapsto\mathrm{comp}(I)). The reverse composition αr\alpha^{\mathrm{r}} of α\alpha is defined to be (αk,αk1,,α1)(\alpha_{k},\alpha_{k-1},\ldots,\alpha_{1}), the complement αc\alpha^{\mathrm{c}} of α\alpha be the unique composition satisfying set(αc)=[n1]set(α)\mathrm{set}(\alpha^{c})=[n-1]\setminus\mathrm{set}(\alpha), and the conjugate αt\alpha^{\mathrm{t}} of α\alpha be the composition (αr)c=(αc)r(\alpha^{\mathrm{r}})^{\mathrm{c}}=(\alpha^{\mathrm{c}})^{\mathrm{r}}.

2.2. Weak Bruhat orders on the symmetric group

Every element σ\sigma of the symmetric group 𝔖n\mathfrak{S}_{n} may be written as a word in si:=(i,i+1)s_{i}:=(i,i+1) with 1in11\leq i\leq n-1. A reduced expression for σ\sigma is one of minimal length. The number of simple transpositions in any reduced expression for σ\sigma, denoted by (σ)\ell(\sigma), is called the length of σ\sigma. Let

DesL(σ):={i[n1](siσ)<(σ)}andDesR(σ):={i[n1](σsi)<(σ)}.\mathrm{Des}_{L}(\sigma):=\{i\in[n-1]\mid\ell(s_{i}\sigma)<\ell(\sigma)\}\ \ \text{and}\ \ \mathrm{Des}_{R}(\sigma):=\{i\in[n-1]\mid\ell(\sigma s_{i})<\ell(\sigma)\}.

It is well known that if σ=w1w2wn\sigma=w_{1}w_{2}\cdots w_{n} in one-line notation, then

DesL(σ)={i[n1]i is right of i+1 in w1w2wn}andDesR(σ)={i[n1]wi>wi+1}.\displaystyle\begin{aligned} \mathrm{Des}_{L}(\sigma)&=\{i\in[n-1]\mid\text{$i$ is right of $i+1$ in $w_{1}w_{2}\cdots w_{n}$}\}\quad\text{and}\\ \mathrm{Des}_{R}(\sigma)&=\{i\in[n-1]\mid w_{i}>w_{i+1}\}.\end{aligned} (2.1)

The left weak Bruhat order L\preceq_{L} (resp. right weak Bruhat order R\preceq_{R}) on 𝔖n\mathfrak{S}_{n} is the partial order on 𝔖n\mathfrak{S}_{n} whose covering relation Lc\preceq_{L}^{c} (resp. Rc\preceq_{R}^{c}) is defined as follows: σLcsiσ\sigma\preceq_{L}^{c}s_{i}\sigma if and only if iDesL(σ)i\notin\mathrm{Des}_{L}(\sigma) (resp. σRcσsi\sigma\preceq_{R}^{c}\sigma s_{i} if and only if iDesR(σ)i\notin\mathrm{Des}_{R}(\sigma)). Equivalently, for any σ,ρ𝔖n\sigma,\rho\in\mathfrak{S}_{n},

σLρ\sigma\preceq_{L}\rho if and only if ρ=γσ\rho=\gamma\sigma and (ρ)=(σ)+(γ)\ell(\rho)=\ell(\sigma)+\ell(\gamma) for some γ𝔖n\gamma\in\mathfrak{S}_{n}, and
σRρ if and only if ρ=σγ and (ρ)=(σ)+(γ) for some γ𝔖n.\displaystyle\text{$\sigma\preceq_{R}\rho$ if and only if $\rho=\sigma\gamma$ and $\ell(\rho)=\ell(\sigma)+\ell(\gamma)$ for some $\gamma\in\mathfrak{S}_{n}$}.

Although these two weak Bruhat orders are not identical, there exists a poset isomorphism

(𝔖n,L)(𝔖n,R),σσ1.(\mathfrak{S}_{n},\preceq_{L})\to(\mathfrak{S}_{n},\preceq_{R}),\quad\sigma\mapsto\sigma^{-1}.

To avoid redundant overlap, our statements will be restricted to the left weak Bruhat order.

Given σ\sigma and ρ𝔖n\rho\in\mathfrak{S}_{n}, the closed interval {γ𝔖nσLγLρ}\{\gamma\in\mathfrak{S}_{n}\mid\sigma\preceq_{L}\gamma\preceq_{L}\rho\} is called the left weak Bruhat interval from σ\sigma to ρ\rho and denoted by [σ,ρ]L[\sigma,\rho]_{L}. It can be represented by the colored digraph whose vertices are given by [σ,ρ]L[\sigma,\rho]_{L} and {1,2,,n1}\{1,2,\ldots,n-1\}-colored arrows given by

γ𝑖γif and only ifγLγ and siγ=γ.\displaystyle\gamma\overset{i}{\rightarrow}\gamma^{\prime}\quad\text{if and only if}\quad\text{$\gamma\preceq_{L}\gamma^{\prime}$ and $s_{i}\gamma=\gamma^{\prime}$}.

Let us collect notations which will be used later. We use w0w_{0} to denote the longest element in 𝔖n\mathfrak{S}_{n}. For I[n1]I\subseteq[n-1], let 𝔖I\mathfrak{S}_{I} be the parabolic subgroup of 𝔖n\mathfrak{S}_{n} generated by {siiI}\{s_{i}\mid i\in I\} and w0(I)w_{0}(I) the longest element in 𝔖I\mathfrak{S}_{I}. For αn\alpha\models n, let w0(α):=w0(set(α))w_{0}(\alpha):=w_{0}(\mathrm{set}(\alpha)). Finally, for σ𝔖n\sigma\in\mathfrak{S}_{n}, we let σw0:=w0σw0\sigma^{w_{0}}:=w_{0}\sigma w_{0}.

2.3. The 0-Hecke algebra and the quasisymmetric characteristic

The 0-Hecke algebra Hn(0)H_{n}(0) is the associative \mathbb{C}-algebra with 11 generated by the elements π1,π2,,πn1\pi_{1},\pi_{2},\ldots,\pi_{n-1} subject to the following relations:

πi2\displaystyle\pi_{i}^{2} =πifor 1in1,\displaystyle=\pi_{i}\quad\text{for $1\leq i\leq n-1$},
πiπi+1πi\displaystyle\pi_{i}\pi_{i+1}\pi_{i} =πi+1πiπi+1for 1in2,\displaystyle=\pi_{i+1}\pi_{i}\pi_{i+1}\quad\text{for $1\leq i\leq n-2$},
πiπj\displaystyle\pi_{i}\pi_{j} =πjπiif |ij|2.\displaystyle=\pi_{j}\pi_{i}\quad\text{if $|i-j|\geq 2$}.

Frequently we use another set of generators {π¯i:=πi11in1}\{\overline{\pi}_{i}:=\pi_{i}-1\mid 1\leq i\leq n-1\}.

For any reduced expression si1si2sips_{i_{1}}s_{i_{2}}\cdots s_{i_{p}} for σ𝔖n\sigma\in\mathfrak{S}_{n}, let

πσ:=πi1πi2πipandπ¯σ:=π¯i1π¯i2π¯ip.\pi_{\sigma}:=\pi_{i_{1}}\pi_{i_{2}}\cdots\pi_{i_{p}}\quad\text{and}\quad\overline{\pi}_{\sigma}:=\overline{\pi}_{i_{1}}\overline{\pi}_{i_{2}}\cdots\overline{\pi}_{i_{p}}.

It is well known that these elements are independent of the choices of reduced expressions, and both {πσσ𝔖n}\{\pi_{\sigma}\mid\sigma\in\mathfrak{S}_{n}\} and {π¯σσ𝔖n}\{\overline{\pi}_{\sigma}\mid\sigma\in\mathfrak{S}_{n}\} are \mathbb{C}-bases for Hn(0)H_{n}(0).

According to [20], there are 2n12^{n-1} pairwise inequivalent irreducible Hn(0)H_{n}(0)-modules and 2n12^{n-1} pairwise inequivalent projective indecomposable Hn(0)H_{n}(0)-modules, which are naturally indexed by compositions of nn. For αn\alpha\models n, let 𝐅α=vα\mathbf{F}_{\alpha}=\mathbb{C}v_{\alpha} and endow it with the Hn(0)H_{n}(0)-action as follows: for each 1in11\leq i\leq n-1,

πivα={0iset(α),vαiset(α).\pi_{i}\cdot v_{\alpha}=\begin{cases}0&i\in\mathrm{set}(\alpha),\\ v_{\alpha}&i\notin\mathrm{set}(\alpha).\end{cases}

This module is the irreducible 11-dimensional Hn(0)H_{n}(0)-module corresponding to α\alpha. And, the projective indecomposable Hn(0)H_{n}(0)-module corresponding to α\alpha is given by the submodule

𝒫α:=Hn(0)πw0(αc)π¯w0(α)\mathcal{P}_{\alpha}:=H_{n}(0)\pi_{w_{0}(\alpha^{\mathrm{c}})}\overline{\pi}_{w_{0}(\alpha)}

of the regular representation of Hn(0)H_{n}(0). It is known that 𝐅α\mathbf{F}_{\alpha} is isomorphic to 𝒫α/rad𝒫α\mathcal{P}_{\alpha}/\mathrm{rad}\;\mathcal{P}_{\alpha}, where rad𝒫α\mathrm{rad}\;\mathcal{P}_{\alpha} is the radical of 𝒫α\mathcal{P}_{\alpha}, the intersection of maximal submodules of 𝒫α\mathcal{P}_{\alpha}.

Let (Hn(0))\mathcal{R}(H_{n}(0)) denote the \mathbb{Z}-span of the isomorphism classes of finite dimensional Hn(0)H_{n}(0)-modules. We denote by [M][M] the isomorphism class corresponding to an Hn(0)H_{n}(0)-module MM. The Grothendieck group 𝒢0(Hn(0))\mathcal{G}_{0}(H_{n}(0)) is the quotient of (Hn(0))\mathcal{R}(H_{n}(0)) modulo the relations [M]=[M]+[M′′][M]=[M^{\prime}]+[M^{\prime\prime}] whenever there exists a short exact sequence 0MMM′′00\rightarrow M^{\prime}\rightarrow M\rightarrow M^{\prime\prime}\rightarrow 0. The irreducible Hn(0)H_{n}(0)-modules form a free \mathbb{Z}-basis for 𝒢0(Hn(0))\mathcal{G}_{0}(H_{n}(0)). Let

𝒢:=n0𝒢0(Hn(0)).\mathcal{G}:=\bigoplus_{n\geq 0}\mathcal{G}_{0}(H_{n}(0)).

Let us review the beautiful connection between 𝒢\mathcal{G} and the ring QSym\mathrm{QSym} of quasisymmetric functions. For the definition of quasisymmetric functions, see [23, Section 7.19].

For a composition α\alpha, the fundamental quasisymmetric function FαF_{\alpha}, introduced in [11], is defined by

F=1andFα=1i1i2ikij<ij+1 if jset(α)xi1xikif α.F_{\varnothing}=1\quad\text{and}\quad F_{\alpha}=\sum_{\begin{subarray}{c}1\leq i_{1}\leq i_{2}\leq\cdots\leq i_{k}\\ i_{j}<i_{j+1}\text{ if }j\in\mathrm{set}(\alpha)\end{subarray}}x_{i_{1}}\cdots x_{i_{k}}\quad\text{if $\alpha\neq\varnothing$}.

It is known that {Fαα is a composition}\{F_{\alpha}\mid\text{$\alpha$ is a composition}\} forms a \mathbb{Z}-basis for QSym\mathrm{QSym}. When MM is an Hm(0)H_{m}(0)-module and NN is an Hn(0)H_{n}(0)-module, we write MNM\boxtimes N for the induction product of MM and NN, that is,

MN=MNHm(0)Hn(0)Hm+n(0).\displaystyle M\boxtimes N=M\otimes N\uparrow_{H_{m}(0)\otimes H_{n}(0)}^{H_{m+n}(0)}.

Here, Hm(0)Hn(0)H_{m}(0)\otimes H_{n}(0) is viewed as the subalgebra of Hm+n(0)H_{m+n}(0) generated by {πii[m+n1]{m}}\{\pi_{i}\mid i\in[m+n-1]\setminus\{m\}\}.

It was shown in [9] that, when 𝒢\mathcal{G} is equipped with this product as multiplication, the linear map

ch:𝒢QSym,[𝐅α]Fα,\mathrm{ch}:\mathcal{G}\rightarrow\mathrm{QSym},\quad[\mathbf{F}_{\alpha}]\mapsto F_{\alpha}, (2.2)

called quasisymmetric characteristic, is a ring isomorphism. Indeed it is not only a ring isomorphism, but also a Hopf algebra isomorphism.

3. Weak Bruhat interval modules

In this section, we present background material for weak Bruhat interval modules and then investigate their structural properties extensively.

3.1. Definition and basic properties

Let us start with the definitions of weak and negative weak Bruhat interval modules.

Definition 3.1.

Let σ,ρ𝔖n\sigma,\rho\in\mathfrak{S}_{n}.

  1. (1)

    The weak Bruhat interval module associated to [σ,ρ]L[\sigma,\rho]_{L}, denoted by 𝖡(σ,ρ)\mathsf{B}(\sigma,\rho), is the Hn(0)H_{n}(0)-module with [σ,ρ]L\mathbb{C}[\sigma,\rho]_{L} as the underlying space and with the Hn(0)H_{n}(0)-action defined by

    πiγ:={γif iDesL(γ),0if iDesL(γ) and siγ[σ,ρ]L,siγif iDesL(γ) and siγ[σ,ρ]L.\displaystyle\pi_{i}\cdot\gamma:=\begin{cases}\gamma&\text{if $i\in\mathrm{Des}_{L}(\gamma)$},\\ 0&\text{if $i\notin\mathrm{Des}_{L}(\gamma)$ and $s_{i}\gamma\notin[\sigma,\rho]_{L}$,}\\ s_{i}\gamma&\text{if $i\notin\mathrm{Des}_{L}(\gamma)$ and $s_{i}\gamma\in[\sigma,\rho]_{L}$}.\end{cases} (3.1)
  2. (2)

    The negative weak Bruhat interval module associated to [σ,ρ]L[\sigma,\rho]_{L}, denoted by 𝖡¯(σ,ρ)\overline{\mathsf{B}}(\sigma,\rho), is the Hn(0)H_{n}(0)-module with [σ,ρ]L\mathbb{C}[\sigma,\rho]_{L} as the underlying space and with the Hn(0)H_{n}(0)-action defined by

    π¯iγ:={γif iDesL(γ),0if iDesL(γ) and siγ[σ,ρ]L,siγif iDesL(γ) and siγ[σ,ρ]L.\displaystyle\overline{\pi}_{i}\star\gamma:=\begin{cases}-\gamma&\text{if $i\in\mathrm{Des}_{L}(\gamma)$},\\ 0&\text{if $i\notin\mathrm{Des}_{L}(\gamma)$ and $s_{i}\gamma\notin[\sigma,\rho]_{L}$,}\\ s_{i}\gamma&\text{if $i\notin\mathrm{Des}_{L}(\gamma)$ and $s_{i}\gamma\in[\sigma,\rho]_{L}$}.\end{cases}

Hivert, Novelli, and Thibon [13] introduced a semi-combinatorial Hn(0)H_{n}(0)-module associated to the interval [Yσ(τ),Yρ(τ)][Y_{\sigma}(\tau),Y_{\rho}(\tau)] of a Yang-Baxter basis {Yγ(τ)}γ𝔖n\{Y_{\gamma}(\tau)\}_{\gamma\in\mathfrak{S}_{n}} for each τ𝔖n\tau\in\mathfrak{S}_{n}. We omit the proof of the well-definedness of 𝖡(σ,ρ)\mathsf{B}(\sigma,\rho) and 𝖡¯(σ,ρ)\overline{\mathsf{B}}(\sigma,\rho) since they can be recovered as the semi-combinatorial modules associated to [Yσ(id),Yρ(id)][Y_{\sigma}(\mathrm{id}),Y_{\rho}(\mathrm{id})] and [Yσ(w0),Yρ(w0)][Y_{\sigma}(w_{0}),Y_{\rho}(w_{0})], respectively.

The following properties are almost straightforward. In particular, the last one can be obtained by mimicking [24, Section 5].

  1. \bullet

    Given σ[σ,ρ]L\sigma^{\prime}\in[\sigma,\rho]_{L}, the linear map ι:𝖡(σ,ρ)𝖡(σ,ρ)\iota:\mathsf{B}(\sigma^{\prime},\rho)\rightarrow\mathsf{B}(\sigma,\rho), sending γγ\gamma\mapsto\gamma, is an injective Hn(0)H_{n}(0)-module homomorphism.

  2. \bullet

    Given ρ[σ,ρ]L\rho^{\prime}\in[\sigma,\rho]_{L}, the linear map 𝗉𝗋:𝖡(σ,ρ)𝖡(σ,ρ)\mathsf{pr}:\mathsf{B}(\sigma,\rho)\rightarrow\mathsf{B}(\sigma,\rho^{\prime}), sending γγ\gamma\mapsto\gamma if γ[σ,ρ]L\gamma\in[\sigma,\rho^{\prime}]_{L} and γ0\gamma\mapsto 0 else, is a surjective Hn(0)H_{n}(0)-module homomorphism.

  3. \bullet

    ch([𝖡(σ,ρ)])=γ[σ,ρ]LFcomp(γ)c\mathrm{ch}([\mathsf{B}(\sigma,\rho)])=\sum_{\gamma\in[\sigma,\rho]_{L}}F_{\mathrm{comp}(\gamma)^{\mathrm{c}}}, where comp(γ):=comp(DesL(γ))\mathrm{comp}(\gamma):=\mathrm{comp}(\mathrm{Des}_{L}(\gamma)).

Finally, we briefly remark the classification of weak Bruhat interval modules up to isomorphism. As pointed out in Subsection 2.2, every weak Bruhat interval can be viewed as a colored digraph. One sees from (3.1) that 𝖡(σ,ρ)𝖡(σ,ρ)\mathsf{B}(\sigma,\rho)\cong\mathsf{B}(\sigma^{\prime},\rho^{\prime}) if there is a descent-preserving (colored digraph) isomorphism between [σ,ρ]L[\sigma,\rho]_{L} and [σ,ρ]L[\sigma^{\prime},\rho^{\prime}]_{L}. For instance,

f:[14325,24315]L[41352,42351]L,πγ14325πγ41352(γ𝔖5)f:[14325,24315]_{L}\to[41352,42351]_{L},\quad\pi_{\gamma}\cdot 14325\mapsto\pi_{\gamma}\cdot 41352\quad(\gamma\in\mathfrak{S}_{5})

is such an isomorphism, thus 𝖡(14325,24315)𝖡(41352,42351)\mathsf{B}(14325,24315)\cong\mathsf{B}(41352,42351). On the other hand, it is not difficult to show that there is no descent-preserving isomorphism between [14325,24315]L[14325,24315]_{L} and [45312,45321]L[45312,45321]_{L} although they are isomorphic as colored digraphs. Indeed, 𝖡(14325,24315)\mathsf{B}(14325,24315) is indecomposable (Remark 4.9), whereas 𝖡(45312,45321)\mathsf{B}(45312,45321) can be decomposed into 45321(4531245321)\mathbb{C}45321\oplus\mathbb{C}(45312-45321) as seen in Figure 3.1. It would be very nice to characterize when a descent-preserving isomorphism between two intervals exists and ultimately to classify all weak Bruhat interval modules up to isomorphism.

𝖡(14325,24315)\mathsf{B}(14325,24315)1432514325 π2,π3\pi_{2},\pi_{3}0π4\pi_{4}π1\pi_{1}2431524315 π1,π3\pi_{1},\pi_{3}π2,π4\pi_{2},\pi_{4}0\cong𝖡(41352,42351)\mathsf{B}(41352,42351)4135241352 π2,π3\pi_{2},\pi_{3}0π4\pi_{4}π1\pi_{1}4235142351 π1,π3\pi_{1},\pi_{3}π2,π4\pi_{2},\pi_{4}0
𝖡(45312,45321)\mathsf{B}(45312,45321)4531245312 π2,π3\pi_{2},\pi_{3}0π4\pi_{4}π1\pi_{1}4532145321 π1,π2,π3\pi_{1},\pi_{2},\pi_{3}π4\pi_{4}0==453124532145312-45321 π2,π3\pi_{2},\pi_{3}π1,π4\pi_{1},\pi_{4}0\bigoplus4532145321 π1,π2,π3\pi_{1},\pi_{2},\pi_{3}π4\pi_{4}0
Figure 3.1. 𝖡(14325,24315)\mathsf{B}(14325,24315), 𝖡(41352,42351)\mathsf{B}(41352,42351), and 𝖡(45312,45321)\mathsf{B}(45312,45321)

3.2. Embedding weak Bruhat interval modules into the regular representation

The purpose of this subsection is to see that every weak Bruhat interval modules can be embedded into the regular representation. More precisely, we prove that 𝖡(σ,ρ)\mathsf{B}(\sigma,\rho) is isomorphic to Hn(0)πσπ¯ρ1w0H_{n}(0)\pi_{\sigma}\overline{\pi}_{\rho^{-1}w_{0}}.

For ease of notation, we use π̊i\mathring{\pi}_{i} to denote an arbitrary element in {πi,π¯i}\{\pi_{i},\overline{\pi}_{i}\} for each 1in11\leq i\leq n-1. The following relations among πi\pi_{i}’s and π¯i\overline{\pi}_{i}’s, which will be used significantly, can be easily verified:

πiπi+1π¯i=π¯i+1πiπi+1,πi+1πiπ¯i+1=π¯iπi+1πi\displaystyle\pi_{i}\pi_{i+1}\overline{\pi}_{i}=\overline{\pi}_{i+1}\pi_{i}\pi_{i+1},\quad\pi_{i+1}\pi_{i}\overline{\pi}_{i+1}=\overline{\pi}_{i}\pi_{i+1}\pi_{i} (1in2),\displaystyle(1\leq i\leq n-2), (3.2)
πiπ¯i+1π¯i=π¯i+1π¯iπi+1,πi+1π¯iπ¯i+1=π¯iπ¯i+1πi\displaystyle\pi_{i}\overline{\pi}_{i+1}\overline{\pi}_{i}=\overline{\pi}_{i+1}\overline{\pi}_{i}\pi_{i+1},\quad\pi_{i+1}\overline{\pi}_{i}\overline{\pi}_{i+1}=\overline{\pi}_{i}\overline{\pi}_{i+1}\pi_{i} (1in2),\displaystyle(1\leq i\leq n-2),
πiπ¯j=π¯jπi\displaystyle\pi_{i}\overline{\pi}_{j}=\overline{\pi}_{j}\pi_{i} (|ij|2).\displaystyle(|i-j|\geq 2).

One sees that πrπ¯r+1πr,πr+1π¯rπr+1,π¯rπr+1π¯r\pi_{r}\overline{\pi}_{r+1}\pi_{r},\pi_{r+1}\overline{\pi}_{r}\pi_{r+1},\overline{\pi}_{r}\pi_{r+1}\overline{\pi}_{r}, and π¯r+1πrπ¯r+1\overline{\pi}_{r+1}\pi_{r}\overline{\pi}_{r+1} are missing in the list of  (3.2). The following lemma tells us the reason for this.

Lemma 3.2.

For σ,ρ𝔖n\sigma,\rho\in\mathfrak{S}_{n} with (σρ)=(σ)+(ρ)\ell(\sigma\rho)=\ell(\sigma)+\ell(\rho), let su1su2suls_{u_{1}}s_{u_{2}}\cdots s_{u_{l}} and sv1sv2svms_{v_{1}}s_{v_{2}}\cdots s_{v_{m}} be arbitrary reduced expressions of σ\sigma and ρ\rho, respectively. Let w¯\underline{\mathrm{w}} be the word

πu1πu2πulπ¯v1π¯v2π¯vm\pi_{u_{1}}\pi_{u_{2}}\cdots\pi_{u_{l}}\overline{\pi}_{v_{1}}\overline{\pi}_{v_{2}}\cdots\overline{\pi}_{v_{m}}

from the alphabet {πi,π¯i1in1}\{\pi_{i},\overline{\pi}_{i}\mid 1\leq i\leq n-1\}, where πi,π¯i\pi_{i},\overline{\pi}_{i} are viewed as letters not as elements of Hn(0)H_{n}(0). Then every word w=w1w2wl+m\mathrm{w}=w_{1}w_{2}\cdots w_{l+m} obtained from w¯\underline{\mathrm{w}} by applying only the following six braid relations and three commutation-relations

πiπi+1πi=πi+1πiπi+1(1in2),π¯iπ¯i+1π¯i=π¯i+1π¯iπ¯i+1(1in2),πiπi+1π¯i=π¯i+1πiπi+1(1in2),πi+1πiπ¯i+1=π¯iπi+1πi(1in2),πiπ¯i+1π¯i=π¯i+1π¯iπi+1(1in2),πi+1π¯iπ¯i+1=π¯iπ¯i+1πi(1in2),\displaystyle\begin{aligned} \pi_{i}\pi_{i+1}\pi_{i}&=\pi_{i+1}\pi_{i}\pi_{i+1}&(1\leq i\leq n-2),\\ \overline{\pi}_{i}\overline{\pi}_{i+1}\overline{\pi}_{i}&=\overline{\pi}_{i+1}\overline{\pi}_{i}\overline{\pi}_{i+1}&(1\leq i\leq n-2),\\ \pi_{i}\pi_{i+1}\overline{\pi}_{i}&=\overline{\pi}_{i+1}\pi_{i}\pi_{i+1}&(1\leq i\leq n-2),\\ \pi_{i+1}\pi_{i}\overline{\pi}_{i+1}&=\overline{\pi}_{i}\pi_{i+1}\pi_{i}&(1\leq i\leq n-2),\\ \pi_{i}\overline{\pi}_{i+1}\overline{\pi}_{i}&=\overline{\pi}_{i+1}\overline{\pi}_{i}\pi_{i+1}&(1\leq i\leq n-2),\\ \pi_{i+1}\overline{\pi}_{i}\overline{\pi}_{i+1}&=\overline{\pi}_{i}\overline{\pi}_{i+1}\pi_{i}&(1\leq i\leq n-2),\end{aligned} (3.3)
πiπj=πjπi(|ij|2),π¯iπ¯j=π¯jπ¯i(|ij|2),πiπ¯j=π¯jπi(|ij|2),\displaystyle\hskip 25.83325pt\begin{aligned} \pi_{i}\pi_{j}&=\pi_{j}\pi_{i}&(|i-j|\geq 2),\\ \overline{\pi}_{i}\overline{\pi}_{j}&=\overline{\pi}_{j}\overline{\pi}_{i}&(|i-j|\geq 2),\\ \pi_{i}\overline{\pi}_{j}&=\overline{\pi}_{j}\pi_{i}&(|i-j|\geq 2),\end{aligned} (3.4)

contains no subwords wrwr+1wr+2w_{r}w_{r+1}w_{r+2} (1rl+m2)(1\leq r\leq l+m-2) of the form

πiπ¯i+1πi,πi+1π¯iπi+1,π¯iπi+1π¯i,π¯i+1πiπ¯i+1.\displaystyle\pi_{i}\overline{\pi}_{i+1}\pi_{i},\quad\pi_{i+1}\overline{\pi}_{i}\pi_{i+1},\quad\overline{\pi}_{i}\pi_{i+1}\overline{\pi}_{i},\quad\overline{\pi}_{i+1}\pi_{i}\overline{\pi}_{i+1}. (3.5)
Proof.

Let kwk_{\mathrm{w}} denote the number of occurrences of the relations in (3.3) in the middle of obtaining w\mathrm{w} from w¯\underline{\mathrm{w}} by applying the relations in both  (3.3) and (3.4). We will prove our assertion using the mathematical induction on kwk_{\mathrm{w}}. When kw=0k_{\mathrm{w}}=0, our assertion is obvious since w\mathrm{w} is obtained from w¯\underline{\mathrm{w}} by applying the relations in (3.4) only.

Given a positive integer k^\hat{k}, assume that our assertion holds for all w\mathrm{w} whenever kw<k^k_{\mathrm{w}}<\hat{k}. Now, let kw=k^k_{\mathrm{w}}=\hat{k}, which means that there is a word w=w1w2wl+m\mathrm{w}^{\prime}=w^{\prime}_{1}w^{\prime}_{2}\cdots w^{\prime}_{l+m} such that kw=k^1k_{\mathrm{w}^{\prime}}={\hat{k}}-1 and w\mathrm{w} is obtained from w\mathrm{w}^{\prime} by applying the relations in (3.4) and one of the relations in (3.3) only once. By the first paragraph, we have only to consider the case where w\mathrm{w} is obtained from w\mathrm{w}^{\prime} by applying a relation in (3.3) to wt01wt0wt0+1w^{\prime}_{t_{0}-1}w^{\prime}_{t_{0}}w^{\prime}_{t_{0}+1} for some 1<t0<l+m1<t_{0}<l+m. Suppose that w\mathrm{w} contains a subword wj01wj0wj0+1w_{j_{0}-1}w_{j_{0}}w_{j_{0}+1} of the form (3.5). We observe that no words in (3.5) appear in the six relations in  (3.3), so j0t0j_{0}\neq t_{0}. In case where |j0t0|>2|j_{0}-t_{0}|>2, wj01wj0wj0+1w^{\prime}_{j_{0}-1}w^{\prime}_{j_{0}}w^{\prime}_{j_{0}+1} is of the form (3.5). But, this is absurd since kw<k^k_{\mathrm{w}^{\prime}}<\hat{k}. In case where 0<|j0t0|20<|j_{0}-t_{0}|\leq 2, w\mathrm{w} has a consecutive subword of the form π̊rπ̊r+1π̊rπ̊r+1\mathring{\pi}_{r}\mathring{\pi}_{r+1}\mathring{\pi}_{r}\mathring{\pi}_{r+1} or π̊r+1π̊rπ̊r+1π̊r\mathring{\pi}_{r+1}\mathring{\pi}_{r}\mathring{\pi}_{r+1}\mathring{\pi}_{r}. For 1tl+m1\leq t\leq l+m, let iti_{t} be the subindex given by wt=π̊itw_{t}=\mathring{\pi}_{i_{t}}. Using the notation π̊i\mathring{\pi}_{i} instead of πi\pi_{i} and π¯i\overline{\pi}_{i}, one can see that the relations in both (3.3) and (3.4) coincide with braid and commutation relations of 𝔖n\mathfrak{S}_{n}. It says that si1si2sil+ms_{i_{1}}s_{i_{2}}\cdots s_{i_{l+m}} is obtained from su1su2sulsv1sv2svms_{u_{1}}s_{u_{2}}\cdots s_{u_{l}}s_{v_{1}}s_{v_{2}}\cdots s_{v_{m}} by applying braid and commutation relations of 𝔖n\mathfrak{S}_{n}, thus is a reduced expression for σρ\sigma\rho. This, however, cannot occur since si1si2sil+ms_{i_{1}}s_{i_{2}}\cdots s_{i_{l+m}} contains a consecutive subword of the form srsr+1srsr+1s_{r}s_{r+1}s_{r}s_{r+1} or sr+1srsr+1srs_{r+1}s_{r}s_{r+1}s_{r}. Consequently, w\mathrm{w} contains no subwords of the form (3.5), so we are done. ∎

Given a word w=w1w2wp\mathrm{w}=w_{1}w_{2}\cdots w_{p} from the alphabet {πi,π¯i1in1}\{\pi_{i},\overline{\pi}_{i}\mid 1\leq i\leq n-1\}, we can naturally see it as an element of Hn(0)H_{n}(0). For clarity, we write it as ι(w)\iota(\mathrm{w}). If a word w\mathrm{w}^{\prime} is obtained from w\mathrm{w} by applying the relations in (3.3) and (3.4), then ι(w)=ι(w)\iota(\mathrm{w})=\iota(\mathrm{w}^{\prime}) by (3.2). Combining  (3.2) with Lemma 3.2 yields the following lemma.

Lemma 3.3.

For σ,ρ𝔖n\sigma,\rho\in\mathfrak{S}_{n} with (σρ)=(σ)+(ρ)\ell(\sigma\rho)=\ell(\sigma)+\ell(\rho), if j0DesR(σρ)DesR(ρ)j_{0}\in\mathrm{Des}_{R}(\sigma\rho)\setminus\mathrm{Des}_{R}(\rho), then there exists a word w=w1w2w(σρ)\mathrm{w}=w_{1}w_{2}\cdots w_{\ell(\sigma\rho)} from the alphabet {πi,π¯i1in1}\{\pi_{i},\overline{\pi}_{i}\mid 1\leq i\leq n-1\} such that ι(w)=πσπ¯ρ\iota(\mathrm{w})=\pi_{\sigma}\overline{\pi}_{\rho} and w(σρ)=πj0w_{\ell(\sigma\rho)}=\pi_{j_{0}}.

Proof.

Let su1su2suls_{u_{1}}s_{u_{2}}\cdots s_{u_{l}} be a reduced expression of σ\sigma and sv1sv2svms_{v_{1}}s_{v_{2}}\cdots s_{v_{m}} a reduced expression of ρ\rho. Since j0DesR(σρ)DesR(ρ)j_{0}\in\mathrm{Des}_{R}(\sigma\rho)\setminus\mathrm{Des}_{R}(\rho), by the exchange property of Coxeter groups, there exists 1rl1\leq r\leq l such that σρ=su1su2s^ursulsv1sv2svmsj0\sigma\rho=s_{u_{1}}s_{u_{2}}\cdots\widehat{s}_{u_{r}}\cdots s_{u_{l}}s_{v_{1}}s_{v_{2}}\cdots s_{v_{m}}s_{j_{0}}, where su1su2s^ursuls_{u_{1}}s_{u_{2}}\cdots\widehat{s}_{u_{r}}\cdots s_{u_{l}} denotes the permutation obtained from su1su2suls_{u_{1}}s_{u_{2}}\cdots s_{u_{l}} by removing surs_{u_{r}}. Viewing πσπ¯ρ\pi_{\sigma}\overline{\pi}_{\rho} just as a word from the alphabet {π̊i1in1}\{\mathring{\pi}_{i}\mid 1\leq i\leq n-1\}, due to  (3.2) and Lemma 3.2, the relations in (3.3) and (3.4) play the same role as the braid and commutation relations of 𝔖n\mathfrak{S}_{n}. This implies that πσπ¯ρ=π̊u1π̊u2π̊^urπ̊ulπ̊v1π̊v2π̊vmπ̊j0.\pi_{\sigma}\overline{\pi}_{\rho}=\mathring{\pi}_{u_{1}}\mathring{\pi}_{u_{2}}\cdots\widehat{\mathring{\pi}}_{u_{r}}\cdots\mathring{\pi}_{u_{l}}\mathring{\pi}_{v_{1}}\mathring{\pi}_{v_{2}}\cdots\mathring{\pi}_{v_{m}}\mathring{\pi}_{j_{0}}. Let 𝔪(π̊i)=0\mathfrak{m}(\mathring{\pi}_{i})=0 if π̊i=πi\mathring{\pi}_{i}=\pi_{i} and 11 if π̊i=π¯i\mathring{\pi}_{i}=\overline{\pi}_{i}. Note that, while applying the relations in (3.3) and (3.4) to πσπ¯ρ\pi_{\sigma}\overline{\pi}_{\rho}, the values of π̊j\mathring{\pi}_{j}’s under 𝔪\mathfrak{m} are staying unchanged as seen in the following figure:

the relations in (3.3):πiπi+1πiπi+1πiπi+1πiπi+1π¯iπ¯i+1πiπi+1πi+1πiπ¯i+1π¯iπi+1πiπ¯iπ¯i+1π¯iπ¯i+1π¯iπ¯i+1πiπ¯i+1π¯iπ¯i+1π¯iπi+1πi+1π¯iπ¯i+1π¯iπ¯i+1πithe relations in (3.4):πiπjπjπiπiπ¯jπ¯jπiπ¯iπjπjπ¯iπ¯iπ¯jπ¯jπ¯i\begin{array}[]{ccc}\text{the relations in \eqref{eq: braid relation}:}&\begin{array}[]{c}\leavevmode\hbox to66.98pt{\vbox to47.43pt{\pgfpicture\makeatletter\hbox{\hskip 10.72556pt\lower-6.64244pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{}}{{}} {}{{}}{} {{}{}}{}{}{}{}{}{{}}{}{}{}{{}}\pgfsys@moveto{2.55862pt}{27.03128pt}\pgfsys@lineto{22.40001pt}{7.11212pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{-0.70572}{0.7085}{-0.7085}{-0.70572}{2.4175pt}{27.17297pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.70572}{-0.7085}{0.7085}{0.70572}{22.54114pt}{6.97043pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} {{}{}}{{}}{} {{}{}}{}{}{}{}{}{{}}{}{}{}{{}}\pgfsys@moveto{23.12456pt}{27.03128pt}\pgfsys@lineto{42.96608pt}{7.11212pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{-0.70572}{0.7085}{-0.7085}{-0.70572}{22.98343pt}{27.17297pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.70572}{-0.7085}{0.7085}{0.70572}{43.10721pt}{6.97043pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} {{}{}}{{}}{} {}{}{}{}{}{}{{}}{}{}{}{{}}\pgfsys@moveto{45.08322pt}{27.14319pt}\pgfsys@lineto{2.63771pt}{7.00021pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.90343}{0.42873}{-0.42873}{0.90343}{45.26389pt}{27.22891pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{-0.90343}{-0.42873}{0.42873}{-0.90343}{2.45705pt}{6.91449pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \par\par{{{}{}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-3.81477pt}{32.91397pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\pi_{i}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{15.36974pt}{33.14731pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\pi_{i+1}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{41.70981pt}{32.91397pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\pi_{i}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \par{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-7.39255pt}{-0.99611pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\pi_{i+1}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{{}{}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{18.94751pt}{-1.22945pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\pi_{i}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{{}{}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{38.13203pt}{-0.99611pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\pi_{i+1}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}\quad\leavevmode\hbox to72.32pt{\vbox to52.83pt{\pgfpicture\makeatletter\hbox{\hskip 10.37543pt\lower-7.32855pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{}}{{}} {}{{}}{} {{}{}}{}{}{}{}{}{{}}{}{}{}{{}}\pgfsys@moveto{2.84314pt}{30.4453pt}\pgfsys@lineto{25.23503pt}{7.96564pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{-0.70572}{0.7085}{-0.7085}{-0.70572}{2.70201pt}{30.58699pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.70572}{-0.7085}{0.7085}{0.70572}{25.37616pt}{7.82394pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} {{}{}}{{}}{} {{}{}}{}{}{}{}{}{{}}{}{}{}{{}}\pgfsys@moveto{25.97958pt}{30.4453pt}\pgfsys@lineto{48.37161pt}{7.96564pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{-0.70572}{0.7085}{-0.7085}{-0.70572}{25.83846pt}{30.58699pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.70572}{-0.7085}{0.7085}{0.70572}{48.51274pt}{7.82394pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} {{}{}}{{}}{} {}{}{}{}{}{}{{}}{}{}{}{{}}\pgfsys@moveto{50.76326pt}{30.5572pt}\pgfsys@lineto{2.92223pt}{7.85373pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.90343}{0.42873}{-0.42873}{0.90343}{50.94392pt}{30.64293pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{-0.90343}{-0.42873}{0.42873}{-0.90343}{2.74156pt}{7.768pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \par{{{}{}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-3.81477pt}{37.1815pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\pi_{i}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{18.21475pt}{37.41484pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\pi_{i+1}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{47.74997pt}{36.49539pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\overline{\pi}_{i}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \par{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-7.04242pt}{-1.68222pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\overline{\pi}_{i+1}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{{}{}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{21.79253pt}{-1.22945pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\pi_{i}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{{}{}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{43.82207pt}{-0.99611pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\pi_{i+1}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}\quad\leavevmode\hbox to72.32pt{\vbox to52.83pt{\pgfpicture\makeatletter\hbox{\hskip 10.72556pt\lower-7.09521pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{}}{{}} {}{{}}{} {{}{}}{}{}{}{}{}{{}}{}{}{}{{}}\pgfsys@moveto{2.84314pt}{30.4453pt}\pgfsys@lineto{25.23503pt}{7.96564pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{-0.70572}{0.7085}{-0.7085}{-0.70572}{2.70201pt}{30.58699pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.70572}{-0.7085}{0.7085}{0.70572}{25.37616pt}{7.82394pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} {{}{}}{{}}{} {{}{}}{}{}{}{}{}{{}}{}{}{}{{}}\pgfsys@moveto{25.97958pt}{30.4453pt}\pgfsys@lineto{48.37161pt}{7.96564pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{-0.70572}{0.7085}{-0.7085}{-0.70572}{25.83846pt}{30.58699pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.70572}{-0.7085}{0.7085}{0.70572}{48.51274pt}{7.82394pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} {{}{}}{{}}{} {}{}{}{}{}{}{{}}{}{}{}{{}}\pgfsys@moveto{50.76326pt}{30.5572pt}\pgfsys@lineto{2.92223pt}{7.85373pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.90343}{0.42873}{-0.42873}{0.90343}{50.94392pt}{30.64293pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{-0.90343}{-0.42873}{0.42873}{-0.90343}{2.74156pt}{7.768pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \par{{{}{}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-7.39255pt}{37.41484pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\pi_{i+1}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{21.79253pt}{37.1815pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\pi_{i}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{44.1722pt}{36.72873pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\overline{\pi}_{i+1}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \par{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-3.46465pt}{-1.91556pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\overline{\pi}_{i}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{{}{}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{18.21475pt}{-0.99611pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\pi_{i+1}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{{}{}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{47.39984pt}{-1.22945pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\pi_{i}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}\\ \leavevmode\hbox to71.97pt{\vbox to53.07pt{\pgfpicture\makeatletter\hbox{\hskip 10.37543pt\lower-7.32855pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{}}{{}} {}{{}}{} {{}{}}{}{}{}{}{}{{}}{}{}{}{{}}\pgfsys@moveto{2.84314pt}{7.96564pt}\pgfsys@lineto{25.23503pt}{30.4453pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{-0.70572}{-0.7085}{0.7085}{-0.70572}{2.70201pt}{7.82394pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.70572}{0.7085}{-0.7085}{0.70572}{25.37616pt}{30.58699pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} {{}{}}{{}}{} {{}{}}{}{}{}{}{}{{}}{}{}{}{{}}\pgfsys@moveto{25.97958pt}{7.96564pt}\pgfsys@lineto{48.37161pt}{30.4453pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{-0.70572}{-0.7085}{0.7085}{-0.70572}{25.83846pt}{7.82394pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.70572}{0.7085}{-0.7085}{0.70572}{48.51274pt}{30.58699pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} {{}{}}{{}}{} {}{}{}{}{}{}{{}}{}{}{}{{}}\pgfsys@moveto{50.76326pt}{7.85373pt}\pgfsys@lineto{2.92223pt}{30.5572pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.90343}{-0.42873}{0.42873}{0.90343}{50.94392pt}{7.768pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{-0.90343}{0.42873}{-0.42873}{-0.90343}{2.74156pt}{30.64293pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \par{{{}{}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-3.46465pt}{36.49539pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\overline{\pi}_{i}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{18.56488pt}{36.72873pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\overline{\pi}_{i+1}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{47.74997pt}{36.49539pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\overline{\pi}_{i}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \par{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-7.04242pt}{-1.68222pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\overline{\pi}_{i+1}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{{}{}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{22.14265pt}{-1.91556pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\overline{\pi}_{i}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{{}{}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{44.1722pt}{-1.68222pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\overline{\pi}_{i+1}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}\quad\leavevmode\hbox to72.32pt{\vbox to53.07pt{\pgfpicture\makeatletter\hbox{\hskip 10.37543pt\lower-7.32855pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{}}{{}} {}{{}}{} {{}{}}{}{}{}{}{}{{}}{}{}{}{{}}\pgfsys@moveto{2.84314pt}{7.96564pt}\pgfsys@lineto{25.23503pt}{30.4453pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{-0.70572}{-0.7085}{0.7085}{-0.70572}{2.70201pt}{7.82394pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.70572}{0.7085}{-0.7085}{0.70572}{25.37616pt}{30.58699pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} {{}{}}{{}}{} {{}{}}{}{}{}{}{}{{}}{}{}{}{{}}\pgfsys@moveto{25.97958pt}{7.96564pt}\pgfsys@lineto{48.37161pt}{30.4453pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{-0.70572}{-0.7085}{0.7085}{-0.70572}{25.83846pt}{7.82394pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.70572}{0.7085}{-0.7085}{0.70572}{48.51274pt}{30.58699pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} {{}{}}{{}}{} {}{}{}{}{}{}{{}}{}{}{}{{}}\pgfsys@moveto{50.76326pt}{7.85373pt}\pgfsys@lineto{2.92223pt}{30.5572pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.90343}{-0.42873}{0.42873}{0.90343}{50.94392pt}{7.768pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{-0.90343}{0.42873}{-0.42873}{-0.90343}{2.74156pt}{30.64293pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \par\par{{{}{}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-3.81477pt}{37.1815pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\pi_{i}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{18.56488pt}{36.72873pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\overline{\pi}_{i+1}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{47.74997pt}{36.49539pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\overline{\pi}_{i}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \par{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-7.04242pt}{-1.68222pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\overline{\pi}_{i+1}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{{}{}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{22.14265pt}{-1.91556pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\overline{\pi}_{i}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{{}{}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{43.82207pt}{-0.99611pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\pi_{i+1}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}\quad\leavevmode\hbox to72.32pt{\vbox to53.07pt{\pgfpicture\makeatletter\hbox{\hskip 10.72556pt\lower-7.32855pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{}}{{}} {}{{}}{} {{}{}}{}{}{}{}{}{{}}{}{}{}{{}}\pgfsys@moveto{2.84314pt}{7.96564pt}\pgfsys@lineto{25.23503pt}{30.4453pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{-0.70572}{-0.7085}{0.7085}{-0.70572}{2.70201pt}{7.82394pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.70572}{0.7085}{-0.7085}{0.70572}{25.37616pt}{30.58699pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} {{}{}}{{}}{} {{}{}}{}{}{}{}{}{{}}{}{}{}{{}}\pgfsys@moveto{25.97958pt}{7.96564pt}\pgfsys@lineto{48.37161pt}{30.4453pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{-0.70572}{-0.7085}{0.7085}{-0.70572}{25.83846pt}{7.82394pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.70572}{0.7085}{-0.7085}{0.70572}{48.51274pt}{30.58699pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} {{}{}}{{}}{} {}{}{}{}{}{}{{}}{}{}{}{{}}\pgfsys@moveto{50.76326pt}{7.85373pt}\pgfsys@lineto{2.92223pt}{30.5572pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.90343}{-0.42873}{0.42873}{0.90343}{50.94392pt}{7.768pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{-0.90343}{0.42873}{-0.42873}{-0.90343}{2.74156pt}{30.64293pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \par{{{}{}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-7.39255pt}{37.41484pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\pi_{i+1}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{22.14265pt}{36.49539pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\overline{\pi}_{i}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{44.1722pt}{36.72873pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\overline{\pi}_{i+1}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \par{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-3.46465pt}{-1.91556pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\overline{\pi}_{i}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{{}{}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{18.56488pt}{-1.68222pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\overline{\pi}_{i+1}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{{}{}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{47.39984pt}{-1.22945pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\pi_{i}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}\end{array}\\[55.97205pt] \text{the relations in \eqref{eq: commutation relation}:}&\begin{array}[]{c}\leavevmode\hbox to37.76pt{\vbox to48.05pt{\pgfpicture\makeatletter\hbox{\hskip 7.49648pt\lower-6.95355pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{}}{{}} {}{{}}{} {{}{}}{}{}{}{}{}{{}}{}{}{}{{}}\pgfsys@moveto{2.55862pt}{7.11212pt}\pgfsys@lineto{22.40001pt}{27.03128pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{-0.70572}{-0.7085}{0.7085}{-0.70572}{2.4175pt}{6.97043pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.70572}{0.7085}{-0.7085}{0.70572}{22.54114pt}{27.17297pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} {{}{}}{{}}{} {}{}{}{}{}{}{{}}{}{}{}{{}}\pgfsys@moveto{22.40001pt}{7.11212pt}\pgfsys@lineto{2.55862pt}{27.03128pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.70572}{-0.7085}{0.7085}{0.70572}{22.54114pt}{6.97043pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{-0.70572}{0.7085}{-0.7085}{-0.70572}{2.4175pt}{27.17297pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \par{{{}{}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-3.81477pt}{32.91397pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\pi_{i}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{18.59882pt}{33.45842pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\pi_{j}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \par{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-4.16347pt}{-0.685pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\pi_{j}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{{}{}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{18.94751pt}{-1.22945pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\pi_{i}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}\quad\leavevmode\hbox to39.9pt{\vbox to53.69pt{\pgfpicture\makeatletter\hbox{\hskip 7.14778pt\lower-7.63966pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{}}{{}} {}{{}}{} {{}{}}{}{}{}{}{}{{}}{}{}{}{{}}\pgfsys@moveto{2.84314pt}{7.96564pt}\pgfsys@lineto{25.23503pt}{30.4453pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{-0.70572}{-0.7085}{0.7085}{-0.70572}{2.70201pt}{7.82394pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.70572}{0.7085}{-0.7085}{0.70572}{25.37616pt}{30.58699pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} {{}{}}{{}}{} {}{}{}{}{}{}{{}}{}{}{}{{}}\pgfsys@moveto{25.23503pt}{7.96564pt}\pgfsys@lineto{2.84314pt}{30.4453pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.70572}{-0.7085}{0.7085}{0.70572}{25.37616pt}{7.82394pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{-0.70572}{0.7085}{-0.7085}{-0.70572}{2.70201pt}{30.58699pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \par{{{}{}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-3.81477pt}{37.1815pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\pi_{i}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{21.79396pt}{37.03984pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\overline{\pi}_{j}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \par{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-3.81334pt}{-1.37111pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\overline{\pi}_{j}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{{}{}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{21.79253pt}{-1.22945pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\pi_{i}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}\quad\leavevmode\hbox to40.6pt{\vbox to52.6pt{\pgfpicture\makeatletter\hbox{\hskip 7.49648pt\lower-7.09521pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{}}{{}} {}{{}}{} {{}{}}{}{}{}{}{}{{}}{}{}{}{{}}\pgfsys@moveto{2.84314pt}{7.96564pt}\pgfsys@lineto{25.23503pt}{30.4453pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{-0.70572}{-0.7085}{0.7085}{-0.70572}{2.70201pt}{7.82394pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.70572}{0.7085}{-0.7085}{0.70572}{25.37616pt}{30.58699pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} {{}{}}{{}}{} {}{}{}{}{}{}{{}}{}{}{}{{}}\pgfsys@moveto{25.23503pt}{7.96564pt}\pgfsys@lineto{2.84314pt}{30.4453pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.70572}{-0.7085}{0.7085}{0.70572}{25.37616pt}{7.82394pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{-0.70572}{0.7085}{-0.7085}{-0.70572}{2.70201pt}{30.58699pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \par{{{}{}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-3.46465pt}{36.49539pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\overline{\pi}_{i}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{21.44383pt}{37.72595pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\pi_{j}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \par{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-4.16347pt}{-0.685pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\pi_{j}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{{}{}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{22.14265pt}{-1.91556pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\overline{\pi}_{i}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}\quad\leavevmode\hbox to39.9pt{\vbox to53.69pt{\pgfpicture\makeatletter\hbox{\hskip 7.14635pt\lower-7.63966pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{}}{{}} {}{{}}{} {{}{}}{}{}{}{}{}{{}}{}{}{}{{}}\pgfsys@moveto{2.84314pt}{7.96564pt}\pgfsys@lineto{25.23503pt}{30.4453pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{-0.70572}{-0.7085}{0.7085}{-0.70572}{2.70201pt}{7.82394pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.70572}{0.7085}{-0.7085}{0.70572}{25.37616pt}{30.58699pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} {{}{}}{{}}{} {}{}{}{}{}{}{{}}{}{}{}{{}}\pgfsys@moveto{25.23503pt}{7.96564pt}\pgfsys@lineto{2.84314pt}{30.4453pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.70572}{-0.7085}{0.7085}{0.70572}{25.37616pt}{7.82394pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{-0.70572}{0.7085}{-0.7085}{-0.70572}{2.70201pt}{30.58699pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \par{{{}{}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-3.46465pt}{36.49539pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\overline{\pi}_{i}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{21.79396pt}{37.03984pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\overline{\pi}_{j}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \par{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-3.81334pt}{-1.37111pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\overline{\pi}_{j}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{{}{}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{22.14265pt}{-1.91556pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\overline{\pi}_{i}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}\end{array}\end{array}

Thus, we conclude that πσπ¯ρ=πu1πu2π^urπulπ¯v1π¯v2π¯vmπj0\pi_{\sigma}\overline{\pi}_{\rho}=\pi_{u_{1}}\pi_{u_{2}}\cdots\widehat{\pi}_{u_{r}}\cdots\pi_{u_{l}}\overline{\pi}_{v_{1}}\overline{\pi}_{v_{2}}\cdots\overline{\pi}_{v_{m}}\pi_{j_{0}}. ∎

Given h=σ𝔖ncσπσHn(0)h=\sum_{\sigma\in\mathfrak{S}_{n}}c_{\sigma}\pi_{\sigma}\in H_{n}(0), let us say that πσ\pi_{\sigma} appears at hh if cσ0c_{\sigma}\neq 0. The following lemma plays a key role in describing the Hn(0)H_{n}(0)-action on Hn(0)πσπ¯ρH_{n}(0)\pi_{\sigma}\overline{\pi}_{\rho}.

Lemma 3.4.

For any σ,ρ𝔖n\sigma,\rho\in\mathfrak{S}_{n}, the following hold.

  1. (1)

    πσπ¯ρ\pi_{\sigma}\overline{\pi}_{\rho} is nonzero if and only if (σρ)=(σ)+(ρ)\ell(\sigma\rho)=\ell(\sigma)+\ell(\rho).

  2. (2)

    If (σρ)=(σ)+(ρ)\ell(\sigma\rho)=\ell(\sigma)+\ell(\rho), then σρ\sigma\rho is a unique element of maximal length in {γ𝔖nπγ appears at πσπ¯ρ}\{\gamma\in\mathfrak{S}_{n}\mid\text{$\pi_{\gamma}$ appears at $\pi_{\sigma}\overline{\pi}_{\rho}$}\}.

  3. (3)

    (σρ)=(σ)+(ρ)\ell(\sigma\rho)=\ell(\sigma)+\ell(\rho) if and only if σLw0ρ1\sigma\preceq_{L}w_{0}\rho^{-1}.

Proof.

Let su1su2suls_{u_{1}}s_{u_{2}}\cdots s_{u_{l}} be a reduced expression of σ\sigma and sv1sv2svms_{v_{1}}s_{v_{2}}\cdots s_{v_{m}} a reduced expression of ρ\rho.

Let us prove the “if” part of (1) and (2) simultaneously. For each γ𝔖n\gamma\in\mathfrak{S}_{n}, let cγc_{\gamma} be the integer defined by

πσπ¯ρ\displaystyle\pi_{\sigma}\overline{\pi}_{\rho} =πσ(πv11)(πv21)(πvm1)=πσρ+γ𝔖ncγπγ.\displaystyle=\pi_{\sigma}(\pi_{v_{1}}-1)(\pi_{v_{2}}-1)\cdots(\pi_{v_{m}}-1)=\pi_{\sigma\rho}+\sum_{\gamma\in\mathfrak{S}_{n}}c_{\gamma}\pi_{\gamma}.

It is clear that cγ=0c_{\gamma}=0 for all γ𝔖n\gamma\in\mathfrak{S}_{n} with (γ)(σρ)\ell(\gamma)\geq\ell(\sigma\rho). Thus, σρ\sigma\rho is a unique element of maximal length in {γ𝔖nπγ appears at πσπ¯ρ}\{\gamma\in\mathfrak{S}_{n}\mid\text{$\pi_{\gamma}$ appears at $\pi_{\sigma}\overline{\pi}_{\rho}$}\} and πσπ¯ρ0\pi_{\sigma}\overline{\pi}_{\rho}\neq 0.

For the “only if” part of (1), we prove that if (σρ)<(σ)+(ρ)\ell(\sigma\rho)<\ell(\sigma)+\ell(\rho), then πσπ¯ρ=0\pi_{\sigma}\overline{\pi}_{\rho}=0. Since (σρ)<(σ)+(ρ)\ell(\sigma\rho)<\ell(\sigma)+\ell(\rho), there exists 1mm1\leq m^{\prime}\leq m such that

(σsv1sv2svm)<(σsv1sv2svm1),\ell(\sigma s_{v_{1}}s_{v_{2}}\cdots s_{v_{m^{\prime}}})<\ell(\sigma s_{v_{1}}s_{v_{2}}\cdots s_{v_{m^{\prime}-1}}),

that is, vmDesR(σsv1sv2svm1)v_{m^{\prime}}\in\mathrm{Des}_{R}(\sigma s_{v_{1}}s_{v_{2}}\cdots s_{v_{m^{\prime}-1}}). Let ρ=sv1sv2svm1\rho^{\prime}=s_{v_{1}}s_{v_{2}}\cdots s_{v_{m^{\prime}-1}}. Since sv1sv2svms_{v_{1}}s_{v_{2}}\cdots s_{v_{m}} is a reduced expression of ρ\rho, we have that vmDesR(σρ)DesR(ρ)v_{m^{\prime}}\in\mathrm{Des}_{R}(\sigma\rho^{\prime})\setminus\mathrm{Des}_{R}(\rho^{\prime}). By Lemma 3.3, there exists a word w=w1w2wl+m1\mathrm{w}=w_{1}w_{2}\cdots w_{l+m^{\prime}-1} such that πσπ¯ρ=ι(w)\pi_{\sigma}\overline{\pi}_{\rho^{\prime}}=\iota(\mathrm{w}) and wl+m1=πvmw_{l+m^{\prime}-1}=\pi_{v_{m^{\prime}}}. But, since πiπ¯i=0\pi_{i}\overline{\pi}_{i}=0 for all 1in11\leq i\leq n-1, this implies that

πσπ¯ρ\displaystyle\pi_{\sigma}\overline{\pi}_{\rho} =πσπ¯ρπ¯vmπ¯vm+1π¯vm=π̊i1π̊i2π̊il+m2πvmπ¯vmπ¯vm+1π¯vm=0.\displaystyle=\pi_{\sigma}\overline{\pi}_{\rho^{\prime}}\overline{\pi}_{v_{m^{\prime}}}\overline{\pi}_{v_{m^{\prime}+1}}\cdots\overline{\pi}_{v_{m}}=\mathring{\pi}_{i_{1}}\mathring{\pi}_{i_{2}}\cdots\mathring{\pi}_{i_{l+m^{\prime}-2}}\pi_{v_{m^{\prime}}}\overline{\pi}_{v_{m^{\prime}}}\overline{\pi}_{v_{m^{\prime}+1}}\cdots\overline{\pi}_{v_{m}}=0.

To prove (3), note that for any γ𝔖n\gamma\in\mathfrak{S}_{n}, (w0γ)=(w0)(γ)\ell(w_{0}\gamma)=\ell(w_{0})-\ell(\gamma) and (γ1)=(γ)\ell(\gamma^{-1})=\ell(\gamma). This implies that (σρ)=(σ)+(ρ)\ell(\sigma\rho)=\ell(\sigma)+\ell(\rho) if and only if (w0ρ1σ1)=(w0ρ1)(σ)\ell(w_{0}\rho^{-1}\sigma^{-1})=\ell(w_{0}\rho^{-1})-\ell(\sigma). Now our assertion is obvious from (w0ρ1σ1)σ=w0ρ1(w_{0}\rho^{-1}\sigma^{-1})\sigma=w_{0}\rho^{-1}. ∎

Now we are ready to state the main theorem of this subsection.

Theorem 3.5.

Let σ,ρ𝔖n\sigma,\rho\in\mathfrak{S}_{n}.

  1. (1)

    The set I(σ,ρ):={πγπ¯ργ[σ,w0ρ1]L}I(\sigma,\rho):=\{\pi_{\gamma}\overline{\pi}_{\rho}\mid\gamma\in[\sigma,w_{0}\rho^{-1}]_{L}\} forms a \mathbb{C}-basis for Hn(0)πσπ¯ρH_{n}(0)\pi_{\sigma}\overline{\pi}_{\rho}.

  2. (2)

    For any πγπ¯ρI(σ,ρ)\pi_{\gamma}\overline{\pi}_{\rho}\in I(\sigma,\rho) and 1in11\leq i\leq n-1,

    πi(πγπ¯ρ)\displaystyle\pi_{i}\cdot(\pi_{\gamma}\overline{\pi}_{\rho}) ={πγπ¯ρif iDesL(γ),πsiγπ¯ρif iDesL(γ).\displaystyle=\begin{cases}\pi_{\gamma}\overline{\pi}_{\rho}&\text{if $i\in\mathrm{Des}_{L}(\gamma)$,}\\ \pi_{s_{i}\gamma}\overline{\pi}_{\rho}&\text{if $i\notin\mathrm{Des}_{L}(\gamma)$.}\end{cases}

    Moreover, if iDesL(γ)i\notin\mathrm{Des}_{L}(\gamma), then πsiγπ¯ρ=0\pi_{s_{i}\gamma}\overline{\pi}_{\rho}=0 if and only if iDesL(γρ)i\in\mathrm{Des}_{L}(\gamma\rho).

  3. (3)

    The linear map 𝖾𝗆:𝖡(σ,ρ)Hn(0)πσπ¯ρ1w0\mathsf{em}:\mathsf{B}(\sigma,\rho)\rightarrow H_{n}(0)\pi_{\sigma}\overline{\pi}_{\rho^{-1}w_{0}} defined by

    γπγπ¯ρ1w0for γ[σ,ρ]L\gamma\mapsto\pi_{\gamma}\overline{\pi}_{\rho^{-1}w_{0}}\quad\text{for $\gamma\in[\sigma,\rho]_{L}$}

    is an Hn(0)H_{n}(0)-module isomorphism.

Proof.

The assertion (2) follows from the definition of DesL(γ)\mathrm{Des}_{L}(\gamma) and Lemma 3.4 (1).

For the assertion (1), we first observe that Hn(0)πσπ¯ρH_{n}(0)\pi_{\sigma}\overline{\pi}_{\rho} is spanned by {πγπ¯ργ[σ,w0]L}\{\pi_{\gamma}\overline{\pi}_{\rho}\mid\gamma\in[\sigma,w_{0}]_{L}\}. But, Lemma 3.4 (1) and Lemma 3.4 (3) ensure that πγπ¯ρ=0\pi_{\gamma}\overline{\pi}_{\rho}=0 unless γLw0ρ1\gamma\preceq_{L}w_{0}\rho^{-1}. To prove that I(σ,ρ)I(\sigma,\rho) is linearly independent, we suppose that γ[σ,w0ρ1]Lcγπγπ¯ρ=0\sum_{\gamma\in[\sigma,w_{0}\rho^{-1}]_{L}}c_{\gamma}\pi_{\gamma}\overline{\pi}_{\rho}=0, but not all coefficients are zero. Let A:={γ[σ,w0ρ1]Lcγ0}A:=\{\gamma\in[\sigma,w_{0}\rho^{-1}]_{L}\mid c_{\gamma}\neq 0\} and choose a permutation γ0A\gamma_{0}\in A which is of maximal length in AA. Again, Lemma 3.4 (1) and Lemma 3.4 (3) ensure that πγπ¯ρ\pi_{\gamma}\overline{\pi}_{\rho} is nonzero for all γLw0ρ1\gamma\preceq_{L}w_{0}\rho^{-1}. Combining this fact with Lemma 3.4 (2) shows that πγ0ρ\pi_{\gamma_{0}\rho} cannot appear at πγπ¯ρ\pi_{\gamma^{\prime}}\overline{\pi}_{\rho} for any γA{γ0}\gamma^{\prime}\in A\setminus\{\gamma_{0}\}. It means that πγ0ρ\pi_{\gamma_{0}\rho} appears at γ[σ,w0ρ1]Lcγπγπ¯ρ=0\sum_{\gamma\in[\sigma,w_{0}\rho^{-1}]_{L}}c_{\gamma}\pi_{\gamma}\overline{\pi}_{\rho}=0, which is absurd.

Finally, let us prove the assertion (3). Suppose that γ[σ,ρ]L\gamma\in[\sigma,\rho]_{L} and iDesL(γ)i\notin\mathrm{Des}_{L}(\gamma). For our purpose, by virtue of (1) and (2), we have only to prove that siγ[σ,ρ]Ls_{i}\gamma\in[\sigma,\rho]_{L} is equivalent to iDesL(γρ1w0)i\notin\mathrm{Des}_{L}(\gamma\rho^{-1}w_{0}). Let us first show that siγ[σ,ρ]Ls_{i}\gamma\in[\sigma,\rho]_{L} implies that iDesL(γρ1w0)i\notin\mathrm{Des}_{L}(\gamma\rho^{-1}w_{0}). Since siγ[σ,ρ]Ls_{i}\gamma\in[\sigma,\rho]_{L}, there exists ξ𝔖n\xi\in\mathfrak{S}_{n} such that

ρ=ξsiγand(ρ)=(ξ)+(siγ).\displaystyle\rho=\xi s_{i}\gamma\quad\text{and}\quad\ell(\rho)=\ell(\xi)+\ell(s_{i}\gamma). (3.6)

From the second equality in (3.6) together with the assumption iDesL(γ)i\notin\mathrm{Des}_{L}(\gamma), we deduce that (ξ)+(siγ)=(ξ)+(si)+(γ)\ell(\xi)+\ell(s_{i}\gamma)=\ell(\xi)+\ell(s_{i})+\ell(\gamma). Applying this to the first equality in (3.6) says that iDesR(ξ)i\notin\mathrm{Des}_{R}(\xi), equivalently, iDesL(ξ1w0)i\in\mathrm{Des}_{L}(\xi^{-1}w_{0}) or equally iDesL(siξ1w0)i\notin\mathrm{Des}_{L}(s_{i}\xi^{-1}w_{0}). Now, iDesL(γρ1w0)i\notin\mathrm{Des}_{L}(\gamma\rho^{-1}w_{0}) is obvious since γρ1w0=siξ1w0\gamma\rho^{-1}w_{0}=s_{i}\xi^{-1}w_{0} by the first equality in (3.6). Next, let us show that iDesL(γρ1w0)i\notin\mathrm{Des}_{L}(\gamma\rho^{-1}w_{0}) implies that siγ[σ,ρ]Ls_{i}\gamma\in[\sigma,\rho]_{L}. The assumption iDesL(γρ1w0)i\notin\mathrm{Des}_{L}(\gamma\rho^{-1}w_{0}) says that there exists a permutation ξ𝔖n\xi\in\mathfrak{S}_{n} such that ξ(siγ)ρ1w0=w0\xi(s_{i}\gamma)\rho^{-1}w_{0}=w_{0} and (w0)=(ξ)+(siγ)+(ρw0)\ell(w_{0})=\ell(\xi)+\ell(s_{i}\gamma)+\ell(\rho w_{0}), thus siγLρs_{i}\gamma\preceq_{L}\rho. ∎

In Subsection 2.3, we introduced projective indecomposable modules 𝒫α\mathcal{P}_{\alpha} and irreducible modules 𝐅α\mathbf{F}_{\alpha}. To be precise, 𝒫α=Hn(0)πw0(αc)π¯w0(α)\mathcal{P}_{\alpha}=H_{n}(0)\pi_{w_{0}(\alpha^{\mathrm{c}})}\overline{\pi}_{w_{0}(\alpha)} and 𝐅α\mathbf{F}_{\alpha} is isomorphic to top(𝒫α)\mathrm{top}(\mathcal{P}_{\alpha}) and one-dimensional. By applying Theorem 3.5, we derive the following isomorphisms of Hn(0)H_{n}(0)-modules:

𝒫α𝖡(w0(αc),w0w0(α))and𝐅α𝖡(w0(αc),w0(αc)).\displaystyle\mathcal{P}_{\alpha}\cong\mathsf{B}(w_{0}(\alpha^{\mathrm{c}}),w_{0}w_{0}(\alpha))\quad\text{and}\quad\mathbf{F}_{\alpha}\cong\mathsf{B}(w_{0}(\alpha^{\mathrm{c}}),w_{0}(\alpha^{\mathrm{c}})).
Example 3.6.

Since ρ1w0=52314𝔖5\rho^{-1}w_{0}=52314\in\mathfrak{S}_{5} with ρ=24315\rho=24315, by Theorem 3.5, we have an H5(0)H_{5}(0)-module isomorphism 𝖡(14325,24315)H5(0)π14325π¯52314\mathsf{B}(14325,24315)\rightarrow H_{5}(0)\pi_{14325}\overline{\pi}_{52314}. This is illustrated in the following figure:

𝖡(14325,24315)\mathsf{B}(14325,24315)1432514325 π2,π3\pi_{2},\pi_{3}0π4\pi_{4}π1\pi_{1}2431524315 π1,π3\pi_{1},\pi_{3}π2,π4\pi_{2},\pi_{4}0\congH5(0)π14325π¯52314H_{5}(0)\pi_{14325}\overline{\pi}_{52314}π14325π¯52314\pi_{14325}\overline{\pi}_{52314} π2,π3\pi_{2},\pi_{3}0π4\pi_{4}π1\pi_{1}π24315π¯52314\pi_{24315}\overline{\pi}_{52314} π1,π3\pi_{1},\pi_{3}π2,π4\pi_{2},\pi_{4}0
Remark 3.7.

It is remarked in [8, Definition 4.3] that all the specializations q=0q=0 of the Specht modules of Hn(q)H_{n}(q) are of the form Hn(0)π¯ξπw0(αc)H_{n}(0)\overline{\pi}_{\xi}\pi_{w_{0}(\alpha^{\mathrm{c}})} for some αn\alpha\models n and ξ[w0(α),w0w0(αc)]L\xi\in[w_{0}(\alpha),w_{0}w_{0}(\alpha^{\mathrm{c}})]_{L}. On the other hand, following the way as in Theorem 3.5, we can deduce that the \mathbb{C}-linear map

𝖾𝗆¯:𝖡¯(σ,ρ)Hn(0)π¯σπρ1w0,γπ¯γπρ1w0for γ[σ,ρ]L\overline{\mathsf{em}}:\overline{\mathsf{B}}(\sigma,\rho)\rightarrow H_{n}(0)\overline{\pi}_{\sigma}\pi_{\rho^{-1}w_{0}},\quad\gamma\mapsto\overline{\pi}_{\gamma}\pi_{\rho^{-1}w_{0}}\quad\text{for $\gamma\in[\sigma,\rho]_{L}$}

is an Hn(0)H_{n}(0)-module isomorphism. Combining these results, we see that all the specializations q=0q=0 of the Specht modules of Hn(q)H_{n}(q) appear as 𝖡¯(ξ,w0w0(αc))\overline{\mathsf{B}}(\xi,w_{0}w_{0}(\alpha^{\mathrm{c}})) for some αn\alpha\models n and ξ[w0(α),w0w0(αc)]L\xi\in[w_{0}(\alpha),w_{0}w_{0}(\alpha^{\mathrm{c}})]_{L}.

3.3. Restriction and Mackey formula

Throughout this subsection, mm and nn denote positive integers.

Hivert, Novelli, and Thibon [13] presented a formula on induction product of semi-combinatorial modules associated with Yang-Baxter intervals. Using this formula, one can derive the following lemma.

Lemma 3.8.

(cf. [13, Theorem 3.8]) For any σ,ρ𝔖m\sigma,\rho\in\mathfrak{S}_{m} and σ,ρ𝔖n\sigma^{\prime},\rho^{\prime}\in\mathfrak{S}_{n}, we have

𝖡(σ,ρ)𝖡(σ,ρ)𝖡(σσ,ρ¯ρ).\mathsf{B}(\sigma,\rho)\boxtimes\mathsf{B}(\sigma^{\prime},\rho^{\prime})\cong\mathsf{B}(\sigma\;{\bullet}\;\sigma^{\prime},~{}\rho\;\overline{\bullet}\;\rho^{\prime}).

Here,

(σσ)(i)\displaystyle(\sigma\;{\bullet}\;\sigma^{\prime})(i) :={σ(i)if 1im,σ(im)+mif m+1im+n,\displaystyle:=\begin{cases}\sigma(i)&\text{if $1\leq i\leq m$,}\\ \sigma^{\prime}(i-m)+m&\text{if $m+1\leq i\leq m+n$,}\end{cases}

and

(ρ¯ρ)(i)\displaystyle(\rho\;\overline{\bullet}\;\rho^{\prime})(i) :={ρ(i)+nif 1im,ρ(im)if m+1im+n.\displaystyle:=\begin{cases}\rho(i)+n&\text{if $1\leq i\leq m$,}\\ \rho^{\prime}(i-m)&\text{if $m+1\leq i\leq m+n$.}\\ \end{cases}
Remark 3.9.

For σ𝔖m\sigma\in\mathfrak{S}_{m} and σ𝔖n\sigma^{\prime}\in\mathfrak{S}_{n}, let σ\shuffleσ\sigma\shuffle\sigma^{\prime} be the set of permutations γ𝔖m+n\gamma\in\mathfrak{S}_{m+n} satisfying that σ(1)σ(2)σ(m)\sigma(1)\sigma(2)\cdots\sigma(m) and (σ(1)+m)(σ(2)+m)(σ(n)+m)(\sigma^{\prime}(1)+m)(\sigma^{\prime}(2)+m)\cdots(\sigma^{\prime}(n)+m) are subwords of γ(1)γ(2)γ(m+n)\gamma(1)\gamma(2)\cdots\gamma(m+n) and σ\shuffle~σ:={γ1γσ1\shuffleσ1}\sigma\,\widetilde{\shuffle}\,\sigma^{\prime}:=\{\gamma^{-1}\mid\gamma\in\sigma^{-1}\,\shuffle\,\sigma^{\prime-1}\}. For X𝔖mX\subseteq\mathfrak{S}_{m} and Y𝔖nY\subseteq\mathfrak{S}_{n}, let

X\shuffle~Y:=σX,σYσ\shuffle~σ.X\,\widetilde{\shuffle}\,Y:=\bigcup_{\sigma\in X,\,\sigma^{\prime}\in Y}\sigma\,\widetilde{\shuffle}\,\sigma^{\prime}.

It is not difficult to show that [σσ,ρ¯ρ]L=[σ,ρ]L\shuffle~[σ,ρ]L[\sigma\;{\bullet}\;\sigma^{\prime},\rho\;\overline{\bullet}\;\rho^{\prime}]_{L}=[\sigma,\rho]_{L}\,\widetilde{\shuffle}\,[\sigma^{\prime},\rho^{\prime}]_{L} for σ,ρ𝔖m\sigma,\rho\in\mathfrak{S}_{m} and σ,ρ𝔖n\sigma^{\prime},\rho^{\prime}\in\mathfrak{S}_{n}. Therefore, Lemma 3.8 can be rewritten as 𝖡(σ,ρ)𝖡(σ,ρ)𝖡([σ,ρ]L\shuffle~[σ,ρ]L)\mathsf{B}(\sigma,\rho)\boxtimes\mathsf{B}(\sigma^{\prime},\rho^{\prime})\cong\mathsf{B}([\sigma,\rho]_{L}\,\widetilde{\shuffle}\,[\sigma^{\prime},\rho^{\prime}]_{L}). In particular, 𝖡(σ,σ)𝖡(ρ,ρ)𝖡(σ\shuffle~ρ)\mathsf{B}(\sigma,\sigma)\boxtimes\mathsf{B}(\rho,\rho)\cong\mathsf{B}(\sigma\,\widetilde{\shuffle}\,\rho), which can be regarded as a lift of

FαFβ=γσ\shuffleρFcomp(DesR(γ)).\displaystyle F_{\alpha}F_{\beta}=\sum_{\gamma\in\sigma\shuffle\rho}F_{\mathrm{comp}(\mathrm{Des}_{R}(\gamma))}.

Here, σ𝔖(α)\sigma\in\mathfrak{S}_{\ell(\alpha)} and ρ𝔖(β)\rho\in\mathfrak{S}_{\ell(\beta)} are arbitrary permutations satisfying DesR(σ)=set(α)\mathrm{Des}_{R}(\sigma)=\mathrm{set}(\alpha) and DesR(ρ)=set(β)\mathrm{Des}_{R}(\rho)=\mathrm{set}(\beta).

In contrast to induction product, restriction of semi-combinatorial modules associated with Yang-Baxter intervals has not yet been well studied except for the simple and projective indecomposable modules (see [14]). 222 In fact, in [14], the author considered the induction product and restriction of the simple and projective indecomposable modules over the 0-Hecke algebra of not only type AA but also type BB and DD. The main purpose of this section is to provide an explicit restriction rule for weak Bruhat interval modules. To begin with, let us collect necessary notations. Let ([m+n]m)\left(\begin{array}[]{c}[m+n]\\ m\end{array}\right) be the set of mm-element subsets of [m+n][m+n], on which 𝔖m+n\mathfrak{S}_{m+n} acts in the natural way, that is, γJ:=γ(J)\gamma^{\prime}\cdot J:=\gamma^{\prime}(J). Given σ,ρ𝔖m+n\sigma,\rho\in\mathfrak{S}_{m+n} and J([m+n]m)J\in\left(\begin{array}[]{c}[m+n]\\ m\end{array}\right), let

(σ,ρ;J)\displaystyle\mathfrak{I}(\sigma,\rho;J) :={γ[σ,ρ]Lγ1([1,m])=J}and\displaystyle:=\{\gamma\in[\sigma,\rho]_{L}\mid\gamma^{-1}([1,m])=J\}\ \ \text{and} (3.7)
𝒮σ,ρ(m)\displaystyle\mathscr{S}_{\sigma,\rho}^{(m)} :={J([m+n]m)|(σ,ρ;J)}.\displaystyle:=\left\{J\in\left(\begin{array}[]{c}[m+n]\\ m\end{array}\right)\;\middle|\;\mathfrak{I}(\sigma,\rho;J)\neq\emptyset\right\}.

For instance, (2134,4312;{2,3})={3124,4123,3214,4213}\mathfrak{I}(2134,4312;{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}\{2,3\}})=\{3{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}12}4,4{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}12}3,3{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}21}4,4{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}21}3\}. A simple calculation shows that 𝒮2134,4312(2)={{1,2},{2,3},{3,4}}\mathscr{S}_{2134,4312}^{(2)}=\{\{1,2\},\{2,3\},\{3,4\}\}.

When J={j1<j2<<jm}J=\{j_{1}<j_{2}<\cdots<j_{m}\}, write [m+n]J[m+n]\setminus J as {j1c<j2c<<jnc}\{j^{\mathrm{c}}_{1}<j^{\mathrm{c}}_{2}<\cdots<j^{\mathrm{c}}_{n}\}. Let permJ\mathrm{perm}_{J} and permJ\mathrm{perm}^{J} be the permutations in 𝔖m+n\mathfrak{S}_{m+n} given by

{permJ(jk)=k,permJ(jsc)=m+s,and{permJ(jk)=mk+1,permJ(jsc)=m+ns+1,(1km,1sn),\left\{\begin{array}[]{l}\mathrm{perm}_{J}(j_{k})=k,\\ \mathrm{perm}_{J}(j^{\mathrm{c}}_{s})=m+s,\end{array}\right.\ \ \text{and}\ \ \left\{\begin{array}[]{l}\mathrm{perm}^{J}(j_{k})=m-k+1,\\ \mathrm{perm}^{J}(j^{\mathrm{c}}_{s})=m+n-s+1,\end{array}\right.\ \ (1\leq k\leq m,~{}1\leq s\leq n),

respectively. For instance, perm{2,3}=3124\mathrm{perm}_{\{2,3\}}=3124 and perm{2,3}=4213\mathrm{perm}^{\{2,3\}}=4213. Note that

(id,w0;J)=[permJ,permJ]Lfor any J([m+n]m),\displaystyle\mathfrak{I}(\mathrm{id},w_{0};J)=[\mathrm{perm}_{J},\mathrm{perm}^{J}]_{L}\quad\text{for any $J\in\left(\begin{array}[]{c}[m+n]\\ m\end{array}\right)$,} (3.10)

which will be used in the proof of Lemma 3.10. For each J([m+n]m)J\in\left(\begin{array}[]{c}[m+n]\\ m\end{array}\right), let

σJ:=permσJσandρJ:=perm(w0ρ)Jw0ρ.\displaystyle\sigma_{\scalebox{0.55}{$J$}}:=\mathrm{perm}_{\sigma\cdot J}\sigma\quad\text{and}\quad\rho^{\scalebox{0.55}{$J$}}:=\mathrm{perm}^{(w_{0}\rho)\cdot J}w_{0}\rho. (3.11)

The following lemma shows that [σ,ρ]L=J𝒮σ,ρ(m)[σJ,ρJ]L[\sigma,\rho]_{L}=\bigcup\limits_{J\in\mathscr{S}_{\sigma,\rho}^{(m)}}[\sigma_{\scalebox{0.55}{$J$}},\rho^{\scalebox{0.55}{$J$}}]_{L}.

Lemma 3.10.

Let σ,ρ𝔖m+n\sigma,\rho\in\mathfrak{S}_{m+n}. For J𝒮σ,ρ(m)J\in\mathscr{S}_{\sigma,\rho}^{(m)}, we have

(σ,ρ;J)=[σJ,ρJ]L.\displaystyle\mathfrak{I}(\sigma,\rho;J)=[\sigma_{\scalebox{0.55}{$J$}},\rho^{\scalebox{0.55}{$J$}}]_{L}.
Proof.

Let us fix J𝒮σ,ρ(m)J\in\mathscr{S}_{\sigma,\rho}^{(m)}. It is well known that given γ𝔖m+n\gamma\in\mathfrak{S}_{m+n}, if σLρ\sigma\preceq_{L}\rho and σγLργ\sigma\gamma\preceq_{L}\rho\gamma, then there exists an isomorphism fγ:[σ,ρ]L[σγ,ργ]Lf_{\gamma}:[\sigma,\rho]_{L}\rightarrow[\sigma\gamma,\rho\gamma]_{L} defined by ξξγ\xi\mapsto\xi\gamma (for instance, see [4, Proposition 3.1.6]). By the definition of (σ,ρ;J)\mathfrak{I}(\sigma,\rho;J) in (3.7), for all γ𝔖m+n\gamma\in\mathfrak{S}_{m+n}, ξ(σ,ρ;J)\xi\in\mathfrak{I}(\sigma,\rho;J) if and only if ξγ(σγ,ργ;γ1J)\xi\gamma\in\mathfrak{I}(\sigma\gamma,\rho\gamma;\gamma^{-1}\cdot J). Indeed, the restriction

fγ|(σ,ρ;J):(σ,ρ;J)(σγ,ργ;γ1J)\displaystyle f_{\gamma}|_{\mathfrak{I}(\sigma,\rho;J)}:\mathfrak{I}(\sigma,\rho;J)\rightarrow\mathfrak{I}(\sigma\gamma,\rho\gamma;\gamma^{-1}\cdot J) (3.12)

is an isomorphism of posets.

Since J𝒮σ,ρ(m)J\in\mathscr{S}_{\sigma,\rho}^{(m)}, the set fσ1((σ,ρ;J))=(id,ρσ1;σJ)f_{\sigma^{-1}}(\mathfrak{I}(\sigma,\rho;J))=\mathfrak{I}(\mathrm{id},\rho\sigma^{-1};\sigma\cdot J) is nonempty. Combining (3.10) with the equality (id,ρσ1;σJ)=[id,ρσ1]L(id,w0;σJ)\mathfrak{I}(\mathrm{id},\rho\sigma^{-1};\sigma\cdot J)=[\mathrm{id},\rho\sigma^{-1}]_{L}\cap\mathfrak{I}(\mathrm{id},w_{0};\sigma\cdot J) yields that permσJLξ\mathrm{perm}_{\sigma\cdot J}\preceq_{L}\xi for any ξ(id,ρσ1;σJ)\xi\in\mathfrak{I}(\mathrm{id},\rho\sigma^{-1};\sigma\cdot J). Since [id,ξ]L[id,ρσ1]L[\mathrm{id},\xi]_{L}\subseteq[\mathrm{id},\rho\sigma^{-1}]_{L}, permσJ\mathrm{perm}_{\sigma\cdot J} is contained in [id,ρσ1]L[\mathrm{id},\rho\sigma^{-1}]_{L}. Therefore, permσJLξ\mathrm{perm}_{\sigma\cdot J}\preceq_{L}\xi for all ξ(id,ρσ1;σJ)=[id,ρσ1]L(id,w0;σJ)\xi\in\mathfrak{I}(\mathrm{id},\rho\sigma^{-1};\sigma\cdot J)=[\mathrm{id},\rho\sigma^{-1}]_{L}\cap\mathfrak{I}(\mathrm{id},w_{0};\sigma\cdot J). Via the isomorphism (3.12), we have σJ(σ,ρ;J)\sigma_{\scalebox{0.55}{$J$}}\in\mathfrak{I}(\sigma,\rho;J) and σJLξ\sigma_{\scalebox{0.55}{$J$}}\preceq_{L}\xi for all ξ(σ,ρ;J)\xi\in\mathfrak{I}(\sigma,\rho;J). In the same manner, one can prove that ρJ(σ,ρ;J)\rho^{\scalebox{0.55}{$J$}}\in\mathfrak{I}(\sigma,\rho;J) and ξLρJ\xi\preceq_{L}\rho^{\scalebox{0.55}{$J$}} for all ξ(σ,ρ;J)\xi\in\mathfrak{I}(\sigma,\rho;J). ∎

By a careful reading of the proof of Lemma 3.10, one can derive that

𝒮σ,ρ(m)={J([m+n]m)|permσJ[id,ρσ1]L}.\mathscr{S}_{\sigma,\rho}^{(m)}=\left\{J\in\left(\begin{array}[]{c}[m+n]\\ m\end{array}\right)\;\middle|\;\mathrm{perm}_{\sigma\cdot J}\in[\mathrm{id},\rho\sigma^{-1}]_{L}\right\}.
Example 3.11.

For σ=2134\sigma=2134 and ρ=4312\rho=4312,

𝒮σ,ρ(2)={{1,2},{2,3},{3,4}}.\mathscr{S}_{\sigma,\rho}^{(2)}=\{\{1,2\},\{2,3\},\{3,4\}\}.

One can easily calculate that

σ{1,2}=2134,σ{2,3}=3124,σ{3,4}=4312\displaystyle\sigma_{\{1,2\}}=2134,\quad\sigma_{\{2,3\}}=3124,\quad\sigma_{\{3,4\}}=4312

and

ρ{1,2}=2134,ρ{2,3}=4213,ρ{3,4}=4312.\displaystyle\rho^{\{1,2\}}=2134,\quad\rho^{\{2,3\}}=4213,\quad\rho^{\{3,4\}}=4312.

Thus, by Lemma 3.10 (2),

[2134,4312]L\displaystyle[2134,4312]_{L} =[2134,2134]L[3124,4213]L[4312,4312]L.\displaystyle=[2134,2134]_{L}\cup[3124,4213]_{L}\cup[4312,4312]_{L}.

Figure 3.2 illustrates this partition.

Given γ𝔖m+n\gamma\in\mathfrak{S}_{m+n}, let γ1([1,m])={i1<i2<<im}\gamma^{-1}([1,m])=\{i_{1}<i_{2}<\cdots<i_{m}\} and γ1([m+1,m+n])={i1<i2<<in}\gamma^{-1}([m+1,m+n])=\{i^{\prime}_{1}<i^{\prime}_{2}<\cdots<i^{\prime}_{n}\}. Let γm𝔖m\gamma_{\leq m}\in\mathfrak{S}_{m} and γ>m𝔖n\gamma_{>m}\in\mathfrak{S}_{n} be the permutations given by

γm(j)=γ(ij)(1jm)andγ>m(j)=γ(ij)m(1jn).\displaystyle\gamma_{\leq m}(j)=\gamma(i_{j})\quad(1\leq j\leq m)\quad\text{and}\quad\gamma_{>m}(j)=\gamma(i^{\prime}_{j})-m\quad(1\leq j\leq n). (3.13)

For instance, if m=3m=3, n=5n=5, and γ=58326147\gamma=58{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}32}6{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}1}47, then γ3=321\gamma_{\leq 3}={\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}321} and γ>3=25314\gamma_{>3}=25314.

Theorem 3.12.

For σ,ρ𝔖m+n\sigma,\rho\in\mathfrak{S}_{m+n}, we have

𝖡(σ,ρ)Hm(0)Hn(0)Hm+n(0)J𝒮σ,ρ(m)𝖡((σJ)m,(ρJ)m)𝖡((σJ)>m,(ρJ)>m).\displaystyle\mathsf{B}(\sigma,\rho)\downarrow_{H_{m}(0)\otimes H_{n}(0)}^{H_{m+n}(0)}\hskip 4.30554pt\cong\bigoplus_{J\in\mathscr{S}_{\sigma,\rho}^{(m)}}\mathsf{B}((\sigma_{\scalebox{0.55}{$J$}})_{\leq m},(\rho^{\scalebox{0.55}{$J$}})_{\leq m})\otimes\mathsf{B}((\sigma_{\scalebox{0.55}{$J$}})_{>m},(\rho^{\scalebox{0.55}{$J$}})_{>m}).
Proof.

For each J𝒮σ,ρ(m)J\in\mathscr{S}_{\sigma,\rho}^{(m)}, we observe that (σ,ρ;J){0}\mathfrak{I}(\sigma,\rho;J)\cup\{0\} is closed under the πi\pi_{i}-action for i[m+n1]{m}i\in[m+n-1]\setminus\{m\}. This means, by virtue of Lemma 3.10, that [σJ,ρJ]L\mathbb{C}\,[\sigma_{\scalebox{0.55}{$J$}},\rho^{\scalebox{0.55}{$J$}}]_{L} is an Hm(0)Hn(0)H_{m}(0)\otimes H_{n}(0)-module. Since

[σ,ρ]L=J𝒮σ,ρ(m)[σJ,ρJ]L,[\sigma,\rho]_{L}=\bigcup_{J\in\mathscr{S}_{\sigma,\rho}^{(m)}}[\sigma_{\scalebox{0.55}{$J$}},\rho^{\scalebox{0.55}{$J$}}]_{L},

it follows that

𝖡(σ,ρ)Hm(0)Hn(0)Hm+n(0)J𝒮σ,ρ(m)[σJ,ρJ]L(as Hm(0)Hn(0)-modules).\displaystyle\mathsf{B}(\sigma,\rho)\downarrow_{H_{m}(0)\otimes H_{n}(0)}^{H_{m+n}(0)}\ \hskip 2.15277pt\cong\bigoplus_{J\in\mathscr{S}_{\sigma,\rho}^{(m)}}\mathbb{C}\,[\sigma_{\scalebox{0.55}{$J$}},\rho^{\scalebox{0.55}{$J$}}]_{L}\quad\text{(as $H_{m}(0)\otimes H_{n}(0)$-modules).}

On the other hand, [σJ,ρJ]L[\sigma_{\scalebox{0.55}{$J$}},\rho^{\scalebox{0.55}{$J$}}]_{L} is in bijection with [(σJ)m,(ρJ)m]L×[(σJ)>m,(ρJ)>m]L[(\sigma_{\scalebox{0.55}{$J$}})_{\leq m},(\rho^{\scalebox{0.55}{$J$}})_{\leq m}]_{L}\times[(\sigma_{\scalebox{0.55}{$J$}})_{>m},(\rho^{\scalebox{0.55}{$J$}})_{>m}]_{L} under γ(γm,γ>m)\gamma\mapsto(\gamma_{\leq m},\gamma_{>m}), which again induces an Hm(0)Hn(0)H_{m}(0)\otimes H_{n}(0)-module isomorphism

[σJ,ρJ]L𝖡((σJ)m,(ρJ)m)𝖡((σJ)>m,(ρJ)>m),γ(γm,γ>m),\mathbb{C}\,[\sigma_{\scalebox{0.55}{$J$}},\rho^{\scalebox{0.55}{$J$}}]_{L}\to\mathsf{B}((\sigma_{\scalebox{0.55}{$J$}})_{\leq m},(\rho^{\scalebox{0.55}{$J$}})_{\leq m})\otimes\mathsf{B}((\sigma_{\scalebox{0.55}{$J$}})_{>m},(\rho^{\scalebox{0.55}{$J$}})_{>m}),\quad\gamma\mapsto(\gamma_{\leq m},\gamma_{>m}),

as required. ∎

Example 3.13.

Using Theorem 3.12, we derive that 𝖡(2134,4312)H2(0)H2(0)H4(0)\mathsf{B}(2134,4312)\downarrow^{H_{4}(0)}_{H_{2}(0)\otimes H_{2}(0)} is isomorphic to

(𝖡(21,21)𝖡(12,12))(𝖡(12,21)𝖡(12,21))(𝖡(12,12)𝖡(21,21)).(\mathsf{B}(21,21)\otimes\mathsf{B}(12,12))\oplus(\mathsf{B}(12,21)\otimes\mathsf{B}(12,21))\oplus(\mathsf{B}(12,12)\otimes\mathsf{B}(21,21)).

The difference between the H4(0)H_{4}(0)-action and the H2(0)H2(0)H_{2}(0)\otimes H_{2}(0)-action on 𝖡(2134,4312)\mathsf{B}(2134,4312) is well illustrated in Figure 3.2.

𝖡(2134,4312)\mathsf{B}(2134,4312)432143214231423143124312342134214132413242134213324132413412341224312431412341233214321431423142241324131432143223412341312431242314231421432143142314231342134221342134132413241243124312341234π2\pi_{2}π1\pi_{1}π3\pi_{3}π3\pi_{3}π1\pi_{1}π2\pi_{2}π2\pi_{2}π1\pi_{1}π3\pi_{3}π1,π2\pi_{1},\pi_{2}π3\pi_{3}π2\pi_{2}π1,π3\pi_{1},\pi_{3}π1\pi_{1}π2,π3\pi_{2},\pi_{3}
𝖡(2134,4312)H2(0)H2(0)H4(0)\mathsf{B}(2134,4312)\downarrow^{H_{4}(0)}_{H_{2}(0)\otimes H_{2}(0)}432143214231423143124312342134214132413242134213324132413412341224312431412341233214321431423142241324131432143223412341312431242314231421432143142314231342134221342134132413241243124312341234π1\pi_{1}π3\pi_{3}π3\pi_{3}π1\pi_{1}π1\pi_{1}π3\pi_{3}π1\pi_{1}π3\pi_{3}π1,π3\pi_{1},\pi_{3}π1\pi_{1}π3\pi_{3}
Figure 3.2. 𝖡(2134,4312)\mathsf{B}(2134,4312) and 𝖡(2134,4312)H2(0)H2(0)H4(0)\mathsf{B}(2134,4312)\downarrow^{H_{4}(0)}_{H_{2}(0)\otimes H_{2}(0)}

Next, let us deal with a Mackey formula for weak Bruhat interval modules. Bergeron and Li [3, Subsection 3.1 (5)] provide a Mackey formula working on the Grothendieck ring 𝒢=n0𝒢0(Hn(0))\mathcal{G}=\bigoplus_{n\geq 0}\mathcal{G}_{0}(H_{n}(0)) of 0-Hecke algebras. It says that for any Hm(0)H_{m}(0)-module MM, Hn(0)H_{n}(0)-module NN, and k[1,m+n1]k\in[1,m+n-1],

[(MN)Hk(0)Hm+nkHm+n(0)]\displaystyle[(M\boxtimes N)\downarrow^{H_{m+n}(0)}_{H_{k}(0)\otimes H_{m+n-k}}]
=t+s=ktm,sn[𝚃t,s(MHt(0)Hmt(0)Hm(0)NHs(0)Hns(0)Hn(0))Ht(0)Hs(0)Hmt(0)Hns(0)Hk(0)Hm+nk],\displaystyle=\sum_{\begin{subarray}{c}t+s=k\\ t\leq m,~{}s\leq n\end{subarray}}\left[\mathtt{T}_{t,s}\left(M\downarrow^{H_{m}(0)}_{H_{t}(0)\otimes H_{m-t}(0)}\otimes\;N\downarrow^{H_{n}(0)}_{H_{s}(0)\otimes H_{n-s}(0)}\right)\uparrow^{H_{k}(0)\otimes H_{m+n-k}}_{H_{t}(0)\otimes H_{s}(0)\otimes H_{m-t}(0)\otimes H_{n-s}(0)}\right],

where

𝚃t,s:mod(Ht(0)Hmt(0)Hs(0)Hns(0))mod(Ht(0)Hs(0)Hmt(0)Hns(0))\mathtt{T}_{t,s}:\mathrm{mod}\,(H_{t}(0)\otimes H_{m-t}(0)\otimes H_{s}(0)\otimes H_{n-s}(0))\rightarrow\mathrm{mod}\,(H_{t}(0)\otimes H_{s}(0)\otimes H_{m-t}(0)\otimes H_{n-s}(0))

is the functor sending M1M2N1N2M1N1M2N2M_{1}\otimes M_{2}\otimes N_{1}\otimes N_{2}\mapsto M_{1}\otimes N_{1}\otimes M_{2}\otimes N_{2}. On the other hand, by combining Lemma 3.8 with Theorem 3.12, we can derive a formula working weak Bruhat interval modules:

(𝖡(σ,ρ)𝖡(σ,ρ))Hk(0)Hm+nk(0)Hm+n(0)J𝒮σσ,ρ¯ρ(k)𝖡(((σσ)J)k,((ρ¯ρ)J)k)𝖡(((σσ)J)>k,((ρ¯ρ)J)>k).\displaystyle\begin{aligned} &(\mathsf{B}(\sigma,\rho)\boxtimes\mathsf{B}(\sigma^{\prime},\rho^{\prime}))\downarrow_{H_{k}(0)\otimes H_{m+n-k}(0)}^{H_{m+n}(0)}\\ &\cong\bigoplus_{J\in\mathscr{S}_{\sigma\;{\bullet}\;\sigma^{\prime},\rho\;\overline{\bullet}\;\rho^{\prime}}^{(k)}}\mathsf{B}\big{(}((\sigma\;{\bullet}\;\sigma^{\prime})_{\scalebox{0.55}{$J$}})_{\leq k},((\rho\;\overline{\bullet}\;\rho^{\prime})^{\scalebox{0.55}{$J$}})_{\leq k}\big{)}\otimes\mathsf{B}\big{(}((\sigma\;{\bullet}\;\sigma^{\prime})_{\scalebox{0.55}{$J$}})_{>k},((\rho\;\overline{\bullet}\;\rho^{\prime})^{\scalebox{0.55}{$J$}})_{>k}\big{)}.\end{aligned} (3.14)

Although it is very naive, one can expect that Bergeron and Li’s Mackey formula lifts to our formula at least for weak Bruhat interval modules.

To prove our result, we need the notion of standardization. For σ𝔖n\sigma\in\mathfrak{S}_{n} and 1kkn1\leq k^{\prime}\leq k\leq n, let 𝚜𝚝(σ;[k,k])\mathtt{st}(\sigma;[k^{\prime},k]) be a unique permutation in 𝔖kk+1\mathfrak{S}_{k-k^{\prime}+1} satisfying the condition that 𝚜𝚝(σ;[k,k])(i)<𝚜𝚝(σ;[k,k])(j)\mathtt{st}(\sigma;[k^{\prime},k])(i)<\mathtt{st}(\sigma;[k^{\prime},k])(j) if and only if σ(k+i1)<σ(k+j1)\sigma(k^{\prime}+i-1)<\sigma(k^{\prime}+j-1) for all 1i,jkk+11\leq i,j\leq k-k^{\prime}+1. For instance, if σ=25143𝔖5\sigma=25143\in\mathfrak{S}_{5}, then 𝚜𝚝(σ;[2,4])=312𝔖3\mathtt{st}(\sigma;[2,4])=312\in\mathfrak{S}_{3}. This standardization preserves the left weak Bruhat order on 𝔖n\mathfrak{S}_{n}, in other words,

𝚜𝚝(σ;[k,k])L𝚜𝚝(ρ;[k,k]) whenever σLρ.\mathtt{st}(\sigma;[k^{\prime},k])\preceq_{L}\mathtt{st}(\rho;[k^{\prime},k])\text{ whenever }\sigma\preceq_{L}\rho. (3.15)

The following theorem shows that (3.14) is a natural lift of Bergeron and Li’s Mackey formula.

Theorem 3.14.

For σ,ρ𝔖m\sigma,\rho\in\mathfrak{S}_{m}, σ,ρ𝔖n\sigma^{\prime},\rho^{\prime}\in\mathfrak{S}_{n}, and 1k<m+n1\leq k<m+n,

(𝖡(σ,ρ)𝖡(σ,ρ))Hk(0)Hm+nk(0)Hm+n(0)\displaystyle(\mathsf{B}(\sigma,\rho)\boxtimes\mathsf{B}(\sigma^{\prime},\rho^{\prime}))\downarrow_{H_{k}(0)\otimes H_{m+n-k}(0)}^{H_{m+n}(0)}
t+s=ktm,sn𝚃t,s(𝖡(σ,ρ)Ht(0)Hmt(0)Hm(0)𝖡(σ,ρ)Hs(0)Hns(0)Hn(0))Ht(0)Hs(0)Hmt(0)Hns(0)Hk(0)Hm+nk.\displaystyle\cong\bigoplus_{\begin{subarray}{c}t+s=k\\ t\leq m,~{}s\leq n\end{subarray}}\mathtt{T}_{t,s}\left(\mathsf{B}(\sigma,\rho)\downarrow^{H_{m}(0)}_{H_{t}(0)\otimes H_{m-t}(0)}\otimes\;\mathsf{B}(\sigma^{\prime},\rho^{\prime})\downarrow^{H_{n}(0)}_{H_{s}(0)\otimes H_{n-s}(0)}\right)\uparrow^{H_{k}(0)\otimes H_{m+n-k}}_{H_{t}(0)\otimes H_{s}(0)\otimes H_{m-t}(0)\otimes H_{n-s}(0)}.
Proof.

Using Lemma 3.8 and Theorem 3.12, we derive that

t+s=ktm,sn𝚃t,s(𝖡(σ,ρ)Ht(0)Hmt(0)Hm(0)𝖡(σ,ρ)Hs(0)Hns(0)Hn(0))Ht(0)Hs(0)Hmt(0)Hns(0)Hk(0)Hm+nk\displaystyle\bigoplus_{\begin{subarray}{c}t+s=k\\ t\leq m,~{}s\leq n\end{subarray}}\mathtt{T}_{t,s}\left(\mathsf{B}(\sigma,\rho)\downarrow^{H_{m}(0)}_{H_{t}(0)\otimes H_{m-t}(0)}\otimes\;\mathsf{B}(\sigma^{\prime},\rho^{\prime})\downarrow^{H_{n}(0)}_{H_{s}(0)\otimes H_{n-s}(0)}\right)\uparrow^{H_{k}(0)\otimes H_{m+n-k}}_{H_{t}(0)\otimes H_{s}(0)\otimes H_{m-t}(0)\otimes H_{n-s}(0)}
J1,J2𝖡((σJ1)t(σJ2)s,(ρJ1)t¯(ρJ2)s)𝖡((σJ1)>t(σJ2)>s,(ρJ1)>t¯(ρJ2)>s),\displaystyle\cong\bigoplus_{J_{1},\,J_{2}}\mathsf{B}\left((\sigma_{\scalebox{0.55}{$J_{1}$}})_{\leq t}\;{\bullet}\;(\sigma^{\prime}_{\scalebox{0.55}{$J_{2}$}})_{\leq s},(\rho^{\scalebox{0.55}{$J_{1}$}})_{\leq t}\;\overline{\bullet}\;({\rho^{\prime}}^{\scalebox{0.55}{$J_{2}$}})_{\leq s}\right)\otimes\mathsf{B}\left((\sigma_{\scalebox{0.55}{$J_{1}$}})_{>t}\;{\bullet}\;(\sigma^{\prime}_{\scalebox{0.55}{$J_{2}$}})_{>s},(\rho^{\scalebox{0.55}{$J_{1}$}})_{>t}\;\overline{\bullet}\;({\rho^{\prime}}^{\scalebox{0.55}{$J_{2}$}})_{>s}\right),

where the sum ranges over all pairs (J1,J2)(J_{1},J_{2}) in

t+s=ktm,sn𝒮σ,ρ(t)×𝒮σ,ρ(s).\bigcup_{\begin{subarray}{c}t+s=k\\ t\leq m,~{}s\leq n\end{subarray}}\mathscr{S}_{\sigma,\rho}^{(t)}\times\mathscr{S}_{\sigma^{\prime},\rho^{\prime}}^{(s)}.

Let f:𝒮σσ,ρ¯ρ(k)t+s=ktm,sn𝒮σ,ρ(t)×𝒮σ,ρ(s)f:\mathscr{S}_{\sigma\;{\bullet}\;\sigma^{\prime},\rho\;\overline{\bullet}\;\rho^{\prime}}^{(k)}\rightarrow\bigcup_{\begin{subarray}{c}t+s=k\\ t\leq m,~{}s\leq n\end{subarray}}\mathscr{S}_{\sigma,\rho}^{(t)}\times\mathscr{S}_{\sigma^{\prime},\rho^{\prime}}^{(s)} be a map defined by

J(J[1,m],{ii+mJ[m+1,m+n]})J\mapsto\left(J\cap[1,m],\;\{i\mid i+m\in J\cap[m+1,m+n]\}\right)

for all J𝒮σσ,ρ¯ρ(k)J\in\mathscr{S}_{\sigma\;{\bullet}\;\sigma^{\prime},\rho\;\overline{\bullet}\;\rho^{\prime}}^{(k)}. To begin with, let us verify that ff is a well-defined bijection.

First, we prove that ff is well-defined. Given J𝒮σσ,ρ¯ρ(k)J\in\mathscr{S}_{\sigma\;{\bullet}\;\sigma^{\prime},\rho\;\overline{\bullet}\;\rho^{\prime}}^{(k)}, let

J1=J[1,m],J2={ii+mJ[m+1,m+n]},t=|J1|,ands=|J2|.\displaystyle J_{1}=J\cap[1,m],\ J_{2}=\{i\mid i+m\in J\cap[m+1,m+n]\},\ t=|J_{1}|,\ \text{and}\ s=|J_{2}|. (3.16)

Since J𝒮σσ,ρ¯ρ(k)J\in\mathscr{S}_{\sigma\;{\bullet}\;\sigma^{\prime},\rho\;\overline{\bullet}\;\rho^{\prime}}^{(k)}, there exists a permutation δ[σσ,ρ¯ρ]L\delta\in[\sigma\;{\bullet}\;\sigma^{\prime},\rho\;\overline{\bullet}\;\rho^{\prime}]_{L} such that δ(J)=[1,k]\delta(J)=[1,k]. Combining (3.15) with the definition of σσ\sigma\;{\bullet}\;\sigma^{\prime} and ρ¯ρ\rho\;\overline{\bullet}\;\rho^{\prime} yields that

σL𝚜𝚝(δ;[1,m])LρandσL𝚜𝚝(δ;[m+1,m+n])Lρ.\sigma\preceq_{L}\mathtt{st}(\delta;[1,m])\preceq_{L}\rho\quad\text{and}\quad\sigma^{\prime}\preceq_{L}\mathtt{st}(\delta;[m+1,m+n])\preceq_{L}\rho^{\prime}.

Note that

𝚜𝚝(δ;[1,m])(J1)=[1,t]and𝚜𝚝(δ;[m+1,m+n])(J2)=[1,s].\mathtt{st}(\delta;[1,m])(J_{1})=[1,t]\quad\text{and}\quad\mathtt{st}(\delta;[m+1,m+n])(J_{2})=[1,s].

This tells us that J1𝒮σ,ρ(t)J_{1}\in\mathscr{S}_{\sigma,\rho}^{(t)} and J2𝒮σ,ρ(s)J_{2}\in\mathscr{S}_{\sigma^{\prime},\rho^{\prime}}^{(s)}, thus ff is well-defined.

Next, we prove that ff is bijective by constructing its inverse. Let tt^{\prime} and ss^{\prime} be nonnegative integers satisfying t+s=kt^{\prime}+s^{\prime}=k, tmt^{\prime}\leq m, and sns^{\prime}\leq n. Given K1𝒮σ,ρ(t)K_{1}\in\mathscr{S}_{\sigma,\rho}^{(t^{\prime})} and K2𝒮σ,ρ(s)K_{2}\in\mathscr{S}_{\sigma^{\prime},\rho^{\prime}}^{(s^{\prime})}, consider the mapping (K1,K2)K:=K1{iimK2}.(K_{1},K_{2})\mapsto K:=K_{1}\cup\{i\mid i-m\in K_{2}\}. Note that there exist permutations γ1[σ,ρ]L\gamma_{1}\in[\sigma,\rho]_{L} and γ2[σ,ρ]L\gamma_{2}\in[\sigma^{\prime},\rho^{\prime}]_{L} such that

γ1(K1)=[1,t]andγ2(K2)=[1,s].\gamma_{1}(K_{1})=[1,t^{\prime}]\quad\text{and}\quad\gamma_{2}(K_{2})=[1,s^{\prime}].

Let δ𝔖m+n\delta\in\mathfrak{S}_{m+n} given by

δ(i)={γ1(i)if iK1,γ1(i)+t+sif i[1,m]K1,γ2(im)+tif iK2,γ2(im)+m+sif i[m+1,m+n]K2,\delta(i)=\begin{cases}\gamma_{1}(i)&\text{if $i\in K_{1}$},\\ \gamma_{1}(i)+t^{\prime}+s^{\prime}&\text{if $i\in[1,m]\setminus K_{1}$},\\ \gamma_{2}(i-m)+t^{\prime}&\text{if $i\in K^{\prime}_{2}$},\\ \gamma_{2}(i-m)+m+s^{\prime}&\text{if $i\in[m+1,m+n]\setminus K^{\prime}_{2}$},\end{cases}

where K2:={jjmK2}K^{\prime}_{2}:=\{j\mid j-m\in K_{2}\}. Then δγ1\shuffle~γ2\delta\in\gamma_{1}\,\widetilde{\shuffle}\,\gamma_{2} and δ(K)=[1,k]\delta(K)=[1,k], and therefore K𝒮σσ,ρ¯ρ(k)K\in\mathscr{S}_{\sigma\;{\bullet}\;\sigma^{\prime},\rho\;\overline{\bullet}\;\rho^{\prime}}^{(k)}. In addition, f(K)=(K1,K2)f(K)=(K_{1},K_{2}) by the definition of KK. On the other hand, given J𝒮σσ,ρ¯ρ(k)J\in\mathscr{S}_{\sigma\;{\bullet}\;\sigma^{\prime},\rho\;\overline{\bullet}\;\rho^{\prime}}^{(k)}, letting (K1,K2)=f(J)(K_{1},K_{2})=f(J), one can easily see that K1{iimK2}=JK_{1}\cup\{i\mid i-m\in K_{2}\}=J. So the inverse of ff is well-defined and thus ff is bijective.

For our assertion, it suffices to show that for each J𝒮σσ,ρ¯ρ(k)J\in\mathscr{S}_{\sigma\;{\bullet}\;\sigma^{\prime},\rho\;\overline{\bullet}\;\rho^{\prime}}^{(k)},

𝖡(((σσ)J)k,((ρ¯ρ)J)k)𝖡(((σσ)J)>k,((ρ¯ρ)J)>k)\displaystyle\mathsf{B}\big{(}((\sigma\;{\bullet}\;\sigma^{\prime})_{\scalebox{0.55}{$J$}})_{\leq k},((\rho\;\overline{\bullet}\;\rho^{\prime})^{\scalebox{0.55}{$J$}})_{\leq k}\big{)}\otimes\mathsf{B}\big{(}((\sigma\;{\bullet}\;\sigma^{\prime})_{\scalebox{0.55}{$J$}})_{>k},((\rho\;\overline{\bullet}\;\rho^{\prime})^{\scalebox{0.55}{$J$}})_{>k}\big{)}
𝖡((σJ1)t(σJ2)s,(ρJ1)t¯(ρJ2)s)𝖡((σJ1)>t(σJ2)>s,(ρJ1)>t¯(ρJ2)>s),\displaystyle\cong\mathsf{B}\left((\sigma_{\scalebox{0.55}{$J_{1}$}})_{\leq t}\;{\bullet}\;(\sigma^{\prime}_{\scalebox{0.55}{$J_{2}$}})_{\leq s},(\rho^{\scalebox{0.55}{$J_{1}$}})_{\leq t}\;\overline{\bullet}\;({\rho^{\prime}}^{\scalebox{0.55}{$J_{2}$}})_{\leq s}\right)\otimes\mathsf{B}\left((\sigma_{\scalebox{0.55}{$J_{1}$}})_{>t}\;{\bullet}\;(\sigma^{\prime}_{\scalebox{0.55}{$J_{2}$}})_{>s},(\rho^{\scalebox{0.55}{$J_{1}$}})_{>t}\;\overline{\bullet}\;({\rho^{\prime}}^{\scalebox{0.55}{$J_{2}$}})_{>s}\right),

where J1,J2,tJ_{1},J_{2},t, and ss are defined as in (3.16). This isomorphism immediately follows from the four equalities:

(1)((σσ)J)k=(σJ1)t(σJ2)s,(2)((ρ¯ρ)J)k=(ρJ1)t¯(ρJ2)s,\displaystyle(1)~{}((\sigma\;{\bullet}\;\sigma^{\prime})_{\scalebox{0.55}{$J$}})_{\leq k}=(\sigma_{\scalebox{0.55}{$J_{1}$}})_{\leq t}\;{\bullet}\;(\sigma^{\prime}_{\scalebox{0.55}{$J_{2}$}})_{\leq s},\quad(2)~{}((\rho\;\overline{\bullet}\;\rho^{\prime})^{\scalebox{0.55}{$J$}})_{\leq k}=(\rho^{\scalebox{0.55}{$J_{1}$}})_{\leq t}\;\overline{\bullet}\;({\rho^{\prime}}^{\scalebox{0.55}{$J_{2}$}})_{\leq s},
(3)((σσ)J)>k=(σJ1)>t(σJ2)>s,(4)((ρ¯ρ)J)>k=(ρJ1)>t¯(ρJ2)>s.\displaystyle(3)~{}((\sigma\;{\bullet}\;\sigma^{\prime})_{\scalebox{0.55}{$J$}})_{>k}=(\sigma_{\scalebox{0.55}{$J_{1}$}})_{>t}\;{\bullet}\;(\sigma^{\prime}_{\scalebox{0.55}{$J_{2}$}})_{>s},\quad(4)~{}((\rho\;\overline{\bullet}\;\rho^{\prime})^{\scalebox{0.55}{$J$}})_{>k}=(\rho^{\scalebox{0.55}{$J_{1}$}})_{>t}\;\overline{\bullet}\;({\rho^{\prime}}^{\scalebox{0.55}{$J_{2}$}})_{>s}.

Let us prove the equality (1). Let J={j1<j2<<jk}𝒮σσ,ρ¯ρ(k)J=\{j_{1}<j_{2}<\cdots<j_{k}\}\in\mathscr{S}_{\sigma\;{\bullet}\;\sigma^{\prime},\rho\;\overline{\bullet}\;\rho^{\prime}}^{(k)}. Then,

((σσ)J)k=(σσ)J(ji)for 1ik.((\sigma\;{\bullet}\;\sigma^{\prime})_{\scalebox{0.55}{$J$}})_{\leq k}=(\sigma\;{\bullet}\;\sigma^{\prime})_{\scalebox{0.55}{$J$}}(j_{i})\quad\text{for $1\leq i\leq k$}.

Assume that jtmj_{t}\leq m and jt+1>mj_{t+1}>m. Set

J1={j1<j2<<jt}andJ2={jt+1m<jt+2m<<jt+sm}.J_{1}=\{j_{1}<j_{2}<\cdots<j_{t}\}\quad\text{and}\quad J_{2}=\{j_{t+1}-m<j_{t+2}-m<\cdots<j_{t+s}-m\}.

Since

(σJ1)t(i)\displaystyle(\sigma_{\scalebox{0.55}{$J_{1}$}})_{\leq t}(i) =σJ1(ji)for 1it,\displaystyle=\sigma_{\scalebox{0.55}{$J_{1}$}}(j_{i})\quad\text{for $1\leq i\leq t$},
(σJ2)s(i)\displaystyle(\sigma^{\prime}_{\scalebox{0.55}{$J_{2}$}})_{\leq s}(i) =σJ2(jt+im)for 1is,\displaystyle=\sigma^{\prime}_{\scalebox{0.55}{$J_{2}$}}(j_{t+i}-m)\quad\text{for $1\leq i\leq s$},

it follows that

(σJ1)t(σJ2)s(i)={σJ1(ji)if 1it,σJ2(jim)+tif t+1it+s.\displaystyle(\sigma_{\scalebox{0.55}{$J_{1}$}})_{\leq t}\;{\bullet}\;(\sigma^{\prime}_{\scalebox{0.55}{$J_{2}$}})_{\leq s}(i)=\begin{cases}\sigma_{\scalebox{0.55}{$J_{1}$}}(j_{i})&\text{if $1\leq i\leq t$,}\\ \sigma^{\prime}_{\scalebox{0.55}{$J_{2}$}}(j_{i}-m)+t&\text{if $t+1\leq i\leq t+s$}.\end{cases}

In case where i[1,t]i\in[1,t], we have

(σσ)J(ji)\displaystyle(\sigma\;{\bullet}\;\sigma^{\prime})_{\scalebox{0.55}{$J$}}(j_{i}) =perm(σσ)J(σσ)(ji)=permσJ1σ(ji)=σJ1(ji).\displaystyle=\mathrm{perm}_{(\sigma\;{\bullet}\;\sigma^{\prime})\cdot J}(\sigma\;{\bullet}\;\sigma^{\prime})(j_{i})=\mathrm{perm}_{\sigma\cdot J_{1}}\sigma(j_{i})=\sigma_{\scalebox{0.55}{$J_{1}$}}(j_{i}).

In case where i[t+1,t+s]i\in[t+1,t+s], we have

(σσ)J(ji)\displaystyle(\sigma\;{\bullet}\;\sigma^{\prime})_{\scalebox{0.55}{$J$}}(j_{i}) =perm(σσ)J(σσ)(ji)=permσJ2σ(jim)+t=σJ2(jim)+t.\displaystyle=\mathrm{perm}_{(\sigma\;{\bullet}\;\sigma^{\prime})\cdot J}(\sigma\;{\bullet}\;\sigma^{\prime})(j_{i})=\mathrm{perm}_{\sigma^{\prime}\cdot J_{2}}\sigma^{\prime}(j_{i}-m)+t=\sigma^{\prime}_{\scalebox{0.55}{$J_{2}$}}(j_{i}-m)+t.

Thus, the equality (1) holds.

Next, let us prove the equality (2). Under the same setting with the above paragraph, we have

((ρ¯ρ)J)k(i)\displaystyle((\rho\;\overline{\bullet}\;\rho^{\prime})^{\scalebox{0.55}{$J$}})_{\leq k}(i) =(ρ¯ρ)J(ji)for 1ik,\displaystyle=(\rho\;\overline{\bullet}\;\rho^{\prime})^{\scalebox{0.55}{$J$}}(j_{i})\quad\text{for $1\leq i\leq k$},
(ρJ1)t(i)\displaystyle(\rho^{\scalebox{0.55}{$J_{1}$}})_{\leq t}(i) =ρJ1(ji)for 1it,\displaystyle=\rho^{\scalebox{0.55}{$J_{1}$}}(j_{i})\quad\text{for $1\leq i\leq t$},
(ρJ2)s(i)\displaystyle({\rho^{\prime}}^{\scalebox{0.55}{$J_{2}$}})_{\leq s}(i) =ρJ2(jt+im)for 1is.\displaystyle=\rho^{\prime\scalebox{0.55}{$J_{2}$}}(j_{t+i}-m)\quad\text{for $1\leq i\leq s$}.

From the second and third equalities, we have

(ρJ1)t¯(ρJ2)s={ρJ1(ji)+sfor 1it,ρJ2(jim)for t+1it+s.(\rho^{\scalebox{0.55}{$J_{1}$}})_{\leq t}\;\overline{\bullet}\;({\rho^{\prime}}^{\scalebox{0.55}{$J_{2}$}})_{\leq s}=\begin{cases}\rho^{\scalebox{0.55}{$J_{1}$}}(j_{i})+s\quad\text{for $1\leq i\leq t$},\\ \rho^{\scalebox{0.55}{$J_{2}$}}(j_{i}-m)\quad\text{for $t+1\leq i\leq t+s$}.\end{cases}

In case where i[1,t]i\in[1,t], we have

(ρ¯ρ)J(ji)\displaystyle(\rho\;\overline{\bullet}\;\rho^{\prime})^{\scalebox{0.55}{$J$}}(j_{i}) =permw0(m+n)(ρ¯ρ)Jw0(m+n)(ρ¯ρ)(ji)=permw0(m)(ρ)J1w0(m)ρ(ji)+s\displaystyle=\mathrm{perm}^{w_{0}^{(m+n)}(\rho\;\overline{\bullet}\;\rho^{\prime})\cdot J}w_{0}^{(m+n)}(\rho\;\overline{\bullet}\;\rho^{\prime})(j_{i})=\mathrm{perm}^{w_{0}^{(m)}(\rho)\cdot J_{1}}w_{0}^{(m)}\rho(j_{i})+s
=ρJ1(ji)+s.\displaystyle=\rho^{\scalebox{0.55}{$J_{1}$}}(j_{i})+s.

In case where i[t+1,t+s]i\in[t+1,t+s], we have

(ρ¯ρ)J(ji)\displaystyle(\rho\;\overline{\bullet}\;\rho^{\prime})^{\scalebox{0.55}{$J$}}(j_{i}) =permw0(m+n)(ρ¯ρ)Jw0(m+n)(ρ¯ρ)(ji)=permw0(n)(ρ)J2w0(n)ρ(jim)\displaystyle=\mathrm{perm}^{w_{0}^{(m+n)}(\rho\;\overline{\bullet}\;\rho^{\prime})\cdot J}w_{0}^{(m+n)}(\rho\;\overline{\bullet}\;\rho^{\prime})(j_{i})=\mathrm{perm}^{w_{0}^{(n)}(\rho^{\prime})\cdot J_{2}}w_{0}^{(n)}\rho^{\prime}(j_{i}-m)
=ρJ2(jim).\displaystyle=\rho^{\prime\scalebox{0.55}{$J_{2}$}}(j_{i}-m).

Thus, the equality (2) holds.

Equalities (3) and (4) can be proven in a similar way with (1) and (2) respectively, so we omit the proofs. ∎

Remark 3.15.

For σ𝔖m\sigma\in\mathfrak{S}_{m} and ρ𝔖n\rho\in\mathfrak{S}_{n}, let σ\shuffleρ\sigma\shuffle\rho be the set of permutations γ𝔖m+n\gamma\in\mathfrak{S}_{m+n} satisfying that σ(1)σ(2)σ(m)\sigma(1)\sigma(2)\cdots\sigma(m) and (ρ(1)+m)(ρ(2)+m)(ρ(n)+m)(\rho(1)+m)(\rho(2)+m)\cdots(\rho(n)+m) are subwords of γ(1)γ(2)γ(m+n)\gamma(1)\gamma(2)\cdots\gamma(m+n) and σ\shuffle~ρ:={γ1γσ1\shuffleρ1}\sigma\,\widetilde{\shuffle}\,\rho:=\{\gamma^{-1}\mid\gamma\in\sigma^{-1}\,\shuffle\,\rho^{-1}\}. For X𝔖mX\subseteq\mathfrak{S}_{m} and Y𝔖nY\subseteq\mathfrak{S}_{n}, let

X\shuffle~Y:=σX,ρYσ\shuffle~ρ.X\,\widetilde{\shuffle}\,Y:=\bigcup_{\sigma\in X,\,\rho\in Y}\sigma\,\widetilde{\shuffle}\,\rho.

In the proof of Theorem 3.14, we employ the fact that [σσ,ρ¯ρ]L[σ,ρ]L\shuffle~[σ,ρ]L[\sigma\;{\bullet}\;\sigma^{\prime},\rho\;\overline{\bullet}\;\rho^{\prime}]_{L}\subseteq[\sigma,\rho]_{L}\,\widetilde{\shuffle}\,[\sigma^{\prime},\rho^{\prime}]_{L} for σ,ρ𝔖m\sigma,\rho\in\mathfrak{S}_{m} and σ,ρ𝔖n\sigma^{\prime},\rho^{\prime}\in\mathfrak{S}_{n}. In fact,

[σσ,ρ¯ρ]L=[σ,ρ]L\shuffle~[σ,ρ]L.[\sigma\;{\bullet}\;\sigma^{\prime},\rho\;\overline{\bullet}\;\rho^{\prime}]_{L}=[\sigma,\rho]_{L}\,\widetilde{\shuffle}\,[\sigma^{\prime},\rho^{\prime}]_{L}.

Therefore, by Lemma 3.8, we have that

𝖡(σ,ρ)𝖡(σ,ρ)𝖡([σ,ρ]L\shuffle~[σ,ρ]L).\displaystyle\mathsf{B}(\sigma,\rho)\boxtimes\mathsf{B}(\sigma^{\prime},\rho^{\prime})\cong\mathsf{B}([\sigma,\rho]_{L}\,\widetilde{\shuffle}\,[\sigma^{\prime},\rho^{\prime}]_{L}).

It is well known that the multiplicative rule for the fundamental quasisymmetric functions are described as follow:

FαFβ=γσ\shuffleρFcomp(DesR(γ)).\displaystyle F_{\alpha}F_{\beta}=\sum_{\gamma\in\sigma\shuffle\rho}F_{\mathrm{comp}(\mathrm{Des}_{R}(\gamma))}. (3.17)

Here, σ𝔖(α)\sigma\in\mathfrak{S}_{\ell(\alpha)} and ρ𝔖(β)\rho\in\mathfrak{S}_{\ell(\beta)} satisfying DesR(σ)=set(α)\mathrm{Des}_{R}(\sigma)=\mathrm{set}(\alpha) and DesR(ρ)=set(β)\mathrm{Des}_{R}(\rho)=\mathrm{set}(\beta). Now, one can see that the multiplicative rule (3.17) lifts to the induction product

𝖡(σ,σ)𝖡(ρ,ρ)𝖡(σ\shuffle~ρ).\displaystyle\mathsf{B}(\sigma,\sigma)\boxtimes\mathsf{B}(\rho,\rho)\cong\mathsf{B}(\sigma\,\widetilde{\shuffle}\,\rho).

3.4. (Anti-)automorphism twists of weak Bruhat interval modules

Let μ:BA\mu:B\to A be an isomorphism of associative algebras over \mathbb{C}. Given an AA-module MM, we define μ[M]\mu[M] by the BB-module with the same underlying space as MM and with the action μ\cdot_{\mu} twisted by μ\mu in such a way that

bμv:=μ(b)vfor aA and vM.\displaystyle b\cdot_{\mu}v:=\mu(b)\cdot v\quad\text{for $a\in A$ and $v\in M$}.

Let modA\mathrm{mod}\,A be the category of finite dimensional left AA-modules. Any isomorphism μ:BA\mu:B\to A induces a covariant functor

𝐓μ+:modAmodB,Mμ[M],\displaystyle\mathbf{T}^{+}_{\mu}:\mathrm{mod}\,A\rightarrow\mathrm{mod}\,B,\quad M\mapsto\mu[M], (3.18)

where 𝐓μ+(h):μ[M]μ[N],mh(m)\mathbf{T}^{+}_{\mu}(h):\mu[M]\to\mu[N],m\mapsto h(m) for every AA-module homomorphism h:MNh:M\to N. We call 𝐓μ+\mathbf{T}^{+}_{\mu} the μ\mu-twist.

Similarly, given an anti-isomorphism ν:BA\nu:B\to A, we define ν[M]\nu[M] to be the BB-module with MM^{*}, the dual space of MM, as the underlying space and with the action ν\cdot^{\nu} defined by

(bνδ)(v):=δ(ν(b)v)for bBδM, and vM.\displaystyle(b\cdot^{\nu}\delta)(v):=\delta(\nu(b)\cdot v)\quad\text{for $b\in B$, $\delta\in M^{*}$, and $v\in M$}. (3.19)

Any anti-isomorphism ν:BA\nu:B\to A induces a contravariant functor

𝐓ν:modAmodB,Mν[M],\mathbf{T}^{-}_{\nu}:\mathrm{mod}\,A\rightarrow\mathrm{mod}\,B,\quad M\mapsto\nu[M],

where 𝐓ν(h):ν[N]ν[M],δδh\mathbf{T}^{-}_{\nu}(h):\nu[N]\to\nu[M],\delta\mapsto\delta\circ h for every AA-module homomorphism h:MNh:M\to N. We call 𝐓ν\mathbf{T}^{-}_{\nu} the ν\nu-twist. In [10], Fayers introduced the involutions ϕ,θ\upphi,\uptheta and the anti-involution χ\upchi of Hn(0)H_{n}(0) defined in the following manner:

ϕ:Hn(0)Hn(0),πiπnifor 1in1,\displaystyle\upphi:H_{n}(0)\rightarrow H_{n}(0),\quad\pi_{i}\mapsto\pi_{n-i}\quad\text{for $1\leq i\leq n-1$},
θ:Hn(0)Hn(0),πiπ¯ifor 1in1,\displaystyle\uptheta:H_{n}(0)\rightarrow H_{n}(0),\quad\pi_{i}\mapsto-\overline{\pi}_{i}\quad\text{for $1\leq i\leq n-1$},
χ:Hn(0)Hn(0),πiπifor 1in1.\displaystyle\upchi:H_{n}(0)\rightarrow H_{n}(0),\quad\pi_{i}\mapsto\pi_{i}\quad\text{for $1\leq i\leq n-1$}.

These morphisms commute with each other. We study the (anti-)involution twists for ϕ\upphi, θ\uptheta, χ\upchi, and their compositions ω:=ϕθ\upomega:=\upphi\circ\uptheta, ϕ^:=ϕχ{\widehat{\upphi}}:=\upphi\circ\upchi, θ^:=θχ{\widehat{\uptheta}}:=\uptheta\circ\upchi, ω^:=ωχ{\widehat{\upomega}}:=\upomega\circ\upchi.

The viewpoint of looking at (anti-)involutions as functors is quite useful for many reasons. The primary reason is that using the exactness of the corresponding functors, one can transport various structures of a given Hn(0)H_{n}(0)-module to their twists in a functorial way. An application in this direction can be found in Subsection 4.2.2. Additional reasons include that some well known functors appear in the context of our (anti-)involution twists. Given any anti-automorphism ν\nu of Hn(0)H_{n}(0), the standard duality D:modHn(0)modHn(0)opD:\mathrm{mod}\,H_{n}(0)\to\mathrm{mod}\,H_{n}(0)^{\mathrm{op}} appears as Fν1𝐓νF_{\nu^{-1}}\circ\mathbf{T}^{-}_{\nu}, where Fν1:modHn(0)modHn(0)opF_{\nu^{-1}}:\mathrm{mod}\,H_{n}(0)\to\mathrm{mod}\,H_{n}(0)^{\mathrm{op}} is the functor induced by the inverse of ν̊:Hn(0)Hn(0)op,xν(x)\mathring{\nu}:H_{n}(0)\to H_{n}(0)^{\mathrm{op}},x\mapsto\nu(x). In particular, DFχ𝐓χD\cong F_{\chi}\circ\mathbf{T}_{\chi}^{-}. The Nakayama functor ν\upnu is naturally isomorphic to 𝐓ϕ+\mathbf{T}^{+}_{\upphi}, which can be derived by combining [10, Proposition 4.2] with [22, Proposition IV.3.13]. To explain in more detail, the former reference implies ϕ\upphi is a Nakayama automorphism and the latter reference shows the relationship between Nakayama automorphisms and ν\upnu. And, the Hn(0)H_{n}(0)-dual functor, HomHn(0)(,Hn(0)){\mathrm{Hom}}_{H_{n}(0)}(-,H_{n}(0)), is naturally isomorphic to DνD\circ\upnu, and therefore is naturally isomorphic to Fχ𝐓ϕ^F_{\chi}\circ\mathbf{T}_{{\widehat{\upphi}}}^{-}.

Now, let us focus on the main topic of this subsection, (anti-)involution twists of weak Bruhat interval modules. For irreducible modules and projective indecomposable modules, it was shown in [10, 14] that

ϕ[𝐅α]𝐅αr,θ[𝐅α]𝐅αc,χ[𝐅α]𝐅α,\displaystyle\upphi[\mathbf{F}_{\alpha}]\cong\mathbf{F}_{\alpha^{\mathrm{r}}},\quad\uptheta[\mathbf{F}_{\alpha}]\cong\mathbf{F}_{\alpha^{\mathrm{c}}},\quad\upchi[\mathbf{F}_{\alpha}]\cong\mathbf{F}_{\alpha},
ϕ[𝒫α]𝒫αr,θ[𝒫α]𝒫αc.\displaystyle\upphi[\mathcal{P}_{\alpha}]\cong\mathcal{P}_{\alpha^{\mathrm{r}}},\quad\uptheta[\mathcal{P}_{\alpha}]\cong\mathcal{P}_{\alpha^{\mathrm{c}}}.

The following theorem shows how the (anti-)involution twists act on weak Bruhat interval modules.

Theorem 3.16.

For σ,ρ𝔖n\sigma,\rho\in\mathfrak{S}_{n}, we have the following isomorphisms of Hn(0)H_{n}(0)-modules.

  1. (1)

    ϕ[𝖡(σ,ρ)]𝖡(σw0,ρw0)\upphi[\mathsf{B}(\sigma,\rho)]\cong\mathsf{B}(\sigma^{w_{0}},\rho^{w_{0}}).

  2. (2)

    θ[𝖡(σ,ρ)]𝖡¯(σ,ρ)\uptheta[\mathsf{B}(\sigma,\rho)]\cong\overline{\mathsf{B}}(\sigma,\rho).

  3. (3)

    χ[𝖡(σ,ρ)]𝖡¯(ρw0,σw0)\upchi[\mathsf{B}(\sigma,\rho)]\cong\overline{\mathsf{B}}(\rho w_{0},\sigma w_{0}). In particular, χ[𝒫α]𝒫αr\upchi[\mathcal{P}_{\alpha}]\cong\mathcal{P}_{\alpha^{\mathrm{r}}}.

Proof.

Consider the \mathbb{C}-linear isomorphisms defined by

f1:ϕ[𝖡(σ,ρ)]𝖡(σw0,ρw0),γγw0,\displaystyle f_{1}:\upphi[\mathsf{B}(\sigma,\rho)]\rightarrow\mathsf{B}(\sigma^{w_{0}},\rho^{w_{0}}),\quad\gamma\mapsto\gamma^{w_{0}},
f2:θ[𝖡(σ,ρ)]𝖡¯(σ,ρ),γ(1)(γσ1)γ,\displaystyle f_{2}:\uptheta[\mathsf{B}(\sigma,\rho)]\rightarrow\overline{\mathsf{B}}(\sigma,\rho),\quad\gamma\mapsto(-1)^{\ell(\gamma\sigma^{-1})}\gamma,
f3:χ[𝖡(σ,ρ)]𝖡¯(ρw0,σw0),γγw0,\displaystyle f_{3}:\upchi[\mathsf{B}(\sigma,\rho)]\rightarrow\overline{\mathsf{B}}(\rho w_{0},\sigma w_{0}),\quad\gamma^{\ast}\mapsto\gamma w_{0},

where γ[σ,ρ]L\gamma\in[\sigma,\rho]_{L} and γ\gamma^{\ast} denotes the dual of γ\gamma with respect to the basis [σ,ρ]L[\sigma,\rho]_{L} for 𝖡(σ,ρ)\mathsf{B}(\sigma,\rho). Since it can be proven in a similar manner that these maps are Hn(0)H_{n}(0)-isomorphisms, we here only deal with (3).

Note that, for 1in11\leq i\leq n-1,

π¯iχγ={γif iDesL(γ),(siγ)if iDesL(γ) and siγ[σ,ρ]L,0if iDesL(γ) and siγ[σ,ρ]L,\overline{\pi}_{i}\cdot^{\upchi}\gamma^{*}=\begin{cases}-\gamma^{*}&\text{if $i\notin\mathrm{Des}_{L}(\gamma)$,}\\ (s_{i}\gamma)^{*}&\text{if $i\in\mathrm{Des}_{L}(\gamma)$ and $s_{i}\gamma\in[\sigma,\rho]_{L}$,}\\ 0&\text{if $i\in\mathrm{Des}_{L}(\gamma)$ and $s_{i}\gamma\notin[\sigma,\rho]_{L}$},\end{cases}

which yields that

f3(π¯iχγ)={γw0if iDesL(γ),siγw0if iDesL(γ) and siγ[σ,ρ]L,0if iDesL(γ) and siγ[σ,ρ]L.f_{3}(\overline{\pi}_{i}\cdot^{\upchi}\gamma^{*})=\begin{cases}-\gamma w_{0}&\text{if $i\notin\mathrm{Des}_{L}(\gamma)$,}\\ s_{i}\gamma w_{0}&\text{if $i\in\mathrm{Des}_{L}(\gamma)$ and $s_{i}\gamma\in[\sigma,\rho]_{L}$,}\\ 0&\text{if $i\in\mathrm{Des}_{L}(\gamma)$ and $s_{i}\gamma\notin[\sigma,\rho]_{L}$.}\end{cases}

On the other hand,

π¯if3(γ)\displaystyle\overline{\pi}_{i}\star f_{3}(\gamma^{*}) =π¯iγw0\displaystyle=\overline{\pi}_{i}\star\gamma w_{0}
={γw0if iDesL(γw0),siγw0if iDesL(γw0) and siγw0[ρw0,σw0]L,0if iDesL(γw0) and siγw0[ρw0,σw0]L.\displaystyle=\begin{cases}-\gamma w_{0}&\text{if $i\in\mathrm{Des}_{L}(\gamma w_{0})$,}\\ s_{i}\gamma w_{0}&\text{if $i\notin\mathrm{Des}_{L}(\gamma w_{0})$ and $s_{i}\gamma w_{0}\in[\rho w_{0},\sigma w_{0}]_{L}$,}\\ 0&\text{if $i\notin\mathrm{Des}_{L}(\gamma w_{0})$ and $s_{i}\gamma w_{0}\notin[\rho w_{0},\sigma w_{0}]_{L}$.}\end{cases}

It immediately follows from (2.1) that iDesL(γ)i\notin\mathrm{Des}_{L}(\gamma) if and only if iDesL(γw0)i\in\mathrm{Des}_{L}(\gamma w_{0}). Moreover, it is trivial that siγ[σ,ρ]Ls_{i}\gamma\in[\sigma,\rho]_{L} if and only if siγw0[ρw0,σw0]Ls_{i}\gamma w_{0}\in[\rho w_{0},\sigma w_{0}]_{L}. Thus, we verified χ[𝖡(σ,ρ)]𝖡¯(ρw0,σw0)\upchi[\mathsf{B}(\sigma,\rho)]\cong\overline{\mathsf{B}}(\rho w_{0},\sigma w_{0}). And, combining the equality w0(α)w0=w0(αr)w_{0}(\alpha)^{w_{0}}=w_{0}(\alpha^{\mathrm{r}}) with (3) yields χ[𝒫α]𝒫αr\upchi[\mathcal{P}_{\alpha}]\cong\mathcal{P}_{\alpha^{\mathrm{r}}}. ∎

ϕ\upphi-twist θ\uptheta-twist ω\upomega-twist χ\upchi-twist ϕ^{\widehat{\upphi}}-twist θ^{\widehat{\uptheta}}-twist ω^{\widehat{\upomega}}-twist
𝖡(σ,ρ)\mathsf{B}(\sigma,\rho) 𝖡(σw0,ρw0)\mathsf{B}(\sigma^{w_{0}},\rho^{w_{0}}) 𝖡¯(σ,ρ)\overline{\mathsf{B}}(\sigma,\rho) 𝖡¯(σw0,ρw0)\overline{\mathsf{B}}(\sigma^{w_{0}},\rho^{w_{0}}) 𝖡¯(ρw0,σw0)\overline{\mathsf{B}}(\rho w_{0},\sigma w_{0}) 𝖡¯(w0ρ,w0σ)\overline{\mathsf{B}}(w_{0}\rho,w_{0}\sigma) 𝖡(ρw0,σw0)\mathsf{B}(\rho w_{0},\sigma w_{0}) 𝖡(w0ρ,w0σ)\mathsf{B}(w_{0}\rho,w_{0}\sigma)
𝖡¯(σ,ρ)\overline{\mathsf{B}}(\sigma,\rho) 𝖡¯(σw0,ρw0)\overline{\mathsf{B}}(\sigma^{w_{0}},\rho^{w_{0}}) 𝖡(σ,ρ)\mathsf{B}(\sigma,\rho) 𝖡(σw0,ρw0)\mathsf{B}(\sigma^{w_{0}},\rho^{w_{0}}) 𝖡(ρw0,σw0)\mathsf{B}(\rho w_{0},\sigma w_{0}) 𝖡(w0ρ,w0σ)\mathsf{B}(w_{0}\rho,w_{0}\sigma) 𝖡¯(ρw0,σw0)\overline{\mathsf{B}}(\rho w_{0},\sigma w_{0}) 𝖡¯(w0ρ,w0σ)\overline{\mathsf{B}}(w_{0}\rho,w_{0}\sigma)
Table 3.1. (Anti-)involution twists of weak Bruhat interval modules
ϕ\upphi-twist θ\uptheta-twist ω\upomega-twist χ\upchi-twist ϕ^{\widehat{\upphi}}-twist θ^{\widehat{\uptheta}}-twist ω^{\widehat{\upomega}}-twist
𝐅α\mathbf{F}_{\alpha} 𝐅αr\mathbf{F}_{\alpha^{\mathrm{r}}} 𝐅αc\mathbf{F}_{\alpha^{\mathrm{c}}} 𝐅αt\mathbf{F}_{\alpha^{\mathrm{t}}} 𝐅α\mathbf{F}_{\alpha} 𝐅αr\mathbf{F}_{\alpha^{\mathrm{r}}} 𝐅αc\mathbf{F}_{\alpha^{\mathrm{c}}} 𝐅αt\mathbf{F}_{\alpha^{\mathrm{t}}}
𝒫α\mathcal{P}_{\alpha} 𝒫αr\mathcal{P}_{\alpha^{\mathrm{r}}} 𝒫αc\mathcal{P}_{\alpha^{\mathrm{c}}} 𝒫αt\mathcal{P}_{\alpha^{\mathrm{t}}} 𝒫αr\mathcal{P}_{\alpha^{\mathrm{r}}} 𝒫α\mathcal{P}_{\alpha} 𝒫αt\mathcal{P}_{\alpha^{\mathrm{t}}} 𝒫αc\mathcal{P}_{\alpha^{\mathrm{c}}}
Table 3.2. (Anti-)involution twists of 𝐅α\mathbf{F}_{\alpha} and 𝒫α\mathcal{P}_{\alpha}

As seen in Table 3.1, various (anti-)involution twists can be obtained from Theorem 3.16 by composing θ\uptheta, ϕ\upphi, and χ\upchi. For the reader’s understanding, we deal with irreducible modules and projective indecomposable modules in a separate table (see Table 3.2).

Example 3.17.

By Theorem 3.16, we have

ϕ[𝖡(2134,4123)]\displaystyle\upphi[\mathsf{B}(2134,4123)] 𝖡(1243,2341),\displaystyle\cong\mathsf{B}(1243,2341),
θ[𝖡(2134,4123)]\displaystyle\uptheta[\mathsf{B}(2134,4123)] 𝖡¯(2134,4123),and\displaystyle\cong\overline{\mathsf{B}}(2134,4123),\ \text{and}
χ[𝖡(2134,4123)]\displaystyle\upchi[\mathsf{B}(2134,4123)] 𝖡¯(3214,4312).\displaystyle\cong\overline{\mathsf{B}}(3214,4312).

We illustrate these H4(0)H_{4}(0)-modules as follows:

𝖡(2134,4123)\mathsf{B}(2134,4123)041234123312431242134213400π3\pi_{3}π1\pi_{1}π1\pi_{1}π2\pi_{2}π3\pi_{3}π2\pi_{2}π3\pi_{3}π1,π2\pi_{1},\pi_{2}   ϕ[𝖡(2134,4123)]\upphi[\mathsf{B}(2134,4123)](𝖡(1243,2341))(\cong\mathsf{B}(1243,2341))041234123312431242134213400π1\pi_{1}π3\pi_{3}π3\pi_{3}π2\pi_{2}π1\pi_{1}π2\pi_{2}π1\pi_{1}π2,π3\pi_{2},\pi_{3}   θ[𝖡(2134,4123)]\uptheta[\mathsf{B}(2134,4123)](𝖡¯(2134,4123))(\cong\overline{\mathsf{B}}(2134,4123))041234123312431242134213400π¯3-\overline{\pi}_{3}π¯1-\overline{\pi}_{1}π¯1-\overline{\pi}_{1}π¯2-\overline{\pi}_{2}π¯3-\overline{\pi}_{3}π¯2-\overline{\pi}_{2}π¯3-\overline{\pi}_{3}π¯1,π¯2-\overline{\pi}_{1},-\overline{\pi}_{2}   χ[𝖡(2134,4123)]\upchi[\mathsf{B}(2134,4123)](𝖡¯(3214,4312))(\cong\overline{\mathsf{B}}(3214,4312))021342134^{*}3124-3124^{*}41234123^{*}π¯1,π¯2-\overline{\pi}_{1},-\overline{\pi}_{2}π¯1,π¯3-\overline{\pi}_{1},-\overline{\pi}_{3}π¯2,π¯3-\overline{\pi}_{2},-\overline{\pi}_{3}π¯3-\overline{\pi}_{3}π¯2-\overline{\pi}_{2}π¯1-\overline{\pi}_{1}

For an (anti-)automorphism ζ:Hm+n(0)Hm+n(0)\zeta:H_{m+n}(0)\to H_{m+n}(0) and an Hm(0)Hn(0)H_{m}(0)\otimes H_{n}(0)-module MM, we simply write ζ[M]\zeta[M] for ζ|Hm(0)Hn(0)[M]\zeta|_{H_{m}(0)\otimes H_{n}(0)}[M]. The subsequent corollary shows that (anti-)involution twists behave nicely with respect to induction product and restriction.

Corollary 3.18.

Let MM, NN, and LL be weak Bruhat interval modules of Hm(0)H_{m}(0), Hn(0)H_{n}(0), and Hm+n(0)H_{m+n}(0), respectively. Then we have following isomorphisms of modules.

  1. (A1)

    ϕ[MN]ϕ[N]ϕ[M]\upphi[M\boxtimes N]\cong\upphi[N]\boxtimes\upphi[M]

  2. (A2)

    θ[MN]θ[M]θ[N]\uptheta[M\boxtimes N]\cong\uptheta[M]\boxtimes\uptheta[N]

  3. (A3)

    χ[MN]χ[N]χ[M]\upchi[M\boxtimes N]\cong\upchi[N]\boxtimes\upchi[M]

  1. (B1)

    ϕ[LHn(0)Hm(0)Hm+n(0)]ϕ[L]Hm(0)Hn(0)Hm+n(0)\upphi[L\downarrow^{H_{m+n}(0)}_{H_{n}(0)\otimes H_{m}(0)}]\cong\upphi[L]\downarrow^{H_{m+n}(0)}_{H_{m}(0)\otimes H_{n}(0)}

  2. (B2)

    θ[LHm(0)Hn(0)Hm+n(0)]θ[L]Hm(0)Hn(0)Hm+n(0)\uptheta[L\downarrow^{H_{m+n}(0)}_{H_{m}(0)\otimes H_{n}(0)}]\cong\uptheta[L]\downarrow^{H_{m+n}(0)}_{H_{m}(0)\otimes H_{n}(0)}

  3. (B3)

    χ[LHm(0)Hn(0)Hm+n(0)]χ[L]Hm(0)Hn(0)Hm+n(0)\upchi[L\downarrow^{H_{m+n}(0)}_{H_{m}(0)\otimes H_{n}(0)}]\cong\upchi[L]\downarrow^{H_{m+n}(0)}_{H_{m}(0)\otimes H_{n}(0)}

Proof.

(A1), (A2), (B1), (B2), and (B3) are straightforward from the definitions of ϕ\upphi, θ\uptheta, and χ\upchi.

For (A3), let M=𝖡(σ1,ρ1)M=\mathsf{B}(\sigma_{1},\rho_{1}) and N=𝖡(σ2,ρ2)N=\mathsf{B}(\sigma_{2},\rho_{2}). Then, by Lemma 3.8 and Theorem 3.16 (3),

χ[MN]𝖡¯(ρ1¯ρ2w0(m+n),σ1σ2w0(m+n))\upchi[M\boxtimes N]\cong\overline{\mathsf{B}}(\rho_{1}\;\overline{\bullet}\;\rho_{2}\;w_{0}^{(m+n)},\sigma_{1}\;{\bullet}\;\sigma_{2}\;w_{0}^{(m+n)})

and

χ[N]χ[M]\displaystyle\upchi[N]\boxtimes\upchi[M] 𝖡¯(ρ2w0(n),σ2w0(n))𝖡¯(ρ1w0(m),σ1w0(m))\displaystyle\cong\overline{\mathsf{B}}(\rho_{2}\;w_{0}^{(n)},\sigma_{2}\;w_{0}^{(n)})\boxtimes\overline{\mathsf{B}}(\rho_{1}\;w_{0}^{(m)},\sigma_{1}\;w_{0}^{(m)})
𝖡¯(ρ2w0(n)ρ1w0(m),σ2w0(n)¯σ1w0(m)).\displaystyle\cong\overline{\mathsf{B}}(\rho_{2}\;w_{0}^{(n)}\;{\bullet}\;\rho_{1}\;w_{0}^{(m)},\sigma_{2}\;w_{0}^{(n)}\;\overline{\bullet}\;\sigma_{1}\;w_{0}^{(m)}).

Here, the notation w0(k)w_{0}^{(k)} denotes the longest element in 𝔖k\mathfrak{S}_{k} and the last isomorphism follows from Lemma 3.8 and (A2). Therefore, the assertion follows from the fact that the one-line notation of σw0\sigma w_{0} is obtained by reversing σ\sigma for any permutation σ\sigma. ∎

4. Various 0-Hecke modules constructed using tableaux

Suppose we have a family of quasisymmetric functions that can be expanded in the basis of the fundamental quasisymmetric functions with positive coefficients. The correspondence (2.2) tells us that each of them appears as the image of the isomorphism classes of certain Hn(0)H_{n}(0)-modules. Among them, it would be very nice to find or construct one which is nontrivial, in other words, not a direct sum of irreducible modules and has a combinatorial model that can be handled well. Since the mid-2010s, some Hn(0)H_{n}(0)-modules have been constructed in line with this philosophy, more precisely, in [1, 2, 21, 24]. In this section, we show that all of them are equipped with the structure of weak Bruhat interval modules.

To deal with these modules, we need the notion of source and sink.

Definition 4.1.

Let BB be a basis for an Hn(0)H_{n}(0)-module such that B{0}B\cup\{0\} is closed under the action of {πi1in1}\{\pi_{i}\mid 1\leq i\leq n-1\}.

  1. (1)

    An element x0Bx_{0}\in B is called a source of BB if, for each xBx\in B, there exists σ𝔖n\sigma\in\mathfrak{S}_{n} such that πσx0=x\pi_{\sigma}\cdot x_{0}=x.

  2. (2)

    An element x0Bx^{\prime}_{0}\in B is called a sink of BB if, for each xBx\in B, there exists σ𝔖n\sigma\in\mathfrak{S}_{n} such that πσx=x0\pi_{\sigma}\cdot x=x^{\prime}_{0}.

Following the way as in [24], one can see that there are at most one source and sink in BB. In case where BB is the basis [σ,ρ]L[\sigma,\rho]_{L} for 𝖡(σ,ρ)\mathsf{B}(\sigma,\rho), σ\sigma is the source and ρ\rho is the sink.

Hereafter, α\alpha denotes a composition of nn. To introduce the tableaux in our concern, we need to define the composition diagram 𝚌𝚍(α)\mathtt{cd}(\alpha) of shape α\alpha. It is a left-justified array of nn boxes where the iith row from the top has αi\alpha_{i} boxes for 1ik1\leq i\leq k. For a filling τ\tau of 𝚌𝚍(α)\mathtt{cd}(\alpha), we denote by τi,j\tau_{i,j} the entry in the iith row from the top and jjth column from the left.

4.1. Standard immaculate tableaux, standard extended tableaux, and their Hn(0)H_{n}(0)-modules

We begin with introducing the definition of standard immaculate tableaux and standard extended tableaux.

Definition 4.2.

([2, 21]) Let α\alpha be a composition of nn.

  1. (1)

    A standard immaculate tableau of shape α\alpha is a filling 𝒯\mathscr{T} of the composition diagram 𝚌𝚍(α)\mathtt{cd}(\alpha) with {1,2,,n}\{1,2,\ldots,n\} such that the entries are all distinct, the entries in each row increase from left to right, and the entries in the first column increase from top to bottom.

  2. (2)

    A standard extended tableau of shape α\alpha is a filling 𝖳\mathsf{T} of the composition diagram 𝚌𝚍(α)\mathtt{cd}(\alpha) with {1,2,,n}\{1,2,\ldots,n\} such that the entries are all distinct, the entries in each row increase from left to right, and the entries in each column increase from top to bottom.

We remark that our standard extended tableaux are slightly different from those of Searles [21]. In fact, the former can be obtained by flipping the latter horizontally.

Denote by SIT(α)\mathrm{SIT}(\alpha) the set of all standard immaculate tableaux of shape α\alpha and by SET(α)\mathrm{SET}(\alpha) the set of all standard extended tableaux of shape α\alpha. Berg et al. [2] define a 0-Hecke action on SIT(α)\mathrm{SIT}(\alpha) and denote the resulting module by 𝒱α\mathcal{V}_{\alpha}. And, Searles [21] define a 0-Hecke action on SET(α)\mathrm{SET}(\alpha) and denote the resulting module by XαX_{\alpha}. By the construction of 𝒱α\mathcal{V}_{\alpha} and XαX_{\alpha}, it is clear that SIT(α)\mathrm{SIT}(\alpha) and SET(α)\mathrm{SET}(\alpha) are bases for 𝒱α\mathcal{V}_{\alpha} and XαX_{\alpha}, respectively.

It is not difficult to show that both SIT(α)\mathrm{SIT}(\alpha) and SET(α)\mathrm{SET}(\alpha) have a unique source and a unique sink. Denote the source of SIT(α)\mathrm{SIT}(\alpha) by 𝒯α\mathscr{T}_{\alpha} and the source of SET(α)\mathrm{SET}(\alpha) by 𝖳α\mathsf{T}_{\alpha}. They are obtained by filling 𝚌𝚍(α)\mathtt{cd}(\alpha) with entries 1,2,,n1,2,\ldots,n from left to right and from top to bottom. Denote the sink of SIT(α)\mathrm{SIT}(\alpha) by 𝒯α\mathscr{T}^{\prime}_{\alpha} and the sink of SET(α)\mathrm{SET}(\alpha) by 𝖳α\mathsf{T}^{\prime}_{\alpha}. In contrast of 𝒯α\mathscr{T}_{\alpha} and 𝖳α\mathsf{T}_{\alpha}, 𝒯α\mathscr{T}^{\prime}_{\alpha} and 𝖳α\mathsf{T}^{\prime}_{\alpha} have to be constructed separately. The former 𝒯α\mathscr{T}^{\prime}_{\alpha} is obtained from 𝚌𝚍(α)\mathtt{cd}(\alpha) in the following steps:

  1. (1)

    Fill the first column with entries 1,2,,(α)1,2,\ldots,\ell(\alpha) from top to bottom.

  2. (2)

    Fill the remaining boxes with entries (α)+1,(α)+2,,n\ell(\alpha)+1,\ell(\alpha)+2,\ldots,n from left to right from bottom to top.

On the other hand, the latter 𝖳α\mathsf{T}^{\prime}_{\alpha} is obtained by filling 𝚌𝚍(α)\mathtt{cd}(\alpha) with the entries 1,2,,n1,2,\ldots,n from top to bottom and from left to right.

Definition 4.3.

For a filling TT of a composition diagram, 𝗋𝖾𝖺𝖽(T)\mathsf{read}(T) is defined to be the word obtained from TT by reading the entries from right to left starting with the top row.

With this definition, we can state the following theorem.

Theorem 4.4.

For any αn\alpha\models n, we have the Hn(0)H_{n}(0)-module isomorphisms

𝒱α𝖡(𝗋𝖾𝖺𝖽(𝒯α),𝗋𝖾𝖺𝖽(𝒯α))andXα𝖡(𝗋𝖾𝖺𝖽(𝖳α),𝗋𝖾𝖺𝖽(𝖳α)).\displaystyle\mathcal{V}_{\alpha}\cong\mathsf{B}(\mathsf{read}(\mathscr{T}_{\alpha}),\mathsf{read}(\mathscr{T}^{\prime}_{\alpha}))\quad\text{and}\quad X_{\alpha}\cong\mathsf{B}(\mathsf{read}(\mathsf{T}_{\alpha}),\mathsf{read}(\mathsf{T}^{\prime}_{\alpha})). (4.1)

Here, the words in the parentheses are being viewed as permutations in one-line notation.

Proof.

To prove the first isomorphism in (4.1), we need the Hn(0)H_{n}(0)-module homomorphisms

θ[𝐏αc]{\uptheta[\mathbf{P}_{\alpha^{\mathrm{c}}}]}𝒫α{\mathcal{P}_{\alpha}}𝗐\scriptstyle{\mathsf{w}}   and   θ[𝐏αc]{\uptheta[\mathbf{P}_{\alpha^{\mathrm{c}}}]}𝒱α,{\mathcal{V}_{\alpha},}Φ\scriptstyle{\Phi} (4.2)

where

  1. -

    the notation 𝐏αc\mathbf{P}_{\alpha^{\mathrm{c}}} denotes the projective indecomposable module spanned by the standard ribbon tableaux of shape αc\alpha^{\mathrm{c}} in [14, Subsection 3.2],

  2. -

    the first homomorphism 𝗐\mathsf{w} is an isomorphism given in [14, Theorem 3.3 and Proposition 5.1], which is given by reading standard ribbon tableaux from left to right starting with the bottom row, and

  3. -

    the second homomorphism Φ\Phi is an essential epimorphism given in [6, Theorem 3.2].

Composing 𝗐1\mathsf{w}^{-1} with Φ\Phi yields a surjective Hn(0)H_{n}(0)-module homomorphism Φ~:𝒫α𝒱α\widetilde{\Phi}:\mathcal{P}_{\alpha}\rightarrow\mathcal{V}_{\alpha}. In view of the definition of 𝗐\mathsf{w} and Φ\Phi, one can see that

Φ~(πγπ¯w0(α))={𝒯if 𝗋𝖾𝖺𝖽(𝒯)=γ for some 𝒯SIT(α),0else.\displaystyle\widetilde{\Phi}(\pi_{\gamma}\overline{\pi}_{w_{0}(\alpha)})=\begin{cases}\mathscr{T}&\text{if $\mathsf{read}(\mathscr{T})=\gamma$ for some $\mathscr{T}\in\mathrm{SIT}(\alpha)$,}\\ 0&\text{else}.\end{cases}

Composing Φ~\widetilde{\Phi} with the isomorphism

𝖾𝗆:𝖡(w0(αc),w0w0(α))𝒫α(in Theorem 3.5 (3)),\mathsf{em}:\mathsf{B}(w_{0}(\alpha^{\mathrm{c}}),w_{0}w_{0}(\alpha))\rightarrow\mathcal{P}_{\alpha}\quad\text{(in Theorem~{}\ref{thm: embedding}~{}(3))},

we finally have the surjective Hn(0)H_{n}(0)-module homomorphism

Φ~𝖾𝗆:𝖡(w0(αc),w0w0(α))𝒱α.\widetilde{\Phi}\circ\mathsf{em}:\mathsf{B}(w_{0}(\alpha^{\mathrm{c}}),w_{0}w_{0}(\alpha))\rightarrow\mathcal{V}_{\alpha}.

Next, let us consider the projection

𝗉𝗋:𝖡(w0(αc),w0w0(α))\displaystyle\mathsf{pr}:\mathsf{B}(w_{0}(\alpha^{\mathrm{c}}),w_{0}w_{0}(\alpha)) 𝖡(𝗋𝖾𝖺𝖽(𝒯α),𝗋𝖾𝖺𝖽(𝒯α)),\displaystyle\rightarrow\mathsf{B}(\mathsf{read}(\mathscr{T}_{\alpha}),\mathsf{read}(\mathscr{T}^{\prime}_{\alpha})),
γ\displaystyle\gamma\quad {γif γ[𝗋𝖾𝖺𝖽(𝒯α),𝗋𝖾𝖺𝖽(𝒯α)]L,0else.\displaystyle\mapsto\begin{cases}\gamma&\text{if $\gamma\in[\mathsf{read}(\mathscr{T}_{\alpha}),\mathsf{read}(\mathscr{T}^{\prime}_{\alpha})]_{L}$},\\ 0&\text{else.}\end{cases}

By the definition of Φ~\widetilde{\Phi}, one sees that 𝗋𝖾𝖺𝖽(𝒯α)=w0(αc)\mathsf{read}(\mathscr{T}_{\alpha})=w_{0}(\alpha^{\mathrm{c}}) and 𝗋𝖾𝖺𝖽(𝒯α)Lw0w0(α)\mathsf{read}(\mathscr{T}^{\prime}_{\alpha})\preceq_{L}w_{0}w_{0}(\alpha). This implies that 𝗉𝗋\mathsf{pr} is a surjective Hn(0)H_{n}(0)-module homomorphism.

For our purpose, we have only to show ker(Φ~𝖾𝗆)=ker(𝗉𝗋)\ker(\widetilde{\Phi}\circ\mathsf{em})=\ker(\mathsf{pr}). From the definition of the Hn(0)H_{n}(0)-action on 𝒱α\mathcal{V}_{\alpha} it follows that 𝗋𝖾𝖺𝖽(𝒯)[𝗋𝖾𝖺𝖽(𝒯α),𝗋𝖾𝖺𝖽(𝒯α)]L\mathsf{read}(\mathscr{T})\in[\mathsf{read}(\mathscr{T}_{\alpha}),\mathsf{read}(\mathscr{T}^{\prime}_{\alpha})]_{L} for any 𝒯SIT(α)\mathscr{T}\in\mathrm{SIT}(\alpha) and therefore ker(Φ~𝖾𝗆)ker(𝗉𝗋)\ker(\widetilde{\Phi}\circ\mathsf{em})\supseteq\ker(\mathsf{pr}). On the other hand, using the fact that the 0-Hecke action on SIT(α)\mathrm{SIT}(\alpha) satisfies the braid relations, one can show that every γ[𝗋𝖾𝖺𝖽(𝒯α),𝗋𝖾𝖺𝖽(𝒯α)]L\gamma\in[\mathsf{read}(\mathscr{T}_{\alpha}),\mathsf{read}(\mathscr{T}^{\prime}_{\alpha})]_{L} appears as 𝗋𝖾𝖺𝖽(𝒯)\mathsf{read}(\mathscr{T}) for some 𝒯SIT(α)\mathscr{T}\in\mathrm{SIT}(\alpha). This says that ker(Φ~𝖾𝗆)cker(𝗉𝗋)c\ker(\widetilde{\Phi}\circ\mathsf{em})^{\mathrm{c}}\supseteq\ker(\mathsf{pr})^{\mathrm{c}}, so we are done.

The second isomorphism in (4.1) can be obtained by replacing Φ\Phi with ΓΦ\Gamma\circ\Phi in (4.2), where Γ:𝒱αXα\Gamma:\mathcal{V}_{\alpha}\rightarrow X_{\alpha} is the surjection in [6, Subsection 3.2]. ∎

4.2. Standard permuted composition tableaux and their Hn(0)H_{n}(0)-modules

We begin with introducing the definition of standard permuted composition tableaux. In this subsection, 𝛔{\boldsymbol{\upsigma}} denotes a permutation in 𝔖(α)\mathfrak{S}_{\ell(\alpha)}.

Definition 4.5.

([26]) Given αn\alpha\models n and 𝛔𝔖(α){\boldsymbol{\upsigma}}\in\mathfrak{S}_{\ell(\alpha)}, a standard permuted composition tableau (SPCT)(\mathrm{SPCT}) of shape α\alpha and type 𝛔{\boldsymbol{\upsigma}} is a filling τ\tau of 𝚌𝚍(α)\mathtt{cd}(\alpha) with entries in {1,2,,n}\{1,2,\ldots,n\} such that the following conditions hold:

  1. (1)

    The entries are all distinct.

  2. (2)

    The standardization of the word obtained by reading the first column from top to bottom is 𝛔{\boldsymbol{\upsigma}}.

  3. (3)

    The entries in each rows decrease from left to right.

  4. (4)

    If i<ji<j and τi,k>τj,k+1\tau_{i,k}>\tau_{j,k+1}, then (i,k+1)𝚌𝚍(α)(i,k+1)\in\mathtt{cd}(\alpha) and τi,k+1>τj,k+1\tau_{i,k+1}>\tau_{j,k+1}.

Denote by SPCT𝛔(α)\mathrm{SPCT}^{\boldsymbol{\upsigma}}(\alpha) the set of all standard permuted composition tableaux of shape α\alpha and type 𝛔{\boldsymbol{\upsigma}}. Tewari and van Willigenburg define a 0-Hecke action on SPCT𝛔(α)\mathrm{SPCT}^{\boldsymbol{\upsigma}}(\alpha) and denote the resulting module by 𝐒α𝛔\mathbf{S}_{\alpha}^{\boldsymbol{\upsigma}}. Contrary to 𝒱α\mathcal{V}_{\alpha} and XαX_{\alpha}, this module is not indecomposable in general. In the following, we briefly explain how to decompose 𝐒α𝛔\mathbf{S}_{\alpha}^{\boldsymbol{\upsigma}} into indecomposables.

For τ,τSPCT𝛔(α)\tau,\tau^{\prime}\in\mathrm{SPCT}^{\boldsymbol{\upsigma}}(\alpha), define ττ\tau\sim\tau^{\prime} if for each positive integer kk, the relative order of the entries in the kkth column of τ\tau is equal to that of τ\tau^{\prime}. This relation is an equivalence relation on SPCT𝛔(α)\mathrm{SPCT}^{\boldsymbol{\upsigma}}(\alpha). Let 𝛔(α)\mathcal{E}^{\boldsymbol{\upsigma}}(\alpha) be the set of all equivalence classes under \sim. Every class in 𝛔(α)\mathcal{E}^{\boldsymbol{\upsigma}}(\alpha) is closed under the 0-Hecke action, which gives rise to the decomposition

𝐒α𝛔=E𝛔(α)𝐒α,E𝛔,\displaystyle\mathbf{S}_{\alpha}^{\boldsymbol{\upsigma}}=\bigoplus_{E\in\mathcal{E}^{\boldsymbol{\upsigma}}(\alpha)}{\mathbf{S}}^{\boldsymbol{\upsigma}}_{\alpha,E},

where 𝐒α,E𝛔{\mathbf{S}}^{\boldsymbol{\upsigma}}_{\alpha,E} is the Hn(0)H_{n}(0)-module spanned by EE. All the results in the above can be found in [26]. The decomposition was improved in [5] by showing that every direct summand is indecomposable.

4.2.1. Weak Bruhat interval module structure of 𝐒α,E𝛔{\mathbf{S}}^{\boldsymbol{\upsigma}}_{\alpha,E}

We show that 𝐒α,E𝛔{\mathbf{S}}^{\boldsymbol{\upsigma}}_{\alpha,E} is isomorphic to a weak Bruhat interval module. To do this, we need a special reading of standard permuted composition tableaux. Let us introduce the necessary notations and the results. Given τSPCT𝛔(α)\tau\in\mathrm{SPCT}^{\boldsymbol{\upsigma}}(\alpha), let

Des¯(τ):={1in1i+1 lies weakly right of i in τ}.\overline{\mathrm{Des}}(\tau):=\{1\leq i\leq n-1\mid\text{$i+1$ lies weakly right of $i$ in $\tau$}\}.

It should be noticed that the set Des¯(τ)\overline{\mathrm{Des}}(\tau) plays the same role as the complement of DesL(γ)\mathrm{Des}_{L}(\gamma) since

πiγγif and only ifiDesL(γ)for γ[σ,ρ]L,\pi_{i}\cdot\gamma\neq\gamma\quad\text{if and only if}\quad i\notin\mathrm{Des}_{L}(\gamma)\quad\text{for $\gamma\in[\sigma,\rho]_{L}$,}

but

πiττif and only ifiDes¯(τ)for τSPCT𝛔(α).\pi_{i}\cdot\tau\neq\tau\quad\text{if and only if}\quad i\in\overline{\mathrm{Des}}(\tau)\quad\text{for $\tau\in\mathrm{SPCT}^{\boldsymbol{\upsigma}}(\alpha)$}.

Every equivalence class EE has a unique source and a unique sink. Denote the source by τE\tau_{E}^{~{}} and the sink by τE\tau_{E}^{\prime}. Let mEm_{E}^{~{}} be the number of elements in Des¯(τE)\overline{\mathrm{Des}}(\tau_{E}^{~{}}) and set

Des¯(τE)={d1<d2<<dmE},d0:=0,anddmE+1:=n.\overline{\mathrm{Des}}(\tau_{E}^{~{}})=\left\{d_{1}<d_{2}<\ldots<d_{m_{E}^{~{}}}\right\},\quad d_{0}:=0,\quad\text{and}\quad d_{m_{E}^{~{}}+1}:=n.

For 1jmE+11\leq j\leq m_{E}^{~{}}+1, let 𝙷j\mathtt{H}_{j} be the horizontal strip occupied by the boxes with entries from dj1+1d_{j-1}+1 to djd_{j} in τE\tau_{E}^{~{}}. For each τE\tau\in E, let τ(𝙷j)\tau(\mathtt{H}_{j}) be the subfilling of τ\tau occupied by 𝙷j\mathtt{H}_{j} in 𝚌𝚍(α)\mathtt{cd}(\alpha).

Definition 4.6.

For τE\tau\in E and 1jmE+11\leq j\leq m_{E}^{~{}}+1, let w(j)(τ)\mathrm{w}^{(j)}(\tau) be the word obtained by reading τ(𝙷j)\tau(\mathtt{H}_{j}) from left to right. The reading word, 𝗋𝖾𝖺𝖽¯(τ)\underline{\mathsf{read}}(\tau), of τ\tau is defined to be the word w(1)(τ)w(2)(τ)w(mE+1)(τ)\mathrm{w}^{(1)}(\tau)\ \mathrm{w}^{(2)}(\tau)\ \cdots\ \mathrm{w}^{(m_{E}^{~{}}+1)}(\tau).

Example 4.7.

Let E0={
{ytableau}

4 &32 51

,
{ytableau}

4 &31 52

}
id((3,2))
E_{0}=\left\{\begin{array}[]{c}\scalebox{0.8}{ \ytableau 4\hfil\lx@intercol&32 {\\ }51 }\end{array},\begin{array}[]{c}\scalebox{0.8}{ \ytableau 4\hfil\lx@intercol&31 {\\ }52 }\end{array}\right\}\in\mathcal{E}^{\mathrm{id}}((3,2))
. We have

τE0=
{ytableau}

4 &32 51

,Des¯(τE0)={1,4},and𝙷1𝙷2𝙷3
.
\tau^{~{}}_{E_{0}}=\begin{array}[]{c}\scalebox{0.8}{ \ytableau 4\hfil\lx@intercol&32 {\\ }51 }\end{array},\quad\overline{\mathrm{Des}}(\tau_{E_{0}}^{~{}})=\{1,4\},\quad\text{and}\quad\begin{array}[]{l}\scalebox{0.65}{ \leavevmode\hbox to59.02pt{\vbox to44.33pt{\pgfpicture\makeatletter\hbox{\hskip 3.33301pt\lower-0.30513pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ } {}{{}}{} {}{} {}{} {}{} {}{}{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{18.49411pt}{0.0pt}\pgfsys@lineto{18.49411pt}{18.49411pt}\pgfsys@lineto{0.0pt}{18.49411pt}\pgfsys@lineto{0.0pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{} {}{} {}{} {}{}{}\pgfsys@moveto{18.49411pt}{0.0pt}\pgfsys@lineto{36.98866pt}{0.0pt}\pgfsys@lineto{36.98866pt}{18.49411pt}\pgfsys@lineto{18.49411pt}{18.49411pt}\pgfsys@lineto{18.49411pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{} {}{} {}{} {}{}{}\pgfsys@moveto{0.0pt}{18.49411pt}\pgfsys@lineto{55.48279pt}{18.49411pt}\pgfsys@lineto{55.48279pt}{36.98866pt}\pgfsys@lineto{0.0pt}{36.98866pt}\pgfsys@lineto{0.0pt}{18.49411pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setdash{0.4pt,2.0pt}{0.0pt}\pgfsys@invoke{ }{}\pgfsys@moveto{18.49411pt}{18.49411pt}\pgfsys@lineto{18.49411pt}{36.98866pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setdash{0.4pt,2.0pt}{0.0pt}\pgfsys@invoke{ }{}\pgfsys@moveto{36.98866pt}{18.49411pt}\pgfsys@lineto{36.98866pt}{36.98866pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\par{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{20.32559pt}{5.62627pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\Large$\mathtt{H}_{1}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{20.32559pt}{24.12082pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\Large$\mathtt{H}_{2}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{1.83104pt}{5.62627pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\Large$\mathtt{H}_{3}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{0.0pt}{40.68723pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}} }\end{array}.

Therefore,

𝗋𝖾𝖺𝖽¯(
{ytableau}

4 &32 51

)
=14325and
𝗋𝖾𝖺𝖽¯(
{ytableau}

4 &31 52

)
=24315
.
\underline{\mathsf{read}}\left(\begin{array}[]{c}\scalebox{0.8}{ \ytableau 4\hfil\lx@intercol&32 {\\ }51 }\end{array}\right)=14325\quad\text{and}\quad\underline{\mathsf{read}}\left(\begin{array}[]{c}\scalebox{0.8}{ \ytableau 4\hfil\lx@intercol&31 {\\ }52 }\end{array}\right)=24315.

Next, we introduce the notion of generalized compositions. A generalized composition 𝛂{\boldsymbol{\upalpha}} of nn is defined to be a formal sum β(1)β(2)β(k)\beta^{(1)}\oplus\beta^{(2)}\oplus\cdots\oplus\beta^{(k)}, where β(i)ni\beta^{(i)}\models n_{i} for positive integers nin_{i}’s with n1+n2++nk=nn_{1}+n_{2}+\cdots+n_{k}=n. Given 𝛂=β(1)β(2)β(k){\boldsymbol{\upalpha}}=\beta^{(1)}\oplus\beta^{(2)}\oplus\cdots\oplus\beta^{(k)}, let 𝛂c:=(β(1))c(β(2))c(β(k))c{\boldsymbol{\upalpha}}^{\mathrm{c}}:=(\beta^{(1)})^{\mathrm{c}}\oplus(\beta^{(2)})^{\mathrm{c}}\oplus\cdots\oplus(\beta^{(k)})^{\mathrm{c}} and w0(𝛂):=w0(β(1)β(2)β(k))w_{0}({\boldsymbol{\upalpha}}):=w_{0}(\beta^{(1)}\cdot\beta^{(2)}\cdot\ \cdots\ \cdot\beta^{(k)}), where β(i)β(i+1)\beta^{(i)}\cdot\beta^{(i+1)} is the concatenation of β(i)\beta^{(i)} and β(i+1)\beta^{(i+1)} for 1ik11\leq i\leq k-1. Let 𝒫𝛂:=Hn(0)πw0(𝛂c)π¯w0(𝛂)\mathcal{P}_{\boldsymbol{\upalpha}}:=H_{n}(0)\pi_{w_{0}({\boldsymbol{\upalpha}}^{\mathrm{c}})}\overline{\pi}_{w_{0}({\boldsymbol{\upalpha}})}.

Choi, Kim, Nam, and Oh [6] found the projective cover of 𝐒α,E𝛔{\mathbf{S}}^{\boldsymbol{\upsigma}}_{\alpha,E} by constructing an essential epimorphism η:θ[𝐏𝛂(α,σ;E)c]𝐒α,E𝛔\eta:\uptheta[\mathbf{P}_{{\boldsymbol{\upalpha}}(\alpha,\sigma;E)^{\mathrm{c}}}]\to{\mathbf{S}}^{\boldsymbol{\upsigma}}_{\alpha,E}, where 𝛂(α,σ;E){\boldsymbol{\upalpha}}(\alpha,\sigma;E) is a generalized composition defined by using the source of EE in a suitable manner and 𝐏𝛂(α,σ;E)c\mathbf{P}_{{\boldsymbol{\upalpha}}(\alpha,\sigma;E)^{\mathrm{c}}} is the projective module spanned by standard ribbon tableaux of shape 𝛂(α,σ;E)c{\boldsymbol{\upalpha}}(\alpha,\sigma;E)^{\mathrm{c}}. From now on, we simply write 𝛂E{\boldsymbol{\upalpha}}_{E} for 𝛂(α,σ;E){\boldsymbol{\upalpha}}(\alpha,\sigma;E) since EE contains information on α\alpha and σ\sigma. For the details, see [6, Subsection 2.3 and Section 5].

Now, we are ready to prove the following theorem.

Theorem 4.8.

Let αn\alpha\models n and 𝛔𝔖(α){\boldsymbol{\upsigma}}\in\mathfrak{S}_{\ell(\alpha)}. For each E𝛔(α)E\in\mathcal{E}^{\boldsymbol{\upsigma}}(\alpha),

𝐒α,E𝛔𝖡(𝗋𝖾𝖺𝖽¯(τE),𝗋𝖾𝖺𝖽¯(τE)).{\mathbf{S}}^{\boldsymbol{\upsigma}}_{\alpha,E}\cong\mathsf{B}(\underline{\mathsf{read}}(\tau_{E}^{~{}}),\underline{\mathsf{read}}(\tau^{\prime}_{E})).
Proof.

To prove our assertion, we need the Hn(0)H_{n}(0)-module homomorphisms

θ[𝐏𝛂E]{\uptheta[\mathbf{P}_{{\boldsymbol{\upalpha}}_{E}}]}𝒫𝛂Ec{\mathcal{P}_{{\boldsymbol{\upalpha}}_{E}^{\mathrm{c}}}}𝗐\scriptstyle{\mathsf{w}}   and   θ[𝐏𝛂E]{\uptheta[\mathbf{P}_{{\boldsymbol{\upalpha}}_{E}}]}𝐒α,E𝛔,{{\mathbf{S}}^{\boldsymbol{\upsigma}}_{\alpha,E},}η\scriptstyle{\eta}

where

  1. -

    the notation 𝐏𝛂E\mathbf{P}_{{\boldsymbol{\upalpha}}_{E}} denotes the projective module spanned by the generalized ribbon tableaux of shape 𝛂E{\boldsymbol{\upalpha}}_{E},

  2. -

    the first homomorphism 𝗐\mathsf{w} is an isomorphism given in [14, Theorem 3.3 and Proposition 5.1], which is given by reading standard ribbon tableaux from left to right starting with the bottom row, and

  3. -

    the second homomorphism η\eta is an essential epimorphism given in [6, Theorem 5.3].

Composing 𝗐1\mathsf{w}^{-1} with η\eta yields a surjective Hn(0)H_{n}(0)-module homomorphism η~:𝒫𝛂Ec𝐒α,E𝛔\widetilde{\eta}:\mathcal{P}_{{\boldsymbol{\upalpha}}_{E}^{\mathrm{c}}}\rightarrow\mathbf{S}^{\boldsymbol{\upsigma}}_{\alpha,E}. In view of the definition of 𝗐\mathsf{w} and η\eta, one can see that

η~(πγπ¯w0w0(𝛂Ec))={τif 𝗋𝖾𝖺𝖽¯(τ)=γ for some τE,0otherwise.\displaystyle\widetilde{\eta}(\pi_{\gamma}\overline{\pi}_{w_{0}w_{0}({\boldsymbol{\upalpha}}_{E}^{\mathrm{c}})})=\begin{cases}\tau&\text{if $\underline{\mathsf{read}}(\tau)=\gamma$ for some $\tau\in E$,}\\ 0&\text{otherwise}.\end{cases}

Composing η~\widetilde{\eta} with the isomorphism

𝖾𝗆:𝖡(w0(𝛂E),w0w0(𝛂Ec))𝒫𝛂Ec(in Theorem 3.5 (3))\mathsf{em}:\mathsf{B}(w_{0}({\boldsymbol{\upalpha}}_{E}),w_{0}w_{0}({\boldsymbol{\upalpha}}_{E}^{\mathrm{c}}))\rightarrow\mathcal{P}_{{\boldsymbol{\upalpha}}_{E}^{\mathrm{c}}}\quad\text{(in Theorem~{}\ref{thm: embedding}~{}(3))}

we finally have the surjective Hn(0)H_{n}(0)-module homomorphism

η~𝖾𝗆:𝖡(w0(𝛂E),w0w0(𝛂Ec))𝐒α,E𝛔.\widetilde{\eta}\circ\mathsf{em}:\mathsf{B}(w_{0}({\boldsymbol{\upalpha}}_{E}),w_{0}w_{0}({\boldsymbol{\upalpha}}_{E}^{\mathrm{c}}))\rightarrow\mathbf{S}^{\boldsymbol{\upsigma}}_{\alpha,E}.

Next, let us consider the projection

𝗉𝗋:𝖡(w0(𝛂E),w0w0(𝛂Ec))\displaystyle\mathsf{pr}:\mathsf{B}(w_{0}({\boldsymbol{\upalpha}}_{E}),w_{0}w_{0}({\boldsymbol{\upalpha}}_{E}^{\mathrm{c}})) 𝖡(𝗋𝖾𝖺𝖽¯(τE),𝗋𝖾𝖺𝖽¯(τE)),\displaystyle\rightarrow\mathsf{B}(\underline{\mathsf{read}}(\tau_{E}^{~{}}),\underline{\mathsf{read}}(\tau_{E}^{\prime})),
γ\displaystyle\gamma\quad {γif γ[𝗋𝖾𝖺𝖽¯(τE),𝗋𝖾𝖺𝖽¯(τE)]L,0else.\displaystyle\mapsto\begin{cases}\gamma&\text{if $\gamma\in[\underline{\mathsf{read}}(\tau_{E}^{~{}}),\underline{\mathsf{read}}(\tau_{E}^{\prime})]_{L}$},\\ 0&\text{else.}\end{cases}

By the definition of η~\widetilde{\eta}, 𝗋𝖾𝖺𝖽¯(τE)=w0(𝛂E)\underline{\mathsf{read}}(\tau_{E}^{~{}})=w_{0}({\boldsymbol{\upalpha}}_{E}) and 𝗋𝖾𝖺𝖽¯(τE)Lw0w0(𝛂Ec)\underline{\mathsf{read}}(\tau_{E}^{\prime})\preceq_{L}w_{0}w_{0}({\boldsymbol{\upalpha}}_{E}^{\mathrm{c}}) and therefore 𝗉𝗋\mathsf{pr} is a surjective Hn(0)H_{n}(0)-module homomorphism.

For our purpose, we have only to show that ker(η~𝖾𝗆)=ker(𝗉𝗋)\ker(\widetilde{\eta}\circ\mathsf{em})=\ker(\mathsf{pr}). From the definition of the Hn(0)H_{n}(0)-action on 𝐒α,E𝛔\mathbf{S}^{\boldsymbol{\upsigma}}_{\alpha,E}, it follows that 𝗋𝖾𝖺𝖽¯(τ)[𝗋𝖾𝖺𝖽¯(τE),𝗋𝖾𝖺𝖽¯(τE)]L\underline{\mathsf{read}}(\tau)\in[\underline{\mathsf{read}}(\tau_{E}^{~{}}),\underline{\mathsf{read}}(\tau_{E}^{\prime})]_{L} for any τE\tau\in E and therefore ker(η~𝖾𝗆)ker(𝗉𝗋)\ker(\widetilde{\eta}\circ\mathsf{em})\supseteq\ker(\mathsf{pr}). On the other hand, using the fact that the 0-Hecke action on EE satisfies the braid relations, one can show that every γ[𝗋𝖾𝖺𝖽¯(τE),𝗋𝖾𝖺𝖽¯(τE)]L\gamma\in[\underline{\mathsf{read}}(\tau_{E}^{~{}}),\underline{\mathsf{read}}(\tau_{E}^{\prime})]_{L} appears as 𝗋𝖾𝖺𝖽¯(τ)\underline{\mathsf{read}}(\tau) for some τE\tau\in E. This says that ker(η~𝖾𝗆)cker(𝗉𝗋)c\ker(\widetilde{\eta}\circ\mathsf{em})^{\mathrm{c}}\supseteq\ker(\mathsf{pr})^{\mathrm{c}}, so we are done. ∎

Remark 4.9.

In case where 𝛔=id{\boldsymbol{\upsigma}}=\mathrm{id}, a different reading from ours in Definition 4.6 has already been introduced in [24, Definition 4.1]. More precisely, for each τSPCTid(α)\tau\in\mathrm{SPCT}^{\mathrm{id}}(\alpha), they define a reading word colτ\mathrm{col}_{\tau}, called the column word of τ\tau. They also introduce a partial order α\preceq_{\alpha} on SPCTid(α)\mathrm{SPCT}^{\mathrm{id}}(\alpha) and prove that (E,α)(E,\preceq_{\alpha}) is a graded poset isomorphic to ([colτE,colτE]L,L)([\mathrm{col}_{\tau_{E}^{~{}}},\mathrm{col}_{\tau_{E}^{\prime}}]_{L},\preceq_{L}) (see [24, Theorem 6.18]). In view of Theorem 4.4, one may expect that 𝐒α,Eid\mathbf{S}^{\mathrm{id}}_{\alpha,E} is isomorphic to 𝖡(colτE,colτE)\mathsf{B}(\mathrm{col}_{\tau_{E}^{~{}}},\mathrm{col}_{\tau_{E}^{\prime}}). This, however, turns out to be false. For instance, let E0E_{0} be the equivalence class given in Example 4.7. Then colτE0=45312\mathrm{col}_{\tau^{~{}}_{E_{0}}}=45312, colτE0=45321\mathrm{col}_{\tau_{E_{0}}^{\prime}}=45321, and 𝖡(45312,45321)\mathsf{B}(45312,45321) is not indecomposable as seen in Figure 3.1. Therefore, 𝐒α,E0id\mathbf{S}^{\mathrm{id}}_{\alpha,E_{0}} is not isomorphic to 𝖡(45312,45321)\mathsf{B}(45312,45321).

4.2.2. Involution twists of 𝐒α𝛔\mathbf{S}^{\boldsymbol{\upsigma}}_{\alpha}

Standard Young row-strict tableaux were first introduced in [18] as a combinatorial model for the Young row-strict quasisymmetric Schur functions α\mathcal{R}_{\alpha}. Recently, Bardwell and Searles [1] succeeded in constructing an Hn(0)H_{n}(0)-module 𝐑α\mathbf{R}_{\alpha} whose quasisymmetric characteristic image equals α\mathcal{R}_{\alpha}. It is constructed by defining a 0-Hecke action on the set of standard Young row-strict tableaux of shape α\alpha. We here introduce permuted standard Young row-strict tableaux which turn out to be very useful in describing the Hn(0)H_{n}(0)-module ω^[𝐒α𝛔]{\widehat{\upomega}}[\mathbf{S}_{\alpha}^{\boldsymbol{\upsigma}}], where ω^=ϕθχ{\widehat{\upomega}}=\upphi\circ\uptheta\circ\upchi.

Definition 4.10.

Given αn\alpha\models n and 𝛔𝔖(α){\boldsymbol{\upsigma}}\in\mathfrak{S}_{\ell(\alpha)}, a standard permuted Young row-strict composition tableau TT ((SPYRT)) of shape α\alpha and type 𝛔{\boldsymbol{\upsigma}} is a filling of 𝚌𝚍(αr)\mathtt{cd}(\alpha^{\mathrm{r}}) with entries {1,2,,n}\{1,2,\ldots,n\} such that the following conditions hold:

  1. (1)

    The entries are all distinct.

  2. (2)

    The standardization of the word obtained by reading the first column from bottom to top is 𝛔{\boldsymbol{\upsigma}}.

  3. (3)

    The entries in each row are increasing from left to right.

  4. (4)

    If i<ji<j and Ti,k<Tj,k+1T_{i,k}<T_{j,k+1}, then (i,k+1)𝚌𝚍(αr)(i,k+1)\in\mathtt{cd}(\alpha^{\mathrm{r}}) and Ti,k+1<Tj,k+1T_{i,k+1}<T_{j,k+1}.

Denote by SPYRT𝛔(α)\mathrm{SPYRT}^{\boldsymbol{\upsigma}}(\alpha) the set of all SPYRTs of shape α\alpha and type 𝛔{\boldsymbol{\upsigma}}. Let 𝐑α𝛔\mathbf{R}^{\boldsymbol{\upsigma}}_{\alpha} be the \mathbb{C}-span of SPYRT𝛔(α)\mathrm{SPYRT}^{\boldsymbol{\upsigma}}(\alpha). Define

πi T:={Tif i+1 is weakly left of i in T,0if i+1 is right-adjacent to i in T,siTotherwise\displaystyle\pi_{i}\mathbin{\vbox{\hbox{\rule{2.15277pt}{2.15277pt}}}}T:=\begin{cases}T&\text{if $i+1$ is weakly left of $i$ in $T$},\\ 0&\text{if $i+1$ is right-adjacent to $i$ in $T$},\\ s_{i}\cdot T&\text{otherwise}\end{cases} (4.3)

for 1in11\leq i\leq n-1 and TSPYRT𝛔(α)T\in\mathrm{SPYRT}^{\boldsymbol{\upsigma}}(\alpha). Here, siTs_{i}\cdot T is obtained from TT by swapping ii and i+1i+1.

We claim that (4.3) defines an Hn(0)H_{n}(0)-action on 𝐑α𝛔\mathbf{R}^{\boldsymbol{\upsigma}}_{\alpha}. For TSPYRT𝛔(α)T\in\mathrm{SPYRT}^{\boldsymbol{\upsigma}}(\alpha), let τT\tau_{T} be the filling of 𝚌𝚍(αr)\mathtt{cd}(\alpha^{\mathrm{r}}) defined by (τT)i,j=n+1Ti,j(\tau_{T})_{i,j}=n+1-T_{i,j}. Define a \mathbb{C}-linear isomorphism 𝒲:𝐑α𝛔ω^[𝐒αr𝛔w0]\mathcal{W}:\mathbf{R}^{\boldsymbol{\upsigma}}_{\alpha}\rightarrow{\widehat{\upomega}}[\mathbf{S}^{{\boldsymbol{\upsigma}}^{w_{0}}}_{\alpha^{\mathrm{r}}}] by letting

𝒲(T)=(1)rank(τT)τTfor TSPYRT𝛔(α),\mathcal{W}(T)=(-1)^{\mathrm{rank}(\tau_{T})}\tau_{T}^{*}\quad\text{for $T\in\mathrm{SPYRT}^{\boldsymbol{\upsigma}}(\alpha)$},

then extending it by linearity. Here, τT\tau_{T}^{*} is the dual of τT\tau_{T} with respect to the basis SPCT𝛔w0(αr)\mathrm{SPCT}^{{\boldsymbol{\upsigma}}^{w_{0}}}(\alpha^{\mathrm{r}}) for 𝐒αr𝛔w0\mathbf{S}^{{\boldsymbol{\upsigma}}^{w_{0}}}_{\alpha^{\mathrm{r}}} and rank(τT):=min{(γ)πγτE=τT}\mathrm{rank}(\tau_{T}):=\min\{\ell(\gamma)\mid\pi_{\gamma}\cdot\tau_{E}^{~{}}=\tau_{T}\}, where EE is the equivalence class containing τT\tau_{T}. One can verify that

𝒲(πi T)=πi𝒲(T)for all 1in1,\mathcal{W}(\pi_{i}\mathbin{\vbox{\hbox{\rule{2.15277pt}{2.15277pt}}}}T)=\pi_{i}\cdot\mathcal{W}(T)\quad\text{for all $1\leq i\leq n-1$},

which proves our claim. In particular, when 𝛔=id{\boldsymbol{\upsigma}}=\mathrm{id}, our 𝐑α𝛔\mathbf{R}^{\boldsymbol{\upsigma}}_{\alpha} is exactly same to 𝐑α\mathbf{R}_{\alpha} due to Bardwell and Searles. To summarize, we state the following proposition.

Proposition 4.11.

For each αn\alpha\models n and 𝛔𝔖(α){\boldsymbol{\upsigma}}\in\mathfrak{S}_{\ell(\alpha)}, (4.3) defines an Hn(0)H_{n}(0)-action on 𝐑α𝛔\mathbf{R}^{\boldsymbol{\upsigma}}_{\alpha}. Moreover, 𝒲:𝐑α𝛔ω^[𝐒αr𝛔w0]\mathcal{W}:\mathbf{R}^{\boldsymbol{\upsigma}}_{\alpha}\rightarrow{\widehat{\upomega}}[\mathbf{S}^{{\boldsymbol{\upsigma}}^{w_{0}}}_{\alpha^{\mathrm{r}}}] is an Hn(0)H_{n}(0)-module isomorphism.

Remark 4.12.

In the combinatorial aspect, our SPYRTs are precisely the standard permuted Young composition tableaux (SPYCT) in [6, Definition 4.4]. But, they should be distinguished in the sense that they have different 0-Hecke actions. For the 0-Hecke action on SPYCTs, see [6, Subsection 4.2]. The set of SPYCTs is a combinatorial model for an Hn(0)H_{n}(0)-module 𝐒^α𝛔\widehat{\mathbf{S}}_{\alpha}^{\boldsymbol{\upsigma}} which is isomorphic to ϕ[𝐒αr𝛔w0]\upphi[\mathbf{S}^{{\boldsymbol{\upsigma}}^{w_{0}}}_{\alpha^{\mathrm{r}}}].

By virtue of Proposition 4.11, one can transport lots of properties of 𝐒αrσw0\mathbf{S}^{\sigma^{w_{0}}}_{\alpha^{\mathrm{r}}} to 𝐑α𝛔\mathbf{R}^{\boldsymbol{\upsigma}}_{\alpha} via the functor 𝐓ω^:modHn(0)modHn(0)\mathbf{T}^{-}_{{\widehat{\upomega}}}:\mathrm{mod}\,H_{n}(0)\rightarrow\mathrm{mod}\,H_{n}(0). For each E𝛔w0(αr)E\in\mathcal{E}^{{\boldsymbol{\upsigma}}^{w_{0}}}(\alpha^{\mathrm{r}}), let 𝐑α,E𝛔:=𝒲1(ω^[𝐒αr,E𝛔w0])\mathbf{R}^{\boldsymbol{\upsigma}}_{\alpha,E}:=\mathcal{W}^{-1}({\widehat{\upomega}}[\mathbf{S}^{{\boldsymbol{\upsigma}}^{w_{0}}}_{\alpha^{\mathrm{r}},E}]). Combining Proposition 4.11 with the results in [5, 6, 26], we have the following corollary.

Corollary 4.13.

For each E𝛔w0(αr)E\in\mathcal{E}^{{\boldsymbol{\upsigma}}^{w_{0}}}(\alpha^{\mathrm{r}}), the following hold:

  1. (1)

    𝐑α,E𝛔\mathbf{R}^{\boldsymbol{\upsigma}}_{\alpha,E} is indecomposable. In particular, 𝐑α𝛔=E𝛔(α)𝐑α,E𝛔\mathbf{R}^{\boldsymbol{\upsigma}}_{\alpha}=\bigoplus_{E\in\mathcal{E}^{\boldsymbol{\upsigma}}(\alpha)}\mathbf{R}^{\boldsymbol{\upsigma}}_{\alpha,E} is a decomposition of 𝐑α𝛔\mathbf{R}^{\boldsymbol{\upsigma}}_{\alpha} into indecomposables.

  2. (2)

    The injective hull of 𝐑α,E𝛔\mathbf{R}^{\boldsymbol{\upsigma}}_{\alpha,E} is 𝒫𝛂E(=𝒫𝛂(αr,𝛔w0;E))\mathcal{P}_{{\boldsymbol{\upalpha}}_{E}}(=\mathcal{P}_{{\boldsymbol{\upalpha}}(\alpha^{\mathrm{r}},{\boldsymbol{\upsigma}}^{w_{0}};E)}).

  3. (3)

    𝐑α,E𝛔𝖡(w0𝗋𝖾𝖺𝖽¯(τE),w0𝗋𝖾𝖺𝖽¯(τE))\mathbf{R}^{\boldsymbol{\upsigma}}_{\alpha,E}\cong\mathsf{B}(w_{0}\underline{\mathsf{read}}(\tau_{E}^{\prime}),w_{0}\underline{\mathsf{read}}(\tau_{E}^{~{}})).

Proof.

(1) Since 𝐓ω^:modHn(0)modHn(0)\mathbf{T}^{-}_{{\widehat{\upomega}}}:\mathrm{mod}\,H_{n}(0)\rightarrow\mathrm{mod}\,H_{n}(0) is an isomorphism, it preserves direct sum. Therefore, the assertion can be obtained by combining Proposition 4.11 with [5, Theorem 3.1].

(2) As seen in the proof of Theorem 4.8, η~:𝒫𝛂Ec𝐒αr,E𝛔w0\widetilde{\eta}:\mathcal{P}_{{\boldsymbol{\upalpha}}_{E}^{\mathrm{c}}}\to\mathbf{S}^{{\boldsymbol{\upsigma}}^{w_{0}}}_{\alpha^{\mathrm{r}},E} is an essential epimorphism, thus 𝒫𝛂Ec\mathcal{P}_{{\boldsymbol{\upalpha}}_{E}^{\mathrm{c}}} is the projective cover of 𝐒αr,E𝛔w0\mathbf{S}^{{\boldsymbol{\upsigma}}^{w_{0}}}_{\alpha^{\mathrm{r}},E}. It is clear that 𝐓ω^\mathbf{T}^{-}_{{\widehat{\upomega}}} is a contravariant exact functor. So, taking 𝐓ω^\mathbf{T}^{-}_{{\widehat{\upomega}}} on η~\widetilde{\eta} yields that ω^[𝒫𝛂Ec]{\widehat{\upomega}}[\mathcal{P}_{{\boldsymbol{\upalpha}}_{E}^{\mathrm{c}}}] is the injective hull of ω^[𝐒αr,E𝛔w0]𝐑α,E𝛔{\widehat{\upomega}}[\mathbf{S}^{{\boldsymbol{\upsigma}}^{w_{0}}}_{\alpha^{\mathrm{r}},E}]\cong\mathbf{R}^{{\boldsymbol{\upsigma}}}_{\alpha,E}. Now the assertion follows from the isomorphism ω^[𝒫𝛂Ec]𝒫𝛂E{\widehat{\upomega}}[\mathcal{P}_{{\boldsymbol{\upalpha}}_{E}^{\mathrm{c}}}]\cong\mathcal{P}_{{\boldsymbol{\upalpha}}_{E}}, which is due to Table 3.2.

(3) The assertion follows from Theorem 3.16 with Theorem 4.8. ∎

The three commutative diagrams in Figure 4.1 show various (anti-)involution twists of 𝐒α𝛔\mathbf{S}_{\alpha}^{\boldsymbol{\upsigma}} as well as their images under the quasisymmetric characteristic when 𝛔=id{\boldsymbol{\upsigma}}=\mathrm{id}.

𝒮α\mathcal{S}_{\alpha}𝒮α\mathcal{RS}_{\alpha}𝒮^αr\widehat{\mathcal{S}}_{\alpha^{\mathrm{r}}}αr\mathcal{R}_{\alpha^{\mathrm{r}}}ψ\uppsiρ\uprhoψ\uppsiρ\uprhoch\mathrm{ch}𝐒α\mathbf{S}_{\alpha}θ[𝐒α]\uptheta[\mathbf{S}_{\alpha}]𝐒^αr\widehat{\mathbf{S}}_{\alpha^{\mathrm{r}}}ω[𝐒α]\upomega[\mathbf{S}_{\alpha}]χ[𝐒α]\upchi[\mathbf{S}_{\alpha}]θ^[𝐒α]{\widehat{\uptheta}}[\mathbf{S}_{\alpha}]ϕ^[𝐒α]{\widehat{\upphi}}[\mathbf{S}_{\alpha}]𝐑αr\mathbf{R}_{\alpha^{\mathrm{r}}}𝛔=id{\boldsymbol{\upsigma}}=\mathrm{id}𝐒α𝛔\mathbf{S}^{{\boldsymbol{\upsigma}}}_{\alpha}θ[𝐒α𝛔]\uptheta[\mathbf{S}^{{\boldsymbol{\upsigma}}}_{\alpha}]𝐒^αr𝛔w0\widehat{\mathbf{S}}^{{\boldsymbol{\upsigma}}^{w_{0}}}_{\alpha^{\mathrm{r}}}ω[𝐒α𝛔]\upomega[\mathbf{S}^{{\boldsymbol{\upsigma}}}_{\alpha}]𝐓θ+\mathbf{T}^{+}_{\uptheta}𝐓θ+\mathbf{T}^{+}_{\uptheta}𝐓ϕ+\mathbf{T}^{+}_{\upphi}𝐓ϕ+\mathbf{T}^{+}_{\upphi}χ[𝐒α𝛔]\upchi[\mathbf{S}^{{\boldsymbol{\upsigma}}}_{\alpha}]θ^[𝐒α𝛔]{\widehat{\uptheta}}[\mathbf{S}_{\alpha}^{\boldsymbol{\upsigma}}]ϕ^[𝐒α𝛔]{\widehat{\upphi}}[\mathbf{S}^{{\boldsymbol{\upsigma}}}_{\alpha}]𝐑αr𝛔w0\mathbf{R}^{{\boldsymbol{\upsigma}}^{w_{0}}}_{\alpha^{\mathrm{r}}}𝐓χ\mathbf{T}^{-}_{\upchi}𝐓χ\mathbf{T}^{-}_{\upchi}
Figure 4.1. (Anti-)involution twists of 𝐒α𝛔\mathbf{S}_{\alpha}^{\boldsymbol{\upsigma}} and their images under the quasisymmetric characteristic when 𝛔=id{\boldsymbol{\upsigma}}=\mathrm{id}

In the first and second diagram, the functors assigned to parallel arrows are all same and the arrows in red are being used to indicate that the domain and codomain have the same image under the quasisymmetric characteristic. In the last diagram, 𝒮^αr\widehat{\mathcal{S}}_{\alpha^{\mathrm{r}}} is the Young quasisymmetric Schur function in [17, Definition 5.2.1], 𝒮α\mathcal{RS}_{\alpha} is the row-strict quasisymmetric Schur function in [19, Definition 3.2], and ψ,ρ\uppsi,\uprho are automorphisms of QSym\mathrm{QSym} defined by ψ(Fα)=Fαc\uppsi(F_{\alpha})=F_{\alpha^{\mathrm{c}}} and ρ(Fα)=Fαr\uprho(F_{\alpha})=F_{\alpha^{\mathrm{r}}}.

Remark 4.14.

(1) Let kk be a positive integer and ω:=ψρ\omega:=\uppsi\circ\uprho. It was stated in [19, Theorem 5.1] that

ω(𝒮α(x1,x2,,xk))=𝒮α(xk,xk1,,x1).\omega(\mathcal{S}_{\alpha}(x_{1},x_{2},\ldots,x_{k}))=\mathcal{RS}_{\alpha}(x_{k},x_{k-1},\ldots,x_{1}).

On the other hand, the third diagram in Figure 4.1 shows that ω(𝒮α)=αr\omega(\mathcal{S}_{\alpha})=\mathcal{R}_{\alpha^{\mathrm{r}}}, thus

ω(𝒮α(x1,x2,,xk))=αr(x1,x2,,xk).\omega(\mathcal{S}_{\alpha}(x_{1},x_{2},\ldots,x_{k}))=\mathcal{R}_{\alpha^{\mathrm{r}}}(x_{1},x_{2},\ldots,x_{k}).

As a consequence, we derive that

𝒮α(xk,xk1,,x1)=αr(x1,x2,,xk).\mathcal{RS}_{\alpha}(x_{k},x_{k-1},\ldots,x_{1})=\mathcal{R}_{\alpha^{\mathrm{r}}}(x_{1},x_{2},\ldots,x_{k}).

We add a remark that in some literature such as [17, Subsection 5.2] and [25, Remark 4.4], the identity ω(𝒮α)=αr\omega(\mathcal{S}_{\alpha})=\mathcal{R}_{\alpha^{\mathrm{r}}} is incorrectly stated as ω(𝒮α)=𝒮α\omega(\mathcal{S}_{\alpha})=\mathcal{RS}_{\alpha}.

(2) One can also observe ω(𝒮^α)=α\omega(\widehat{\mathcal{S}}_{\alpha})=\mathcal{R}_{\alpha} in [18, Theorem 12]. This identity, however, should appear as ω(𝒮^α)=𝒮αr\omega(\widehat{\mathcal{S}}_{\alpha})=\mathcal{RS}_{\alpha^{\mathrm{r}}} by the third diagram in Figure 4.1. Within the best understanding of the authors, this error seems to have occurred for the reason that the descent sets of Young composition tableaux and that of standard Young row-strict composition tableaux are defined in a different manner. The proof of [18, Theorem 12], with a small modification, can be used to verify ω(𝒮^α)=𝒮αr\omega(\widehat{\mathcal{S}}_{\alpha})=\mathcal{RS}_{\alpha^{\mathrm{r}}}.

5. Further avenues

(1) We have studied the structure of weak Bruhat interval modules so far. However, there are still many unsolved fundamental problems including the following:

  1. -

    Classify all weak Bruhat interval modules up to isomorphism.

  2. -

    Given an interval [σ,ρ]L[\sigma,\rho]_{L}, decompose 𝖡(σ,ρ)\mathsf{B}(\sigma,\rho) into indecomposables.

  3. -

    Given an interval [σ,ρ]L[\sigma,\rho]_{L}, find the projective cover and the injective hull of 𝖡(σ,ρ)\mathsf{B}(\sigma,\rho).

(2) In [24, Section 9 and 10], Tewari and van Willigenburg provide a restriction rule for 𝐒αHn1(0)Hn(0)\mathbf{S}_{\alpha}\downarrow^{H_{n}(0)}_{H_{n-1}(0)} and ask if there is a reciprocal induction rule for 𝐒αHn1(0)Hn(0)\mathbf{S}_{\alpha}\uparrow^{H_{n}(0)}_{H_{n-1}(0)} with respect to the restriction rule. By combining Lemma 3.8 with Theorem 4.8, we successfully decompose 𝐒αHn1(0)Hn(0)\mathbf{S}_{\alpha}\uparrow^{H_{n}(0)}_{H_{n-1}(0)} into weak Bruhat interval modules. But, at the moment, we do not know if it can be expressed as a direct sum of 𝐒β\mathbf{S}_{\beta}’s. We expect that a better understanding of the weak Bruhat interval modules appearing in the decomposition would be of great help in solving this problem. In line with this philosophy, it is interesting to find or characterize all intervals [σ,ρ]L[\sigma,\rho]_{L} such that 𝖡(σ,ρ)\mathsf{B}(\sigma,\rho) is isomorphic to 𝒱α\mathcal{V}_{\alpha}, XαX_{\alpha}, or 𝐒α,E𝛔\mathbf{S}^{{\boldsymbol{\upsigma}}}_{\alpha,E}.

(3) Let nn and NN be arbitrary positive integers and V:=NV:=\mathbb{C}^{N}. Using the fact that the left 𝒰0(glN)\mathcal{U}_{0}(gl_{N})-action on VnV^{\otimes n} commutes with the right Hn(0)H_{n}(0)-action on VnV^{\otimes n}, Krob and Thibon [16] construct 𝒰0(glN)\mathcal{U}_{0}(gl_{N})-modules

𝐃α:=Vnπ¯w0(αc)w0πw0(αt)and\displaystyle\mathbf{D}_{\alpha}:=V^{\otimes n}\cdot\overline{\pi}_{w_{0}(\alpha^{\mathrm{c}})\,w_{0}}\pi_{w_{0}(\alpha^{\mathrm{t}})}\quad\text{and}
𝐍α:=Vnπ¯w0(α)πw0(αc)\displaystyle\mathbf{N}_{\alpha}:=V^{\otimes n}\cdot\overline{\pi}_{w_{0}(\alpha)}\pi_{w_{0}(\alpha^{\mathrm{c}})}

for every composition α\alpha of nn. Then they prove that, as α\alpha ranges over the set of nonempty compositions, 𝐃α\mathbf{D}_{\alpha}’s form a complete family of irreducible polynomial 𝒰0(glN)\mathcal{U}_{0}(gl_{N})-modules and 𝐍α\mathbf{N}_{\alpha}’s a complete family of indecomposable polynomial 𝒰0(glN)\mathcal{U}_{0}(gl_{N})-modules which arise as a direct summand of VnV^{\otimes n} for some n>0n>0. They also realize 𝐅α\mathbf{F}_{\alpha} and 𝐏α\mathbf{P}_{\alpha} as the left ideals of Hn(0)H_{n}(0)

𝐅αHn(0)π¯w0(αc)w0πw0(αt)and𝐏αHn(0)π¯w0(α)πw0(αc).\displaystyle\begin{aligned} \mathbf{F}_{\alpha}&\cong H_{n}(0)\cdot\overline{\pi}_{w_{0}(\alpha^{\mathrm{c}})\,w_{0}}\pi_{w_{0}(\alpha^{\mathrm{t}})}\quad\text{and}\\ \mathbf{P}_{\alpha}&\cong H_{n}(0)\cdot\overline{\pi}_{w_{0}(\alpha)}\pi_{w_{0}(\alpha^{\mathrm{c}})}.\end{aligned} (5.1)

Hence, by replacing Hn(0)H_{n}(0) by VnV^{\otimes n} in (5.1), one obtains the 𝒰0(glN)\mathcal{U}_{0}(gl_{N})-modules 𝐃α\mathbf{D}_{\alpha} and 𝐍α\mathbf{N}_{\alpha} from the Hn(0)H_{n}(0)-modules 𝐅α\mathbf{F}_{\alpha} and 𝐏α\mathbf{P}_{\alpha}, respectively. This relationship seems to work well at the character level as well. In this regard, Hivert [12] shows that the Weyl character of 𝐃α\mathbf{D}_{\alpha} is equal to the quasisymmetric polynomial Fα(x1,x2,,xN,0,0,)F_{\alpha}(x_{1},x_{2},\ldots,x_{N},0,0,\ldots), where Fα(x1,x2,)=ch([𝐅α])F_{\alpha}(x_{1},x_{2},\ldots)=\mathrm{ch}([\mathbf{F}_{\alpha}]).

In the present paper, we study intensively weak Bruhat interval modules, which are of the form Hn(0)πσπ¯ρH_{n}(0)\pi_{\sigma}\overline{\pi}_{\rho} or Hn(0)π¯σπρH_{n}(0)\overline{\pi}_{\sigma}\pi_{\rho} up to isomorphism (Theorem 3.5). Hence, it would be very meaningful to investigate how our results about weak Bruhat interval modules are reflected on the corresponding 𝒰0(glN)\mathcal{U}_{0}(gl_{N})-modules, in other words, the 𝒰0(glN)\mathcal{U}_{0}(gl_{N})-modules of the form Vnπσπ¯ρV^{\otimes n}\cdot\pi_{\sigma}\overline{\pi}_{\rho} and Vnπ¯σπρV^{\otimes n}\cdot\overline{\pi}_{\sigma}\pi_{\rho} for σ,ρ𝔖n\sigma,\rho\in\mathfrak{S}_{n}.

Acknowledgments. The authors would like to thank Sarah Mason and Elizabeth Niese for helpful discussions on Remark 4.14. The authors also would like to thank Dominic Searles for helpful discussions on the 0-Hecke action on 𝐑ασ\mathbf{R}^{\sigma}_{\alpha}. The authors are grateful to the anonymous referee for careful readings of the manuscript and valuable advice.

References

  • [1] J. Bardwell and D. Searles. 0-Hecke modules for Young row-strict quasisymmetric Schur functions. arXiv preprint, arXiv:2012.12568 [math.RT], 2020.
  • [2] C. Berg, N. Bergeron, F. Saliola, L. Serrano, and M. Zabrocki. Indecomposable modules for the dual immaculate basis of quasi-symmetric functions. Proc. Amer. Math. Soc., 143(3):991–1000, 2015.
  • [3] N. Bergeron and H. Li. Algebraic structures on Grothendieck groups of a tower of algebras. J. Algebra, 321(8):2068–2084, 2009.
  • [4] A. Björner and F. Brenti. Combinatorics of Coxeter groups, volume 231 of Graduate Texts in Mathematics. Springer, New York, 2005.
  • [5] S.-I. Choi, Y.-H. Kim, S.-Y. Nam, and Y.-T. Oh. Modules of the 0-Hecke algebra arising from standard permuted composition tableaux. J. Combin. Theory Ser. A, 179:105389, 34, 2021.
  • [6] S.-I. Choi, Y.-H. Kim, S.-Y. Nam, and Y.-T. Oh. The projective cover of tableau-cyclic indecomposable Hn(0){H}_{n}(0)-modules. arXiv preprint, arXiv:2008.06830 [math.RT], 2020.
  • [7] B. Deng and G. Yang. Representation type of 0-Hecke algebras. Sci. China Math., 54(3):411–420, 2011.
  • [8] G. Duchamp, F. Hivert, and J.-Y. Thibon. Noncommutative symmetric functions. VI. Free quasi-symmetric functions and related algebras. Internat. J. Algebra Comput., 12(5):671–717, 2002.
  • [9] G. Duchamp, D. Krob, B. Leclerc, and J.-Y. Thibon. Fonctions quasi-symétriques, fonctions symétriques non commutatives et algèbres de Hecke à q=0q=0. C. R. Acad. Sci. Paris Sér. I Math., 322(2):107–112, 1996.
  • [10] M. Fayers. 0-Hecke algebras of finite Coxeter groups. J. Pure Appl. Algebra, 199(1-3):27–41, 2005.
  • [11] I. Gessel. Multipartite P{P}-partitions and inner products of skew schur functions. Contemp. Math, 34(289-301):101, 1984.
  • [12] F. Hivert. Hecke algebras, difference operators, and quasi-symmetric functions. Adv. Math., 155(2):181–238, 2000.
  • [13] F. Hivert, J.-C. Novelli, and J.-Y. Thibon. Yang-Baxter bases of 0-Hecke algebras and representation theory of 0-Ariki–Koike–Shoji algebras. Adv. Math., 205(2):504–548, 2006.
  • [14] J. Huang. A tableau approach to the representation theory of 0-Hecke algebras. Ann. Comb., 20(4):831–868, 2016.
  • [15] S. König. The decomposition of 0-Hecke modules associated to quasisymmetric Schur functions. Algebr. Comb., 2(5):735–751, 2019.
  • [16] D. Krob and J.-Y. Thibon. Noncommutative symmetric functions. V. A degenerate version of Uq(glN)U_{q}(gl_{N}). Internat. J. Algebra Comput., 9(3-4):405–430, 1999.
  • [17] K. Luoto, S. Mykytiuk, and S. van Willigenburg. An introduction to quasisymmetric Schur functions. SpringerBriefs in Mathematics. Springer, New York, 2013.
  • [18] S. Mason and E. Niese. Skew row-strict quasisymmetric Schur functions. J. Algebraic Combin., 42(3):763–791, 2015.
  • [19] S. Mason and J. Remmel. Row-strict quasisymmetric Schur functions. Ann. Comb., 18(1):127–148, 2014.
  • [20] P. Norton. 0-Hecke algebras. J. Austral. Math. Soc. Ser. A, 27(3):337–357, 1979.
  • [21] D. Searles. Indecomposable 0-Hecke modules for extended Schur functions. Proc. Amer. Math. Soc., 148(5):1933–1943, 2020.
  • [22] A. Skowroński and K. Yamagata. Frobenius algebras. I. EMS Textbooks in Mathematics. European Mathematical Society (EMS), Zürich, 2011.
  • [23] R. Stanley. Enumerative combinatorics. Vol. 2, volume 62 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1999.
  • [24] V. Tewari and S. van Willigenburg. Modules of the 0-Hecke algebra and quasisymmetric Schur functions. Adv. Math., 285:1025–1065, 2015.
  • [25] V. Tewari and S. van Willigenburg. Quasisymmetric and noncommutative skew Pieri rules. Adv. in Appl. Math., 100:101–121, 2018.
  • [26] V. Tewari and S. van Willigenburg. Permuted composition tableaux, 0-Hecke algebra and labeled binary trees. J. Combin. Theory Ser. A, 161:420–452, 2019.