This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

\setkeys

Grotunits=360

\catchline

Weak bi-center and critical period bifurcations of a Z2Z_{2}-Equivariant quintic system111This research is partially supported by National Natural Science Foundation of China (No. 11101126).

Yusen Wu School of Statistics, Qufu Normal University
Qufu 273165, Shandong, PR China
[email protected]
((Apr. 7, 2020))
Abstract

With the help of computer algebra system-Mathematica, this paper considers the weak center problem and local critical periods for bi-center of a Z2Z_{2}-Equivariant quintic system with eight parameters. The order of weak bi-center is identified and the exact maximum number of bifurcation of critical periods generated from the bi-center is given via the combination of symbolic calculation and numerical analysis.

keywords:
Weak bi-center; Critical period bifurcation; Period constant; Z2Z_{2}-Equivariant quintic system
{history}

1 Introduction

For the following center-focus type planar differential system

dxdt=y+h.o.t.,dydt=x+h.o.t.,\frac{dx}{dt}=-y+h.o.t.,\ \frac{dy}{dt}=x+h.o.t., (1)

the center and isochronous center problems as well as bifurcation of limit cycles have attracted much attention from mathematicians. However, another two important topics worthy of investigation for system (1) are identifying the order of weak center and the number of bifurcation of critical periods. A global study of the number of critical points of the period is a very difficult question. However, a simpler version is the local problem of the number of critical periods which can appear by perturbation of a system in the neighborhood of a center. This question is attacked by computing the Taylor series of the period function in the neighborhood of the center and further by determining the order of its first non-constant term. The involved computations are purely algorithmic. When it is performed on a polynomial family of vector fields the coefficients of the period function are polynomials in the coefficients of the system.

Chicone and Jacobs [Chicone & Jacobs, 1989] introduced the notion of bifurcation of local critical periods by analogy with the method of Bautin [Bautin, 1954] and proved that at most two critical period bifurcations can occur in a quadratic system. Later on, Lin and Li [Lin & Li, 1991] proposed a complex method to investigate weak centers and local critical periods and solved the bifurcation of local critical periods for the cubic complex system without quadratic terms, which was also studied in [Romanovski & Han, 2003; Rousseau & Toni, 1993]. Rousseau and Toni studied the local bifurcation of critical periods of periodic orbits in the neighborhood of a nondegenerate center of a vector field with a homogeneous nonlinearity of the third degree and the reduced Kukles system in [Rousseau & Toni, 1993] and [Rousseau & Toni, 1997], respectively. References [Chicone & Jacobs, 1989] and [Cherkas et al, 1997] obtained the result that kk critical points can bifurcate from a weak center of order kk. Zhang et al. [Zhang et al, 2000] discussed weak center conditions and bifurcation of critical periods in a special reversible cubic systems. Du [Du, 2004] studied local bifurcations of critical periods in the neighborhood of a nondegenerate center of a Liénard system. Gasull and Zhao [Gasull & Zhao, 2008] concerned with the study of the number of critical periods of perturbed isochronous centers. Cima et al. [Cima et al, 2008] got some lower bounds for the number of critical periods of families of centers which are perturbations of the linear one. Chen and Zhang [Chen & Zhang, 2009] decomposed algebraic sets, stratum by stratum, into a union of constructible sets with Sylvester resultants, so as to simplify the procedure of elimination. Yu et al. [Yu et al, 2010] considered the critical periods of third-order planar Hamiltonian systems. Li et al. [Li et al, 2018] studied bi-center problem and bifurcation of limit cycles from nilpotent singular points in Z2Z_{2}-equivariant cubic vector fields. Li et al. [Li et al, 2020a] studied complex isochronous center problem for cubic complex planar vector fields, which are assumed to be Z2Z_{2}-equivariant with two symmetric centers. Li et al. [Li et al, 2020b] investigated complete integrability and linearizability of cubic Z2Z_{2} systems with two non-resonant and elementary singular points.

We remind the differential system with Z2Z_{2}-equivariant symmetry, i.e., systems with unchanged phase portraits after a rotation on the angle π\pi around a point PP. Assume that AA and BB are singular points of a differential system which is Z2Z_{2}-equivariant with respect to the middle point of the line segment ABAB. We say that such system has a bi-center at points AA and BB if both AA and BB are singular points of the center type. Du et al. [Du et al, 2013] devoted to study a center problem and a weak center problem for cubic systems in Z4Z_{4}-equivariant vector fields. Chen et al. [Chen et al, 2014] considered the weak center conditions and local critical periods for a Z2Z_{2}-equivariant cubic system with eleven center conditions at the bi-center. Romanovski et al. [Romanovski et al, 2017] investigated the existence of a bi-center for a subfamily of a planar Z2Z_{2}-equivariant differential quintic system of the form

dxdt=X1(x,y)+X5(x,y),dydt=Y1(x,y)+Y5(x,y),\frac{dx}{dt}=X_{1}(x,y)+X_{5}(x,y),\ \frac{dy}{dt}=Y_{1}(x,y)+Y_{5}(x,y), (2)

where Xi(x,y),Yi(x,y)(i=1,5)X_{i}(x,y),Y_{i}(x,y)(i=1,5) are homogeneous polynomials of degree ii in the variables xx and yy and (2) has two weak foci or centers at the points (±1,0)(\pm 1,0). Four families of system (2) possessing bi-centers were found and the authors also have shown that they are not isochronous. The reason for choosing homogeneous polynomials of degree five in (2) (rather than polynomials of degree four) is to assure the existence of Z2Z_{2}-equivariant symmetry with respect to origin, which can appear only if the polynomials defining the system have just odd degree monomials. So, if replacing in (2) X5(x,y)X_{5}(x,y) and Y5(x,y)Y_{5}(x,y) with homogeneous polynomials of degree four, then the system cannot have a bi-center at (±1,0)(\pm 1,0), and if we add homogeneous perturbations of degree three, then the study becomes computationally unfeasible.

The main propose of this paper is to continue the investigation of system (2). Specifically speaking, we study the conditions on the parameters for such system to have a weak bi-center of maximum order and the most bifurcation of critical periods.

The paper is organized as follows. In Section 2 we show the computational method of period constants. In Section 3 we state and prove our main results. In the last section, we give a short conclusion.

2 Preliminary knowledge

Consider an autonomous two-dimensional system of the form

dxdt=y+k=2Xk(x,y,λ),dydt=x+k=2Yk(x,y,λ),\begin{array}[]{l}\frac{dx}{dt}=-y+\sum\limits_{k=2}^{\infty}X_{k}(x,y,\lambda),\\ \frac{dy}{dt}=x+\sum\limits_{k=2}^{\infty}Y_{k}(x,y,\lambda),\end{array} (3)

where Xk(x,y,λ),Yk(x,y,λ)X_{k}(x,y,\lambda),Y_{k}(x,y,\lambda) are homogeneous polynomials of degree kk of x,yx,y and λΛs\lambda\in\Lambda\subset\mathbb{R}^{s} is a vector of parameters. Assume Xk(x,y,λ),Yk(x,y,λ)X_{k}(x,y,\lambda),Y_{k}(x,y,\lambda) are analytic in a neighborhood of the origin which is a center type singularity of system (3). Under the polar coordinates x=rcosθ,y=rsinθx=r\cos\theta,y=r\sin\theta, system (3) takes the form

drdθ=k=2rkφk+1(θ)1+k=2rk1ψk+1(θ),\frac{dr}{d\theta}=\frac{\sum\limits_{k=2}^{\infty}r^{k}\varphi_{k+1}(\theta)}{1+\sum\limits_{k=2}^{\infty}r^{k-1}\psi_{k+1}(\theta)}, (4)

where

φk+1(θ)=cosθXk(cosθ,sinθ)+sinθYk(cosθ,sinθ),ψk+1(θ)=cosθYk(cosθ,sinθ)sinθXk(cosθ,sinθ),\begin{array}[]{l}\varphi_{k+1}(\theta)=\cos\theta X_{k}(\cos\theta,\sin\theta)+\sin\theta Y_{k}(\cos\theta,\sin\theta),\\ \psi_{k+1}(\theta)=\cos\theta Y_{k}(\cos\theta,\sin\theta)-\sin\theta X_{k}(\cos\theta,\sin\theta),\end{array} (5)

k=2,3,k=2,3,\cdots and

dθdt=1+k=2rk1ψk+1(θ).\frac{d\theta}{dt}=1+\sum\limits_{k=2}^{\infty}r^{k-1}\psi_{k+1}(\theta). (6)

Let r(θ,h)r(\theta,h) be the solution of system (4) associated with the initial condition r|θ=0=hr|_{\theta=0}=h (it corresponds to the initial point (h,0)(h,0) in the rectangular coordinate system). For a sufficiently small real constant hh the period function is defined by

P(h,λ)=02πdθ1+k=2rk1(θ,h)ψk+1(θ)=2π+k=1Tkhk.P(h,\lambda)=\int_{0}^{2\pi}\frac{d\theta}{1+\sum\limits_{k=2}^{\infty}r^{k-1}(\theta,h)\psi_{k+1}(\theta)}=2\pi+\sum\limits_{k=1}^{\infty}T_{k}h^{k}. (7)

It is known from [Romanovski & Shafer, 2009] that the period constants can be also written in the form

P(h,λ)=2π+k=1p2k(λ)h2k.P(h,\lambda)=2\pi+\sum\limits_{k=1}^{\infty}p_{2k}(\lambda)h^{2k}. (8)

The coefficient p2kp_{2k} in the above expression is call the kk-th period constant at the origin of the system.

Definition 2.1.

Let ϕ(h,λ):=P(h,λ)2π\phi(h,\lambda):=P(h,\lambda)-2\pi. If there exists k,λnk\in\mathbb{N},\lambda_{*}\in\mathbb{R}^{n} such that

ϕ(0,λ)=ϕ(0,λ)==ϕ(2k+1)(0,λ)=0,ϕ(2k+2)(0,λ)0,\phi(0,\lambda_{*})=\phi^{\prime}(0,\lambda_{*})=\cdots=\phi^{(2k+1)}(0,\lambda_{*})=0,\phi^{(2k+2)}(0,\lambda_{*})\neq 0, (9)

or equivalently

p2(λ)=p4(λ)==p2k(λ)=0,p(2k+2)(λ)0,p_{2}(\lambda_{*})=p_{4}(\lambda_{*})=\cdots=p_{2k}(\lambda_{*})=0,p_{(2k+2)}(\lambda_{*})\neq 0, (10)

the origin of system (3) is called a kk-order weak center at the parameter λ\lambda_{*}. If k=0k=0, the origin is called a strong center. If p2k(λ)=0p_{2k}(\lambda_{*})=0 for all positive integer kk, then the origin is called an isochronous center.

Definition 2.2.

Let the origin be a weak or isochronous center of system (3) corresponding to the parameter λΛ\lambda_{*}\in\Lambda. It is said that kk local critical periods bifurcate from the origin if there is ε0>0\varepsilon_{0}>0 such that for every 0<ε<ε00<\varepsilon<\varepsilon_{0} and every sufficiently small neighborhood WW of λ\lambda_{*}, there is a λ1W\lambda_{1}\in W such that P(h,λ1)=0P^{\prime}(h,\lambda_{1})=0 has kk solutions in U=(0,ε)U=(0,\varepsilon).

By means of transformation

z=x+iy,w=xiy,T=it,i=1,z=x+iy,\ w=x-iy,\ T=it,\ i=\sqrt{-1}, (11)

system (3) can be transformed into the following complex system

dzdT=z+k=2Zk(z,w,λ)=Z(z,w,λ),dwdT=wk=2Wk(z,w,λ)=W(z,w,λ),\begin{array}[]{l}\frac{dz}{dT}=z+\sum\limits_{k=2}^{\infty}Z_{k}(z,w,\lambda)=Z(z,w,\lambda),\\ \frac{dw}{dT}=-w-\sum\limits_{k=2}^{\infty}W_{k}(z,w,\lambda)=-W(z,w,\lambda),\end{array} (12)

with

Zk(z,w,λ)=α+β=kaαβ(λ)zαwβ,Wk(z,w,λ)=α+β=kbαβ(λ)wαzβ.Z_{k}(z,w,\lambda)=\sum\limits_{\alpha+\beta=k}a_{\alpha\beta}(\lambda)z^{\alpha}w^{\beta},\ W_{k}(z,w,\lambda)=\sum\limits_{\alpha+\beta=k}b_{\alpha\beta}(\lambda)w^{\alpha}z^{\beta}. (13)

It is obvious that the coefficients of system (12) satisfy the conjugate condition, i.e.,

aαβ¯=bαβ,α0,β0,α+β2.\overline{a_{\alpha\beta}}=b_{\alpha\beta},\ \alpha\geq 0,\ \beta\geq 0,\ \alpha+\beta\geq 2. (14)

We call that systems (3) and (12) are concomitant.

Lemma 2.3.

([Amelkin et al, 1982]) For system (12), we can derive uniquely the following formal series:

ξ=z+k+j=2ckjzkwj,η=w+k+j=2dkjwkzj,\xi=z+\sum\limits_{k+j=2}^{\infty}c_{kj}z^{k}w^{j},\ \eta=w+\sum\limits_{k+j=2}^{\infty}d_{kj}w^{k}z^{j}, (15)

where ck+1,k=dk+1,k=0,k=1,2,c_{k+1,k}=d_{k+1,k}=0,k=1,2,\cdots, such that

dξdT=ξ+j=1pjξj+1ηj,dηdT=ηj=1qjηj+1ξj.\frac{d\xi}{dT}=\xi+\sum\limits_{j=1}^{\infty}p_{j}\xi^{j+1}\eta^{j},\ \frac{d\eta}{dT}=-\eta-\sum\limits_{j=1}^{\infty}q_{j}\eta^{j+1}\xi^{j}. (16)
Definition 2.4.

The quantity τk=pk+qk,k=1,2,\tau_{k}=p_{k}+q_{k},k=1,2,\cdots is called the kk-th complex period constant at the origin of system (12). A complex center is called a complex isochronous center if all τk\tau_{k} vanish.

The method to compute τk\tau_{k} is shown in the following theorems:

Theorem 2.5.

([Liu & Huang, 2003]) For system (12), we can derive uniquely the following formal series:

f(z,w)=z+k+j=2ckjzkwj,g(z,w)=w+k+j=2dkjwkzj,f(z,w)=z+\sum\limits_{k+j=2}^{\infty}c^{\prime}_{kj}z^{k}w^{j},\ g(z,w)=w+\sum\limits_{k+j=2}^{\infty}d^{\prime}_{kj}w^{k}z^{j}, (17)

where ck+1,k=dk+1,k=0,k=1,2,,c^{\prime}_{k+1,k}=d^{\prime}_{k+1,k}=0,k=1,2,\cdots, such that

dfdT=f(z,w)+j=1pjzj+1wj,dgdT=g(z,w)j=1qjwj+1zj,\frac{df}{dT}=f(z,w)+\sum\limits_{j=1}^{\infty}p^{\prime}_{j}z^{j+1}w^{j},\ \frac{dg}{dT}=-g(z,w)-\sum\limits_{j=1}^{\infty}q^{\prime}_{j}w^{j+1}z^{j}, (18)

and when kj10,ckjk-j-1\neq 0,c^{\prime}_{kj} and dkjd^{\prime}_{kj} are determined by the following recursive formulae:

ckj=1j+1kα+β=3k+j+1[(kα+1)aα,β1(jβ+1)bβ,α1]ckα+1,jβ+1,dkj=1j+1kα+β=3k+j+1[(kα+1)bα,β1(jβ+1)aβ,α1]dkα+1,jβ+1,\begin{array}[]{l}c^{\prime}_{kj}={1\over{j+1-k}}\sum\limits_{\alpha+\beta=3}^{k+j+1}[(k-\alpha+1)a_{\alpha,\beta-1}-(j-\beta+1)b_{\beta,\alpha-1}]c^{\prime}_{k-\alpha+1,j-\beta+1},\\ d^{\prime}_{kj}={1\over{j+1-k}}\sum\limits_{\alpha+\beta=3}^{k+j+1}[(k-\alpha+1)b_{\alpha,\beta-1}-(j-\beta+1)a_{\beta,\alpha-1}]d^{\prime}_{k-\alpha+1,j-\beta+1},\end{array} (19)

and for any positive integer j,pjj,p^{\prime}_{j} and qjq^{\prime}_{j} are determined by the following recursive formulae:

pj=α+β=32j+2[(jα+2)aα,β1(jβ+1)bβ,α1]cjα+2,jβ+1,qj=α+β=32j+2[(jα+2)bα,β1(jβ+1)aβ,α1]djα+2,jβ+1.\begin{array}[]{l}p^{\prime}_{j}=\sum\limits_{\alpha+\beta=3}^{2j+2}[(j-\alpha+2)a_{\alpha,\beta-1}-(j-\beta+1)b_{\beta,\alpha-1}]c^{\prime}_{j-\alpha+2,j-\beta+1},\\ q^{\prime}_{j}=\sum\limits_{\alpha+\beta=3}^{2j+2}[(j-\alpha+2)b_{\alpha,\beta-1}-(j-\beta+1)a_{\beta,\alpha-1}]d^{\prime}_{j-\alpha+2,j-\beta+1}.\end{array} (20)

In expressions (19) and (20), we have let c10=d10=1,c01=d01=0,c^{\prime}_{10}=d^{\prime}_{10}=1,c^{\prime}_{01}=d^{\prime}_{01}=0, and if α<0\alpha<0 or β<0\beta<0, let aαβ=bαβ=cαβ=dαβ=0.a_{\alpha\beta}=b_{\alpha\beta}=c^{\prime}_{\alpha\beta}=d^{\prime}_{\alpha\beta}=0.

The relations between pj,qjp_{j},q_{j} and pj,qj(j=1,2,)p^{\prime}_{j},q^{\prime}_{j}\;(j=1,2,\cdots) are as follows:

Theorem 2.6.

([Liu & Huang, 2003]) Let p0=q0=p0=q0=0p_{0}=q_{0}=p^{\prime}_{0}=q^{\prime}_{0}=0. If there exists a positive integer kk, such that

p0=q0=p1=q1==pk1=qk1=0,p_{0}=q_{0}=p_{1}=q_{1}=\cdots=p_{k-1}=q_{k-1}=0, (21)

then

p0=q0=p1=q1=pk1=qk1=0,pk=pk,qk=qkp^{\prime}_{0}=q^{\prime}_{0}=p^{\prime}_{1}=q^{\prime}_{1}=p^{\prime}_{k-1}=q^{\prime}_{k-1}=0,p_{k}=p^{\prime}_{k},q_{k}=q^{\prime}_{k} (22)

per contra, it holds as well.

In [Liu et al, 2008] it is shown that the first nonzero complex period constant τk\tau_{k} at the origin of system (12) and the first nonzero period constant p2kp_{2k} of system (3) satisfy the relation

p2k=πτk.p_{2k}=-\pi\tau_{k}. (23)

3 Weak centers and local critical periods

In [Romanovski et al, 2017] the authors investigated the existence of bi-centers in family (2). After a change of coordinates, the following normal form for system (2) was found

dxdt=(a1+1)y+a1x4y+a2x3y2+a3x2y3+a4xy4+a5y5,dydt=14xa6y+14x5+a6x4y+a7x3y2+a8x2y3+a9xy4+a10y5,\begin{array}[]{l}\frac{dx}{dt}=-(a_{1}+1)y+a_{1}x^{4}y+a_{2}x^{3}y^{2}+a_{3}x^{2}y^{3}+a_{4}xy^{4}+a_{5}y^{5},\\ \frac{dy}{dt}=-\frac{1}{4}x-a_{6}y+\frac{1}{4}x^{5}+a_{6}x^{4}y+a_{7}x^{3}y^{2}+a_{8}x^{2}y^{3}+a_{9}xy^{4}+a_{10}y^{5},\end{array} (24)

where ai,i=1,,10a_{i}\in\mathbb{R},i=1,\cdots,10. Since system (24) is Z2Z_{2}-equivariant, the existence of a weak bi-center at the points (±1,0)(\pm 1,0) follows from the existence of a weak bi-center at the point (1,0)(1,0). Moreover, to compute the period constants for system (24) it is necessary to move the singular point (1,0)(1,0) to the origin. Applying the transformation

x~=x1,y~=y,\tilde{x}=x-1,\ \tilde{y}=y, (25)

system (24) is changed into the system

dxdt=y+4a1xy+a2y2+6a1x2y+3a2xy2+a3y3+4a1x3y+3a2x2y2+2a3xy3+a4y4+a1x4y+a2x3y2+a3x2y3+a4xy4+a5y5,dydt=x+52x2+4a6xy+a7y2+52x3+6a6x2y+3a7xy2+a8y3+54x4+4a6x3y+3a7x2y2+2a8xy3+a9y4+14x5+a6x4y+a7x3y2+a8x2y3+a9xy4+a10y5,\begin{array}[]{l}\frac{dx}{dt}=-y+4a_{1}xy+a_{2}y^{2}+6a_{1}x^{2}y+3a_{2}xy^{2}+a_{3}y^{3}+4a_{1}x^{3}y+3a_{2}x^{2}y^{2}+2a_{3}xy^{3}\\ \ \ \ \ \ \ \ +a_{4}y^{4}+a_{1}x^{4}y+a_{2}x^{3}y^{2}+a_{3}x^{2}y^{3}+a_{4}xy^{4}+a_{5}y^{5},\\ \frac{dy}{dt}=x+\frac{5}{2}x^{2}+4a_{6}xy+a_{7}y^{2}+\frac{5}{2}x^{3}+6a_{6}x^{2}y+3a_{7}xy^{2}+a_{8}y^{3}+\frac{5}{4}x^{4}+4a_{6}x^{3}y\\ \ \ \ \ \ \ \ +3a_{7}x^{2}y^{2}+2a_{8}xy^{3}+a_{9}y^{4}+\frac{1}{4}x^{5}+a_{6}x^{4}y+a_{7}x^{3}y^{2}+a_{8}x^{2}y^{3}+a_{9}xy^{4}+a_{10}y^{5},\end{array} (26)

where we still write xx and yy instead of x~\tilde{x} and y~\tilde{y}.

Unfortunately, because system (24) admits ten parameters the computations become unfeasible for the general case. So Romanovski et al. [Romanovski et al, 2017] restrict their study to a subcase of system (24) with a1=1,a5=0a_{1}=-1,a_{5}=0 which possesses the yy-axis as an invariant curve. Thus, they look for necessary and sufficient conditions for the system

dxdt=x4y+a2x3y2+a3x2y3+a4xy4,dydt=14xa6y+14x5+a6x4y+a7x3y2+a8x2y3+a9xy4+a10y5,\begin{array}[]{l}\frac{dx}{dt}=-x^{4}y+a_{2}x^{3}y^{2}+a_{3}x^{2}y^{3}+a_{4}xy^{4},\\ \frac{dy}{dt}=-\frac{1}{4}x-a_{6}y+\frac{1}{4}x^{5}+a_{6}x^{4}y+a_{7}x^{3}y^{2}+a_{8}x^{2}y^{3}+a_{9}xy^{4}+a_{10}y^{5},\end{array} (27)

to have a bi-center at the points (±1,0)(\pm 1,0), or, equivalently, for the system

dxdt=y4xy+a2y26x2y+3a2xy2+a3y34x3y+3a2x2y2+2a3xy3+a4y4x4y+a2x3y2+a3x2y3+a4xy4,dydt=x+52x2+4a6xy+a7y2+52x3+6a6x2y+3a7xy2+a8y3+54x4+4a6x3y+3a7x2y2+2a8xy3+a9y4+14x5+a6x4y+a7x3y2+a8x2y3+a9xy4+a10y5,\begin{array}[]{l}\frac{dx}{dt}=-y-4xy+a_{2}y^{2}-6x^{2}y+3a_{2}xy^{2}+a_{3}y^{3}-4x^{3}y+3a_{2}x^{2}y^{2}+2a_{3}xy^{3}\\ \ \ \ \ \ \ \ +a_{4}y^{4}-x^{4}y+a_{2}x^{3}y^{2}+a_{3}x^{2}y^{3}+a_{4}xy^{4},\\ \frac{dy}{dt}=x+\frac{5}{2}x^{2}+4a_{6}xy+a_{7}y^{2}+\frac{5}{2}x^{3}+6a_{6}x^{2}y+3a_{7}xy^{2}+a_{8}y^{3}+\frac{5}{4}x^{4}+4a_{6}x^{3}y\\ \ \ \ \ \ \ \ +3a_{7}x^{2}y^{2}+2a_{8}xy^{3}+a_{9}y^{4}+\frac{1}{4}x^{5}+a_{6}x^{4}y+a_{7}x^{3}y^{2}+a_{8}x^{2}y^{3}+a_{9}xy^{4}+a_{10}y^{5},\end{array} (28)

to have a center at the origin. Applying the complexification

z=x+iy,w=xiy,T=it,i=1,z=x+iy,\ w=x-iy,\ T=it,\ i=\sqrt{-1}, (29)

system (28) becomes its concomitant complex system

dzdT=z+k+j=25akjzkwj,dwdT=(w+k+j=25bkjwkzj),\begin{array}[]{l}\frac{dz}{dT}=z+\sum\limits_{k+j=2}^{5}a_{kj}z^{k}w^{j},\\ \frac{dw}{dT}=-\left(w+\sum\limits_{k+j=2}^{5}b_{kj}w^{k}z^{j}\right),\end{array} (30)

where

a20=18(13+2ia28ia62a7),a11=14(52ia2+2a7),a02=18i(3i+2a2+8a6+2ia7),a30=116(17+6ia2+2a312ia66a7+2ia8),a21=316(92ia22a34ia6+2a72ia8),a12=316(12ia2+2a3+4ia6+2a7+2ia8),a03=116i(7i+6a2+2ia3+12a6+6ia72a8),a40=164(21+12ia2+8a34ia416ia612a7+8ia8+4a9),a31=116(134a3+4ia48ia64ia84a9),a22=332(54ia24ia4+4a7+4a9),a13=116(3+4a3+4ia4+8ia6+4ia84a9),a04=164(11+12ia28a34ia4+16ia612a78ia8+4a9),a50=1128(54ia10+4ia2+4a34ia44ia64a7+4ia8+4a9),a41=1128(17+20ia10+4ia24a3+12ia412ia64a74ia812a9),a32=164(920ia104ia24a34ia44ia6+4a74ia8+4a9),a23=164(1+20ia104ia2+4a34ia4+4ia6+4a7+4ia8+4a9),a14=1128(720ia10+4ia2+4a3+12ia4+12ia64a7+4ia812a9),a05=1128(3+4ia10+4ia24a34ia4+4ia64a74ia8+4a9)bkj=akj¯,k0,j0,k+j=2,3,4,5.\begin{array}[]{l}a_{20}=\frac{1}{8}(13+2ia_{2}-8ia_{6}-2a_{7}),\\ a_{11}=\frac{1}{4}(5-2ia_{2}+2a_{7}),\\ a_{02}=\frac{1}{8}i(3i+2a_{2}+8a_{6}+2ia_{7}),\\ a_{30}=\frac{1}{16}(17+6ia_{2}+2a_{3}-12ia_{6}-6a_{7}+2ia_{8}),\\ a_{21}=\frac{3}{16}(9-2ia_{2}-2a_{3}-4ia_{6}+2a_{7}-2ia_{8}),\\ a_{12}=\frac{3}{16}(1-2ia_{2}+2a_{3}+4ia_{6}+2a_{7}+2ia_{8}),\\ a_{03}=\frac{1}{16}i(7i+6a_{2}+2ia_{3}+12a_{6}+6ia_{7}-2a_{8}),\\ a_{40}=\frac{1}{64}(21+12ia_{2}+8a_{3}-4ia_{4}-16ia_{6}-12a_{7}+8ia_{8}+4a_{9}),\\ a_{31}=\frac{1}{16}(13-4a_{3}+4ia_{4}-8ia_{6}-4ia_{8}-4a_{9}),\\ a_{22}=\frac{3}{32}(5-4ia_{2}-4ia_{4}+4a_{7}+4a_{9}),\\ a_{13}=\frac{1}{16}(-3+4a_{3}+4ia_{4}+8ia_{6}+4ia_{8}-4a_{9}),\\ a_{04}=\frac{1}{64}(-11+12ia_{2}-8a_{3}-4ia_{4}+16ia_{6}-12a_{7}-8ia_{8}+4a_{9}),\\ a_{50}=\frac{1}{128}(5-4ia_{10}+4ia_{2}+4a_{3}-4ia_{4}-4ia_{6}-4a_{7}+4ia_{8}+4a_{9}),\\ a_{41}=\frac{1}{128}(17+20ia_{10}+4ia_{2}-4a_{3}+12ia_{4}-12ia_{6}-4a_{7}-4ia_{8}-12a_{9}),\\ a_{32}=\frac{1}{64}(9-20ia_{10}-4ia_{2}-4a_{3}-4ia_{4}-4ia_{6}+4a_{7}-4ia_{8}+4a_{9}),\\ a_{23}=\frac{1}{64}(1+20ia_{10}-4ia_{2}+4a_{3}-4ia_{4}+4ia_{6}+4a_{7}+4ia_{8}+4a_{9}),\\ a_{14}=\frac{1}{128}(-7-20ia_{10}+4ia_{2}+4a_{3}+12ia_{4}+12ia_{6}-4a_{7}+4ia_{8}-12a_{9}),\\ a_{05}=\frac{1}{128}(-3+4ia_{10}+4ia_{2}-4a_{3}-4ia_{4}+4ia_{6}-4a_{7}-4ia_{8}+4a_{9})\\ b_{kj}=\overline{a_{kj}},\ k\geq 0,\ j\geq 0,\ k+j=2,3,4,5.\end{array} (31)

Denote that λ=(a2,a3,a4,a6,a7,a8,a9,a10)8\lambda=(a_{2},a_{3},a_{4},a_{6},a_{7},a_{8},a_{9},a_{10})\in\mathbb{R}^{8}. The following four necessary and sufficient conditions for the existence of a bi-center at the points (±1,0)(\pm 1,0) for the Z2Z_{2}-equivariant system (27) are given in [Romanovski, 2017]:

Λ1={λ8|a6=0,a8=13a2(12a7),a9=12a3(1a7),a10=15a4(32a7)}\Lambda_{1}=\left\{\lambda\in\mathbb{R}^{8}\left|a_{6}=0,a_{8}=\frac{1}{3}a_{2}(1-2a_{7}),a_{9}=\frac{1}{2}a_{3}(1-a_{7}),a_{10}=\frac{1}{5}a_{4}(3-2a_{7})\right.\right\};

Λ2={λ8|a2=4a6,a4=4a3a6,a8=4a6a7,a10=4a6a9}\Lambda_{2}=\left\{\lambda\in\mathbb{R}^{8}\left|a_{2}=-4a_{6},a_{4}=4a_{3}a_{6},a_{8}=4a_{6}a_{7},a_{10}=4a_{6}a_{9}\right.\right\};

Λ3={λ8|a4=4a6(a34a2a616a62),a8=13(a2+4a62a2a7+4a6a7),a9=16(3a34a2a616a623a3a74a2a6a716a62a7),a10=2a6(a3+4a2a6+16a62)(1+a7)}\Lambda_{3}=\left\{\lambda\in\mathbb{R}^{8}\left|\begin{array}[]{l}a_{4}=4a_{6}(a_{3}-4a_{2}a_{6}-16a_{6}^{2}),a_{8}=\frac{1}{3}(a_{2}+4a_{6}-2a_{2}a_{7}+4a_{6}a_{7}),\\ a_{9}=\frac{1}{6}(3a_{3}-4a_{2}a_{6}-16a_{6}^{2}-3a_{3}a_{7}-4a_{2}a_{6}a_{7}-16a_{6}^{2}a_{7}),\\ a_{10}=2a_{6}(-a_{3}+4a_{2}a_{6}+16a_{6}^{2})(-1+a_{7})\end{array}\right.\right\};

Λ4={λ8|a7=1,a8=a2,a9=a3,a10=a4}\Lambda_{4}=\left\{\lambda\in\mathbb{R}^{8}\left|a_{7}=-1,a_{8}=a_{2},a_{9}=a_{3},a_{10}=a_{4}\right.\right\}.

Now we discuss the order of weak bi-center and bifurcation of critical periods when the origin of system (30) is a center. The next computational step is to compute the complex period constants at the origin of system (30). For this purpose we use the procedure described in Section 2 running with the computer algebra system Mathematica. Since a bi-center is prior to be a weak bi-center, to make the computations easier we identify the order of weak center and investigate the existence of bifurcation of critical periods using the four bi-center conditions given above. Thus, our proof is split in four cases corresponding to these four conditions.

3.1 Center of type Λ1\Lambda_{1}

Substituting Λ1\Lambda_{1} into formulae (19)-(20) of Theorem 2.5, we compute the first four complex period constants at the origin of system (30) as follows:

τ1(1)=112(4810a229a336a74a72),τ2(1)=1108(1224+840a22+140a24189a2a41620a7+630a22a7816a72+70a22a72180a7316a74),τ3(1)=1103680(3636722421720a226039180a24779800a26+1836513a2a4+997290a23a481648a42531900a74219110a22a74458300a24a7+1281420a2a4a7316512a722025030a22a72539980a24a72+202608a2a4a7276860a73305760a22a73),τ4(1)=12573329305600f1(a3,a7,a2,a4).\begin{array}[]{l}\tau_{1}^{(1)}=\frac{1}{12}(-48-10a_{2}^{2}-9a_{3}-36a_{7}-4a_{7}^{2}),\\ \tau_{2}^{(1)}=\frac{1}{108}(-1224+840a_{2}^{2}+140a_{2}^{4}-189a_{2}a_{4}-1620a_{7}+630a_{2}^{2}a_{7}-816a_{7}^{2}+70a_{2}^{2}a_{7}^{2}\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ -180a_{7}^{3}-16a_{7}^{4}),\\ \tau_{3}^{(1)}=\frac{1}{103680}(-363672-2421720a_{2}^{2}-6039180a_{2}^{4}-779800a_{2}^{6}+1836513a_{2}a_{4}+997290a_{2}^{3}a_{4}\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ -81648a_{4}^{2}-531900a_{7}-4219110a_{2}^{2}a_{7}-4458300a_{2}^{4}a_{7}+1281420a_{2}a_{4}a_{7}\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ -316512a_{7}^{2}-2025030a_{2}^{2}a_{7}^{2}-539980a_{2}^{4}a_{7}^{2}+202608a_{2}a_{4}a_{7}^{2}-76860a_{7}^{3}-305760a_{2}^{2}a_{7}^{3}),\\ \tau_{4}^{(1)}=\frac{1}{2573329305600}f_{1}(a_{3},a_{7},a_{2},a_{4}).\end{array} (32)

In the above expression of τk(1)\tau_{k}^{(1)}s, we have already let τ1(1)==τk1(1)=0,k=2,3,4\tau_{1}^{(1)}=\cdots=\tau_{k-1}^{(1)}=0,k=2,3,4.

Theorem 3.1.

Denote γ(1)=(a3,a7,a2,a4)4\gamma^{(1)}=(a_{3},a_{7},a_{2},a_{4})\in\mathbb{R}^{4}. For system (27), if λΛ1\lambda\in\Lambda_{1} the bi-center is a weak center of at most 3. Moreover, it is a the third order weak center if and only if

Γ1={γ(1)4|τ1(1)=τ2(1)=τ3(1)=0}\{γ1(1),γ2(1),γ3(1),γ4(1)}\Gamma_{1}=\left\{\gamma^{(1)}\in\mathbb{R}^{4}\left|\tau_{1}^{(1)}=\tau_{2}^{(1)}=\tau_{3}^{(1)}=0\right.\right\}\backslash\{\gamma_{1}^{(1)},\gamma_{2}^{(1)},\gamma_{3}^{(1)},\gamma_{4}^{(1)}\}.

Since the expressions of f1(a3,a7,a2,a4)f_{1}(a_{3},a_{7},a_{2},a_{4}) and γi(1),i=1,2,3,4\gamma_{i}^{(1)},i=1,2,3,4 are tedious, we do not give here their expressions explicitly.

Proof 3.2.

The Mathematica routine Resultant[poly1,poly2,var] gives the resultant of the polynomials poly1 and poly2 with respect to the variable var. From the algebraic theory, Resultant[poly1,poly2,var]=0=0 is a necessary condition for poly1=poly2=0=0. Denote by NkN_{k}\in\mathbb{N} a natural number of kk digits.

First of all, computing the resultant of τ1(1),τ2(1),τ3(1),τ4(1)\tau_{1}^{(1)},\tau_{2}^{(1)},\tau_{3}^{(1)},\tau_{4}^{(1)} with respect to a3a_{3}, we have

R1,2(1)=Resultant[τ1(1),τ2(1),a3]=1108F1,2(1)(a7,a2,a4),R1,3(1)=Resultant[τ1(1),τ3(1),a3]=1103680F1,3(1)(a7,a2,a4),R1,4(1)=Resultant[τ1(1),τ4(1),a3]=12573329305600F1,4(1)(a7,a2,a4).\begin{array}[]{l}R_{1,2}^{(1)}=\texttt{Resultant[}\tau_{1}^{(1)},\tau_{2}^{(1)},a_{3}\texttt{]}=\frac{1}{108}F_{1,2}^{(1)}(a_{7},a_{2},a_{4}),\\ R_{1,3}^{(1)}=\texttt{Resultant[}\tau_{1}^{(1)},\tau_{3}^{(1)},a_{3}\texttt{]}=\frac{1}{103680}F_{1,3}^{(1)}(a_{7},a_{2},a_{4}),\\ R_{1,4}^{(1)}=\texttt{Resultant[}\tau_{1}^{(1)},\tau_{4}^{(1)},a_{3}\texttt{]}=\frac{1}{2573329305600}F_{1,4}^{(1)}(a_{7},a_{2},a_{4}).\end{array} (33)

Next, computing the resultant of R1,2(1),R1,3(1),R1,4(1)R_{1,2}^{(1)},R_{1,3}^{(1)},R_{1,4}^{(1)} with respect to a7a_{7}, we have

R12,13(1)=Resultant[R1,2(1),R1,3(1),a7]=16855297075118080000F12,13(1)(a2,a4),R12,14(1)=Resultant[R1,2(1),R1,4(1),a7]=F12,14(1)(a2,a4)1200135732896571944053984339414625958651494400000000.\begin{array}[]{l}R_{12,13}^{(1)}=\texttt{Resultant[}R_{1,2}^{(1)},R_{1,3}^{(1)},a_{7}\texttt{]}=\frac{1}{6855297075118080000}F_{12,13}^{(1)}(a_{2},a_{4}),\\ R_{12,14}^{(1)}=\texttt{Resultant[}R_{1,2}^{(1)},R_{1,4}^{(1)},a_{7}\texttt{]}=\frac{F_{12,14}^{(1)}(a_{2},a_{4})}{1200135732896571944053984339414625958651494400000000}.\end{array} (34)

Finally, computing the resultant of R12,13(1),R12,14(1)R_{12,13}^{(1)},R_{12,14}^{(1)} with respect to a2a_{2}, we have

R1213,1214(1)=Resultant[R12,13(1),R12,14(1),a2]=N109N1420F1213,1214(1)(a4)G1213,1214(1)(a4),R_{1213,1214}^{(1)}=\texttt{Resultant[}R_{12,13}^{(1)},R_{12,14}^{(1)},a_{2}\texttt{]}=\frac{N_{109}}{N_{1420}}F_{1213,1214}^{(1)}(a_{4})G_{1213,1214}^{(1)}(a_{4}), (35)

where F1213,1214(1)(a4)F_{1213,1214}^{(1)}(a_{4}) and G1213,1214(1)(a4)G_{1213,1214}^{(1)}(a_{4}) are unary polynomials in a4a_{4} of degree 64 and 192, respectively.

Performing the Mathematica routine NSolve[R1213,1214(1)==0,a4]\texttt{NSolve[}R_{1213,1214}^{(1)}==0,a_{4}\texttt{]} gives only complex solutions. However, all parameters of system (27) are real, so we get the conclusion that τ1(1),τ2(1),τ3(1),τ4(1)\tau_{1}^{(1)},\tau_{2}^{(1)},\tau_{3}^{(1)},\tau_{4}^{(1)} have no common real root, which implies that the bi-center of system (27) is at most the third order weak center.

Computing the determinant of Jacobian matrix in this case, we get

det[(τ1(1),τ2(1),τ3(1))(a3,a7,a2)]=73732480F(a7,a2,a4).\text{det}\left[\frac{\partial(\tau_{1}^{(1)},\tau_{2}^{(1)},\tau_{3}^{(1)})}{\partial(a_{3},a_{7},a_{2})}\right]=\frac{7}{3732480}F(a_{7},a_{2},a_{4}). (36)

Performing the Mathematica routine

NSolve[{τ1(1)==0,τ2(1)==0,τ3(1)==0,F(a7,a2,a4)==0},{a3,a7,a2,a4},Reals]\texttt{NSolve[}\{\tau_{1}^{(1)}==0,\tau_{2}^{(1)}==0,\tau_{3}^{(1)}==0,F(a_{7},a_{2},a_{4})==0\},\{a_{3},a_{7},a_{2},a_{4}\},\texttt{Reals]} (37)

gives the four real solutions γk(1),k=1,2,3,4\gamma_{k}^{(1)},k=1,2,3,4.

Theorem 3.3.

For system (27), if λΛ1\lambda\in\Lambda_{1}, the maximum number of bifurcation of critical periods is 3, and there are exactly 3 bifurcation of critical periods after a suitable perturbation.

Proof 3.4.

By checking the Jacobian matrix for this case, we obtain from (37) that

det[(τ1(1),τ2(1),τ3(1))(a3,a7,a2)]|Γ10.\text{det}\left.\left[\frac{\partial(\tau_{1}^{(1)},\tau_{2}^{(1)},\tau_{3}^{(1)})}{\partial(a_{3},a_{7},a_{2})}\right]\right|_{\Gamma_{1}}\neq 0. (38)

For example, setting a4=a4=0a_{4}=a_{4}^{*}=0 and performing the Mathematica routine

NSolve[{τ1(1)==0,τ2(1)==0,τ3(1)==0},{a3,a7,a2},Reals]\texttt{NSolve[}\{\tau_{1}^{(1)}==0,\tau_{2}^{(1)}==0,\tau_{3}^{(1)}==0\},\{a_{3},a_{7},a_{2}\},\texttt{Reals]} (39)

gives four real solutions, one of which is

a3=1.6657772441340260275382933375282366149192053853441,a7=4.1967363822359183641439548974671095385907064222453,a2=2.1822951200460674220108297255909871925482447960032.\begin{array}[]{l}a_{3}^{*}=-1.6657772441340260275382933375282366149192053853441\cdots,\\ a_{7}^{*}=-4.1967363822359183641439548974671095385907064222453\cdots,\\ a_{2}^{*}=-2.1822951200460674220108297255909871925482447960032\cdots.\end{array} (40)

For the purpose of verification, substituting γ=(a3,a7,a2,a4)\gamma_{*}=(a_{3}^{*},a_{7}^{*},a_{2}^{*},a_{4}^{*}) into (32) and (36), we have

τ1(1)|γ=0.×10490,τ2(1)|γ=0.×10470,τ3(1)|γ=0.×10460,τ4(1)|γ=29.959569147878233760773945711752543683885331100,det[(τ1,τ2,τ3)(a3,a7,a2)]|γ=303.6223911702373075232685357642752953576831850.\begin{array}[]{l}\tau_{1}^{(1)}|_{\gamma_{*}}=0.\times 10^{-49}\approx 0,\\ \tau_{2}^{(1)}|_{\gamma_{*}}=0.\times 10^{-47}\approx 0,\\ \tau_{3}^{(1)}|_{\gamma_{*}}=0.\times 10^{-46}\approx 0,\\ \tau_{4}^{(1)}|_{\gamma_{*}}=-29.95956914787823376077394571175254368388533110\cdots\neq 0,\\ \text{det}\left.\left[\frac{\partial(\tau_{1},\tau_{2},\tau_{3})}{\partial(a_{3},a_{7},a_{2})}\right]\right|_{\gamma_{*}}=-303.622391170237307523268535764275295357683185\cdots\neq 0.\end{array} (41)

Theoretically speaking, the above τk(1)|γ,k=1,2,3\tau_{k}^{(1)}|_{\gamma_{*}},k=1,2,3 should be exactly equal to zero. However, due to numerical computation error, they are only very close to zero, which does not affect the conclusion.

3.2 Center of type Λ2\Lambda_{2}

Substituting Λ2\Lambda_{2} into formulae (19)-(20), we compute the first five complex period constants at the origin of system (30) as follows:

τ1(2)=112(489a3192a6236a74a72),τ2(2)=154(9727200a6213248a64816a73264a62a7144a7296a62a72+4a73135a936a7a9),τ3(2)=12570940(12398832+49595328a62+5635584a7+22542336a62a7420420a72+8407680a62a72224640a736920832a62a73373348a74184512a62a74+7688a751791558a940807152a62a92137239a7a9+15718752a62a7a9+709731a72a969192a73a9899829a92),τ4(2)=16845156140890420f2(a3,a6,a7,a9),τ5(2)=125488874431785566645482240f3(a3,a6,a7,a9).\begin{array}[]{l}\tau_{1}^{(2)}=\frac{1}{12}(-48-9a_{3}-192a_{6}^{2}-36a_{7}-4a_{7}^{2}),\\ \tau_{2}^{(2)}=\frac{1}{54}(-972-7200a_{6}^{2}-13248a_{6}^{4}-816a_{7}-3264a_{6}^{2}a_{7}-144a_{7}^{2}-96a_{6}^{2}a_{7}^{2}+4a_{7}^{3}-135a_{9}-36a_{7}a_{9}),\\ \tau_{3}^{(2)}=\frac{1}{2570940}(12398832+49595328a_{6}^{2}+5635584a_{7}+22542336a_{6}^{2}a_{7}-420420a_{7}^{2}+8407680a_{6}^{2}a_{7}^{2}\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ -224640a_{7}^{3}-6920832a_{6}^{2}a_{7}^{3}-373348a_{7}^{4}-184512a_{6}^{2}a_{7}^{4}+7688a_{7}^{5}-1791558a_{9}\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ -40807152a_{6}^{2}a_{9}-2137239a_{7}a_{9}+15718752a_{6}^{2}a_{7}a_{9}+709731a_{7}^{2}a_{9}-69192a_{7}^{3}a_{9}\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ -899829a_{9}^{2}),\\ \tau_{4}^{(2)}=\frac{1}{6845156140890420}f_{2}(a_{3},a_{6},a_{7},a_{9}),\\ \tau_{5}^{(2)}=\frac{1}{25488874431785566645482240}f_{3}(a_{3},a_{6},a_{7},a_{9}).\end{array} (42)

In the above expression of τk(2)s\tau_{k}^{(2)}s, we have already let τ1(2)==τk1(2)=0,k=2,3,4,5\tau_{1}^{(2)}=\cdots=\tau_{k-1}^{(2)}=0,k=2,3,4,5.

Theorem 3.5.

Denote γ(2)=(a3,a6,a7,a9)4\gamma^{(2)}=(a_{3},a_{6},a_{7},a_{9})\in\mathbb{R}^{4}. For system (27), if λΛ2\lambda\in\Lambda_{2} the bi-center is a weak center of at most 4. Moreover, it is a the fourth order weak center if and only if

Γ2={γ1(2),γ2(2),γ3(2),γ4(2),γ5(2),γ6(2),γ7(2),γ8(2),γ9(2),γ10(2),γ11(2),γ12(2),γ13(2),γ14(2)}\Gamma_{2}=\{\gamma_{1}^{(2)},\gamma_{2}^{(2)},\gamma_{3}^{(2)},\gamma_{4}^{(2)},\gamma_{5}^{(2)},\gamma_{6}^{(2)},\gamma_{7}^{(2)},\gamma_{8}^{(2)},\gamma_{9}^{(2)},\gamma_{10}^{(2)},\gamma_{11}^{(2)},\gamma_{12}^{(2)},\gamma_{13}^{(2)},\gamma_{14}^{(2)}\}.

Proof 3.6.

Performing the Mathematica routine

NSolve[{τ1(2)==0,τ2(2)==0,τ3(2)==0,τ4(2)==0},{a3,a6,a7,a9},Reals]\texttt{NSolve[}\{\tau_{1}^{(2)}==0,\tau_{2}^{(2)}==0,\tau_{3}^{(2)}==0,\tau_{4}^{(2)}==0\},\{a_{3},a_{6},a_{7},a_{9}\},\texttt{Reals]} (43)

gives fourteen real solutions γk(2),k=1,2,,14\gamma_{k}^{(2)},k=1,2,\cdots,14. A direct computation gives

τ5(2)|γ1(2)=0.0091318272619734345194603591828407899277260.\tau_{5}^{(2)}|_{\gamma_{1}^{(2)}}=-0.009131827261973434519460359182840789927726\neq 0. (44)

The remaining thirteen cases are analogous.

Theorem 3.7.

For system (27), if λΛ2\lambda\in\Lambda_{2}, the maximum number of bifurcation of critical periods is 4, and there are exactly 4 bifurcation of critical periods after a suitable perturbation.

Proof 3.8.

Checking the Jacobian matrix for this case, we see that

det[(τ1(2),τ2(2),τ3(2),τ4(2))(a3,a6,a7,a9)]|γ1(2)=0.361438718563369115940920413766465581300410290.\text{det}\left.\left[\frac{\partial(\tau_{1}^{(2)},\tau_{2}^{(2)},\tau_{3}^{(2)},\tau_{4}^{(2)})}{\partial(a_{3},a_{6},a_{7},a_{9})}\right]\right|_{\gamma_{1}^{(2)}}=-0.36143871856336911594092041376646558130041029\cdots\neq 0. (45)

The remaining thirteen cases are analogous.

Remark 3.9.

In this subsection, the reason why the maximum weak bi-center condition is expressed as a set with numerical elements is that there are finite parameter vectors in it. In contrast, in the above subsection, the maximum weak bi-center condition is expressed as a set with symbolic expressions, because there are infinite parameter vectors in it. Similar cases will occur in the next two subsections.

3.3 Center of type Λ3\Lambda_{3}

Substituting Λ3\Lambda_{3} into formulae (19)-(20), we compute the first five complex period constants at the origin of system (30) as follows:

τ1(3)=112(4810a229a3+4a2a616a6236a74a72),τ2(3)=154(612+420a22+70a24+3360a2a6+490a23a6+960a62+1740a22a62+8320a2a63+5632a64810a7+315a22a7+2520a2a6a7+720a62a7408a72+35a22a72+280a2a6a72+80a62a7290a738a74),τ3(3)=151840f4(a3,a7,a2,a6),τ4(3)=12150016634828800f5(a3,a7,a2,a6),τ5(3)=14482512233510082494464000f6(a3,a7,a2,a6).\begin{array}[]{l}\tau_{1}^{(3)}=\frac{1}{12}(-48-10a_{2}^{2}-9a_{3}+4a_{2}a_{6}-16a_{6}^{2}-36a_{7}-4a_{7}^{2}),\\ \tau_{2}^{(3)}=\frac{1}{54}(-612+420a_{2}^{2}+70a_{2}^{4}+3360a_{2}a_{6}+490a_{2}^{3}a_{6}+960a_{6}^{2}+1740a_{2}^{2}a_{6}^{2}+8320a_{2}a_{6}^{3}\\ \ \ \ \ \ \ \ \ \ \ \ \ \ +5632a_{6}^{4}-810a_{7}+315a_{2}^{2}a_{7}+2520a_{2}a_{6}a_{7}+720a_{6}^{2}a_{7}-408a_{7}^{2}+35a_{2}^{2}a_{7}^{2}+280a_{2}a_{6}a_{7}^{2}\\ \ \ \ \ \ \ \ \ \ \ \ \ \ +80a_{6}^{2}a_{7}^{2}-90a_{7}^{3}-8a_{7}^{4}),\\ \tau_{3}^{(3)}=\frac{1}{51840}f_{4}(a_{3},a_{7},a_{2},a_{6}),\\ \tau_{4}^{(3)}=\frac{1}{2150016634828800}f_{5}(a_{3},a_{7},a_{2},a_{6}),\\ \tau_{5}^{(3)}=\frac{1}{4482512233510082494464000}f_{6}(a_{3},a_{7},a_{2},a_{6}).\end{array} (46)

In the above expression of τk(3)\tau_{k}^{(3)}s, we have already let τ1(3)==τk1(3)=0,k=2,3,4,5\tau_{1}^{(3)}=\cdots=\tau_{k-1}^{(3)}=0,k=2,3,4,5.

Theorem 3.10.

Denote γ(3)=(a3,a7,a2,a6)4\gamma^{(3)}=(a_{3},a_{7},a_{2},a_{6})\in\mathbb{R}^{4}. For system (27), if λΛ3\lambda\in\Lambda_{3} the bi-center is a weak center of at most 4. Moreover, it is a the fourth order weak center if and only if

Γ3={γ1(3),γ2(3),γ3(3),γ4(3),γ5(3),γ6(3),γ7(3),γ8(3),γ9(3),γ10(3),γ11(3),γ12(3),γ13(3),γ14(3),γ15(3),γ16(3)}\Gamma_{3}=\{\gamma_{1}^{(3)},\gamma_{2}^{(3)},\gamma_{3}^{(3)},\gamma_{4}^{(3)},\gamma_{5}^{(3)},\gamma_{6}^{(3)},\gamma_{7}^{(3)},\gamma_{8}^{(3)},\gamma_{9}^{(3)},\gamma_{10}^{(3)},\gamma_{11}^{(3)},\gamma_{12}^{(3)},\gamma_{13}^{(3)},\gamma_{14}^{(3)},\gamma_{15}^{(3)},\gamma_{16}^{(3)}\}.

Proof 3.11.

Performing the Mathematica routine

NSolve[{τ1(3)==0,τ2(3)==0,τ3(3)==0,τ4(3)==0},{a3,a7,a2,a6},Reals]\texttt{NSolve[}\{\tau_{1}^{(3)}==0,\tau_{2}^{(3)}==0,\tau_{3}^{(3)}==0,\tau_{4}^{(3)}==0\},\{a_{3},a_{7},a_{2},a_{6}\},\texttt{Reals]} (47)

gives the sixteen real solutions γk(3),k=1,2,,16\gamma_{k}^{(3)},k=1,2,\cdots,16. A direct computation gives

τ5(3)|γ1(3)=455.7881573203913804704854403678764845723730.\tau_{5}^{(3)}|_{\gamma_{1}^{(3)}}=-455.788157320391380470485440367876484572373\neq 0. (48)

The remaining fifteen cases are analogous.

Theorem 3.12.

For system (27), if λΛ3\lambda\in\Lambda_{3}, the maximum number of bifurcation of critical periods is 4, and there are exactly 4 bifurcation of critical periods after a suitable perturbation.

Proof 3.13.

Checking the Jacobian matrix for this case, we see that

det[(τ1(3),τ2(3),τ3(3),τ4(3))(a3,a7,a2,a6)]|γ1(3)=793811.919190024704973130531766620321324800.\text{det}\left.\left[\frac{\partial(\tau_{1}^{(3)},\tau_{2}^{(3)},\tau_{3}^{(3)},\tau_{4}^{(3)})}{\partial(a_{3},a_{7},a_{2},a_{6})}\right]\right|_{\gamma_{1}^{(3)}}=793811.91919002470497313053176662032132480\cdots\neq 0. (49)

The remaining fifteen cases are analogous.

3.4 Center of type Λ4\Lambda_{4}

Substituting Λ4\Lambda_{4} into formulae (19)-(20), we compute the first four complex period constants at the origin of system (30) as follows:

τ1(4)=112(1610a229a3+4a2a616a62),τ2(4)=1108(256+280a22+140a24189a2a4+896a2a6+140a23a6162a4a6512a62+72a22a62+896a2a63256a64),τ3(4)=125920(32768+6259328a227443240a243637620a26+226800a2a4+4896927a23a420412a42+993280a2a625316928a23a64553220a25a6+284256a4a6+5352966a22a4a6+32768a62+6009216a22a623151896a24a62+1432512a2a4a62+1001472a2a6324025728a23a63+495360a4a63),τ4(4)=1202078616107242240f7(a3,a6,a2,a4).\begin{array}[]{l}\tau_{1}^{(4)}=\frac{1}{12}(-16-10a_{2}^{2}-9a_{3}+4a_{2}a_{6}-16a_{6}^{2}),\\ \tau_{2}^{(4)}=\frac{1}{108}(-256+280a_{2}^{2}+140a_{2}^{4}-189a_{2}a_{4}+896a_{2}a_{6}+140a_{2}^{3}a_{6}-162a_{4}a_{6}-512a_{6}^{2}\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ +72a_{2}^{2}a_{6}^{2}+896a_{2}a_{6}^{3}-256a_{6}^{4}),\\ \tau_{3}^{(4)}=\frac{1}{25920}(32768+6259328a_{2}^{2}-7443240a_{2}^{4}-3637620a_{2}^{6}+226800a_{2}a_{4}+4896927a_{2}^{3}a_{4}\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ -20412a_{4}^{2}+993280a_{2}a_{6}-25316928a_{2}^{3}a_{6}-4553220a_{2}^{5}a_{6}+284256a_{4}a_{6}\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ +5352966a_{2}^{2}a_{4}a_{6}+32768a_{6}^{2}+6009216a_{2}^{2}a_{6}^{2}-3151896a_{2}^{4}a_{6}^{2}+1432512a_{2}a_{4}a_{6}^{2}\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ +1001472a_{2}a_{6}^{3}-24025728a_{2}^{3}a_{6}^{3}+495360a_{4}a_{6}^{3}),\\ \tau_{4}^{(4)}=\frac{1}{202078616107242240}f_{7}(a_{3},a_{6},a_{2},a_{4}).\end{array} (50)

In the above expression of τk(4)\tau_{k}^{(4)}s, we have already let τ1(4)==τk1(4)=0,k=2,3,4\tau_{1}^{(4)}=\cdots=\tau_{k-1}^{(4)}=0,k=2,3,4.

Theorem 3.14.

Denote γ(4)=(a3,a6,a2,a4)4\gamma^{(4)}=(a_{3},a_{6},a_{2},a_{4})\in\mathbb{R}^{4}. For system (27), if λΛ4\lambda\in\Lambda_{4} the bi-center is a weak center of at most 3. Moreover, it is a the third order weak center if and only if

Γ4={γ(4)4|τ1(4)=τ2(4)=τ3(4)=0}\Gamma_{4}=\left\{\gamma^{(4)}\in\mathbb{R}^{4}\left|\tau_{1}^{(4)}=\tau_{2}^{(4)}=\tau_{3}^{(4)}=0\right.\right\}.

Proof 3.15.

First of all, computing the resultant of τ1(4),τ2(4),τ3(4),τ4(4)\tau_{1}^{(4)},\tau_{2}^{(4)},\tau_{3}^{(4)},\tau_{4}^{(4)} with respect to a3a_{3}, we have

R1,2(4)=Resultant[τ1(4),τ2(4),a3]=1108F1,2(4)(a6,a2,a4),R1,3(4)=Resultant[τ1(4),τ3(4),a3]=125920F1,3(4)(a6,a2,a4),R1,4(4)=Resultant[τ1(4),τ4(4),a3]=1202078616107242240F1,4(4)(a6,a2,a4).\begin{array}[]{l}R_{1,2}^{(4)}=\texttt{Resultant[}\tau_{1}^{(4)},\tau_{2}^{(4)},a_{3}\texttt{]}=\frac{1}{108}F_{1,2}^{(4)}(a_{6},a_{2},a_{4}),\\ R_{1,3}^{(4)}=\texttt{Resultant[}\tau_{1}^{(4)},\tau_{3}^{(4)},a_{3}\texttt{]}=\frac{1}{25920}F_{1,3}^{(4)}(a_{6},a_{2},a_{4}),\\ R_{1,4}^{(4)}=\texttt{Resultant[}\tau_{1}^{(4)},\tau_{4}^{(4)},a_{3}\texttt{]}=\frac{1}{202078616107242240}F_{1,4}^{(4)}(a_{6},a_{2},a_{4}).\end{array} (51)

Next, computing the resultant of R1,2(4),R1,3(4),R1,4(4)R_{1,2}^{(4)},R_{1,3}^{(4)},R_{1,4}^{(4)} with respect to a6a_{6}, we have

R12,13(4)=Resultant[R1,2(4),R1,3(4),a6]=1185961834720000F12,13(4)(a2,a4),R12,14(4)=Resultant[R1,2(4),R1,4(4),a6]=F12,14(4)(a2,a4)4006662718879818705145403830481966659700018498572980313175832330240000.\begin{array}[]{l}R_{12,13}^{(4)}=\texttt{Resultant[}R_{1,2}^{(4)},R_{1,3}^{(4)},a_{6}\texttt{]}=\frac{1}{185961834720000}F_{12,13}^{(4)}(a_{2},a_{4}),\\ R_{12,14}^{(4)}=\texttt{Resultant[}R_{1,2}^{(4)},R_{1,4}^{(4)},a_{6}\texttt{]}=\frac{F_{12,14}^{(4)}(a_{2},a_{4})}{4006662718879818705145403830481966659700018498572980313175832330240000}.\end{array} (52)

Finally, computing the resultant of R12,13(4),R12,14(4)R_{12,13}^{(4)},R_{12,14}^{(4)} with respect to a2a_{2}, we have

R1213,1214(4)=Resultant[R12,13(4),R12,14(4),a2]=7730993719707444524137094407a426(1+16a42)F1213,1214(4)(a4)G1213,1214(4)(a4)N1663,\begin{array}[]{l}R_{1213,1214}^{(4)}=\texttt{Resultant[}R_{12,13}^{(4)},R_{12,14}^{(4)},a_{2}\texttt{]}=\frac{7730993719707444524137094407a_{4}^{26}(1+16a_{4}^{2})F_{1213,1214}^{(4)}(a_{4})G_{1213,1214}^{(4)}(a_{4})}{N_{1663}},\end{array} (53)

where F1213,1214(4)(a4)F_{1213,1214}^{(4)}(a_{4}) and G1213,1214(4)(a4)G_{1213,1214}^{(4)}(a_{4}) are unary polynomial in a4a_{4} of degree 4646 and 182182, respectively.

Performing the Mathematica routine NSolve[R1213,1214(4)==0,a4]\texttt{NSolve[}R_{1213,1214}^{(4)}==0,a_{4}\texttt{]} only gives one real solution a4=0a_{4}=0, under which we have

R12,13(4)|a4=0=11452826833750a26(1+a22)(16+9a22)(2199023255552+3148960642367488a22+48607541078261760a24+264426711058227200a26+692618123639590400a28+983111352623484000a210+784228248389171250a212+294029898225170625a214),\begin{array}[]{l}R_{12,13}^{(4)}|_{a_{4}=0}=-\frac{1}{1452826833750}a_{2}^{6}(1+a_{2}^{2})(16+9a_{2}^{2})(2199023255552+3148960642367488a_{2}^{2}\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ +48607541078261760a_{2}^{4}+264426711058227200a_{2}^{6}\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ +692618123639590400a_{2}^{8}+983111352623484000a_{2}^{10}\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ +784228248389171250a_{2}^{12}+294029898225170625a_{2}^{14}),\end{array} (54)

which has only one real root a2=0a_{2}=0. Then we compute

τ2(4)|a2=a4=0=6427(1+a62)20,\tau_{2}^{(4)}|_{a_{2}=a_{4}=0}=-\frac{64}{27}(1+a_{6}^{2})^{2}\neq 0, (55)

which means τ1(4),τ2(4),τ3(4),τ4(4)\tau_{1}^{(4)},\tau_{2}^{(4)},\tau_{3}^{(4)},\tau_{4}^{(4)} can not be simultaneous zero. Therefore, the bi-center of system (27) is at most the third order weak center.

Theorem 3.16.

For system (27), if λΛ4\lambda\in\Lambda_{4}, the maximum number of bifurcation of critical periods is 3, and there are exactly 3 bifurcation of critical periods after a suitable perturbation.

Proof 3.17.

The process is similar to the proof of the former theorem. The determinant of Jacobian matrix in this case is computed as

det[(τ1(4),τ2(4),τ3(4))(a3,a6,a2)]=1311040G(a6,a2,a4).\text{det}\left[\frac{\partial(\tau_{1}^{(4)},\tau_{2}^{(4)},\tau_{3}^{(4)})}{\partial(a_{3},a_{6},a_{2})}\right]=\frac{1}{311040}G(a_{6},a_{2},a_{4}). (56)

First of all, computing the resultant of τ1(4),G(a6,a2,a4)\tau_{1}^{(4)},G(a_{6},a_{2},a_{4}) with respect to a3a_{3}, we have

S1,4=Resultant[τ1(4),G(a6,a2,a4),a3]=1311040G1,4(a6,a2,a4).S_{1,4}=\texttt{Resultant[}\tau_{1}^{(4)},G(a_{6},a_{2},a_{4}),a_{3}\texttt{]}=\frac{1}{311040}G_{1,4}(a_{6},a_{2},a_{4}). (57)

Next, computing the resultant of R1,2(4),S1,4R_{1,2}^{(4)},S_{1,4} with respect to a6a_{6}, we have

S12,14=Resultant[R1,2(4),S1,4,a6]=41158137618032400625G12,14(a2,a4).S_{12,14}=\texttt{Resultant[}R_{1,2}^{(4)},S_{1,4},a_{6}\texttt{]}=-\frac{4}{1158137618032400625}G_{12,14}(a_{2},a_{4}). (58)

Finally, computing the resultant of R12,13(4),S12,14R_{12,13}^{(4)},S_{12,14} with respect to a2a_{2}, we have

S1213,1214=Resultant[R12,13(4),S12,14,a2]=N51N733a412P1213,1214(a4)Q1213,1214(a4),S_{1213,1214}=\texttt{Resultant[}R_{12,13}^{(4)},S_{12,14},a_{2}\texttt{]}=\frac{N_{51}}{N_{733}}a_{4}^{12}P_{1213,1214}(a_{4})Q_{1213,1214}(a_{4}), (59)

where P1213,1214(a4)P_{1213,1214}(a_{4}) and Q1213,1214(a4)Q_{1213,1214}(a_{4}) are unary polynomial in a4a_{4} of degree 60 and 184, respectively.

Performing the Mathematica routine NSolve[S1213,1214==0,a4]\texttt{NSolve[}S_{1213,1214}==0,a_{4}\texttt{]} only gives one real solution a4=0a_{4}=0, under which we again get (54) and further (55). Thus, we have

det[(τ1(4),τ2(4),τ3(4))(a3,a6,a2)]|Γ40.\text{det}\left.\left[\frac{\partial(\tau_{1}^{(4)},\tau_{2}^{(4)},\tau_{3}^{(4)})}{\partial(a_{3},a_{6},a_{2})}\right]\right|_{\Gamma_{4}}\neq 0. (60)

To conclude, the main result is as follows:

Theorem 3.18.

For system (27), the bi-center is a weak center of order 3 (resp. 4) if and only if λΛ1(3)Λ2(3)\lambda\in\Lambda_{1}^{(3)}\cup\Lambda_{2}^{(3)} (resp. λΛ1(4)Λ2(4)\lambda\in\Lambda_{1}^{(4)}\cup\Lambda_{2}^{(4)}), and there are exactly 3 (resp. 4) bifurcation of critical periods after a suitable perturbation, where

Λ1(3)={λ8|λΛ1,γ(1)Γ1}\Lambda_{1}^{(3)}=\left\{\lambda\in\mathbb{R}^{8}\left|\lambda\in\Lambda_{1},\gamma^{(1)}\in\Gamma_{1}\right.\right\};

Λ2(3)={λ8|λΛ4,γ(4)Γ4}\Lambda_{2}^{(3)}=\left\{\lambda\in\mathbb{R}^{8}\left|\lambda\in\Lambda_{4},\gamma^{(4)}\in\Gamma_{4}\right.\right\};

Λ1(4)={λ8|λΛ2,γ(2)Γ2}\Lambda_{1}^{(4)}=\left\{\lambda\in\mathbb{R}^{8}\left|\lambda\in\Lambda_{2},\gamma^{(2)}\in\Gamma_{2}\right.\right\};

Λ2(4)={λ8|λΛ3,γ(3)Γ3}\Lambda_{2}^{(4)}=\left\{\lambda\in\mathbb{R}^{8}\left|\lambda\in\Lambda_{3},\gamma^{(3)}\in\Gamma_{3}\right.\right\}.

4 Conclusion

In this paper, we address the problem of the order of weak centers and maximum number of critical periods bifurcating from the bi-center (±1,0)(\pm 1,0) in system (27) as the parameter varies and solve it completely. We have the following:

  • The bi-center is of finite order.

  • The result obtained in [Romanovski et al, 2017] that the family has no isochronous bi-center is verified.

  • At most four critical periods can bifurcate from the bi-center.

  • To identify to maximum order of weak bi-center and give the maximum number of critical periods, we reduce the question to that of transversal intersections of some algebraic surfaces, using computational algebraic geometry techniques such as the Theory of Resultant and Gröbner Bases.

Throughout the paper some polynomials fi,i=1,2,3,4,5,6,7f_{i},i=1,2,3,4,5,6,7 are not given explicit expressions, because they are very large. In fact, the readers can easily compute them using any available computer algebra system. However, these polynomials are available via the following E-mail address: [email protected].

Acknowledgements

The author of this research article express his profound gratitude and sincerest thanks to the anonymous reviewers, for their constructive opinions towards making this research article scientifically sound.

Appendix

The process of computing and simplifying τ1(1)\tau_{1}^{(1)} and τ2(1)\tau_{2}^{(1)} in (32):

Substituting (31) into (19) and (20), we get the recursive formulae of c[k,j],d[k,j],p[j],q[j]c^{\prime}[k,j],d^{\prime}[k,j],p^{\prime}[j],q^{\prime}[j] and τ[j]=p[j]+q[j]\tau[j]=p^{\prime}[j]+q^{\prime}[j], the Mathematica codes are as follows:

[Uncaptioned image]
[Uncaptioned image]
[Uncaptioned image]

Setting a6=0,a8=13a2(12a7),a9=12a3(1a7),a10=15a4(32a7)a_{6}=0,a_{8}=\frac{1}{3}a_{2}(1-2a_{7}),a_{9}=\frac{1}{2}a_{3}(1-a_{7}),a_{10}=\frac{1}{5}a_{4}(3-2a_{7}) and executing the foregoing Mathematica codes, we have

τ1(1)=112(4810a229a336a74a72),\tau_{1}^{(1)}=\frac{1}{12}(-48-10a_{2}^{2}-9a_{3}-36a_{7}-4a_{7}^{2}),

τ2(1)=1384(5184824a22260a24972a3852a22a3153a32672a2a42160a7+392a22a7+180a3a7+3376a72+608a22a72+528a3a72+2096a73+208a74),\begin{array}[]{l}\tau_{2}^{(1)}=\frac{1}{384}(-5184-824a_{2}^{2}-260a_{2}^{4}-972a_{3}-852a_{2}^{2}a_{3}-153a_{3}^{2}-672a_{2}a_{4}-2160a_{7}+392a_{2}^{2}a_{7}\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ +180a_{3}a_{7}+3376a_{7}^{2}+608a_{2}^{2}a_{7}^{2}+528a_{3}a_{7}^{2}+2096a_{7}^{3}+208a_{7}^{4}),\end{array}

Let

k21=1288(156+682a22+153a3792a7596a72),k_{21}=\frac{1}{288}(156+682a_{2}^{2}+153a_{3}-792a_{7}-596a_{7}^{2}),

and

τ2(1)τ2(1)k2,1τ1(1),\tau_{2}^{(1)}\to\tau_{2}^{(1)}-k_{2,1}\tau_{1}^{(1)},

then

τ2(1)=1108(1224+840a22+140a24189a2a41620a7+630a22a7816a72+70a22a72180a7316a74).\tau_{2}^{(1)}=\frac{1}{108}(-1224+840a_{2}^{2}+140a_{2}^{4}-189a_{2}a_{4}-1620a_{7}+630a_{2}^{2}a_{7}-816a_{7}^{2}+70a_{2}^{2}a_{7}^{2}-180a_{7}^{3}-16a_{7}^{4}).

References

  • [1] Amelkin V.V., Lukashevich N.A. & Sadovskii A.P. [1982] “Nonlinear Oscillations in Second Order Systems,” BSU, Minsk, (in Russian).
  • [2] Bautin N. [1954] “On the number of limit cycles which appear with the variation of coefficients from an equilibrium position of focus or center type,” Am. Math. Soc. Trans. 100, 397-413.
  • [3] Chen T., Huang W. & Ren D. [2014] “Weak center and local critical periods for a Z2Z_{2}-equivariant cubic system,” Nonlinear Dyn. 78, 2319-2329.
  • [4] Chen X. & Zhang W. [2009] “Decomposition of algebraic sets and applications to weak centers of cubic systems,” J. Comput. Appl. Math. 232, 565-581.
  • [5] Cherkas L.A., Romanovski V.G. & Żoła̧dek H. [1997] “The centre conditions for a certain cubic system,” Differ. Equ. Dyn. Syst. 5, 299-302.
  • [6] Chicone C. & Jacobs M. [1989] “Bifurcation of critical periods for plane vector fields,” Trans. Am. Math. Soc. 312, 433-486.
  • [7] Cima A., Gasull A. & Silvab P. [2008] “On the number of critical periods for planar polynomial systems,” Nonlinear Anal. 69, 1889-1903.
  • [8] Du C., Liu Y. & Liu C. [2013] “Weak center problem and bifurcation of critical periods for a Z4Z_{4}-equivariant cubic system,” Advances in Difference Equations 2013, 197.
  • [9] Du Z. [2004] “On the critical periods of Liénard systems with cubic restoring forces,” Int. J. Math. Math. Sci. 61, 3259-3274.
  • [10] Gasull A. Zhao Y. [2008] “Bifurcation of critical periods from the rigid quadratic isochronous vector field,” Bull. Sci. Math. 132, 291-312.
  • [11] Li F., Liu Y., Liu Y. & Yu P. [2018] “Bi-center problem and bifurcation of limit cycles from nilpotent singular points in Z2Z_{2}-equivariant cubic vector fields,” J. Differential Equations 265, 4965-4992.
  • [12] Li F., Liu Y., Liu Y. & Yu P. [2020a] “Complex isochronous centers and linearization transformations for cubic Z2Z_{2}-equivariant planar systems,” J. Differential Equations 268, 3819-3847.
  • [13] Li F., Jin Y., Tian Y. & Yu P. [2020b] “Integrability and linearizability of cubic Z2Z_{2} systems with non-resonant singular points,” J. Differential Equations 269, 9026-9049.
  • [14] Lin Y. & Li J. [1991] “The normal form and critical points of closed orbits for autonomous planar system,” Acta. Math. Sinica. 34, 490-501.
  • [15] Liu Y. & Huang W. [2003] “A new method to determine isochronous center conditions for polynomial differential systems,” Bull. Sci. Math. 127, 133-148.
  • [16] Liu Y., Li J. & Huang W., [2008] “Singular point values, center problem and bifurcations of limit cycles of two dimensional differential autonomous systems,” Science Press, Beijing.
  • [17] Romanovski V. & Han M. [2003] “Critical period bifurcations of a cubic system,” J. Phys. A Math Gen. 36, 5011-5022.
  • [18] Romanovski V. & Shafer D.S. [2009] “The Center and cyclicity Problems: A computational Algebra Approach,” Birkhauser, Boston.
  • [19] Rousseau C. & Toni B. [1993] “Local bifurcation of critical periods in vector fields with homogeneous nonlinearities of the third degree,” Can. Math. Bull. 36, 473-484.
  • [20] Rousseau C. & Toni B. [1997] “Local bifurcation of critical periods in the reduced Kukles system,” Can. Math. Bull. 49, 338-358.
  • [21] Romanovski V.G., Fernandes W. & Oliveira R. [2017] “Bi-center problem for some classes of Z2Z_{2}-equivariant systems,” J. Comput. Appl. Math. 320, 61-75.
  • [22] Yu P., Han M. & Zhang J. [2010] “Critical periods of third-order planar hamiltonian systems,” Int. J. Bifurc. Chaos. 20, 2213-2224.
  • [23] Zhang W., Hou X. & Zeng Z. [2000] “Weak centres and bifurcation of critical periods in reversible cubic systems,” Comput. Math. Appl. 40, 771-782.
  • [24]