This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Vorticity-strain rate dynamics and the smallest scales of turbulence

Dhawal Buaria [email protected] Tandon School of Engineering, New York University, New York, NY 11201, USA Max Planck Institute for Dynamics and Self-Organization, 37077 Göttingen, Germany    Alain Pumir Laboratoire de Physique, ENS de Lyon, Université de Lyon 1 and CNRS, 69007 Lyon, France Max Planck Institute for Dynamics and Self-Organization, 37077 Göttingen, Germany
Abstract

Building upon the intrinsic properties of Navier-Stokes dynamics, namely the prevalence of intense vortical structures and the interrelationship between vorticity and strain rate, we propose a simple framework to quantify the extreme events and the smallest scales of turbulence. We demonstrate that our approach is in excellent agreement with the best available data from direct numerical simulations of isotropic turbulence, with Taylor-scale Reynolds number up to 1300. We additionally highlight a shortcoming of prevailing intermittency models due to their disconnection from observed correlation between vorticity and strain. Our work accentuates the importance of this correlation as a crucial step in developing an accurate understanding of intermittency in turbulence.

A defining property of fluid turbulence is the presence of a wide range of dynamically interacting scales – bounded from above by the largest scales, which are of the order of flow dimension, and from below by the smallest scales, determined by the diffusive action of molecular viscosity. The largest scales transport the bulk of the flow energy and momentum, whereas the smallest scales are responsible for dissipating the flow energy into heat. The net transfer of energy from large to small-scales (onto viscous dissipation) occurs via an energy cascade, which renders the averaged energy dissipation-rate ϵ\langle\epsilon\rangle to become independent of (kinematic) viscosity ν\nu – which is also termed dissipative anomaly. This phenomenology, first proposed by Kolmogorov (1941) Kolmogorov (1941a, b) (K41 henceforth), identifies the smallest scales in the flow as:

ηK=(ν3/ϵ)1/4;τK=(ν/ϵ)1/2\displaystyle\eta_{\rm K}=\left(\nu^{3}/\langle\epsilon\rangle\right)^{1/4}\ \ ;\ \ \tau_{\rm K}=\left(\nu/\langle\epsilon\rangle\right)^{1/2} (1)

where ηK\eta_{\rm K} and τK\tau_{\rm K} are the Kolmogorov length and time-scale respectively.

While dissipative anomaly has been widely confirmed Sreenivasan (1984, 1998); Pearson et al. (2002); Kaneda et al. (2003), the overall mean-field description of K41 has been invalidated Frisch (1995); Sreenivasan and Antonia (1997). This is because the fluctuations of dissipation-rate, and velocity gradients in general, exhibit a high-degree of spatial and temporal intermittency, with large non-Gaussian excursions from its mean, which become increasingly stronger with the Reynolds number Meneveau and Sreenivasan (1991); Buaria et al. (2019); Elsinga et al. (2020). Such extreme events play a crucial role in numerous physical processes Falkovich et al. (2002); Sreenivasan (2004); Vergassola et al. (2007); Hamlington et al. (2012) and are at the center of turbulence theories and models Frisch (1995); Sreenivasan and Antonia (1997); Meneveau (2011). Simultaneously, it follows that the smallest scales in the flow, putatively corresponding to the extreme events, would be smaller than the Kolmogorov scales defined by Eq. (1) Paladin and Vulpiani (1987); Sreenivasan and Meneveau (1988); Nelkin (1990); Yakhot and Sreenivasan (2005); Buaria et al. (2019).

Several phenomenological models have been proposed to describe intermittency, with reasonable success in characterizing the statistics of velocity increments for inertial-scales Frisch (1995); Sreenivasan and Antonia (1997). However, an accurate description of the the smallest scales has remained elusive for two reasons. The first limitation is the insufficiency of well-resolved data across a wide range of Reynolds numbers, since capturing extreme events requires a very stringent small-scale resolution Donzis et al. (2008); Yeung et al. (2018); Buaria et al. (2019). The second limitation is that of phenomenological models, which typically appeal to adjustable parameters without a clear connection to the dynamics of the Navier-Stokes equations. For instance, it is well-known that extreme gradients are structurally arranged in tube-like vortices Douady et al. (1991); Jiménez et al. (1993); Ishihara et al. (2009); Buaria et al. (2019); however, prevailing intermittency theories neither predict this feature nor take it into account in a precise manner.

In this Letter, overcoming the aforementioned limitations, we propose a simple framework to characterize the smallest scales of turbulence based on vortical flow structures while also directly connecting to the underlying Navier-Stokes dynamics. Our predictions are validated with data from state-of-the-art direct numerical simulations (DNS) of the incompressible Navier-Stokes equations, demonstrating excellent agreement. We additionally show that predictions from prior intermittency models are recovered as a limiting case of our framework, and discuss the root of this discrepancy.

The DNS data utilized here correspond to the canonical setup of forced stationary isotropic turbulence in a periodic domain Ishihara et al. (2009), enabling the use of highly accurate Fourier pseudo-spectral methods Rogallo (1981). The key novelty of our data is that we have simultaneously achieved both very high Reynolds number and the prescribed small-scale resolution to accurately resolve the extreme events Yeung et al. (2018); Buaria et al. (2019). The data correspond to the same Taylor-scale Reynolds number Rλ{R_{\lambda}} range of 1401300140-1300 as attained in recent studies (Buaria and Sreenivasan, 2020; Buaria et al., 2020a, b; Buaria and Pumir, 2021; Buaria et al., 2022; Buaria and Yeung, 2017). However, the run at Rλ=1300{R_{\lambda}}=1300 is extended to a grid of 18432318432^{3} points (see Yeung and Ravikumar (2020)) – the largest DNS run to date – presenting a substantial improvement on any previous work investigating the smallest scales Schumacher (2007); Donzis et al. (2008); Buaria et al. (2019). The resolution is kmaxηK6k_{\rm{max}}\eta_{\rm K}\approx 6 for Rλ650{R_{\lambda}}\leq 650, and kmaxηK4.5k_{\rm{max}}\eta_{\rm K}\approx 4.5 for Rλ=1300{R_{\lambda}}=1300, where kmax=2N/3k_{\rm{max}}=\sqrt{2}N/3, is the maximum resolved wavenumber on a N3N^{3} grid. Convergence with respect to resolution and statistical sampling has been thoroughly established in previous works (Yeung et al., 2018; Buaria et al., 2019; Yeung and Ravikumar, 2020).

Refer to caption
Refer to caption
Figure 1: 3D-contour surfaces of ΩτK2\Omega\tau_{\rm K}^{2} (cyan) and ΣτK2\Sigma\tau_{\rm K}^{2} (red) at Rλ=1300{R_{\lambda}}=1300. The contour thresholds are 500500 (left) and 40004000 (right) respectively, and the domain size is (100ηK)3(100\ \eta_{\rm K})^{3}.

We first identify the intrinsic features of Navier-Stokes dynamics that are essential to characterize the small-scales. From the velocity gradient tensor Aij=ui/xjA_{ij}=\partial u_{i}/\partial x_{j}, two important descriptors of small-scale motions can be identified, viz., the strain-rate tensor Sij=(Aij+Aji)/2S_{ij}=(A_{ij}+A_{ji})/2, and the vorticity vector ωi=ϵijkAjk\omega_{i}=\epsilon_{ijk}A_{jk} (ϵijk\epsilon_{ijk} being the Levi-Civita symbol). We utilize their square-norms:

Σ=2SijSij,Ω=ωiωi,\displaystyle\Sigma=2S_{ij}S_{ij}\ ,\ \ \ \Omega=\omega_{i}\omega_{i}\ , (2)

the former being the dissipation-rate without the viscosity, i.e., Σ=ϵ/ν\Sigma=\epsilon/\nu, and Ω\Omega being the enstrophy. From statistical homogeneity and the definition of τK\tau_{\rm K}, it follows Ω=Σ=1/τK2\langle\Omega\rangle=\langle\Sigma\rangle=1/\tau_{\rm K}^{2}. It is well-known that the interaction of strain and vorticity plays a direct role in generating extreme gradients in the flow and hence the smallest scales Jiménez et al. (1993); Tsinober (2009). Understanding the salient properties of this interaction constitutes the first step of our analysis.

Figure 1 shows the structure of extreme events at the highest Rλ{R_{\lambda}} (=1300=1300), via visualization of isosurfaces of strain and vorticity. Figure 1a corresponds to a moderately large threshold and illustrates the well-known picture of intense gradients corresponding to vortical filaments, surrounded by sheet-like regions of intense strain Jiménez et al. (1993); Moisy and Jiménez (2004); Ishihara et al. (2009); Buaria et al. (2019). In Fig. 1b, a substantially larger threshold is chosen, and remarkably vortical filaments still prevail.

Refer to caption
Refer to caption
Figure 2: (a) Probability density functions (PDFs) of ΩτK2\Omega\tau_{\rm K}^{2} and ΣτK2\Sigma\tau_{\rm K}^{2} (inset) for various Rλ{R_{\lambda}}. (b) Conditional expectations Σ|Ω\langle\Sigma|\Omega\rangle (solid lines) and Ω|Σ\langle\Omega|\Sigma\rangle (dashed lines) for various Rλ{R_{\lambda}}. The black dashed line corresponds to a slope of 1. Inset shows γ\gamma as a function of Rλ{R_{\lambda}}, for a power-law Σ|ΩΩγ\langle\Sigma|\Omega\rangle\sim\Omega^{\gamma} applied in the region ΩτK21\Omega\tau_{\rm K}^{2}\gtrsim 1.

Although Ω\Omega and Σ\Sigma have the same mean, it is well-known that Ω\Omega is more intermittent Kerr (1985); Ishihara et al. (2009); Buaria et al. (2019) – likely due to the disparate role of vortex stretching in amplifying vorticity and simultaneously depleting strain Tsinober (2009); Buaria et al. (2022). This is reflected in their probability density functions (PDFs) in Fig. 2a, which firmly establishes that this difference is not a low-Rλ{R_{\lambda}} effect as previously believed He et al. (1998); Nelkin (1999); Donzis et al. (2008). The local interrelationship between strain and vorticity can be better understood by considering their mutual conditional expectations as shown in Fig. 2b (and also have been studied previously in various contexts Donzis et al. (2008); Buaria et al. (2019); Buaria and Pumir (2021)). The main observation is that while large Σ\Sigma is accompanied by proportionately large Ω\Omega, i.e., Ω|ΣΣ\langle\Omega|\Sigma\rangle\sim\Sigma, the converse is not true. Instead, the strain in regions of intense vorticity is considerably weaker, and empirically described by the power-law:

Σ|ΩτK2(ΩτK2)γ, 0<γ<1\displaystyle\langle\Sigma|\Omega\rangle\tau_{\rm K}^{2}\sim(\Omega\tau_{\rm K}^{2})^{\gamma}\ \ ,\ 0<\gamma<1 (3)

where the exponent γ\gamma slowly increases with Rλ{R_{\lambda}} (see inset of Fig. 2b). Notably, existing intermittency models neither predict this, nor take it into account when characterizing the smallest scales.

With the knowledge of vortical flow structures and the asymmetry between the behavior of strain and vorticity (reflected in the exponent γ\gamma), we now formulate the framework to quantify the smallest scales in the flow. From a physical standpoint, the smallest length-scale in the flow corresponds to the smallest dimension of vortical structures, as obtained from a balance between viscosity and some effective strain SeΣe1/2S_{\rm e}\simeq\Sigma_{\rm e}^{1/2} acting on the particular structure Burgers (1948):

η=(ν2/Σe)1/4\displaystyle\eta=(\nu^{2}/\Sigma_{\rm e})^{1/4} (4)

which can be rewritten as

η/ηK=(ΣeτK2)1/4\displaystyle\eta/\eta_{\rm K}=(\Sigma_{\rm e}\tau_{\rm K}^{2})^{-1/4} (5)

The classical Kolmogorov result in Eq. (1) is obtained for Σe\Sigma_{\rm e} corresponding to the mean-field, i.e., Σe=ϵ/ν=1/τK2\Sigma_{\rm e}=\langle\epsilon\rangle/\nu=1/\tau_{\rm K}^{2}. Instead, the observation in Fig. 2 suggests utilizing the conditional relation in Eq. (3), leading to

η/ηK=(ΩτK2)γ/4\displaystyle\eta/\eta_{\rm K}=(\Omega\tau_{\rm K}^{2})^{-\gamma/4} (6)

Introducing the length-scale ηext\eta_{\rm{ext}} as the size associated with vortex structures corresponding to Ωmax\Omega_{\rm{max}}, which in turn corresponds to the smallest time-scale τext\tau_{\rm{ext}}, i.e., Ωmaxτext2\Omega_{\rm{max}}\sim\tau_{\rm{ext}}^{-2}, leads to

ηext/ηK=(τext/τK)γ/2\displaystyle\eta_{\rm{ext}}/\eta_{\rm K}=(\tau_{\rm{ext}}/\tau_{\rm K})^{\gamma/2} (7)

Keeping in mind the growth of PDF tails with Rλ{R_{\lambda}} (when normalized by τK\tau_{\rm K}), we can write:

ηext=ηK×Rλα,τext=τK×Rλβ,\displaystyle\eta_{\rm{ext}}=\eta_{\rm K}\times{R_{\lambda}}^{-\alpha}\ ,\ \ \ \tau_{\rm{ext}}=\tau_{\rm K}\times{R_{\lambda}}^{-\beta}\ , (8)

where α,β>0\alpha,\beta>0 are to be determined. Substituting these in Eq. (7) leads to

2α=γβ,\displaystyle 2\alpha=\gamma\beta\ , (9)

giving first direct relation between α\alpha and β\beta.

We now recall that velocity gradients in the flow simply correspond to velocity increments across the smallest length-scale. Hence, the strongest gradient simply corresponds to the largest velocity increment, say δumax\delta u_{\rm{max}} over ηext\eta_{\rm{ext}}:

1/τextδumax/ηext.\displaystyle 1/\tau_{\rm{ext}}\sim\delta u_{\rm{max}}/\eta_{\rm{ext}}\ . (10)

Based on earlier works Paladin and Vulpiani (1987); Jiménez et al. (1993); Buaria et al. (2019) (see also sup ):

δumaxu,\displaystyle\delta u_{\rm{max}}\sim u^{\prime}\ , (11)

where uu^{\prime} is the r.m.s. of velocity; which upon substitution in Eq. (10) gives

β=α+1/2,\displaystyle\beta=\alpha+1/2\ , (12)

Here, we have used the standard estimate u/uKRλ1/2u^{\prime}/u_{\rm K}\sim{R_{\lambda}}^{1/2}, where uK=ηK/τKu_{\rm K}=\eta_{\rm K}/\tau_{\rm K}. Finally, solving Eqs. (9) and (12) allows us to obtain α\alpha and β\beta in terms of γ\gamma:

β=12γ,α=γ2(2γ).\displaystyle\beta=\frac{1}{2-\gamma}\ ,\ \ \alpha=\frac{\gamma}{2(2-\gamma)}\ . (13)
Refer to caption
Refer to caption
Figure 3: (a) Rescaled PDFs of Ω\Omega and Σ\Sigma, normalized by τext2\tau_{\rm{ext}}^{2} corresponding to smallest time-scale, at various Rλ{R_{\lambda}}. The black dashed line corresponds to stretched exponential fit. (b) Plot of b1/cb^{1/c} vs. Rλ{R_{\lambda}} corresponding to stretched exponential fits to PDFs of Ω\Omega and Σ\Sigma. For clarity, we have rescaled the curves, so all data point superpose at Rλ=1300{R_{\lambda}}=1300. The dashed (cyan) line corresponds to the prediction for β\beta in Eq. (13), taking into account the variation of γ\gamma shown in inset of Fig. 2b sup , whereas the dotted line corresponds to the prediction β=1\beta=1 in Eq. (19).

To first validate the result for β\beta, we return to the PDFs shown in Fig. 2a, with the expectation that rescaling them with τext\tau_{\rm{ext}} should collapse the tails. Figure 3a shows this result, with β\beta (and τext\tau_{\rm{ext}}) defined based on γ\gamma obtained in Fig. 2b – demonstrating excellent agreement. It should be noted that a similar collapse was also obtained in Buaria et al. (2019) at lower Rλ{R_{\lambda}} and for a fixed value of β=0.775\beta=0.775. However, the current data at significantly higher Rλ{R_{\lambda}} negate a fixed value of β\beta. Hence, the Rλ{R_{\lambda}}-dependence of β\beta (arising from γ\gamma) is a crucial ingredient of the current approach and imperative for obtaining an accurate description. This expectation and the quantitative variation of β\beta are also consistent with recent results of Elsinga et al. (2020), which characterize the scaling of extreme dissipation events based on underlying shear-layer structures.

While the arguments leading to Eq. (13) utilize the physical picture of intense vorticity tubes, the collapse in Fig. 3a remarkably indicates that both extreme vorticity and strain scale with τext\tau_{ext} – though these extrema arise from different spatial locations. This suggests that the amplification of vorticity and strain occurs simultaneously with the same time-scale, albeit non-locally 111 note, vorticity and strain are coupled non-locally via the Biot-Savart relation Buaria et al. (2020b); Buaria and Pumir (2021), inducing the asymmetry in their local correlation as observed in Fig. 2b. Thus, the exponent γ<1\gamma<1, which captures this asymmetry, also captures the non-locality of vorticity-strain interaction. In fact, as demonstrated later, this is also the key reason for our framework’s success over prior intermittency models.

The collapse in Fig. 3a can be additionally verified by noting that the tails of PDFs of Σ\Sigma and Ω\Omega (and velocity gradients in general) are well fitted by stretched-exponential functions Meneveau and Sreenivasan (1991); Benzi et al. (1991); Kailasnath et al. (1992); Zeff et al. (2003); Donzis et al. (2008); Buaria et al. (2019):

fX(x)aexp(bxc),\displaystyle f_{X}(x)\approx a\exp(-b\ x^{c})\ , (14)

where x=ΩτK2x=\Omega\tau_{\rm K}^{2} or ΣτK2\Sigma\tau_{\rm K}^{2}. Applying a change of variable xe=x(τK/τext)2x_{\rm e}=x(\tau_{\rm K}/\tau_{\rm{ext}})^{2} will lead to the transformation bb=b×Rλ2βcb\rightarrow b^{\prime}=b\times{R_{\lambda}}^{2\beta c}. A necessary condition to collapse the tails would imply that bb^{\prime} is independent of Rλ{R_{\lambda}}, leading to the expectation that b1/cRλ2βb^{1/c}\sim{R_{\lambda}}^{-2\beta} (for any given value of cc).

Figure 3b shows the plot of b1/cb^{1/c} as a function of Rλ{R_{\lambda}}, for various cc values (comprehensive details about the fitting procedure, and the chosen range of cc are discussed in the Supplementary sup ). We compare the slope of the data points for b1/cb^{1/c} with the result for β\beta in Eq. (13) by utilizing the γ\gamma obtained earlier from Fig. 2b (note γ\gamma varies from 0.600.750.60-0.75 for Rλ=1401300{R_{\lambda}}=140-1300) – once again, demonstrating excellent agreement. It is worth iterating that the collapse obtained in Fig. 3a does not depend on the curve fitting procedure. Nevertheless, this fitting procedure independently reaffirms the robustness of our result and rules out any ambiguity.

While the result for τext\tau_{\rm{ext}} (and β\beta) was readily verified using the PDF tails, verifying ηext\eta_{\rm{ext}} (and α\alpha) presents an inherent difficulty. A simple approach would be to evaluate the PDF of the coarse-grained gradient δur/r\delta u_{r}/r, where δur\delta u_{r} is the velocity increment over some scale rr, and successively make rr smaller until the PDF of δur/r\delta u_{r}/r collapses to the PDF of velocity gradient for rηextr\leq\eta_{\rm{ext}}. However, DNS data only provides discrete values of rr (in integer multiples of the grid spacing Δx\Delta x), making it impractical to precisely identify the exact r/ηextr/\eta_{\rm{ext}} without invoking some interpolation or approximate analysis. Instead, we devise a simple alternative by characterizing the deviations of δur/r\delta u_{r}/r from the actual gradient. Note, the velocity increment can be longitudinal or transverse, i.e., corresponding to velocity component parallel or perpendicular (respectively) to the separation vector, but it will be evident that this choice is immaterial.

From the Taylor-series expansion of δur\delta u_{r}, it follows:

δurr=ux+2ux2r2!+3ux3r23!+\displaystyle\frac{\delta u_{r}}{r}=\frac{\partial u}{\partial x}+\frac{\partial^{2}u}{\partial x^{2}}\frac{r}{2!}+\frac{\partial^{3}u}{\partial x^{3}}\frac{r^{2}}{3!}+... (15)

For rηextr\leq\eta_{\rm{ext}}, the r.h.s. converges to u/x\partial u/\partial x, whereas for r>ηextr>\eta_{\rm{ext}} deviations are expected due to the higher-order corrections. For the most extreme gradients, we can nominally write: nu/xncnu/ηextn\partial^{n}u/\partial x^{n}\simeq c_{n}u^{\prime}/\eta_{\rm{ext}}^{n}, where cnc_{n} are independent of Rλ{R_{\lambda}}. Together with uηext/τextu^{\prime}\sim\eta_{\rm{ext}}/\tau_{\rm{ext}}, this gives:

δurτextrc1+c22!(rηext)+c33!(rηext)2+,\displaystyle\frac{\delta u_{r}\tau_{\rm{ext}}}{r}\simeq c_{1}+\frac{c_{2}}{2!}\left(\frac{r}{\eta_{\rm{ext}}}\right)+\frac{c_{3}}{3!}\left(\frac{r}{\eta_{\rm{ext}}}\right)^{2}+...\ , (16)

leading to expectation that the tails of PDFs of δurτext/r\delta u_{r}\tau_{\rm{ext}}/r can be collapsed at different Rλ{R_{\lambda}} by matching the r/ηextr/\eta_{\rm{ext}}, thus providing a simpler test with DNS data. We notice that ηK/ηext\eta_{\rm K}/\eta_{\rm{ext}} at Rλ=140{R_{\lambda}}=140 is approximately 22 times than that at Rλ=1300{R_{\lambda}}=1300. Fig. 4 shows the rescaled PDF of δurτext/r\delta u_{r}\tau_{\rm{ext}}/r, for r/ηK=1,2,4,8r/\eta_{\rm K}=1,2,4,8 at Rλ=1300{R_{\lambda}}=1300, and r/ηK=2,4,8,16r/\eta_{\rm K}=2,4,8,16 at Rλ=140{R_{\lambda}}=140, showing a remarkably good collapse of the tails, providing a strong confirmation of our approach. Similarly, for Rλ=140{R_{\lambda}}=140 and Rλ=650{R_{\lambda}}=650, the ratio of their ηK/ηext\eta_{\rm K}/\eta_{\rm{ext}} is approximately 1.51.5, and a similar collapse is obtained (see sup ).

Refer to caption
Figure 4: Rescaled PDFs of the (transverse) velocity increments, δur\delta u_{r}, non-dimensionalized by τext/r\tau_{\rm{ext}}/r. Solid red lines are for Rλ=1300{R_{\lambda}}=1300, showing r/ηK=1,2,4,8r/\eta_{\rm K}=1,2,4,8, and dashed blue lines are for Rλ=140{R_{\lambda}}=140, showing r/ηK=2,4,8,16r/\eta_{\rm K}=2,4,8,16, corresponding to the ratio of ηK/ηext\eta_{\rm K}/\eta_{\rm{ext}} for these two Rλ{R_{\lambda}}. Curves for increasing r/ηKr/\eta_{\rm K} shift monotonically from right to left. Although not shown, the curves corresponding to the longitudinal increments exhibit similar behavior.

The framework developed in this work differs from previous phenomenological models, which ignore important features of the Navier-Stokes dynamics. In this regard, the commonly utilized notion is that the viscous cutoff scale is defined by the phenomenological criteria of local Reynolds number being unity Paladin and Vulpiani (1987); Nelkin (1990); Frisch (1995); Yakhot and Sreenivasan (2005); Schumacher (2007):

δurr/ν1.\displaystyle\delta u_{r}\ r/\nu\simeq 1\ . (17)

This is essentially an ad-hoc extension of the K41 phenomenology, since uKηK/ν=1u_{\rm K}\eta_{\rm K}/\nu=1. The velocity increment δur\delta u_{r} is assumed to be Hölder continuous, akin to multifractility Frisch (1995):

δur/u(r/L)h,\displaystyle\delta u_{r}/u^{\prime}\sim(r/L)^{h}\ , (18)

where LL is the large-eddy length and hh is the local Hölder exponent. It trivially follows that the smallest scales correspond to the minimum Hölder exponent hminh_{min}. Since δuru\delta u_{r}\sim u^{\prime} for the smallest scales, or equivalently hmin=0h_{min}=0 Paladin and Vulpiani (1987); Nelkin (1990); Frisch (1995), it can be shown that sup :

β=2α,β=α+12,\displaystyle\beta=2\alpha\ ,\ \ \beta=\alpha+\frac{1}{2}\ , (19)

giving β=1\beta=1 and α=1/2\alpha=1/2, in line with previous predictions Paladin and Vulpiani (1987); Sreenivasan and Meneveau (1988); Nelkin (1990); Yakhot and Sreenivasan (2005).

It can be readily seen that the result in Eq. (19) differs from our results in Eqs. (9) and (12) only by the factor γ\gamma, both being the same if γ=1\gamma=1, i.e. when strain and vorticity are locally commensurate. While the numerical results clearly demonstrate that γ<1\gamma<1, the weak increase in γ\gamma with Rλ{R_{\lambda}} (inset of Fig. 2b) is suggestive of a slow approach to γ=1\gamma=1 when Rλ{R_{\lambda}}\to\infty. However, a nominal extrapolation of the data in Fig. 2b suggests that this limit will be reached at extremely large Rλ{R_{\lambda}}, beyond what can be achieved experimentally or numerically sup . In fact, this is in line with previous and recent results which independently reaffirm the shortcomings of the multifractal model Jiménez et al. (1993); Buaria and Sreenivasan (2020); Elsinga et al. (2020).

Since the result in Eq. (18) (for h=0h=0, giving δuru\delta u_{r}\sim u^{\prime}) is consistent across all descriptions, the noted discrepancy arises from the criterion in Eq. (17). For vortex tubes, the smallest scale as set by Eq. (4) is qualitatively similar to the criteria in Eq. (17). However, it does not provide any constraint on the circulation of the vortex, Γ\Gamma, implying that the local Reynolds number defined as RΓ=Γ/νR_{\Gamma}=\Gamma/\nu is not necessarily unity. Instead, our results indicate RΓRλ1βR_{\Gamma}\simeq{R_{\lambda}}^{1-\beta}, in qualitative agreement with the results of Jiménez et al. (1993). Note, for Rλ{R_{\lambda}}\to\infty, the expectation γ,β1\gamma,\beta\to 1 implies that RΓR_{\Gamma}\to constant. Thus, the crucial misstep in prevailing intermittency models appears to be its inability in distinguishing longitudinal and transverse components and utilizing their local correlation. In fact, previous and recent results have shown that this shortcoming also extends to inertial range, where longitudinal and transverse structure functions exhibit different scaling exponents, contrary to the prediction from the multifractal model Dhruva et al. (1997); Shen and Warhaft (2002); Gotoh et al. (2002); Grauer et al. (2012).

In conclusion, we have developed a simple framework to characterize the smallest scales of turbulence, which utilizes the underlying asymmetry between strain and vorticity dynamics of Navier-Stokes equations. We have demonstrated excellent agreement of DNS data with predictions, and shown that our parametrization reduces to predictions from existing intermittency models when the symmetry between strain and vorticity is restored, albeit at extremely large Rλ{R_{\lambda}}, which are unattainable on Earth. In this regard, understanding the asymmetry between vorticity and strain appears to be a crucial component to understand intermittency in turbulence for all practical situations of interest, suggestive of a new avenue of investigation. It would also be pertinent to extend the current framework to turbulent mixing of scalars, where recent results have suggested that the smallest scales in the scalar field also deviate from classical predictions Buaria et al. (2021a, b).

Acknowledgements.

Acknowledgments:

We gratefully acknowledge the Gauss Centre for Supercomputing e.V. for providing computing time on the supercomputers JUQUEEN and JUWELS at Jülich Supercomputing Centre (JSC), where the simulations reported in this paper were primarily performed. We thank P.K. Yeung and Kiran Ravikumar for generously providing the data at 18432318432^{3}, which was generated on Summit under the DOE INCITE 2019 award. AP was supported by the TILT project from ANR (Contract No. ANR-20-CE30-0035).

References

  • Kolmogorov (1941a) A. N. Kolmogorov, “Local structure of turbulence in an incompressible fluid for very large Reynolds numbers,” Dokl. Akad. Nauk. SSSR 30, 299–303 (1941a).
  • Kolmogorov (1941b) A. N. Kolmogorov, “Dissipation of energy in locally isotropic turbulence,” Dokl. Akad. Nauk. SSSR 434, 16–18 (1941b).
  • Sreenivasan (1984) K. R. Sreenivasan, “On the scaling of the turbulence energy dissipation rate,” Phys. Fluids 27, 1048–1051 (1984).
  • Sreenivasan (1998) K. R. Sreenivasan, “An update on the energy dissipation rate in isotropic turbulence,” Phys. Fluids 10, 528–529 (1998).
  • Pearson et al. (2002) B. Pearson, P-Å Krogstad,  and W. Van De Water, “Measurements of the turbulent energy dissipation rate,” Phys. Fluids 14, 1288–1290 (2002).
  • Kaneda et al. (2003) Y. Kaneda, T. Ishihara, M. Yokokawa, K. Itakura,  and A. Uno, “Energy dissipation rate and energy spectrum in high resolution direct numerical simulations of turbulence in a periodic box,” Phys. Fluids 15, L21–L24 (2003).
  • Frisch (1995) U. Frisch, Turbulence: the legacy of Kolmogorov (Cambridge University Press, Cambridge, 1995).
  • Sreenivasan and Antonia (1997) K. S. Sreenivasan and R. A. Antonia, “The phenomenology of small-scale turbulence,” Annu. Rev. Fluid Mech. 29, 435–77 (1997).
  • Meneveau and Sreenivasan (1991) C. Meneveau and K. R. Sreenivasan, “The multifractal nature of turbulent energy dissipation,” J. Fluid Mech. 224, 429––484 (1991).
  • Buaria et al. (2019) D. Buaria, A. Pumir, E. Bodenschatz,  and P. K. Yeung, “Extreme velocity gradients in turbulent flows,” New J. Phys. 21, 043004 (2019).
  • Elsinga et al. (2020) G. E. Elsinga, T. Ishihara,  and J. C. R. Hunt, “Extreme dissipation and intermittency in turbulence at very high Reynolds numbers,” Proc. Roy. Soc. Lond. A 476, 20200592 (2020).
  • Falkovich et al. (2002) G. Falkovich, A. Fouxon,  and M. G. Stepanov, “Acceleration of rain initiation by cloud turbulence,” Nature 419, 151 (2002).
  • Sreenivasan (2004) K. R. Sreenivasan, “Possible effects of small-scale intermittency in turbulent reacting flows,” Flow, Turb. Comb. 72, 115–131 (2004).
  • Vergassola et al. (2007) M. Vergassola, E. Villermaux,  and B. I. Shraiman, “‘Infotaxis’ as a strategy for searching without gradients,” Nature 445, 406 (2007).
  • Hamlington et al. (2012) P. E. Hamlington, A. Y. Poludnenko,  and E. S. Oran, “Intermittency in premixed turbulent reacting flows,” Phys. Fluids 24, 075111 (2012).
  • Meneveau (2011) C. Meneveau, “Lagrangian dynamics and models of the velocity gradient tensor in turbulent flows,” Annu. Rev. Fluid Mech. 43, 219–245 (2011).
  • Paladin and Vulpiani (1987) G. Paladin and A. Vulpiani, “Degrees of freedom of turbulence,” Phys. Rev. A 35, 1971–1973 (1987).
  • Sreenivasan and Meneveau (1988) K. R. Sreenivasan and C. Meneveau, “Singularities of the equations of fluid motion,” Phys. Rev. A 38, 6287–6295 (1988).
  • Nelkin (1990) M. Nelkin, “Multifractal scaling of velocity derivatives in turbulence,” Phys. Rev. A 42, 7226–7229 (1990).
  • Yakhot and Sreenivasan (2005) V. Yakhot and K. R. Sreenivasan, “Anomalous scaling of structure functions and dynamic constraints on turbulence simulation,” J. Stat. Phys. 121, 823–841 (2005).
  • Donzis et al. (2008) D. A. Donzis, P. K. Yeung,  and K. R. Sreenivasan, “Dissipation and enstrophy in isotropic turbulence: Resolution effects and scaling in direct numerical simulations,” Phys. Fluids 20, 045108 (2008).
  • Yeung et al. (2018) P. K. Yeung, K. R. Sreenivasan,  and S. B. Pope, “Effects of finite spatial and temporal resolution in direct numerical simulations of incompressible isotropic turbulence,” Phys. Rev. Fluids 3, 064603 (2018).
  • Douady et al. (1991) S. Douady, Y. Couder,  and M. E. Brachet, “Direct observation of the intermittency of intense vorticity filaments in turbulence,” Phys. Rev. Lett. 67, 983–986 (1991).
  • Jiménez et al. (1993) J. Jiménez, A. A. Wray, P. G. Saffman,  and R. S. Rogallo, “The structure of intense vorticity in isotropic turbulence,” J. Fluid Mech. 255 (1993).
  • Ishihara et al. (2009) T. Ishihara, T. Gotoh,  and Y. Kaneda, “Study of high-Reynolds number isotropic turbulence by direct numerical simulations,” Ann. Rev. Fluid Mech. 41, 165–80 (2009).
  • Rogallo (1981) R. S. Rogallo, “Numerical experiments in homogeneous turbulence,” NASA Technical Memo  (1981).
  • Buaria and Sreenivasan (2020) D. Buaria and K. R. Sreenivasan, “Dissipation range of the energy spectrum in high Reynolds number turbulence,” Phys. Rev. Fluids 5, 092601(R) (2020).
  • Buaria et al. (2020a) D. Buaria, E. Bodenschatz,  and A. Pumir, “Vortex stretching and enstrophy production in high Reynolds number turbulence,” Phys. Rev. Fluids 5, 104602 (2020a).
  • Buaria et al. (2020b) D. Buaria, A. Pumir,  and E. Bodenschatz, “Self-attenuation of extreme events in Navier-Stokes turbulence,” Nat. Commun. 11, 5852 (2020b).
  • Buaria and Pumir (2021) D. Buaria and A. Pumir, “Nonlocal amplification of intense vorticity in turbulent flows,” Phys. Rev. Research 3, 042020 (2021).
  • Buaria et al. (2022) D. Buaria, A. Pumir,  and E. Bodenschatz, “Generation of intense dissipation in high Reynolds number turbulence,” Philos. Trans. R. Soc. A 380, 20210088 (2022).
  • Buaria and Yeung (2017) D. Buaria and P. K. Yeung, “A highly scalable particle tracking algorithm using partitioned global address space (PGAS) programming for extreme-scale turbulence simulations,” Comput. Phys. Commun. 221, 246 – 258 (2017).
  • Yeung and Ravikumar (2020) P. K. Yeung and K. Ravikumar, “Advancing understanding of turbulence through extreme-scale computation: Intermittency and simulations at large problem sizes,” Phys. Rev. Fluids 5, 110517 (2020).
  • Schumacher (2007) J. Schumacher, “Sub-Kolmogorov-scale fluctuations in fluid turbulence,” Europhys. Lett. 80, 54001 (2007).
  • Tsinober (2009) A. Tsinober, An Informal Conceptual Introduction to Turbulence (Springer, Berlin, 2009).
  • Moisy and Jiménez (2004) F. Moisy and J. Jiménez, “Geometry and clustering of intense structures in isotropic turbulence,” J. Fluid Mech. 513, 111–133 (2004).
  • Kerr (1985) R. M. Kerr, “Higher-order derivative correlations and the alignment of small-scale structures in isotropic numerical turbulence,” J. Fluid Mech. 153, 31–58 (1985).
  • He et al. (1998) G. He, S. Chen, R. H. Kraichnan, R. Zhang,  and Y. Zhou, “Statistics of dissipation and enstrophy induced by localized vortices,” Phys. Rev. Lett. 81, 4636 (1998).
  • Nelkin (1999) M. Nelkin, “Enstrophy and dissipation must have the same scaling exponent in the high Reynolds number limit of fluid turbulence,” Phys. Fluids 11, 2202–2204 (1999).
  • Burgers (1948) J. M. Burgers, “A mathematical model illustrating the theory of turbulence,” Adv. Appl. Mech. 1, 171–99 (1948).
  • (41) “see Supplementary for additional details,” .
  • Note (1) Note, vorticity and strain are coupled non-locally via the Biot-Savart relation Buaria et al. (2020b); Buaria and Pumir (2021).
  • Benzi et al. (1991) R. Benzi, L. Biferale, G. Paladin, A. Vulpiani,  and M. Vergassola, “Multifractality in the statistics of the velocity gradients in turbulence,” Phys. Rev. Lett. 67, 2299 (1991).
  • Kailasnath et al. (1992) P. Kailasnath, K. R. Sreenivasan,  and G. Stolovitzky, “Probability density of velocity increments in turbulent flows,” Phys. Rev. Lett. 68, 2766–2769 (1992).
  • Zeff et al. (2003) B. W. Zeff, D. D. Lanterman, R. McAllister, R. Roy, E. H. Kostelich,  and D. P. Lathrop, “Measuring intense rotation and dissipation in turbulent flows,” Nature 421, 146–149 (2003).
  • Dhruva et al. (1997) B. Dhruva, Y. Tsuji,  and K. R. Sreenivasan, “Transverse structure functions in high-Reynolds-number turbulence,” Phys. Rev. E 56, R4928 (1997).
  • Shen and Warhaft (2002) X. Shen and Z. Warhaft, “Longitudinal and transverse structure functions in sheared and unsheared wind-tunnel turbulence,” Phys. Fluids 14, 370–381 (2002).
  • Gotoh et al. (2002) T. Gotoh, D. Fukayama,  and T. Nakano, “Velocity field statistics in homogeneous steady turbulence obtained using a high-resolution direct numerical simulation,” Phys. Fluids 14, 1065–1081 (2002).
  • Grauer et al. (2012) R. Grauer, H. Homann,  and J.-F. Pinton, “Longitudinal and transverse structure functions in high-Reynolds-number turbulence,” New J. Phys. 14, 063016 (2012).
  • Buaria et al. (2021a) D. Buaria, M. P. Clay, K. R. Sreenivasan,  and P. K. Yeung, “Small-scale isotropy and ramp-cliff structures in scalar turbulence,” Phys. Rev. Lett. 126, 034504 (2021a).
  • Buaria et al. (2021b) D. Buaria, M. P. Clay, K. R. Sreenivasan,  and P. K. Yeung, “Turbulence is an ineffective mixer when Schmidt numbers are large,” Phys. Rev. Lett. 126, 074501 (2021b).