This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Volatility estimation from a view point of entropy

Jirô Akahori Ryuya Namba  and  Atsuhito Watanabe Ritsumeikan University, 1-1-1 nojihagashi, Kusatsu, 525-8577, Japan [email protected] Kyoto Sangyo University, Motoyama, Kamigamo, Kita-ku, Kyoto, 603-8555, Japan [email protected] Ritsumeikan University, 1-1-1 nojihagashi, Kusatsu, 525-8577, Japan [email protected]
Abstract.

In the present paper, we first revisit the volatility estimation approach proposed by N. Kunitomo and S. Sato, and second, we show that the volatility estimator proposed by P. Malliavin and M.E. Mancino can be understood in a unified way by the approach. Third, we introduce an alternative estimator that might overcome the inconsistency caused by the microstructure noise of the initial observation.

Key words and phrases:
volatility estimation, microstructure noise, SIML method, Malliavin–Mancino’s Fourier estimator, likelihood function.
2020 Mathematics Subject Classification:
Primary 62G05; Secondary 62G20.

1. Introduction

1.1. High-frequency statistics under micro-structure noise

Statistics of continuous-time stochastic processes with stochastic calculus, as seen in the textbooks by Prof. Albert N. Shiryaev, with Prof. Robert S. Liptser [15, 16], and with Prof. Jean Jacod [6], has been the basis of the more recent topics including so-called high-frequency statistics (HFS, for short). The HFS is also based on, instead of stationarity, the semi-martingale principle

k(XtkXtk1)2[X]talmost surely as maxk|tktk1|0,\displaystyle\sum_{k}(X_{t_{k}}-X_{t_{k-1}})^{2}\to[X]_{t}\,\text{almost surely as $\max_{k}|t_{k}-t_{k-1}|\to 0$, } (1.1)

for the data of the semi-martingale XX sampled at 0=t0<t1<<tn=t0=t_{0}<t_{1}<\cdots<t_{n}=t.

The HFS has been intensively studied in view of applications in finance because convergence (1.1) has some kind of reality in financial markets that allows high-frequency trading. The reality, however, leaves us the problem of so-called microstructure noise; the convergence (1.1) is not really achieved but only with some modification, which can be well explained by supposing that we observe with noise whose distribution is rather irrelevant to the frequency (see, e.g. [1]).

There has been a great deal of literature on the construction of an estimator of [X]t[X]_{t} under the microstructure noise. In the present paper, we introduce an approach that relies on a likelihood function along the line of the one proposed in [8] (which we call the Kunitomo-Sato type likelihood function), which is somewhat different from those found in Section 7.3 of [1]. The approach actually unifies the volatility estimator proposed by N. Kunitomo and S. Sato [8] and the one proposed by P. Malliavin and M. E. Mancino [17, 18]. Further, we will point out that both fail to be a consistent estimator if there is also a micro-structure noise in the initial observation. We then propose an alternative estimator which overcomes the difficulty, based on the likelihood function approach.

The rest of the present paper is organized as follows. In section 2, we study the Kunitomo–Sato approach, which is referred to as the separating information maximum likelihood method (SIML method, for short). In Section 3, we discuss how the Malliavin–Mancino estimator can be understood as a separating information estimator. In Section 4, we introduce an alternative estimator which could be consistent under the initial noise. Section 5 concludes the paper.

2. The SIML method

2.1. The Problem

In the present section, we describe our setting and the problem, which is typical in HFS. Let JJ\in\mathbb{N}. Consider an Itô process

Xtj=X0j+0tbj(s)ds+r=1d0tσrj(s)dWsr,\begin{split}X^{j}_{t}=X^{j}_{0}+\int_{0}^{t}b^{j}(s)\,\mathrm{d}s+\sum_{r=1}^{d}\int_{0}^{t}\sigma^{j}_{r}(s)\,\mathrm{d}W^{r}_{s},\end{split} (2.1)

for j=1,2,,Jj=1,2,\dots,J and t[0,1]t\in[0,1], where bjb^{j} and σrj\sigma^{j}_{r} are integrable and square integrable adapted processes, respectively, for all j=1,2,,Jj=1,2,\dots,J and r=1,2,,dr=1,2,\dots,d, 𝐖(W1,W2,,Wd)\mathbf{W}\equiv(W^{1},W^{2},\cdots,W^{d}) is a Wiener process, all of which are defined on a filtered probability space (Ω,,𝐏,{t})(\Omega,\mathcal{F},\mathbf{P},\{\mathcal{F}_{t}\}).

We suppose that the observations YY are with some additive noise vv, often called the micro-structure noise. Namely,

YtkjjXtkjj+vkjY^{j}_{t^{j}_{k}}\equiv X^{j}_{t^{j}_{k}}+v^{j}_{k} (2.2)

for k=0,1,,njk=0,1,\dots,n^{j} and j=1,2,,Jj=1,2,\dots,J, where {vkj}j,k\{v^{j}_{k}\}_{j,k} is a family of random variables whose distribution will be specified later, and njn^{j} is an integer.

We are interested in constructing an estimator (Vj,j,h)j,j=1,2,,J(V^{j,j^{\prime},h})_{j,j^{\prime}=1,2,\dots,J} of hh- integrated volatility matrix defined by

01h(s)Σj,j(s)ds:=r=1d01h(s)σrj(s)σrj(s)ds,\int_{0}^{1}h(s)\Sigma^{j,j^{\prime}}(s)\,\mathrm{d}s:=\sum_{r=1}^{d}\int_{0}^{1}h(s)\sigma_{r}^{j}(s)\sigma_{r}^{j^{\prime}}(s)\,\mathrm{d}s,

for j,j=1,2,,Jj,j^{\prime}=1,2,\dots,J, where hh is a given function or out of the observations, which is consistent in the sense that each Vj,jV^{j,j^{\prime}} converges to 0th(s)Σj,j(s)ds\int_{0}^{t}h(s)\Sigma^{j,j^{\prime}}(s)\,{\rm d}s in probability as nn\to\infty, under the condition that

ρn:=maxj,k|tkjtk1j|0\rho_{n}:=\max_{j,k}|t^{j}_{k}-t^{j}_{k-1}|\to 0 (2.3)

as nn\to\infty.

2.2. The SIML estimator

Let us put

pk,ln=2n+12cos((l12)π(k12n+12))p^{n}_{k,l}=\sqrt{\frac{2}{n+\frac{1}{2}}}\cos\left(\left(l-\frac{1}{2}\right)\pi\left(\frac{k-\frac{1}{2}}{n+\frac{1}{2}}\right)\right)

for k,l=1,2,,nk,l=1,2,\dots,n, n𝐍n\in\mathbf{N}. Note that 𝐏n=(pk,ln)\mathbf{P}_{n}=(p^{n}_{k,l}) forms an orthogonal matrix. The separating information maximum likelihood (SIML) estimator, introduced by Prof. Naoto Kunitomo and Prof. Seisho Sato in [8] (see also [14, Chapters 3 & 5]), is given by

Vn,mnj,j:=nmnl=1mn(k=1njpk,lnjΔYkj)(k=1njpk,lnjΔYkj),j,j=1,2,,J,\begin{split}V_{n,m_{n}}^{j,j^{\prime}}:=\frac{n}{m_{n}}\sum_{l=1}^{m_{n}}\left(\sum_{k=1}^{n^{j}}p^{n^{j}}_{k,l}\Delta Y^{j}_{k}\right)\left(\sum_{k^{\prime}=1}^{n^{j^{\prime}}}p^{n^{j^{\prime}}}_{k^{\prime},l}\Delta Y^{j^{\prime}}_{k^{\prime}}\right),\qquad j,j^{\prime}=1,2,\dots,J,\end{split} (2.4)

where mn(n)m_{n}(\ll n) is an integer, and we understand Δ\Delta to be the difference operator given by (Δa)k=akak1(\Delta a)_{k}=a_{k}-a_{k-1} for a sequence {ak}k\{a_{k}\}_{k}. We then write

ΔYkj=YtkjjYtk1jj,j,j=1,2,,J,k=1,2,,nj.\Delta Y^{j}_{k}=Y^{j}_{t^{j}_{k}}-Y^{j}_{t^{j}_{k-1}},\qquad j,j^{\prime}=1,2,\dots,J,\,k=1,2,\dots,n^{j}.

They have proved the following two properties:

  1. (a)

    (the consistency): the convergence in probability of Vn,mnj,jV^{j,j^{\prime}}_{n,m_{n}} to 01Σj,j(s)ds\int_{0}^{1}\Sigma^{j,j^{\prime}}(s)\,\mathrm{d}s as nn\to\infty is attained, provided that mn=o(n1/2)m_{n}=o(n^{1/2}), and

  2. (b)

    (the asymptotic normality of the error): the stable convergence of

    mn(Vn,mnj,j01Σj,j(s)ds)N(0,01(Σj,j(s)Σj,j(s)+(Σj,j(s))2)ds)\begin{split}&\sqrt{m_{n}}\left(V^{j,j^{\prime}}_{n,m_{n}}-\int_{0}^{1}\Sigma^{j,j^{\prime}}(s)\,\mathrm{d}s\right)\\ &\to N\left(0,\int_{0}^{1}\left(\Sigma^{j,j}(s)\Sigma^{j^{\prime},j^{\prime}}(s)+(\Sigma^{j,j^{\prime}}(s))^{2}\right)\mathrm{d}s\right)\end{split}

    holds true as nn\to\infty if mn=o(n2/5)m_{n}=o(n^{2/5}).

when the following hold (see [14] for details).

  1. (i)

    the observations are equally spaced, that is, tkjk/nt^{j}_{k}\equiv k/n,

  2. (ii)

    {vkj}k=1n\{v^{j}_{k}\}_{k=1}^{n} are independently and identically distributed, and the common distribution is independent of the choices of nn and jj,

  3. (iii)

    v0j0v_{0}^{j}\equiv 0,

  4. (iv)

    σ\sigma is deterministic and μ0\mu\equiv 0.

Remark 2.1.

In [3], the consistency and the asymptotic normality are proven when bb and Σ\Sigma are adapted processes with some regularity under a general sampling scheme, but without micro-structure noise.

Remark 2.2.

In the series of papers [9, 10, 11, 12, 14, 22, 7, 13], N. Kunitomo and his collaborators intensively studied the practical applications as well as some extensions of the SIML method.

2.3. Inconsistency caused by the initial noise

When v0j0v^{j}_{0}\neq 0, we emphasize that the consistency of the SIML estimator may fail. Let us see this when J=1J=1. We start with the decomposition of Vn,mnVn,mn1,1V_{n,m_{n}}\equiv V_{n,m_{n}}^{1,1} as

Vn,mnVn,mn1,1=nmnl=1mn(k=1npk,lnΔXk)2+2nmnl=1mn(k=1npk,lnΔXk)(k=1npk,lnΔvk)+nmnl=1mn(k=1npk,lnΔvk)2.\begin{split}V_{n,m_{n}}\equiv V_{n,m_{n}}^{1,1}&=\frac{n}{m_{n}}\sum_{l=1}^{m_{n}}\left(\sum_{k=1}^{n}p^{n}_{k,l}\Delta X_{k}\right)^{2}+\frac{2n}{m_{n}}\sum_{l=1}^{m_{n}}\left(\sum_{k=1}^{n}p^{n}_{k,l}\Delta X_{k}\right)\left(\sum_{k=1}^{n}p^{n}_{k,l}\Delta v_{k}\right)\\ &+\frac{n}{m_{n}}\sum_{l=1}^{m_{n}}\left(\sum_{k=1}^{n}p^{n}_{k,l}\Delta v_{k}\right)^{2}.\end{split}

Under the general sampling scheme for which consistency is established in [3], we know that

01Σ(s)dsnmnl=1mn(k=1npk,lnΔXk)2\displaystyle\begin{aligned} \int_{0}^{1}\Sigma(s)\,\mathrm{d}s-\frac{n}{m_{n}}\sum_{l=1}^{m_{n}}\left(\sum_{k=1}^{n}p^{n}_{k,l}\Delta X_{k}\right)^{2}\end{aligned}

converges to zero in L2L^{2}, and so its mean also converges to zero. On the other hand, we have clearly

𝐄[2nmnl=1mn(k=1npk,lnΔXk)(k=1npk,lnΔvk)]=0.\displaystyle\mathbf{E}\left[\frac{2n}{m_{n}}\sum_{l=1}^{m_{n}}\left(\sum_{k=1}^{n}p^{n}_{k,l}\Delta X_{k}\right)\left(\sum_{k=1}^{n}p^{n}_{k,l}\Delta v_{k}\right)\right]=0.

The following observation claims that we cannot establish the consistency of the estimator with mn=o(1)m_{n}=o(1) as nn\to\infty.

Proposition 2.3.

For any pair of (n,mn)(n,m_{n}) such that mn<(n+1)/2m_{n}<(n+1)/2, we have

𝐄[nmnl=1mn(k=1npk,lnΔvk)2]12𝐄[(v0)2].\displaystyle\begin{aligned} \mathbf{E}\left[\frac{n}{m_{n}}\sum_{l=1}^{m_{n}}\left(\sum_{k=1}^{n}p^{n}_{k,l}\Delta v_{k}\right)^{2}\right]\geq\frac{1}{2}\mathbf{E}[(v_{0})^{2}].\end{aligned} (2.5)
Proof.

The claim is almost obvious since it holds that

𝐄[(k=1npk,lnΔvk)2]=𝐄[(k=1n1(pk,lnpk+1,ln)vk+pn,lnvnp1,lnv0)2]𝐄[v02](p1,ln)2,\displaystyle\begin{aligned} &\mathbf{E}\left[\left(\sum_{k=1}^{n}p^{n}_{k,l}\Delta v_{k}\right)^{2}\right]\\ &=\mathbf{E}\left[\left(\sum_{k=1}^{n-1}(p^{n}_{k,l}-p^{n}_{k+1,l})v_{k}+p^{n}_{n,l}v_{n}-p^{n}_{1,l}v_{0}\right)^{2}\right]\geq\mathbf{E}[v_{0}^{2}](p^{n}_{1,l})^{2},\end{aligned}

and

nmnl=1mn(p1,ln)2=2n(n+12)mnl=1mncos2(2l12n+1π2).\displaystyle\begin{aligned} \frac{n}{m_{n}}\sum_{l=1}^{m_{n}}(p^{n}_{1,l})^{2}=\frac{2n}{(n+\frac{1}{2})m_{n}}\sum_{l=1}^{m_{n}}\cos^{2}\left(\frac{2l-1}{2n+1}\frac{\pi}{2}\right).\end{aligned}

In fact, we have

l=1mncos2(2l12n+1π2)=mn2+12l=1mncos((2l1)π2n+1)\displaystyle\begin{aligned} &\sum_{l=1}^{m_{n}}\cos^{2}\left(\frac{2l-1}{2n+1}\frac{\pi}{2}\right)=\frac{m_{n}}{2}+\frac{1}{2}\sum_{l=1}^{m_{n}}\cos\left(\frac{(2l-1)\pi}{2n+1}\right)\end{aligned}

and

12l=1mncosπ(2l12n+1)=14l=1mn(eiπ2l12n+1+eiπ2l12n+1)=14l=mn+1mneiπ2l12n+1=eiπ2mn12n+14eiπ2mn2n+1eiπ2mn2n+1eiπ12n+1eiπ12n+1=14sin(2mnπ2n+1)sin(π2n+1),\displaystyle\begin{aligned} \frac{1}{2}\sum_{l=1}^{m_{n}}\cos\pi\left(\frac{2l-1}{2n+1}\right)&=\frac{1}{4}\sum_{l=1}^{m_{n}}\left(e^{i\pi\frac{2l-1}{2n+1}}+e^{-i\pi\frac{2l-1}{2n+1}}\right)\\ &=\frac{1}{4}\sum_{l=-m_{n}+1}^{m_{n}}e^{i\pi\frac{2l-1}{2n+1}}=\frac{e^{-i\pi\frac{2m_{n}-1}{2n+1}}}{4}\frac{e^{i\pi\frac{2m_{n}}{2n+1}}-e^{-i\pi\frac{2m_{n}}{2n+1}}}{e^{i\pi\frac{1}{2n+1}}-e^{-i\pi\frac{1}{2n+1}}}\\ &=\frac{1}{4}\frac{\sin\left(\frac{2m_{n}\pi}{2n+1}\right)}{\sin\left(\frac{\pi}{2n+1}\right)},\end{aligned}

which ensure (2.5). ∎

2.4. The Kunitomo–Sato likelihood function

Let us introduce a prototype of Kunitomo–Sato (KS, for short) likelihood function. To focus on the study of estimations under micro-structure noise, we work only on the one-dimensional Itô process case for simplicity. We set

Xt=X0+0tσ(s)dWs+0tμ(s)ds,t>0,\displaystyle X_{t}=X_{0}+\int_{0}^{t}\sigma(s)\,\mathrm{d}W_{s}+\int_{0}^{t}\mu(s)\,\mathrm{d}s,\qquad t>0,

where WW is a one-dimensional Wiener process, σ\sigma and μ\mu are square- and absolute- integrable processes adapted to the filtration generated by WW, respectively. Observations are set to be

Yk/n=Xk/n+vk,k=0,1,,n.\displaystyle Y_{k/n}=X_{k/n}+v_{k},\qquad k=0,1,\dots,n.

Even though the process YY is not a Gaussian process since σ\sigma is not deterministic in general, it turned out to be beneficial to consider the likelihood function of 𝚫𝐘:={ΔYk=Y(k+1)/nYk/n,k=0,1,,n1}\mathbf{\Delta Y}:=\{\Delta Y_{k}=Y_{(k+1)/n}-Y_{k/n},k=0,1,\dots,n-1\} pretending that σ\sigma is a deterministic constant (we write σ2=:c\sigma^{2}=:c), μ0\mu\equiv 0 and vkN(0,ν)v_{k}\sim N(0,\nu), k=1,2,,nk=1,2,\dots,n, are zero-mean Gaussian random variables.

Under these specifications, we have

𝚫𝐘N(0,(cn+2ν)InνJn),\displaystyle\mathbf{\Delta Y}\sim N\left(0,\left(\frac{c}{n}+2\nu\right)I_{n}-\nu J_{n}\right),

where InI_{n} is the n×nn\times n identity matrix, and the n×nn\times n matrix JnJ_{n} is defined by

Jn:=(110000101000010000000010000101000010).\displaystyle J_{n}:=\begin{pmatrix}1&1&0&\cdots&0&0&0\\ 1&0&1&\cdots&0&0&0\\ 0&1&0&\ddots&0&0&0\\ \vdots&\vdots&\ddots&\ddots&\ddots&\vdots&\vdots\\ 0&0&0&\ddots&0&1&0\\ 0&0&0&\cdots&1&0&1\\ 0&0&0&\cdots&0&1&0\end{pmatrix}. (2.6)

It is noteworthy that the matrix 𝐏n\mathbf{P}_{n} introduced in Section 2.2 does diagonalize JnJ_{n}. Moreover, the diagonal is decreasing. To be precise, we have

Jn=𝐏ndiag[2cos(π2n+1),2cos(3π2n+1),,2cos((2n1)π2n+1)]𝐏n,\displaystyle\begin{aligned} J_{n}=\mathbf{P}_{n}\mathrm{diag}\left[2\cos\left(\frac{\pi}{2n+1}\right),2\cos\left(\frac{3\pi}{2n+1}\right),\dots,2\cos\left(\frac{(2n-1)\pi}{2n+1}\right)\right]\mathbf{P}_{n}^{\top},\end{aligned}

where we denote by diag[b1,b2,,bn]\mathrm{diag}[b_{1},b_{2},\dots,b_{n}] the diagonal matrix whose components are b1,b2,,bnb_{1},b_{2},\dots,b_{n}, and 𝐏n\mathbf{P}_{n}^{\top} means the transpose of 𝐏n\mathbf{P}_{n}.

We can then write down the log-likelihood function of 𝐳=n1/2𝐏n𝚫𝐘n\mathbf{z}=n^{-1/2}\mathbf{P}_{n}\mathbf{\Delta Y}_{n} as

Ln(c,ν):=12k=1nlog(ak,nν+c)12k=1n𝐳k2ak,nν+c,\displaystyle\begin{aligned} L_{n}(c,\nu):=-\frac{1}{2}\sum_{k=1}^{n}\log(a_{k,n}\nu+c)-\frac{1}{2}\sum_{k=1}^{n}\frac{\mathbf{z}_{k}^{2}}{a_{k,n}\nu+c},\end{aligned}

where we put

ak,n:=4nsin2(2k12n+1π2),k=1,2,,n.\displaystyle\begin{aligned} a_{k,n}:=4n\sin^{2}\left(\frac{2k-1}{2n+1}\frac{\pi}{2}\right),\quad k=1,2,\dots,n.\end{aligned}

Kunitomo and Sato [8] introduced the following decomposition of LnL_{n}:

2Ln=Ln(1)+Ln(2)+Ln(r),\displaystyle\begin{aligned} 2L_{n}=L_{n}^{(1)}+L_{n}^{(2)}+L_{n}^{(r)},\end{aligned}

where we put

Ln(1)(c):=mlogc1ck=1n𝐳k2,\displaystyle\begin{aligned} L_{n}^{(1)}(c):=-m\log c-\frac{1}{c}\sum_{k=1}^{n}\mathbf{z}_{k}^{2},\end{aligned} (2.7)

which we call the prototype of the KS likelihood function,

Ln(2)(ν):=k=n+1lnlog(ak,nν)1νk=n+1ln𝐳k2ak,n,\displaystyle\begin{aligned} L_{n}^{(2)}(\nu):=-\sum_{k=n+1-l}^{n}\log(a_{k,n}\nu)-\frac{1}{\nu}\sum_{k=n+1-l}^{n}\frac{\mathbf{z}_{k}^{2}}{a_{k,n}},\end{aligned}

and Ln(r):=2LnLn(1)Ln(2)L_{n}^{(r)}:=2L_{n}-L_{n}^{(1)}-L_{n}^{(2)}. Note that the decomposition depends on the choice of (m,l)(m,l). The term separating information comes from this decomposition.

Now we see that the SIML estimator (2.4) maximize Ln(1)L_{n}^{(1)}, and

νn,l:=1lk=n+1ln𝐳k2ak,n\displaystyle\nu^{*}_{n,l}:=\frac{1}{l}\sum_{k=n+1-l}^{n}\frac{\mathbf{z}_{k}^{2}}{a_{k,n}}

maximize Ln(2)L_{n}^{(2)}. With a proper choice of (mn,ln)(m_{n},l_{n}), we may have

limnLn(r)(Vn,mn,νn,ln)=0,\displaystyle\lim_{n\to\infty}L_{n}^{(r)}(V_{n,m_{n}},\nu^{*}_{n,l_{n}})=0,

so that the estimators are asymptotically optimal (see [14, Chapter 3] for a discussion).

3. Malliavin–Mancino Method and its KS likelihood

3.1. Malliavin–Mancino’s Fourier method

The Malliavin-Mancino’s Fourier method (MM method, for short), introduced in [17, 4, 18] (see also [19], which is a good review of the literature), is an estimation method for the spot volatility Σ(s)\Sigma(s) in Section 2.1, by constructing an estimator of the Fourier series of Σ\Sigma. The series consists of estimators of Fourier coefficients given by

Σn,mnj,j^(q):=12mn+1|l|mn(k=1nje2π1(l+q)tk1jΔYkj)(k=1nje2π1ltk1jΔYkj)\begin{split}&\widehat{\Sigma^{j,j^{\prime}}_{n,m_{n}}}(q)\\ &:=\frac{1}{2m_{n}+1}\sum_{|l|\leq m_{n}}\left(\sum_{k=1}^{n^{j}}e^{2\pi\sqrt{-1}(l+q)t^{j}_{k-1}}\Delta Y^{j}_{k}\right)\left(\sum_{k^{\prime}=1}^{n^{j^{\prime}}}e^{-2\pi\sqrt{-1}lt_{k^{\prime}-1}^{j^{\prime}}}\Delta Y^{j^{\prime}}_{k^{\prime}}\right)\end{split} (3.1)

for j,j=1,2,,Jj,j^{\prime}=1,2,\dots,J and q𝐙q\in\mathbf{Z}. We note that Σn,mnj,j^(0)\widehat{\Sigma^{j,j^{\prime}}_{n,m_{n}}}(0) is a variant of the SIML estimator (2.4). In fact, we have

Σn,mnj,j^(0)=12mn+1|l|mn(k=1nje2π1qtk1jΔYkj)(k=1nje2π1ltk1jΔYkj)=12mn+1{(k=1njΔYkj)(k=1njΔYkj)+2l=1mn(k=1njcos2πltk1jΔYkj)(k=1njcos2πltk1jΔYkj)+2l=1mn(k=1njsin2πltk1jΔYkj)(k=1njsin2πltk1jΔYkj)},\displaystyle\begin{aligned} &\widehat{\Sigma^{j,j^{\prime}}_{n,m_{n}}}(0)\\ &=\frac{1}{2m_{n}+1}\sum_{|l|\leq m_{n}}\left(\sum_{k=1}^{n^{j}}e^{2\pi\sqrt{-1}qt^{j}_{k-1}}\Delta Y^{j}_{k}\right)\left(\sum_{k^{\prime}=1}^{n^{j^{\prime}}}e^{-2\pi\sqrt{-1}lt_{k^{\prime}-1}^{j^{\prime}}}\Delta Y^{j^{\prime}}_{k^{\prime}}\right)\\ &=\frac{1}{2m_{n}+1}\Bigg{\{}\left(\sum_{k=1}^{n^{j}}\Delta Y^{j}_{k}\right)\left(\sum_{k^{\prime}=1}^{n^{j^{\prime}}}\Delta Y^{j^{\prime}}_{k^{\prime}}\right)\\ &\qquad+2\sum_{l=1}^{m_{n}}\left(\sum_{k=1}^{n^{j}}\cos{2\pi lt^{j}_{k-1}}\Delta Y^{j}_{k}\right)\left(\sum_{k^{\prime}=1}^{n^{j^{\prime}}}\cos{2\pi lt_{k^{\prime}-1}^{j^{\prime}}}\Delta Y^{j^{\prime}}_{k^{\prime}}\right)\\ &\qquad+2\sum_{l=1}^{m_{n}}\left(\sum_{k=1}^{n^{j}}\sin{2\pi lt^{j}_{k-1}}\Delta Y^{j}_{k}\right)\left(\sum_{k^{\prime}=1}^{n^{j^{\prime}}}\sin{2\pi lt_{k^{\prime}-1}^{j^{\prime}}}\Delta Y^{j^{\prime}}_{k^{\prime}}\right)\Bigg{\}},\end{aligned}

and so, if we put

qk,lj:={nj1/2l=0nj1/22cos(2πltk1j)l=2,4,6,nj1/22sin(2πltk1j)l=1,3,5,,\displaystyle\begin{aligned} q^{j}_{k,l}:=\begin{cases}n_{j}^{-1/2}&l=0\\ n_{j}^{-1/2}\sqrt{2}\cos(2\pi lt^{j}_{k-1})&l=2,4,6,\dots\\ n_{j}^{-1/2}\sqrt{2}\sin(2\pi lt^{j}_{k-1})&l=1,3,5,\dots,\end{cases}\end{aligned}

for k=1,2,,njk=1,2,\cdots,n_{j}, we have

Σn,mnj,j^(0)=njnj2mn+1l=02mnk=1njqk,ljΔYkjk=1njqk,ljΔYkj.\displaystyle\begin{aligned} \widehat{\Sigma^{j,j^{\prime}}_{n,m_{n}}}(0)=\frac{\sqrt{n_{j}n_{j^{\prime}}}}{2m_{n}+1}\sum_{l=0}^{2m_{n}}\sum_{k=1}^{n_{j}}q^{{j}}_{k,l}\Delta Y_{k}^{j}\sum_{k^{\prime}=1}^{n_{j^{\prime}}}q^{{j^{\prime}}}_{k,l}\Delta Y_{k^{\prime}}^{j^{\prime}}.\end{aligned} (3.2)

Now we see the similarity between the SIML estimator (2.4) and the MM estimator (3.2). In the following section, we show that the difference of the two estimators can be explained in terms of the KS likelihood function.

3.2. A KS likelihood function of the MM method

From now on, we consider the case where d=1d=1, so that the dependence on the coordinate jj vanishes, where nn is odd, so that we rewrite it as 2n+12n+1, and where tk=k/(2n+1)t_{k}=k/(2n+1) for k=0,1,,2n+1k=0,1,\dots,2n+1. Then, we obtain a (2n+1)×(2n+1)(2n+1)\times(2n+1) matrix 𝐐n:=(qk,l2n+1)0k,l2n\mathbf{Q}_{n}:=(q^{2n+1}_{k,l})_{0\leq k,l\leq 2n} with

qk,l2n+1:={(2n+1)1/2l=0(2n+1)1/22cos(lkπ2n+1)l=2,4,,2n(2n+1)1/22sin((l+1)kπ2n+1)l=1,3,,2n1.\displaystyle\begin{aligned} q^{2n+1}_{k,l}:=\begin{cases}(2n+1)^{-1/2}&l=0\\ (2n+1)^{-1/2}\sqrt{2}\cos\left(\dfrac{lk\pi}{2n+1}\right)&l=2,4,\dots,2n\vspace{2mm}\\ (2n+1)^{-1/2}\sqrt{2}\sin\left(\dfrac{(l+1)k\pi}{2n+1}\right)&l=1,3,\dots,2n-1.\end{cases}\end{aligned}
Lemma 3.1.

The matrix 𝐐n\mathbf{Q}_{n} is an orthogonal matrix and

𝐐ndiag[2,2cos(2π2n+1),2cos(2π2n+1),,2cos(2nπ2n+1),2cos(2nπ2n+1)]𝐐n=J~n,\displaystyle\begin{aligned} &\mathbf{Q}_{n}\mathrm{diag}\Bigg{[}2,2\cos\left(\frac{2\pi}{2n+1}\right),2\cos\left(\frac{2\pi}{2n+1}\right),\\ &\hskip 28.45274pt\dots,2\cos\left(\frac{2n\pi}{2n+1}\right),2\cos\left(\frac{2n\pi}{2n+1}\right)\Bigg{]}\mathbf{Q}_{n}^{\top}=\widetilde{J}_{n},\end{aligned}

where the (2n+1)×(2n+1)(2n+1)\times(2n+1) matrix J~n\widetilde{J}_{n} is defined by

J~n:=(010001101000010000000010000101100010).\displaystyle\widetilde{J}_{n}:=\begin{pmatrix}0&1&0&\cdots&0&0&1\\ 1&0&1&\cdots&0&0&0\\ 0&1&0&\ddots&0&0&0\\ \vdots&\vdots&\ddots&\ddots&\ddots&\vdots&\vdots\\ 0&0&0&\ddots&0&1&0\\ 0&0&0&\cdots&1&0&1\\ 1&0&0&\cdots&0&1&0\end{pmatrix}. (3.3)
Proof.

It is a consequence of the following elementary equations:

2cos(2lπ2n+1)cos(2klπ2n+1)=cos(2l(k+1)π2n+1)+cos(2l(k1)π2n+1)\displaystyle\begin{aligned} 2\cos\left(\frac{2l\pi}{2n+1}\right)\cos\left(\frac{2kl\pi}{2n+1}\right)=\cos\left(\frac{2l(k+1)\pi}{2n+1}\right)+\cos\left(\frac{2l(k-1)\pi}{2n+1}\right)\end{aligned}

and

2cos(2lπ2n+1)sin(2klπ2n+1)=sin(2l(k+1)π2n+1)+sin(2l(k1)π2n+1),\displaystyle\begin{aligned} 2\cos\left(\frac{2l\pi}{2n+1}\right)\sin\left(\frac{2kl\pi}{2n+1}\right)=\sin\left(\frac{2l(k+1)\pi}{2n+1}\right)+\sin\left(\frac{2l(k-1)\pi}{2n+1}\right),\end{aligned}

which are valid for any ll and kk modulo 2n+12n+1. ∎

The above lemma insists that the KS likelihood function associated with the MM estimator Σn,mnj,j^(0)\widehat{\Sigma^{j,j^{\prime}}_{n,m_{n}}}(0) of (3.2) is the one obtained by replacing JnJ_{n} of (2.6) with (3.3).

3.3. Inconsistency caused by the initial and the last noises

Looking back the procedure for constructing KS likelihood function from the observation structure in Section 2.4, we notice that the matrix J~n\widetilde{J}_{n} might come from the equation vn=v0v_{n}=v_{0}, which is of course unrealistic. The following proposition may reflect this structure.

Proposition 3.2.

We assume that v0v_{0} and v2n+1v_{2n+1} are independent and also independent of v1,,v2nv_{1},\cdots,v_{2n}. Then, for any pair of (n,mn)(n,m_{n}) such that mn<nm_{n}<n, we have

𝐄[2n+12mn+1l=02mn(k=12n+1qk1,l2n+1Δvk)2]𝐄[(v0)2+(v2n+1)2].\displaystyle\begin{aligned} \mathbf{E}\left[\frac{2n+1}{2m_{n}+1}\sum_{l=0}^{2m_{n}}\left(\sum_{k=1}^{2n+1}q^{2n+1}_{k-1,l}\Delta v_{k}\right)^{2}\right]\geq\mathbf{E}[(v_{0})^{2}+(v_{2n+1})^{2}].\end{aligned} (3.4)
Proof.

As we did in the proof of Proposition 2.3, we observe

𝐄[(k=12n+1qk1,l2n+1Δvk)2]=𝐄[(k=12n(qk1,l2n+1qk,l2n+1)vk+q2n,l2n+1v2n+1q0,l2n+1v0)2]𝐄[v2n+12](q2n,l2n+1)2+𝐄[v02](q0,ln)2.\displaystyle\begin{aligned} &\mathbf{E}\left[\left(\sum_{k=1}^{2n+1}q^{2n+1}_{k-1,l}\Delta v_{k}\right)^{2}\right]\\ &=\mathbf{E}\left[\left(\sum_{k=1}^{2n}(q^{2n+1}_{k-1,l}-q^{2n+1}_{k,l})v_{k}+q^{2n+1}_{2n,l}v_{2n+1}-q^{2n+1}_{0,l}v_{0}\right)^{2}\right]\\ &\geq\mathbf{E}[v_{2n+1}^{2}](q^{2n+1}_{2n,l})^{2}+\mathbf{E}[v_{0}^{2}](q^{n}_{0,l})^{2}.\end{aligned} (3.5)

Since it holds that

q0,l2n+1:={(2n+1)1/2l=0(2n+1)1/22l=2,4,,2n0l=1,3,,2n1,\displaystyle\begin{aligned} q^{2n+1}_{0,l}:=\begin{cases}(2n+1)^{-1/2}&l=0\\ (2n+1)^{-1/2}\sqrt{2}&l=2,4,\dots,2n\\ 0&l=1,3,\dots,2n-1,\end{cases}\end{aligned}

and

q2n,l2n+1:={(2n+1)1/2l=0(2n+1)1/22cos(2nlπ2n+1)l=2,4,,2n(2n+1)1/22sin(2n(l+1)π2n+1)l=1,3,,2n1,\displaystyle\begin{aligned} q^{2n+1}_{2n,l}:=\begin{cases}(2n+1)^{-1/2}&l=0\\ (2n+1)^{-1/2}\sqrt{2}\cos\left(\dfrac{2nl\pi}{2n+1}\right)&l=2,4,\dots,2n\vspace{2mm}\\ (2n+1)^{-1/2}\sqrt{2}\sin\left(\dfrac{2n(l+1)\pi}{2n+1}\right)&l=1,3,\dots,2n-1,\end{cases}\end{aligned}

we have

l=02mn(q0,ln)2=2mn+12n+1\displaystyle\begin{aligned} \sum_{l=0}^{2m_{n}}(q^{n}_{0,l})^{2}=\frac{2m_{n}+1}{2n+1}\end{aligned}

and

l=02mn(q2n,ln)2=12n+1+22n+1l=1mn{cos2(2πlπ2n+1)+sin2(2πlπ2n+1)}=2mn+12n+1,\displaystyle\begin{aligned} \sum_{l=0}^{2m_{n}}(q^{n}_{2n,l})^{2}=\frac{1}{2n+1}+\frac{2}{2n+1}\sum_{l^{\prime}=1}^{m_{n}}\left\{\cos^{2}\left(\frac{2\pi l^{\prime}\pi}{2n+1}\right)+\sin^{2}\left(\frac{2\pi l^{\prime}\pi}{2n+1}\right)\right\}=\frac{2m_{n}+1}{2n+1},\end{aligned}

which ensure (3.4). ∎

Remark 3.3.

The robustness of the MM estimator against the micro-strucrue noise has been well recognised (see [20, 21]). The inequality (3.4), together with the inequality (3.5), states that the consistency of the MM estimator cannot be established without assuming v0=v2n+1v_{0}=v_{2n+1}, but this does not contradict the observations given in [20, 21].

4. Initial-Noise Adjusted Estimator

4.1. Adjustment for the initial noise

As we have seen, the KS estimator (2.4) cannot be consistent if v00v_{0}\neq 0. In this section, we propose an adjusted estimator by replacing JnJ_{n} of (2.6) with

J~n:=(010000101000010000000010000101000010),\displaystyle\widetilde{J}_{n}^{\prime}:=\begin{pmatrix}0&1&0&\cdots&0&0&0\\ 1&0&1&\cdots&0&0&0\\ 0&1&0&\ddots&0&0&0\\ \vdots&\vdots&\ddots&\ddots&\ddots&\vdots&\vdots\\ 0&0&0&\ddots&0&1&0\\ 0&0&0&\cdots&1&0&1\\ 0&0&0&\cdots&0&1&0\end{pmatrix},

which reflects v0N(0,ν)v_{0}\sim N(0,\nu) in defining the KS likelihood function.

Lemma 4.1.

We define an n×nn\times n matrix 𝐑n=(rl,kn)\mathbf{R}_{n}=(r^{n}_{l,k}) by

rl,kn:=2n+1sin(klπn+1),l,k=1,2,,n.\displaystyle\begin{aligned} r^{n}_{l,k}:=\sqrt{\frac{2}{n+1}}\sin\left(\frac{kl\pi}{n+1}\right),\qquad l,k=1,2,\dots,n.\end{aligned} (4.1)

Then, 𝐑n\mathbf{R}_{n} is an orthogonal matrix and

J~n=𝐑ndiag[2cos(πn+1),2cos(2πn+1),,2cos(nπn+1)]𝐑n.\displaystyle\begin{aligned} \widetilde{J}_{n}^{\prime}=\mathbf{R}_{n}\mathrm{diag}\left[2\cos\left(\frac{\pi}{n+1}\right),2\cos\left(\frac{2\pi}{n+1}\right),\dots,2\cos\left(\frac{n\pi}{n+1}\right)\right]\mathbf{R}_{n}^{\top}.\end{aligned}
Proof.

It is obvious from the equation

2cos(kπn+1)sin(klπn+1)=sin(k(l+1)πn+1)+sin(k(l1)πn+1),\displaystyle\begin{aligned} 2\cos\left(\frac{k\pi}{n+1}\right)\sin\left(\frac{kl\pi}{n+1}\right)=\sin\left(\frac{k(l+1)\pi}{n+1}\right)+\sin\left(\frac{k(l-1)\pi}{n+1}\right),\end{aligned}

for k,l=1,2,,nk,l=1,2,\dots,n, and

l=1nsin2(klπn+1)=12l=1n{1cos(klπn+1)}=n214l=1n(e2πkln+1+e2πkln+1)=n+12\displaystyle\begin{aligned} \sum_{l=1}^{n}\sin^{2}\left(\frac{kl\pi}{n+1}\right)&=\frac{1}{2}\sum_{l=1}^{n}\left\{1-\cos\left(\frac{kl\pi}{n+1}\right)\right\}\\ &=\frac{n}{2}-\frac{1}{4}\sum_{l=1}^{n}\left(e^{2\pi\frac{kl}{n+1}}+e^{-2\pi\frac{kl}{n+1}}\right)\\ &=\frac{n+1}{2}\end{aligned}

for k=1,2,,nk=1,2,\dots,n. ∎

4.2. Initial-noise adjusted estimator

Given (4.1), we may consider an estimator of the integrated volatility 01Σj,j(s)ds\int_{0}^{1}\Sigma^{j,j^{\prime}}(s)\,\mathrm{d}s gievn by

V~n,mnj,j:=n+1mnl=1mn(k=1njrk,lnjΔYkj)(k=1njrk,lnjΔYkj)\begin{split}\tilde{V}_{n,m_{n}}^{j,j^{\prime}}:=\frac{n+1}{m_{n}}\sum_{l=1}^{m_{n}}\left(\sum_{k=1}^{n^{j}}r^{n^{j}}_{k,l}\Delta Y^{j}_{k}\right)\left(\sum_{k^{\prime}=1}^{n^{j^{\prime}}}r^{n^{j^{\prime}}}_{k^{\prime},l}\Delta Y^{j^{\prime}}_{k^{\prime}}\right)\end{split} (4.2)

instead of (2.4). The good news is that, in contrast with Proposition 2.3, we have

Proposition 4.2.

Assume that mn=o(n1/2)m_{n}=o(n^{1/2}) as nn\to\infty. Then, we have

limn𝐄[n+1mnl=1mn(k=1nrk,lnΔvk)2]=0.\displaystyle\begin{aligned} \lim_{n\to\infty}\mathbf{E}\left[\frac{n+1}{m_{n}}\sum_{l=1}^{m_{n}}\left(\sum_{k=1}^{n}r^{n}_{k,l}\Delta v_{k}\right)^{2}\right]=0.\end{aligned} (4.3)
Proof.

Let us start with observing

𝐄[(k=1nrk,lnΔvk)2]=𝐄[(k=1n1(rk,lnrk+1,ln)vk+rn,lnvnr1,lnv0)2]=𝐄[v12]{k=1n1(rk,lnrk+1,ln)2+(rn,ln)2+(r1,ln)2}=2𝐄[v12]n+1k=1n1{sin(klπn+1)sin((k+1)lπn+1)}2+4𝐄[v12]n+1sin2(lπn+1).\displaystyle\begin{aligned} &\mathbf{E}\left[\left(\sum_{k=1}^{n}r^{n}_{k,l}\Delta v_{k}\right)^{2}\right]\\ &=\mathbf{E}\left[\left(\sum_{k=1}^{n-1}(r^{n}_{k,l}-r^{n}_{k+1,l})v_{k}+r^{n}_{n,l}v_{n}-r^{n}_{1,l}v_{0}\right)^{2}\right]\\ &=\mathbf{E}[v_{1}^{2}]\left\{\sum_{k=1}^{n-1}(r^{n}_{k,l}-r^{n}_{k+1,l})^{2}+(r^{n}_{n,l})^{2}+(r^{n}_{1,l})^{2}\right\}\\ &=\frac{2\mathbf{E}[v_{1}^{2}]}{n+1}\sum_{k=1}^{n-1}\left\{\sin\left(\frac{kl\pi}{n+1}\right)-\sin\left(\frac{(k+1)l\pi}{n+1}\right)\right\}^{2}+\frac{4\mathbf{E}[v_{1}^{2}]}{n+1}\sin^{2}\left(\frac{l\pi}{n+1}\right).\end{aligned}

Since it holds that

k=1n1{sin(klπn+1)sin((k+1)lπn+1)}2=4sin2(lπ2(n+1))k=1n1cos2((2k+1)lπ2(n+1))l2π2n+1\displaystyle\begin{aligned} &\sum_{k=1}^{n-1}\left\{\sin\left(\frac{kl\pi}{n+1}\right)-\sin\left(\frac{(k+1)l\pi}{n+1}\right)\right\}^{2}\\ &=4\sin^{2}\left(\frac{l\pi}{2(n+1)}\right)\sum_{k=1}^{n-1}\cos^{2}\left(\frac{(2k+1)l\pi}{2(n+1)}\right)\leq\frac{l^{2}\pi^{2}}{n+1}\end{aligned}

and

sin2(lπn+1)l2π2(n+1)2\displaystyle\sin^{2}\left(\frac{l\pi}{n+1}\right)\leq\frac{l^{2}\pi^{2}}{(n+1)^{2}}

for lmnl\leq m\ll n, we obtain

𝐄[n+1mnl=1mn(k=1nrk,lnΔvk)2]2𝐄[v12]π2mn{1(n+1)+1(n+1)2}l=1ml2,\displaystyle\begin{aligned} &\mathbf{E}\left[\frac{n+1}{m_{n}}\sum_{l=1}^{m_{n}}\left(\sum_{k=1}^{n}r^{n}_{k,l}\Delta v_{k}\right)^{2}\right]\\ &\leq\frac{2\mathbf{E}[v_{1}^{2}]\pi^{2}}{m_{n}}\left\{\frac{1}{(n+1)}+\frac{1}{(n+1)^{2}}\right\}\sum_{l=1}^{m}l^{2},\end{aligned}

which proves (4.3). ∎

5. Concluding Remark

We have accomplished the aim of the paper to introduce and show the benefits of the approach based on the KS likelihood function, which should be generalized to a more sophisticated entropy argument in the future.

References

  • [1] Aït-Sahalia, Y.,Jacod, J.: High-Frequency Financial Econometrics. Princeton University Press, Princeton, NJ. (2014)
  • [2] Aït-Sahalia, Y., Mykland, P. A., Zhang, L.:How Often to Sample a Continuous-Time Process in the Presence of Market Microstructure Noise, The Review of Financial Studies, 18, 351–416 (2005)
  • [3] Akahori, J., Namba, R., Watanabe, A. The SIML method without microstructure noise. Jpn J Stat Data Sci, Published Online, (2024)
  • [4] Barucci, E., Malliavin, P., Mancino, M.E.: Harmonic Analysis Methods for Nonparametric Estimation of Volatility: Theory and Applications, ch. 1, p. 1-34 in , Stochastic Processes And Applications To Mathematical Finance, World Scientific Publishing Co. Pte. Ltd. (2006)
  • [5] Clément, E., Gloter, A.: Limit theorems in the Fourier transform method for the estimation of multivariate volatility, Stochastic Process. Appl. 121, 1097–1124 (2011)
  • [6] Jacod, J., Shiryaev, A.N.: Limit Theorems for Stochastic Processes, 2nd Eds. Springer Berlin, Heidelberg (2003)
  • [7] Kunitomo, N.,Kurisu, D.: Detecting factors of quadratic variation in the presence of market microstructure noise, Jpn. J. Stat. Data Sci. 4, 601–641 (2021)
  • [8] Kunitomo, N., S. Sato: Separating information maximum likelihood estimation of realized volatility and covariance with micro-market noise. Discussion Paper CIRJE-F-581, (2008), Graduate School of Economics, University of Tokyo. Available at
    https://www.cirje.e.u-tokyo.ac.jp/research/dp/2008/2008cf581.pdf
  • [9] Kunitomo, N., S. Sato. Realized Volatility, Covariance and Hedging Coefficient of Nikkei 225 Futures with Micro-Market Noise. Discussion Paper CIRJE-F-601, (2008), Graduate School of Economics, University of Tokyo. Available at https://www.cirje.e.u-tokyo.ac.jp/research/dp/2008/2008cf601.pdf
  • [10] Kunitomo, N., S. Sato. Robustness of the separating information maximum likelihood estimation of realized volatility with micro-market noise. CIRJE Discussion Paper F-733, (2010) University of Tokyo. Available at
    https://www.cirje.e.u-tokyo.ac.jp/research/dp/2010/2010cf733.pdf
  • [11] Kunitomo, N.,Sato, S.: The SIML estimation of realized volatility of the Nikkei-225 futures and hedging coefficient with micro-market noise, Math. Comput. Simulation 81, 1272–1289 (2011)
  • [12] Kunitomo, N., Sato, S.: Separating information maximum likelihood estimation of realized volatility and covariance with micro-market noise. North American Journal of Economics and Finance 26, 282–309 (2013)
  • [13] Kunitomo, N., Sato, S.: Local SIML estimation of some Brownian and jump functionals under market micro-structure noise, Jpn. J. Stat. Data Sci. 5, 831–870 (2022)
  • [14] Kunitomo, N., Sato, S., Kurisu, D.: Separating Information Maximum Likelihood Method for High-Frequency Financial Data, Springer Briefs in Statistics, JSS Research Series in Statistics, Springer, Tokyo, (2018)
  • [15] Liptser, R.S., Shiryaev, A.N.: Statistics of Random Processes I. General Theory, 2nd Eds. Springer Berlin, Heidelberg, (2001)
  • [16] Liptser, R.S., Shiryaev, A.N.: Statistics of Random Processes II, Applications. 2nd Eds. Springer Berlin, Heidelberg, (2001)
  • [17] Malliavin, P., Mancino, M. E.: Fourier series method for measurement of multivariate volatilities, Finance Stoch. 6, 49–61 (2002)
  • [18] Malliavin, P., Mancino, M. E.: A Fourier transform method for nonparametric estimation of multivariate volatility, Ann. Statist. 37, 1983–2010 (2009)
  • [19] Mancino, M. E., Recchioni, M. C., Sanfelici, S.: Fourier–Malliavin Volatility Estimation, Theory and Practice, Springer Briefs in Quantitative Finance, Springer, Cham, (2017)
  • [20] Mancino, M.E., Sanfelici, S.: Robustness of Fourier estimator of integrated volatility in the presence of microstructure noise, Comput. Statist. Data Anal. 52, 2966–2989 (2008)
  • [21] Mancino, M.E., Sanfelici, S.: Estimation of quarticity with high-frequency data, Quant. Finance 12, 607–622 (2012)
  • [22] Misaki, H., Kunitomo, N. On robust properties of the SIML estimation of volatility un- der micro-market noise and random sampling. International Review of Economics and Finance 40, 265–281 (2015)