This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

institutetext: ICTP South American Institute for Fundamental Research
Instituto de Física Teórica, Universidade Estadual Paulista,
Rua Dr. Bento Teobaldo Ferraz 271, 01140-070, São Paulo - SP, Brasil

Vertex operators for the superstring with manifest 𝒅=𝟔d=6 𝓝=𝟏\mathcal{N}=1 supersymmetry

Cassiano A. Daniel [email protected]
Abstract

After extending the six-dimensional hybrid formalism for the superstring by adding d=6d=6 𝒩=1\mathcal{N}=1 superspace variables and unconstrained bosonic ghosts, manifestly spacetime supersymmetric vertex operators UU are constructed. BRST invariance of UU is proven to imply the SYM equations of motion in d=6d=6 𝒩=1\mathcal{N}=1 superspace. It is then shown that spacetime supersymmetric scattering amplitudes can be computed in a similar manner as in the non-minimal pure spinor formalism.

1 Introduction

Alternative formulations of the superstring with manifest spacetime supersymmetry (SUSY), such as the hybrid Berkovits:1996bf Berkovits:1994vy and pure spinor Berkovits:2000fe formalisms, have proven to be a powerful tool in the understanding of the theory at the quantum level. Even though the Green-Schwarz (GS) superstring has manifest spacetime SUSY, quantization becomes difficult due to the lack of manifest Lorentz-covariance in the light-cone gauge, and computations of scattering amplitudes from the GS-superstring remain a challenging task. Despite the fact that the Ramond-Neveu-Schwarz (RNS) superstring is quantizable in a Lorentz-covariant manner, spacetime supersymmetry is not manifest, and the theory has an infinite number of SUSY charges related by picture-changing Friedan:1985ge .

For the superstring in a flat ten-dimensional background, the spacetime supersymmetric pure spinor formalism has been useful for constructing massive vertex operators Berkovits:2002qx and in the computation of scattering amplitudes at the tree- and loop-level Gomez:2013sla Berkovits:2005bt Berkovits:2022ivl Berkovits:2022fth Mafra:2022wml . In a curved ten-dimensional background, manifest spacetime supersymmetry of the formalism has enabled the construction of quantizable sigma-model actions in the presence of Ramond-Ramond states Berkovits:2001ue , including the AdS5×S5\rm AdS_{5}\times S^{5} background Berkovits:2004xu .

When it comes to compactifications of the superstring on Calabi-Yau backgrounds, the so-called hybrid formalism for the superstring Berkovits:1996bf plays a distinguished role. One of its appealing features is that quantization can be achieved while preserving some of the spacetime SUSYs in a manifest way. As opposed to the GS-action, the hybrid action is quadratic in a flat background. Additionally, the hybrid description enjoys an 𝒩=4\mathcal{N}=4 superconformal symmetry, which can be used to compute nn-point multiloop superstring amplitudes from a topological prescription Berkovits:1994vy .

The hybrid description of the superstring consists of a field redefinition from the gauge-fixed RNS superstring into a set of GS-like variables, allowing spacetime supersymmetry to be made manifest. This can be achieved in either two dimensions Berkovits:2001tg , four dimensions Berkovits:1996bf Benakli:2021jxs , six dimensions Berkovits:1994vy , or in a U(5)\rm U(5) subgroup of the ten-dimensional super-Poincaré group Berkovits:1999in . Here, our focus will be the construction down to six-dimensional spacetime.

Since the six-dimensional hybrid formalism has four of the θ\theta coordinates of superspace as fundamental worldsheet variables Howe:1983fr , only half of the eight d=6d=6 𝒩=1\mathcal{N}=1 SUSYs are manifest, i.e., act geometrically in the target-superspace. To overcome this issue, ref. Berkovits:1999du introduced four more θ\theta coordinates, along with their conjugate momenta, as fundamental worldsheet fields together with four fermionic first-class constraints DαD_{\alpha}, such that the gauge symmetry generated by these constraints can be used to gauge away the new variables. Therefore, when Dα=0D_{\alpha}=0, one recovers the hybrid description.

Under these circumstances, the constraint Dα=0D_{\alpha}=0 has to be imposed “by hand”, which means that identifying the usual d=6d=6 𝒩=1\mathcal{N}=1 superfields in the vertex operator is not feasible in practice. Consequently, it is unclear where each of the component fields sits in the vertex before using Dα=0D_{\alpha}=0 and making contact with the usual six-dimensional hybrid description. In addition, this also implies a major obstacle for defining scattering amplitudes with vertex operators depending on eight θ\thetas.

In this work, we will show that, after relaxing the harmonic constraint DαD_{\alpha}, ghost number one supersymmetric unintegrated vertex operators UU can be written in terms of the d=6d=6 𝒩=1\mathcal{N}=1 superfields. In addition, BRST invariance of UU will be shown to imply the d=6d=6 super-Yang-Mills (SYM) equations of motion in superspace Howe:1983fr Koller:1982cs . Besides the fermionic fields θ\theta, unconstrained bosonic ghost-fields λα\lambda^{\alpha}, and its conjugate momenta, will be added to the worldsheet action in such a way that the total central charge of the stress-tensor vanishes.

The BRST current of the theory will take the form Ghyb+λαDαG^{+}_{\rm hyb}-\lambda^{\alpha}D_{\alpha}, where Ghyb+G^{+}_{\rm hyb} is the positively charged 𝒩=2\mathcal{N}=2 supercurrent of the hybrid formalism in supersymmetric notation, and the term λαDα-\lambda^{\alpha}D_{\alpha} is responsible for the relaxation of the constraint Dα=0D_{\alpha}=0. The ghost-number current will be defined in terms of the U(1)\rm U(1) current of the hybrid 𝒩=2\mathcal{N}=2 algebra. Furthermore, as in the non-minimal pure spinor formalism Berkovits:2005bt , non-minimal/topological variables will be introduced to the BRST current in order to define scattering amplitude computations with a suitable regulator \mathcal{R}.

The structure of the paper is as follows. In Section 2, we review the six-dimensional hybrid formalism in a flat background together with its description in terms of the harmonic constraint DαD_{\alpha}. The worldsheet variables, superconformal generators, and vertex operators of the theory are described in detail. In Section 3, we define a new BRST operator G+G^{+} with the addition of the non-minimal variables, and construct a supersymmetric unintegrated vertex operator UU, and an integrated vertex operator WW. It is then shown that BRST invariance of UU implies the d=6d=6 SYM equations of motion in superspace. With both integrated and unintegrated vertex operators at our disposal, a tree-level scattering amplitude prescription is given which shares many similarities to the d=10d=10 non-minimal pure spinor formalism one Berkovits:2005bt . Section 4 contains our conclusion. There are a number of appendices where further technical details are given.

2 Hybrid formalism in a flat six-dimensional background

In this section, we review the worldsheet variables and the physical state conditions of the hybrid formalism for the superstring in a flat six-dimensional background. Novel results include identity (6) and the computation of eq. (27) taking care of the normal-ordering contributions. This description will serve as the starting point for Section 3 of the paper.

2.1 Worldsheet action and superconformal generators

After performing a field redefinition of the gauge-fixed RNS variables Berkovits:1994vy Berkovits:1999im , the worldsheet fields of the six-dimensional part consist of six conformal weight zero bosons xa¯x^{\underline{a}}, a¯={0\underline{a}=\{0 to 5}5\}, and a canonically conjugate left-moving pair of fermions {pα,θα}\{p_{\alpha},\theta^{\alpha}\} of conformal weight one and zero, respectively, together with its right-moving part {p^α^,θ^α^}\{\widehat{p}_{\widehat{\alpha}},\widehat{\theta}^{\widehat{\alpha}}\}, where α,α^={1\alpha,\widehat{\alpha}=\{1 to 4}4\}.

In a flat six-dimensional background the worldsheet action in conformal gauge takes the form111The OPEs between our fundamental worldsheet fields {pα,θα,ρ,σ}\{p_{\alpha},\theta^{\alpha},\rho,\sigma\} are given by eqs. (20), with the replacement of αjα\alpha j\rightarrow\alpha.

S=d2z(12xa¯¯xa¯+pα¯θα+p^α^θ^α^)+Sρ,σ+SC,S=\int d^{2}z\,\bigg{(}\frac{1}{2}\partial x^{\underline{a}}\overline{\partial}x_{\underline{a}}+p_{\alpha}\overline{\partial}\theta^{\alpha}+\widehat{p}_{\widehat{\alpha}}\partial\widehat{\theta}^{\widehat{\alpha}}\bigg{)}+S_{\rho,\sigma}+S_{C}\,, (1)

where z=\frac{\partial}{\partial z}=\partial, z¯=¯\frac{\partial}{\partial\overline{z}}=\overline{\partial}, Sρ,σS_{\rho,\sigma} is the part of the action characterizing the chiral bosons ρ\rho and σ\sigma, as well as their anti-chiral counterparts, to be defined by their OPEs and stress-tensor below, and SCS_{C} corresponds to the four-dimensional compactification variables. These variables can be taken to be any c=6c=6 𝒩=2\mathcal{N}=2 superconformal field theory describing the compactification manifold, which can be either K3\rm K3 or T4\rm T^{4} Berkovits:1999im .

For the Type-IIB (Type-IIA) superstring, an up α\alpha index and an up (down) α^\widehat{\alpha} index transform as a Weyl spinor of SU(4), a down α\alpha index and a down (up) α^\widehat{\alpha} index transform as an anti-Weyl spinor of SU(4). In this case, note that Weyl and anti-Weyl spinors are not related by complex conjugation. Also, we will only discuss the open string part of the worldsheet theory in what follows.

To define physical states, one needs to supplement the action (1) with the twisted c=6c=6 𝒩=2\mathcal{N}=2 constraints Berkovits:1994vy

Thyb\displaystyle T_{\rm hyb} =12xa¯xa¯pαθα12ρρ12σσ+322(ρ+iσ)+TC,\displaystyle=-\frac{1}{2}\partial x^{\underline{a}}\partial x_{\underline{a}}-p_{\alpha}\partial\theta^{\alpha}-\frac{1}{2}\partial\rho\partial\rho-\frac{1}{2}\partial\sigma\partial\sigma+\frac{3}{2}\partial^{2}(\rho+i\sigma)+T_{C}\,, (2a)
Ghyb+\displaystyle G^{+}_{\rm hyb} =(p)4e2ρiσ+i2pαpβxαβeρ12xa¯xa¯eiσpαθαeiσ\displaystyle=-(p)^{4}e^{-2\rho-i\sigma}+\frac{i}{2}p_{\alpha}p_{\beta}\partial x^{\alpha\beta}e^{-\rho}-\frac{1}{2}\partial x^{\underline{a}}\partial x_{\underline{a}}e^{i\sigma}-p_{\alpha}\partial\theta^{\alpha}e^{i\sigma}
12(ρ+iσ)(ρ+iσ)eiσ+122(ρ+iσ)eiσ+GC+,\displaystyle-\frac{1}{2}\partial(\rho+i\sigma)\partial(\rho+i\sigma)e^{i\sigma}+\frac{1}{2}\partial^{2}(\rho+i\sigma)e^{i\sigma}+G^{+}_{C}\,, (2b)
Ghyb\displaystyle G^{-}_{\rm hyb} =eiσ+GC,\displaystyle=e^{-i\sigma}+G^{-}_{C}\,, (2c)
Jhyb\displaystyle J_{\rm hyb} =(ρ+iσ)+JC,\displaystyle=\partial(\rho+i\sigma)+J_{C}\,, (2d)

where (p)4=124ϵαβγδpαpβpγpδ(p)^{4}=\frac{1}{24}\epsilon^{\alpha\beta\gamma\delta}p_{\alpha}p_{\beta}p_{\gamma}p_{\delta}, xαβ=σαβa¯xa¯x_{\alpha\beta}=\sigma^{\underline{a}}_{\alpha\beta}x_{\underline{a}} and σαβa¯\sigma^{\underline{a}}_{\alpha\beta} are the six-dimensional Pauli matrices, which are 4×44\times 4 antisymmetric in the spinor indices. In this work, we use the same conventions for the six-dimensional Pauli matrices as in ref. (Daniel:2024kkp, , Appendix A).

Note that {TC,GC±,JC}\{T_{C},G^{\pm}_{C},J_{C}\} represent a twisted c=6c=6 𝒩=2\mathcal{N}=2 superconformal field theory describing the compactification manifold, so that {ThybTC,Ghyb±GC±,JhybJC}\{T_{\rm hyb}-T_{C},G^{\pm}_{\rm hyb}-G^{\pm}_{C},J_{\rm hyb}-J_{C}\} describe a c=0c=0 𝒩=2\mathcal{N}=2 superconformal algebra (SCA). The generators {TC,GC±,JC}\{T_{C},G^{\pm}_{C},J_{C}\} have no poles with the six-dimensional worldsheet variables and no poles with the chiral bosons {ρ,σ}\{\rho,\sigma\}. For the closed string, we also have the right-moving piece of the above algebra.

The operators emρ+niσe^{m\rho+ni\sigma} are conformal tensors and have conformal weight 12(m2+3m+n23n)\frac{1}{2}(-m^{2}+3m+n^{2}-3n). The definition of normal-ordering used in eqs. (2), and in the rest of this work, is presented in Appendix B. In particular, notice that we can write the first two terms in the second line of (2) in a more compact form as

12(ρ+iσ)(ρ+iσ)eiσ+122(ρ+iσ)eiσ\displaystyle-\frac{1}{2}\partial(\rho+i\sigma)\partial(\rho+i\sigma)e^{i\sigma}+\frac{1}{2}\partial^{2}(\rho+i\sigma)e^{i\sigma} =(eρiσ,eρ+2iσ),\displaystyle=\big{(}\partial e^{-\rho-i\sigma},e^{\rho+2i\sigma}\big{)}\,, (3)

using our normal-ordering prescription.

Correspondingly, any twisted c=6c=6 𝒩=2\mathcal{N}=2 SCA (2) can be extended to a twisted small c=6c=6 𝒩=4\mathcal{N}=4 SCA Berkovits:1994vy by adding two bosonic currents and two supercurrents, as detailed in Appendix A. The additional 𝒩=4\mathcal{N}=4 superconformal generators in the six-dimensional hybrid formalism are

G~hyb+\displaystyle\widetilde{G}^{+}_{\rm hyb} =eρJC++eρ+iσG~C+,\displaystyle=e^{\rho}J^{++}_{C}-e^{\rho+i\sigma}\widetilde{G}^{+}_{C}\,, (4a)
G~hyb\displaystyle\widetilde{G}^{-}_{\rm hyb} =((p)4e3ρ2iσ+i2pαpβxαβe2ρiσ12xa¯xa¯eρpαθαeρ\displaystyle=\bigg{(}-(p)^{4}e^{-3\rho-2i\sigma}+\frac{i}{2}p_{\alpha}p_{\beta}\partial x^{\alpha\beta}e^{-2\rho-i\sigma}-\frac{1}{2}\partial x^{\underline{a}}\partial x_{\underline{a}}e^{-\rho}-p_{\alpha}\partial\theta^{\alpha}e^{-\rho}
(eρiσ,eiσ))JC+eρiσG~C,\displaystyle-\big{(}\partial e^{-\rho-i\sigma},e^{i\sigma}\big{)}\bigg{)}J^{--}_{C}+e^{-\rho-i\sigma}\widetilde{G}^{-}_{C}\,, (4b)
Jhyb++\displaystyle J^{++}_{\rm hyb} =eρ+iσJC++,\displaystyle=-e^{\rho+i\sigma}J^{++}_{C}\,, (4c)
Jhyb\displaystyle J^{--}_{\rm hyb} =eρiσJC,\displaystyle=e^{-\rho-i\sigma}J^{--}_{C}\,, (4d)

where {G~C±,JC±±}\{\widetilde{G}^{\pm}_{C},J^{\pm\pm}_{C}\}, that together with {TC,GC±,JC}\{T_{C},G^{\pm}_{C},J_{C}\}, form a twisted small c=6c=6 𝒩=4\mathcal{N}=4 SCA which has no poles with the six-dimensional worldsheet variables and also no poles with the chiral bosons {ρ,σ}\{\rho,\sigma\}.

The spacetime supersymmetry charges in the six-dimensional hybrid formalism are given by Berkovits:1999im

Qα1hyb\displaystyle Q^{\rm hyb}_{\alpha 1} =pα,\displaystyle=\oint p_{\alpha}\,, Qα2hyb\displaystyle Q^{\rm hyb}_{\alpha 2} =(eρiσpα+ixαβθβ),\displaystyle=\oint\big{(}e^{-\rho-i\sigma}p_{\alpha}+i\partial x_{\alpha\beta}\theta^{\beta}\big{)}\,, (5)

and satisfy the spacetime SUSY algebra {Qα1hyb,Qα2hyb}=ixαβ\{Q^{\rm hyb}_{\alpha 1},Q^{\rm hyb}_{\alpha 2}\}=-i\oint\partial x_{\alpha\beta}. Note that the charge Qα2hybQ^{\rm hyb}_{\alpha 2} has the presence of the {ρ,σ}\{\rho,\sigma\}-ghosts and, for that reason, it is called the “non-standard” supersymmetry generator Berkovits:1999im .

The superconformal generators (2) are manifestly invariant under the SUSY charge Qα1hybQ^{\rm hyb}_{\alpha 1}. Invariance under Qα2hybQ^{\rm hyb}_{\alpha 2} is difficult to check for the supercurrent Ghyb+G^{+}_{\rm hyb}. However, the latter can be made manifest by noting that one can write the supercurrent as

Ghyb+\displaystyle G^{+}_{\rm hyb} =124ϵαβγδQα2hybQβ2hybQγ2hybQδ2hybe2ρ+3iσ+GC+,\displaystyle=-\frac{1}{24}\epsilon^{\alpha\beta\gamma\delta}Q^{\rm hyb}_{\alpha 2}Q^{\rm hyb}_{\beta 2}Q^{\rm hyb}_{\gamma 2}Q^{\rm hyb}_{\delta 2}e^{2\rho+3i\sigma}+G^{+}_{C}\,, (6)

which is a property that also holds in an AdS3×S3\rm AdS_{3}\times S^{3} background including the normal-ordering contributions Daniel:2024kkp .

Note that we are denoting operators defined throughout this section with the subscript/superscript “hyb\rm hyb”, so as to not cause confusion with the generators to be introduced in Section 3.

2.2 Physical states

Following refs. Berkovits:1999im Daniel:2024kkp , physical states VhybV_{\rm hyb} of the theory are defined to satisfy the equation of motion222For a holomorphic operator 𝒪\mathcal{O} with conformal dimension hh, (𝒪)r(\mathcal{O})_{r} is defined by the usual mode expansion in the plane, namely, 𝒪(z)=r(𝒪)rzrh\mathcal{O}(z)=\sum_{r}(\mathcal{O})_{r}z^{-r-h}.

(Ghyb+)0(G~hyb+)0Vhyb\displaystyle(G^{+}_{\rm hyb})_{0}(\widetilde{G}^{+}_{\rm hyb})_{0}V_{\rm hyb} =0,\displaystyle=0\,, (7)

so that the vertex operator VhybV_{\rm hyb} is defined up to the gauge transformation

δVhyb\displaystyle\delta V_{\rm hyb} =(Ghyb+)0Λ+(G~hyb)0Ω,\displaystyle=(G^{+}_{\rm hyb})_{0}\Lambda+(\widetilde{G}_{\rm hyb})_{0}\Omega\,, (8)

for some Λ\Lambda and some Ω\Omega. Moreover, it is consistent to impose the additional gauge-fixing conditions

(Ghyb)0Vhyb\displaystyle(G^{-}_{\rm hyb})_{0}V_{\rm hyb} =(G~hyb)0Vhyb=(Thyb)0Vhyb=(Jhyb)0Vhyb=0.\displaystyle=(\widetilde{G}^{-}_{\rm hyb})_{0}V_{\rm hyb}=(T_{\rm hyb})_{0}V_{\rm hyb}=(J_{\rm hyb})_{0}V_{\rm hyb}=0\,. (9)

As an example, let us consider the massless compactification-independent states in six dimensions for the open superstring. The most general vertex operator with conformal weight zero and no poles with the U(1)\rm U(1)-current JhybJ_{\rm hyb} has the form

Vhyb\displaystyle V_{\rm hyb} =n=0Vnen(ρ+iσ).\displaystyle=\sum_{n=0}^{\infty}V_{n}e^{n(\rho+i\sigma)}\,. (10)

The conditions of no double poles or higher with GhybG^{-}_{\rm hyb} and with G~hyb\widetilde{G}^{-}_{\rm hyb} imply that Vn=0V_{n}=0 for n2n\geq 2 and n2n\leq-2, respectively. From the remaining equations coming from (G~hyb)0Vhyb=0(\widetilde{G}^{-}_{\rm hyb})_{0}V_{\rm hyb}=0, together with the gauge transformations (8), one can gauge-fix VhybV_{\rm hyb} to the form

Vhyb\displaystyle V_{\rm hyb} =V1eρ+iσ+V0,\displaystyle=V_{1}e^{\rho+i\sigma}+V_{0}\,, (11)

where

V1\displaystyle V_{1} =θαχα2+i2(θσa¯θ)aa¯(θ3)αψα2,\displaystyle=\theta^{\alpha}\chi_{\alpha 2}+\frac{i}{2}(\theta\sigma^{\underline{a}}\theta)a_{\underline{a}}-(\theta^{3})_{\alpha}\psi^{\alpha 2}\,, (12a)
V0\displaystyle V_{0} =θαχα1,\displaystyle=\theta^{\alpha}\chi_{\alpha 1}\,, (12b)

with ψαj=ϵjkiαβχβk\psi^{\alpha j}=\epsilon^{jk}i\partial^{\alpha\beta}\chi_{\beta k} the gluino and aa¯a_{\underline{a}} the gluon. The two-dimensional Levi-Civita symbol takes the values ϵ12=ϵ21=1\epsilon_{12}=\epsilon^{21}=1. Even though χαj\chi_{\alpha j} is not gauge-invariant, we have that δψαj=0\delta\psi^{\alpha j}=0 under a gauge transformation. In our conventions, we are using

(θ3)α\displaystyle(\theta^{3})_{\alpha} =16ϵαβγδθβθγθδ,\displaystyle=\frac{1}{6}\epsilon_{\alpha\beta\gamma\delta}\theta^{\beta}\theta^{\gamma}\theta^{\delta}\,, (θ4)\displaystyle(\theta^{4}) =124ϵαβγδθαθβθγθδ,\displaystyle=\frac{1}{24}\epsilon_{\alpha\beta\gamma\delta}\theta^{\alpha}\theta^{\beta}\theta^{\gamma}\theta^{\delta}\,, (13)

where ϵαβγδ\epsilon_{\alpha\beta\gamma\delta} is the Levi-Civita symbol with ϵ1234=1\epsilon_{1234}=1.

The superfield V1V_{1} satisfies the equation of motion αβαβV1=0\partial^{\alpha\beta}\nabla_{\alpha}\nabla_{\beta}V_{1}=0 which, together with the gauge transformations, imply that the component fields obey

a¯a¯ab¯=a¯aa¯\displaystyle\partial^{\underline{a}}\partial_{\underline{a}}a_{\underline{b}}=\partial^{\underline{a}}a_{\underline{a}} =0,\displaystyle=0\,, δaa¯\displaystyle\delta a_{\underline{a}} =a¯λ,\displaystyle=\partial_{\underline{a}}\lambda\,, (14a)
αβψβj\displaystyle\partial_{\alpha\beta}\psi^{\beta j} =0,\displaystyle=0\,, δψαj\displaystyle\delta\psi^{\alpha j} =0,\displaystyle=0\,, (14b)

for some λ\lambda. The gauge transformation of aa¯a_{\underline{a}} comes from choosing Λ=(θ)4λ\Lambda=(\theta)^{4}\lambda in (8).

Eqs. (14) are the field content of d=6d=6 super-Yang-Mills (SYM). It is also important to note that all degrees of freedom are contained in the superfield V1V_{1} of eq. (12a). In Section 3, we will see how one can describe superstring vertex operators for the SYM states in terms of the usual superfields of d=6d=6 𝒩=1\mathcal{N}=1 superspace Howe:1983fr .

Furthermore, by considering (10) in the gauge where (Ghyb+)0(G~hyb+)0Vhyb=0(G_{\rm hyb}^{+})_{0}(\widetilde{G}_{\rm hyb}^{+})_{0}V_{\rm hyb}=0, we find that the integrated vertex operator for the open superstring compactification-independent massless states is

Whyb\displaystyle W_{\rm hyb} =(Ghyb+)0(Ghyb)1Vhyb\displaystyle=\int(G^{+}_{\rm hyb})_{0}(G^{-}_{\rm hyb})_{-1}V_{\rm hyb}
=(eρiσpα(3)αi2xαβαβ+ipααββ)V1+pα(3)αV2.\displaystyle=\int\bigg{(}-e^{-\rho-i\sigma}p_{\alpha}(\nabla^{3})^{\alpha}-\frac{i}{2}\partial x^{\alpha\beta}\nabla_{\alpha}\nabla_{\beta}+ip_{\alpha}\partial^{\alpha\beta}\nabla_{\beta}\bigg{)}V_{1}+p_{\alpha}(\nabla^{3})^{\alpha}V_{2}\,. (15)

2.3 Six-dimensional hybrid formalism with harmonic-like constraints

Even though the six-dimensional hybrid formalism presented above preserves manifest SO(1,5)\rm SO(1,5) Lorentz invariance, only half of the eight supersymmetries of d=6d=6 𝒩=1\mathcal{N}=1 superspace are manifest, i.e., act geometrically in the target superspace. This can be observed by the fact that only four left-moving θ\thetas are present in the worldsheet action (1) as fundamental fields.

However, one can proceed as in ref. Berkovits:1999du and add four more left-moving θ\thetas and four right-moving θ^\widehat{\theta}s, as well as their conjugate momenta as fundamental worldsheet variables to the action. This doubling of fermionic degrees of freedom can be accomplished by appending the index j={1,2}j=\{1,2\} to {pα,θα}\{p_{\alpha},\theta^{\alpha}\}, so that we end up with

S=d2z(12xa¯¯xa¯+pαj¯θαj+p^α^jθ^α^j)+Sρ,σ+SC,S=\int d^{2}z\,\bigg{(}\frac{1}{2}\partial x^{\underline{a}}\overline{\partial}x_{\underline{a}}+p_{\alpha j}\overline{\partial}\theta^{\alpha j}+\widehat{p}_{\widehat{\alpha}j}\partial\widehat{\theta}^{\widehat{\alpha}j}\bigg{)}+S_{\rho,\sigma}+S_{C}\,, (16)

where pαj=ϵjkpαkp_{\alpha j}=\epsilon_{jk}p^{k}_{\alpha}, ϵ12=ϵ12=1\epsilon_{12}=-\epsilon^{12}=1, ϵjkϵkl=δjl\epsilon_{jk}\epsilon^{kl}=\delta_{j}^{l} and repeated indices are summed over.

Consequently, eq. (16) is invariant under the d=6d=6 𝒩=1\mathcal{N}=1 spacetime supersymmetry transformations generated by the charge

Qαj\displaystyle Q_{\alpha j} =(pαji2ϵjkxαβθβk124ϵαβγδϵjkϵlmθβkθγlθδm),\displaystyle=\oint\bigg{(}p_{\alpha j}-\frac{i}{2}\epsilon_{jk}\partial x_{\alpha\beta}\theta^{\beta k}-\frac{1}{24}\epsilon_{\alpha\beta\gamma\delta}\epsilon_{jk}\epsilon_{lm}\theta^{\beta k}\theta^{\gamma l}\partial\theta^{\delta m}\bigg{)}\,, (17)

and which satisfy the d=6d=6 𝒩=1\mathcal{N}=1 SUSY algebra

{Qαj,Qβk}\displaystyle\{Q_{\alpha j},Q_{\beta k}\} =iϵjkxαβ.\displaystyle=-i\epsilon_{jk}\oint\partial x_{\alpha\beta}\,. (18)

For the closed string, we also have a left- and a right-moving supersymmetry generator QαjQ_{\alpha j} and Q^α^j\widehat{Q}_{\widehat{\alpha}j}, respectively. These charges then generate the d=6d=6 𝒩=2\mathcal{N}=2 supersymmetry and, hence, for Type II strings the amount of SUSY is doubled.

Beyond that, it is convenient to construct extensions of the worldsheet fields {pαj,xa¯}\{p_{\alpha j},\partial x^{\underline{a}}\} that are invariant under the transformations generated by (17). One can easily check that this is achieved by the following on-shell spacetime supersymmetric — or just supersymmetric — worldsheet variables

dαj\displaystyle d_{\alpha j} =pαj+i2ϵjkxαβθβk+18ϵαβγδϵjkϵlmθβkθγlθδm,\displaystyle=p_{\alpha j}+\frac{i}{2}\epsilon_{jk}\partial x_{\alpha\beta}\theta^{\beta k}+\frac{1}{8}\epsilon_{\alpha\beta\gamma\delta}\epsilon_{jk}\epsilon_{lm}\theta^{\beta k}\theta^{\gamma l}\partial\theta^{\delta m}\,, (19a)
Πa¯\displaystyle\Pi^{\underline{a}} =xa¯i2ϵjkσαβa¯θαjθβk.\displaystyle=\partial x^{\underline{a}}-\frac{i}{2}\epsilon_{jk}\sigma^{\underline{a}}_{\alpha\beta}\theta^{\alpha j}\partial\theta^{\beta k}\,. (19b)

The six-dimensional worldsheet fields in (16) have the following singularities in their OPEs

pαj(y)θβk(z)\displaystyle p_{\alpha j}(y)\theta^{\beta k}(z) δjkδαβ(yz)1,\displaystyle\sim\delta^{k}_{j}\delta^{\beta}_{\alpha}(y-z)^{-1}\,, (20a)
xa¯(y)xb¯(z)\displaystyle\partial x^{\underline{a}}(y)\partial x^{\underline{b}}(z) ηa¯b¯(yz)2,\displaystyle\sim-\eta^{\underline{a}\underline{b}}(y-z)^{-2}\,, (20b)
ρ(y)ρ(z)\displaystyle\rho(y)\rho(z) log(yz),\displaystyle\sim-\log(y-z)\,, (20c)
σ(y)σ(z)\displaystyle\sigma(y)\sigma(z) log(yz),\displaystyle\sim-\log(y-z)\,, (20d)

where ηa¯b¯=diag(,+,+,+,+,+)\eta^{\underline{a}\underline{b}}=\text{diag}(-,+,+,+,+,+) and, in turn, eqs. (20) can be used to show that the supersymmetric variables (19) satisfy

dαj(y)dβk(z)\displaystyle d_{\alpha j}(y)d_{\beta k}(z) (yz)1iϵjkΠαβ(z),\displaystyle\sim(y-z)^{-1}i\epsilon_{jk}\Pi_{\alpha\beta}(z)\,, (21a)
dαj(y)Πa¯(z)\displaystyle d_{\alpha j}(y)\Pi^{\underline{a}}(z) (yz)1iϵjkσαβa¯θβk(z),\displaystyle\sim-(y-z)^{-1}i\epsilon_{jk}\sigma^{\underline{a}}_{\alpha\beta}\partial\theta^{\beta k}(z)\,, (21b)
Πa¯(y)Πb¯(z)\displaystyle\Pi^{\underline{a}}(y)\Pi^{\underline{b}}(z) (yz)2ηa¯b¯,\displaystyle\sim-(y-z)^{-2}\eta^{\underline{a}\underline{b}}\,, (21c)
dαj(y)θβk(z)\displaystyle d_{\alpha j}(y)\partial\theta^{\beta k}(z) (yz)2δjkδαβ.\displaystyle\sim(y-z)^{-2}\delta^{k}_{j}\delta^{\beta}_{\alpha}\,. (21d)

Also, notice the following ordering effect using the OPEs of the fundamental fields

dyyzΠαβ(y)dγj(z)\displaystyle\oint\frac{dy}{y-z}\,\Pi_{\alpha\beta}(y)d_{\gamma j}(z) =3i4ϵjkϵαβγδ2θδk(z),\displaystyle=\frac{3i}{4}\epsilon_{jk}\epsilon_{\alpha\beta\gamma\delta}\partial^{2}\theta^{\delta k}(z)\,, (22a)
dyyzdγj(y)Παβ(z)\displaystyle\oint\frac{dy}{y-z}\,d_{\gamma j}(y)\Pi_{\alpha\beta}(z) =i4ϵjkϵαβγδ2θδk(z).\displaystyle=-\frac{i}{4}\epsilon_{jk}\epsilon_{\alpha\beta\gamma\delta}\partial^{2}\theta^{\delta k}(z)\,. (22b)

As we have argued, the worldsheet action (16) is invariant under the d=6d=6 𝒩=1\mathcal{N}=1 spacetime supersymmetry transformations, however, in order to preserve the description of the original six-dimensional hybrid superstring, one must include a set of constraints which reduce the action (16) to (1). This can be accomplished by the fermionic first-class constraints Berkovits:1999du

Dα\displaystyle D_{\alpha} =dα2eρiσdα1,\displaystyle=d_{\alpha 2}-e^{-\rho-i\sigma}d_{\alpha 1}\,, (23)

and since

[Dα,θβ2]\displaystyle[D_{\alpha},\theta^{\beta 2}] =δαβ,\displaystyle=\delta^{\beta}_{\alpha}\,, (24)

one can use (23) to gauge-fix (16) to (1). Therefore, working with the action (16) and the harmonic constraint DαD_{\alpha}, it is possible to manifestly preserve all of the d=6d=6 𝒩=1\mathcal{N}=1 supersymmetries.333We note in passing that there exists a similarity transformation with the property eSdα2eS=Dαe^{S}d_{\alpha 2}e^{-S}=D_{\alpha} where S=θα2dα1eρiσi2θα2θβ2Παβeρiσ+(θ2)α3θα1eρiσ+12(θ2)4(ρ+iσ)e2ρ2iσS=\theta^{\alpha 2}d_{\alpha 1}e^{-\rho-i\sigma}-\frac{i}{2}\theta^{\alpha 2}\theta^{\beta 2}\Pi_{\alpha\beta}e^{-\rho-i\sigma}+(\theta^{2})^{3}_{\alpha}\partial\theta^{\alpha 1}e^{-\rho-i\sigma}+\frac{1}{2}(\theta^{2})^{4}\partial(\rho+i\sigma)e^{-2\rho-2i\sigma}.

In this case, the 𝒩=2\mathcal{N}=2 constraints (2) are modified and can be written in a manifestly spacetime supersymmetric form as Berkovits:1999du

Thyb\displaystyle T_{\rm hyb} =12Πa¯Πa¯dα1θα1eρiσdα1θα212ρρ12σσ\displaystyle=-\frac{1}{2}\Pi^{\underline{a}}\Pi_{\underline{a}}-d_{\alpha 1}\partial\theta^{\alpha 1}-e^{-\rho-i\sigma}d_{\alpha 1}\partial\theta^{\alpha 2}-\frac{1}{2}\partial\rho\partial\rho-\frac{1}{2}\partial\sigma\partial\sigma
+322(ρ+iσ)+TC,\displaystyle+\frac{3}{2}\partial^{2}(\rho+i\sigma)+T_{C}\,, (25a)
Ghyb+\displaystyle G^{+}_{\rm hyb} =(d1)4e2ρiσ+i2dα1dβ1Παβeρ+dα1θα2(ρ+iσ)eρ+dα12θα2eρ\displaystyle=-(d_{1})^{4}e^{-2\rho-i\sigma}+\frac{i}{2}d_{\alpha 1}d_{\beta 1}\Pi^{\alpha\beta}e^{-\rho}+d_{\alpha 1}\partial\theta^{\alpha 2}\partial(\rho+i\sigma)e^{-\rho}+d_{\alpha 1}\partial^{2}\theta^{\alpha 2}e^{-\rho}
12Πa¯Πa¯eiσdα1θα1eiσ12(ρ+iσ)(ρ+iσ)eiσ\displaystyle-\frac{1}{2}\Pi^{\underline{a}}\Pi_{\underline{a}}e^{i\sigma}-d_{\alpha 1}\partial\theta^{\alpha 1}e^{i\sigma}-\frac{1}{2}\partial(\rho+i\sigma)\partial(\rho+i\sigma)e^{i\sigma}
+122(ρ+iσ)eiσ+GC+,\displaystyle+\frac{1}{2}\partial^{2}(\rho+i\sigma)e^{i\sigma}+G^{+}_{C}\,, (25b)
Ghyb\displaystyle G^{-}_{\rm hyb} =eiσ+GC,\displaystyle=e^{-i\sigma}+G^{-}_{C}\,, (25c)
Jhyb\displaystyle J_{\rm hyb} =(ρ+iσ)+JC,\displaystyle=\partial(\rho+i\sigma)+J_{C}\,, (25d)

which, as in the previous section, still obey a twisted c=6c=6 𝒩=2\mathcal{N}=2 SCA, and we defined (d1)4=124ϵαβγδdα1dβ1dγ1dδ1(d_{1})^{4}=\frac{1}{24}\epsilon^{\alpha\beta\gamma\delta}d_{\alpha 1}d_{\beta 1}d_{\gamma 1}d_{\delta 1}. Let us mention that when one gauge fix θα2=0\theta^{\alpha 2}=0, the constraints (25) reduce to the ones compatible with the action (1), i.e., eqs. (2). Note that the stress-tensor ThybT_{\rm hyb} is the expected stress tensor when Dα=0D_{\alpha}=0, because

dα1θα1eρiσdα1θα2=dαjθαj+Dαθα2.-d_{\alpha 1}\partial\theta^{\alpha 1}-e^{-\rho-i\sigma}d_{\alpha 1}\partial\theta^{\alpha 2}=-d_{\alpha j}\partial\theta^{\alpha j}+D_{\alpha}\partial\theta^{\alpha 2}\,. (26)

It is also important to be aware that the 𝒩=2\mathcal{N}=2 algebra is preserved independently of how one chooses to gauge-fix the local symmetry generated by DαD_{\alpha}. This is because the form of the 𝒩=2\mathcal{N}=2 generators (25) was chosen so that they have no poles with the harmonic-like constraint (23). The non-trivial part in showing this is for the generator Ghyb+G^{+}_{\rm hyb}, nonetheless, it becomes manifest by noting the property that one can write Ghyb+G^{+}_{\rm hyb} as

Ghyb+=124ϵαβγδ[Dα,{Dβ,[Dγ,{Dδ,e2ρ+3iσ}]}]+GC+,G^{+}_{\rm hyb}=-\frac{1}{24}\epsilon^{\alpha\beta\gamma\delta}[D_{\alpha},\{D_{\beta},[D_{\gamma},\{D_{\delta},e^{2\rho+3i\sigma}\}]\}]+G_{C}^{+}\,, (27)

where the graded bracket [Dα,𝒪}(z)=𝑑yDα(y)𝒪(z)[D_{\alpha},\mathcal{O}\}(z)=\oint dy\,D_{\alpha}(y)\mathcal{O}(z) denotes the simple pole in the OPE between DαD_{\alpha} and 𝒪\mathcal{O}.

The details of the calculation establishing eq. (27) are given in Appendix C. To the knowledge of the author, this is the first time that eq. (27) is proven considering the normal-ordering contributions. Note also the similarity between identities (27) and (6).

For the massless compactification-independent sector of the open superstring, the vertex operator now reads

Vhyb=n=Vn(x,θ)en(ρ+iσ),\displaystyle V_{\rm hyb}=\sum_{n=-\infty}^{\infty}V_{n}(x,\theta)e^{n(\rho+i\sigma)}\,, (28)

which takes the same form as in eq. (10), but now Vn(x,θ)V_{n}(x,\theta) depends on the zero modes of {xa¯,θαj}\{x^{\underline{a}},\theta^{\alpha j}\}. Therefore, it contains the eight fermionic θ\theta coordinates of d=6d=6 𝒩=1\mathcal{N}=1 superspace. Of course, contrasting with the hybrid formalism of the previous section, in the present case the physical states VhybV_{\rm hyb} also have to be annihilated by DαD_{\alpha}.

It is interesting to note what is the effect of imposing the constraint DαD_{\alpha} for VhybV_{\rm hyb} of eq. (28). To do that, let us first define the new superspace variables

θα\displaystyle\theta^{\alpha-} =12(θα2eρ+iσθα1),\displaystyle=\frac{1}{2}\big{(}\theta^{\alpha 2}-e^{\rho+i\sigma}\theta^{\alpha 1}\big{)}\,, θα+\displaystyle\theta^{\alpha+} =12(θα1+eρiσθα2).\displaystyle=\frac{1}{2}\big{(}\theta^{\alpha 1}+e^{-\rho-i\sigma}\theta^{\alpha 2}\big{)}\,. (29)

The condition that VhybV_{\rm hyb} has no poles with DαD_{\alpha} implies that

(α2eρiσα1)Vhyb\displaystyle\big{(}\nabla_{\alpha 2}-e^{-\rho-i\sigma}\nabla_{\alpha 1}\big{)}V_{\rm hyb} =0,\displaystyle=0\,, (30)

where αj=θαji2ϵjkθβkαβ\nabla_{\alpha j}=\frac{\partial}{\partial\theta^{\alpha j}}-\frac{i}{2}\epsilon_{jk}\theta^{\beta k}\partial_{\alpha\beta} is the zero mode of dαjd_{\alpha j} acting on VhybV_{\rm hyb}. By defining xa¯=xa¯{x^{\prime}}^{\underline{a}}=x^{\underline{a}} and then doing the shift

xa¯+iθαθβ+σαβa¯xa¯,\displaystyle{x^{\prime}}^{\underline{a}}+i\theta^{\alpha-}\theta^{\beta+}\sigma^{\underline{a}}_{\alpha\beta}\mapsto x^{\underline{a}}\,, (31)

we learn that VhybV_{\rm hyb} is independent of θα\theta^{\alpha-} and, for that reason, it is a function of only the zero modes of {xa¯,θα+}\{x^{\underline{a}},\theta^{\alpha+}\}. As a consequence, after identifying θα+=θα\theta^{\alpha+}=\theta^{\alpha} the component fields of VhybV_{\rm hyb} in (28) can be related to the component fields of VhybV_{\rm hyb} in (10), therefore, we recover the usual six-dimensional description of the vertex operator in Section 2.1. Nonetheless, the identification of the component fields is only possible after imposing Dα=0D_{\alpha}=0.

From eqs. (25), one can construct the remaining twisted small c=6c=6 𝒩=4\mathcal{N}=4 generators, and in the gauge where (Ghyb+)0(G~hyb+)0Vhyb=0(G_{\rm hyb}^{+})_{0}(\widetilde{G}_{\rm hyb}^{+})_{0}V_{\rm hyb}=0 the integrated vertex operator for the massless compactification-independent states of the open superstring now reads Berkovits:1999du

Whyb\displaystyle W_{\rm hyb} =(Ghyb+)0(Ghyb)1Vhyb\displaystyle=\int(G^{+}_{\rm hyb})_{0}(G^{-}_{\rm hyb})_{-1}V_{\rm hyb}
=[(16eρiσϵαβγδdα1β1γ1δ1i2Παβα1β1\displaystyle=\int\,\bigg{[}\bigg{(}-\frac{1}{6}e^{-\rho-i\sigma}\epsilon^{\alpha\beta\gamma\delta}d_{\alpha 1}\nabla_{\beta 1}\nabla_{\gamma 1}\nabla_{\delta 1}-\frac{i}{2}\Pi^{\alpha\beta}\nabla_{\alpha 1}\nabla_{\beta 1}
+idα1αββ1θα2α1)V1+16ϵαβγδdα1β1γ1δ1V2]\displaystyle+id_{\alpha 1}\partial^{\alpha\beta}\nabla_{\beta 1}-\partial\theta^{\alpha 2}\nabla_{\alpha 1}\bigg{)}V_{1}+\frac{1}{6}\epsilon^{\alpha\beta\gamma\delta}d_{\alpha 1}\nabla_{\beta 1}\nabla_{\gamma 1}\nabla_{\delta 1}V_{2}\bigg{]}
=[16ϵαβγδ(dα2β1γ1δ2dα1β2γ2δ1)\displaystyle=\int\,\bigg{[}\frac{1}{6}\epsilon^{\alpha\beta\gamma\delta}\Big{(}d_{\alpha 2}\nabla_{\beta 1}\nabla_{\gamma 1}\nabla_{\delta 2}-d_{\alpha 1}\nabla_{\beta 2}\nabla_{\gamma 2}\nabla_{\delta 1}\Big{)}
+i4Παβ[α1,β2]12θα1α1+12θα2α2]V0,\displaystyle+\frac{i}{4}\Pi^{\alpha\beta}[\nabla_{\alpha 1},\nabla_{\beta 2}]-\frac{1}{2}\partial\theta^{\alpha 1}\nabla_{\alpha 1}+\frac{1}{2}\partial\theta^{\alpha 2}\nabla_{\alpha 2}\bigg{]}V_{0}\,, (32)

where the supersymmetric derivative αj\nabla_{\alpha j} satisfy the algebra {αj,βk}=iϵjkαβ\{\nabla_{\alpha j},\nabla_{\beta k}\}=-i\epsilon_{jk}\partial_{\alpha\beta}. To arrive at the last equality in (2.3), we subtracted a total derivative and used the relations implied by the constraint (23), namely, α1V1=α2V0\nabla_{\alpha 1}V_{1}=-\nabla_{\alpha 2}V_{0} and α1V2=α2V1\nabla_{\alpha 1}V_{2}=\nabla_{\alpha 2}V_{1}.

3 Extended hybrid formalism

In spite of the fact that we have described the worldsheet action, 𝒩=2\mathcal{N}=2 constraints and compactification-independent vertex operators while preserving manifest d=6d=6 𝒩=1\mathcal{N}=1 supersymmetry in Section 2.3, it remains unclear what are the rules to compute correlation functions using the superconformal generators and vertex operators depending on all eight θ\theta coordinates of d=6d=6 𝒩=1\mathcal{N}=1 superspace.

In addition, it is not evident if there is a relation between the vertex operator (28) and the superfields appearing in superspace descriptions of d=6d=6 SYM Howe:1983fr Koller:1982cs . As a consequence, one cannot identify what each component of the superfield (28) corresponds to before using the constraint Dα=0D_{\alpha}=0 to make contact with (10), which depends on only half of the θ\thetas. One of the purposes of this section is to clarify and understand how one can overcome these drawbacks by relaxing the constraint Dα=0D_{\alpha}=0 in the definition of physical states.

3.1 Worldsheet variables

To the worldsheet theory (16), we introduce a bosonic spinor λα\lambda^{\alpha} of conformal weight zero and its conjugate momenta wαw_{\alpha} of conformal weight one. As we will momentarily see, the ghost λα\lambda^{\alpha} will be responsible for relaxing the constraint DαD_{\alpha}. We also include the non-minimal variables {λ¯α,rα}\{\overline{\lambda}_{\alpha},r_{\alpha}\} Berkovits:2005bt of conformal weight zero, as well as their conjugate momenta {w¯α,sα}\{\overline{w}^{\alpha},s^{\alpha}\} of conformal weight one. The fields {sα,rα}\{s^{\alpha},r_{\alpha}\} are worldsheet fermions and {w¯α,λ¯α}\{\overline{w}^{\alpha},\overline{\lambda}_{\alpha}\} bosons.

The worldsheet action now takes the form

S\displaystyle S =d2z(12xa¯¯xa¯+pαj¯θαj+wα¯λα+sα¯rα+w¯α¯λ¯α\displaystyle=\int d^{2}z\,\bigg{(}\frac{1}{2}\partial x^{\underline{a}}\overline{\partial}x_{\underline{a}}+p_{\alpha j}\overline{\partial}\theta^{\alpha j}+w_{\alpha}\overline{\partial}\lambda^{\alpha}+s^{\alpha}\overline{\partial}r_{\alpha}+\overline{w}^{\alpha}\overline{\partial}\overline{\lambda}_{\alpha}
+p^α^jθ^α^j+w^α^λ^α^+s^α^r^α^+w¯^α^λ¯^α^)+Sρ,σ+SC,\displaystyle+\widehat{p}_{\widehat{\alpha}j}\partial\widehat{\theta}^{\widehat{\alpha}j}+\widehat{w}_{\widehat{\alpha}}\partial\widehat{\lambda}^{\widehat{\alpha}}+\widehat{s}^{\widehat{\alpha}}\partial\widehat{r}_{\widehat{\alpha}}+\widehat{\overline{w}}^{\widehat{\alpha}}\partial\widehat{\overline{\lambda}}_{\widehat{\alpha}}\bigg{)}+S_{\rho,\sigma}+S_{C}\,, (33)

where the “hatted” fields are right-moving and, for simplicity, will be ignored in what follows. The singularities in the OPEs of the new variables are

wα(y)λβ(z)\displaystyle w_{\alpha}(y)\lambda^{\beta}(z) δαβ(yz)1,\displaystyle\sim-\delta^{\beta}_{\alpha}(y-z)^{-1}\,, (34a)
w¯α(y)λ¯β(z)\displaystyle\overline{w}^{\alpha}(y)\overline{\lambda}_{\beta}(z) δβα(yz)1,\displaystyle\sim-\delta^{\alpha}_{\beta}(y-z)^{-1}\,, (34b)
sα(y)rβ(z)\displaystyle s^{\alpha}(y)r_{\beta}(z) δβα(yz)1,\displaystyle\sim\delta^{\alpha}_{\beta}(y-z)^{-1}\,, (34c)

and, unlike in Berkovits:2005bt , {λα,λ¯α,rα}\{\lambda^{\alpha},\overline{\lambda}_{\alpha},r_{\alpha}\} are not constrained. Note further that, as opposed to the worldsheet action (16), the stress-tensor of (3.1) has vanishing central charge.

3.2 Extended twisted c=6c=6 𝒩=2\mathcal{N}=2 generators

With these additional variables, it is still possible to construct superconformal generators satisfying a twisted c=6c=6 𝒩=2\mathcal{N}=2 SCA as in Section 2.

In this case, we have

T\displaystyle T =ThybDαθα2wαλαw¯αλ¯αsαrα,\displaystyle=T_{\rm hyb}-D_{\alpha}\partial\theta^{\alpha 2}-w_{\alpha}\partial\lambda^{\alpha}-\overline{w}^{\alpha}\partial\overline{\lambda}_{\alpha}-s^{\alpha}\partial r_{\alpha}\,, (35a)
G+\displaystyle G^{+} =Ghyb+λαDαw¯αrα,\displaystyle=G^{+}_{\rm hyb}-\lambda^{\alpha}D_{\alpha}-\overline{w}^{\alpha}r_{\alpha}\,, (35b)
G\displaystyle G^{-} =Ghyb+wαθα2+sαλ¯α,\displaystyle=G^{-}_{\rm hyb}+w_{\alpha}\partial\theta^{\alpha 2}+s^{\alpha}\partial\overline{\lambda}_{\alpha}\,, (35c)
J\displaystyle J =Jhybwαλαsαrα,\displaystyle=J_{\rm hyb}-w_{\alpha}\lambda^{\alpha}-s^{\alpha}r_{\alpha}\,, (35d)

where {Thyb,Ghyb+,Ghyb,Jhyb}\{T_{\rm hyb},G^{+}_{\rm hyb},G^{-}_{\rm hyb},J_{\rm hyb}\} are the c=6c=6 𝒩=2\mathcal{N}=2 generators of eqs. (25). Note that TT is now the usual stress-tensor, because the terms added in (35a) to ThybT_{\rm hyb} precisely cancel the atypical contribution in (26). Explicitly, we now have

T\displaystyle T =12Πa¯Πa¯dαjθαjwαλαw¯αλ¯αsαrα\displaystyle=-\frac{1}{2}\Pi^{\underline{a}}\Pi_{\underline{a}}-d_{\alpha j}\partial\theta^{\alpha j}-w_{\alpha}\partial\lambda^{\alpha}-\overline{w}^{\alpha}\partial\overline{\lambda}_{\alpha}-s^{\alpha}\partial r_{\alpha}
12ρρ12σσ+322(ρ+iσ)+TC.\displaystyle-\frac{1}{2}\partial\rho\partial\rho-\frac{1}{2}\partial\sigma\partial\sigma+\frac{3}{2}\partial^{2}(\rho+i\sigma)+T_{C}\,. (36)

Of course, the superconformal generator G+G^{+} continues to be nilpotent. This is easy to see from that fact that Ghyb+G^{+}_{\rm hyb} has no poles with itself, no poles with DαD_{\alpha} and the constraint DαD_{\alpha} is first-class.

It is important to comment on the significance of each of the contributions appearing in the fermionic generator G+G^{+}. The zero mode of Ghyb+G^{+}_{\rm hyb} is related to the BRST operator QRNSQ_{\rm RNS} of the RNS formalism in the gauge where θα2=0\theta^{\alpha 2}=0, this follows from the fact that the hybrid variables are related to the gauge-fixed RNS variables through a field redefinition Berkovits:1999im .

The term λαDα-\lambda^{\alpha}D_{\alpha} in G+G^{+} is necessary for the reason that we are relaxing the constraint DαD_{\alpha}. As a consequence, the condition Dα=0D_{\alpha}=0 from (23) does not need to be imposed “by hand” in our definition of physical states from now on (see Section 3.3). The last contribution, w¯αrα-\overline{w}^{\alpha}r_{\alpha}, is the non-minimal/topological term Berkovits:2005bt , and it implies that the cohomology of (G+)0(G^{+})_{0} is independent of {w¯α,λ¯α,sα,rα}\{\overline{w}^{\alpha},\overline{\lambda}_{\alpha},s^{\alpha},r_{\alpha}\} through the usual quartet argument. This term is required in order to get a c=6c=6 𝒩=2\mathcal{N}=2 SCA and it will play a key role in defining a spacetime supersymmetric prescription for scattering amplitude computations in Section 3.4.

We should emphasize that even though we have an 𝒩=2\mathcal{N}=2 SCA with critical central charge (c=6c=6) in eqs. (35), the physical states of the superstring cannot be defined as 𝒩=2\mathcal{N}=2 primaries like in the hybrid formalism Berkovits:1996bf . The reason for this is because, by the quartet machanism, the cohomology of (G+)0(G^{+})_{0} is guaranteed to be independent of the non-minimal/topological variables Berkovits:2005bt . However, this mechanism has nothing to say about the primaries of the 𝒩=2\mathcal{N}=2 algebra, i.e., if the they are preserved or not after the worldsheet theory is modified. Therefore, when studying vertex operators of the superstring, one must look for states in the cohomology of (G+)0(G^{+})_{0}.

As an additional observation, let us sketch a direct way to arrive at the supercurrent (35b) from the six-dimensional hybrid formalism: by adding non-minimal variables and performing a suitable similarity transformation. Start with Ghyb+G^{+}_{\rm hyb} in eq. (6) and add the non-minimal variables {pα2,θα2,wα,λα,w¯α,λ¯α,sα,rα}\{p_{\alpha 2},\theta^{\alpha 2},w_{\alpha},\lambda^{\alpha},\overline{w}^{\alpha},\overline{\lambda}_{\alpha},s^{\alpha},r_{\alpha}\}, so that the supercurrent becomes

G+\displaystyle{G^{+}}^{\prime} =Ghyb+λαpα2w¯αrα.\displaystyle=G^{+}_{\rm hyb}-\lambda^{\alpha}p_{\alpha 2}-\overline{w}^{\alpha}r_{\alpha}\,. (37)

Then, after performing the similarity transformation eR2eR1G+eR1eR2G+e^{R_{2}}e^{R_{1}}{G^{+}}^{\prime}e^{-R_{1}}e^{-R_{2}}\rightarrow{G^{+}}^{\prime} where R1=Qα2hybθα2R_{1}=-Q^{\rm hyb}_{\alpha 2}\theta^{\alpha 2} and R2=i2xαβθα1θα2R_{2}=-\frac{i}{2}\partial x_{\alpha\beta}\theta^{\alpha 1}\theta^{\alpha 2}, one learns that G+=G+{G^{+}}^{\prime}=G^{+} in (35b) up to terms proportional to θα2\theta^{\alpha 2}.444Since the BRST operator G+G^{+} is supersymmetric, one can consider an additional similarity transformation to restore the missing θα2\theta^{\alpha 2} terms, analogously as in ref. Berkovits:2024ono . This procedure is similar to the construction adopted in refs. Berkovits:2024ono Berkovits:2001us in relating the RNS formalism with the pure spinor formalism. Moreover, we also learn that eR2eR1pα2eR1eR2=eR2(pα2Qα2hyb)eR2=Dαe^{R_{2}}e^{R_{1}}p_{\alpha 2}e^{-R_{1}}e^{-R_{2}}=e^{R_{2}}(p_{\alpha 2}-Q^{\rm hyb}_{\alpha 2})e^{-R_{2}}=D_{\alpha} up to terms proportional to the non-minimal variable θα2\theta^{\alpha 2}. The charge Qα2hybQ^{\rm hyb}_{\alpha 2} was defined in eq. (5), therefore, we conclude that the constraint DαD_{\alpha} is related to the “non-standard” SUSYs of the hybrid formalism.

Starting from the d=10d=10 pure spinor formalism, there have been other approaches to describe the superstring in a six-dimensional background with manifest d=6d=6 𝒩=1\mathcal{N}=1 supersymmetry Grassi:2005sb Wyllard:2005fh Gerigk:2009va Chandia:2011su . In these works, the non-minimal variables are absent but the ghosts {wα,λα}\{w_{\alpha},\lambda^{\alpha}\} usually appear from the decomposition of the d=10d=10 pure spinor λα¯\lambda^{\overline{\alpha}}, α¯={1\overline{\alpha}=\{1 to 16}16\}, in terms of SO(1,5)\rm SO(1,5) spinors. Particularly, in ref. Gerigk:2009va a BRST operator of the form QPS=λαDαQ_{\rm PS}=\oint\lambda^{\alpha}D_{\alpha} was proposed as the dimensional reduction of the BRST operator in the d=10d=10 pure spinor formalism. In ref. Chandia:2011su , it was also considered adding the ghosts {wα,λα}\{w_{\alpha},\lambda^{\alpha}\} to the superconformal generators (25). The advantage of the approach detailed below is that we will be able to explicit write a BRST invariant superstring vertex operator in terms of d=6d=6 𝒩=1\mathcal{N}=1 superfields and the manifest spacetime supersymmetric worldsheet variables.

3.3 Massless compactification-independent vertex operators

We consider the compactification-independent physical states with conformal weight zero at zero momentum for the open superstring or holomorphic sector, so that we are seeking for a vertex operator UU which describes the d=6d=6 SYM multiplet. We will start by specifying what are the physical state conditions the vertex operator has to fulfill. Then write the vertex in terms of d=6d=6 𝒩=1\mathcal{N}=1 superfields depending on the eight θ\theta coordinates. After that, it will be shown that BRST invariance of UU reproduces the on-shell d=6d=6 SYM equations in superspace.

Since we have a nilpotent BRST charge (G+)0(G^{+})_{0}, we can require physical unintegrated vertex operators UU to be ghost-number-one states in the cohomology of (G+)0(G^{+})_{0}. Without loss of generality, the ghost-number current is defined to be the U(1){\rm U(1)} generator of the 𝒩=2\mathcal{N}=2 algebra, eq. (35d). Moreover, the stress-tensor TT has vanishing conformal anomaly, it is then consistent to require UU to be a conformal weight zero primary field as well. When these conditions are satisfied, and given the fact that {(G+)0,(G)0}=(T)0\{(G^{+})_{0},(G^{-})_{0}\}=(T)_{0}, the superconformal generator (G)0(G^{-})_{0} has to annihilate the state UU, which means that UU is in the covariant Lorenz gauge Chandia:2021coc . The latter condition is analogous to the b0=0b_{0}=0 constraint in bosonic string theory.

For the compactification-independent massless sector of the open superstring, the manifestly spacetime supersymmetric ghost-number-one unintegrated vertex operator UU in the cohomology of (G+)0(G^{+})_{0} takes the form

U\displaystyle U =λα(Aα2Aα1eρiσ)+(θα1Aα1+Πa¯Aa¯+dα1Wα1)eiσdα1Wα2(iσ)eρ\displaystyle=-\lambda^{\alpha}\big{(}A_{\alpha 2}-A_{\alpha 1}e^{-\rho-i\sigma}\big{)}+\big{(}\partial\theta^{\alpha 1}A_{\alpha 1}+\Pi^{\underline{a}}A_{\underline{a}}+d_{\alpha 1}W^{\alpha 1}\big{)}e^{i\sigma}-d_{\alpha 1}W^{\alpha 2}\partial(i\sigma)e^{-\rho}
θα2Aα1(ρ+iσ)eρ+idα1ΠαβAβ1eρi2dα1dβ1Aαβeρ2θα2Aα1eρ\displaystyle-\partial\theta^{\alpha 2}A_{\alpha 1}\partial(\rho+i\sigma)e^{-\rho}+id_{\alpha 1}\Pi^{\alpha\beta}A_{\beta 1}e^{-\rho}-\frac{i}{2}d_{\alpha 1}d_{\beta 1}A^{\alpha\beta}e^{-\rho}-\partial^{2}\theta^{\alpha 2}A_{\alpha 1}e^{-\rho}
+dα1(Wα2iαβAβ1)eρ+i2Παβα1Aβ1eρ+dα1(2Wα2\displaystyle+\partial d_{\alpha 1}\big{(}W^{\alpha 2}-i\partial^{\alpha\beta}A_{\beta 1}\big{)}e^{-\rho}+\frac{i}{2}\partial\Pi^{\alpha\beta}\nabla_{\alpha 1}A_{\beta 1}e^{-\rho}+d_{\alpha 1}\big{(}-2W^{\alpha 2}
+iαβAβ1)ρeρi2Παβα1Aβ1ρeρi4αβα1Aβ12eρ+(d13)αAα1e2ρiσ\displaystyle+i\partial^{\alpha\beta}A_{\beta 1}\big{)}\partial\rho e^{-\rho}-\frac{i}{2}\Pi^{\alpha\beta}\nabla_{\alpha 1}A_{\beta 1}\partial\rho e^{-\rho}-\frac{i}{4}\partial^{\alpha\beta}\nabla_{\alpha 1}A_{\beta 1}\partial^{2}e^{-\rho}+(d_{1}^{3})^{\alpha}A_{\alpha 1}e^{-2\rho-i\sigma}
+ϵαβγδ(14dα1dβ1γ1Aδ1e2ρiσ14(dα1dβ1)γ1Aδ1e2ρiσ\displaystyle+\epsilon^{\alpha\beta\gamma\delta}\bigg{(}-\frac{1}{4}d_{\alpha 1}d_{\beta 1}\nabla_{\gamma 1}A_{\delta 1}\partial e^{-2\rho-i\sigma}-\frac{1}{4}\partial(d_{\alpha 1}d_{\beta 1})\nabla_{\gamma 1}A_{\delta 1}e^{-2\rho-i\sigma}
1122dα1β1γ1Aδ1e2ρiσ16dα1β1γ1Aδ1e2ρiσ\displaystyle-\frac{1}{12}\partial^{2}d_{\alpha 1}\nabla_{\beta 1}\nabla_{\gamma 1}A_{\delta 1}e^{-2\rho-i\sigma}-\frac{1}{6}\partial d_{\alpha 1}\nabla_{\beta 1}\nabla_{\gamma 1}A_{\delta 1}\partial e^{-2\rho-i\sigma}
112dα1β1γ1Aδ12e2ρiσ)+14(13)αAα1163e2ρiσ,\displaystyle-\frac{1}{12}d_{\alpha 1}\nabla_{\beta 1}\nabla_{\gamma 1}A_{\delta 1}\partial^{2}e^{-2\rho-i\sigma}\bigg{)}+\frac{1}{4}(\nabla_{1}^{3})^{\alpha}A_{\alpha 1}\frac{1}{6}\partial^{3}e^{-2\rho-i\sigma}\,, (38)

where Aa¯A_{\underline{a}} is the superspace gauge field, WαjW^{\alpha j} is the superspace spinor field-strength and Fa¯b¯F_{\underline{a}\underline{b}} is the superspace field-strength.555See Appendix D for a review of d=6d=6 𝒩=1\mathcal{N}=1 super-Yang-Mills. The first components of the superfields {Aa¯,Wαj,Fa¯b¯}\{A_{\underline{a}},W^{\alpha j},F_{\underline{a}\underline{b}}\} are the gluon, the gluino and the gluon field-strength, respectively. These superfields are defined in terms of the superspace gauge field AαjA_{\alpha j}. In linearized form, we have

Aa¯\displaystyle A_{\underline{a}} =i4ϵjkσa¯αβ(αjAβk+βkAαj),\displaystyle=-\frac{i}{4}\epsilon^{jk}\sigma_{\underline{a}}^{\alpha\beta}(\nabla_{\alpha j}A_{\beta k}+\nabla_{\beta k}A_{\alpha j})\,, (39a)
Wαj\displaystyle W^{\alpha j} =i3ϵjkσa¯αβ(a¯AβkβkAa¯),\displaystyle=\frac{i}{3}\epsilon^{jk}\sigma^{\underline{a}\alpha\beta}(\partial_{\underline{a}}A_{\beta k}-\nabla_{\beta k}A_{\underline{a}})\,, (39b)
Fa¯b¯\displaystyle F_{\underline{a}\underline{b}} =a¯Ab¯b¯Aa¯.\displaystyle=\partial_{\underline{a}}A_{\underline{b}}-\partial_{\underline{b}}A_{\underline{a}}\,. (39c)

It is easy to see that UU is annihilated by (G)0(G^{-})_{0} and so we have a¯Aa¯=0\partial^{\underline{a}}A_{\underline{a}}=0, which is the usual Lorenz gauge condition. The non-trivial part is showing that BRST invariance of UU implies the linearized d=6d=6 SYM equations of motion Howe:1983fr Koller:1982cs

(σa¯b¯c¯)αβ(αjAβk+βkAαj)\displaystyle(\sigma^{\underline{a}\underline{b}\underline{c}})^{\alpha\beta}(\nabla_{\alpha j}A_{\beta k}+\nabla_{\beta k}A_{\alpha j}) =0,\displaystyle=0\,, (40a)
αjWβk+i2δjk(σa¯b¯)αβFa¯b¯\displaystyle\nabla_{\alpha j}W^{\beta k}+\frac{i}{2}\delta^{k}_{j}(\sigma_{\underline{a}\underline{b}})^{\beta}_{\ \alpha}F^{\underline{a}\underline{b}} =0,\displaystyle=0\,, (40b)

where (σa¯b¯c¯)αβ=i3!(σ[a¯σb¯σc¯])αβ(\sigma^{\underline{a}\underline{b}\underline{c}})^{\alpha\beta}=\frac{i}{3!}(\sigma^{[\underline{a}}\sigma^{\underline{b}}\sigma^{\underline{c}]})^{\alpha\beta} is the symmetric anti-self-dual three-form and (σa¯b¯)αβ=i2(σ[a¯σb¯])αβ(\sigma_{\underline{a}\underline{b}})^{\beta}_{\ \alpha}=\frac{i}{2}(\sigma^{[\underline{a}}\sigma^{\underline{b}]})_{\ \alpha}^{\beta} is the generator of Lorentz transformations.

The calculation leading to (40) is straightforward but tedious. It involves taking care of various normal-ordering contributions. Let us briefly outline at which steps some of the above equations can be obtained. For example, eq. (40a) comes from the terms with λαλβ\lambda^{\alpha}\lambda^{\beta} in (G+)0U(G^{+})_{0}U, and eq. (40b) can be obtained by the terms proportional to λαdβ1eiσ\lambda^{\alpha}d_{\beta 1}e^{i\sigma}, λαdβ1eρ\lambda^{\alpha}\partial d_{\beta 1}e^{-\rho}, λαdβ1(iσ)eρ\lambda^{\alpha}d_{\beta 1}\partial(i\sigma)e^{-\rho} and λα2dβ1e2ρiσ\lambda^{\alpha}\partial^{2}d_{\beta 1}e^{-2\rho-i\sigma}.

Note further that UU in (3.3) is defined up to a gauge transformation δU=(G+)0Λ\delta U=(G^{+})_{0}\Lambda for some conformal weight zero and U(1){\rm U(1)}-charge zero gauge parameter Λ\Lambda, and UU is also annihilated by (G~hyb+)0(\widetilde{G}^{+}_{\rm hyb})_{0} of (4a), a condition that will become more clear when we write the amplitude prescription (49) in the following section.666When translated to the RNS variables, the condition (G~hyb+)0U=0(\widetilde{G}^{+}_{\rm hyb})_{0}U=0 is equivalent as saying that UU lives in the small Hilbert space, i.e., it is annihilated by the η0\eta_{0}-ghost Friedan:1985ge . Taking Λ\Lambda to be a function of the zero modes of {xa¯,θαj}\{x^{\underline{a}},\theta^{\alpha j}\}, we have that

δU\displaystyle\delta U =λα(α2Λα1Λeρiσ)+(θα1α1Λ+Πa¯a¯Λ)eiσ+,\displaystyle=-\lambda^{\alpha}\big{(}\nabla_{\alpha 2}\Lambda-\nabla_{\alpha 1}\Lambda e^{-\rho-i\sigma}\big{)}+\big{(}\partial\theta^{\alpha 1}\nabla_{\alpha 1}\Lambda+\Pi^{\underline{a}}\partial_{\underline{a}}\Lambda\big{)}e^{i\sigma}+\ldots\,, (41)

which precisely reproduces the gauge transformations (80) of the d=6d=6 𝒩=1\mathcal{N}=1 superspace description, i.e., δAαj=αjΛ\delta A_{\alpha j}=\nabla_{\alpha j}\Lambda and δAa¯=a¯Λ\delta A_{\underline{a}}=\partial_{\underline{a}}\Lambda.

For scattering amplitude computations, vertex operators in integrated form are necessary. As we have an 𝒩=2\mathcal{N}=2 SCA (35), it is straightforward to define integrated vertex operators. They are given by

W=(G)1U,\displaystyle W=\int(G^{-})_{-1}U\,, (42)

which, for the compactification-independent massless sector of the open superstring, takes the simple form

W=(θαjAαj+Πa¯Aa¯+dα1Wα1+dα1eρiσWα2).\displaystyle W=\int\big{(}\partial\theta^{\alpha j}A_{\alpha j}+\Pi^{\underline{a}}A_{\underline{a}}+d_{\alpha 1}W^{\alpha 1}+d_{\alpha 1}e^{-\rho-i\sigma}W^{\alpha 2}\big{)}\,. (43)

Note that only the first four terms in (3.3) contribute to the integrated vertex WW. Not surprisingly, the integrated vertex (43) has a similar structure as in the first equality of eq. (2.3).

The gauge transformations of WW are given by δW=(G+)0Ω\delta W=(G^{+})_{0}\Omega^{-} for some conformal weight one and U(1){\rm U(1)}-charge minus one gauge parameter Ω\Omega^{-}. Taking Ω=wαWα2\Omega^{-}=-w_{\alpha}W^{\alpha 2}, which is annihilated by (G~hyb+)0(\widetilde{G}^{+}_{\rm hyb})_{0}, we can write WW as

W\displaystyle W =(θαjAαj+Πa¯Aa¯+dαjWαji2Na¯b¯Fa¯b¯\displaystyle=\int\bigg{(}\partial\theta^{\alpha j}A_{\alpha j}+\Pi^{\underline{a}}A_{\underline{a}}+d_{\alpha j}W^{\alpha j}-\frac{i}{2}N_{\underline{a}\underline{b}}F^{\underline{a}\underline{b}}
i2wαdβ1dγ1βγWα2eρ+wαΠa¯a¯Wα2eiσ),\displaystyle-\frac{i}{2}w_{\alpha}d_{\beta 1}d_{\gamma 1}\partial^{\beta\gamma}W^{\alpha 2}e^{-\rho}+w_{\alpha}\Pi^{\underline{a}}\partial_{\underline{a}}W^{\alpha 2}e^{i\sigma}\bigg{)}\,, (44)

where Na¯b¯=wα(σa¯b¯)βαλαN_{\underline{a}\underline{b}}=w_{\alpha}(\sigma_{\underline{a}\underline{b}})^{\alpha}_{\ \beta}\lambda^{\alpha}.

From an argument concerning the level of the Lorentz currents in the RNS and pure spinor formalisms, the first line of (3.3) takes the form conjectured in ref. (Berkovits:2000fe, , footnote 3) to be the correct integrated vertex operator for the massless sector of the open superstring compactified to six dimensions.

3.4 Tree-level scattering amplitudes

In Section 2, we introduced an unintegrated vertex operator VhybV_{\rm hyb} with zero U(1){\rm U(1)}-charge, eq. (10). When on-shell, this vertex operator was shown to describe d=6d=6 SYM. Moreover, one can show that there exists a gauge choice where (10) can be taken to be an 𝒩=2\mathcal{N}=2 superconformal primary field with respect to the SCA (2) Berkovits:1997zd .

In terms of VhybV_{\rm hyb}, the tree-level three-point amplitude prescription for the massless states in the hybrid formalism of Section 2.1 is Berkovits:1996bf

Vhyb(z1)((G~hyb+)0Vhyb)(z2)Uhyb(z3),\displaystyle\Big{\langle}V_{\rm hyb}(z_{1})\big{(}(\widetilde{G}^{+}_{\rm hyb})_{0}V_{\rm hyb}\big{)}(z_{2})U_{\rm hyb}(z_{3})\Big{\rangle}\,, (45)

where e3ρ+3iσJC++(θ)4=1\big{\langle}e^{3\rho+3i\sigma}J^{++}_{C}(\theta)^{4}\big{\rangle}=1 with (θ)4=124ϵαβγδθαθβθγθδ(\theta)^{4}=\frac{1}{24}\epsilon_{\alpha\beta\gamma\delta}\theta^{\alpha}\theta^{\beta}\theta^{\gamma}\theta^{\delta} and we defined Uhyb=(Ghyb+)0VhybU_{\rm hyb}=(G^{+}_{\rm hyb})_{0}V_{\rm hyb}. It is interesting to note that, in some gauge choice, UhybU_{\rm hyb} in (45) looks very similar to UU in (3.3), at least in the ghost structure when we take λα=0\lambda^{\alpha}=0. However, since vertex operators only depend on four θ\theta coordinates, they do not have a simple transformation rule under all spacetime SUSYs.

We can try to use the elements of the hybrid formalism outlined in the paragraph above to formulate a prescription for calculating scattering amplitudes in terms of the superconformal generators (35) and the vertex operators in (3.3) and (43), which are constructed from the manifestly spacetime supersymmetric variables. In this setting, recall that the eight supersymmetry generators are given by (17), as opposed to the ghost-dependent SUSYs (5) in the six-dimensional hybrid description.

In view of that, it is tempting to conjecture that UU can be written as U=(G+)0VU=(G^{+})_{0}V for some VV which is also an 𝒩=2\mathcal{N}=2 primary field with respect to the SCA (35)\eqref{NMSCA}. Unfortunately, we could not accomplish this much and find a VV with both of these properties. Nonetheless, it is possible to find a conformal weight zero and U(1){\rm U(1)}-charge zero field VV such that U=(G+)0VU=(G^{+})_{0}V and, as we will see, this is enough to define a consistent tree-level scattering amplitude prescription.

Consider

V(z)\displaystyle V(z) =dyyz((θ1)4e2ρ+iσ)(y)U(z),\displaystyle=\oint\frac{dy}{y-z}\big{(}-(\theta^{1})^{4}e^{2\rho+i\sigma}\big{)}(y)U(z)\,, (46)

and note that (G+)0V=U(G^{+})_{0}V=U by using the fact that (G+)0(G^{+})_{0} annihilates UU and the property

(G+)0((θ1)4e2ρ+iσ)=1.\displaystyle(G^{+})_{0}\Big{(}-(\theta^{1})^{4}e^{2\rho+i\sigma}\Big{)}=1\,. (47)

Explicitly, the field VV is given by

V\displaystyle V =λα(θ1)4Aα2e2ρ+iσ+(θ1)α3Wα1e2ρ+2iσ+(i2θα1θβ1Aαβ\displaystyle=-\lambda^{\alpha}(\theta^{1})^{4}A_{\alpha 2}e^{2\rho+i\sigma}+(\theta^{1})^{3}_{\alpha}W^{\alpha 1}e^{2\rho+2i\sigma}+\bigg{(}\frac{i}{2}\theta^{\alpha 1}\theta^{\beta 1}A_{\alpha\beta}
i2(θ1)4αβα1Aβ1)eρ+iσ+θα1Aα1+12θα1θβ1α1Aβ1\displaystyle-\frac{i}{2}(\theta^{1})^{4}\partial^{\alpha\beta}\nabla_{\alpha 1}A_{\beta 1}\bigg{)}e^{\rho+i\sigma}+\theta^{\alpha 1}A_{\alpha 1}+\frac{1}{2}\theta^{\alpha 1}\theta^{\beta 1}\nabla_{\alpha 1}A_{\beta 1}
16θα1θβ1θγ1α1β1Aγ1+14(θ1)4(13)αAα1,\displaystyle-\frac{1}{6}\theta^{\alpha 1}\theta^{\beta 1}\theta^{\gamma 1}\nabla_{\alpha 1}\nabla_{\beta 1}A_{\gamma 1}+\frac{1}{4}(\theta^{1})^{4}(\nabla^{3}_{1})^{\alpha}A_{\alpha 1}\,, (48)

where (θ1)4=124ϵαβγδθα1θβ1θγ1θδ1(\theta^{1})^{4}=\frac{1}{24}\epsilon_{\alpha\beta\gamma\delta}\theta^{\alpha 1}\theta^{\beta 1}\theta^{\gamma 1}\theta^{\delta 1} and (θ1)α3=16ϵαβγδθβ1θγ1θδ1(\theta^{1})^{3}_{\alpha}=\frac{1}{6}\epsilon_{\alpha\beta\gamma\delta}\theta^{\beta 1}\theta^{\gamma 1}\theta^{\delta 1}. Note that VV has a different ghost structure than (11).

In close analogy with (45), the spacetime supersymmetric tree-level three-point amplitude is defined as

𝒜3\displaystyle\mathcal{A}_{3} =[dλ][dλ¯]d4rd8θV(z1)((G~hyb+)0V)(z2)U(z3),\displaystyle=\int[d\lambda][d\overline{\lambda}]d^{4}rd^{8}\theta\,\mathcal{R}\Big{\langle}V(z_{1})\big{(}(\widetilde{G}^{+}_{\rm hyb})_{0}V\big{)}(z_{2})U(z_{3})\Big{\rangle}\,, (49)

where VV is given by (3.4), Ghyb+G^{+}_{\rm hyb} is given by (4a) and U=(G+)0VU=(G^{+})_{0}V is the ghost number one vertex operator in eq. (3.3). We also define e3ρ+3iσJC++=1\big{\langle}e^{3\rho+3i\sigma}J^{++}_{C}\big{\rangle}=1, due to the anomaly in the U(1){\rm U(1)} current.

Since the bosonic variables λα\lambda^{\alpha} and λ¯α\overline{\lambda}_{\alpha} are non-compact, a regularization factor =exp((G+)0χ)\mathcal{R}=\exp((G^{+})_{0}\chi) needs to be introduced. We will take χ=λ¯αθα2\chi=\overline{\lambda}_{\alpha}\theta^{\alpha 2} Berkovits:2005bt , so that one finds

=exp(λαλ¯α+rαθα2).\displaystyle\mathcal{R}=\exp\big{(}-\lambda^{\alpha}\overline{\lambda}_{\alpha}+r_{\alpha}\theta^{\alpha 2}\big{)}\,. (50)

For simplicity, the integration over the xa¯x^{\underline{a}} zero modes is being ignored, since it is done in the standard manner Polchinski:1998rq . Given that the expression inside brackets is BRST invariant and =1+(G+)0()\mathcal{R}=1+(G^{+})_{0}(\ldots), the amplitude (49) is independent of χ\chi as long as χ\chi is annihilated by (Ghyb+)0(G^{+}_{\rm hyb})_{0}.

Despite the asymmetric appearance, the amplitude (49) is symmetric in the three insertions. This is easy to see by noting that (G~hyb+)0U=(G~hyb+)0χ=0(\widetilde{G}^{+}_{\rm hyb})_{0}U=(\widetilde{G}^{+}_{\rm hyb})_{0}\chi=0 and {(G~hyb+)0,(G+)0}=0\{(\widetilde{G}^{+}_{\rm hyb})_{0},(G^{+})_{0}\}=0. As long as one chooses χ\chi such that (G~hyb+)0χ=0(\widetilde{G}^{+}_{\rm hyb})_{0}\chi=0, the amplitude (49) will be independent of the choice of χ\chi. Since the (G~hyb+)0(\widetilde{G}^{+}_{\rm hyb})_{0} cohomology is trivial one can even choose χ\chi to be exact.

From the c=6c=6 𝒩=2\mathcal{N}=2 SCA (35), it is straightforward to use the procedure outlined in Appendix A and construct the remaining generators of the small c=6c=6 𝒩=4\mathcal{N}=4 SCA. In such a case, one could have thought that it would be possible to define the amplitude (49) with the superconformal generator G~+\widetilde{G}^{+} of the 𝒩=4\mathcal{N}=4 algebra associated with (35)\eqref{NMSCA} instead of G~hyb+\widetilde{G}^{+}_{\rm hyb} in (4a). However, it turns out that an amplitude defined in this way would give a vanishing result. The reason for this is that G~+\widetilde{G}^{+} involves an overall factor containing δ4(r)\delta^{4}(r),777This is easier to see in the bosonized form of {wα,λα,sα,rα}\{w_{\alpha},\lambda^{\alpha},s^{\alpha},r_{\alpha}\}. but we already have the four zero modes of rαr_{\alpha} and θα2\theta^{\alpha 2} coming from the regulator \mathcal{R}. The issue arising when trying to use G~+\widetilde{G}^{+} in our prescription might be related to the fact that physical states of the superstring cannot be defined as 𝒩=2\mathcal{N}=2 primaries with respect to the algebra (35).

The amplitude (49) is gauge-invariant under δV=(G+)0Λ+(Ghyb+)0Ω\delta V=(G^{+})_{0}\Lambda+(G^{+}_{\rm hyb})_{0}\Omega. Since UU satisfies (Ghyb+)0U=0(G^{+}_{\rm hyb})_{0}U=0 and U=(G+)0VU=(G^{+})_{0}V, we have that VV obeys the equation (Ghyb+)0(G+)0V=0(G^{+}_{\rm hyb})_{0}(G^{+})_{0}V=0, which is invariant under the gauge transformation δV=(G+)0Λ+(Ghyb+)0Ω\delta V=(G^{+})_{0}\Lambda+(G^{+}_{\rm hyb})_{0}\Omega for any {Ω,Λ}\{\Omega,\Lambda\}.

The amplitude (49) is supersymmetric. Although the regulator is not manifestly spacetime supersymmetric, its spacetime supersymmetry transformation under the generators (17) is BRST trivial, and hence vanishes inside the amplitude expression (49). Moreover, the vertex operator UU is written in terms of the supersymmetric worldsheet variables, and we have shown that the amplitude is symmetric in the three insertions.

In order to check the consistency of our proposal, let us compute the three-point amplitude involving three massless states (3.4). To simplify the analysis, we will consider the three gluon amplitude 𝒜BBB\mathcal{A}_{BBB}, so that we can effectively put the gluino to zero in the d=6d=6 SYM superfields (see eqs. (98)). In this particular case, we have that (θ1)α3Wα1=0(\theta^{1})^{3}_{\alpha}W^{\alpha 1}=0 in (3.4). Furthermore, the non-zero contributions to (49) can be determined by looking at which terms have the right amount of ghost insertions to saturate the background charge of the {ρ,σ}\{\rho,\sigma\} ghosts, we are then left with the following worldsheet correlator

𝒜BBB\displaystyle\mathcal{A}_{BBB} =[dλ][dλ¯]d4rd8θ(i2θα1θβ1Aαβ(1)eρ+iσ)(z1)×\displaystyle=\int[d\lambda][d\overline{\lambda}]d^{4}rd^{8}\theta\,\mathcal{R}\bigg{\langle}\bigg{(}\frac{i}{2}\theta^{\alpha 1}\theta^{\beta 1}A^{(1)}_{\alpha\beta}e^{\rho+i\sigma}\bigg{)}(z_{1})\times
×(i2θγ1θδ1Aγδ(2)e2ρ+iσJC++)(z2)(Πa¯Aa¯(3)+dσ1W(3)σ1)eiσ(z3)+(23),\displaystyle\times\bigg{(}\frac{i}{2}\theta^{\gamma 1}\theta^{\delta 1}A^{(2)}_{\gamma\delta}e^{2\rho+i\sigma}J^{++}_{C}\bigg{)}(z_{2})\Big{(}\Pi^{\underline{a}}A^{(3)}_{\underline{a}}+d_{\sigma 1}W^{(3)\sigma 1}\Big{)}e^{i\sigma}(z_{3})\bigg{\rangle}+(2\leftrightarrow 3)\,, (51)

and, after using SL(2,)\rm{SL(2,\mathbb{R})} invariance to choose z1=z_{1}=\infty, z2=1z_{2}=1 and z3=0z_{3}=0, it easy to see that

𝒜BBB\displaystyle\mathcal{A}_{BBB} =i((a1a2)(k2a3)+(a1a3)(k1a2)+(a2a3)(k3a1))+(23),\displaystyle=-i\big{(}(a_{1}\cdot a_{2})(k_{2}\cdot a_{3})+(a_{1}\cdot a_{3})(k_{1}\cdot a_{2})+(a_{2}\cdot a_{3})(k_{3}\cdot a_{1})\big{)}+(2\leftrightarrow 3)\,, (52)

which gives the sought after result, as expected. Since UU describes the d=6d=6 SYM multiplet, and by invariance under d=6d=6 𝒩=1\mathcal{N}=1 supersymmetry transformations, we can conclude that our prescription also reproduces the expected answer for the three-point amplitude involving one gluon and two gluinos 𝒜BFF\mathcal{A}_{BFF}.

It is then elementary to generalize (49) to the case where we have nn super-Yang-Mills multiplets

𝒜n\displaystyle\mathcal{A}_{n} =[dλ][dλ¯]d4rd8θV(z1)((G~hyb+)0V)(z2)U(z3)m=4n𝑑zm(G)1U(zm),\displaystyle=\int[d\lambda][d\overline{\lambda}]d^{4}rd^{8}\theta\,\mathcal{R}\bigg{\langle}V(z_{1})\big{(}(\widetilde{G}^{+}_{\rm hyb})_{0}V\big{)}(z_{2})U(z_{3})\prod_{m=4}^{n}\int dz_{m}(G^{-})_{-1}U(z_{m})\bigg{\rangle}\,, (53)

where {z1,z2,z3}\{z_{1},z_{2},z_{3}\} can be chosen arbitrarily by SL(2,)\rm SL(2,\mathbb{R}) invariance. As we have only described vertex operators for the massless compactification-independent states, just scattering of d=6d=6 SYM multiplets was considered, however, the tree-level prescription should also apply to massive compactification-independent states.

4 Conclusion

In this work, we have studied the superstring compactified to a six-dimensional background and its description with manifest d=6d=6 𝒩=1\mathcal{N}=1 supersymmetry. After relaxing the harmonic first-class constraint DαD_{\alpha} of ref. Berkovits:1999du and defining a new BRST operator G+G^{+}, spacetime supersymmetric vertex operators and a tree-level scattering amplitude prescription were constructed. Specifically, it was shown that BRST invariance of the vertex operator imply the d=6d=6 SYM equations of motion in 𝒩=1\mathcal{N}=1 superspace. Furthermore, we confirmed that the three-point amplitude of SYM states is reproduced.

An immediate application of this work would be to generalize the tree-level prescription (53) to a multiloop amplitude prescription for an arbitrary number of d=6d=6 SYM multiplets. In this case, the regulator \mathcal{R} should include the genus gg zero-modes Berkovits:2005bt of the worldsheet fields, and the prescription (53) should be modified, possibly with insertions of the 𝒩=2\mathcal{N}=2 generators in a genus-gg surface Berkovits:1994vy . Since the bb-ghost (or GG^{-} in our case) does not have singularities when {λα,λ¯α}0\{\lambda^{\alpha},\overline{\lambda}_{\alpha}\}\rightarrow 0, there is no restriction in the number of bb-ghost insertions as in the non-minimal pure spinor case Berkovits:2005bt .

Let us point out that the term λαDα-\lambda^{\alpha}D_{\alpha} in the BRST operator (35b) has been proposed as the BRST operator of the six-dimensional pure spinor formalism in refs. Wyllard:2005fh Gerigk:2009va , where a six-dimensional pure spinor λαj\lambda^{\alpha j} is defined to satisfy ϵjkλαjσαβa¯λβk=0\epsilon_{jk}\lambda^{\alpha j}\sigma^{\underline{a}}_{\alpha\beta}\lambda^{\beta k}=0, so that it has five independent components. In this case, it was shown that λαj\lambda^{\alpha j} is related to the hybrid formalism {ρ,σ}\{\rho,\sigma\}-ghosts and the bosonic ghost λα\lambda^{\alpha} as λαj={eρiσλα,λα}\lambda^{\alpha j}=\{-e^{-\rho-i\sigma}\lambda^{\alpha},\lambda^{\alpha}\} Gerigk:2009va . Therefore, the term λαDα-\lambda^{\alpha}D_{\alpha} can be written in a way that the outer SU(2)\rm SU(2) symmetry is manifst, i.e., as λαjdαj-\lambda^{\alpha j}d_{\alpha j} for λαj\lambda^{\alpha j} a six-dimensional pure spinor, where dαjd_{\alpha j} is defined in eqs. (19).

However, as opposed to the d=10d=10 pure spinor formalism Berkovits:2000fe , defining QPS=λαjdαjQ_{\rm PS}=\oint\lambda^{\alpha j}d_{\alpha j} to be the six-dimensional BRST operator is not enough to imply on-shell d=6d=6 SYM from the naive vertex operator λαjAαj\lambda^{\alpha j}A_{\alpha j}.888More precisely, eq. (40b) is not reproduced by invariance of λαjAαj\lambda^{\alpha j}A_{\alpha j} under QPS=λαjdαjQ_{\rm PS}=\oint\lambda^{\alpha j}d_{\alpha j}. It would be interesting to further study this connection between the extended hybrid formalism presented in this paper and a possible six-dimensional pure spinor description of the superstring involving the constrained λαj\lambda^{\alpha j}. The latter might be a promising research direction for uncovering a description of the superstring in d=6d=6 𝒩=1\mathcal{N}=1 harmonic superspace Howe:1985ar .

Acknowledgements

CAD would like to thank Nathan Berkovits for discussions and suggestions, as well as FAPESP grant numbers 2022/14599-0 and 2023/00015-0 for financial support.

Appendix A 𝓝=𝟐\mathcal{N}=2 and small 𝓝=𝟒\mathcal{N}=4 superconformal algebras

We present the general structure of 𝒩=2\mathcal{N}=2 and small 𝒩=4\mathcal{N}=4 superconformal algebras, as well as their twisted counterparts. We do not try to address questions such as when and how these algebras can be realized.

A.1 𝒩=2\mathcal{N}=2 superconformal algebra

The 𝒩=2\mathcal{N}=2 superconformal algebra with central charge cc satisfied by the generators {J,G+,G,T}\{J,G^{+},G^{-},T\} is given by

T(y)T(z)\displaystyle T(y)T(z) c2(yz)4+2T(z)(yz)2+T(z)(yz),\displaystyle\sim\frac{\frac{c}{2}}{(y-z)^{4}}+\frac{2T(z)}{(y-z)^{2}}+\frac{\partial T(z)}{(y-z)}\,, (54a)
G+(y)G(z)\displaystyle G^{+}(y)G^{-}(z) c3(yz)3+J(z)(yz)2+T(z)+12J(z)(yz),\displaystyle\sim\frac{\frac{c}{3}}{(y-z)^{3}}+\frac{J(z)}{(y-z)^{2}}+\frac{T(z)+\frac{1}{2}\partial J(z)}{(y-z)}\,, (54b)
T(y)G±(z)\displaystyle T(y)G^{\pm}(z) 32G±(z)(yz)2+G±(z)(yz),\displaystyle\sim\frac{\frac{3}{2}G^{\pm}(z)}{(y-z)^{2}}+\frac{\partial G^{\pm}(z)}{(y-z)}\,, (54c)
T(y)J(z)\displaystyle T(y)J(z) J(z)(yz)2+J(z)(yz),\displaystyle\sim\frac{J(z)}{(y-z)^{2}}+\frac{\partial J(z)}{(y-z)}\,, (54d)
J(y)J(z)\displaystyle J(y)J(z) c3(yz)2,\displaystyle\sim\frac{\frac{c}{3}}{(y-z)^{2}}\,, (54e)
J(y)G±(z)\displaystyle J(y)G^{\pm}(z) ±G±(z)(yz).\displaystyle\sim\pm\frac{G^{\pm}(z)}{(y-z)}\,. (54f)

Here, TT has conformal weight 2, G±G^{\pm} has conformal weight 32\frac{3}{2} and JJ has conformal weight 1.

Equivalently, in tems of the modes, the 𝒩=2\mathcal{N}=2 SCA reads

[Lm,Ln]\displaystyle[L_{m},L_{n}] =(mn)Lm+n+c12(m3m)δm,n,\displaystyle=(m-n)L_{m+n}+\tfrac{c}{12}(m^{3}-m)\delta_{m,-n}\,, (55a)
{Gr+,Gs}\displaystyle\{G^{+}_{r},G^{-}_{s}\} =Lr+s+12(rs)Jr+s+c6(r214)δr,s,\displaystyle=L_{r+s}+\tfrac{1}{2}(r-s)J_{r+s}+\tfrac{c}{6}(r^{2}-\tfrac{1}{4})\delta_{r,-s}\,, (55b)
[Lm,Gr±]\displaystyle[L_{m},G^{\pm}_{r}] =(12mr)Gm+r±,\displaystyle=(\tfrac{1}{2}m-r)G^{\pm}_{m+r}\,, (55c)
[Lm,Jn]\displaystyle[L_{m},J_{n}] =nJm+n,\displaystyle=-nJ_{m+n}\,, (55d)
[Jm,Jn]\displaystyle[J_{m},J_{n}] =c3mδm,n,\displaystyle=\tfrac{c}{3}m\delta_{m,-n}\,, (55e)
[Jm,Gr±]\displaystyle[J_{m},G^{\pm}_{r}] =±Gm+r±.\displaystyle=\pm G^{\pm}_{m+r}\,. (55f)

A.2 Twisted 𝒩=2\mathcal{N}=2 superconformal algebra

To construct an 𝒩=2\mathcal{N}=2 twisted theory, we modify the stress-tensor TT by adding +12J+\frac{1}{2}\partial J to it, so that

T+12JT,T+\frac{1}{2}\partial J\mapsto T\,, (56)

and one can see that the dimension of every field in the theory is modified by 12-\frac{1}{2} its U(1)-charge, which is generated by JJ. In particular, looking at the structure of the algebra (54), we see that the conformal weight of G+G^{+} gets shifted to 1, that of GG^{-} gets shifted to 2 and the conformal weight of the rest of the generators stay untouched. More importantly, the shift in the stress-tensor (56) results in the vanishing of the conformal anomaly in the TTTT OPE, so that the twisted stress-tensor is a primary. In contrast, there appears a triple pole in the TJTJ OPE proportional to the central charge cc.

With the above considerations, we can now write the twisted 𝒩=2\mathcal{N}=2 superconformal algebra with central charge cc satisfied by the twisted generators {J,G+,G,T}\{J,G^{+},G^{-},T\}999Here, TT is the shifted stress-tensor of (56).

T(y)T(z)\displaystyle T(y)T(z) 2T(z)(yz)2+T(z)(yz),\displaystyle\sim\frac{2T(z)}{(y-z)^{2}}+\frac{\partial T(z)}{(y-z)}\,, (57a)
G+(y)G(z)\displaystyle G^{+}(y)G^{-}(z) c3(yz)3+J(z)(yz)2+T(z)(yz),\displaystyle\sim\frac{\frac{c}{3}}{(y-z)^{3}}+\frac{J(z)}{(y-z)^{2}}+\frac{T(z)}{(y-z)}\,, (57b)
T(y)G+(z)\displaystyle T(y)G^{+}(z) G+(z)(yz)2+G+(z)(yz),\displaystyle\sim\frac{G^{+}(z)}{(y-z)^{2}}+\frac{\partial G^{+}(z)}{(y-z)}\,, (57c)
T(y)G(z)\displaystyle T(y)G^{-}(z) 2G(z)(yz)2+G(z)(yz),\displaystyle\sim\frac{2G^{-}(z)}{(y-z)^{2}}+\frac{\partial G^{-}(z)}{(y-z)}\,, (57d)
T(y)J(z)\displaystyle T(y)J(z) c3(yz)3+J(z)(yz)2+J(z)(yz),\displaystyle\sim-\frac{\frac{c}{3}}{(y-z)^{3}}+\frac{J(z)}{(y-z)^{2}}+\frac{\partial J(z)}{(y-z)}\,, (57e)
J(y)J(z)\displaystyle J(y)J(z) c3(yz)2,\displaystyle\sim\frac{\frac{c}{3}}{(y-z)^{2}}\,, (57f)
J(y)G±(z)\displaystyle J(y)G^{\pm}(z) ±G±(z)(yz).\displaystyle\sim\pm\frac{G^{\pm}(z)}{(y-z)}\,. (57g)

A.3 Small and twisted small 𝒩=4\mathcal{N}=4 superconformal algebras

A small 𝒩=4\mathcal{N}=4 superconformal algebra consists of a conformal weight 2 generator TT, four conformal weight 32\frac{3}{2} fermionic currents {G±,G~±}\{G^{\pm},\widetilde{G}^{\pm}\} and three conformal weight 1 bosonic currents {J,J++,J}\{J,J^{++},J^{--}\} forming an 𝔰𝔲(2)c6\mathfrak{su}(2)_{\frac{c}{6}} current algebra. In the description that we are using, it is convenient to build the small 𝒩=4\mathcal{N}=4 SCA by starting with the 𝒩=2\mathcal{N}=2 SCA in Appendix (A.1) and lifting the 𝔲(1)c6\mathfrak{u}(1)_{\frac{c}{6}} to an 𝔰𝔲(2)c6\mathfrak{su}(2)_{\frac{c}{6}} current algebra. To do that, one adds to the generators {J,G+,G,T}\{J,G^{+},G^{-},T\} the conformal weight 1 bosonic currents J++J^{++} and JJ^{--} of U(1){\rm U(1)} charge ±2\pm 2, respectively, satisfying the OPES

J(y)J±±(z)\displaystyle J(y)J^{\pm\pm}(z) ±2J±±(z)(yz),\displaystyle\sim\pm 2\frac{J^{\pm\pm}(z)}{(y-z)}\,, (58a)
J++(y)J(z)\displaystyle J^{++}(y)J^{--}(z) c6(yz)2+J(z)(yz).\displaystyle\sim\frac{\frac{c}{6}}{(y-z)^{2}}+\frac{J(z)}{(y-z)}\,. (58b)

Note that the level of the 𝔰𝔲(2)\mathfrak{su}(2) current algebra is fixed by the Jacobi identities and the level of the 𝔲(1)\mathfrak{u}(1) current algebra. On top of that, for the algebra to close, we also need to add two fermionic generators G~±\widetilde{G}^{\pm} and, in addition to the non-regular OPEs in eq. (54), we also have

J±±(y)G(z)\displaystyle J^{\pm\pm}(y)G^{\mp}(z) G~±(z)(yz),\displaystyle\sim\mp\frac{\widetilde{G}^{\pm}(z)}{(y-z)}\,, (59a)
J±±(y)G~(z)\displaystyle J^{\pm\pm}(y)\widetilde{G}^{\mp}(z) ±G±(z)(yz),\displaystyle\sim\pm\frac{G^{\pm}(z)}{(y-z)}\,, (59b)
G+(y)G~+(z)\displaystyle G^{+}(y)\widetilde{G}^{+}(z) 2J++(z)(yz)2+J++(z)(yz),\displaystyle\sim\frac{2J^{++}(z)}{(y-z)^{2}}+\frac{\partial J^{++}(z)}{(y-z)}\,, (59c)
G~(y)G(z)\displaystyle\widetilde{G}^{-}(y)G^{-}(z) 2J(z)(yz)2+J(z)(yz),\displaystyle\sim\frac{2J^{--}(z)}{(y-z)^{2}}+\frac{\partial J^{--}(z)}{(y-z)}\,, (59d)
G~+(y)G~(z)\displaystyle\widetilde{G}^{+}(y)\widetilde{G}^{-}(z) c3(yz)3+J(z)(yz)2+T(z)+12J(z)(yz),\displaystyle\sim\frac{\frac{c}{3}}{(y-z)^{3}}+\frac{J(z)}{(y-z)^{2}}+\frac{T(z)+\frac{1}{2}\partial J(z)}{(y-z)}\,, (59e)
T(y)J±±(z)\displaystyle T(y)J^{\pm\pm}(z) J±±(z)(yz)2+J±±(z)(yz),\displaystyle\sim\frac{J^{\pm\pm}(z)}{(y-z)^{2}}+\frac{\partial J^{\pm\pm}(z)}{(y-z)}\,, (59f)
T(y)G~±(z)\displaystyle T(y)\widetilde{G}^{\pm}(z) 32G~±(z)(yz)2+G~±(z)(yz).\displaystyle\sim\frac{\frac{3}{2}\widetilde{G}^{\pm}(z)}{(y-z)^{2}}+\frac{\partial\widetilde{G}^{\pm}(z)}{(y-z)}\,. (59g)

Therefore, we say that the generators {J,J±±,G±,G~±,T}\{J,J^{\pm\pm},G^{\pm},\widetilde{G}^{\pm},T\} form a small 𝒩=4\mathcal{N}=4 SCA with central charge cc when they satisfy eqs. (54), (58) and (59).

The twisted small 𝒩=4\mathcal{N}=4 SCA with central charge cc can be constructed from the untwisted one in the same way as we constructed the twisted 𝒩=2\mathcal{N}=2 SCA from eq. (54), i.e., by shifting the stress-tensor as in eq. (56). With respect to the twisted stress-tensor, the conformal weight of J++J^{++} becomes zero, that of JJ^{--} becomes 2, the conformal weight of G+G^{+} and G~+\widetilde{G}^{+} gets shifted to 1 and that of GG^{-} and G~\widetilde{G}^{-} gets shifted to 2. Consequently, we say that the twisted generators {J,J±±,G±,G~±,T}\{J,J^{\pm\pm},G^{\pm},\widetilde{G}^{\pm},T\} form a twisted small 𝒩=4\mathcal{N}=4 SCA with central charge cc when they obey eqs. (57), (58) and

J±±(y)G(z)\displaystyle J^{\pm\pm}(y)G^{\mp}(z) G~±(z)(yz),\displaystyle\sim\mp\frac{\widetilde{G}^{\pm}(z)}{(y-z)}\,, (60a)
J±±(y)G~(z)\displaystyle J^{\pm\pm}(y)\widetilde{G}^{\mp}(z) ±G±(z)(yz),\displaystyle\sim\pm\frac{G^{\pm}(z)}{(y-z)}\,, (60b)
G+(y)G~+(z)\displaystyle G^{+}(y)\widetilde{G}^{+}(z) 2J++(z)(yz)2+J++(z)(yz),\displaystyle\sim\frac{2J^{++}(z)}{(y-z)^{2}}+\frac{\partial J^{++}(z)}{(y-z)}\,, (60c)
G~(y)G(z)\displaystyle\widetilde{G}^{-}(y)G^{-}(z) 2J(z)(yz)2+J(z)(yz),\displaystyle\sim\frac{2J^{--}(z)}{(y-z)^{2}}+\frac{\partial J^{--}(z)}{(y-z)}\,, (60d)
G~+(y)G~(z)\displaystyle\widetilde{G}^{+}(y)\widetilde{G}^{-}(z) c3(yz)3+J(z)(yz)2+T(z)(yz),\displaystyle\sim\frac{\frac{c}{3}}{(y-z)^{3}}+\frac{J(z)}{(y-z)^{2}}+\frac{T(z)}{(y-z)}\,, (60e)
T(y)J++(z)\displaystyle T(y)J^{++}(z) J++(z)(yz),\displaystyle\sim\frac{\partial J^{++}(z)}{(y-z)}\,, (60f)
T(y)J(z)\displaystyle T(y)J^{--}(z) 2J(z)(yz)2+J(z)(yz),\displaystyle\sim\frac{2J^{--}(z)}{(y-z)^{2}}+\frac{\partial J^{--}(z)}{(y-z)}\,, (60g)
T(y)G~+(z)\displaystyle T(y)\widetilde{G}^{+}(z) G~+(z)(yz)2+G~+(z)(yz),\displaystyle\sim\frac{\widetilde{G}^{+}(z)}{(y-z)^{2}}+\frac{\partial\widetilde{G}^{+}(z)}{(y-z)}\,, (60h)
T(y)G~(z)\displaystyle T(y)\widetilde{G}^{-}(z) 2G~(z)(yz)2+G~(z)(yz).\displaystyle\sim\frac{2\widetilde{G}^{-}(z)}{(y-z)^{2}}+\frac{\partial\widetilde{G}^{-}(z)}{(y-z)}\,. (60i)

With respect to the 𝔰𝔲(2)\mathfrak{su}(2) symmetry, TT transforms as a singlet and G+G^{+} (G)(G^{-}) transforms as an upper (lower) component of an 𝔰𝔲(2)\mathfrak{su}(2) doublet whose lower (upper) component is G~\widetilde{G}^{-}(G~+)\widetilde{G}^{+}). This 𝔰𝔲(2)\mathfrak{su}(2) rotates the different choices of the U(1){\rm U(1)} current JJ into one another and computations are equivalent no matter what choice of this U(1){\rm U(1)} one picks Berkovits:1994vy .

In addition, there is another SU(2) symmetry (that we refer to as SU(2)outer) of the 𝒩=4\mathcal{N}=4 SCA which acts by outer automorphisms. To see that, consider the following linear combinations of the fermionic generators101010Note that here they obey the hermiticity properties (𝐆±)=𝐆~(\mathbf{G}^{\pm})^{*}=\mathbf{\widetilde{G}}^{\mp} and (𝐆~±)=𝐆~(\mathbf{\widetilde{G}}^{\pm})^{*}=\mathbf{\widetilde{G}}^{\mp}.

𝐆+\displaystyle\mathbf{G}^{+} =u1G+u2G~+,\displaystyle=u_{1}^{*}G^{+}-u_{2}^{*}\widetilde{G}^{+}\,, (61a)
𝐆\displaystyle\mathbf{G}^{-} =u1Gu2G~,\displaystyle=u_{1}G^{-}-u_{2}\widetilde{G}^{-}\,, (61b)
𝐆~+\displaystyle\mathbf{\widetilde{G}}^{+} =u1G~++u2G+,\displaystyle=u_{1}\widetilde{G}^{+}+u_{2}G^{+}\,, (61c)
𝐆~\displaystyle\mathbf{\widetilde{G}}^{-} =u1G~+u2G,\displaystyle=u_{1}^{*}\widetilde{G}^{-}+u_{2}^{*}G^{-}\,, (61d)

by demanding that 𝐆±\mathbf{G}^{\pm} and 𝐆~±\mathbf{\widetilde{G}}^{\pm} satisfy the same algebra as G±G^{\pm} and G~±\widetilde{G}^{\pm} we get the relation |u1|2+|u2|2=1|u_{1}|^{2}+|u_{2}|^{2}=1, i.e., u1u_{1} and u2u_{2} are elements of SU(2)outer. This symmetry that rotates the supercurrents parametrizes the different embeddings of the 𝒩=2\mathcal{N}=2 SCA into the 𝒩=4\mathcal{N}=4 SCA and, in general, is not a symmetry of the theory Berkovits:1994vy Berkovits:1999im .

Lastly, we should mention the important fact that a small 𝒩=4\mathcal{N}=4 SCA can be constructed from any c=6c=6 𝒩=2\mathcal{N}=2 SCA by defining the SU(2)SU(2) currents to be JJ, J++=eJJ^{++}=-e^{\int J} and J=eJJ^{--}=e^{-\int J}. The condition c=6c=6 is necessary in order for J++J^{++} and JJ^{--} to have conformal weight 1 when the algebra is not twisted. As an example, the RNS superstring has a description as a c=6c=6 𝒩=2\mathcal{N}=2 string and, therefore, can also be described as an 𝒩=4\mathcal{N}=4 topological string Berkovits:1994vy .

Appendix B Normal-ordering prescription

The normal-ordered product of the operators 𝒪1\mathcal{O}_{1} and 𝒪2\mathcal{O}_{2} is denoted by (𝒪1𝒪2)(\mathcal{O}_{1}\mathcal{O}_{2}), which is defined as

(𝒪1𝒪2)(z)=dxxz𝒪1(x)𝒪2(z).(\mathcal{O}_{1}\mathcal{O}_{2})(z)=\oint\frac{dx}{x-z}\mathcal{O}_{1}(x)\mathcal{O}_{2}(z)\,. (62)

This prescription consists in subtracting the poles evaluated at the point of the second entry. By convention, when nothing is specified, our expressions are normal-ordered from the right, e.g., 𝒪1𝒪2𝒪3𝒪n=(𝒪1(𝒪2(𝒪3(𝒪n))))\mathcal{O}_{1}\mathcal{O}_{2}\mathcal{O}_{3}...\mathcal{O}_{n}=(\mathcal{O}_{1}(\mathcal{O}_{2}(\mathcal{O}_{3}(...\mathcal{O}_{n})...))). Also, whenever we are dealing with derivatives of exponentials, such as 2eρ\partial^{2}e^{\rho}, the ordering is always done with the exponential on the right, so that 2eρ=(ρ((ρ)eρ))+((2ρ)eρ)\partial^{2}e^{\rho}=(\partial\rho((\partial\rho)e^{\rho}))+((\partial^{2}\rho)e^{\rho}). Putting the exponential on the rightmost position agrees with the usual conformal-normal-ordering Polchinski:1998rq when dealing with free fields.

Schematically, note that in terms of the definition in eq. (62), we have DiFrancesco:1997nk

(𝒪1(𝒪2𝒪3))(z)=dxxz𝒪1(x)(𝒪2𝒪3)(z)=dxxzdyyz𝒪1(x)𝒪2(y)𝒪3(z).(\mathcal{O}_{1}(\mathcal{O}_{2}\mathcal{O}_{3}))(z)=\oint\frac{dx}{x-z}\,\mathcal{O}_{1}(x)(\mathcal{O}_{2}\mathcal{O}_{3})(z)=\oint\frac{dx}{x-z}\oint\frac{dy}{y-z}\,\mathcal{O}_{1}(x)\mathcal{O}_{2}(y)\mathcal{O}_{3}(z)\,. (63)

Appendix C Determining 𝑮+G^{+}

C.1 Details of the computation

We have that

Ghyb+=124ϵαβγδ[Dα,{Dβ,[Dγ,{Dδ,e2ρ+3iσ}]}]+GC+,G^{+}_{\rm hyb}=-\frac{1}{24}\epsilon^{\alpha\beta\gamma\delta}[D_{\alpha},\{D_{\beta},[D_{\gamma},\{D_{\delta},e^{2\rho+3i\sigma}\}]\}]+G_{C}^{+}\,, (64)

where Dα=dα2eρiσdα1D_{\alpha}=d_{\alpha 2}-e^{-\rho-i\sigma}d_{\alpha 1} and the graded bracket [Dα,𝒪}[D_{\alpha},\mathcal{O}\} denotes the single pole in the OPE between DαD_{\alpha} and 𝒪\mathcal{O}. In the following, we evaluate each of the four contributions separately.

First contribution.

𝑑yDδ(y)e2ρ+3iσ(z)\displaystyle\oint dy\,D_{\delta}(y)e^{2\rho+3i\sigma}(z) =𝑑y(dδ2dδ1eρiσ)(y)e2ρ+3iσ(z)\displaystyle=\oint dy\,(d_{\delta 2}-d_{\delta 1}e^{-\rho-i\sigma})(y)e^{2\rho+3i\sigma}(z)
=(dδ1eρ+2iσ)(z).\displaystyle=-(d_{\delta 1}e^{\rho+2i\sigma})(z)\,. (65)

The term appearing in (65) comes from the single pole in the OPE between
(dδ1eρiσ)(y)(d_{\delta 1}e^{-\rho-i\sigma})(y) and e2ρ+3iσ(z)e^{2\rho+3i\sigma}(z).

Second contribution.

𝑑yDγ(y)(dδ1eρ+2iσ)(z)\displaystyle-\oint dy\,D_{\gamma}(y)(d_{\delta 1}e^{\rho+2i\sigma})(z) =𝑑y(dγ2dγ1eρiσ)(y)(dδ1eρ+2iσ)(z)\displaystyle=-\oint dy\,(d_{\gamma 2}-d_{\gamma 1}e^{-\rho-i\sigma})(y)(d_{\delta 1}e^{\rho+2i\sigma})(z)
=i(Πγδeρ+2iσ)(z)(dγ1dδ1eiσ)(z).\displaystyle=i(\Pi_{\gamma\delta}e^{\rho+2i\sigma})(z)-(d_{\gamma 1}d_{\delta 1}e^{i\sigma})(z)\,. (66)

The first term in (66) comes from the single pole in the OPE of dγ2(y)d_{\gamma 2}(y) and
(dδ1eρ+2iσ)(z)(d_{\delta 1}e^{\rho+2i\sigma})(z). The second term comes from the single pole in the OPE between (dγ1eρiσ)(y)(d_{\gamma 1}e^{-\rho-i\sigma})(y) and (dδ1eρ+2iσ)(z)(d_{\delta 1}e^{\rho+2i\sigma})(z).

Third contribution.

Now we need to compute dyDβ(y)(i(Πγδeρ+2iσ)(z)\oint dy\,D_{\beta}(y)\Big{(}i(\Pi_{\gamma\delta}e^{\rho+2i\sigma})(z)
(dγ1dδ1eiσ)(z))-(d_{\gamma 1}d_{\delta 1}e^{i\sigma})(z)\Big{)}, which is most easily obtained by calculating the relevant terms independently. We have that

𝑑ydβ2(y)(1)(dγ1dδ1eiσ)(z)\displaystyle\oint dy\,d_{\beta 2}(y)(-1)(d_{\gamma 1}d_{\delta 1}e^{i\sigma})(z)
=𝑑ydβ2(y)dxxzdγ1(x)(dδ1eiσ)(z)\displaystyle\qquad=-\oint dy\,d_{\beta 2}(y)\oint\frac{dx}{x-z}\,d_{\gamma 1}(x)(d_{\delta 1}e^{i\sigma})(z)
=dydxxz[i(yx)1Πβγ(x)(dδ1eiσ)(z)\displaystyle\qquad=-\oint dy\oint\frac{dx}{x-z}\,\Big{[}-i(y-x)^{-1}\Pi_{\beta\gamma}(x)(d_{\delta 1}e^{i\sigma})(z)
dγ1(x)(i(yz)1(Πβδeiσ)(z))]\displaystyle\qquad-d_{\gamma 1}(x)\Big{(}-i(y-z)^{-1}(\Pi_{\beta\delta}e^{i\sigma})(z)\Big{)}\Big{]}
=i(Πβγ(dδ1eiσ))(z)i(dγ1(Πβδeiσ))(z)\displaystyle\qquad=i(\Pi_{\beta\gamma}(d_{\delta 1}e^{i\sigma}))(z)-i(d_{\gamma 1}(\Pi_{\beta\delta}e^{i\sigma}))(z)
=i(dδ1(Πβγeiσ))(z)i(dγ1(Πβδeiσ))(z)+ϵϵβγδ(2θϵ2eiσ)(z),\displaystyle\qquad=i(d_{\delta 1}(\Pi_{\beta\gamma}e^{i\sigma}))(z)-i(d_{\gamma 1}(\Pi_{\beta\delta}e^{i\sigma}))(z)+\epsilon_{\epsilon\beta\gamma\delta}(\partial^{2}\theta^{\epsilon 2}e^{i\sigma})(z)\,, (67)

where we used that ([Πβγ,dδ1])=𝑑y(Πβγ(y)dδ1(z)dδ1(y)Πβγ(z))=([\Pi_{\beta\gamma},d_{\delta 1}])=\oint dy\,\Big{(}\Pi_{\beta\gamma}(y)d_{\delta 1}(z)-d_{\delta 1}(y)\Pi_{\beta\gamma}(z)\Big{)}=
iϵϵβγδ2θϵ2(z)-i\epsilon_{\epsilon\beta\gamma\delta}\partial^{2}\theta^{\epsilon 2}(z) according to eqs. (22). We also need

𝑑ydβ2(y)i(Πγδeρ+2iσ)(z)\displaystyle\oint dy\,d_{\beta 2}(y)i(\Pi_{\gamma\delta}e^{\rho+2i\sigma})(z) =ϵϵβγδ(θϵ1eρ+2iσ)(z).\displaystyle=\epsilon_{\epsilon\beta\gamma\delta}(\partial\theta^{\epsilon 1}e^{\rho+2i\sigma})(z)\,. (68)

And

𝑑y(dβ1eρiσ)(y)(dγ1dδ1eiσ)(z)=(dβ1dγ1dδ1eρ)(z).\displaystyle\oint dy\,(d_{\beta 1}e^{-\rho-i\sigma})(y)(d_{\gamma 1}d_{\delta 1}e^{i\sigma})(z)=(d_{\beta 1}d_{\gamma 1}d_{\delta 1}e^{-\rho})(z)\,. (69)

And lastly, we have

𝑑y(i)(dβ1eρiσ)(y)(Πγδeρ+2iσ)(z)\displaystyle\oint dy\,(-i)(d_{\beta 1}e^{-\rho-i\sigma})(y)(\Pi_{\gamma\delta}e^{\rho+2i\sigma})(z)
=i𝑑y(dβ1eρiσ)(y)dxxzΠγδ(x)eρ+2iσ(z)\displaystyle\qquad=-i\oint dy\,(d_{\beta 1}e^{-\rho-i\sigma})(y)\oint\frac{dx}{x-z}\,\Pi_{\gamma\delta}(x)e^{\rho+2i\sigma}(z)
=idydxxz(i(yx)1ϵϵβγδ(θϵ2eρiσ)(x)eρ+2iσ(z)\displaystyle\qquad=-i\oint dy\oint\frac{dx}{x-z}\,\Big{(}i(y-x)^{-1}\epsilon_{\epsilon\beta\gamma\delta}(\partial\theta^{\epsilon 2}e^{-\rho-i\sigma})(x)e^{\rho+2i\sigma}(z)
Πγδ(x)(yz)1(dβ1eiσ)(z))\displaystyle\qquad-\Pi_{\gamma\delta}(x)(y-z)^{-1}(d_{\beta 1}e^{i\sigma})(z)\Big{)}
=ϵϵβγδ((θϵ2eρiσ)eρ+2iσ)(z)+i(Πγδ(dβ1eiσ))(z)\displaystyle\qquad=\epsilon_{\epsilon\beta\gamma\delta}((\partial\theta^{\epsilon 2}e^{-\rho-i\sigma})e^{\rho+2i\sigma})(z)+i(\Pi_{\gamma\delta}(d_{\beta 1}e^{i\sigma}))(z)
=ϵϵβγδ(θϵ2((ρ+iσ)eiσ))(z)+i(dβ1(Πγδeiσ))(z),\displaystyle\qquad=\epsilon_{\epsilon\beta\gamma\delta}(\partial\theta^{\epsilon 2}(\partial(\rho+i\sigma)e^{i\sigma}))(z)+i(d_{\beta 1}(\Pi_{\gamma\delta}e^{i\sigma}))(z)\,, (70)

where it was used that ϵϵβγδ((θϵ2eρiσ)eρ+2iσ)=ϵϵβγδ(θϵ2((ρ+iσ)eiσ))\epsilon_{\epsilon\beta\gamma\delta}((\partial\theta^{\epsilon 2}e^{-\rho-i\sigma})e^{\rho+2i\sigma})=\epsilon_{\epsilon\beta\gamma\delta}(\partial\theta^{\epsilon 2}(\partial(\rho+i\sigma)e^{i\sigma}))
ϵϵβγδ(2θϵ2eiσ)-\epsilon_{\epsilon\beta\gamma\delta}(\partial^{2}\theta^{\epsilon 2}e^{i\sigma}) and i(Πγδ(dβ1eiσ))=i(dβ1(Πγδeiσ))+ϵϵβγδ(2θϵ2eiσ)i(\Pi_{\gamma\delta}(d_{\beta 1}e^{i\sigma}))=i(d_{\beta 1}(\Pi_{\gamma\delta}e^{i\sigma}))+\epsilon_{\epsilon\beta\gamma\delta}(\partial^{2}\theta^{\epsilon 2}e^{i\sigma}) to go from the third to the last line in the computation of (70).

Gathering eqs. (67)–(70), we have

𝑑yDβ(y)(i(Πγδeρ+2iσ)(z)(dγ1dδ1eiσ)(z))\displaystyle\oint dy\,D_{\beta}(y)\Big{(}i(\Pi_{\gamma\delta}e^{\rho+2i\sigma})(z)-(d_{\gamma 1}d_{\delta 1}e^{i\sigma})(z)\Big{)}
=(dβ1dγ1dδ1eρ)(z)+ϵϵβγδ(θϵ1eρ+2iσ)(z)+ϵϵβγδ(2θϵ2eiσ)(z)\displaystyle\qquad=(d_{\beta 1}d_{\gamma 1}d_{\delta 1}e^{-\rho})(z)+\epsilon_{\epsilon\beta\gamma\delta}(\partial\theta^{\epsilon 1}e^{\rho+2i\sigma})(z)+\epsilon_{\epsilon\beta\gamma\delta}(\partial^{2}\theta^{\epsilon 2}e^{i\sigma})(z)
+ϵϵβγδ(θϵ2((ρ+iσ)eiσ))(z)+i(dβ1(Πγδeiσ))(z)+i(dδ1(Πβγeiσ))(z)\displaystyle\qquad+\epsilon_{\epsilon\beta\gamma\delta}(\partial\theta^{\epsilon 2}(\partial(\rho+i\sigma)e^{i\sigma}))(z)+i(d_{\beta 1}(\Pi_{\gamma\delta}e^{i\sigma}))(z)+i(d_{\delta 1}(\Pi_{\beta\gamma}e^{i\sigma}))(z)
i(dγ1(Πβδeiσ))(z).\displaystyle\qquad-i(d_{\gamma 1}(\Pi_{\beta\delta}e^{i\sigma}))(z)\,. (71)

Fourth contribution.

According to eq. (64), to obtain Ghyb+G^{+}_{\rm hyb}, we still need to act with 124ϵαβγδ𝑑yDα(y)-\frac{1}{24}\epsilon^{\alpha\beta\gamma\delta}\oint dy\,D_{\alpha}(y) in eq. (71). We get that

124ϵαβγδ𝑑yDα(y)(dβ1dγ1dδ1eρ)(z)\displaystyle-\frac{1}{24}\epsilon^{\alpha\beta\gamma\delta}\oint dy\,D_{\alpha}(y)(d_{\beta 1}d_{\gamma 1}d_{\delta 1}e^{-\rho})(z)
=124ϵαβγδdy(dα2(y)dxxzdβ1(x)(dγ1dδ1eρ)(z)\displaystyle\qquad=-\frac{1}{24}\epsilon^{\alpha\beta\gamma\delta}\oint dy\,\Big{(}d_{\alpha 2}(y)\oint\frac{dx}{x-z}\,d_{\beta 1}(x)(d_{\gamma 1}d_{\delta 1}e^{-\rho})(z)
(dα1eρiσ)(y)(dβ1dγ1dδ1eρ)(z))\displaystyle\qquad-(d_{\alpha 1}e^{-\rho-i\sigma})(y)(d_{\beta 1}d_{\gamma 1}d_{\delta 1}e^{-\rho})(z)\Big{)}
=124ϵαβγδdydxxz[i(yx)1Παβ(x)(dγ1dδ1eρ)(z)\displaystyle\qquad=-\frac{1}{24}\epsilon^{\alpha\beta\gamma\delta}\oint dy\oint\frac{dx}{x-z}\,\Big{[}-i(y-x)^{-1}\Pi_{\alpha\beta}(x)(d_{\gamma 1}d_{\delta 1}e^{-\rho})(z)
dβ1(x)(i(yz)1(Παγ(dδ1eρ))(z)+i(yz)1(dγ1(Παδeρ))(z))\displaystyle\qquad-d_{\beta 1}(x)\Big{(}-i(y-z)^{-1}(\Pi_{\alpha\gamma}(d_{\delta 1}e^{-\rho}))(z)+i(y-z)^{-1}(d_{\gamma 1}(\Pi_{\alpha\delta}e^{-\rho}))(z)\Big{)}
+(yz)1(dα1dβ1dγ1dδ1e2ρiσ)(z)]\displaystyle\qquad+(y-z)^{-1}(d_{\alpha 1}d_{\beta 1}d_{\gamma 1}d_{\delta 1}e^{-2\rho-i\sigma})(z)\Big{]}
=124ϵαβγδ(i(Παβ(dγ1(dδ1eρ)))(z)+i(dβ1(Παγ(dδ1eρ)))(z)\displaystyle\qquad=-\frac{1}{24}\epsilon^{\alpha\beta\gamma\delta}\Big{(}-i(\Pi_{\alpha\beta}(d_{\gamma 1}(d_{\delta 1}e^{-\rho})))(z)+i(d_{\beta 1}(\Pi_{\alpha\gamma}(d_{\delta 1}e^{-\rho})))(z)
i(dβ1(dγ1(Παδeρ)))(z))e2ρiσ(d1)4(z)\displaystyle\qquad-i(d_{\beta 1}(d_{\gamma 1}(\Pi_{\alpha\delta}e^{-\rho})))(z)\Big{)}-e^{-2\rho-i\sigma}(d_{1})^{4}(z)
=e2ρiσ(d1)4(z)+i4(eρ(dα1(dβ1Παβ)))(z)+34(eρdα12θα2)(z),\displaystyle\qquad=-e^{-2\rho-i\sigma}(d_{1})^{4}(z)+\frac{i}{4}(e^{-\rho}(d_{\alpha 1}(d_{\beta 1}\Pi^{\alpha\beta})))(z)+\frac{3}{4}(e^{-\rho}d_{\alpha 1}\partial^{2}\theta^{\alpha 2})(z)\,, (72)

where (d1)4=124ϵαβγδdα1dβ1dγ1dδ1(d_{1})^{4}=\frac{1}{24}\epsilon^{\alpha\beta\gamma\delta}d_{\alpha 1}d_{\beta 1}d_{\gamma 1}d_{\delta 1} and, to get the last line, we used that
i(eρ(dα1(Παβdβ1)))=i(eρ(dα1(dβ1Παβ)))3(eρdα12θα2)-i(e^{-\rho}(d_{\alpha 1}(\Pi^{\alpha\beta}d_{\beta 1})))=-i(e^{-\rho}(d_{\alpha 1}(d_{\beta 1}\Pi^{\alpha\beta})))-3(e^{-\rho}d_{\alpha 1}\partial^{2}\theta^{\alpha 2}) and
i(eρ(Παβ(dα1dβ1)))=i(eρ(dα1(dβ1Παβ)))6(eρdα12θα2)-i(e^{-\rho}(\Pi^{\alpha\beta}(d_{\alpha 1}d_{\beta 1})))=-i(e^{-\rho}(d_{\alpha 1}(d_{\beta 1}\Pi^{\alpha\beta})))-6(e^{-\rho}d_{\alpha 1}\partial^{2}\theta^{\alpha 2}).

The next terms are

124ϵαβγδ𝑑yDα(y)ϵϵβγδ(θϵ1eρ+2iσ)(z)\displaystyle-\frac{1}{24}\epsilon^{\alpha\beta\gamma\delta}\oint dy\,D_{\alpha}(y)\epsilon_{\epsilon\beta\gamma\delta}(\partial\theta^{\epsilon 1}e^{\rho+2i\sigma})(z)
=14𝑑y(dα1eρiσ)(y)(θα1eρ+2iσ)(z)\displaystyle\qquad=\frac{1}{4}\oint dy\,(d_{\alpha 1}e^{-\rho-i\sigma})(y)(\partial\theta^{\alpha 1}e^{\rho+2i\sigma})(z)
=14dydxxz(4(yx)1eρiσ(x)eρ+2iσ(z)\displaystyle\qquad=\frac{1}{4}\oint dy\oint\frac{dx}{x-z}\,\Big{(}4(y-x)^{-1}\partial e^{-\rho-i\sigma}(x)e^{\rho+2i\sigma}(z)
+θα1(x)(yz)1(dα1eiσ)(z))\displaystyle\qquad+\partial\theta^{\alpha 1}(x)(y-z)^{-1}(d_{\alpha 1}e^{i\sigma})(z)\Big{)}
=14(dα1(θα1eiσ))(z)12((ρ+iσ)((ρ+iσ)eiσ))(z)+12(2(ρ+iσ)eiσ)(z).\displaystyle\qquad=-\frac{1}{4}(d_{\alpha 1}(\partial\theta^{\alpha 1}e^{i\sigma}))(z)-\frac{1}{2}(\partial(\rho+i\sigma)(\partial(\rho+i\sigma)e^{i\sigma}))(z)+\frac{1}{2}(\partial^{2}(\rho+i\sigma)e^{i\sigma})(z)\,. (73)
124ϵαβγδ𝑑yDα(y)ϵϵβγδ(2θϵ2eiσ)(z)\displaystyle-\frac{1}{24}\epsilon^{\alpha\beta\gamma\delta}\oint dy\,D_{\alpha}(y)\epsilon_{\epsilon\beta\gamma\delta}(\partial^{2}\theta^{\epsilon 2}e^{i\sigma})(z)
=14𝑑y(dα1eρiσ)(y)(2θα2eiσ)(z)\displaystyle\qquad=\frac{1}{4}\oint dy\,(d_{\alpha 1}e^{-\rho-i\sigma})(y)(\partial^{2}\theta^{\alpha 2}e^{i\sigma})(z)
=14(dα12θα2eρ)(z).\displaystyle\qquad=\frac{1}{4}(d_{\alpha 1}\partial^{2}\theta^{\alpha 2}e^{-\rho})(z)\,. (74)
124ϵαβγδ𝑑yDα(y)ϵϵβγδ(θϵ2((ρ+iσ)eiσ))(z)\displaystyle-\frac{1}{24}\epsilon^{\alpha\beta\gamma\delta}\oint dy\,D_{\alpha}(y)\epsilon_{\epsilon\beta\gamma\delta}(\partial\theta^{\epsilon 2}(\partial(\rho+i\sigma)e^{i\sigma}))(z)
=14𝑑y(dα1eρiσ)(y)(θα2((ρ+iσ)eiσ))(z)\displaystyle\qquad=\frac{1}{4}\oint dy\,(d_{\alpha 1}e^{-\rho-i\sigma})(y)(\partial\theta^{\alpha 2}(\partial(\rho+i\sigma)e^{i\sigma}))(z)
=14(dα1(θα2((ρ+iσ)eρ)))(z).\displaystyle\qquad=\frac{1}{4}(d_{\alpha 1}(\partial\theta^{\alpha 2}(\partial(\rho+i\sigma)e^{-\rho})))(z)\,. (75)

When contracted with 124ϵαβγδ-\frac{1}{24}\epsilon^{\alpha\beta\gamma\delta}, the last three terms of (71) amount to
i4((dβ1Παβ)eiσ)-\frac{i}{4}((d_{\beta 1}\Pi^{\alpha\beta})e^{i\sigma}). Therefore, we are left with the expression

i4𝑑yDα(y)((dβ1Παβ)eiσ)(z)\displaystyle-\frac{i}{4}\oint dy\,D_{\alpha}(y)((d_{\beta 1}\Pi^{\alpha\beta})e^{i\sigma})(z)
=i4𝑑y(dα2dα1eρiσ)(y)((dβ1Παβ)eiσ)(z)\displaystyle\qquad=-\frac{i}{4}\oint dy\,(d_{\alpha 2}-d_{\alpha 1}e^{-\rho-i\sigma})(y)((d_{\beta 1}\Pi^{\alpha\beta})e^{i\sigma})(z)
=i4𝑑y(dα2dα1eρiσ)(y)dxxz(dβ1Παβ)(x)eiσ(z)\displaystyle\qquad=-\frac{i}{4}\oint dy\,(d_{\alpha 2}-d_{\alpha 1}e^{-\rho-i\sigma})(y)\oint\frac{dx}{x-z}\,(d_{\beta 1}\Pi^{\alpha\beta})(x)e^{i\sigma}(z)
=i4dydxxz[(2i(yx)1ΠmΠm(x)3i(yx)1(dα1θα1)(x))×\displaystyle\qquad=-\frac{i}{4}\oint dy\oint\frac{dx}{x-z}\,\Big{[}\Big{(}-2i(y-x)^{-1}\Pi^{m}\Pi_{m}(x)-3i(y-x)^{-1}(d_{\alpha 1}\partial\theta^{\alpha 1})(x)\Big{)}\times
×eiσ(z)\displaystyle\qquad\times e^{i\sigma}(z)
3i(yx)1(dα1θα2eρiσ)(x)eiσ(z)(dβ1Παβ)(x)(yz)1(eρdα1)(z)]\displaystyle\qquad-3i(y-x)^{-1}(d_{\alpha 1}\partial\theta^{\alpha 2}e^{-\rho-i\sigma})(x)e^{i\sigma}(z)-(d_{\beta 1}\Pi^{\alpha\beta})(x)(y-z)^{-1}(e^{-\rho}d_{\alpha 1})(z)\Big{]}
=12(Πa¯Πa¯eiσ)(z)34(dα1θα1eiσ)(z)34((dα1θα2eρiσ)eiσ)(z)\displaystyle\qquad=-\frac{1}{2}(\Pi^{\underline{a}}\Pi_{\underline{a}}e^{i\sigma})(z)-\frac{3}{4}(d_{\alpha 1}\partial\theta^{\alpha 1}e^{i\sigma})(z)-\frac{3}{4}((d_{\alpha 1}\partial\theta^{\alpha 2}e^{-\rho-i\sigma})e^{i\sigma})(z)
+i4((dβ1Παβ)(eρdα1))(z)\displaystyle\qquad+\frac{i}{4}((d_{\beta 1}\Pi^{\alpha\beta})(e^{-\rho}d_{\alpha 1}))(z)
=12(Πa¯Πa¯eiσ)(z)34(dα1θα1eiσ)(z)+34(dα1(θα2((ρ+iσ)eρ)))(z)\displaystyle\qquad=-\frac{1}{2}(\Pi^{\underline{a}}\Pi_{\underline{a}}e^{i\sigma})(z)-\frac{3}{4}(d_{\alpha 1}\partial\theta^{\alpha 1}e^{i\sigma})(z)+\frac{3}{4}(d_{\alpha 1}(\partial\theta^{\alpha 2}(\partial(\rho+i\sigma)e^{-\rho})))(z)
+i4(eρ(dα1(dβ1Παβ)))(z).\displaystyle\qquad+\frac{i}{4}(e^{-\rho}(d_{\alpha 1}(d_{\beta 1}\Pi^{\alpha\beta})))(z)\,. (76)

To obtain the last line we used that ((dα1θα2eρiσ)eiσ)=((dα1θα2)eρ)((d_{\alpha 1}\partial\theta^{\alpha 2}e^{-\rho-i\sigma})e^{i\sigma})=(\partial(d_{\alpha 1}\partial\theta^{\alpha 2})e^{-\rho})
(dα1(θα2((ρ+iσ)eρ)))-(d_{\alpha 1}(\partial\theta^{\alpha 2}(\partial(\rho+i\sigma)e^{-\rho}))) and ((dβ1Παβ)(eρdα1))=(eρ(dα1(dβ1Παβ)))((d_{\beta 1}\Pi^{\alpha\beta})(e^{-\rho}d_{\alpha 1}))=(e^{-\rho}(d_{\alpha 1}(d_{\beta 1}\Pi^{\alpha\beta})))
3i((dα1θα2)eρ)-3i(\partial(d_{\alpha 1}\partial\theta^{\alpha 2})e^{-\rho}).

Gathering eqs. (72)–(76), we obtain our final expression

Ghyb+\displaystyle G^{+}_{\rm hyb} =(d1)4e2ρiσ+i2dα1dβ1Παβeρ+dα1θα2(ρ+iσ)eρ+dα12θα2eρ\displaystyle=-(d_{1})^{4}e^{-2\rho-i\sigma}+\frac{i}{2}d_{\alpha 1}d_{\beta 1}\Pi^{\alpha\beta}e^{-\rho}+d_{\alpha 1}\partial\theta^{\alpha 2}\partial(\rho+i\sigma)e^{-\rho}+d_{\alpha 1}\partial^{2}\theta^{\alpha 2}e^{-\rho}
12Πa¯Πa¯eiσdα1θα1eiσ12(ρ+iσ)(ρ+iσ)eiσ\displaystyle-\frac{1}{2}\Pi^{\underline{a}}\Pi_{\underline{a}}e^{i\sigma}-d_{\alpha 1}\partial\theta^{\alpha 1}e^{i\sigma}-\frac{1}{2}\partial(\rho+i\sigma)\partial(\rho+i\sigma)e^{i\sigma}
+122(ρ+iσ)eiσ+GC+,\displaystyle+\frac{1}{2}\partial^{2}(\rho+i\sigma)e^{i\sigma}+G^{+}_{C}\,, (77)

where we have dropped the normal-ordering brackets.

Appendix D 𝒅=𝟔d=6 𝓝=𝟏\mathcal{N}=1 super-Yang-Mills

In this section, we closely follow the d=10d=10 𝒩=1\mathcal{N}=1 super-Yang-Mills description presented in ref. (Mafra:2008gkx, , Appendix B).

To describe d=6d=6 super-Yang-Mills in 𝒩=1\mathcal{N}=1 superspace, we define the super-covariant derivatives

𝔇a¯\displaystyle\mathfrak{D}_{\underline{a}} =a¯+Aa¯,\displaystyle=\partial_{\underline{a}}+A_{\underline{a}}\,, (78a)
𝔇αj\displaystyle\mathfrak{D}_{\alpha j} =αj+Aαj,\displaystyle=\nabla_{\alpha j}+A_{\alpha j}\,, (78b)

where αj=θαji2ϵjkθβkσαβa¯a¯\nabla_{\alpha j}=\frac{\partial}{\partial\theta^{\alpha j}}-\frac{i}{2}\epsilon_{jk}\theta^{\beta k}\sigma^{\underline{a}}_{\alpha\beta}\partial_{\underline{a}} with {αj,βk}=iϵjkσαβa¯a¯\{\nabla_{\alpha j},\nabla_{\beta k}\}=-i\epsilon_{jk}\sigma^{\underline{a}}_{\alpha\beta}\partial_{\underline{a}}. Then, the field-strengths are

Fαjβk\displaystyle F_{\alpha j\beta k} ={𝔇αj,𝔇βk}+iϵjkσαβa¯𝔇a¯,\displaystyle=\{\mathfrak{D}_{\alpha j},\mathfrak{D}_{\beta k}\}+i\epsilon_{jk}\sigma^{\underline{a}}_{\alpha\beta}\mathfrak{D}_{\underline{a}}\,, (79a)
Fαja¯\displaystyle F_{\alpha j\underline{a}} =[𝔇αj,𝔇a¯],\displaystyle=[\mathfrak{D}_{\alpha j},\mathfrak{D}_{\underline{a}}]\,, (79b)
Fa¯b¯\displaystyle F_{\underline{a}\underline{b}} =[𝔇a¯,𝔇b¯],\displaystyle=[\mathfrak{D}_{\underline{a}},\mathfrak{D}_{\underline{b}}]\,, (79c)

which are invariant under the gauge transformations

δAαj\displaystyle\delta A_{\alpha j} =αjΛ,\displaystyle=\nabla_{\alpha j}\Lambda\,, δAa¯\displaystyle\delta A_{\underline{a}} =a¯Λ,\displaystyle=\partial_{\underline{a}}\Lambda\,, (80)

for any Λ\Lambda.

Explicitly, the superspace field-strength constraint Fαjβk=0F_{\alpha j\beta k}=0 reads Howe:1983fr

αjAβk+βkAαj+{Aαj,Aβk}+iϵjkσαβa¯Aa¯=0.\displaystyle\nabla_{\alpha j}A_{\beta k}+\nabla_{\beta k}A_{\alpha j}+\{A_{\alpha j},A_{\beta k}\}+i\epsilon_{jk}\sigma^{\underline{a}}_{\alpha\beta}A_{\underline{a}}=0\,. (81)

Multiplying the above equation by (σa¯b¯c¯)αβ(\sigma^{\underline{a}\underline{b}\underline{c}})^{\alpha\beta} and using that (σa¯b¯c¯)αβσαβd¯=0(\sigma^{\underline{a}\underline{b}\underline{c}})^{\alpha\beta}\sigma^{\underline{d}}_{\alpha\beta}=0, we obtain

(σa¯b¯c¯)αβ(αjAβk+βkAαj+{Aαj,Aβk})\displaystyle(\sigma^{\underline{a}\underline{b}\underline{c}})^{\alpha\beta}(\nabla_{\alpha j}A_{\beta k}+\nabla_{\beta k}A_{\alpha j}+\{A_{\alpha j},A_{\beta k}\}) =0.\displaystyle=0\,. (82)

The converse also follows.

From the Bianchi identity

[{𝔇αj,𝔇βk},𝔇γl]+[{𝔇γl,𝔇αj},𝔇βk]+[{𝔇βk,𝔇γl},𝔇αj]=0,\displaystyle[\{\mathfrak{D}_{\alpha j},\mathfrak{D}_{\beta k}\},\mathfrak{D}_{\gamma l}]+[\{\mathfrak{D}_{\gamma l},\mathfrak{D}_{\alpha j}\},\mathfrak{D}_{\beta k}]+[\{\mathfrak{D}_{\beta k},\mathfrak{D}_{\gamma l}\},\mathfrak{D}_{\alpha j}]=0\,, (83)

we have

iϵjkσαβa¯[𝔇a¯,𝔇γl]+iϵljσγαa¯[𝔇a¯,𝔇βk]+iϵklσβγa¯[𝔇a¯,𝔇αj]\displaystyle i\epsilon_{jk}\sigma^{\underline{a}}_{\alpha\beta}[\mathfrak{D}_{\underline{a}},\mathfrak{D}_{\gamma l}]+i\epsilon_{lj}\sigma^{\underline{a}}_{\gamma\alpha}[\mathfrak{D}_{\underline{a}},\mathfrak{D}_{\beta k}]+i\epsilon_{kl}\sigma^{\underline{a}}_{\beta\gamma}[\mathfrak{D}_{\underline{a}},\mathfrak{D}_{\alpha j}] =0,\displaystyle=0\,, (84)

which is satisfied if Fαja¯=iϵjkσa¯αβWβkF_{\alpha j\underline{a}}=-i\epsilon_{jk}\sigma_{\underline{a}\alpha\beta}W^{\beta k} by using the Schouten identity (Daniel:2024kkp, , Appendix A). Therefore, Fαja¯=[𝔇αj,𝔇a¯]=iϵjkσa¯αβWβkF_{\alpha j\underline{a}}=[\mathfrak{D}_{\alpha j},\mathfrak{D}_{\underline{a}}]=-i\epsilon_{jk}\sigma_{\underline{a}\alpha\beta}W^{\beta k} gives

a¯Aαj𝔇αjAa¯iϵjkσa¯αβWβk\displaystyle\partial_{\underline{a}}A_{\alpha j}-\mathfrak{D}_{\alpha j}A_{\underline{a}}-i\epsilon_{jk}\sigma_{\underline{a}\alpha\beta}W^{\beta k} =0.\displaystyle=0\,. (85)

The Bianchi identity

[{𝔇αj,𝔇βk},𝔇a¯]+{[𝔇a¯,𝔇αj],𝔇βk}{[𝔇βk,𝔇a¯],𝔇αj}\displaystyle[\{\mathfrak{D}_{\alpha j},\mathfrak{D}_{\beta k}\},\mathfrak{D}_{\underline{a}}]+\{[\mathfrak{D}_{\underline{a}},\mathfrak{D}_{\alpha j}],\mathfrak{D}_{\beta k}\}-\{[\mathfrak{D}_{\beta k},\mathfrak{D}_{\underline{a}}],\mathfrak{D}_{\alpha j}\} =0,\displaystyle=0\,, (86)

gives

ϵjkσαβb¯Fa¯b¯+ϵjlσa¯αγ𝔇βkWγl+ϵklσa¯βγ𝔇αjWγl\displaystyle\epsilon_{jk}\sigma^{\underline{b}}_{\alpha\beta}F_{\underline{a}\underline{b}}+\epsilon_{jl}\sigma_{\underline{a}\alpha\gamma}\mathfrak{D}_{\beta k}W^{\gamma l}+\epsilon_{kl}\sigma_{\underline{a}\beta\gamma}\mathfrak{D}_{\alpha j}W^{\gamma l} =0.\displaystyle=0\,. (87)

Multiplying eq. (87) by σa¯αβ\sigma^{\underline{a}\alpha\beta}, we obtain

ϵjl𝔇αkWαlϵkl𝔇αjWαl\displaystyle\epsilon_{jl}\mathfrak{D}_{\alpha k}W^{\alpha l}-\epsilon_{kl}\mathfrak{D}_{\alpha j}W^{\alpha l} =0,\displaystyle=0\,, (88)

which imply 𝔇αjWαj=0\mathfrak{D}_{\alpha j}W^{\alpha j}=0. Contracting (87) with σa¯βσ\sigma^{\underline{a}\beta\sigma} and σa¯ασ\sigma^{\underline{a}\alpha\sigma}, we get

iϵjk(σa¯b¯)ασFa¯b¯4ϵlk𝔇αjWσl+ϵlkδασ𝔇βjWβl+ϵjk𝔇αlWσl\displaystyle-i\epsilon_{jk}(\sigma^{\underline{a}\underline{b}})^{\sigma}_{\ \alpha}F_{\underline{a}\underline{b}}-4\epsilon_{lk}\mathfrak{D}_{\alpha j}W^{\sigma l}+\epsilon_{lk}\delta^{\sigma}_{\alpha}\mathfrak{D}_{\beta j}W^{\beta l}+\epsilon_{jk}\mathfrak{D}_{\alpha l}W^{\sigma l} =0,\displaystyle=0\,, (89a)
iϵjk(σa¯b¯)βσFa¯b¯4ϵlk𝔇βjWσl+ϵlkδβσ𝔇αjWαl+3ϵjk𝔇βlWσl\displaystyle i\epsilon_{jk}(\sigma^{\underline{a}\underline{b}})^{\sigma}_{\ \beta}F_{\underline{a}\underline{b}}-4\epsilon_{lk}\mathfrak{D}_{\beta j}W^{\sigma l}+\epsilon_{lk}\delta^{\sigma}_{\beta}\mathfrak{D}_{\alpha j}W^{\alpha l}+3\epsilon_{jk}\mathfrak{D}_{\beta l}W^{\sigma l} =0.\displaystyle=0\,. (89b)

From (89b)3×(89a)\eqref{sixsym4}-3\times\eqref{sixsym3}, it follows that

2iϵjk(σa¯b¯)αβFa¯b¯4𝔇αjWkβ+δαβ𝔇γjWkγ\displaystyle 2i\epsilon_{jk}(\sigma^{\underline{a}\underline{b}})^{\beta}_{\ \alpha}F_{\underline{a}\underline{b}}-4\mathfrak{D}_{\alpha j}W^{\beta}_{k}+\delta^{\beta}_{\alpha}\mathfrak{D}_{\gamma j}W^{\gamma}_{k} =0,\displaystyle=0\,, (90)

where Wjα=ϵjkWαkW^{\alpha}_{j}=\epsilon_{jk}W^{\alpha k}. Consequently,

iϵjk(σa¯b¯)αβFa¯b¯𝔇α[jWk]β\displaystyle i\epsilon_{jk}(\sigma^{\underline{a}\underline{b}})^{\beta}_{\ \alpha}F_{\underline{a}\underline{b}}-\mathfrak{D}_{\alpha[j}W^{\beta}_{k]} =0,\displaystyle=0\,, (91a)
4𝔇α(jWk)βδαβ𝔇γ(jWk)γ\displaystyle 4\mathfrak{D}_{\alpha(j}W^{\beta}_{k)}-\delta^{\beta}_{\alpha}\mathfrak{D}_{\gamma(j}W^{\gamma}_{k)} =0.\displaystyle=0\,. (91b)

Furthermore, using the equation of motion of d=6d=6 super-Yang-Mills Howe:1983fr , i.e., 𝔇α(jWk)α=0\mathfrak{D}_{\alpha(j}W^{\alpha}_{k)}=0, we then have

𝔇αjWkβi2ϵjk(σa¯b¯)αβFa¯b¯\displaystyle\mathfrak{D}_{\alpha j}W^{\beta}_{k}-\frac{i}{2}\epsilon_{jk}(\sigma^{\underline{a}\underline{b}})^{\beta}_{\ \alpha}F_{\underline{a}\underline{b}} =0,\displaystyle=0\,, (92)

Now, consider the Bianchi identity

[[𝔇a¯,𝔇b¯],𝔇αj]+[[𝔇αj,𝔇a¯],𝔇b¯]+[[𝔇b¯,𝔇αj],𝔇a¯]\displaystyle[[\mathfrak{D}_{\underline{a}},\mathfrak{D}_{\underline{b}}],\mathfrak{D}_{\alpha j}]+[[\mathfrak{D}_{\alpha j},\mathfrak{D}_{\underline{a}}],\mathfrak{D}_{\underline{b}}]+[[\mathfrak{D}_{\underline{b}},\mathfrak{D}_{\alpha j}],\mathfrak{D}_{\underline{a}}] =0,\displaystyle=0\,, (93)

that implies

𝔇αjFa¯b¯\displaystyle\mathfrak{D}_{\alpha j}F_{\underline{a}\underline{b}} =iϵjkσa¯αβ𝔇b¯Wβkiϵjkσb¯αβ𝔇a¯Wβk.\displaystyle=i\epsilon_{jk}\sigma_{\underline{a}\alpha\beta}\mathfrak{D}_{\underline{b}}W^{\beta k}-i\epsilon_{jk}\sigma_{\underline{b}\alpha\beta}\mathfrak{D}_{\underline{a}}W^{\beta k}\,. (94)

Finally, acting with 𝔇γl\mathfrak{D}_{\gamma l} in (92), symmetrizing in the indices {αj,γl}\{\alpha j,\gamma l\}, then using (94) and multiplying by δβγ\delta^{\gamma}_{\beta}, we end up with

σαβa¯𝔇a¯Wβj\displaystyle\sigma^{\underline{a}}_{\alpha\beta}\mathfrak{D}_{\underline{a}}W^{\beta j} =0.\displaystyle=0\,. (95)

In summary, the equations describing d=6d=6 super-Yang-Mills obtained in this section are

αjAβk+βkAαj+{Aαj,Aβk}+iϵjkσαβa¯Aa¯\displaystyle\nabla_{\alpha j}A_{\beta k}+\nabla_{\beta k}A_{\alpha j}+\{A_{\alpha j},A_{\beta k}\}+i\epsilon_{jk}\sigma^{\underline{a}}_{\alpha\beta}A_{\underline{a}} =0,\displaystyle=0\,, (96a)
a¯Aαj𝔇αjAa¯iϵjkσa¯αβWβk\displaystyle\partial_{\underline{a}}A_{\alpha j}-\mathfrak{D}_{\alpha j}A_{\underline{a}}-i\epsilon_{jk}\sigma_{\underline{a}\alpha\beta}W^{\beta k} =0,\displaystyle=0\,, (96b)
𝔇αjWkβi2ϵjk(σa¯b¯)αβFa¯b¯\displaystyle\mathfrak{D}_{\alpha j}W^{\beta}_{k}-\frac{i}{2}\epsilon_{jk}(\sigma^{\underline{a}\underline{b}})^{\beta}_{\ \alpha}F_{\underline{a}\underline{b}} =0,\displaystyle=0\,, (96c)
σαβa¯𝔇a¯Wβj\displaystyle\sigma^{\underline{a}}_{\alpha\beta}\mathfrak{D}_{\underline{a}}W^{\beta j} =0,\displaystyle=0\,, (96d)

which were shown to follow from the equation of motion 𝔇α(jWk)α=0\mathfrak{D}_{\alpha(j}W^{\alpha}_{k)}=0 and the superspace constraint Fαjβk=0F_{\alpha j\beta k}=0.

Note also that the superfields {Aa¯,Wαj,Fa¯b¯}\{A_{\underline{a}},W^{\alpha j},F_{\underline{a}\underline{b}}\} can be written as

Aa¯\displaystyle A_{\underline{a}} =i4ϵjkσa¯αβ(αjAβk+βkAαj+{Aαj,Aβk}),\displaystyle=-\frac{i}{4}\epsilon^{jk}\sigma_{\underline{a}}^{\alpha\beta}(\nabla_{\alpha j}A_{\beta k}+\nabla_{\beta k}A_{\alpha j}+\{A_{\alpha j},A_{\beta k}\})\,, (97a)
Wαj\displaystyle W^{\alpha j} =i3ϵjkσa¯αβ(a¯Aβk𝔇βkAa¯),\displaystyle=\frac{i}{3}\epsilon^{jk}\sigma^{\underline{a}\alpha\beta}(\partial_{\underline{a}}A_{\beta k}-\mathfrak{D}_{\beta k}A_{\underline{a}})\,, (97b)
Fa¯b¯\displaystyle F_{\underline{a}\underline{b}} =𝔇a¯Ab¯𝔇b¯Aa¯.\displaystyle=\mathfrak{D}_{\underline{a}}A_{\underline{b}}-\mathfrak{D}_{\underline{b}}A_{\underline{a}}\,. (97c)

The θ\theta expansion of the d=6d=6 SYM superfields is given by

Aαj\displaystyle A_{\alpha j} =i2ϵjkaαβθβk+13ϵαβγδϵjkϵlmθβkψγlθδm+,\displaystyle=-\frac{i}{2}\epsilon_{jk}a_{\alpha\beta}\theta^{\beta k}+\frac{1}{3}\epsilon_{\alpha\beta\gamma\delta}\epsilon_{jk}\epsilon_{lm}\theta^{\beta k}\psi^{\gamma l}\theta^{\delta m}+\ldots\,, (98a)
Aa¯\displaystyle A_{\underline{a}} =aa¯+iϵjkσa¯αβψαjθβk+,\displaystyle=a_{\underline{a}}+i\epsilon_{jk}\sigma_{\underline{a}\alpha\beta}\psi^{\alpha j}\theta^{\beta k}+\ldots\,, (98b)
Wαj\displaystyle W^{\alpha j} =ψαji2(σa¯b¯)βαθβjfa¯b¯+,\displaystyle=\psi^{\alpha j}-\frac{i}{2}(\sigma^{\underline{a}\underline{b}})^{\alpha}_{\ \beta}\theta^{\beta j}f_{\underline{a}\underline{b}}+\ldots\,, (98c)
Fa¯b¯\displaystyle F_{\underline{a}\underline{b}} =fa¯b¯+,\displaystyle=f_{\underline{a}\underline{b}}+\ldots\,, (98d)

where aa¯a_{\underline{a}} is the gluon, ψαj\psi^{\alpha j} the gluino and fa¯b¯=a¯ab¯b¯aa¯f_{\underline{a}\underline{b}}=\partial_{\underline{a}}a_{\underline{b}}-\partial_{\underline{b}}a_{\underline{a}} the gluon field-strength. Note further that the first component of AαjA_{\alpha j} can be gauged away.

References

  • (1) N. Berkovits, A New description of the superstring, in 8th Jorge Andre Swieca Summer School: Particles and Fields, pp. 390–418, 4, 1996 [hep-th/9604123].
  • (2) N. Berkovits and C. Vafa, N=4 topological strings, Nucl. Phys. B 433 (1995) 123 [hep-th/9407190].
  • (3) N. Berkovits, Super Poincare covariant quantization of the superstring, JHEP 04 (2000) 018 [hep-th/0001035].
  • (4) D. Friedan, E.J. Martinec and S.H. Shenker, Conformal Invariance, Supersymmetry and String Theory, Nucl. Phys. B 271 (1986) 93.
  • (5) N. Berkovits and O. Chandia, Massive superstring vertex operator in D = 10 superspace, JHEP 08 (2002) 040 [hep-th/0204121].
  • (6) H. Gomez and C.R. Mafra, The closed-string 3-loop amplitude and S-duality, JHEP 10 (2013) 217 [1308.6567].
  • (7) N. Berkovits, Pure spinor formalism as an N=2 topological string, JHEP 10 (2005) 089 [hep-th/0509120].
  • (8) N. Berkovits, E. D’Hoker, M.B. Green, H. Johansson and O. Schlotterer, Snowmass White Paper: String Perturbation Theory, in Snowmass 2021, 3, 2022 [2203.09099].
  • (9) N. Berkovits and C.R. Mafra, Pure Spinor Formulation of the Superstring and Its Applications, (2024) [2210.10510].
  • (10) C.R. Mafra and O. Schlotterer, Tree-level amplitudes from the pure spinor superstring, Phys. Rept. 1020 (2023) 1 [2210.14241].
  • (11) N. Berkovits and P.S. Howe, Ten-dimensional supergravity constraints from the pure spinor formalism for the superstring, Nucl. Phys. B 635 (2002) 75 [hep-th/0112160].
  • (12) N. Berkovits, Quantum consistency of the superstring in AdS(5) x S**5 background, JHEP 03 (2005) 041 [hep-th/0411170].
  • (13) N. Berkovits, S. Gukov and B.C. Vallilo, Superstrings in 2-D backgrounds with RR flux and new extremal black holes, Nucl. Phys. B 614 (2001) 195 [hep-th/0107140].
  • (14) K. Benakli, N. Berkovits, C.A. Daniel and M. Lize, Higher-spin states of the superstring in an electromagnetic background, JHEP 12 (2021) 112 [2110.07623].
  • (15) N. Berkovits, Quantization of the superstring with manifest U(5) superPoincare invariance, Phys. Lett. B 457 (1999) 94 [hep-th/9902099].
  • (16) P.S. Howe, G. Sierra and P.K. Townsend, Supersymmetry in Six-Dimensions, Nucl. Phys. B 221 (1983) 331.
  • (17) N. Berkovits, Quantization of the type II superstring in a curved six-dimensional background, Nucl. Phys. B 565 (2000) 333 [hep-th/9908041].
  • (18) J. Koller, A SIX-DIMENSIONAL SUPERSPACE APPROACH TO EXTENDED SUPERFIELDS, Nucl. Phys. B 222 (1983) 319.
  • (19) N. Berkovits, C. Vafa and E. Witten, Conformal field theory of AdS background with Ramond-Ramond flux, JHEP 03 (1999) 018 [hep-th/9902098].
  • (20) C.A. Daniel, Integrating out the fermions in AdS, 2408.10418.
  • (21) N. Berkovits, Equivalence Proof of Pure Spinor and Ramond-Neveu-Schwarz Superstring Amplitudes, 2411.19778.
  • (22) N. Berkovits, Relating the RNS and pure spinor formalisms for the superstring, JHEP 08 (2001) 026 [hep-th/0104247].
  • (23) P.A. Grassi and N. Wyllard, Lower-dimensional pure-spinor superstrings, JHEP 12 (2005) 007 [hep-th/0509140].
  • (24) N. Wyllard, Pure-spinor superstrings in d=2,4,6, JHEP 11 (2005) 009 [hep-th/0509165].
  • (25) S. Gerigk and I. Kirsch, On the Relation between Hybrid and Pure Spinor String Theory, JHEP 03 (2010) 106 [0912.2347].
  • (26) O. Chandia, W.D. Linch, III and B.C. Vallilo, The Covariant Superstring on K3, 1109.3200.
  • (27) O. Chandia and B.C. Vallilo, Relating the bb ghost and the vertex operators of the pure spinor superstring, JHEP 03 (2021) 165 [2101.01129].
  • (28) N. Berkovits and M.M. Leite, First massive state of the superstring in superspace, Phys. Lett. B 415 (1997) 144 [hep-th/9709148].
  • (29) J. Polchinski, String theory. Vol. 1: An introduction to the bosonic string, Cambridge University Press (2007).
  • (30) P.S. Howe, K.S. Stelle and P.C. West, N=1 d = 6 HARMONIC SUPERSPACE, Class. Quant. Grav. 2 (1985) 815.
  • (31) P. Di Francesco, P. Mathieu and D. Senechal, Conformal Field Theory, Springer-Verlag (1997).
  • (32) C.R. Mafra, Superstring Scattering Amplitudes with the Pure Spinor Formalism, Ph.D. thesis, Sao Paulo, IFT, 2008. 0902.1552.