This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Vanishing lines in chromatic homotopy theory

Zhipeng Duan School of mathematical sciences, Nanjing Normal University [email protected] Guchuan Li School of Mathematical Sciences, Peking University [email protected]  and  XiaoLin Danny Shi Department of Mathematics, University of Washington [email protected]
Abstract.

We show that at the prime 2, for any height hh and any finite subgroup G𝔾hG\subset\mathbb{G}_{h} of the Morava stabilizer group, the RO(G)RO(G)-graded homotopy fixed point spectral sequence for the Lubin–Tate spectrum EhE_{h} has a strong horizontal vanishing line of filtration Nh,GN_{h,G}, a specific number depending on hh and GG. It is a consequence of the nilpotence theorem that such homotopy fixed point spectral sequences all admit strong horizontal vanishing lines at some finite filtration. Here, we establish specific bounds for them. Our bounds are sharp for all the known computations of EhhGE_{h}^{hG}.

Our approach involves investigating the effect of the Hill–Hopkins–Ravenel norm functor on the slice differentials. As a result, we also show that the RO(G)RO(G)-graded slice spectral sequence for (NC2Gv¯h)1BP((G))(N_{C_{2}}^{G}\bar{v}_{h})^{-1}BP^{(\!(G)\!)} shares the same horizontal vanishing line at filtration Nh,GN_{h,G}. As an application, we utilize this vanishing line to establish a bound on the orientation order Θ(h,G)\Theta(h,G), the smallest number such that the Θ(h,G)\Theta(h,G)-fold direct sum of any real vector bundle is EhhGE_{h}^{hG}-orientable.

1. Introduction

1.1. Motivation and main theorem

Chromatic homotopy theory originated with Quillen’s groundbreaking observation of the relationship between the homotopy groups of the complex cobordism spectrum and the Lazard ring [Qui69]. Subsequently, the work of Miller, Ravenel, and Wilson on periodic phenomena in the stable homotopy groups of spheres [MRW77] and Ravenel’s conjectures gave rise to what is now called the chromatic point of view. This approach is a powerful tool for studying periodic phenomena in the stable homotopy category by analyzing the algebraic geometry of smooth one-parameter formal groups. The moduli stack of formal groups has a stratification by height, and this stratification serves as an organizing framework for exploring large-scale phenomena in stable homotopy theory.

Consider the Lubin–Tate spectrum E(k,Γh)E(k,\Gamma_{h}) associated with a formal group law Γh\Gamma_{h} of height h1h\geq 1 over a finite field kk of characteristic pp. Up to an étale extension, these theories depend only on the height. For the sake of clarity, we will implicitly choose a formal group law Γh\Gamma_{h} defined over 𝔽p\mathbb{F}_{p} (i.e. the height-hh Honda formal group law) and a field kk, and write Eh=E(k,Γh)E_{h}=E(k,\Gamma_{h}).

The Chromatic Convergence Theorem of Hopkins and Ravenel [Rav92] shows that the pp-local sphere spectrum S(p)0S^{0}_{(p)} is the homotopy inverse limit of the chromatic tower

LEhS0LE1S0LE0S0.\cdots\longrightarrow L_{E_{h}}S^{0}\longrightarrow\cdots\longrightarrow L_{E_{1}}S^{0}\longrightarrow L_{E_{0}}S^{0}.

At each stage of this tower, LEhS0L_{E_{h}}S^{0} is the Bousfield localization of the sphere spectrum with respect to EhE_{h}. These localizations can be inductively computed via the chromatic fracture square, which is the homotopy pullback square

LEhS0{L_{E_{h}}S^{0}}LK(h)S0{L_{K(h)}S^{0}}LEh1S0{L_{E_{h-1}}S^{0}}LEh1LK(h)S0.{L_{E_{h-1}}L_{K(h)}S^{0}.}

Here, K(h)K(h) is the height-hh Morava KK-theory and LK(h)S0L_{K(h)}S^{0} is the K(h)K(h)-local sphere.

Let 𝕊h=Autk(Γh)\mathbb{S}_{h}=\operatorname{Aut}_{k}(\Gamma_{h}), and define 𝔾h=𝕊hGal(k/𝔽p)\mathbb{G}_{h}=\mathbb{S}_{h}\rtimes\operatorname{Gal}(k/\mathbb{F}_{p}) to be the (big) Morava stabilizer group. The continuous action of 𝔾h\mathbb{G}_{h} on πEh\pi_{*}E_{h} can be refined to a unique 𝔼\mathbb{E}_{\infty}-action of 𝔾h\mathbb{G}_{h} on EhE_{h} [Rez98, GH04, Lur18]. Devinatz and Hopkins [DH04] showed that LK(h)S0Ehh𝔾hL_{K(h)}S^{0}\simeq E_{h}^{h\mathbb{G}_{h}}. Furthermore, the K(h)K(h)-local EhE_{h}-based Adams spectral sequence for LK(h)S0L_{K(h)}S^{0} can be identified with the 𝔾h\mathbb{G}_{h}-homotopy fixed point spectral sequence for EhE_{h}:

2s,t=Hcs(𝔾h,πtEh)πtsLK(h)S0.\mathcal{E}_{2}^{s,t}=H_{c}^{s}(\mathbb{G}_{h},\pi_{t}E_{h})\Longrightarrow\pi_{t-s}L_{K(h)}S^{0}.

Henn [Hen07] proposed that the K(h)K(h)-local sphere LK(h)S0L_{K(h)}S^{0} can be built up from spectra of the form EhhGE_{h}^{hG}, where GG is a finite subgroup of 𝔾h\mathbb{G}_{h}. This construction has been explicitly realzied at heights 1 and 2 [GHMR05, Hen07, Bea15, BG18, Hen19].

From this point of view, the spectra EhhGE_{h}^{hG} serve as the fundamental building blocks of the pp-local stable homotopy category. The homotopy groups πEhhG\pi_{*}E_{h}^{hG} also play a crucial role in detecting important families of elements in the stable homotopy groups of spheres [Rav78, HHR16, LSWX19, BMQ23]. Computation of these homotopy groups and understanding their Hurewicz images are central topics in chromatic homotopy theory.

In this paper, we focus our attention at the prime p=2p=2. Historically, describing the explicit action of 𝔾h\mathbb{G}_{h} on EhE_{h} has been challenging. This limited our computations to heights 1 and 2 until the recent equivariant computational techniques introduced by Hill, Hopkins, and Ravenel [HHR16] (norms of Real bordism and the equivariant slice spectral sequence) and by Hahn and Shi [HS20] (Real orientation). These new techniques allowed us to compute EhhC2E_{h}^{hC_{2}} for all heights h1h\geq 1 [HS20] and E4hC4E_{4}^{hC_{4}} [HSWX23] at height 4.

The finite subgroups of 𝕊h\mathbb{S}_{h} and 𝔾h\mathbb{G}_{h} have been classified in [Hew95, Hew99, Buj12]. To summarize this classification at the prime 2, let h=2n1mh=2^{n-1}m, where mm is an odd number. If n2n\neq 2, the maximal finite 22-subgroups of 𝕊h\mathbb{S}_{h} are isomorphic to C2nC_{2^{n}}, the cyclic group of order 2n2^{n}. When n=2n=2, the maximal finite 22-subgroups of 𝕊h\mathbb{S}_{h} are isomorphic to the quaternion group Q8Q_{8}. Furthermore, the group 𝔾h\mathbb{G}_{h} contains a subgroup of order two, corresponding to the automorphism [1]Γh(x)[-1]_{\Gamma_{h}}(x) of Γh\Gamma_{h}. This C2C_{2}-subgroup is central in 𝔾h\mathbb{G}_{h}. All the finite subgroups G𝔾hG\subset\mathbb{G}_{h} we consider in this paper will contain this central C2C_{2}-subgroup.

To state our main result, note that based on the classification provided above, for any G𝔾hG\subset\mathbb{G}_{h} a finite subgroup, a 2-Sylow subgroup HH of G𝕊hG\cap\mathbb{S}_{h} is isomorphic to either C2nC_{2^{n}} or Q8Q_{8}.

Definition 1.1.

For h>0h>0 and G𝔾hG\subset\mathbb{G}_{h} a finite subgroup, let HH be a 2-Sylow subgroup of K=G𝕊hK=G\cap\mathbb{S}_{h}. Define Nh,GN_{h,G} to be the positive integer Nh,HN_{h,H}, where

Nh,C2n\displaystyle N_{h,C_{2^{n}}} :=2h+n2n+1,\displaystyle:=2^{h+n}-2^{n}+1,
Nh,Q8\displaystyle N_{h,Q_{8}} :=2h+37.\displaystyle:=2^{h+3}-7.

The main result of this paper is the following:

Theorem A (Horizontal Vanishing Line).

For any height hh and any finite subgroup G𝔾hG\subset\mathbb{G}_{h}, there is a strong horizontal vanishing line of filtration Nh,GN_{h,G} in the RO(G)RO(G)-graded homotopy fixed point spectral sequence for EhE_{h}.

Recall that having a strong horizontal vanishing line of filtration Nh,GN_{h,G} means that the spectral sequence collapses after the Nh,G\mathcal{E}_{N_{h,G}}-page, with no surviving elements of filtration greater than or equal to Nh,GN_{h,G} at the \mathcal{E}_{\infty}-page.

The motivation behind A is as follows: classically, the Nilpotence Theorem of Devinatz, Hopkins, and Smith [DHS88, HS98] ensures that the homotopy fixed point spectral sequences of the Lubin–Tate theories EhE_{h} all have strong horizontal vanishing lines at some finite filtration (see [DH04, Section 5] and [BGH22, Section 2.3]). While theoretically valuable, this existence result alone cannot be used for computations. Without knowledge of the specific location of the vanishing line, it cannot aid in proving specific differentials.

The recent computations by Hill, Shi, Wang, and Xu have demonstrated the utility of having a bound for the strong horizontal vanishing line in equivariant computations of Lubin–Tate theories. In their work [HSWX23], they first re-analyzed the slice spectral sequence for BP((C4))1BP^{(\!(C_{4})\!)}\langle 1\rangle (a connective model of E2E_{2} with a C4C_{4}-action), and established a horizontal vanishing line of filtration 16. They also proved that every class on or above this line must vanish on or before the 13\mathcal{E}_{13}-page [HSWX23, Theorem 3.17]. This result allowed them to provide a more concise proof of all the Hill–Hopkins–Ravenel slice differentials presented in [HHR17].

In the subsequent case, when studying the slice spectral sequence for BP((C4))2BP^{(\!(C_{4})\!)}\langle 2\rangle (a connective model of E4E_{4} with a C4C_{4}-action), a similar phenomenon was observed. There exists a horizontal vanishing line at filtration 96, and every class situated on or above this line must vanish on or before the 61\mathcal{E}_{61}-page. This theorem is referred to as the Vanishing Theorem [HSWX23, Theorem 9.2], and it serves as a crucial tool in establishing many of the higher slice differentials.

The strong vanishing lines established in A will significantly facilitate future computations involving Lubin–Tate theories and norms of Real bordism theories.

1.2. Main results and outline of the paper

We will now give a more detailed summary of our results and describe the contents of this paper.

In Section 2, we recall some basic facts of our spectral sequences of interest. The classical Tate diagram induces a Tate diagram of spectral sequences

HOSS(X)=\scriptstyle{=}SliceSS(X)\textstyle{\text{SliceSS}(X)\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}LSliceSS(X)\textstyle{\text{LSliceSS}(X)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}HOSS(X)\textstyle{\text{HOSS}(X)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}HFPSS(X)\textstyle{\text{HFPSS}(X)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}TateSS(X).\textstyle{\text{TateSS}(X).}

The interactions between these spectral sequences will be crucial for proving our main theorem.

We will also recall the spectrum BP((G))BP^{(\!(G)\!)}, its slice filtration, and some special classes on the 2\mathcal{E}_{2}-page of its slice spectral sequence. We prove all the differentials in the C2C_{2}-slice spectral sequence for iC2BP((G))i_{C_{2}}^{*}BP^{(\!(G)\!)} when G=C2nG=C_{2^{n}} and Q8Q_{8} (2.3). While not stated elsewhere, this is a straightforward consequence of [HHR16, Theorem 9.9].

In Section 3, we prove comparison theorems between the slice spectral sequence, the homotopy fixed point spectral sequence, and the Tate spectral sequence. These comparisons are based on the maps

SliceSS(X)HFPSS(X)TateSS(X)\operatorname{\text{SliceSS}}(X)\longrightarrow\operatorname{\text{HFPSS}}(X)\longrightarrow\operatorname{\text{TateSS}}(X)

extracted from the Tate diagram of spectral sequences above. It is worth noting that prior works by Ullman [Ull13] and Böckstedt–Madsen [BM94] have shown that both maps induce isomorphisms within specific ranges in the integer-graded spectral sequence. For our purposes, we extend these isomorphism regions to the RO(G)RO(G)-graded pages.

Theorem B (3.1 and 3.3).

For VRO(G)V\in RO(G), let

τ(V):=min{e}HG|H|dimVH.\tau(V):=\min_{\{e\}\subsetneq H\subset G}|H|\cdot\dim V^{H}.

The map from the RO(G)RO(G)-graded slice spectral sequence to the RO(G)RO(G)-graded homotopy fixed point spectral sequence induces an isomorphism on the 2\mathcal{E}_{2}-page for pairs (V,s)(V,s) that satisfy the inequality

τ(Vs1)>|V|.\tau(V-s-1)>|V|.

Furthermore, this map induces a one-to-one correspondence between the differentials within this isomorphism region.

The proof of B relies on the main result in Hill–Yarnall [HY18, Theorem A], which establishes a relationship between the slice connectivity of an equivariant spectrum and the connectivity of its geometric fixed points.

As for the map from the homotopy fixed point spectral sequence to the Tate spectral sequence, the classical analysis almost generalizes immediately to give an RO(G)RO(G)-graded isomorphism region.

Theorem C (3.6).

The map from the RO(G)RO(G)-graded homotopy fixed point spectral sequence to the RO(G)RO(G)-graded Tate spectral sequence induces an isomorphism on the 2\mathcal{E}_{2}-page for classes in filtrations s>0s>0, and a surjection for classes in filtration s=0s=0. Furthermore, there is a one-to-one correspondence between differentials whose sources are of nonnegative filtration.

In Section 4, we give a brief summary of the norm structure in equivariant spectral sequences. This structure plays a pivotal role in deducing the fate of specific classes in the GG-equivariant spectral sequence based on information from the HH-equivariant spectral sequence, where HGH\subset G is a subgroup (4.1).

In Section 5, we analyze the Tate spectral sequence for EhE_{h} and prove the following theorem.

Theorem D (Tate Vanishing, 5.1).

For any height hh and any finite subgroup G𝔾hG\subset\mathbb{G}_{h}, all the classes in the RO(G)RO(G)-graded Tate spectral sequence for EhE_{h} vanish after the Nh,G\mathcal{E}_{N_{h,G}}-page. Here, Nh,GN_{h,G} is defined as in 1.1.

Note that at any prime pp, Mathew and Meier have shown that the map EhhGEhE_{h}^{hG}\to E_{h} is a faithful GG-Galois extension whenever G𝔾hG\subset\mathbb{G}_{h} is a finite subgroup [MM15, Example 6.2]. This implies that the Tate spectrum EhtGE_{h}^{tG} is contractible [Rog08, Proposition 6.3.3]. Consequently, all the classes in the Tate spectral sequence for EhE_{h} must eventually vanish. D provides a concrete bound for the page number at which this vanishing occurs when p=2p=2.

To prove D, we use the GG-equivariant orientation from BP((G))BP^{(\!(G)\!)} to EhE_{h}, as given by [HS20]. This orientation map factors through (NC2Gv¯h)1BP((G))(N_{C_{2}}^{G}\bar{v}_{h})^{-1}BP^{(\!(G)\!)}:

BP((G)){BP^{(\!(G)\!)}}Eh{E_{h}}(NC2Gv¯h)1BP((G)){(N_{C_{2}}^{G}\bar{v}_{h})^{-1}BP^{(\!(G)\!)}}

This induces a map of the corresponding Tate spectral sequences:

G-TateSS((NC2Gv¯h)1BP((G)))G-TateSS(Eh).G\text{-}\operatorname{\text{TateSS}}((N_{C_{2}}^{G}\bar{v}_{h})^{-1}BP^{(\!(G)\!)})\longrightarrow G\text{-}\operatorname{\text{TateSS}}(E_{h}).

Equipped with the results discussed in the previous sections, we first transport the differentials from the C2C_{2}-slice spectral sequence for iC2(NC2Gv¯h)1BP((G))i_{C_{2}}^{*}(N_{C_{2}}^{G}\bar{v}_{h})^{-1}BP^{(\!(G)\!)} to the C2C_{2}-Tate spectral sequence for iC2(NC2Gv¯h)1BP((G))i_{C_{2}}^{*}(N_{C_{2}}^{G}\bar{v}_{h})^{-1}BP^{(\!(G)\!)} using the one-to-one correspondences established in Section 3. We then use the norm structure to deduce that the unit class in the GG-Tate spectral sequence for (NC2Gv¯h)1BP((G))(N_{C_{2}}^{G}\bar{v}_{h})^{-1}BP^{(\!(G)\!)} must be killed on or before the Nh,G\mathcal{E}_{N_{h,G}}-page. By naturality, the unit class in the GG-Tate spectral sequence for EhE_{h} must also be killed on or before the Nh,G\mathcal{E}_{N_{h,G}}-page. This leads to the vanishing of all other classes beyond this point by the multiplicative structure.

Our proof of D applies in general to give a similar vanishing theorem for any (NC2Gv¯h)1BP((G))(N_{C_{2}}^{G}\bar{v}_{h})^{-1}BP^{(\!(G)\!)}-module.

Corollary 1.2 (5.4).

Let MM be a (NC2Gv¯h)1BP((G))(N_{C_{2}}^{G}\bar{v}_{h})^{-1}BP^{(\!(G)\!)}-module. All the classes in the RO(G)RO(G)-graded Tate spectral sequence for MM vanish after the Nh,G\mathcal{E}_{N_{h,G}}-page.

In Section 6, we analyze the homotopy fixed point spectral sequence for EhE_{h} and prove A (6.1). The proof of A is by using the comparison theorem (C) between the homotopy fixed point spectral sequence and the Tate spectral sequence, combined with the Tate vanishing theorem (D) in the Tate spectral sequence. Our proof also applies to show that the same strong horizontal vanishing line exists in the homotopy fixed point spectral sequence for any (NC2Gv¯h)1BP((G))(N_{C_{2}}^{G}\bar{v}_{h})^{-1}BP^{(\!(G)\!)}-module.

Corollary 1.3 (6.3).

For any (NC2Gv¯h)1BP((G))(N_{C_{2}}^{G}\bar{v}_{h})^{-1}BP^{(\!(G)\!)}-module MM, there is a strong horizontal vanishing line of filtration Nh,GN_{h,G} in the RO(G)RO(G)-graded homotopy fixed point spectral sequence for MM.

Corollary 1.4 (Uniform Vanishing, 6.4).

For any K(h)K(h)-local finite spectrum ZZ, the homotopy fixed point spectral sequence

Hs(G,EtZ)πts(EhGZ)H^{s}(G,E_{t}Z)\Longrightarrow\pi_{t-s}(E^{hG}\wedge Z)

has a strong horizontal vanishing line of filtration Nh,GN_{h,G}.

In Section 7, we prove the existence of horizontal vanishing lines in the slice spectral sequence.

Theorem E (7.1).

When G=C2nG=C_{2^{n}} or Q8Q_{8}, the RO(G)RO(G)-graded slice spectral sequence for any (NC2Gv¯h)1BP((G))(N_{C_{2}}^{G}\bar{v}_{h})^{-1}BP^{(\!(G)\!)}-module MM admits a horizontal vanishing line of filtration Nh,GN_{h,G}.

In particular, E implies that there will be a horizontal vanishing line of filtration 121 in the C8C_{8}-slice spectral sequence for Ω𝕆\Omega_{\mathbb{O}}, the detection spectrum of Hill–Hopkins–Ravenel that detects all the Kervaire invariant one elements [HHR16].

It is interesting to note that when G=Q8G=Q_{8}, even though there is no knowledge of the slice filtration of BP((Q8))BP^{(\!(Q_{8})\!)} yet, E still applies to show that the slice spectral sequences of (NC2Q8v¯h)1BP((Q8))(N_{C_{2}}^{Q_{8}}\bar{v}_{h})^{-1}BP^{(\!(Q_{8})\!)}-modules all have horizontal vanishing lines of filtration Nh,Q8N_{h,Q_{8}}.

Finally, in Section 8, we present an application of A in the study of EhhGE_{h}^{hG}-orientations of real vector bundles. For h1h\geq 1 and G𝔾hG\subseteq\mathbb{G}_{h} a finite subgroup, let Θ(h,G)\Theta(h,G) be the smallest number dd such that the dd-fold direct sum of any real vector bundle is EhhGE_{h}^{hG}-orientable. At the prime p=2p=2 and G=C2G=C_{2}, Kitchloo and Wilson [KW15] have studied EhhC2E_{h}^{hC_{2}}-orientations. When G=CpG=C_{p}, Bhattacharya and Chatham [BC22] have studied Ek(p1)hCpE_{k(p-1)}^{hC_{p}}-orientations at all primes.

Theorem F (8.4).

For any height hh and any finite subgroup G𝔾hG\subset\mathbb{G}_{h}, let K=G𝕊hK=G\cap\mathbb{S}_{h}, HH be a 22-Sylow subgroup of KK, and define d=2|K||H|Nh,H12d=2\cdot|K|\cdot|H|^{\frac{N_{h,H}-1}{2}}. Then the dd-fold direct sum of any real vector bundle is EhhGE_{h}^{hG}-orientable.

1.3. Open questions and further directions

Sharpness of the strong horizontal vanishing lines

For all known computations, the bounds established in A for the strong horizontal vanishing lines are sharp when the 2-Sylow subgroup of K=G𝕊hK=G\cap\mathbb{S}_{h} is cyclic. More specifically, when G=C2G=C_{2}, the strong horizontal vanishing line in the homotopy fixed point spectral sequence for EhhC2E_{h}^{hC_{2}} is at filtration exactly 2h+112^{h+1}-1. When G=C4G=C_{4}, the strong horizontal vanishing lines in the homotopy fixed point spectral sequences for E2hC4E_{2}^{hC_{4}} and E4hC4E_{4}^{hC_{4}} are at filtrations exactly 1313 and 6161.

When the 2-Sylow subgroup of KK is isomorphic to Q8Q_{8}, Bauer’s computation of tmf [Bau08] implies that the strong horizontal vanishing line in the Q8Q_{8}-homotopy fixed point spectral sequence for E2E_{2} is at filtration 23. This value is lower than the bound provided by our theorem, which is 25. In [DKL+24], the value Nh,Q8N_{h,Q_{8}} has been further reduced from 2h+372^{h+3}-7 to 2h+392^{h+3}-9. A, combined with this new improvement, yields the sharpest bounds for the strong horizontal vanishing lines across all known computations.

Conjecture 1.5.

The bounds established in A for the strong horizontal vanishing lines are sharp.

Devinatz and Hopkins [DH04] have also proved that for the big Morava stabilizer group 𝔾h\mathbb{G}_{h}, the homotopy fixed point spectral sequence for Ehh𝔾hE_{h}^{h\mathbb{G}_{h}} admits a strong vanishing line at some finite filtration.

Conjecture 1.6.

The homotopy fixed point spectral sequence for Ehh𝔾hE_{h}^{h\mathbb{G}_{h}} admits a strong vanishing line at filtration (h2+N)(h^{2}+N), where N:=max{Nh,GG𝔾h finite}.N:=\max\{N_{h,G}\mid G\subset\mathbb{G}_{h}\text{ finite}\}.

An intuitive reason for the bound (h2+N)(h^{2}+N) in 1.6 is as follows: by the philosophy of finite resolutions, there should be a resolution of Ehh𝔾hE_{h}^{h\mathbb{G}_{h}} built from the finite fixed points {EhhGG𝔾h finite}\{E_{h}^{hG}\mid G\subset\mathbb{G}_{h}\text{ finite}\}, and this resolution should have length h2h^{2} because this number is the virtual cohomological dimension of 𝕊h\mathbb{S}_{h}. Analyzing the associated tower of spectral sequences produces the conjectural bound.

Odd primes

Question 1.7.

At odd primes, what is the filtration of the strong horizontal vanishing line in the homotopy fixed point spectral sequence for EhhGE_{h}^{hG}?

Note that, as a consequence of the classification of finite subgroups of 𝕊h\mathbb{S}_{h} at odd primes [Hew95], when h=pn1(p1)mh=p^{n-1}(p-1)m, there is a cyclic subgroup of order pnp^{n} in 𝕊h\mathbb{S}_{h}. The authors believe that once a comprehensive understanding of the CpC_{p}-homotopy fixed point spectral sequence for EhE_{h} is achieved, the arguments presented in this paper can be employed analogously to establish a bound for the strong horizontal vanishing line in HFPSS(EhhG)\operatorname{\text{HFPSS}}(E_{h}^{hG}) that is applicable to any height hh and any finite subgroup G𝔾hG\subset\mathbb{G}_{h} containing CpC_{p}.

Horizontal vanishing lines for connective theories

When G=C2nG=C_{2^{n}}, the Hill–Hopkins–Ravenel quotient (NC2Gv¯h)1BP((C2n))m(N_{C_{2}}^{G}\bar{v}_{h})^{-1}BP^{(\!(C_{2^{n}})\!)}\langle m\rangle is a (NC2Gv¯h)1BP((C2n))(N_{C_{2}}^{G}\bar{v}_{h})^{-1}BP^{(\!(C_{2^{n}})\!)}-module, and there is a horizontal vanishing line in its RO(C2n)RO(C_{2^{n}})-graded slice spectral sequence at filtration Nh,C2nN_{h,C_{2^{n}}} by E.

However, without inverting the class (NC2Gv¯h)(N_{C_{2}}^{G}\bar{v}_{h}), there is no horizontal vanishing line in the RO(C2n)RO(C_{2^{n}})-graded slice spectral sequence for the connective theory BP((C2n))mBP^{(\!(C_{2^{n}})\!)}\langle m\rangle. This is because we have elements of arbitrarily high filtrations on the \mathcal{E}_{\infty}-page. For example, the tower {aσkk1}\{a_{\sigma}^{k}\mid k\geq 1\} contains classes of arbitrarily high filtrations that survive to the \mathcal{E}_{\infty}-page.

Interestingly, computations of tmf, BPnBP_{\mathbb{R}}\langle n\rangle, BP((C4))1BP^{(\!(C_{4})\!)}\langle 1\rangle, and BP((C4))2BP^{(\!(C_{4})\!)}\langle 2\rangle suggest the presence of horizontal vanishing lines in the integer-graded slice spectral sequence for the connective theories [Bau08, HK01, HHR17, HSWX23], with filtrations matching the filtrations for the vanishing lines of the periodic theories.

Conjecture 1.8.

There is a horizontal vanishing line of filtration Nh,C2nN_{h,C_{2^{n}}} in the integer-graded slice spectral sequence for BP((C2n))mBP^{(\!(C_{2^{n}})\!)}\langle m\rangle.

1.4. Acknowledgements

The authors would like to thank Agnès Beaudry, Prasit Bhattacharya, Hood Chatham, Paul Goerss, Mike Hill, Tyler Lawson, Yunze Lu, Peter May, Zhouli Xu, Mingcong Zeng, and Foling Zou for helpful conversations. We would like to thank Guozhen Wang for comments on an earlier draft of our paper and answering our numerous questions. We would also like to thank the anonymous referee for the many helpful comments and suggestions. The third author is supported in part by NSF Grant DMS-2313842.

2. Preliminaries

In this section, we will discuss the spectral sequences that are of interest to us. We will also collect certain facts about these spectral sequences that we will need in the later sections.

Let XX be a GG-spectrum, and let PXP^{\bullet}X be the slice tower of XX. The Tate diagram

EG+XXE~GXEG+F(EG+,X)F(EG+,X)E~GF(EG+,X)\begin{gathered}\lx@xy@svg{\hbox{\raise 0.0pt\hbox{\kern 42.17633pt\hbox{\ignorespaces\ignorespaces\ignorespaces\hbox{\vtop{\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr&&\\&&\crcr}}}\ignorespaces{\hbox{\kern-22.06732pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{EG_{+}\wedge X\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 86.28534pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 0.0pt\raise-19.83055pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.62312pt\hbox{$\scriptstyle{\simeq}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 0.0pt\raise-29.1611pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 86.28534pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{X\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 165.57278pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 93.82005pt\raise-29.1611pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 165.57278pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\widetilde{E}G\wedge X\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 185.37204pt\raise-29.1611pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern-42.17633pt\raise-39.6611pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{EG_{+}\wedge F(EG_{+},X)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 66.17633pt\raise-39.6611pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 66.17633pt\raise-39.6611pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{F(EG_{+},X)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 145.46378pt\raise-39.6611pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 145.46378pt\raise-39.6611pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\widetilde{E}G\wedge F(EG_{+},X)}$}}}}}}}\ignorespaces}}}}\ignorespaces\end{gathered}

induces a diagram of towers:

EG+PXPXE~GPXEG+F(EG+,PX)F(EG+,PX)E~GF(EG+,PX).\begin{gathered}\lx@xy@svg{\hbox{\raise 0.0pt\hbox{\kern 47.48085pt\hbox{\ignorespaces\ignorespaces\ignorespaces\hbox{\vtop{\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr&&\\&&\crcr}}}\ignorespaces{\hbox{\kern-27.37184pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{EG_{+}\wedge P^{\bullet}X\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 91.58986pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 0.0pt\raise-20.18887pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.62312pt\hbox{$\scriptstyle{\simeq}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 0.0pt\raise-29.29999pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 91.58986pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{P^{\bullet}X\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 182.87524pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 104.4291pt\raise-29.29999pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 182.87524pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\widetilde{E}G\wedge P^{\bullet}X\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 207.97902pt\raise-29.29999pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern-47.48085pt\raise-40.37775pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{EG_{+}\wedge F(EG_{+},P^{\bullet}X)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 71.48085pt\raise-40.37775pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 71.48085pt\raise-40.37775pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{F(EG_{+},P^{\bullet}X)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 161.37733pt\raise-40.37775pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 161.37733pt\raise-40.37775pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\widetilde{E}G\wedge F(EG_{+},P^{\bullet}X).}$}}}}}}}\ignorespaces}}}}\ignorespaces\end{gathered}

This diagram of towers further induces a Tate diagram of spectral sequences

(2.1) HOSS(X)=SliceSS(X)1LSliceSS(X)HOSS(X)HFPSS(X)2TateSS(X).\begin{gathered}\lx@xy@svg{\hbox{\raise 0.0pt\hbox{\kern 24.61809pt\hbox{\ignorespaces\ignorespaces\ignorespaces\hbox{\vtop{\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr&&\\&&\crcr}}}\ignorespaces{\hbox{\kern-23.83339pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\text{HOSS(X)}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 49.03476pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 0.0pt\raise-20.0pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.28406pt\hbox{$\scriptstyle{=}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 0.0pt\raise-29.5pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 49.03476pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\text{SliceSS}(X)\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 76.01396pt\raise-20.0pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-3.74467pt\hbox{$\scriptstyle{\leavevmode\hbox to7.49pt{\vbox to7.49pt{\pgfpicture\makeatletter\hbox{\hskip 3.74467pt\lower-3.74467pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {{}}\hbox{\hbox{\kern 76.01396pt\raise-5.5pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{}}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{{}\pgfsys@moveto{3.54468pt}{0.0pt}\pgfsys@curveto{3.54468pt}{1.95769pt}{1.95769pt}{3.54468pt}{0.0pt}{3.54468pt}\pgfsys@curveto{-1.95769pt}{3.54468pt}{-3.54468pt}{1.95769pt}{-3.54468pt}{0.0pt}\pgfsys@curveto{-3.54468pt}{-1.95769pt}{-1.95769pt}{-3.54468pt}{0.0pt}{-3.54468pt}\pgfsys@curveto{1.95769pt}{-3.54468pt}{3.54468pt}{-1.95769pt}{3.54468pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-1.75pt}{-2.25555pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{1}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{{}}}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 76.01396pt\raise-29.5pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 127.40984pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 127.40984pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\text{LSliceSS}(X)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 157.51404pt\raise-29.5pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern-24.61809pt\raise-40.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\text{HOSS}(X)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 48.61809pt\raise-40.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 48.61809pt\raise-40.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\text{HFPSS}(X)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 110.01932pt\raise-33.25533pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-3.74467pt\hbox{$\scriptstyle{\leavevmode\hbox to7.49pt{\vbox to7.49pt{\pgfpicture\makeatletter\hbox{\hskip 3.74467pt\lower-3.74467pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {{}}\hbox{\hbox{\kern 103.40985pt\raise-40.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{}}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{{}\pgfsys@moveto{3.54468pt}{0.0pt}\pgfsys@curveto{3.54468pt}{1.95769pt}{1.95769pt}{3.54468pt}{0.0pt}{3.54468pt}\pgfsys@curveto{-1.95769pt}{3.54468pt}{-3.54468pt}{1.95769pt}{-3.54468pt}{0.0pt}\pgfsys@curveto{-3.54468pt}{-1.95769pt}{-1.95769pt}{-3.54468pt}{0.0pt}{-3.54468pt}\pgfsys@curveto{1.95769pt}{-3.54468pt}{3.54468pt}{-1.95769pt}{3.54468pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-1.75pt}{-2.25555pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{2}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{{}}}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 129.28484pt\raise-40.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 129.28484pt\raise-40.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\text{TateSS}(X).}$}}}}}}}\ignorespaces}}}}\ignorespaces\end{gathered}

All the spectral sequences in (2.1) are RO(G)RO(G)-graded spectral sequences. We pause to briefly discuss notations:

  1. (1)

    The spectral sequence associated with the tower {EG+PX}\{EG_{+}\wedge P^{\bullet}X\} is the homotopy orbit spectral sequence (HOSS) of XX. It is a third and fourth quadrant spectral sequence, and it converges to π¯EG+X\underline{\pi}_{\star}EG_{+}\wedge X. In the integer-graded page at the (G/G)(G/G)-level, the spectral sequence converges to πGEG+X=πXhG\pi_{*}^{G}EG_{+}\wedge X=\pi_{*}X_{hG}.

  2. (2)

    The spectral sequence associated with the tower {PX}\{P^{\bullet}X\} is the slice spectral sequence (SliceSS) of XX. It is a first and third quadrant spectral sequence, and it converges to π¯X\underline{\pi}_{\star}X. In the integer graded page at the (G/G)(G/G)-level, the spectral sequence converges to πGX=πXG\pi_{*}^{G}X=\pi_{*}X^{G}.

  3. (3)

    Following the treatment of [MSZ23], the spectral sequence associated with the tower {E~GPX}\{\widetilde{E}G\wedge P^{\bullet}X\} is called the localized slice spectral sequence for XX and is denoted by LSliceSS(X)\operatorname{\text{LSliceSS}}(X). It converges to π¯E~GX\underline{\pi}_{\star}\widetilde{E}G\wedge X.

  4. (4)

    The spectral sequence associated with the tower {F(EG+,PX)}\{F(EG_{+},P^{\bullet}X)\} is the homotopy fixed point spectral sequence (HFPSS) of XX. It is a first and second quadrant spectral sequence, and it converges to π¯F(EG+,X)\underline{\pi}_{\star}F(EG_{+},X). In the integer-graded page at the (G/G)(G/G)-level, the spectral sequence converges to πGF(EG+,X)=πXhG\pi_{*}^{G}F(EG_{+},X)=\pi_{*}X^{hG}.

  5. (5)

    The spectral sequence associated with the tower {E~GF(EG+,PX)}\{\widetilde{E}G\wedge F(EG_{+},P^{\bullet}X)\} is the Tate spectral sequence (TateSS) of XX. It has classes in all four quadrants, and it converges to π¯E~GF(EG+,X)\underline{\pi}_{\star}\widetilde{E}G\wedge F(EG_{+},X). In the integer-graded page at the (G/G)(G/G)-level, the spectral sequence converges to πGE~GF(EG+,X)=πXtG\pi_{*}^{G}\widetilde{E}G\wedge F(EG_{+},X)=\pi_{*}X^{tG}.

Let ρ2\rho_{2} denote the regular C2C_{2}-representation. In [BHSZ21], it is shown that there are generators

t¯iπ(2i1)ρ2C2BP((C2n))\bar{t}_{i}\in\pi_{(2^{i}-1)\rho_{2}}^{C_{2}}BP^{(\!(C_{2^{n}})\!)}

such that

πρ2C2BP((C2n))(2)[C2nt¯1,C2nt¯2,,].\pi_{*\rho_{2}}^{C_{2}}BP^{(\!(C_{2^{n}})\!)}\cong\mathbb{Z}_{(2)}[C_{2^{n}}\cdot\bar{t}_{1},C_{2^{n}}\cdot\bar{t}_{2},\ldots,].

For a precise definitions of these generators, see formula (1.3) in [BHSZ21] (also see [HHR16, Section 5] for analogous generators in πρ2C2MU((C2n))\pi_{*\rho_{2}}^{C_{2}}MU^{(\!(C_{2^{n}})\!)}). For BPBP_{\mathbb{R}}, we will denote the t¯i\bar{t}_{i}-generators as v¯i\bar{v}_{i}, as their restrictions give a set of generators viπ2(2i1)BPv_{i}\in\pi_{2(2^{i}-1)}BP for πBP\pi_{*}BP.

Similar to the treatment of MU((C2n))MU^{(\!(C_{2^{n}})\!)} in [HHR16], we can build an equivariant refinement

S0[C2nt¯1,C2nt¯2,]BP((C2n))S^{0}[C_{2^{n}}\cdot\bar{t}_{1},C_{2^{n}}\cdot\bar{t}_{2},\ldots]\longrightarrow BP^{(\!(C_{2^{n}})\!)}

from which we can apply the Slice Theorem [HHR16, Theorem 6.1] to show that the slice associated graded of BP((C2n))BP^{(\!(C_{2^{n}})\!)} is the graded spectrum

H¯[C2nt¯1,C2nt¯2,].H\underline{\mathbb{Z}}[C_{2^{n}}\cdot\bar{t}_{1},C_{2^{n}}\cdot\bar{t}_{2},\ldots].

Here, the degree of a summand corresponding to a monomial in the t¯i\bar{t}_{i}-generators and their conjugates is the underlying degree.

As a consequence, the slice spectral sequence for the RO(C2n)RO(C_{2^{n}})-graded homotopy groups of BP((C2n))BP^{(\!(C_{2^{n}})\!)} has 2\mathcal{E}_{2}-term the RO(C2n)RO(C_{2^{n}})-graded homotopy of H¯[C2nt¯1,C2nt¯2,]H\underline{\mathbb{Z}}[C_{2^{n}}\cdot\bar{t}_{1},C_{2^{n}}\cdot\bar{t}_{2},\ldots]. To compute this, note that S0[C2nt¯1,C2nt¯2,]S^{0}[C_{2^{n}}\cdot\bar{t}_{1},C_{2^{n}}\cdot\bar{t}_{2},\ldots] can be decomposed into a wedge sum of slice cells of the form

C2n+HpS|p||Hp|ρHp,{C_{2^{n}}}_{+}\wedge_{H_{p}}S^{\frac{|p|}{|H_{p}|}\rho_{H_{p}}},

where pp ranges over a set of representatives for the orbits of monomials in the γjt¯i\gamma^{j}\bar{t}_{i}-generators, and HpC2nH_{p}\subset C_{2^{n}} is the stabilizer of p(mod2)p\pmod{2}. Therefore, it suffices to compute the equivariant homology groups of the representations spheres S|p||Hp|ρHpS^{\frac{|p|}{|H_{p}|}\rho_{H_{p}}} with coefficients in the constant Mackey functor ¯\underline{\mathbb{Z}}.

We recall some distinguished elements in the RO(G)RO(G)-graded homotopy groups that we will need in order to name the relevant classes on the 2\mathcal{E}_{2}-page of the slice spectral sequence (see [HHR16, Section 3.4] and [HSWX23, Section 2.2]).

Definition 2.1.

Let VV be a GG-representation. We will use aV:S0SVa_{V}:S^{0}\rightarrow S^{V} to denote its Euler class. This is an element in πVGS0\pi_{-V}^{G}S^{0}. We will also denote its Hurewciz image in πVGH¯\pi_{-V}^{G}H\underline{\mathbb{Z}} by aVa_{V}.

If the representation VV has nontrivial fixed points (i.e. VG{0}V^{G}\neq\{0\}), then aV=0a_{V}=0. Moreover, for any two GG-representations VV and WW, we have the relation aVW=aVaWa_{V\oplus W}=a_{V}a_{W} in πVWG(S0)\pi^{G}_{-V-W}(S^{0}).

Definition 2.2.

Let VV be an oriented GG-representation. Then the orientation for VV gives an isomorphism H|V|G(SV;¯)H_{|V|}^{G}(S^{V};\underline{\mathbb{Z}})\cong\mathbb{Z}. In particular, the restriction map

H|V|G(SV,¯)H|V|(S|V|,)H^{G}_{|V|}(S^{V},\underline{\mathbb{Z}})\longrightarrow H_{|V|}(S^{|V|},\mathbb{Z})

is an isomorphism. Let uVH|V|G(SV;¯)u_{V}\in H_{|V|}^{G}(S^{V};\underline{\mathbb{Z}}) be the generator that maps to 11 under this restriction isomorphism. The class uVu_{V} is called the orientation class of VV.

The orientation class uVu_{V} is stable in VV. More precisely, if 1 is the trivial representation, then uV1=uVu_{V\oplus 1}=u_{V}. Moreover, if VV and WW are two oriented GG-representations, then VWV\oplus W is also oriented, and uVW=uVuWu_{V\oplus W}=u_{V}u_{W}.

The Euler class aVa_{V} and the orientation class uVu_{V} behave well with respect to the Hill–Hopkins–Ravenel norm functor. More precisely, for HGH\subset G a subgroup and VV a HH-representation, we have the equalities

(2.2) NHG(aV)\displaystyle N_{H}^{G}(a_{V}) =aIndV\displaystyle=a_{\operatorname{Ind}V}
(2.3) uInd|V|NHG(uV)\displaystyle u_{\operatorname{Ind}|V|}N_{H}^{G}(u_{V}) =uIndV\displaystyle=u_{\operatorname{Ind}V}

where IndV=IndHGV\operatorname{Ind}V=\operatorname{Ind}_{H}^{G}V is the induced representation.

When G=C2nG=C_{2^{n}}, let λi\lambda_{i}, 1in1\leq i\leq n denote the 2-dimensional real C2nC_{2^{n}}-representation corresponding to rotation by (2π2i)\left(\frac{2\pi}{2^{i}}\right). In particular, when i=1i=1, the representation λ1\lambda_{1} corresponds to rotation by π\pi and thus equals to 2σ2\sigma, where σ\sigma is the real sign representation of C2nC_{2^{n}}. When localized at 2, the representations that will be relevant to us are 11, σ\sigma, λ2\lambda_{2}, λ3\lambda_{3}, \ldots, λn\lambda_{n}.

When G=Q8G=Q_{8}, RO(Q8)={1,σi,σj,σk,}RO(Q_{8})=\mathbb{Z}\{1,\sigma_{i},\sigma_{j},\sigma_{k},\mathbb{H}\}. The representations σi\sigma_{i}, σj\sigma_{j}, and σk\sigma_{k} are one-dimensional representations whose kernels are i\langle i\rangle, j\langle j\rangle, and k\langle k\rangle, respectively. The representation \mathbb{H} is a four-dimensional irreducible representation, obtained by the action of Q8Q_{8} on the quaternion algebra =ijk\mathbb{H}=\mathbb{R}\oplus\mathbb{R}i\oplus\mathbb{R}j\oplus\mathbb{R}k by left multiplication.

For h1h\geq 1, let v¯hπ(2h1)ρ2C2BP((G))\bar{v}_{h}\in\pi_{(2^{h}-1)\rho_{2}}^{C_{2}}BP^{(\!(G)\!)} denote the images of v¯h\bar{v}_{h}-generators under the map

BPiC2BP((G)),BP_{\mathbb{R}}\longrightarrow i_{C_{2}}^{*}BP^{(\!(G)\!)},

which is inclusion into the first factor. The following theorem describes all the differentials in the slice spectral sequence for iC2BP((G))i_{C_{2}}^{*}BP^{(\!(G)\!)}.

Theorem 2.3.

Let G=C2nG=C_{2^{n}} or Q8Q_{8}. In the C2C_{2}-slice spectral sequence for iC2BP((G))i^{*}_{C_{2}}BP^{(\!(G)\!)}, the differentials are generated under multiplicative structures by the differentials

d2h+11(u2σ22h1)=v¯haσ22h+11,h1.d_{2^{h+1}-1}(u_{2\sigma_{2}}^{2^{h-1}})=\bar{v}_{h}a_{\sigma_{2}}^{2^{h+1}-1},\,\,\,h\geq 1.
Proof.

When G=C2G=C_{2}, the claim is immediate from the Slice Differential Theorem of Hill–Hopkins–Ravenel [HHR16, Theorem 9.9]. When GG is C2nC_{2^{n}} or Q8Q_{8} for n2n\geq 2, the C2C_{2}-restriction of BP((G))BP^{(\!(G)\!)} is a smash product of (|G|/2)(|G|/2)-copies of BPBP_{\mathbb{R}}. In this case, we have a complete understanding of its C2C_{2}-slices and the 2\mathcal{E}_{2}-page of its C2C_{2}-slice spectral sequence.

The unit map BPiC2BP((G))BP_{\mathbb{R}}\to i_{C_{2}}^{*}BP^{(\!(G)\!)} induces a map

(2.4) SliceSS(BP)SliceSS(iC2BP((G)))\operatorname{\text{SliceSS}}(BP_{\mathbb{R}})\longrightarrow\operatorname{\text{SliceSS}}(i_{C_{2}}^{*}BP^{(\!(G)\!)})

of C2C_{2}-slice spectral sequences. We will proceed by using induction on hh. For the base case, when h=1h=1, we have the d3d_{3}-differential

d3(u2σ2)=v¯1aσ23d_{3}(u_{2\sigma_{2}})=\bar{v}_{1}a_{\sigma_{2}}^{3}

in SliceSS(BP)\operatorname{\text{SliceSS}}(BP_{\mathbb{R}}). Under the map (2.4), the source is mapped to u2σ2u_{2\sigma_{2}} and the target is mapped to v¯1aσ23\bar{v}_{1}a_{\sigma_{2}}^{3}. By naturality, v¯1aσ23\bar{v}_{1}a_{\sigma_{2}}^{3} must be killed by a differential of length at most 3. Since the lowest possible differential length is 3 by degree reasons, the d3d_{3}-differential

d3(u2σ2)=v¯1aσ23d_{3}(u_{2\sigma_{2}})=\bar{v}_{1}a_{\sigma_{2}}^{3}

must occur in SliceSS(iC2BP((G)))\operatorname{\text{SliceSS}}(i_{C_{2}}^{*}BP^{(\!(G)\!)}). Multiplying this differential by permanent cycles determines the rest of the d3d_{3}-differentials. For degree reasons, these are all the d3d_{3}-differentials.

Suppose now that the induction hypothesis holds for all 1kh11\leq k\leq h-1. For degree reasons, after the d2h1d_{2^{h}-1}-differentials, the next possible differential is of length d2h+11d_{2^{h+1}-1}. In SliceSS(BP)\operatorname{\text{SliceSS}}(BP_{\mathbb{R}}), consider the differential

d2h+11(u2σ22h1)=v¯haσ22h+11.d_{2^{h+1}-1}(u_{2\sigma_{2}}^{2^{h-1}})=\bar{v}_{h}a_{\sigma_{2}}^{2^{h+1}-1}.

The map (2.4) sends both the source and the target of this differential to nonzero classes of the same name in SliceSS(iC2BP((G)))\operatorname{\text{SliceSS}}(i_{C_{2}}^{*}BP^{(\!(G)\!)}). By naturality, the image of the target, v¯haσ22h+11\bar{v}_{h}a_{\sigma_{2}}^{2^{h+1}-1}, must be killed by a differential of length at most 2h+112^{h+1}-1. For degree reasons, it is impossible for this class to be killed by a differential of length smaller than 2h+112^{h+1}-1. It follows that the differential

d2h+11(u2σ22h1)=v¯haσ22h+11d_{2^{h+1}-1}(u_{2\sigma_{2}}^{2^{h-1}})=\bar{v}_{h}a_{\sigma_{2}}^{2^{h+1}-1}

exists in SliceSS(iC2BP((G)))\operatorname{\text{SliceSS}}(i_{C_{2}}^{*}BP^{(\!(G)\!)}). The rest of the d2h+11d_{2^{h+1}-1}-differentials are determined by multiplying this differential with permanent cycles. After these differentials, there is no room for other d2h+11d_{2^{h+1}-1}-differentials by degree reasons. This completes the induction step. ∎

Remark 2.4.

We are grateful to Mike Hill for sharing the following argument, which directly shows that SliceSS(iC2MU((G)))\operatorname{\text{SliceSS}}(i_{C_{2}}^{*}MU^{(\!(G)\!)}) (and consequently SliceSS(iC2BP((G)))\operatorname{\text{SliceSS}}(i_{C_{2}}^{*}BP^{(\!(G)\!)})) is completely determined by SliceSS(BP)\operatorname{\text{SliceSS}}(BP_{\mathbb{R}}). This offers an alternative and shorter proof for 2.3. The Thom isomorphism provides an equivalence

iC2MU((G))MU(BU+)(|G|/21),i_{C_{2}}^{*}MU^{(\!(G)\!)}\simeq MU_{\mathbb{R}}\wedge{({BU_{\mathbb{R}}}_{+})}^{\wedge(|G|/2-1)},

where BUBU_{\mathbb{R}} is the C2C_{2}-space BUBU equipped with the complex conjugation action. Since MUMU_{\mathbb{R}} is Real oriented, the right-hand side splits as MUAMU_{\mathbb{R}}\wedge A, where AA is a wedge of suspensions of regular representation spheres. Therefore, SliceSS(iC2MU((G)))\operatorname{\text{SliceSS}}(i_{C_{2}}^{*}MU^{(\!(G)\!)}) also splits as a wedge of suspensions of SliceSS(MU)\operatorname{\text{SliceSS}}(MU_{\mathbb{R}}) by regular representations. When localized at 2, SliceSS(MU)\operatorname{\text{SliceSS}}(MU_{\mathbb{R}}) further splits as a wedge of suspensions of SliceSS(BP)\operatorname{\text{SliceSS}}(BP_{\mathbb{R}}). It follows that the differentials in SliceSS(BP)\operatorname{\text{SliceSS}}(BP_{\mathbb{R}}) completely determine the differentials in SliceSS(iC2MU((G)))\operatorname{\text{SliceSS}}(i_{C_{2}}^{*}MU^{(\!(G)\!)}), and consequently, the differentials in SliceSS(iC2BP((G)))\operatorname{\text{SliceSS}}(i_{C_{2}}^{*}BP^{(\!(G)\!)}).

3. Comparison of spectral sequences

In [Ull13] and [BM94], it is shown that the maps 1 and 2 in (2.1) induce isomorphisms in a certain range in the integer-graded page. For our purposes, we will extend their integral-graded isomorphism ranges to RO(G)RO(G)-graded isomorphism ranges.

Definition 3.1.

For VRO(G)V\in RO(G), let

τ(V):=min{e}HG|H|dimVH.\tau(V):=\min_{\{e\}\subsetneq H\subset G}|H|\cdot\dim V^{H}.
Lemma 3.2.

For VRO(G)V\in RO(G), the spectrum SVE~GS^{V}\wedge\widetilde{E}G is of slice τ(V)\geq\tau(V).

Proof.

By [HY18, Theorem 2.5], SVE~GS^{V}\wedge\widetilde{E}G is of slice n\geq n if and only if the geometric fixed points ΦH(SVE~G)τn/|H|Post\Phi^{H}(S^{V}\wedge\widetilde{E}G)\in\tau_{\geq n/|H|}^{Post} for all HGH\subset G. For E~G\widetilde{E}G, its underlying space is contractible and its HH-fixed point is S0S^{0} whenever HH is a nontrivial subgroup of GG. Since ΦHSV=SVHτdimVHPost\Phi^{H}S^{V}=S^{V^{H}}\in\tau_{\geq\dim V^{H}}^{Post}, SVE~GS^{V}\wedge\widetilde{E}G is of slice τ(V)\geq\tau(V). ∎

Theorem 3.3.

The map from the RO(G)RO(G)-graded slice spectral sequence to the RO(G)RO(G)-graded homotopy fixed point spectral sequence

2s,V=πVsGP|V||V|X{\mathcal{E}_{2}^{s,V}\!\!=\pi_{V-s}^{G}P^{|V|}_{|V|}X}2s,V=πVsGF(EG+,P|V||V|X){\mathcal{E}_{2}^{s,V}\!\!=\pi_{V-s}^{G}F(EG_{+},P^{|V|}_{|V|}X)}πVsGX{\pi_{V-s}^{G}X}πVsGF(EG+,X){\pi_{V-s}^{G}F(EG_{+},X)}

induces an isomorphism on the 2\mathcal{E}_{2}-page for pairs (V,s)(V,s) that satisfy the inequality

τ(Vs1)>|V|.\tau(V-s-1)>|V|.

Furthermore, this map induces a one-to-one correspondence between the differentials in this isomorphism region.

Proof.

Applying the functor F(,P|V||V|X)F(-,P^{|V|}_{|V|}X) to the cofiber sequence

EG+S0E~GEG_{+}\longrightarrow S^{0}\longrightarrow\widetilde{E}G

produces the cofiber sequence

F(E~G,P|V||V|X)P|V||V|XF(EG+,P|V||V|X).F(\widetilde{E}G,P^{|V|}_{|V|}X)\longrightarrow P^{|V|}_{|V|}X\longrightarrow F(EG_{+},P^{|V|}_{|V|}X).

The long exact sequence in homotopy groups implies that the map

πVsGP|V||V|XπVsGF(EG+,P|V||V|X)\pi_{V-s}^{G}P^{|V|}_{|V|}X\longrightarrow\pi_{V-s}^{G}F(EG_{+},P^{|V|}_{|V|}X)

is an isomorphism when both πVsGF(E~G,P|V||V|X)\pi_{V-s}^{G}F(\widetilde{E}G,P^{|V|}_{|V|}X) and πVs1GF(E~G,P|V||V|X)\pi_{V-s-1}^{G}F(\widetilde{E}G,P^{|V|}_{|V|}X) are trivial. Since πGF(E~G,P|V||V|X)=π0GF(SE~G,P|V||V|X)\pi_{\star}^{G}F(\widetilde{E}G,P^{|V|}_{|V|}X)=\pi_{0}^{G}F(S^{\star}\wedge\widetilde{E}G,P^{|V|}_{|V|}X) and P|V||V|XP^{|V|}_{|V|}X is a |V||V|-slice, it suffices to find pairs (V,s)(V,s) such that SVs1E~GS^{V-s-1}\wedge\widetilde{E}G is of slice greater than |V||V|. By 3.2, this is equivalent to (V,s)(V,s) satisfying the inequality τ(Vs1)>|V|\tau(V-s-1)>|V|.

We will now use induction on rr to show that the map of spectral sequences induces a one-to-one correspondence between all the drd_{r}-differentials whose source and target are both in the isomorphism region. The base case of the induction, when r=1r=1, is trivial.

For the induction step, suppose that the map induces a one-to-one correspondence between all the drd_{r^{\prime}}-differentials in the isomorphism region for all r<rr^{\prime}<r. Let dr(x)=yd_{r}(x)=y be a drd_{r}-differential in SliceSS(X)\operatorname{\text{SliceSS}}(X) such that both xx and yy are in the isomorphism region. By naturality, yy^{\prime} (the image of yy) must be killed by a differential of length at most rr in HFPSS(X)\operatorname{\text{HFPSS}}(X). If the length of this differential is rr, then the source must be xx^{\prime} (the image of xx) and we are done. If the length of this differential is smaller than rr, then the induction hypothesis implies that the same differential must appear in SliceSS(X)\operatorname{\text{SliceSS}}(X). This would mean that yy is killed by a differential of length smaller than rr, which is a contradiction. Therefore all the drd_{r}-differentials in SliceSS(X)\operatorname{\text{SliceSS}}(X) that are in the isomorphism region appear in HFPSS(X)\operatorname{\text{HFPSS}}(X).

On the other hand, let dr(x)=yd_{r}(x^{\prime})=y^{\prime} be a drd_{r}-differential in HFPSS(X)\operatorname{\text{HFPSS}}(X) such that both xx^{\prime} and yy^{\prime} are in the isomorphism region. Let xx be the pre-image of xx^{\prime}. By naturality, xx must support a differential of length at most rr. If this differential is of length exactly rr, then naturality implies that the target must be yy, the unique preimage of yy^{\prime}. If the length is smaller than rr, then by the induction hypothesis, xx^{\prime} must support a differential of length smaller than rr as well. This is a contradiction. Therefore all the drd_{r}-differentials in HFPSS(X)\operatorname{\text{HFPSS}}(X) that are in the isomorphism region appear in SliceSS(X)\operatorname{\text{SliceSS}}(X). This completes the induction step. ∎

Remark 3.4.

In the integer-graded page, let V=tV=t\in\mathbb{Z}. Let m(G)m(G) be the order of the smallest nontrivial subgroup of GG. When ts1t-s\geq 1, τ(ts1)=m(G)(ts1)\tau(t-s-1)=m(G)(t-s-1), and the isomorphism region in 3.3 is defined by the inequality

m(G)(ts1)>t.m(G)(t-s-1)>t.

This recovers Theorem I.9.4 in [Ull13].

Example 3.5.

When G=C2nG=C_{2^{n}}, RO(G)RO(G) is generated by {1,σ,λ2,,λn}\{1,\sigma,\lambda_{2},\ldots,\lambda_{n}\}. The representations λi\lambda_{i} are rotations and have no HH-fixed points when HH is a nontrivial subgroup of GG. Therefore, if we fix an element VRO(G)V\in RO(G) of the form

V=c1σ+c2λ2+c3λ3++cnλn,ci,V=c_{1}\cdot\sigma+c_{2}\cdot\lambda_{2}+c_{3}\cdot\lambda_{3}+\cdots+c_{n}\cdot\lambda_{n},\,\,\,c_{i}\in\mathbb{Z},

then VH=(c1σ)H{V}^{H}=(c_{1}\sigma)^{H} for all nontrivial subgroups HGH\subset G. When ts1>|c1|t-s-1>|c_{1}|, we have the equality τ(V+ts1)=2(c1+ts1)\tau(V+t-s-1)=2(c_{1}+t-s-1). On the (V+ts,s)(V+t-s,s)-graded page, the isomorphism region in 3.3 contains pairs (t,s)(t,s) that satisfy the inequality

2(c1+ts1)>|V|+t,2(c_{1}+t-s-1)>|V|+t,

or equivalently

s<(ts)+2c12|V|.s<(t-s)+2c_{1}-2-|V|.

In particular, the last inequality shows that on any of the (V+ts,s)(V+t-s,s)-graded pages, the isomorphism region is bounded above by a line of slope 1 when ts0t-s\gg 0.

Theorem 3.6.

The map from the RO(G)RO(G)-graded homotopy fixed point spectral sequence to the RO(G)RO(G)-graded Tate spectral sequence induces an isomorphism on the 2\mathcal{E}_{2}-page for classes in filtrations s>0s>0, and a surjection for classes in filtration s=0s=0. Furthermore, there is a one-to-one correspondence between differentials whose source is of nonnegative filtration.

Proof.

The 2\mathcal{E}_{2}-page of the Tate spectral sequence for XX is

2s,V=H^s(G,π0(SVX))πVGE~GF(EG+,X),\mathcal{E}_{2}^{s,V}=\hat{H}^{s}(G,\pi_{0}(S^{-V}\wedge X))\Longrightarrow\pi_{V}^{G}\,\widetilde{E}G\wedge F(EG_{+},X),

and the 2\mathcal{E}_{2}-page of the homotopy fixed point spectral sequence is

2s,V=Hs(G,π0(SVX))πVGF(EG+,X).\mathcal{E}_{2}^{s,V}=H^{s}(G,\pi_{0}(S^{-V}\wedge X))\Longrightarrow\pi_{V}^{G}\,F(EG_{+},X).

By the definition of Tate cohomology, H^s=Hs\hat{H}^{s}=H^{s} when s>0s>0. Furthermore, the map H0H^0H^{0}\to\hat{H}^{0} is a surjection whose kernel is the image of the norm map. This proves the claim about the 2\mathcal{E}_{2}-page. The proof for the one-to-one correspondence of differentials is exactly the same as the proof in 3.3. ∎

We end this section by discussing the invertibility of certain Euler classes in the Tate spectral sequence. Recall that if VV is a GG-representation such that the fixed point set VHV^{H} is trivial whenever HGH\subset G is nontrivial, then S(V)S(\infty V) is a geometric model for EGEG, and SVS^{\infty V} is a geometric model for E~G\widetilde{E}G. Therefore, for any GG-spectrum XX,

E~GXSVX=aV1X.\widetilde{E}G\wedge X\simeq S^{\infty V}\wedge X=a_{V}^{-1}X.

Specialized to the case when G=C2nG=C_{2^{n}} and Q8Q_{8}, we see that E~C2nSλn\widetilde{E}C_{2^{n}}\simeq S^{\infty\lambda_{n}} and E~Q8S\widetilde{E}Q_{8}\simeq S^{\infty\mathbb{H}}. Moreover, if XX is a GG-spectrum, then the Tate spectral sequence for XX is the spectral sequence associated to the tower {E~GF(EG+,PX)}\{\widetilde{E}G\wedge F(EG_{+},P^{\bullet}X)\}. This implies that the class aλna_{\lambda_{n}} is invertible in all the C2nC_{2^{n}}-Tate spectral sequences, and the class aa_{\mathbb{H}} is invertible in all the Q8Q_{8}-Tate spectral sequences.

4. The norm structure

In this section, we give a brief summary of results for the norm structure in equivariant spectral sequences. For more detailed discussions, see [Ull13, Chapter I.5], [HHR17, Section 4], and [MSZ23, Section 3.4].

Consider a tower

Pi+1PiPi1\cdots\longrightarrow P^{i+1}\longrightarrow P^{i}\longrightarrow P^{i-1}\longrightarrow\cdots

of GG-spectra and let ,\mathcal{E}_{*}^{*,\star} be the associated spectral sequence. Set Pnm=fib(PmPn1)P_{n}^{m}=\text{fib}(P^{m}\to P^{n-1}) and Pn=PnP_{n}=P_{n}^{\infty}. The towers that will be relevant to us in this paper are the towers for the slice spectral sequence, the homotopy fixed point spectral sequence, and the Tate spectral sequence.

Let HGH\subset G be a subgroup. Suppose we have maps NHGPnP|G/H|nN_{H}^{G}P_{n}\to P_{|G/H|n} and NHGPnnP|G/H|n|G/H|nN_{H}^{G}P_{n}^{n}\to P_{|G/H|n}^{|G/H|n} that are (up to homotopy) compatible with the maps PnPn1P_{n}\to P_{n-1} and PnPnnP_{n}\to P_{n}^{n}. This is called the norm structure. It induces norm maps

NHG:2s,V+s2|G/H|s,IndHGV+|G/H|s.N_{H}^{G}:\mathcal{E}_{2}^{s,V+s}\longrightarrow\mathcal{E}_{2}^{|G/H|s,\operatorname{Ind}_{H}^{G}V+|G/H|s}.

If XX is a commutative GG-spectrum, then its slice spectral sequence, homotopy fixed point spectral sequence, and Tate spectral sequence all have the norm structure that is induced from the multiplication on XX (for the Tate spectral sequence, the norm structure exists as long as HeH\neq e, as discussed in [MSZ23, Example 3.9]).

The following proposition ([MSZ23, Proposition 3.7]) is a restatement of [Ull13, Proposition I.5.17] and [HHR17, Theorem 4.7]. It describes the behaviour of differentials under the norm structure.

Proposition 4.1.

Let x2(G/H)x\in\mathcal{E}_{2}(G/H) be an element representing zero in r+1(G/H)\mathcal{E}_{r+1}(G/H). Then NHG(x)N_{H}^{G}(x) represents zero in |G/H|(r1)+2(G/G)\mathcal{E}_{|G/H|(r-1)+2}(G/G).

In other words, 4.1 states that if x2s,V+s(G/H)x\in\mathcal{E}_{2}^{s,V+s}(G/H) is killed by a drd_{r}-differential, then NHG(x)2|G/H|s,IndHGV+|G/H|s(G/G)N_{H}^{G}(x)\in\mathcal{E}_{2}^{|G/H|s,\operatorname{Ind}_{H}^{G}V+|G/H|s}(G/G) must be killed by a differential of length at most |G/H|(r1)+1|G/H|(r-1)+1.

Let σ2\sigma_{2} be the sign representation of C2C_{2}. As an immediate consequence of Equations (2.2) and (2.3), we have the following proposition.

Proposition 4.2.

The following equalities hold:

NC2C2n(aσ2)\displaystyle N_{C_{2}}^{C_{2^{n}}}(a_{\sigma_{2}}) =aλn2n2,\displaystyle=a_{\lambda_{n}}^{2^{n-2}},
NC2C2n(u2σ2)\displaystyle N_{C_{2}}^{C_{2^{n}}}(u_{2\sigma_{2}}) =uλn2n1u2σi=2n1uλi2i1,\displaystyle=\frac{u_{\lambda_{n}}^{2^{n-1}}}{u_{2\sigma}\prod_{i=2}^{n-1}u_{\lambda_{i}}^{2^{i-1}}},
NC2Q8(aσ2)\displaystyle N_{C_{2}}^{Q_{8}}(a_{\sigma_{2}}) =a,\displaystyle=a_{\mathbb{H}},
NC2Q8(u2σ2)\displaystyle N_{C_{2}}^{Q_{8}}(u_{2\sigma_{2}}) =u2u2σiu2σju2σk.\displaystyle=\frac{u_{\mathbb{H}}^{2}}{u_{2\sigma_{i}}u_{2\sigma_{j}}u_{2\sigma_{k}}}.
Proof.

The equalities follow from (2.2), (2.3), and the following facts about induced representations:

IndC2C2n(1)\displaystyle\operatorname{Ind}_{C_{2}}^{C_{2^{n}}}(1) =1+σ+i=2n12i2λi,\displaystyle=1+\sigma+\sum_{i=2}^{n-1}2^{i-2}\lambda_{i},
IndC2C2n(σ2)\displaystyle\operatorname{Ind}_{C_{2}}^{C_{2^{n}}}(\sigma_{2}) =2n2λn,\displaystyle=2^{n-2}\lambda_{n},
IndC2Q8(1)\displaystyle\operatorname{Ind}_{C_{2}}^{Q_{8}}(1) =1+σi+σj+σk,\displaystyle=1+\sigma_{i}+\sigma_{j}+\sigma_{k},
IndC2Q8(σ2)\displaystyle\operatorname{Ind}_{C_{2}}^{Q_{8}}(\sigma_{2}) =.\displaystyle=\mathbb{H}.

Theorem 4.3.
  1. (1)

    The class NC2C2n(v¯h)aλn2n2(2h+11)N_{C_{2}}^{C_{2^{n}}}(\bar{v}_{h})a_{\lambda_{n}}^{2^{n-2}(2^{h+1}-1)} in the C2nC_{2^{n}}-slice spectral sequence for BP((C2n))BP^{(\!(C_{2^{n}})\!)} is killed on or before the 2h+n2n+1\mathcal{E}_{2^{h+n}-2^{n}+1}-page.

  2. (2)

    The class NC2Q8(v¯h)a2h+11N_{C_{2}}^{Q_{8}}(\bar{v}_{h})a_{\mathbb{H}}^{2^{h+1}-1} in the Q8Q_{8}-slice spectral sequence for BP((Q8))BP^{(\!(Q_{8})\!)} is killed on or before the 2h+37\mathcal{E}_{2^{h+3}-7}-page.

Proof.

By 2.3, we have the differential

d2h+11(u2σ22h1)=v¯haσ22h+11d_{2^{h+1}-1}(u_{2\sigma_{2}}^{2^{h-1}})=\bar{v}_{h}a_{\sigma_{2}}^{2^{h+1}-1}

in the C2C_{2}-slice spectral sequence for iC2BP((C2n))i_{C_{2}}^{*}BP^{(\!(C_{2^{n}})\!)} and iC2BP((Q8))i_{C_{2}}^{*}BP^{(\!(Q_{8})\!)}. Our claims follow by applying 4.1 and the equations in 4.2 to (H,G,x,r)=(C2,C2n,v¯haσ22h+11,2h+11)(H,G,x,r)=(C_{2},C_{2^{n}},\bar{v}_{h}a_{\sigma_{2}}^{2^{h+1}-1},2^{h+1}-1) and (C2,Q8,v¯haσ22h+11,2h+11)(C_{2},Q_{8},\bar{v}_{h}a_{\sigma_{2}}^{2^{h+1}-1},2^{h+1}-1). ∎

5. Vanishing in the Tate spectral sequence

By the work of Hahn and Shi [HS20], the Lubin–Tate theory EhE_{h} admits an equivariant orientation. More specifically, for G𝔾hG\subset\mathbb{G}_{h} a finite subgroup, there is a GG-equivariant map from BP((G))BP^{(\!(G)\!)} to EhE_{h}. Furthermore, this GG-equivariant map factors through (NC2Gv¯h)1BP((G))(N_{C_{2}}^{G}\bar{v}_{h})^{-1}BP^{(\!(G)\!)}:

BP((G)){BP^{(\!(G)\!)}}Eh{E_{h}}(NC2Gv¯h)1BP((G)){(N_{C_{2}}^{G}\bar{v}_{h})^{-1}BP^{(\!(G)\!)}}

This equivariant orientation induces the following diagram of spectral sequences:

SliceSS(BP((G))){\operatorname{\text{SliceSS}}(BP^{(\!(G)\!)})}HFPSS(BP((G))){\operatorname{\text{HFPSS}}(BP^{(\!(G)\!)})}TateSS(BP((G))){\operatorname{\text{TateSS}}(BP^{(\!(G)\!)})}HFPSS(Eh){\operatorname{\text{HFPSS}}(E_{h})}TateSS(Eh).{\operatorname{\text{TateSS}}(E_{h}).}
Theorem 5.1.

For any height hh and any finite subgroup G𝔾hG\subset\mathbb{G}_{h}, all the classes in the RO(G)RO(G)-graded Tate spectral sequence for EhE_{h} vanish after the Nh,G\mathcal{E}_{N_{h,G}}-page. Here, Nh,GN_{h,G} is defined as in 1.1.

In order to prove  5.1, we will first prove the following lemmas:

Lemma 5.2.

Let KK be a finite group and HKH\subset K a 22-Sylow subgroup. For a 22-local KK-spectrum XX, if all the classes in the RO(H)RO(H)-graded Tate spectral sequence for XX vanish after the r\mathcal{E}_{r}-page, then all the classes in the RO(K)RO(K)-graded homotopy fixed point spectral sequence for XX will also vanish after the r\mathcal{E}_{r}-page.

Proof.

The restriction and transfer maps induce the following maps of spectral sequences:

K-TateSS(X){K\text{-}\operatorname{\text{TateSS}}(X)}H-TateSS(X){H\text{-}\operatorname{\text{TateSS}}(X)}K-TateSS(X).{K\text{-}\operatorname{\text{TateSS}}(X).}restr

The composition map trres\text{tr}\circ\text{res} is the degree-|K/H||K/H| map. Since |K/H||K/H| is coprime to 22 and XX is 22-local, the composition trres\text{tr}\circ\text{res} is an isomorphism. This exhibits the RO(K)RO(K)-grated Tate spectral sequence as a retract of the RO(H)RO(H)-graded Tate spectral sequence. The statement of the lemma follows. ∎

Lemma 5.3.
  1. (1)

    At height h=2n1mh=2^{n-1}m, the unit class in the RO(C2n)RO(C_{2^{n}})-graded Tate spectral sequence for (NC2C2nv¯h)1BP((C2n))(N_{C_{2}}^{C_{2^{n}}}\bar{v}_{h})^{-1}BP^{(\!(C_{2^{n}})\!)} must be killed on or before the 2h+n2n+1\mathcal{E}_{2^{h+n}-2^{n}+1}-page.

  2. (2)

    At height h=4k2h=4k-2, the unit class in the RO(Q8)RO(Q_{8})-graded Tate spectral sequence for (NC2Q8v¯h)1BP((Q8))(N_{C_{2}}^{Q_{8}}\bar{v}_{h})^{-1}BP^{(\!(Q_{8})\!)} must be killed on or before the 2h+37\mathcal{E}_{2^{h+3}-7}-page.

Proof.

For G=C2nG=C_{2^{n}} and Q8Q_{8}, consider the map from the C2C_{2}-slice spectral sequence for iC2BP((G))i_{C_{2}}^{*}BP^{(\!(G)\!)} to the C2C_{2}-Tate spectral sequence for iC2BP((G))i_{C_{2}}^{*}BP^{(\!(G)\!)}. 2.3, combined with the isomorphisms in 3.3 and 3.6, shows that we have the differential

d2h+11(u2σ22h1)=v¯haσ22h+11d_{2^{h+1}-1}(u_{2\sigma_{2}}^{2^{h-1}})=\bar{v}_{h}a_{\sigma_{2}}^{2^{h+1}-1}

in the C2C_{2}-Tate spectral sequence for iC2BP((G))i_{C_{2}}^{*}BP^{(\!(G)\!)}. Since aσ2a_{\sigma_{2}} is invertible, after further inverting v¯h\bar{v}_{h}, we have the differential

d2h+11(v¯h1u2σ22h1aσ212h+1)=1d_{2^{h+1}-1}(\bar{v}_{h}^{-1}u_{2\sigma_{2}}^{2^{h-1}}a_{\sigma_{2}}^{1-2^{h+1}})=1

in the C2C_{2}-Tate spectral sequence for iC2(NC2Gv¯h)1BP((G))i_{C_{2}}^{*}(N_{C_{2}}^{G}\bar{v}_{h})^{-1}BP^{(\!(G)\!)}. Our claims now follow by applying 4.1 to (H,G,x,r)=(C2,C2n,1,2h+11)(H,G,x,r)=(C_{2},C_{2^{n}},1,2^{h+1}-1) and (C2,Q8,1,2h+11)(C_{2},Q_{8},1,2^{h+1}-1). ∎

Proof of 5.1.

Let K=G𝕊hK=G\cap\mathbb{S}_{h}, and let HH be a 2-Sylow subgroup of KK. By the classification of the finite subgroups of 𝕊h\mathbb{S}_{h}, HH is isomorphic to either C2nC_{2^{n}} or Q8Q_{8}. We have the equality Nh,G=Nh,K=Nh,HN_{h,G}=N_{h,K}=N_{h,H} by 1.1. The HH-equivariant map

(NC2Hv¯h)1BP((H))Eh(N_{C_{2}}^{H}\bar{v}_{h})^{-1}BP^{(\!(H)\!)}\longrightarrow E_{h}

induces a map of the corresponding Tate spectral sequences. By naturality and 5.3, the unit class in the HH-Tate spectral sequence for EhE_{h} is killed on or before the Nh,H\mathcal{E}_{N_{h,H}}-page. The multiplicative structure implies that all the classes in the HH-graded Tate spectral sequence for EhE_{h} vanish after the Nh,H\mathcal{E}_{N_{h,H}}-page. By 5.2, the same statement holds for KK since HH is a 22-Sylow subgroup of KK.

To extend this from KK to GG, note that the quotient group G/KG/K can be identified as a subgroup of the Galois group Gal(k/𝔽2)\operatorname{Gal}(k/\mathbb{F}_{2}) through the inclusion G𝔾hG\rightarrow\mathbb{G}_{h}. Let k=kG/Kk^{\prime}=k^{G/K}. The arguments shown in [BG18, Lemma 1.32, Lemma 1.37, and Remark 1.39] imply that the GG-Tate spectral sequence for EhE_{h} is a base change from 𝕎(k){{\mathbb{W}}}(k^{\prime}) to 𝕎(k){{\mathbb{W}}}(k) of the KK-Tate spectral sequence for TateSS(Eh)\operatorname{\text{TateSS}}(E_{h}). This means there is an isomorphism

𝕎(k)𝕎(k)H^(G,Eh)H^(K,Eh){{\mathbb{W}}}(k)\otimes_{{{\mathbb{W}}}(k^{\prime})}\hat{H}^{*}(G,{E_{h}}_{*})\stackrel{{\scriptstyle\cong}}{{\longrightarrow}}\hat{H}^{*}(K,{E_{h}}_{*})

on the 2\mathcal{E}_{2}-page, and all the differentials in the KK-Tate spectral sequence are the 𝕎(k)\mathbb{W}(k)-linear extensions of those in the GG-Tate spectral sequence. Consequently, the theorem statement also holds for GG.

Remark 5.4.

If MM is a (NC2Gv¯h)1BP((G))(N_{C_{2}}^{G}\bar{v}_{h})^{-1}BP^{(\!(G)\!)}-module, its Tate spectral sequence will also be a module over the Tate spectral sequence for (NC2Gv¯h)1BP((G))(N_{C_{2}}^{G}\bar{v}_{h})^{-1}BP^{(\!(G)\!)}. The same proof as the one used in 5.1 will apply to show the same vanishing results in the Tate spectral sequence for MM.

6. Horizontal vanishing lines in the homotopy fixed point spectral sequence

The vanishing of the Tate spectral sequence (5.1) leads to the existence of strong horizontal vanishing lines in the homotopy fixed point spectral sequences of Lubin–Tate theories.

Theorem 6.1.

For any height hh and any finite subgroup G𝔾hG\subset\mathbb{G}_{h}, there is a strong horizontal vanishing line of filtration Nh,GN_{h,G} in the RO(G)RO(G)-graded homotopy fixed point spectral sequence for EhE_{h}.

Lemma 6.2.

Let KK be a finite group and HKH\subset K a 22-Sylow subgroup. For a 22-local KK-spectrum XX, if the RO(H)RO(H)-graded homotopy fixed point spectral sequence for XX has a vanishing line H\mathcal{L}_{H}, then the RO(K)RO(K)-graded homotopy fixed point spectral sequence for XX will also have H\mathcal{L}_{H} as a vanishing line.

Proof.

The proof is analogous to that of 5.2. The restriction and transfer maps induce the following maps of spectral sequences:

K-HFPSS(X){K\text{-}\operatorname{\text{HFPSS}}(X)}H-HFPSS(X){H\text{-}\operatorname{\text{HFPSS}}(X)}K-HFPSS(X).{K\text{-}\operatorname{\text{HFPSS}}(X).}restr

The composition map trres\text{tr}\circ\text{res} is the degree-|K/H||K/H| map. Since |K/H||K/H| is coprime to 22 and XX is 22-local, the composition trres\text{tr}\circ\text{res} is an isomorphism. This implies that K-HFPSS(X)K\text{-}\operatorname{\text{HFPSS}}(X) is a retract of H-HFPSS(X)H\text{-}\operatorname{\text{HFPSS}}(X). It follows that the vanishing line in HH-HFPSS(X)\operatorname{\text{HFPSS}}(X) will force the same vanishing line in KK-HFPSS(X)\operatorname{\text{HFPSS}}(X). ∎

Proof of 6.1.

Let K=G𝕊hK=G\cap\mathbb{S}_{h}, and let HH be a 2-Sylow subgroup of KK. Note that Nh,G=Nh,HN_{h,G}=N_{h,H} by 1.1. By 6.2 and [BG18, Lemma 1.32, Lemma 1.37, and Remark 1.39], it suffices to prove the that the statement holds for HH.

Consider the map

H-HFPSS(Eh)H-TateSS(Eh).H\text{-}\operatorname{\text{HFPSS}}(E_{h})\longrightarrow H\text{-}\operatorname{\text{TateSS}}(E_{h}).

By 3.6, this map induces an isomorphism of classes above filtration 0 and a one-to-one correspondence of differentials whose sources are in non-negative filtrations.

By 5.1, all the classes in the Tate spectral sequence vanish after the Nh,H\mathcal{E}_{N_{h,H}}-page. In particular, this implies that the longest differential is of length at most Nh,HN_{h,H}, and any class of filtration at least Nh,HN_{h,H} must die from a differential whose source and target both have nonnegative filtrations. Combined with the isomorphism in 3.6, this implies that the homotopy fixed point spectral sequence collapses after the Nh,H\mathcal{E}_{N_{h,H}}-page, and there is a strong horizontal vanishing line of filtration Nh,HN_{h,H}. ∎

Corollary 6.3.

For any (NC2Gv¯h)1BP((G))(N_{C_{2}}^{G}\bar{v}_{h})^{-1}BP^{(\!(G)\!)}-module MM, there is a strong horizontal vanishing line of filtration Nh,GN_{h,G} in the RO(G)RO(G)-graded homotopy fixed point spectral sequence for MM.

Proof.

By 5.4, the proof is the same as the proof of 6.1. ∎

Corollary 6.4.

For any K(h)K(h)-local finite spectrum ZZ, the homotopy fixed point spectral sequence

Hs(G,EtZ)πts(EhGZ)H^{s}(G,E_{t}Z)\Longrightarrow\pi_{t-s}(E^{hG}\wedge Z)

has a strong horizontal vanishing line of filtration Nh,GN_{h,G}.

Remark 6.5.

The existence of concrete strong horizontal vanishing lines (as given by 6.1) is very useful for equivariant computations (see discussion after A in Section 1.1). In [DKL+24], 6.1, combined with the equivariant structures present in the homotopy fixed point spectral sequence, is utilized to compute E2hG24E_{2}^{hG_{24}}. The authors also believe that 6.1 can be employed to establish new RO(G)RO(G)-graded periodicities for EhE_{h}.

Example 6.6.

When G=C2G=C_{2} and at all heights hh, there is a d2h+11d_{2^{h+1}-1}-differential in the C2C_{2}-homotopy fixed point spectral sequence for EhE_{h}, and there is a nonzero class v¯h2aσ2h+12\bar{v}_{h}^{2}a_{\sigma}^{2^{h+1}-2} in bidegree (2h+12,2h+12)(2^{h+1}-2,2^{h+1}-2). Therefore, the vanishing line in 6.1 is sharp for EhhC2E_{h}^{hC_{2}}.

Example 6.7.

The computations in [HHR17] implies that in the RO(C4)RO(C_{4})-homotopy fixed point spectral sequence for E2E_{2}, there exists a d13d_{13}-differential

d13(N24(t¯1)5u4λu4σaλaσ)=N24(t¯1)8u8σa8λd_{13}(N_{2}^{4}(\bar{t}_{1})^{5}u_{4\lambda}u_{4\sigma}a_{\lambda}a_{\sigma})=N_{2}^{4}(\bar{t}_{1})^{8}u_{8\sigma}a_{8\lambda}

(where we let λ=λ2\lambda=\lambda_{2} and N24()=NC2C4()N_{2}^{4}(-)=N_{C_{2}}^{C_{4}}(-) for convenience). Moreover, the class N24(t¯1)10u4λu10σa6λN_{2}^{4}(\bar{t}_{1})^{10}u_{4\lambda}u_{10\sigma}a_{6\lambda} in bidegree (28,12)(28,12) (representing κ2\kappa^{2}) that survives to the \mathcal{E}_{\infty}-page. Therefore, our vanishing line is sharp for E2hC4E_{2}^{hC_{4}}.

Example 6.8.

The computations in [HSWX23] implies that in the RO(C4)RO(C_{4})-homotopy fixed point spectral sequence for E4E_{4}, there is a d61d_{61}-differential

d61(N24(t¯2)11u16λu32σa17λaσ)=N24(t¯2)16u48σa48λd_{61}(N_{2}^{4}(\bar{t}_{2})^{11}u_{16\lambda}u_{32\sigma}a_{17\lambda}a_{\sigma})=N_{2}^{4}(\bar{t}_{2})^{16}u_{48\sigma}a_{48\lambda}

Moreover, the class N24(t¯2)24N24(t¯1)u44λu74σa30λN_{2}^{4}(\bar{t}_{2})^{24}N_{2}^{4}(\bar{t}_{1})u_{44\lambda}u_{74\sigma}a_{30\lambda} in bidegree (236,60)(236,60) survives to the \mathcal{E}_{\infty}-page. Therefore, our vanishing line is sharp for E4hC4E_{4}^{hC_{4}}.

Example 6.9.

Consider the RO(Q8)RO(Q_{8})-homotopy fixed point spectral sequence for E2E_{2}. 6.1 implies that there is a strong horizontal vanishing line of filtration 25. However, the actual vanishing line is of filtration 23. More specifically, by Bauer’s computation [Bau08], there is a d23d_{23}-differential

d23(ηΔ5)=κ¯6,d_{23}(\eta\Delta^{5})=\bar{\kappa}^{6},

where κ¯\bar{\kappa} is represented by the class gg in [Bau08]. This implies that in the Tate spectral sequence, there is a d23d_{23}-differential

d23(ηΔ5κ¯6)=1.d_{23}(\eta\Delta^{5}\bar{\kappa}^{-6})=1.

By the same argument as the one given in the proof of 6.1, the sharpest vanishing line in the homotopy fixed point spectral sequence is of filtration 23. The bounds given in 6.1 for Q8Q_{8} has been improved in [DKL+24] to account for the sharpness in this case.

7. Horizontal vanishing lines in the slice spectral sequence

We will now prove explicit horizontal vanishing lines for the slice spectral sequences of (NC2Gv¯h)1BP((G))(N_{C_{2}}^{G}\bar{v}_{h})^{-1}BP^{(\!(G)\!)}-modules.

Theorem 7.1.

When G=C2nG=C_{2^{n}} or Q8Q_{8}, the RO(G)RO(G)-graded slice spectral sequence for any (NC2Gv¯h)1BP((G))(N_{C_{2}}^{G}\bar{v}_{h})^{-1}BP^{(\!(G)\!)}-module MM admits a horizontal vanishing line of filtration Nh,GN_{h,G}.

Lemma 7.2.

When G=C2nG=C_{2^{n}} or Q8Q_{8}, any (NC2Gv¯h)1BP((G))(N_{C_{2}}^{G}\bar{v}_{h})^{-1}BP^{(\!(G)\!)}-module is cofree.

Proof.

By [HHR16, Corollary 10.6], we need to show that ΦH(NC2Gv¯h)1BP((G))\Phi^{H}(N_{C_{2}}^{G}\bar{v}_{h})^{-1}BP^{(\!(G)\!)} is contractible for all non-trivial HGH\subset G. To do so, it suffices to check that ΦH(NC2Gv¯h)=0\Phi^{H}(N_{C_{2}}^{G}\bar{v}_{h})=0 for all nontrivial HGH\subset G. Recall that v¯hπ(2h1)ρ2C2BP((G))\bar{v}_{h}\in\pi_{(2^{h}-1)\rho_{2}}^{C_{2}}BP^{(\!(G)\!)} is defined to be the composition

S(2h1)ρ2{S^{(2^{h}-1)\rho_{2}}}BP{BP_{\mathbb{R}}}iC2BP((G)).{i_{C_{2}}^{*}BP^{(\!(G)\!)}.}v¯h\scriptstyle{\bar{v}_{h}}

The claim now follows from the fact that for the class v¯hπ(2h1)ρ2C2BP\bar{v}_{h}\in\pi_{(2^{h}-1)\rho_{2}}^{C_{2}}BP_{\mathbb{R}}, ΦC2(v¯h)=0\Phi^{C_{2}}(\bar{v}_{h})=0 and therefore

ΦH(NC2Hv¯h)=ΦC2(v¯h)=0\Phi^{H}(N_{C_{2}}^{H}\bar{v}_{h})=\Phi^{C_{2}}(\bar{v}_{h})=0

for all nontrivial HGH\subset G. ∎

Proof of 7.1.

Since the spectrum MM is cofree by 7.2, both the slice spectral sequence and the homotopy fixed point spectral sequence converge to the same homotopy groups:

SliceSS(M){\operatorname{\text{SliceSS}}(M)}HFPSS(M){\operatorname{\text{HFPSS}}(M)}πGM{\pi_{\star}^{G}M}πGF(EG+,M).{\pi_{\star}^{G}F(E{G}_{+},M).}=\scriptstyle{=}

Consider a class xx on the 2\mathcal{E}_{2}-page of the slice spectral sequence. We claim that if the filtration of xx is at least Nh,GN_{h,G}, then xx cannot survive to the \mathcal{E}_{\infty}-page. This is because if xx survives to represent an element in πGM\pi_{\star}^{G}M, then there must be a class yy on the 2\mathcal{E}_{2}-page of the homotopy fixed point spectral sequence that also survives to represent the same element in

πGF(EG+,M)=πGM.\pi_{\star}^{G}F(E{G}_{+},M)=\pi_{\star}^{G}M.

Moreover, the filtration of yy must be at least the filtration of xx, which is Nh,G\geq N_{h,G}. This is a contradiction because by 6.3, there is a strong horizontal vanishing line of filtration Nh,GN_{h,G} in the homotopy fixed point spectral sequence. ∎

8. EhhGE_{h}^{hG}-orientation of real vector bundles

In this section, we will use the strong vanishing lines established in 6.1 to give an upper bound for Θ(h,G)\Theta(h,G), the smallest number dd such that the dd-fold direct sum of any real vector bundle is EhhGE_{h}^{hG}-orientable.

Definition 8.1.

Let EE be a multiplicative cohomology theory with multiplication μE:EEE\mu_{E}:E\wedge E\to E, and ξ\xi a virtual kk-dimensional real vector bundle over a space XX. Denote the Thom spectrum of ξ\xi by MξM\xi. An EE-orientation for ξ\xi is a class u:MξΣkEu:M\xi\rightarrow\Sigma^{k}E (also called a Thom class) such that for any map f:YXf:Y\rightarrow X, the pull-back uf(ξ):Mf(ξ)MξΣkEu_{f^{*}(\xi)}:Mf^{*}(\xi)\to M\xi\to\Sigma^{k}E induces an equivalence

(8.1) F(ΣkY+,E){F(\Sigma^{k}Y_{+},E)}F(Mf(ξ),E),{F(Mf^{*}(\xi),E),}\scriptstyle{\simeq}

where (8.1) is defined by sending a map g:ΣkY+Eg:\Sigma^{k}Y_{+}\to E to the composition

Mf(ξ)=S0Mf(ξ)ιEidEMf(ξ)idΔEMf(ξ)Y+iduf(ξ)idEΣkEY+μEidEΣkY+idgEEμEE.Mf^{*}(\xi)=S^{0}\wedge Mf^{*}(\xi)\xrightarrow{\iota_{E}\wedge\text{id}}E\wedge Mf^{*}(\xi)\xrightarrow{\text{id}\wedge\Delta}E\wedge Mf^{*}(\xi)\wedge Y_{+}\xrightarrow{\text{id}\wedge u_{f^{*}(\xi)}\wedge\text{id}}E\wedge\Sigma^{k}E\wedge Y_{+}\\ \xrightarrow{\mu_{E}\wedge\text{id}}E\wedge\Sigma^{k}Y_{+}\xrightarrow{\text{id}\wedge g}E\wedge E\xrightarrow{\mu_{E}}E.

Here, Δ:Mf(ξ)Mf(ξ)Y+\Delta:Mf^{*}(\xi)\to Mf^{*}(\xi)\wedge Y_{+} is the Thom diagonal map.

Remark 8.2.

If ξ\xi is EE-oriented, then the equivalence (8.1) induces a Thom isomorphism

Ek(Y+){E^{*-k}(Y_{+})}E(Mf(ξ)){E^{*}(Mf^{*}(\xi))}\scriptstyle{\cong}

for any map ff. In particular, when ff is the identity map, there is a Thom isomorphism

Ek(X+)E(Mξ).\leavevmode\hbox to111.84pt{\vbox to18.7pt{\pgfpicture\makeatletter\hbox{\hskip 55.92218pt\lower-9.39842pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{}{}{}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{\offinterlineskip{}{}{{{}}{{}}}{{{}}}{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-55.92218pt}{-9.29858pt}\pgfsys@invoke{ }\hbox{\vbox{\halign{\pgf@matrix@init@row\pgf@matrix@step@column{\pgf@matrix@startcell#\pgf@matrix@endcell}&#\pgf@matrix@padding&&\pgf@matrix@step@column{\pgf@matrix@startcell#\pgf@matrix@endcell}&#\pgf@matrix@padding\cr\hfil\hskip 22.76526pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-18.45972pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${E^{*-k}(X_{+})}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}}}&\hskip 22.76526pt\hfil&\hfil\hskip 45.1569pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-16.8514pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${E^{*}(M\xi)}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 21.15694pt\hfil\cr}}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}{{{{}}}{{}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}{}{{}}{}{}{}{{{}{}}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-10.19167pt}{-6.79858pt}\pgfsys@lineto{13.00835pt}{-6.79858pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{13.20833pt}{-6.79858pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-1.01668pt}{-3.04582pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{$\scriptstyle{\cong}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{ {}{}{}}}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}.

Note that it follows immediately from 8.1 that for any EE-oriented bundle ξ\xi, its pull back bundle f(ξ)f^{*}(\xi) is also EE-oriented. Our definition also recovers the classical definition of orientations. More precisely, if we take YY to be a point, then the Thom space of the pull back is SkS^{k}, and the restriction of the Thom class uu under the map

Ek(Th(ξ))Ek(Sk)E^{k}(Th(\xi))\longrightarrow E^{k}(S^{k})

is an EE^{*}-module generator for the free rank one module E(Sk)E^{*}(S^{k}).

For XX a non-equivariant spectrum, we can treat it as a GG-spectrum equipped with the trivial GG-action. We have the equivalence

F(EG+,F(X,Eh))GF(X,F(EG+,Eh))GF(X,F(EG+,Eh)G)=F(X,EhhG).F(EG_{+},F(X,E_{h}))^{G}\simeq F(X,F(EG_{+},E_{h}))^{G}\simeq F(X,F(EG_{+},E_{h})^{G})=F(X,E_{h}^{hG}).

This equivalence allows us to use the homotopy fixed point spectral sequence to compute (EhhG)(X)(E_{h}^{hG})^{*}(X). The 2\mathcal{E}_{2}-page of this homotopy fixed point spectral sequence is

2s,t=Hs(G;EhtX)(EhhG)t+s(X).\mathcal{E}_{2}^{s,t}=H^{s}(G;E_{h}^{t}X)\Longrightarrow(E_{h}^{hG})^{t+s}(X).

Let γ\gamma be the universal bundle on BOBO (of virtual dimension zero). The direct sum operation on bundles over BOBO induces a multiplication map m2:BO×BOBOm_{2}:BO\times BO\rightarrow BO, which can be extended to form an 𝔼\mathbb{E}_{\infty}-structure. Following the approach in [May72, Lemma 1.9], we recursively define mk=m2(id×mk1)m_{k}=m_{2}\circ(\text{id}\times m_{k-1}). Moreover, we will define Δn\Delta_{n} to be the diagonal map BOBO××BOBO\rightarrow BO\times\dots\times BO (nn-copies), and denote the composition map mnΔn:BOBOm_{n}\circ\Delta_{n}:BO\rightarrow BO by [n][n].

Let nγn\gamma denote the pullback bundle [n]γ[n]^{*}\gamma. Following Kitchloo–Wilson [KW15], we will denote the Thom spectrum of nγn\gamma by MO[n]MO[n]. We set MO[0]=S0MO[0]=S^{0} and define

ΠMO:=k0MO[2k].\Pi MO:=\bigvee\limits_{k\geq 0}MO[2k].
Lemma 8.3.

The homotopy fixed point spectral sequence for (EhhG)(ΠMO)(E_{h}^{hG})^{*}(\Pi MO) is a multiplicative spectral sequence whose multiplication is commutative.

Proof.

In order to ensure that the homotopy fixed point spectral sequence has a multiplicative structure, it suffices to construct a GG-equivariant map

φ:F(ΠMO,Eh)F(ΠMO,Eh)F(ΠMO,Eh).\varphi:F(\Pi MO,E_{h})\wedge F(\Pi MO,E_{h})\rightarrow F(\Pi MO,E_{h}).

We will first construct a map Δ:ΠMOΠMOΠMO\Delta:\Pi MO\rightarrow\Pi MO\wedge\Pi MO. Once we have constructed Δ\Delta, the desired map φ\varphi will be induced from Δ\Delta by the following composition:

F(ΠMO,Eh)F(ΠMO,Eh)F(ΠMOΠMO,EhEh)\displaystyle F(\Pi MO,E_{h})\wedge F(\Pi MO,E_{h})\longrightarrow F(\Pi MO\wedge\Pi MO,E_{h}\wedge E_{h}) μF(ΠMOΠMO,Eh)\displaystyle\xrightarrow{\mu_{*}}F(\Pi MO\wedge\Pi MO,E_{h})
ΔF(ΠMO,Eh).\displaystyle\xrightarrow{\Delta^{*}}F(\Pi MO,E_{h}).

Here, μ:EhEhEh\mu:E_{h}\wedge E_{h}\rightarrow E_{h} is the multiplication map. Consider the maps

BOΔ2BO×BO[2i]×[2j]BO×BOm2BO.BO\xrightarrow{\Delta_{2}}BO\times BO\xrightarrow{[2i]\times[2j]}BO\times BO\xrightarrow[]{m_{2}}BO.

These maps induce a map of the corresponding Thom spectra

Th([2i]γ[2j]γ)MO[2i]MO[2j].Th([2i]^{*}\gamma\oplus[2j]^{*}\gamma)\longrightarrow MO[2i]\wedge MO[2j].

The swap map τ:BO×BOBO×BO\tau:BO\times BO\rightarrow BO\times BO induces the following commutative diagram of Thom spectra:

(8.2) Th([2i]γ[2j]γ){Th([2i]^{*}\gamma\oplus[2j]^{*}\gamma)}MO[2i]MO[2j]{MO[2i]\wedge MO[2j]}Th([2j]γ[2i]γ){Th([2j]^{*}\gamma\oplus[2i]^{*}\gamma)}MO[2j]MO[2i].{MO[2j]\wedge MO[2i].}

Since BOBO is an 𝔼\mathbb{E}_{\infty}-space, there is a homotopy from m2i+2jΔ2i+2jm_{2i+2j}\circ\Delta_{2i+2j} to m2(m2i×m2j)Δ2i+2jm_{2}\circ(m_{2i}\times m_{2j})\circ\Delta_{2i+2j}. This produces an equivalence from MO[2i+2j]MO[2i+2j] to Th([2i]γ[2j]γ)Th([2i]^{*}\gamma\oplus[2j]^{*}\gamma). Composing this with the map of Thom spectra above, we obtain a map

MO[2i+2j]MO[2i]MO[2j].MO[2i+2j]\rightarrow MO[2i]\wedge MO[2j].

By fixing nn and combining these maps for all pairs (i,j)(i,j) such that i+j=ni+j=n, we obtain a map

MO[2n]2i+2j=2nMO[2i]MO[2j].MO[2n]\longrightarrow\bigvee\limits_{2i+2j=2n}MO[2i]\wedge MO[2j].

Taking the wedge sum of all such maps for all n0n\geq 0 produces the map Δ\Delta:

Δ:ΠMO=n0MO[2n]n0(2i+2j=2nMO[2i]MO[2j])=ΠMOΠMO.\Delta\colon\Pi MO=\underset{n\geq 0}{\bigvee}MO[2n]\longrightarrow\bigvee\limits_{n\geq 0}\left(\bigvee\limits_{2i+2j=2n}MO[2i]\wedge MO[2j]\right)=\Pi MO\wedge\Pi MO.

In order to show that the multiplication on the homotopy fixed point spectral sequence is commutative, it suffices to show that Δ\Delta is co-commutative up to homotopy. Since BOBO is an 𝔼\mathbb{E}_{\infty}-space, the following diagram commutes up to homotopy:

m2i+2jΔ2i+2j{m_{2i+2j}\circ\Delta_{2i+2j}}m2(m2i×m2j)Δ2i+2j{m_{2}\circ(m_{2i}\times m_{2j})\circ\Delta_{2i+2j}}m2(m2j×m2i)Δ2i+2j.{m_{2}\circ(m_{2j}\times m_{2i})\circ\Delta_{2i+2j}.}

Combining the induced homotopy commutative diagram of Thom spectra and diagram (8.2) produces the following homotopy commutative diagram of Thom spectra:

MO[2i+2j]{MO[2i+2j]}Th([2i]γ[2j]γ){Th([2i]^{*}\gamma\oplus[2j]^{*}\gamma)}MO[2i]MO[2j]{MO[2i]\wedge MO[2j]}Th([2j]γ[2i]γ){Th([2j]^{*}\gamma\oplus[2i]^{*}\gamma)}MO[2j]MO[2i].{MO[2j]\wedge MO[2i].}

It follows from this that the map Δ\Delta is homotopy co-commutative, and therefore φ\varphi is homotopy commutative. ∎

Note that since γ=2γ\gamma\otimes\mathbb{C}=2\gamma as real vector bundles, 2γ2\gamma is EhE_{h}-oriented, and we have a Thom isomorphism

Eh(MO[2])Eh(BO+)u2.E_{h}^{*}(MO[2])\cong E_{h}^{*}(BO_{+})\cdot u_{2}.

The construction of φ\varphi in the proof of 8.3 shows that the composition map

MO[2k]MO[2]MO[2]ku2u2EhEhk𝜇EhMO[2k]\longrightarrow\overbrace{MO[2]\wedge\cdots\wedge MO[2]}^{k}\xrightarrow{u_{2}\wedge\cdots\wedge u_{2}}\overbrace{E_{h}\wedge\cdots\wedge E_{h}}^{k}\xrightarrow{\mu}E_{h}

is u2ku_{2}^{k} in Eh(ΠMO)E_{h}^{*}(\Pi MO). We claim that u2ku_{2}^{k} is a Thom class for MO[2k]MO[2k]. This is because by iteratively applying adjunction and the Thom isomorphism, we have the equivalences

F(MO[2]MO[2],Eh)\displaystyle F(MO[2]\wedge\cdots\wedge MO[2],E_{h}) F(MO[2]MO[2],F(MO[2],Eh))\displaystyle\simeq F(MO[2]\wedge\cdots\wedge MO[2],F(MO[2],E_{h}))
F(MO[2]MO[2],F(BO+,Eh))\displaystyle\simeq F(MO[2]\wedge\cdots\wedge MO[2],F(BO_{+},E_{h}))
F(MO[2]MO[2]BO+,Eh)\displaystyle\simeq F(MO[2]\wedge\cdots\wedge MO[2]\wedge BO_{+},E_{h})
\displaystyle\simeq\cdots
F(BO+BO+,Eh),\displaystyle\simeq F(BO_{+}\wedge\cdots\wedge BO_{+},E_{h}),

and this is given by the Thom class u2u2u_{2}\wedge\cdots\wedge u_{2}. Pulling back this Thom class via the diagonal map BO+BO+BO+BO_{+}\to BO_{+}\wedge\cdots\wedge BO_{+} gives u2ku_{2}^{k}, and it induces the Thom isomorphism

Eh(MO[2k])Eh(BO+)u2k.E_{h}^{*}(MO[2k])\cong E_{h}^{*}(BO_{+})\cdot u_{2}^{k}.
Theorem 8.4.

For any height hh and any finite subgroup G𝔾hG\subset\mathbb{G}_{h}, let K=G𝕊hK=G\cap\mathbb{S}_{h}, HH be a 22-Sylow subgroup of KK, and define d=2|K||H|Nh,H12d=2\cdot|K|\cdot|H|^{\frac{N_{h,H}-1}{2}}. Then the dd-fold direct sum of any real vector bundle is EhhGE_{h}^{hG}-orientable.

Proof.

It suffices to show that for the universal bundle γ\gamma on BOBO, its dd-fold direct sum dγd\gamma is EhhGE_{h}^{hG}-orientable. To show this, we will first show that dγd\gamma is EhhKE_{h}^{hK}-orientable.

Let u2:MO[2]Ehu_{2}:MO[2]\to E_{h} be a Thom class for the bundle 2γ2\gamma. For an element gKg\in K, define gu2:MO[2]Ehgu_{2}:MO[2]\to E_{h} to be the composition

gu2:MO[2]{gu_{2}:MO[2]}Eh{E_{h}}Eh.{E_{h}.}u2\scriptstyle{u_{2}}g\scriptstyle{g}

Consider the composition

uK:MO[2|K|]ΔMO[2]MO[2]|K|g1u2g|K|u2EhEh|K|𝜇Eh,u_{K}:MO[2\cdot|K|]\xrightarrow{\Delta}\overbrace{MO[2]\wedge\cdots\wedge MO[2]}^{|K|}\xrightarrow{g_{1}u_{2}\wedge\cdots\wedge g_{|K|}u_{2}}\overbrace{E_{h}\wedge\cdots\wedge E_{h}}^{|K|}\xrightarrow{\mu}E_{h},

where g1g_{1}, g2g_{2}, \ldots, g|K|g_{|K|} are all the elements of the group KK. The map uKu_{K} represents an element in H0(K,Eh0(MO[2|K|]))H^{0}(K,E_{h}^{0}(MO[2\cdot|K|])).

For any k1k\geq 1, the class uKkH0(K,Eh0(MO[2|K|k]))u_{K}^{k}\in H^{0}(K,E_{h}^{0}(MO[2\cdot|K|\cdot k])) is a Thom class for MO[2|K|k]MO[2\cdot|K|\cdot k] and there is a Thom isomorphism

Eh(BO+){E_{h}^{*}(BO_{+})}Eh(MO[2|K|k]).{E_{h}^{*}(MO[2\cdot|K|\cdot k]).}uKk\scriptstyle{\cdot u_{K}^{k}}

If for some kk, the class uKku_{K}^{k} is a permanent cycle in the homotopy fixed point spectral sequence for (EhhK)(MO[2|K|k])(E_{h}^{hK})^{*}(MO[2\cdot|K|\cdot k]), then the map of spectral sequences

(8.3) H(K,Eh(BO+)){H^{*}(K,E_{h}^{*}(BO_{+}))}H(K,Eh(MO[2|K|k])){H^{*}(K,E_{h}^{*}(MO[2\cdot|K|\cdot k]))}(EhhK)(BO+){(E_{h}^{hK})^{*}(BO_{+})}(EhhK)(MO[2|K|k]){(E_{h}^{hK})^{*}(MO[2\cdot|K|\cdot k])}uKk\scriptstyle{\cdot u_{K}^{k}}

will induce an isomorphism

(EhhK)(BO+)uKk(EhhK)(MO[2|K|k])(E_{h}^{hK})^{*}(BO_{+})\cdot u_{K}^{k}\cong(E_{h}^{hK})^{*}(MO[2\cdot|K|\cdot k])

on the \mathcal{E}_{\infty}-page by naturality. Moreover, for any map f:YBOf:Y\to BO, the pullback of the class uKku_{K}^{k}, f(uKk)f^{*}(u_{K}^{k}) in H0(K,Eh0(Mf(2|K|kγ)))H^{0}(K,E_{h}^{0}(Mf^{*}(2\cdot|K|\cdot k\gamma))), will also be a permanent cycle by naturality:

H(K,Eh(MO[2|K|k])){H^{*}(K,E_{h}^{*}(MO[2\cdot|K|\cdot k]))}H(K,Eh(Mf(2|K|kγ))){H^{*}(K,E_{h}^{*}(Mf^{*}(2\cdot|K|\cdot k\gamma)))}(EhhK)(MO[2|K|k]){(E_{h}^{hK})^{*}(MO[2\cdot|K|\cdot k])}(EhhK)(Mf(2|K|kγ)).{(E_{h}^{hK})^{*}(Mf^{*}(2\cdot|K|\cdot k\gamma)).}

Therefore, it will also induce a Thom isomorphism on the \mathcal{E}_{\infty}-page of the homotopy fixed point spectral sequence for (EhhK)(Mf(2|K|kγ))(E_{h}^{hK})^{*}(Mf^{*}(2\cdot|K|\cdot k\gamma)).

It remains to find such a kk so that uKku_{K}^{k} is a permanent cycle. The splitting map

Eh(MO[2|K|k])Eh(ΠMO)Eh(MO[2|K|k])E_{h}^{*}(MO[2\cdot|K|\cdot k])\longrightarrow E_{h}^{*}(\Pi MO)\longrightarrow E_{h}^{*}(MO[2\cdot|K|\cdot k])

shows that the homotopy fixed point spectral sequence for (EhhK)(MO[2|K|k])(E_{h}^{hK})^{*}(MO[2\cdot|K|\cdot k]) is a retract of the homotopy fixed point spectral sequence for (EhhK)(ΠMO)(E_{h}^{hK})^{*}(\Pi MO). Therefore, the class uKku_{K}^{k} is a permanent cycle in the homotopy fixed point spectral sequence for (EhhK)(MO[2|K|k])(E_{h}^{hK})^{*}(MO[2\cdot|K|\cdot k]) if and only if it is a permanent cycle in the homotopy fixed point spectral sequence for (EhhK)(ΠMO)(E_{h}^{hK})^{*}(\Pi MO).

By 8.3, multiplication in the homotopy fixed point spectral sequence for (EhhK)(ΠMO)(E_{h}^{hK})^{*}(\Pi MO) is commutative. Furthermore, only differentials of odd lengths can occur due to degree reasons, and all the classes on the 2\mathcal{E}_{2}-page with positive filtrations are |H||H|-torsion. Since this spectral sequence is a module over the homotopy fixed point spectral sequence for (EhhK)(S0)(E_{h}^{hK})^{*}(S^{0}), it has a strong horizontal vanishing line of filtration Nh,K=Nh,HN_{h,K}=N_{h,H} by 6.1. It follows that for k=|H|Nh,H12k=|H|^{\frac{N_{h,H}-1}{2}}, the class uKku_{K}^{k} must be a permanent cycle. This shows that if we set

d=2|K||H|Nh,H12,d=2\cdot|K|\cdot|H|^{\frac{N_{h,H}-1}{2}},

then the bundle dγd\gamma is EhhKE_{h}^{hK}-orientable.

To show that dγd\gamma is also EhhGE_{h}^{hG}-orientable, note that G/KG/K can be viewed as a subgroup of the Galois group Gal(k/𝔽2)\operatorname{Gal}(k/\mathbb{F}_{2}) through the inclusion G𝔾hG\rightarrow\mathbb{G}_{h}. Similar to the argument in the proof of 5.1, the map of spectral sequences

H(G,Eh(BO+))uKkH(G,Eh(MO[2|K|k]))H^{*}(G,E_{h}^{*}(BO_{+}))\xrightarrow{u_{K}^{k}}H^{*}(G,E_{h}^{*}(MO[2\cdot|K|\cdot k]))

is a base change of the map of spectral sequences

H(K,Eh(BO+))uKkH(K,Eh(MO[2|K|k])).H^{*}(K,E_{h}^{*}(BO_{+}))\xrightarrow{u_{K}^{k}}H^{*}(K,E_{h}^{*}(MO[2\cdot|K|\cdot k])).

Therefore, the class uKku_{K}^{k} is also a permanent cycle in the homotopy fixed point spectral sequence for (EhhG)(MO[2|K|k])(E_{h}^{hG})^{*}(MO[2\cdot|K|\cdot k]). This finishes the proof of the theorem. ∎

Remark 8.5.

8.4 shows that Θ(h,G)2|K||H|Nh,H12\Theta(h,G)\leq 2\cdot|K|\cdot|H|^{\frac{N_{h,H}-1}{2}}. It is worth noting that our bound is by no means optimal, as it is established without any explicit computations of the homotopy fixed point spectral sequence. In contrast, Kitchloo and Wilson explicitly computed (EhhC2)(BO(q))(E_{h}^{hC_{2}})^{*}(BO(q)) and established that the 2h+12^{h+1}-fold direct sum of any real vector bundle is EhhC2E_{h}^{hC_{2}}-orientable [KW15, Theroem 1.4]. In this case, our bound becomes Θ(h,C2)22h+1\Theta(h,C_{2})\leq 2^{2^{h}+1}.

Our primary goal in this section is to emphasize the existence of a concrete upper bound. It is important to highlight that our bound is derived based on the presence of a strong horizontal vanishing line of filtration Nh,HN_{h,H} and the fact that all classes on the 2\mathcal{E}_{2}-page with positive filtration are |H||H|-torsion. With more detailed computational knowledge of the homotopy fixed point spectral sequence for (EhhG)(ΠMO)(E_{h}^{hG})^{*}(\Pi MO), there is potential to obtain a significantly improved upper bound for Θ(h,G)\Theta(h,G).

References

  • [Bau08] Tilman Bauer. Computation of the homotopy of the spectrum tmf. In Groups, homotopy and configuration spaces, volume 13 of Geom. Topol. Monogr., pages 11–40. Geom. Topol. Publ., Coventry, 2008.
  • [BC22] P. Bhattacharya and H. Chatham. On the EO-orientability of vector bundles. J. Topol., 15(4):2017–2044, 2022.
  • [Bea15] Agnès Beaudry. The algebraic duality resolution at p=2p=2. Algebr. Geom. Topol., 15(6):3653–3705, 2015.
  • [BG18] Irina Bobkova and Paul G. Goerss. Topological resolutions in K(2)K(2)-local homotopy theory at the prime 2. J. Topol., 11(4):918–957, 2018.
  • [BGH22] Agnès Beaudry, Paul G. Goerss, and Hans-Werner Henn. Chromatic splitting for the K(2)K(2)-local sphere at p=2p=2. Geom. Topol., 26(1):377–476, 2022.
  • [BHSZ21] Agnès Beaudry, Michael A. Hill, XiaoLin Danny Shi, and Mingcong Zeng. Models of Lubin-Tate spectra via real bordism theory. Adv. Math., 392:Paper No. 108020, 58, 2021.
  • [BM94] M. Bökstedt and I. Madsen. Topological cyclic homology of the integers. Astérisque, (226):7–8, 57–143, 1994. KK-theory (Strasbourg, 1992).
  • [BMQ23] Mark Behrens, Mark Mahowald, and J. D. Quigley. The 2-primary Hurewicz image of tmf. Geom. Topol., 27(7):2763–2831, 2023.
  • [Buj12] Cedric Bujard. Finite subgroups of extended morava stabilizer groups. arXiv: 1206.1951, 2012.
  • [DH04] Ethan S. Devinatz and Michael J. Hopkins. Homotopy fixed point spectra for closed subgroups of the Morava stabilizer groups. Topology, 43(1):1–47, 2004.
  • [DHS88] Ethan S. Devinatz, Michael J. Hopkins, and Jeffrey H. Smith. Nilpotence and stable homotopy theory. I. Ann. of Math. (2), 128(2):207–241, 1988.
  • [DKL+24] Zhipeng Duan, Hana Jia Kong, Guchuan Li, Yunze Lu, and Guozhen Wang. RO(G)RO(G)-graded homotopy fixed point spectral sequence for height 2 Morava E-theory. Peking Mathematical Journal, 2024.
  • [GH04] P. G. Goerss and M. J. Hopkins. Moduli spaces of commutative ring spectra. In Structured ring spectra, volume 315 of London Math. Soc. Lecture Note Ser., pages 151–200. Cambridge Univ. Press, Cambridge, 2004.
  • [GHMR05] P. Goerss, H.-W. Henn, M. Mahowald, and C. Rezk. A resolution of the K(2)K(2)-local sphere at the prime 3. Ann. of Math. (2), 162(2):777–822, 2005.
  • [Hen07] Hans-Werner Henn. On finite resolutions of K(n)K(n)-local spheres. In Elliptic cohomology, volume 342 of London Math. Soc. Lecture Note Ser., pages 122–169. Cambridge Univ. Press, Cambridge, 2007.
  • [Hen19] Hans-Werner Henn. The centralizer resolution of the K(2)K(2)-local sphere at the prime 22. In Homotopy theory: tools and applications., pages 93–128. Providence, RI: American Mathematical Society (AMS), 2019.
  • [Hew95] Thomas Hewett. Finite subgroups of division algebras over local fields. J. Algebra, 173(3):518–548, 1995.
  • [Hew99] Thomas Hewett. Normalizers of finite subgroups of division algebras over local fields. Math. Res. Lett., 6(3-4):271–286, 1999.
  • [HHR16] M. A. Hill, M. J. Hopkins, and D. C. Ravenel. On the nonexistence of elements of Kervaire invariant one. Ann. of Math. (2), 184(1):1–262, 2016.
  • [HHR17] Michael A. Hill, Michael J. Hopkins, and Douglas C. Ravenel. The slice spectral sequence for the C4C_{4} analog of real KK-theory. Forum Math., 29(2):383–447, 2017.
  • [HK01] Po Hu and Igor Kriz. Real-oriented homotopy theory and an analogue of the Adams-Novikov spectral sequence. Topology, 40(2):317 – 399, 2001.
  • [HS98] Michael J. Hopkins and Jeffrey H. Smith. Nilpotence and stable homotopy theory. II. Ann. of Math. (2), 148(1):1–49, 1998.
  • [HS20] Jeremy Hahn and XiaoLin Danny Shi. Real orientations of Lubin-Tate spectra. Invent. Math., 221(3):731–776, 2020.
  • [HSWX23] Michael A. Hill, XiaoLin Danny Shi, Guozhen Wang, and Zhouli Xu. The slice spectral sequence of a C4C_{4}-equivariant height-4 Lubin-Tate theory. Mem. Amer. Math. Soc., 288(1429):v+119, 2023.
  • [HY18] Michael A. Hill and Carolyn Yarnall. A new formulation of the equivariant slice filtration with applications to CpC_{p}-slices. Proc. Amer. Math. Soc., 146(8):3605–3614, 2018.
  • [KW15] Nitu Kitchloo and W. Stephen Wilson. The ER(n)ER(n)-cohomology of BO(q)BO(q) and real Johnson-Wilson orientations for vector bundles. Bull. Lond. Math. Soc., 47(5):835–847, 2015.
  • [LSWX19] Guchuan Li, XiaoLin Danny Shi, Guozhen Wang, and Zhouli Xu. Hurewicz images of real bordism theory and real Johnson-Wilson theories. Adv. Math., 342:67–115, 2019.
  • [Lur18] Jacob Lurie. Elliptic cohomology II: orientations. https://www.math.ias.edu/ lurie/papers/Elliptic-II.pdf, 2018.
  • [May72] J. P. May. The geometry of iterated loop spaces, volume 271 of Lect. Notes Math. Springer, Cham, 1972.
  • [MM15] Akhil Mathew and Lennart Meier. Affineness and chromatic homotopy theory. J. Topol., 8(2):476–528, 2015.
  • [MRW77] Haynes R. Miller, Douglas C. Ravenel, and W. Stephen Wilson. Periodic phenomena in the Adams-Novikov spectral sequence. Ann. of Math. (2), 106(3):469–516, 1977.
  • [MSZ23] Lennart Meier, XiaoLin Danny Shi, and Mingcong Zeng. The localized slice spectral sequence, norms of real bordism, and the Segal conjecture. Adv. Math., 412:Paper No. 108804, 74, 2023.
  • [Qui69] Daniel Quillen. On the formal group laws of unoriented and complex cobordism theory. Bull. Amer. Math. Soc., 75:1293–1298, 1969.
  • [Rav78] Douglas C. Ravenel. The non-existence of odd primary Arf invariant elements in stable homotopy. Math. Proc. Cambridge Philos. Soc., 83(3):429–443, 1978.
  • [Rav92] Douglas C. Ravenel. Nilpotence and periodicity in stable homotopy theory, volume 128 of Annals of Mathematics Studies. Princeton University Press, Princeton, NJ, 1992. Appendix C by Jeff Smith.
  • [Rez98] Charles Rezk. Notes on the Hopkins-Miller theorem. In Homotopy theory via algebraic geometry and group representations (Evanston, IL, 1997), volume 220 of Contemp. Math., pages 313–366. Amer. Math. Soc., Providence, RI, 1998.
  • [Rog08] John Rognes. Galois extensions of structured ring spectra. Stably dualizable groups. Mem. Amer. Math. Soc., 192(898):viii+137, 2008.
  • [Ull13] John Richard Ullman. On the Regular Slice Spectral Sequence. ProQuest LLC, Ann Arbor, MI, 2013. Thesis (Ph.D.)–Massachusetts Institute of Technology.