This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Upper bounds for moments of zeta sums

Peng Gao School of Mathematical Sciences, Beihang University, Beijing 100191, China [email protected]
Abstract.

We establish upper bounds for moments of zeta sums using results on shifted moments of the Riemann zeta function under the Riemann hypothesis.

Mathematics Subject Classification (2010): 11M06

Keywords: zeta sums, moments

1. Introduction

Character sums have been extensively studied in the literature as they have many important applications in number theory. In [Harper23], A. J. Harper studied sizes of the sums given by

nxnitandnxχ(n),\sum_{n\leq x}n^{it}\;\;\;\;\;\text{and}\;\;\;\;\;\sum_{n\leq x}\chi(n),

where tt\in\mathbb{R} and χ(n)\chi(n) is a non-principal Dirichlet character modulo a large prime rr. Following the notation in [Harper23], we shall refer the first sum above as a zeta sum.

Building on his work concerning moments of random multiplicative functions, Harper [Harper23] showed that the low moments of zeta sums (and also character sums) have “better than squareroot cancellation”. More precisely, he proved that uniformly for 1xT1\leq x\leq T and 0k10\leq k\leq 1,

1T0T|nxnit|2kdt(x1+(1k)loglog(10LT))k,\frac{1}{T}\int_{0}^{T}\Big{|}\sum_{n\leq x}n^{it}\Big{|}^{2k}\mathrm{d}t\ll\bigg{(}\frac{x}{1+(1-k)\sqrt{\log\log(10L_{T})}}\bigg{)}^{k},

where LT=min{x,T/x}.L_{T}=\min\{x,T/x\}.

In [Szab], B. Szabó obtained sharp upper bounds on shifted moments of Dirichlet LL-function at points on the critical line and then applied the results to show under the generalized Riemann hypothesis (GRH) that for a fixed real number k>2k>2 and a large integer qq, we have for 2Yq1/22\leq Y\leq q^{1/2},

(1.1) χXq|nYχ(n)|2kkϕ(q)Yk(logY)(k1)2,\displaystyle\sum_{\chi\in X_{q}^{*}}\bigg{|}\sum_{n\leq Y}\chi(n)\bigg{|}^{2k}\ll_{k}\phi(q)Y^{k}(\log Y)^{(k-1)^{2}},

where XqX_{q}^{*} denotes the set of primitive Dirichlet characters modulo qq and ϕ\phi denotes Euler’s totient function. A similar result is given in [G&Zhao2024] for moments of quadratic Dirichlet character sums under GRH.

We note that the zeta sums behave very much like character sums. In fact, other than periodicity, the function nnitn\mapsto n^{-it} for a fixed tt\in\mathbb{R} is totally multiplicative and is unimodular. Thus, one expects to establish results analogous to (1.1) for moments of zeta sums and it is the aim of this paper to achieve this. For this, we define for real numbers m,T,Y>0m,T,Y>0,

Sm(T,Y):=T2T|nYnit|2m𝑑t.\displaystyle S_{m}(T,Y):=\int^{2T}_{T}\bigg{|}\sum_{n\leq Y}n^{-it}\bigg{|}^{2m}dt.

We are interested in bounding Sm(T,Y)S_{m}(T,Y) from the above. We first observe that as pointed out in [Harper23] that using [Ivic, Lemma 1.2] that when tt is large and xtx\geq t, we have x<n2xnit=(2x)1+itx1+it1+it+O(1)x/t\sum_{x<n\leq 2x}n^{it}=\frac{(2x)^{1+it}-x^{1+it}}{1+it}+O(1)\ll x/t. Moreover, note that by [Montgomery94, Chap. 7,(34)], we have nxnitt1/2logt\sum_{n\leq x}n^{it}\ll t^{1/2}\log t when xtx\leq t. As the term x/tx/t dominates t1/2logtt^{1/2}\log t when xt3/2logtx\geq t^{3/2}\log t, we deduce that when TT is large enough and YT3/2logTY\geq T^{3/2}\log T, we have for any real m>0m>0,

Sm(T,Y)kT12mY2m.\displaystyle S_{m}(T,Y)\ll_{k}T^{1-2m}Y^{2m}.

We may therefore focus on the case Y<T3/2logTY<T^{3/2}\log T. In fact, we shall assume that Y(1ε)TY\leq(1-\varepsilon)T for any ε>0\varepsilon>0 throughout the paper as this is often the most interesting case regarding character sums. For this case, we establish the following result concerning the size of Sm(T,Y)S_{m}(T,Y) under the Riemann hypothesis (RH).

Theorem 1.1.

With the notation as above and assume the truth of RH. For any real number m>2m>2, large real numbers T,YT,Y such that Y(1ε)TY\leq(1-\varepsilon)T for any ε>0\varepsilon>0, we have

(1.2) Sm(T,Y)TYm(logT)(m1)2.\displaystyle S_{m}(T,Y)\ll TY^{m}(\log T)^{(m-1)^{2}}.

We note that by Hölder’s inequality, we have for any real number n>1n>1,

Sm(T,Y)T11/n(Smn(T,Y))1/n.\displaystyle S_{m}(T,Y)\ll T^{1-1/n}(S_{mn}(T,Y))^{1/n}.

The above together with Theorem 1.1 then implies that Sm(T,Y)TYm(logT)O(1)S_{m}(T,Y)\ll TY^{m}(\log T)^{O(1)} for any m>0m>0, upon choosing nn large enough. We remark here that it is shown in [Harper23] that one has Sm(T,Y)Tm+1S_{m}(T,Y)\ll T^{m+1}, so that our result above improves upon this when YY is slightly smaller than TT.

Our proof of Theorem 1.1 follows the approaches in [Szab]. A key ingredient used in the proof is a result of M. J. Curran [Curran] on shifted moments of the Riemann zeta function ζ(s)\zeta(s).

2. Preliminaries

In this section, we include some results concerning shifted moments of the Riemann zeta function. The first one is quoted from [Curran, Theorem 1.1].

Proposition 2.1.

With the notation as above and assume the truth of RH. Let k1k\geq 1 be a fixed integer and a1,,aka_{1},\ldots,a_{k} be fixed non-negative real numbers. Let TT be a large real number and let 𝐛=(b1,,bk){\bf b}=(b_{1},\ldots,b_{k}) be a real kk-tuple with |bj|(1ε)T|b_{j}|\leq(1-\varepsilon)T for a fixed ε>0\varepsilon>0. Then

T2Tj=1k|ζ(12+i(t+bk))|akdtT(logT)(a12++ak2)/41j<ll|ζ(1+i(bjbl)+1/logT)|ajal/2.\displaystyle\begin{split}\int_{T}^{2T}\prod_{j=1}^{k}|\zeta(\tfrac{1}{2}+i(t+b_{k}))|^{a_{k}}dt\ll T(\log T)^{(a_{1}^{2}+\cdots+a_{k}^{2})/4}\prod_{1\leq j<l\leq l}|\zeta(1+i(b_{j}-b_{l})+1/\log T)|^{a_{j}a_{l}/2}.\end{split}

Here the implied constant depends on kk and the aja_{j} but not on TT or the bjb_{j}.

We remark here that [Curran, Theorem 1.1] is stated for |bj|T/2|b_{j}|\leq T/2 but an inspection of the proof indicates that it continues to hold for |bj|(1ε)T|b_{j}|\leq(1-\varepsilon)T with any ε>0\varepsilon>0. We also note that

|ζ(1+1/logT+iα)|=|n=1n(1+1/logT+iα)||n=1n(1+1/logT)|=|ζ(1+1/logT)|logT,\Big{|}\zeta(1+1/\log T+i\alpha)\Big{|}=\Big{|}\sum^{\infty}_{n=1}n^{-(1+1/\log T+i\alpha)}\Big{|}\leq\Big{|}\sum^{\infty}_{n=1}n^{-(1+1/\log T)}\Big{|}=\Big{|}\zeta(1+1/\log T)\Big{|}\ll\log T,

where the last estimation above follows from [MVa1, Corollary 1.17]. Also by [MVa1, Corollary 1.17], we see that for 1logT|α|10\frac{1}{\log T}\leq|\alpha|\leq 10, we have

|ζ(1+1/logT+iα)|=1|1/logT+iα|+O(1)1|α|.|\zeta(1+1/\log T+i\alpha)|=\frac{1}{|1/\log T+i\alpha|}+O(1)\ll\frac{1}{|\alpha|}.

Moreover, by [MVa1, Corollary 13.16], we see that for 10|α|eT10\leq|\alpha|\leq e^{T}, we have under the RH that

log|ζ(1+1/logT+iα)|logloglog|α|+O(1).\log|\zeta(1+1/\log T+i\alpha)|\leq\log\log\log|\alpha|+O(1).

Based on these observations, for TT be given as in Proposition 2.1, we now introduce the function g:0g:\mathbb{R}_{\geq 0}\rightarrow\mathbb{R} defined by

(2.1) g(x)={logTif x1logT or xeT,1xif 1logTx10,loglogxif 10xeT.\displaystyle\begin{split}g(x)=\begin{cases}\log T&\text{if }x\leq\frac{1}{\log T}\text{ or }x\geq e^{T},\\ \frac{1}{x}&\text{if }\frac{1}{\log T}\leq x\leq 10,\\ \log\log x&\text{if }10\leq x\leq e^{T}.\end{cases}\end{split}

The above discussions together with Proposition 2.1 allows us to derive the following simplified version on shifted moments of the Riemann zeta function.

Corollary 2.2.

With the notation as above and assume the truth of RH. Let k1k\geq 1 be a fixed integer and a1,,aka_{1},\ldots,a_{k} be fixed non-negative real numbers. Let TT be a large real number and let 𝐛=(b1,,bk){\bf b}=(b_{1},\ldots,b_{k}) be a real kk-tuple with |bj|(1ε)T|b_{j}|\leq(1-\varepsilon)T for a fixed ε>0\varepsilon>0. Then

T2Tj=1k|ζ(12+i(t+bk))|akdtT(logT)(a12++ak2)/41j<llg(|bjbl|)ajal/2.\displaystyle\begin{split}\int_{T}^{2T}\prod_{j=1}^{k}|\zeta(\tfrac{1}{2}+i(t+b_{k}))|^{a_{k}}dt\ll T(\log T)^{(a_{1}^{2}+\cdots+a_{k}^{2})/4}\prod_{1\leq j<l\leq l}g(|b_{j}-b_{l}|)^{a_{j}a_{l}/2}.\end{split}

Here the implied constant depends on k,εk,\varepsilon and the aja_{j} but not on TT or the bjb_{j}.

We also note the following upper bounds on moments of the Riemann zeta function, which can be obtained by modifying the proof of [Curran, Theorem 1.1].

Lemma 2.3.

With the notation as above and assume the truth of RH. Let k1k\geq 1 be a fixed integer and a1,,aka_{1},\ldots,a_{k} be fixed non-negative real numbers. Let TT be a large real number and let 𝐛=(b1,,bk){\bf b}=(b_{1},\ldots,b_{k}) be a real kk-tuple with |bj|(1ε)T|b_{j}|\leq(1-\varepsilon)T for any fixed ε>0\varepsilon>0. Then for large real number TT and σ1/2\sigma\geq 1/2,

T2Tj=1k|ζ(σ+i(t+bk))|akdt\displaystyle\int_{T}^{2T}\prod_{j=1}^{k}|\zeta(\sigma+i(t+b_{k}))|^{a_{k}}dt\ll T(logT)O(1).\displaystyle T(\log T)^{O(1)}.

We end this section by including an estimation for an average of the moments of the Riemann zeta function.

Proposition 2.4.

With the notation as above and assume the truth of RH. We have for any real numbers m2m\geq 2, 10E(1ε)T10\leq E\leq(1-\varepsilon)T with ε>0\varepsilon>0 being fixed,

(2.2) T2T(0E|ζ(1/2+i(±s+t))|𝑑s)2m𝑑tT((logT)(m1)2E3(loglogE)O(1)+(logT)m23m+3E2m(loglogE)O(1)(loglogT)O(1)).\displaystyle\begin{split}&\int^{2T}_{T}\bigg{(}\int_{0}^{E}|\zeta(1/2+i(\pm s+t))|ds\bigg{)}^{2m}dt\\ \ll&T\big{(}(\log T)^{(m-1)^{2}}E^{3}(\log\log E)^{O(1)}+(\log T)^{m^{2}-3m+3}E^{2m}(\log\log E)^{O(1)}(\log\log T)^{O(1)}\big{)}.\end{split}
Proof.

Our proof follows closely that of [Szab, Proposition 3]. Without loss of generality, we prove (2.2) only for the case where the sign ±\pm in front of ss is ++ in what follows. We have by symmetry that for each fixed tt and any fixed integer k1k\geq 1,

(2.3) (0E|ζ(1/2+i(s+t))|𝑑s)2m[0,E]ka=1k|ζ(1/2+i(ta+t))|(𝒟|ζ(1/2+i(u+t))|𝑑u)2mkd𝐭,\displaystyle\bigg{(}\int_{0}^{E}|\zeta(1/2+i(s+t))|ds\bigg{)}^{2m}\ll\int_{[0,E]^{k}}\prod_{a=1}^{k}|\zeta(1/2+i(t_{a}+t))|\cdot\bigg{(}\int_{\mathcal{D}}|\zeta(1/2+i(u+t))|du\bigg{)}^{2m-k}d\mathbf{t},

where 𝒟=𝒟(t1,,tk)={u[0,E]:|t1u||t2u||tku|}\mathcal{D}=\mathcal{D}(t_{1},\ldots,t_{k})=\{u\in[0,E]:|t_{1}-u|\leq|t_{2}-u|\leq\ldots\leq|t_{k}-u|\}.

We let 1=[1logT,1logT]\mathcal{B}_{1}=\big{[}-\frac{1}{\log T},\frac{1}{\log T}\big{]} and j=[ej1logT,ej2logT][ej2logT,ej1logT]\mathcal{B}_{j}=\big{[}-\frac{e^{j-1}}{\log T},-\frac{e^{j-2}}{\log T}\big{]}\cup\big{[}\frac{e^{j-2}}{\log T},\frac{e^{j-1}}{\log T}\big{]} for 2j<loglogT+10:=K2\leq j<\lfloor\log\log T\rfloor+10:=K. We further denote K=[E,E]1j<Kj\mathcal{B}_{K}=[-E,E]\setminus\bigcup_{1\leq j<K}\mathcal{B}_{j}.

Observe that for any t1[0,E]t_{1}\in[0,E], we have 𝒟[0,E]t1+[E,E]1jKt1+j\mathcal{D}\subset[0,E]\subset t_{1}+[-E,E]\subset\bigcup_{1\leq j\leq K}t_{1}+\mathcal{B}_{j}. Thus if we denote 𝒜j=j(t1+𝒟)\mathcal{A}_{j}=\mathcal{B}_{j}\cap(-t_{1}+\mathcal{D}), then (t1+𝒜j)1jK(t_{1}+\mathcal{A}_{j})_{1\leq j\leq K} form a partition of 𝒟\mathcal{D}. We apply Hölder’s inequality twice to deduce that for 2mk+12m\geq k+1,

(2.4) (𝒟|ζ(1/2+i(u+t))|𝑑u)2mk(1jK1jjt1+𝒜j|ζ(1/2+i(u+t))|𝑑u)2mk(1jKj2mk(t1+𝒜j|ζ(1/2+i(u+t))|𝑑u)2mk)(1jKj(2mk)/(2mk1))2mk11jKj2mk(t1+𝒜j|ζ(1/2+i(u+t))|𝑑u)2mk1jKj2mk|j|2mk1t1+𝒜j|ζ(1/2+i(u+t))|2mk𝑑u.\displaystyle\begin{split}&\bigg{(}\int_{\mathcal{D}}|\zeta(1/2+i(u+t))|du\bigg{)}^{2m-k}\\ \leq&\bigg{(}\sum_{1\leq j\leq K}\frac{1}{j}\cdot j\int_{t_{1}+\mathcal{A}_{j}}|\zeta(1/2+i(u+t))|du\bigg{)}^{2m-k}\\ \leq&\bigg{(}\sum_{1\leq j\leq K}j^{2m-k}\bigg{(}\int_{t_{1}+\mathcal{A}_{j}}\big{|}\zeta(1/2+i(u+t))\big{|}du\bigg{)}^{2m-k}\bigg{)}\bigg{(}\sum_{1\leq j\leq K}j^{-(2m-k)/(2m-k-1)}\bigg{)}^{2m-k-1}\\ \ll&\sum_{1\leq j\leq K}j^{2m-k}\bigg{(}\int_{t_{1}+\mathcal{A}_{j}}|\zeta(1/2+i(u+t))|du\bigg{)}^{2m-k}\\ \leq&\sum_{1\leq j\leq K}j^{2m-k}|\mathcal{B}_{j}|^{2m-k-1}\int_{t_{1}+\mathcal{A}_{j}}|\zeta(1/2+i(u+t))|^{2m-k}du.\end{split}

We denote for 𝐭=(t1,,tk)\mathbf{t}=(t_{1},\ldots,t_{k}),

ζ(𝐭,u)=T2Ta=1k|ζ(1/2+i(ta+t))||ζ(1/2+i(u+t))|2mkdt.\zeta(\mathbf{t},u)=\int^{2T}_{T}\prod_{a=1}^{k}|\zeta(1/2+i(t_{a}+t))|\cdot|\zeta(1/2+i(u+t))|^{2m-k}dt.

We then deduce from (2.3) and (2.4) that

(2.5) T2T(0E|ζ(1/2+i(s+t))|𝑑s)2m𝑑t1l0Kl02mk|l0|2mk1[0,E]kt1+𝒜l0ζ(𝐭,u)𝑑u𝑑𝐭1l0,l1,lk1Kl02mk|l0|2mk1𝒞l0,l1,,lk1ζ(𝐭,u)𝑑u𝑑𝐭,\displaystyle\begin{split}\int^{2T}_{T}\bigg{(}\int_{0}^{E}|\zeta(1/2+i(s+t))|ds\bigg{)}^{2m}dt\ll&\sum_{1\leq l_{0}\leq K}l_{0}^{2m-k}|\mathcal{B}_{l_{0}}|^{2m-k-1}\int_{[0,E]^{k}}\int_{t_{1}+\mathcal{A}_{l_{0}}}\zeta(\mathbf{t},u)dud\mathbf{t}\\ \ll&\sum_{1\leq l_{0},l_{1},\ldots l_{k-1}\leq K}l_{0}^{2m-k}|\mathcal{B}_{l_{0}}|^{2m-k-1}\int_{\mathcal{C}_{l_{0},l_{1},\cdots,l_{k-1}}}\zeta(\mathbf{t},u)dud\mathbf{t},\end{split}

where

𝒞l0,l1,,lk1={(t1,,tk,u)[0,E]k+1:ut1+𝒜l0,|ti+1u||tiu|li, 1ik1}.\mathcal{C}_{l_{0},l_{1},\cdots,l_{k-1}}=\{(t_{1},\ldots,t_{k},u)\in[0,E]^{k+1}:u\in t_{1}+\mathcal{A}_{l_{0}},\,|t_{i+1}-u|-|t_{i}-u|\in\mathcal{B}_{l_{i}},\ 1\leq i\leq k-1\}.

We now distinguish two cases in the last summation of (2.5) according to the size of l0l_{0}.

Case 1: l0<Kl_{0}<K. First note that for any fixed uu, t1t_{1} is in a fixed region of size el0logT\ll\frac{e^{l_{0}}}{\log T}. For fixed uu and t1t_{1}, t2t_{2} is in a fixed region of size Eel1logT\ll E\frac{e^{l_{1}}}{\log T} as |t2u||t1u|+l1|t_{2}-u|\in|t_{1}-u|+\mathcal{B}_{l_{1}}). Similar considerations then imply that the volume of the region 𝒞l0,l1,,lk1\mathcal{C}_{l_{0},l_{1},\cdots,l_{k-1}} is Ekel0+l1++lk1(logT)k\ll E^{k}\frac{e^{l_{0}+l_{1}+\cdots+l_{k-1}}}{(\log T)^{k}}. Also, by the definition of 𝒞l0,l1,,lk1\mathcal{C}_{l_{0},l_{1},\cdots,l_{k-1}} we have el0logq|t1u|E=(logT)O(1)\frac{e^{l_{0}}}{\log q}\ll|t_{1}-u|\ll E=(\log T)^{O(1)} so that g(|t1u|)logTel0loglogEg(|t_{1}-u|)\ll\frac{\log T}{e^{l_{0}}}\log\log E, where gg is the function defined in (2.1). We deduce from the definition of 𝒜j\mathcal{A}_{j} that |t2u||t1u||t_{2}-u|\geq|t_{1}-u|, so that E|t2u|=|t1u|+(|t2u||t1u|)el0logT+el1logTE\gg|t_{2}-u|=|t_{1}-u|+(|t_{2}-u|-|t_{1}-u|)\gg\frac{e^{l_{0}}}{\log T}+\frac{e^{l_{1}}}{\log T}, which implies that g(|t2u|)logTemax(l0,l1)loglogEg(|t_{2}-u|)\ll\frac{\log T}{e^{\max(l_{0},l_{1})}}\log\log E. Similarly, we have g(|tiu|)logTemax(l0,l1,,li1)loglogEg(|t_{i}-u|)\ll\frac{\log T}{e^{\max(l_{0},l_{1},\ldots,l_{i-1})}}\log\log E for any 1ik1\leq i\leq k. Moreover, we have s=ij1(|ts+1u||tsu|)|tjti|\sum^{j-1}_{s=i}(|t_{s+1}-u|-|t_{s}-u|)\leq|t_{j}-t_{i}| for any 1i<jk1\leq i<j\leq k, so that we have g(|tjti|)logTemax(li,,lj1)loglogEg(|t_{j}-t_{i}|)\ll\frac{\log T}{e^{\max(l_{i},\ldots,l_{j-1})}}\log\log E. We then deduce from Theorem 2.1 that for (t1,,tk,u)𝒞l0,l1,,lk1(t_{1},\ldots,t_{k},u)\in\mathcal{C}_{l_{0},l_{1},\cdots,l_{k-1}},

ζ(𝐭,u)\displaystyle\zeta(\mathbf{t},u)
\displaystyle\ll T(logT)((2mk)2+k)/4(loglogE)O(1)(i=0k1logTemax(l0,l1,,li))(2mk)/2(i=1k1j=i+1klogTemax(li,,lj1))1/2\displaystyle T(\log T)^{((2m-k)^{2}+k)/4}(\log\log E)^{O(1)}\bigg{(}\prod^{k-1}_{i=0}\frac{\log T}{e^{\max(l_{0},l_{1},\ldots,l_{i})}}\bigg{)}^{(2m-k)/2}\bigg{(}\prod^{k-1}_{i=1}\prod^{k}_{j=i+1}\frac{\log T}{e^{\max(l_{i},\ldots,l_{j-1})}}\bigg{)}^{1/2}
=\displaystyle= T(logT)m2(loglogE)O(1)exp(2mk2i=0k1max(l0,l1,,li)12i=1k1j=i+1kmax(li,,lj1)).\displaystyle T(\log T)^{m^{2}}(\log\log E)^{O(1)}\exp\Big{(}-\frac{2m-k}{2}\sum^{k-1}_{i=0}\max(l_{0},l_{1},\ldots,l_{i})-\frac{1}{2}\sum^{k-1}_{i=1}\sum^{k}_{j=i+1}\max(l_{i},\ldots,l_{j-1})\Big{)}.

Here, we adopt the convention throughout the paper that any empty product is defined to be 11 and any empty sum is defined to be 0. Observe that we have |l0|el0logT|\mathcal{B}_{l_{0}}|\ll\frac{e^{l_{0}}}{\log T}, so that

(2.6) 1l0<K1l1,lk1Kl02mk|l0|2mk1𝒞l0,l1,,lk1ζ(𝐭,u)𝑑u𝑑𝐭T(logT)(m1)2Ek(loglogE)O(1)1l0<K1l1,lk1Kl02mkexp((2mk1)l0+i=0k1li2mk2i=0k1max(l0,l1,,li)12i=1k1j=i+1kmax(li,,lj1))=T(logT)(m1)2Ek(loglogE)O(1)1l0<K1l1,lk1Kl02mkexp(2mk2l0+12i=1k1li2mk2i=1k1max(l0,l1,,li)12i=1k1j=i+2kmax(li,,lj1)).\displaystyle\begin{split}&\sum_{\begin{subarray}{c}1\leq l_{0}<K\\ 1\leq l_{1},\ldots l_{k-1}\leq K\end{subarray}}l_{0}^{2m-k}|\mathcal{B}_{l_{0}}|^{2m-k-1}\int_{\mathcal{C}_{l_{0},l_{1},\cdots,l_{k-1}}}\zeta(\mathbf{t},u)dud\mathbf{t}\\ \ll&T(\log T)^{(m-1)^{2}}E^{k}(\log\log E)^{O(1)}\\ &\cdot\sum_{\begin{subarray}{c}1\leq l_{0}<K\\ 1\leq l_{1},\ldots l_{k-1}\leq K\end{subarray}}l_{0}^{2m-k}\exp\Big{(}(2m-k-1)l_{0}+\sum^{k-1}_{i=0}l_{i}-\frac{2m-k}{2}\sum^{k-1}_{i=0}\max(l_{0},l_{1},\ldots,l_{i})-\frac{1}{2}\sum^{k-1}_{i=1}\sum^{k}_{j=i+1}\max(l_{i},\ldots,l_{j-1})\Big{)}\\ =&T(\log T)^{(m-1)^{2}}E^{k}(\log\log E)^{O(1)}\\ &\cdot\sum_{\begin{subarray}{c}1\leq l_{0}<K\\ 1\leq l_{1},\ldots l_{k-1}\leq K\end{subarray}}l_{0}^{2m-k}\exp\Big{(}\frac{2m-k}{2}l_{0}+\frac{1}{2}\sum^{k-1}_{i=1}l_{i}-\frac{2m-k}{2}\sum^{k-1}_{i=1}\max(l_{0},l_{1},\ldots,l_{i})-\frac{1}{2}\sum^{k-1}_{i=1}\sum^{k}_{j=i+2}\max(l_{i},\ldots,l_{j-1})\Big{)}.\end{split}

We now set k=4k=4 to see that in this case deduce from the above that

2mk2l0+12i=1k1li2mk2i=1k1max(l0,l1,,li)12i=1k1j=i+2kmax(li,,lj1)(2m4)max(l0,,lk1).\displaystyle\begin{split}&\frac{2m-k}{2}l_{0}+\frac{1}{2}\sum^{k-1}_{i=1}l_{i}-\frac{2m-k}{2}\sum^{k-1}_{i=1}\max(l_{0},l_{1},\ldots,l_{i})-\frac{1}{2}\sum^{k-1}_{i=1}\sum^{k}_{j=i+2}\max(l_{i},\ldots,l_{j-1})\\ \ll&-(2m-4)\max(l_{0},\ldots,l_{k-1}).\end{split}

We deduce from (2.6) and the above that

(2.7) 1l0<K1l1,lk1Kl02mk|l0|2mk1𝒞l0,l1,,lk1ζ(𝐭,u)𝑑u𝑑𝐭T(logT)(m1)2Ek(loglogE)O(1)1l0<K1l1,lk1Kl02mkexp((2m4)max(l0,,lk1))T(logT)(m1)2Ek(loglogE)O(1),\displaystyle\begin{split}&\sum_{\begin{subarray}{c}1\leq l_{0}<K\\ 1\leq l_{1},\ldots l_{k-1}\leq K\end{subarray}}l_{0}^{2m-k}|\mathcal{B}_{l_{0}}|^{2m-k-1}\int_{\mathcal{C}_{l_{0},l_{1},\cdots,l_{k-1}}}\zeta(\mathbf{t},u)dud\mathbf{t}\\ \ll&T(\log T)^{(m-1)^{2}}E^{k}(\log\log E)^{O(1)}\sum_{\begin{subarray}{c}1\leq l_{0}<K\\ 1\leq l_{1},\ldots l_{k-1}\leq K\end{subarray}}l_{0}^{2m-k}\exp\Big{(}-(2m-4)\max(l_{0},\ldots,l_{k-1})\Big{)}\\ \ll&T(\log T)^{(m-1)^{2}}E^{k}(\log\log E)^{O(1)},\end{split}

where the last estimation above follows by noting that we have m>2m>2.

Case 2 l0=Kl_{0}=K. The volume of the region 𝒞K,l1,,lk1\mathcal{C}_{K,l_{1},\cdots,l_{k-1}} is Ek+1el1++lk1(logT)k1\ll E^{k+1}\frac{e^{l_{1}+\cdots+l_{k-1}}}{(\log T)^{k-1}}. For each 1ik1\leq i\leq k, we have g(|tiu|)loglogEg(|t_{i}-u|)\ll\log\log E. Also, similar to Case 1, we have g(|tjti|)logTemax(li,,lj1)g(|t_{j}-t_{i}|)\ll\frac{\log T}{e^{\max(l_{i},\ldots,l_{j-1})}} for 1ik1\leq i\leq k.

ζ(𝐭,u)\displaystyle\zeta(\mathbf{t},u)
\displaystyle\ll T(logT)((2mk)2+k)/4(loglogE)O(1)(i=1k1j=i+1klogTemax(li,,lj1))1/2\displaystyle T(\log T)^{((2m-k)^{2}+k)/4}(\log\log E)^{O(1)}\bigg{(}\prod^{k-1}_{i=1}\prod^{k}_{j=i+1}\frac{\log T}{e^{\max(l_{i},\ldots,l_{j-1})}}\bigg{)}^{1/2}
=\displaystyle= T(logT)((2mk)2+k2)/4(loglogE)O(1)exp(12i=1k1j=i+1kmax(li,,lj1)).\displaystyle T(\log T)^{((2m-k)^{2}+k^{2})/4}(\log\log E)^{O(1)}\exp\Big{(}-\frac{1}{2}\sum^{k-1}_{i=1}\sum^{k}_{j=i+1}\max(l_{i},\ldots,l_{j-1})\Big{)}.

As |K|E|\mathcal{B}_{K}|\ll E, we see that

(2.8) 1l1,lk1KK2mk|K|2mk1𝒞K,l1,,lk1ζ(𝐭,u)𝑑u𝑑𝐭T(logT)((2mk)2+k2)/4k+1E2m(loglogE)O(1)(loglogT)O(1)1l1,lk1Kexp(i=1k1li12i=1k1j=i+1kmax(li,,lj1)).\displaystyle\begin{split}&\sum_{\begin{subarray}{c}1\leq l_{1},\ldots l_{k-1}\leq K\end{subarray}}K^{2m-k}|\mathcal{B}_{K}|^{2m-k-1}\int_{\mathcal{C}_{K,l_{1},\cdots,l_{k-1}}}\zeta(\mathbf{t},u)dud\mathbf{t}\\ \ll&T(\log T)^{((2m-k)^{2}+k^{2})/4-k+1}E^{2m}(\log\log E)^{O(1)}(\log\log T)^{O(1)}\sum_{\begin{subarray}{c}1\leq l_{1},\ldots l_{k-1}\leq K\end{subarray}}\exp\Big{(}\sum^{k-1}_{i=1}l_{i}-\frac{1}{2}\sum^{k-1}_{i=1}\sum^{k}_{j=i+1}\max(l_{i},\ldots,l_{j-1})\Big{)}.\end{split}

We now set k=4k=4 to see that in this case deduce from the above that

i=1k1li12i=1k1j=i+1kmax(li,,lj1)l1/2.\displaystyle\begin{split}&\sum^{k-1}_{i=1}l_{i}-\frac{1}{2}\sum^{k-1}_{i=1}\sum^{k}_{j=i+1}\max(l_{i},\ldots,l_{j-1})\ll l_{1}/2.\end{split}

We deduce from (2.8) and the above that

(2.9) 1l1,lk1KK2mk|K|2mk1𝒞K,l1,,lk1ζ(𝐭,u)𝑑u𝑑𝐭T(logT)((2m3)2+32)/42E2m(loglogE)O(1)(loglogT)O(1)1l1,lk1Kexp(l1/2)T(logT)m23m+3E2m(loglogE)O(1)(loglogT)O(1).\displaystyle\begin{split}&\sum_{\begin{subarray}{c}1\leq l_{1},\ldots l_{k-1}\leq K\end{subarray}}K^{2m-k}|\mathcal{B}_{K}|^{2m-k-1}\int_{\mathcal{C}_{K,l_{1},\cdots,l_{k-1}}}\zeta(\mathbf{t},u)dud\mathbf{t}\\ \ll&T(\log T)^{((2m-3)^{2}+3^{2})/4-2}E^{2m}(\log\log E)^{O(1)}(\log\log T)^{O(1)}\sum_{\begin{subarray}{c}1\leq l_{1},\ldots l_{k-1}\leq K\end{subarray}}\exp\Big{(}l_{1}/2\Big{)}\\ \ll&T(\log T)^{m^{2}-3m+3}E^{2m}(\log\log E)^{O(1)}(\log\log T)^{O(1)}.\end{split}

We now deduce the estimation in (2.2) using (2.7) and (2.9). This completes the proof of the proposition. ∎

3. Proof of Theorem 1.1

3.1. Initial treatments

As we explained in the paragraph below Theorem 1.1, it suffices to establish (1.2). We let ΦU(tx)\Phi_{U}(tx) be a non-negative smooth function supported on (0,1)(0,1), satisfying ΦU(x)=1\Phi_{U}(x)=1 for t(1/U,11/U)t\in(1/U,1-1/U) with UU a parameter to be chosen later and such that ΦU(j)(x)jUj\Phi^{(j)}_{U}(x)\ll_{j}U^{j} for all integers j0j\geq 0. We denote the Mellin transform of ΦU\Phi_{U} by Φ^U\widehat{\Phi}_{U} and we observe that repeated integration by parts gives that, for any integer i1i\geq 1 and (s)1/2\Re(s)\geq 1/2,

(3.1) Φ^U(s)Ui1(1+|s|)i.\displaystyle\widehat{\Phi}_{U}(s)\ll U^{i-1}(1+|s|)^{-i}.

We insert the function ΦU(nY)\Phi_{U}(\frac{n}{Y}) into the definition of Sm(T,Y)S_{m}(T,Y) and apply the triangle inequality to obtain that

(3.2) Sm(T,Y)T2T|nnitΦU(nY)|2m𝑑t+T2T|nYnit(1ΦU(nY))|2m𝑑t.\displaystyle\begin{split}S_{m}(T,Y)\leq&\int^{2T}_{T}\Big{|}\sum_{n}n^{-it}\Phi_{U}(\frac{n}{Y})\Big{|}^{2m}dt+\int^{2T}_{T}\bigg{|}\sum_{n\leq Y}n^{-it}\big{(}1-\Phi_{U}(\frac{n}{Y})\big{)}\bigg{|}^{2m}dt.\end{split}

We further apply the Mellin inversion to obtain that

T2T|nnitΦU(nY)|2m𝑑t=T2T|(2)ζ(s+it)YsΦ^U(s)𝑑s|2m𝑑t.\displaystyle\begin{split}\int^{2T}_{T}\Big{|}\sum_{n}n^{-it}\Phi_{U}(\frac{n}{Y})\Big{|}^{2m}dt=&\int^{2T}_{T}\Big{|}\int\limits_{(2)}\zeta(s+it)Y^{s}\widehat{\Phi}_{U}(s)ds\Big{|}^{2m}dt.\end{split}

Observe that by [iwakow, Corollary 5.20] that under RH, we have for (s)1/2\Re(s)\geq 1/2 and any ε>0\varepsilon>0,

(3.3) ζ(s)|s|ε.\displaystyle\zeta(s)\ll|s|^{\varepsilon}.

The bounds in (3.1) and (3.3) allow us to shift the line of integration in (3.2) to (s)=1/2\Re(s)=1/2 to obtain that

(3.4) T2T|nnitΦU(nY)|2m𝑑t=T2T|(1/2)ζ(s+it)YsΦ^U(s)𝑑s|2m𝑑t.\displaystyle\begin{split}\int^{2T}_{T}\Big{|}\sum_{n}n^{-it}\Phi_{U}(\frac{n}{Y})\Big{|}^{2m}dt=&\int^{2T}_{T}\Big{|}\int\limits_{(1/2)}\zeta(s+it)Y^{s}\widehat{\Phi}_{U}(s)ds\Big{|}^{2m}dt.\end{split}

We split the last integral above according to whether |(s)|(logT)D|\Im(s)|\leq(\log T)^{D} or not for some D>0D>0 to be specified later, obtaining

T2T|nnitΦU(nY)|2m𝑑tT2T|(1/2)|(s)|(logT)Dζ(s+it)YsΦ^U(s)𝑑s|2m𝑑t+T2T|(1/2)|(s)|>(logT)Dζ(s+it)YsΦ^U(s)𝑑s|2m𝑑t.\displaystyle\begin{split}&\int^{2T}_{T}\Big{|}\sum_{n}n^{-it}\Phi_{U}(\frac{n}{Y})\Big{|}^{2m}dt\\ \ll&\int^{2T}_{T}\Big{|}\int\limits_{\begin{subarray}{c}(1/2)\\ |\Im(s)|\leq(\log T)^{D}\end{subarray}}\zeta(s+it)Y^{s}\widehat{\Phi}_{U}(s)ds\Big{|}^{2m}dt+\int^{2T}_{T}\Big{|}\int\limits_{\begin{subarray}{c}(1/2)\\ |\Im(s)|>(\log T)^{D}\end{subarray}}\zeta(s+it)Y^{s}\widehat{\Phi}_{U}(s)ds\Big{|}^{2m}dt.\end{split}

We now set U=(logT)CU=(\log T)^{C} to deduce from (3.2), (3.4) and the above that

(3.5) Sm(T,Y)T2T|(1/2)|(s)|(logT)Dζ(s+it)YsΦ^U(s)𝑑s|2m𝑑t+T2T|(1/2)|(s)|>(logT)Dζ(s+it)YsΦ^U(s)𝑑s|2m𝑑t+T2T|nYnit(1ΦU(nY))|2m𝑑tYmT2T|(1/2)|s|(logT)D|ζ(1/2+i(s+t))|11+|s|ds|2m𝑑t+T2T|(1/2)|(s)|>(logT)Dζ(s+it)YsΦ^U(s)𝑑s|2m𝑑t+T2T|nYnit(1ΦU(nY))|2m𝑑t.\displaystyle\begin{split}S_{m}(T,Y)\ll&\int^{2T}_{T}\Big{|}\int\limits_{\begin{subarray}{c}(1/2)\\ |\Im(s)|\leq(\log T)^{D}\end{subarray}}\zeta(s+it)Y^{s}\widehat{\Phi}_{U}(s)ds\Big{|}^{2m}dt+\int^{2T}_{T}\Big{|}\int\limits_{\begin{subarray}{c}(1/2)\\ |\Im(s)|>(\log T)^{D}\end{subarray}}\zeta(s+it)Y^{s}\widehat{\Phi}_{U}(s)ds\Big{|}^{2m}dt\\ &+\int^{2T}_{T}\bigg{|}\sum_{n\leq Y}n^{-it}\big{(}1-\Phi_{U}(\frac{n}{Y})\big{)}\bigg{|}^{2m}dt\\ \ll&Y^{m}\int^{2T}_{T}\Big{|}\int\limits_{\begin{subarray}{c}(1/2)\\ |s|\leq(\log T)^{D}\end{subarray}}\Big{|}\zeta(1/2+i(s+t))\Big{|}\frac{1}{1+|s|}ds\Big{|}^{2m}dt+\int^{2T}_{T}\Big{|}\int\limits_{\begin{subarray}{c}(1/2)\\ |\Im(s)|>(\log T)^{D}\end{subarray}}\zeta(s+it)Y^{s}\widehat{\Phi}_{U}(s)ds\Big{|}^{2m}dt\\ &+\int^{2T}_{T}\bigg{|}\sum_{n\leq Y}n^{-it}\big{(}1-\Phi_{U}(\frac{n}{Y})\big{)}\bigg{|}^{2m}dt.\end{split}

It follows from the above that in order to establish Theorem 1.1, it remains to prove the following results.

Lemma 3.2.

With the notation as above and assume the truth of RH. We have for DCD\gg C large enough and any real number m>2m>2,

(3.6) T2T|(1/2)|(s)|>(logT)Dζ(s+it)YsΦ^U(s)𝑑s|2m𝑑tTYm.\int^{2T}_{T}\Big{|}\int\limits_{\begin{subarray}{c}(1/2)\\ |\Im(s)|>(\log T)^{D}\end{subarray}}\zeta(s+it)Y^{s}\widehat{\Phi}_{U}(s)ds\Big{|}^{2m}dt\ll TY^{m}.
Lemma 3.3.

With the notation as above and assume the truth of RH. We have for DD large enough and any real number m>2m>2,

(3.7) T2T|(1/2)|s|(logT)D|ζ(1/2+i(s+t))|11+|s|ds|2m𝑑tT(logT)(m1)2.\int^{2T}_{T}\Big{|}\int\limits_{\begin{subarray}{c}(1/2)\\ |s|\leq(\log T)^{D}\end{subarray}}\Big{|}\zeta(1/2+i(s+t))\Big{|}\frac{1}{1+|s|}ds\Big{|}^{2m}dt\ll T(\log T)^{(m-1)^{2}}.
Lemma 3.4.

With the notation as above and assume the truth of RH. We have for CC large enough and any real number m>2m>2,

(3.8) T2T|nYnit(1ΦU(nY))|2m𝑑tTYm.\int^{2T}_{T}\bigg{|}\sum_{n\leq Y}n^{-it}\big{(}1-\Phi_{U}(\frac{n}{Y})\big{)}\bigg{|}^{2m}dt\ll TY^{m}.

3.5. Proof of Lemma 3.2

We apply (3.1) and Hölder’s inequality to deduce that, as m1/2m\geq 1/2,

(3.9) T2T|(1/2)|(s)|>(logT)Dζ(s+it)YsΦ^U(s)𝑑s|2m𝑑tT2T(((1/2)|(s)|>(logT)D|Φ^U(s)||ds|)2m1(1/2)|(s)|>(logT)D|ζ(s+it)Ys|2m|Φ^U(s)||ds|)𝑑tYm((1/2)|(s)|>(logT)D|Φ^U(s)||ds|)2m1(1/2)|(s)|>(logT)DT2T|ζ(s+it)|2m|Φ^U(s)|𝑑t|ds|.\displaystyle\begin{split}&\int^{2T}_{T}\Big{|}\int\limits_{\begin{subarray}{c}(1/2)\\ |\Im(s)|>(\log T)^{D}\end{subarray}}\zeta(s+it)Y^{s}\widehat{\Phi}_{U}(s)ds\Big{|}^{2m}dt\\ \ll&\int^{2T}_{T}\Big{(}\Big{(}\int\limits_{\begin{subarray}{c}(1/2)\\ |\Im(s)|>(\log T)^{D}\end{subarray}}\Big{|}\widehat{\Phi}_{U}(s)\Big{|}|\mathrm{d}s|\Big{)}^{2m-1}\cdot\int\limits_{\begin{subarray}{c}(1/2)\\ |\Im(s)|>(\log T)^{D}\end{subarray}}\Big{|}\zeta(s+it)Y^{s}\Big{|}^{2m}\Big{|}\widehat{\Phi}_{U}(s)\Big{|}|\mathrm{d}s|\Big{)}dt\\ \ll&Y^{m}\Big{(}\int\limits_{\begin{subarray}{c}(1/2)\\ |\Im(s)|>(\log T)^{D}\end{subarray}}\Big{|}\widehat{\Phi}_{U}(s)\Big{|}|\mathrm{d}s|\Big{)}^{2m-1}\cdot\int\limits_{\begin{subarray}{c}(1/2)\\ |\Im(s)|>(\log T)^{D}\end{subarray}}\int^{2T}_{T}\Big{|}\zeta(s+it)\Big{|}^{2m}\Big{|}\widehat{\Phi}_{U}(s)\Big{|}dt|\mathrm{d}s|.\end{split}

Now we note that by (3.1),

(3.10) (1/2)|(s)|>(logT)D|Φ^U(s)||ds|(1/2)|(s)|>(logT)DU1+|s|2|ds|DU(logT)D.\displaystyle\begin{split}\int\limits_{\begin{subarray}{c}(1/2)\\ |\Im(s)|>(\log T)^{D}\end{subarray}}\Big{|}\widehat{\Phi}_{U}(s)\Big{|}|\mathrm{d}s|\ll&\int\limits_{\begin{subarray}{c}(1/2)\\ |\Im(s)|>(\log T)^{D}\end{subarray}}\frac{U}{1+|s|^{2}}|\mathrm{d}s|\ll_{D}\frac{U}{(\log T)^{D}}.\end{split}

We also apply (3.3) to see that

(3.11) (1/2)|(s)|>(logT)DT2T|ζ(s+it)|2m|Φ^U(s)|𝑑t|ds|(1/2)|s|>(logT)DT2T|ζ(1/2+i(s+t))|2mU1+|s|2𝑑t|ds|(1/2)(logT)D<|s|5TT2T|ζ(1/2+i(s+t))|2mU1+|s|2𝑑t|ds|+(1/2)|s|>5TT2T|ζ(1/2+i(s+t))|2mU1+|s|2𝑑t|ds|(1/2)(logT)D<|s|5TT2T|ζ(1/2+i(s+t))|2mU1+|s|2𝑑t|ds|+(1/2)|s|>5TT2T|s+t|εU1+|s|2𝑑t|ds|(1/2)(logT)D<|s|5TT2T|ζ(1/2+i(s+t))|2mU1+|s|2𝑑t|ds|+(1/2)|s|>5TT2T|s|εU1+|s|2𝑑t|ds|(1/2)(logT)D<|s|5TT2T|ζ(1/2+i(s+t))|2mU1+|s|2𝑑t|ds|+UTε(1/2)(logT)D<|s|5T10T10T|ζ(1/2+it)|2mU1+|s|2|dt||ds|+UTεTU(logT)O(1)(logT)D+UTε,\displaystyle\begin{split}&\int\limits_{\begin{subarray}{c}(1/2)\\ |\Im(s)|>(\log T)^{D}\end{subarray}}\int^{2T}_{T}\Big{|}\zeta(s+it)\Big{|}^{2m}\cdot\Big{|}\widehat{\Phi}_{U}(s)\Big{|}dt|\mathrm{d}s|\\ \ll&\int\limits_{\begin{subarray}{c}(1/2)\\ |s|>(\log T)^{D}\end{subarray}}\int^{2T}_{T}\Big{|}\zeta(1/2+i(s+t))\Big{|}^{2m}\cdot\frac{U}{1+|s|^{2}}dt|\mathrm{d}s|\\ \ll&\int\limits_{\begin{subarray}{c}(1/2)\\ (\log T)^{D}<|s|\leq 5T\end{subarray}}\int^{2T}_{T}\Big{|}\zeta(1/2+i(s+t))\Big{|}^{2m}\cdot\frac{U}{1+|s|^{2}}dt|\mathrm{d}s|+\int\limits_{\begin{subarray}{c}(1/2)\\ |s|>5T\end{subarray}}\int^{2T}_{T}\Big{|}\zeta(1/2+i(s+t))\Big{|}^{2m}\cdot\frac{U}{1+|s|^{2}}dt|\mathrm{d}s|\\ \ll&\int\limits_{\begin{subarray}{c}(1/2)\\ (\log T)^{D}<|s|\leq 5T\end{subarray}}\int^{2T}_{T}\Big{|}\zeta(1/2+i(s+t))\Big{|}^{2m}\cdot\frac{U}{1+|s|^{2}}dt|\mathrm{d}s|+\int\limits_{\begin{subarray}{c}(1/2)\\ |s|>5T\end{subarray}}\int^{2T}_{T}\Big{|}s+t\Big{|}^{\varepsilon}\cdot\frac{U}{1+|s|^{2}}dt|\mathrm{d}s|\\ \ll&\int\limits_{\begin{subarray}{c}(1/2)\\ (\log T)^{D}<|s|\leq 5T\end{subarray}}\int^{2T}_{T}\Big{|}\zeta(1/2+i(s+t))\Big{|}^{2m}\cdot\frac{U}{1+|s|^{2}}dt|\mathrm{d}s|+\int\limits_{\begin{subarray}{c}(1/2)\\ |s|>5T\end{subarray}}\int^{2T}_{T}\Big{|}s\Big{|}^{\varepsilon}\cdot\frac{U}{1+|s|^{2}}dt|\mathrm{d}s|\\ \ll&\int\limits_{\begin{subarray}{c}(1/2)\\ (\log T)^{D}<|s|\leq 5T\end{subarray}}\int^{2T}_{T}\Big{|}\zeta(1/2+i(s+t))\Big{|}^{2m}\cdot\frac{U}{1+|s|^{2}}dt|\mathrm{d}s|+UT^{\varepsilon}\\ \ll&\int\limits_{\begin{subarray}{c}(1/2)\\ (\log T)^{D}<|s|\leq 5T\end{subarray}}\int^{10T}_{-10T}\Big{|}\zeta(1/2+it)\Big{|}^{2m}\cdot\frac{U}{1+|s|^{2}}|\mathrm{d}t||\mathrm{d}s|+UT^{\varepsilon}\\ \ll&TU(\log T)^{O(1)}(\log T)^{-D}+UT^{\varepsilon},\end{split}

where the last estimation above follows from [Sound2009, Corollary B], which asserts that

10T10T|ζ(1/2+it)|2m||dt|T(logT)O(1).\displaystyle\begin{split}\int^{10T}_{-10T}\Big{|}\zeta(1/2+it)\Big{|}^{2m}||\mathrm{d}t|\ll T(\log T)^{O(1)}.\end{split}

We now deduce the estimation given in (3.6) from (3.9)-(3.11), upon taking DCD\gg C large enough. This completes the proof of the lemma.

3.6. Proof of Lemma 3.3

We deduce from (3.5) by symmetry and Hölder’s inequality that,

|(1/2)|s|(logT)D|ζ(1/2+i(s+t))|11+|s|ds|2m|0(logT)D|ζ(1/2+i(s+t))|t+1𝑑t|2m(nDloglogT+1n2m/(2m1))2m1nDloglogT+1(nen11en1|ζ(1/2+i(s+t))|s+1𝑑s)2mnDloglogT+1n2me2nm(en11en1|ζ(1/2+i(s+t))|𝑑s)2m.\displaystyle\begin{split}&\Big{|}\int\limits_{\begin{subarray}{c}(1/2)\\ |s|\leq(\log T)^{D}\end{subarray}}\Big{|}\zeta(1/2+i(s+t))|\frac{1}{1+|s|}ds\Big{|}^{2m}\\ \ll&\Big{|}\int_{0}^{(\log T)^{D}}\frac{|\zeta(1/2+i(s+t))|}{t+1}dt\Big{|}^{2m}\\ \leq&\bigg{(}\sum_{n\leq D\log\log T+1}n^{-2m/(2m-1)}\bigg{)}^{2m-1}\sum_{n\leq D\log\log T+1}\bigg{(}n\int_{e^{n-1}-1}^{e^{n}-1}\frac{|\zeta(1/2+i(s+t))|}{s+1}ds\bigg{)}^{2m}\\ \ll&\sum_{n\leq D\log\log T+1}\frac{n^{2m}}{e^{2nm}}\bigg{(}\int_{e^{n-1}-1}^{e^{n}-1}|\zeta(1/2+i(s+t))|ds\bigg{)}^{2m}.\end{split}

We apply Proposition 2.4 to see that for any integer k1k\geq 1 and any real numbers 2mk+1,ε>02m\geq k+1,\varepsilon>0,

nDloglogT+1n2me2nmT2T(en11en1|ζ(1/2+i(s+t))|𝑑s)2m𝑑t\displaystyle\sum_{n\leq D\log\log T+1}\frac{n^{2m}}{e^{2nm}}\int^{2T}_{T}\bigg{(}\int_{e^{n-1}-1}^{e^{n}-1}|\zeta(1/2+i(s+t))|ds\bigg{)}^{2m}dt
\displaystyle\ll TnDloglogT+1n2me2nm((logT)(m1)2ekn(log2n)O(1)+(logT)m23m+3(log2n)O(1)(loglogT)O(1)e2mn)\displaystyle T\sum_{n\leq D\log\log T+1}\frac{n^{2m}}{e^{2nm}}\Big{(}(\log T)^{(m-1)^{2}}e^{kn}(\log 2n)^{O(1)}+(\log T)^{m^{2}-3m+3}(\log 2n)^{O(1)}(\log\log T)^{O(1)}e^{2mn}\Big{)}
\displaystyle\ll T(logT)(m1)2.\displaystyle T(\log T)^{(m-1)^{2}}.

We now deduce from the above that (3.7) holds. This completes the proof of the lemma.

3.7. Proof of Lemma 3.4

We apply the Cauchy-Schwarz inequality to see that

(3.12) T2T|nYnit(1ΦU(nY))|2m𝑑t(T2T|nYnit(1ΦU(nY))|2𝑑t)1/2(T2T|nYnit(1ΦU(nY))|4m2𝑑t)1/2.\displaystyle\begin{split}&\int^{2T}_{T}\bigg{|}\sum_{n\leq Y}n^{-it}\big{(}1-\Phi_{U}(\frac{n}{Y})\big{)}\bigg{|}^{2m}dt\\ \leq&\bigg{(}\int^{2T}_{T}\bigg{|}\sum_{n\leq Y}n^{-it}\big{(}1-\Phi_{U}(\frac{n}{Y})\big{)}\bigg{|}^{2}dt\bigg{)}^{1/2}\bigg{(}\int^{2T}_{T}\bigg{|}\sum_{n\leq Y}n^{-it}\big{(}1-\Phi_{U}(\frac{n}{Y})\big{)}\bigg{|}^{4m-2}dt\bigg{)}^{1/2}.\end{split}

We first note that it follows from [iwakow, Theorem 9.1] that for arbitrary complex numbers ana_{n}, we have for T,Z2T,Z\geq 2 and any ε>0\varepsilon>0,

T2T|nZannit|2𝑑t(T+Z)nZ|an|2.\displaystyle\begin{split}&\int^{2T}_{T}\bigg{|}\sum_{n\leq Z}a_{n}n^{-it}\bigg{|}^{2}dt\ll(T+Z)\sum_{\begin{subarray}{c}n\leq Z\end{subarray}}|a_{n}|^{2}.\end{split}

We apply the above to Z=YZ=Y and keep in mind our assumption that YTY\leq T to see that

(3.13) T2T|nYnit(1ΦU(nY))|2𝑑t(T+Y)nY(1ΦU(nY))2TY(11/U)nY1+T0nY/U1TYU.\displaystyle\begin{split}&\int^{2T}_{T}\bigg{|}\sum_{n\leq Y}n^{-it}\big{(}1-\Phi_{U}(\frac{n}{Y})\big{)}\bigg{|}^{2}dt\ll(T+Y)\sum_{\begin{subarray}{c}n\leq Y\end{subarray}}\big{(}1-\Phi_{U}(\frac{n}{Y})\big{)}^{2}\ll T\sum_{\begin{subarray}{c}Y(1-1/U)\leq n\leq Y\end{subarray}}1+T\sum_{\begin{subarray}{c}0\leq n\leq Y/U\end{subarray}}1\ll\frac{TY}{U}.\end{split}

We next note that

(3.14) T2T|nYnit(1ΦU(nY))|4m2𝑑tT2T|nYnit|4m2𝑑t+T2T|nYnitΦU(nY)|4m2𝑑t.\int^{2T}_{T}\bigg{|}\sum_{n\leq Y}n^{-it}\big{(}1-\Phi_{U}(\frac{n}{Y})\big{)}\bigg{|}^{4m-2}dt\ll\int^{2T}_{T}\bigg{|}\sum_{n\leq Y}n^{-it}\bigg{|}^{4m-2}dt+\int^{2T}_{T}\bigg{|}\sum_{n\leq Y}n^{-it}\Phi_{U}(\frac{n}{Y})\bigg{|}^{4m-2}dt.

By the remark made in the paragraph below Theorem 1.1, we see that

(3.15) T2T|nYnitΦU(nY)|4m2𝑑tTY2m1(logT)O(1).\int^{2T}_{T}\bigg{|}\sum_{n\leq Y}n^{-it}\Phi_{U}(\frac{n}{Y})\bigg{|}^{4m-2}dt\ll TY^{2m-1}(\log T)^{O(1)}.

To estimate the first expression on the right-hand side of (3.14), we apply Perron’s formula as given in [MVa1, Corollary 5.3] to see that

(3.16) nYnit=12πi1+1/logYiY1+1/logY+iYζ(s+it)Yss𝑑s+R1+R2,=12πi1+1/logYiY1/2iY+12πi1/2iY1/2+iY+12πi1/2+iY1+1/logY+iYζ(s+it)Yss𝑑s+R1+R2,\displaystyle\begin{split}\sum_{n\leq Y}n^{-it}=&\frac{1}{2\pi i}\int_{1+1/\log Y-iY}^{1+1/\log Y+iY}\zeta(s+it)\frac{Y^{s}}{s}ds+R_{1}+R_{2},\\ =&\frac{1}{2\pi i}\int_{1+1/\log Y-iY}^{1/2-iY}+\frac{1}{2\pi i}\int_{1/2-iY}^{1/2+iY}+\frac{1}{2\pi i}\int_{1/2+iY}^{1+1/\log Y+iY}\zeta(s+it)\frac{Y^{s}}{s}ds+R_{1}+R_{2},\end{split}

where

(3.17) R1=O(Y/2<n<2YnYmin(1,1|nY|))=O(logY),R2=O(41+1/logY+Y1+1/logYYζ(1+1/logY))=O(logY).\displaystyle\begin{split}R_{1}=&O\Big{(}\sum_{\begin{subarray}{c}Y/2<n<2Y\\ n\neq Y\end{subarray}}\min(1,\frac{1}{|n-Y|})\Big{)}=O(\log Y),\\ R_{2}=&O\Big{(}\frac{4^{1+1/\log Y}+Y^{1+1/\log Y}}{Y}\zeta(1+1/\log Y)\Big{)}=O(\log Y).\end{split}

Here the last estimation above follows from [MVa1, Corollary 1.17]. We now consider the moments of the horizontal integrals in (3.16). We may assume that Y10Y\geq 10, otherwise the lemma is trivial. By symmetry we only need to consider only one of them. Note that we have |Ys/s|1|Y^{s}/s|\ll 1 in that range and m1m\geq 1, which allows us to apply Hölder’s inequality to get

(3.18) T2T|1/2+iY1+1/logY+iYζ(s+it)Yss𝑑s|4m2𝑑tT2T(1/2+iY1+1/logY+iY|ζ(s+it)||ds|)4m2𝑑t1/2+iY1+1/logY+iYT2T|ζ(s+it)|4m2𝑑t|ds|T(logT)O(1),\displaystyle\begin{split}\int^{2T}_{T}\bigg{|}\int_{1/2+iY}^{1+1/\log Y+iY}\zeta(s+it)\frac{Y^{s}}{s}ds\bigg{|}^{4m-2}dt\ll&\int^{2T}_{T}\bigg{(}\int_{1/2+iY}^{1+1/\log Y+iY}|\zeta(s+it)||\mathrm{d}s|\bigg{)}^{4m-2}dt\\ \ll&\int_{1/2+iY}^{1+1/\log Y+iY}\int^{2T}_{T}|\zeta(s+it)|^{4m-2}dt|\mathrm{d}s|\\ \ll&T(\log T)^{O(1)},\end{split}

where the last estimation above follows from Lemma 2.3, which implies that for 1/2(s)1+1/logY1/2\leq\Re(s)\leq 1+1/\log Y, we have under RH,

T2T|ζ(s+it)|4m2𝑑tT(logT)O(1).\int^{2T}_{T}|\zeta(s+it)|^{4m-2}dt\ll T(\log T)^{O(1)}.

We treat the moments of the vertical integral in (3.16) using Hölder’s inequality (by noting that 4m2>44m-2>4), Proposition 2.4 and the assumption Y(1ε)TY\leq(1-\varepsilon)T to see that

(3.19) T2T|1/2iY1/2+iYζ(s+it)Yss𝑑s|4m2𝑑tY2m1T2T(0Y|ζ(1/2+i(s+t))|s+1𝑑s)4m2𝑑tY2m1nlogY+2n4m2e(4m2)nT2T(en11en1|ζ(1/2+i(s+t))|𝑑s)4m2𝑑tY2m1T(logT)O(1)(nlogY+2n4m2e(4m2)nen+nlogY+2n4m2)Y2m1T(logT)O(1).\displaystyle\begin{split}&\int^{2T}_{T}\bigg{|}\int_{1/2-iY}^{1/2+iY}\zeta(s+it)\frac{Y^{s}}{s}ds\bigg{|}^{4m-2}dt\\ \ll&Y^{2m-1}\int^{2T}_{T}\bigg{(}\int_{0}^{Y}\frac{|\zeta(1/2+i(s+t))|}{s+1}ds\bigg{)}^{4m-2}dt\\ \ll&Y^{2m-1}\sum_{n\leq\log Y+2}\frac{n^{4m-2}}{e^{(4m-2)n}}\int^{2T}_{T}\bigg{(}\int_{e^{n-1}-1}^{e^{n}-1}|\zeta(1/2+i(s+t))|ds\bigg{)}^{4m-2}dt\\ \ll&Y^{2m-1}T(\log T)^{O(1)}\Big{(}\sum_{n\leq\log Y+2}\frac{n^{4m-2}}{e^{(4m-2)n}}e^{n}+\sum_{n\leq\log Y+2}n^{4m-2}\Big{)}\\ \ll&Y^{2m-1}T(\log T)^{O(1)}.\end{split}

We conclude from (3.16)-(3.19) that

(3.20) T2T|nYnit|4m2𝑑tY2m1T(logT)O(1).\int^{2T}_{T}\bigg{|}\sum_{n\leq Y}n^{-it}\bigg{|}^{4m-2}dt\ll Y^{2m-1}T(\log T)^{O(1)}.

We then deduce from (3.12)-(3.15), (3.20) and recall that we have U=(logT)C,Y(1ε)TU=(\log T)^{C},Y\leq(1-\varepsilon)T to see that the estimation given in (3.8) is valid. This completes the proof of the lemma.

Acknowledgments. The author is supported in part by NSFC grant 11871082. This work grows out of discussions with Changhao Chen and Nankun Hong on large inequalities for Dirichlet polynomials when the author visited Anhui University in April 2024. The author is debt to them for the inspiration of this paper and many helpful suggestions on the writing of the manuscript.

References