This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Uplink Performance of Cell-Free Extremely Large-Scale MIMO Systems

Hao Lei, Zhe Wang, Huahua Xiao, Jiayi Zhang, , Bo Ai, 
H. Lei, Z. Wang and J. Zhang are with the School of Electronic and Information Engineering, Beijing Jiaotong University, Beijing 100044, China, and also with the Frontiers Science Center for Smart High-speed Railway System, Beijing Jiaotong University, Beijing 100044, China. H. Xiao is with ZTE Corporation, State Key Laboratory of Mobile Network and Mobile Multimedia Technology. B. Ai is with the State Key Laboratory of Rail Traffic Control and Safety, Beijing Jiaotong University, Beijing 100044, China.
Abstract

In this paper, we investigate the uplink performance of cell-free (CF) extremely large-scale multiple-input-multiple-output (XL-MIMO) systems, which is a promising technique for future wireless communications. More specifically, we consider the practical scenario with multiple base stations (BSs) and multiple user equipments (UEs). To this end, we derive exact achievable spectral efficiency (SE) expressions for any combining scheme. It is worth noting that we derive the closed-form SE expressions for the CF XL-MIMO with maximum ratio (MR) combining. Numerical results show that the SE performance of the CF XL-MIMO can be hugely improved compared with the small-cell XL-MIMO. It is interesting that a smaller antenna spacing leads to a higher correlation level among patch antennas. Finally, we prove that increasing the number of UE antennas may decrease the SE performance with MR combining.

I Introduction

The extremely large-scale multiple-input-multiple-output (XL-MIMO) is a promising technique for the future communication system where the system is equipped with a massive number of antennas in a compact space [1], [2]. Compared with the conventional massive MIMO (mMIMO), the XL-MIMO can provide higher spectral efficiency (SE) and higher energy efficiency (EE) with densely deployed antennas. Specifically, there are many hardware design schemes for realizing the XL-MIMO system, such as holographic MIMO, large intelligent surfaces (LIS), extremely large antenna array (ELAA), and continuous aperture MIMO (CAP-MIMO) [3]. However, the electromagnetic (EM) characteristics of the XL-MIMO are quite different. The commonly used uniform plane wave (UPW) model with far-field assumptions may fail in the XL-MIMO. We should consider the scenario that the UEs are located in the near-field region and the EM channel has to be modeled by spherical wavefront [3], [4]. Moreover, the effective antenna areas and the losses from polarization mismatch should also be considered [5].

Recently, the effect of the near-field characteristics has been initially considered in the XL-MIMO systems [3], [4], [6]-[12]. In [3], the authors comprehensively reviewed the existing XL-MIMO hardware designs, discussed the existing challenges and proposed some promising solutions for the XL-MIMO. In [4], the non-linear phase property of spherical waves was introduced and the metric was proposed to determine the near-field ranges in typical communication scenarios. The authors of [6] proposed a EM channel matrix deduced from the dyadic Green’s function and discussed the the degree of freedom (DoF) and effective degree of freedom (EDoF) limit of the XL-MIMO. In [7], densely packed sub-wavelength patch antennas are incorporated to approximately realize a spatially-continuous aperture. The authors of [8], [9] considered the small-scale fading and provided a plane-wave representation of the XL-MIMO from an electromagnetic perspective. A channel model different from [9] by considering non-isotropic scattering and directive antennas was developed by the authors of [10]. In [11], the authors proposed a novel Fourier plane-wave stochastic scalar channel model for single-user XL-MIMO communication systems by fully capturing the essence of electromagnetic propagation. Moreover, the authors of [12] extended the scenario in [11] to multi-user communication systems and analyzed the SE performance of the XL-MIMO.

As a promising technique for the future wireless communication, cell-free (CF) mMIMO has been proven to achieve higher SE by deploying a large number of distributed access points, compared with cellular mMIMO [13]. However, practical scenarios with multiple BSs are rarely considered in the XL-MIMO. More importantly, although the system with a large number of distributed BSs benefits from the macro diversity, its interference suppression ability depends on how it operates. And the cooperation among multiple XL-MIMO BSs is not discussed. Besides, the signal processing for the XL-MIMO displays high complexity due to the extremely large-scale antennas. Therefore, the signal processing scheme with acceptable complexity is also a challenge.

Motivated by the EM channel model of [11], [12], this paper introduce a novel XL-MIMO channel model for the scenario with multi-BS multi-UE. Inspired by the promising cell-free mMIMO technology [2], [14], we investigate two different uplink processing schemes of the XL-MIMO, called the CF XL-MIMO and the small-cell XL-MIMO. The major contributions of this paper are as follows:

  • We extend the channel model of single-BS multi-UE in [12] to the one of multi-BS multi-UE in the XL-MIMO. More importantly, we investigate the uplink performance of both the CF XL-MIMO and the small-cell XL-MIMO to reveal the benefits of the distributed network.

  • We derive exact achievable uplink SE expressions for two signal processing schemes with arbitrary combining scheme. Moreover, we propose closed-form SE expressions for the CF XL-MIMO with MR combining111 Simulation codes are provided to reproduce the results in this paper: https://github.com/BJTU-MIMO..

Refer to caption
Figure 1: Illustration of the CF XL-MIMO system

II System Model

As illustrated in Fig. 1, the uplink of a CF XL-MIMO network is investigated where MM BSs and KK UEs are arbitrarily distributed in a wide area. To reduce the computation overhead, the BSs are connected to a central processing unit (CPU) with high computation processing ability by fronthaul links. Each BS consists of a planar extremely large-scale surface (XL-surface) with Nr=NHrNVrN_{r}=N_{H_{r}}N_{V_{r}} patch antennas where NHrN_{H_{r}} and NVrN_{V_{r}} denote the number of antennas per row and per column, respectively. The horizontal and vertical patch antenna spacing Δr\Delta_{r} is below λ/2{\lambda\mathord{\left/{\vphantom{\lambda 2}}\right.\kern-1.2pt}2}. We denote the horizontal and vertical length of the XL-surface by Lr,x=NHrΔrL_{r,x}=N_{Hr}\Delta_{r} and Lr,y=NVrΔrL_{r,y}=N_{Vr}\Delta_{r}, respectively. The antennas at each BS are indexed row-by-row by n[1,Nr]n\in[1,N_{r}]. The location of the mm-th BS with respect to the origin is 𝐫m=[rm,x,rm,y,rm,z]T{\rm{\bf r}}_{m}=[r_{m,x},r_{m,y},r_{m,z}]^{T}. The receive response vector is denoted as 𝐚r(𝐤,𝐫)=[𝐚r,1(𝐤,𝐫),,𝐚r,M(𝐤,𝐫)]M×1{{{\rm{\bf a}}}_{r}}({\bf k},{\rm{{\bf r}}})\!\!\!=\!\!\!\left[{{{\bf a}_{r,1}}({\bf k},{\rm{{\bf r}}}),\ldots,{{\bf a}_{r,{M}}}({\bf k},{\rm{\bf r}})}\right]\!\!\in\!\!\mathbb{C}{{}^{M\times 1}} with

𝐚r,m(𝐤,𝐫)=[ej𝐤(φ,θ)T𝐫1(m),,ej𝐤(φ,θ)T𝐫Nr(m)]T,{{\bf a}_{r,{m}}}({\bf k},{\rm{\bf r}})=\left[e^{j{\bf k}{{\left({\varphi,\theta}\right)}^{T}}{{\rm{{\bf r}}}_{1}^{(m)}}},\ldots,e^{j{\bf k}{{\left({\varphi,\theta}\right)}^{T}}{{\rm{{\bf r}}}_{N_{r}}^{(m)}}}\right]^{T}, (1)

where 𝐤(φr,θr)=[kx,ky,kz]=[kcos(θr)cos(φr),kcos(θr)sin(φr),sin(θr)]{\bf{k}}\left({\varphi_{r},\theta_{r}}\right)=[k_{x},k_{y},k_{z}]=[k{\rm cos}(\theta_{r}){\rm cos}(\varphi_{r}),k{\rm cos}(\theta_{r}){\rm sin}(\varphi_{r}),{\rm sin}(\theta_{r})] is the receive wave vector with the wavenumber k=2π/λk={{2\pi}\mathord{\left/{\vphantom{{2\pi}\lambda}}\right.\kern-1.2pt}\lambda}, the receive azimuth angle φr\varphi_{r} and the receive elevation angle θr\theta_{r}. And 𝐫n(m){{\rm{{\bf r}}}_{n}^{(m)}} is the location of the nn-th antenna of mm-th BS.

Similarly, each UE is equipped with a planar XL-surface with NsN_{s} antennas. And we assume that all planar XL-surface are parallel. The horizontal and vertical antenna spacing, the horizontal length and the vertical length are denoted by Δs\Delta_{s}, Ls,xL_{s,x} and Ls,yL_{s,y}, respectively. We denote the location of kk-th user by 𝐬k=[sk,x,sk,y,sk,z]T,k=1,,K{\rm{\bf s}}_{k}=[s_{k,x},s_{k,y},s_{k,z}]^{T},k=1,...,K. The transmit wave vector is denoted as 𝐚s(𝜿,𝐬)=[𝐚s,1(𝜿,𝐬),,𝐚s,K(𝜿,𝐬)]{{\rm{{\bf a}}}_{s}}({\bm{\kappa}},{\rm{{\bf s}}})\!\!=\!\!\left[{{{\rm{{\bf a}}}_{s,1}}({\bm{\kappa}},{\rm{{\bf s}}}),\ldots,{{\rm{{\bf a}}}_{s,{K}}}({\bm{\kappa}},{\rm{{\bf s}}})}\right] with

𝐚s,k(𝜿,𝐬)=[ej𝜿T𝐬1(k),,ej𝜿T𝐬Ns(k)]T,k=1,,K,{{\rm{{\bf a}}}_{s,k}}\left({{\bm{\kappa}},{\rm{{\bf s}}}}\right)=\left[e^{j{\bm{\kappa}}^{T}{\rm{{\bf s}}}_{1}^{(k)}},\ldots,e^{j{\bm{\kappa}}^{T}{\rm{{\bf s}}}_{N_{s}}^{(k)}}\right]^{T},k=1,...,K, (2)

where 𝜿3{\bm{\kappa}}\in\mathbb{C}{{}^{3}} is the transmit wave vector 𝜿=[κx,κy,κz]=[kcos(θs)cos(φs),kcos(θs)sin(φs),sin(θs)]{\bm{\kappa}}=[\kappa_{x},\kappa_{y},\kappa_{z}]=[k{\rm cos}(\theta_{s}){\rm cos}(\varphi_{s}),k{\rm cos}(\theta_{s}){\rm sin}(\varphi_{s}),{\rm sin}(\theta_{s})] with the transmit azimuth angle φs\varphi_{s} and the transmit elevation angle θs\theta_{s}.

II-A Channel Modeling for the Single-BS Single-UE Scenario

In the XL-MIMO communication system, the near-field region is extended to tens of meters, which resluts in UEs more likely to be in the near-field. Then the EM channel should be accurately modeled based on the spherical wave assumption.

Specifically, by considering the scenario with single-BS single-UE, the (m,n)(m,n)-entry of the space domain channel 𝐇Nr×Ns{{\rm{\bf H}}}\in\mathbb{C}^{N_{r}\times N_{s}} can be denoted as [11]

[𝐇]mn=1(2π)2𝒟×𝒟\displaystyle{[{\rm{\bf H}}]_{mn}}\!=\!\frac{1}{{{{\left({2\pi}\right)}^{2}}}}\iiiint_{\mathcal{D}\times\mathcal{D}} ar,m(𝐤,𝐫)Ha(kx,ky,κx,κy)\displaystyle\!{{a_{r,m}}\left({{\rm{\bf k}},{\rm{\bf r}}}\right)\!{H_{a}}\!\left({{k_{x}},{k_{y}},{\kappa_{x}},{\kappa_{y}}}\right)} (3)
as,n(𝜿,𝐬)dkxdkydκxdκy,\displaystyle{a_{s,n}}\left({{\bm{\kappa}},{\rm{\bf s}}}\right)d{k_{x}}d{k_{y}}d{\kappa_{x}}d{\kappa_{y}},

where ar,m(𝐤,𝐫){a_{r,m}}\left({{\rm{\bf k}},{\rm{\bf r}}}\right) is the mm-th element in (1), as,n(𝜿,𝐬){a_{s,n}}\left({{\bm{\kappa}},{\rm{\bf s}}}\right) is the nn-th element in (2), Ha(kx,ky,κx,κy){H_{a}}\left({{k_{x}},{k_{y}},{\kappa_{x}},{\kappa_{y}}}\right) is the wavenumber domain channel, and the integration region is 𝒟={(kx,ky):2kx2+ky2κ2}\mathcal{D}=\left\{(k_{x},k_{y})\in\mathbb{C}{{}^{2}}:k_{x}^{2}+k_{y}^{2}\leq\kappa^{2}\right\}, respectively.

𝐑mk=((𝐔s(k))𝐔r(m))(diag(𝝈k(s)𝝈k(s))diag(𝝈m(r)𝝈m(r)))((𝐔s(k))T(𝐔r(m))H){{\rm{\bf R}}_{mk}}=\left({{{\left({{\rm{\bf U}}_{s}^{\left(k\right)}}\right)}^{*}}\otimes{\rm{\bf U}}_{r}^{\left(m\right)}}\right)\left({{\rm diag}\left({{\bm{\sigma}}_{k}^{(s)}\odot{\bm{\sigma}}_{k}^{(s)}}\right)\otimes{\rm diag}\left({{\bm{\sigma}}_{m}^{(r)}\odot{\bm{\sigma}}_{m}^{(r)}}\right)}\right)\left({{{\left({{\rm{\bf U}}_{s}^{\left(k\right)}}\right)}^{T}}\otimes{{\left({{\rm{\bf U}}_{r}^{\left(m\right)}}\right)}^{H}}}\right) (12)

As shown in [11], the wavenumber domain channel in (3) can be denoted as

Ha(kx,ky,κx,κy)=S1/2(kx,ky,κx,κy)W(kx,ky,κx,κy)\displaystyle{H_{a}}\!\left(\!{{k_{x}},{k_{y}},{\kappa_{x}},{\kappa_{y}}}\!\right)\!=\!{S^{1/2}}\!\left(\!{{k_{x}},{k_{y}},{\kappa_{x}},{\kappa_{y}}}\!\right)\!W\!\left(\!{{k_{x}},{k_{y}},{\kappa_{x}},{\kappa_{y}}}\!\right)\!\!\! (4)
=κη2A(kx,ky,κx,κy)W(kx,ky,κx,κy)kz1/2(kx,ky)κz1/2(κx,κy),\displaystyle=\!\frac{{\kappa\eta}}{2}\!\frac{{A\!\left({{k_{x}},{k_{y}},{\kappa_{x}},{\kappa_{y}}}\right)\!W\!\left({{k_{x}},{k_{y}},{\kappa_{x}},{\kappa_{y}}}\right)}}{{k_{z}^{1/2}\left({{k_{x}},{k_{y}}}\right)\kappa_{z}^{1/2}\left({{\kappa_{x}},{\kappa_{y}}}\right)}},

where S(kx,ky,κx,κy)=A2(kx,ky,κx,κy)kz(kx,ky)κz(κx,κy)S\left({{k_{x}},{k_{y}},{\kappa_{x}},{\kappa_{y}}}\right)=\frac{{{A^{2}}\left({{k_{x}},{k_{y}},{\kappa_{x}},{\kappa_{y}}}\right)}}{{k_{z}\left({{k_{x}},{k_{y}}}\right)\kappa_{z}\left({{\kappa_{x}},{\kappa_{y}}}\right)}} is the spectral density, A(kx,ky,κx,κy){A}\left({{k_{x}},{k_{y}},{\kappa_{x}},{\kappa_{y}}}\right) is an arbitrary real-valued, non-negative function and W(kx,ky,κx,κy)𝒞𝒩(0,1)W\!\left({{k_{x}},{k_{y}},{\kappa_{x}},{\kappa_{y}}}\right)\!\!\!\!\sim\!\!\!\mathcal{CN}(0,1) is a collection of random characteristics. In the isotropic scattering condition, we have A(kx,ky,kz)=2πkA\left({{k_{x}},{k_{y}},{k_{z}}}\right)\!\!\!=\!\!\!\frac{2\pi}{\sqrt{k}} with unit average power.

The wavenumber domain channel displays sparse characteristics where only finite elements are non-zero. Thus, the space domain channel in (3) can be approximated with finite sampling points within the lattice ellipse [11], [12]

s\displaystyle{\mathcal{E}_{s}} ={(mx,my)2:(mxλ/Ls,x)2+(myλ/Ls,y)21},\displaystyle=\!\left\{\!{\left({{m_{x}},{m_{y}}}\right)\!\in\!{\mathbb{Z}^{2}}\!:\!{{\left({{m_{x}}\lambda/{L_{s,x}}}\right)}^{2}}\!+\!{{\left({{m_{y}}\lambda/{L_{s,y}}}\right)}^{2}}\!\leq\!1}\!\right\},\!\!\! (5)
r\displaystyle{\mathcal{E}_{r}} ={(x,y)2:(xλ/Lr,x)2+(yλ/Lr,y)21},\displaystyle=\!\left\{\!{\left({{\ell_{x}},{\ell_{y}}}\right)\in{\mathbb{Z}^{2}}:{{\left({{\ell_{x}}\lambda/{L_{r,x}}}\right)}^{2}}+{{\left({{\ell_{y}}\lambda/{L_{r,y}}}\right)}^{2}}\leq 1}\right\},

at each UE and each BS, respectively. And we denote the cardinalities of the sets s{{\mathcal{E}_{s}}} and r{{\mathcal{E}_{r}}} by ns=|s|n_{s}=\left|{{\mathcal{E}_{s}}}\right| and nr=|r|n_{r}=\left|{{\mathcal{E}_{r}}}\right|, respectively.

The channel 𝐇{\rm{\bf H}} in (3) can be approximately described by a 4D Fourier plane-wave series expansion [11]

[𝐇]mn(lx,ly)εr(mx,my)εsHa(x,y,mx,my)\displaystyle{\left[{\rm{\bf H}}\right]_{mn}}\approx\sum\limits_{\left({{l_{x}},{l_{y}}}\right)\in{\varepsilon_{r}}}\sum\limits_{\left({{m_{x}},{m_{y}}}\right)\in{\varepsilon_{s}}}{H_{a}}\left({{\ell_{x}},{\ell_{y}},{m_{x}},{m_{y}}}\right) (6)
ar,m(x,y,𝐫)as,n(mx,my,𝐬),\displaystyle{a_{r,m}}\left({{\ell_{x}},{\ell_{y}},{\rm{{\bf r}}}}\right){a_{s,n}}\left({{m_{x}},{m_{y}},{\rm{{\bf s}}}}\right),

with Fourier coefficients

Ha(x,y,mx,my)𝒞𝒩(0,σ2(x,y,mx,my)).{H_{a}}\left({{\ell_{x}},{\ell_{y}},{m_{x}},{m_{y}}}\right)\sim\mathcal{CN}(0,\sigma^{2}\left({{\ell_{x}},{\ell_{y}},{m_{x}},{m_{y}}}\right)). (7)

The variance σ2(x,y,mx,my)\sigma^{2}\left({{\ell_{x}},{\ell_{y}},{m_{x}},{m_{y}}}\right) is the variance of sampling point (x,y,mx,my)\left({{\ell_{x}},{\ell_{y}},{m_{x}},{m_{y}}}\right), which can be formulated under the separable scattering shown as [11], [12]

σ2\displaystyle{\sigma^{2}} (x,y,mx,my)S^s×S^r𝟙𝒟^(kx,ky)𝟙𝒟^(κx,κy)\displaystyle\left({{\ell_{x}},{\ell_{y}},{m_{x}},{m_{y}}}\right)\propto\iiiint_{{{{\hat{S}}_{s}}\times{{\hat{S}}_{r}}}}\!\!\!\!\!\!\!{{{\mathbbm{1}_{\hat{\mathcal{D}}}}\left({{k_{x}},{k_{y}}}\right){\mathbbm{1}_{\hat{\mathcal{D}}}}\left({{\kappa_{x}},{\kappa_{y}}}\right)}}\!\! (8)
A2(k^x,k^y,κ^x,κ^y)k^z(k^x,k^y)κ^z(κ^x,κ^y)dk^xdk^ydκ^xdκ^y\displaystyle\frac{{{A^{2}}\left({{{\hat{k}}_{x}},{{\hat{k}}_{y}},{{\hat{\kappa}}_{x}},{{\hat{\kappa}}_{y}}}\right)}}{{{{\hat{k}}_{z}}\left({{{\hat{k}}_{x}},{{\hat{k}}_{y}}}\right){{\hat{\kappa}}_{z}}\left({{{\hat{\kappa}}_{x}},{{\hat{\kappa}}_{y}}}\right)}}d{{\hat{k}}_{x}}d{{\hat{k}}_{y}}d{{\hat{\kappa}}_{x}}d{{\hat{\kappa}}_{y}}\!\!\!\!\!\!\!\!
=i=1i=3j=1j=3Ωs,j(mx,my)×Ωr,i(x,y)A2(θr,ϕr,θs,ϕs)𝑑Ωs𝑑Ωr,\displaystyle=\sum\limits_{i=1}^{i=3}{\sum\limits_{j=1}^{j=3}{\iiiint_{{{\Omega_{s,j}}\left({{m_{x}},{m_{y}}}\right)\times{\Omega_{r,i}}\left({{\ell_{x}},{\ell_{y}}}\right)}}\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!{{A^{2}}\left({{\theta_{r}},{\phi_{r}},{\theta_{s}},{\phi_{s}}}\right)d{\Omega_{s}}d{\Omega_{r}}}}},

where k^x,k^y,k^z=(kx,ky,kz)/k{{\hat{k}}_{x}},{{\hat{k}}_{y}},{{\hat{k}}_{z}}=(k_{x},k_{y},k_{z})/k are normalized wavevector coordinates, and Ωr(x,y){\Omega_{r}}\left({{\ell_{x}},{\ell_{y}}}\right) and Ωs(mx,my){\Omega_{s}}\left({{m_{x}},{m_{y}}}\right) are integration regions in the wavenumber domain of each BS and each UE, respectively [9, Appendix IV.C].

SEmk(2)=𝔼{log2|𝐈NS+p𝐇mkH𝐇mk(pl=1,lkK𝐇mkH𝐇ml𝐇mlH𝐇mk+σw2𝐇mkH𝐇mk)1𝐇mkH𝐇mk|}{\rm SE}_{mk}^{(2)}={\mathbb{E}}\left\{{\log_{2}}\left|{\rm{\bf I}}_{N_{S}}+p{{{\rm{\bf H}}_{mk}^{H}{{\rm{\bf H}}_{mk}}}}\left(p\sum_{l=1,l\neq k}^{K}{{{{\rm{\bf H}}_{mk}^{H}{{\rm{\bf H}}_{ml}}{\rm{\bf H}}_{ml}^{H}{{\rm{\bf H}}_{mk}}}}}+\sigma_{w}^{2}{{{\rm{\bf H}}_{mk}^{H}{{\rm{\bf H}}_{mk}}}}\right)^{-1}{{{\rm{\bf H}}_{mk}^{H}{{\rm{\bf H}}_{mk}}}}\right|\right\} (18)

II-B Channel Modeling for the Multi-BS Multi-UE Scenario

In [12], the authors extended the scenario with single-BS single-UE channel modeling from the previous subsection to the scenario with single-BS multi-UE. Similarly, the channel between mm-th BS and kk-th UE 𝐇mkNr×Ns{\rm{\bf H}}_{mk}\in\mathbb{C}^{N_{r}\times N_{s}} is

𝐇mk=\displaystyle{\rm{\bf H}}_{mk}\!= NrNs(x,y)r(mx,my)sHa(mk)(x,y,mx,my)\displaystyle\sqrt{{N_{r}}{N_{s}}}\!\!\!\!\sum\limits_{\left({{\ell_{x}},{\ell_{y}}}\right)\in{\mathcal{E}_{r}}}{\sum\limits_{\left({{m_{x}},{m_{y}}}\right)\in{\mathcal{E}_{s}}}\!\!\!{H_{a}^{\left({mk}\right)}\left({{\ell_{x}},{\ell_{y}},{m_{x}},{m_{y}}}\right)}}\!\!\!\!\!\! (9)
𝐚r(x,y,𝐫(m))𝐚s(mx,my,𝐬(k)),\displaystyle{{\rm{{\bf a}}}_{r}}\left({{\ell_{x}},{\ell_{y}},{{\rm{{\bf r}}}^{\left(m\right)}}}\right){{\rm{{\bf a}}}_{s}}\left({{m_{x}},{m_{y}},{{\rm{{\bf s}}}^{\left(k\right)}}}\right),

where the Fourier coefficient

Ha(mk)(x,y,mx,my)𝒩(0,σmk2(x,y,mx,my)),\!\!{H_{a}^{\left({mk}\right)}\left({{\ell_{x}},{\ell_{y}},{m_{x}},{m_{y}}}\right)}\sim\mathcal{N}_{\mathbb{C}}(0,\sigma_{mk}^{2}({{\ell_{x}},{\ell_{y}},{m_{x}},{m_{y}}})), (10)

and

[as(mx,my,𝐬(k))]j\displaystyle\!\!\!\!\!{\left[{{{\rm{a}}_{s}}\!\!\left(\!{{m_{x}},\!{m_{y}},\!{{\rm{{\bf s}}}^{\left(k\right)}}}\!\right)}\!\right]_{j}} =1Nsej(2πLs,xmxsjx(k)+2πLs,ymysjy(k)+γs(mx,my)sjz(k)),\displaystyle=\!\!\frac{1}{{\sqrt{{N_{s}}}}}{e^{\!-\!\!j\!\left(\!{\frac{{2\pi}}{{{L_{s,\!x}}}}\!{m_{x}}s{{{}_{x}^{\left(k\right)}}\!\!\!\!_{{}_{j}}}+\!\frac{{2\pi}}{{{L_{s,\!y}}}}{m_{y}}s{{{}_{y}^{\left(k\right)}}\!\!\!\!_{{}_{j}}}+{\gamma_{s}}\!\left(\!{{m_{x}},{m_{y}}}\!\right)s{{{}_{z}^{\left(k\right)}}\!\!\!\!_{{}_{j}}}}\right)}}, (11)
j\displaystyle j =1,,Ns,\displaystyle=1,\ldots,{N_{s}},
[ar(x,y,𝐫(m))]i\displaystyle\!\!{\left[{{{\rm{a}}_{r}}\!\!\left({{\ell_{x}},{\ell_{y}},{{\rm{{\bf r}}}^{\left(m\right)}}}\!\right)}\!\right]_{i}} =1Nrej(2πLr,xxrix(m)+2πLr,yyriy(m)+γr(x,y)riz(m)),\displaystyle=\!\!\frac{1}{{\sqrt{{N_{r}}}}}{e^{\!j\!\left({\frac{{2\pi}}{{{L_{r,x}}}}{\ell_{x}}r{{{}_{x}^{\left(m\right)}}\!\!\!\!_{{}_{i}}}+\frac{{2\pi}}{{{L_{r,y}}}}{\ell_{y}}r{{{}_{y}^{\left(m\right)}}\!\!\!\!_{{}_{i}}}+{\gamma_{r}}\left({{\ell_{x}},{\ell_{y}}}\right)r{{{}_{z}^{\left(m\right)}}\!\!\!\!_{{}_{i}}}}\right)}},
i\displaystyle i =1,,Nr.\displaystyle=1,\ldots,{N_{r}}.

Inspired by [12], the channel in (9) can be written as 𝐇mk=𝐔r(m)𝐇a(mk)(𝐔s(k))H=𝐔r(m)(𝚺(mk)𝐖(mk))(𝐔s(k))H{\rm{\bf H}}_{mk}={\rm{\bf U}}_{r}^{\left(m\right)}{\rm{\bf H}}_{a}^{\left({mk}\right)}{\left({{\rm{\bf U}}_{s}^{\left(k\right)}}\right)^{H}}={\rm{\bf U}}_{r}^{\left(m\right)}\left({{{\bm{\Sigma}}^{\left({mk}\right)}}\odot{{\rm{\bf W}}^{\left({mk}\right)}}}\right){\left({{\rm{\bf U}}_{s}^{\left(k\right)}}\right)^{H}}, where 𝐔r(m){\rm{\bf U}}_{r}^{\left(m\right)} and 𝐔s(k){{\rm{\bf U}}_{s}^{\left(k\right)}} denote the deterministic matrices collecting the variances of nrn_{r} and nsn_{s} sampling points in (x,y,𝐫(m))\left({{\ell_{x}},{\ell_{y}},{{\rm{{\bf r}}}^{\left(m\right)}}}\right) and (mx,my,𝐬(k))\left({{m_{x}},{m_{y}},{{\rm{{\bf s}}}^{\left(k\right)}}}\right), respectively. And 𝐇a(mk)=𝚺(mk)𝐖(mk)nr×ns{\rm{\bf H}}_{a}^{\left({mk}\right)}={{{\bm{\Sigma}}^{\left({mk}\right)}}\odot{{\rm{\bf W}}^{\left({mk}\right)}}}\in\mathbb{C}^{n_{r}\times n_{s}} collects NrNsHa(mk)(x,y,mx,my){\sqrt{{N_{r}}{N_{s}}}H_{a}^{\left({mk}\right)}\left({{\ell_{x}},{\ell_{y}},{m_{x}},{m_{y}}}\right)} for nrnsn_{r}\!\cdot n_{s} sampling points, and 𝐖𝒞𝒩(0,𝐈nr){\rm{\bf W}}\sim\mathcal{CN}(0,{\rm{{\bf I}}}_{n_{r}}). We have 𝚺(mk)=(𝝈m(r)𝟏nsT)(𝟏nr(𝝈k(s))T){{\bm{\Sigma}}^{\left({mk}\right)}}=({\bm{\sigma}}_{m}^{(r)}{\rm\bf{1}}_{n_{s}}^{T})\odot({\rm\bf{1}}_{n_{r}}({\bm{\sigma}}_{k}^{(s)})^{T}) where 𝝈m(r)nr×1{\bm{\sigma}}_{m}^{(r)}\in\mathbb{R}^{n_{r}\times 1} and 𝝈k(s)ns×1{\bm{\sigma}}_{k}^{(s)}\in\mathbb{R}^{n_{s}\times 1} collect Nrσm(r)(x,y)\sqrt{{N_{r}}}{\sigma}_{m}^{(r)}\left({{\ell_{x}},{\ell_{y}}}\right) and Nsσk(s)(mx,my)\sqrt{{N_{s}}}{\sigma}_{k}^{(s)}\left({{m_{x}},{m_{y}}}\right), respectively.

As in [15], we can structure the channel as 𝐡mk=vec(𝐇mk)𝒩(0,𝐑mk){\rm{\bf h}}_{mk}={\rm vec}({\rm{\bf H}}_{mk})\sim\mathcal{N}_{\mathbb{C}}(0,{\rm{\bf R}}_{mk}), where 𝐑mk𝔼{vec(𝐇mk)vec(𝐇mk)H}{\rm{\bf R}}_{mk}\triangleq\mathbb{E}\left\{{\rm vec}({\rm{\bf H}}_{mk}){\rm vec}({\rm{\bf H}}_{mk})^{H}\right\} is the full correlation matrix as (12), shown at the top of this page. The full correlation matrix can also be structured in the block form as [15] where 𝐑mkni=𝔼{𝐡mk,n𝐡mk,iH}{{\rm{\bf R}}_{mk}^{ni}}=\mathbb{E}\{{\rm{\bf h}}_{mk,n}{\rm{\bf h}}_{mk,i}^{H}\} with 𝐡mk,n{\rm{\bf h}}_{mk,n} and 𝐡mk,i{\rm{\bf h}}_{mk,i} being the nn-th column and ii-th column of 𝐇mk{\rm{\bf H}}_{mk}, respectively.

II-C Uplink Data Transmission

During the uplink, all KK UEs sent their data to the BSs. The transmitted signal from UE kk is denoted by 𝐱k=[xk,1,,xk,Ns]TNs{{\rm{\bf x}}_{k}}=[x_{k,1},\cdots,x_{k,N_{s}}]^{T}\in\mathbb{C}^{N_{s}} where tr(𝐱k𝐱kH)=p{\rm tr}({{\rm{\bf x}}_{k}}{{\rm{\bf x}}_{k}^{H}})=p with pp being the transmitted power. The received signal 𝐲mNr{\rm{\bf y}}_{m}\in\mathbb{C}^{N_{r}} at BS mm is 𝐲m=k=1K𝐇mk𝐱k+𝐧m{\rm{\bf y}}_{m}=\sum_{k=1}^{K}{{{\rm{\bf H}}_{mk}}{{\rm{\bf x}}_{k}}}+{{\rm{\bf n}}_{m}}, where 𝐧m𝒞𝒩(0,σw2𝐈Nr){{\rm{\bf n}}_{m}}\sim\mathcal{CN}(0,\sigma_{w}^{2}{\rm{\bf I}}_{N_{r}}) is the independent receiver noise with σw2\sigma_{w}^{2} being the noise power.

III Signal Processing Schemes

III-A Cell-Free XL-MIMO

In the CF XL-MIMO, the BSs firstly decode the received signals and then transmit the local processed signals to the central processing unit (CPU) for further processing [3].

Let 𝐕mkNr×Ns{\rm{\bf V}}_{mk}\in\mathbb{C}^{N_{r}\times N_{s}} denote the combining matrix designed by BS mm for UE kk. Then the local estimate of 𝐱k{{\rm{\bf x}}_{k}} at BS mm is

𝐱ˇmk=𝐕mkH𝐲m=𝐕mkH𝐇mk𝐱k+l=1,lkK𝐕mkH𝐇ml𝐱l+𝐕mkH𝐧m.\displaystyle\!\!\!\!\!\!{{{\rm{\check{{\bf x}}}}}_{mk}}\!\!=\!\!{\rm{\bf V}}_{mk}^{H}{{\rm{\bf y}}_{m}}\!\!=\!\!{\rm{\bf V}}_{mk}^{H}{{\rm{\bf H}}_{mk}}{{\rm{{{\bf x}}}}_{k}}\!\!+\!\!\!\!\!\!\sum\limits_{l=1,l\neq k}^{K}\!\!\!\!\!{{\rm{\bf V}}_{mk}^{H}{{\rm{\bf H}}_{ml}}{{\rm{{{\bf x}}}}_{l}}}\!\!+\!\!{\rm{\bf V}}_{mk}^{H}{{\rm{\bf n}}_{m}}. (13)

Then the local estimates 𝐱ˇmk{{{\rm{\check{{\bf x}}}}}_{mk}} are sent to the CPU where they are weighted evenly as 𝐱^k=m=1M1M𝐱ˇmk{{{\rm{\hat{\bf x}}}}_{k}}=\sum_{m=1}^{M}{\frac{1}{M}{{{\rm{\check{{\bf x}}}}}_{mk}}}. The final estimate of 𝐱k{{\rm{\bf x}}_{k}} at the CPU is denoted by

𝐱^k=1Mm=1M𝐕mkH𝐇mk𝐱k+1Mm=1Ml=1,lkK𝐕mkH𝐇ml𝐱l+𝐧k,\displaystyle\!\!{{{\rm{\hat{\bf x}}}}_{k}}\!=\!\frac{1}{M}\sum\limits_{m=1}^{M}\!{{\rm{\bf V}}_{mk}^{H}{{\rm{\bf H}}_{mk}}{{\rm{{{\bf x}}}}_{k}}}\!\!+\!\!\frac{{1}}{M}\sum\limits_{m=1}^{M}{\sum\limits_{l=1,l\neq k}^{K}\!\!\!{{\rm{\bf V}}_{mk}^{H}{{\rm{\bf H}}_{ml}}{{\rm{{{\bf x}}}}_{l}}}}\!+\!{{\rm{\bf n^{\prime}}}\!_{k}}, (14)

with 𝐧k=1Mm=1M𝐕mkH𝐧m{{\rm{\bf n^{\prime}}}\!_{k}}=\frac{1}{M}\sum_{m=1}^{M}{{\rm{\bf V}}_{mk}^{H}{{\rm{\bf n}}_{m}}}.

Corollary 1.

An achievable SE for UE k in the CF XL-MIMO is [15]

SEk(1)=log2|𝐈NS+𝐄k,(1)H𝚿k,(1)1𝐄k,(1)|,\displaystyle{{\rm SE}_{k}^{(1)}}={\log_{2}}\left|{{\rm{\bf I}}_{N_{S}}+{\rm{\bf E}}_{k,(1)}^{H}{\bm{\Psi}}_{k,(1)}^{-1}{{\rm{\bf E}}_{k,(1)}}}\right|, (15)

where 𝐄k,(1)pm=1M𝔼{𝐕mkH𝐇mk}{{\rm{\bf E}}_{k,(1)}}\triangleq\sqrt{p}\sum_{m=1}^{M}{{\mathbb{E}}\left\{{{\rm{\bf V}}_{mk}^{H}{{\rm{\bf H}}_{mk}}}\right\}} and 𝚿k,(1)pl=1Km=1Mm=1M𝔼{𝐕mkH𝐇ml𝐕mlH𝐇mk}𝐄k,(1)𝐄k,(1)H+m=1M𝔼{𝐕mkH𝐧m𝐧mH𝐕mk}{\bm{\Psi}}_{k,(1)}\triangleq p\sum_{l=1}^{K}{\sum_{m=1}^{M}{\sum_{m^{\prime}=1}^{M}{{\mathbb{E}}\left\{{{\rm{\bf V}}_{mk}^{H}{{\rm{\bf H}}_{ml}}{\rm{\bf V}}_{m^{\prime}l}^{H}{{\rm{\bf H}}_{m^{\prime}k}}}\right\}}}}-{{\rm{\bf E}}_{k,(1)}}{{\rm{\bf E}}_{k,(1)}}^{H}+\sum_{m=1}^{M}{{\mathbb{E}}\left\{{{\rm{\bf V}}_{mk}^{H}{{\rm{\bf n}}_{m}}{\rm{\bf n}}_{m}^{H}{{\rm{\bf V}}_{mk}}}\right\}}.

Note that (15) can adopt any combining matrix. We can derive the closed form SE expression with MR combining 𝐕mk=𝐇mk{\rm{\bf V}}_{mk}={\rm{\bf H}}_{mk} as the following theorem.

Theorem III.1.

If MR combining is considered, the closed-form SE expression in the CF XL-MIMO can be derived as

SEk(1)=log2|𝐈NS+𝐄k,(1)H𝚿k,(1)1𝐄k,(1)|,\displaystyle{{\rm SE}_{k}^{(1)}}={\log_{2}}\left|{{\rm{\bf I}}_{N_{S}}+{\rm{\bf E}}_{k,(1)}^{H}{\bm{\Psi}}_{k,(1)}^{-1}{{\rm{\bf E}}_{k,(1)}}}\right|, (16)

where 𝐄k,(1)=pm=1M𝐙mk{{\rm{\bf E}}_{k,(1)}}=\sqrt{p}\sum_{m=1}^{M}{{\rm{\bf Z}}_{mk}} and 𝚿k,(1)=pl=1Km=1Mm=1M𝐓mkml𝐄k,(1)𝐄k,(1)H+σw2m=1M𝐙mk{\bm{\Psi}}_{k,(1)}=p\!\sum_{l=1}^{K}\!{\sum_{m=1}^{M}\!{\sum_{m^{\prime}=1}^{M}\!{\rm{\bf T}}_{mkm^{\prime}l}}}\!-\!{{\rm{\bf E}}_{k,(1)}}{{\rm{\bf E}}_{k,(1)}}^{H}\!\!+\!\!\sigma_{w}^{2}\!\sum_{m=1}^{M}\!{{\rm{\bf Z}}_{mk}}.

Proof:

The proof is given in Appendix A. ∎

III-B Small-Cell XL-MIMO

In the small-cell XL-MIMO, the BSs decode the received signals without exchange anything with the CPU. In this case, the signal from one UE is decoded by only one BS.

Corollary 2.

An achievable SE for UE k in the small-cell XL-MIMO is

SEk(2)=maxm{1,,M}𝔼{log2|𝐈NS+𝐄mk,(2)H𝚿mk,(2)1𝐄mk,(2)|}SEmk(2),\displaystyle\!\!\!\!\!\!\!\!{\rm SE}_{k}^{(2)}\!\!=\!\!\!\!\!\!\!\mathop{\max}\limits_{m\in\left\{{1,\cdots,M}\right\}}\!\underbrace{{\mathbb{E}}\left\{{\log_{2}}\left|{\rm{\bf I}}_{N_{S}}\!\!+\!\!{{\rm{\bf E}}_{mk,(2)}^{H}{\bm{\Psi}}_{mk,(2)}^{-1}{{\rm{\bf E}}_{mk,(2)}}}\right|\right\}}_{{\rm SE}_{mk}^{(2)}}, (17)

where 𝐄mk,(2)p𝐕mkH𝐇mk{\rm{\bf E}}_{mk,(2)}\triangleq\sqrt{p}{{{\rm{\bf V}}_{mk}^{H}{{\rm{\bf H}}_{mk}}}} and 𝚿mk,(2)pl=1,lkK𝐕mkH𝐇ml𝐇mlH𝐕mk+σw2𝐕mkH𝐕mk{\bm{\Psi}}_{mk,(2)}\triangleq p\sum_{l=1,l\neq k}^{K}{{{{\rm{\bf V}}_{mk}^{H}{{\rm{\bf H}}_{ml}}{\rm{\bf H}}_{ml}^{H}{{\rm{\bf V}}_{mk}}}}}+\sigma_{w}^{2}{{{\rm{\bf V}}_{mk}^{H}{{\rm{\bf V}}_{mk}}}}. If MR combining is used, the expression of SEmkSE_{mk} in (17) can be derived as (18), shown at the top of this page.

Proof:

The proof is given in Appendix B. ∎

IV Numerical Results

In this section, we compare the uplink performance of the CF XL-MIMO and the small-cell XL-MIMO with MR combining and different antenna spacing.

Figure 2 shows the sum SE for two processing schemes over MR combining as a function of NHr=NVrN_{H_{r}}=N_{V_{r}} with M=20M=20, K=8K=8, Ns=NHs×NVs=36N_{s}=N_{H_{s}}\times N_{V_{s}}=36 and Δs=Δr=λ/3\Delta_{s}=\Delta_{r}={\lambda}/{3}. The first observation is that the CF XL-MIMO outperforms the small-cell XL-MIMO. And the performance gap between the CF XL-MIMO and the small-cell XL-MIMO increases with the increase of NHs=NVsN_{H_{s}}=N_{V_{s}}. Besides, the curves generated by Monte Carlo simulations are overlapped by markers “\circ” generated by analytical results in the CF XL-MIMO. This validates the closed-form SE expression derived in Section III. Moreover, we observe that the sum SE reach the maximum values at NHr=NVr=9N_{H_{r}}=N_{V_{r}}=9, then decrease with the increase of NHr=NVrN_{H_{r}}=N_{V_{r}}. The reason is that increasing NsN_{s} will increase both the interference and desired signal while the performance loss caused by the increase of the interference outweighs the gain in increasing desired signal.

Refer to caption
Figure 2: Sum SE for two signal processing schemes as a function of NHr=NVrN_{H_{r}}=N_{V_{r}} with M=20M=20, K=8K=8, Ns=NHs×NVs=36N_{s}=N_{H_{s}}\times N_{V_{s}}=36 and Δs=Δr=λ/3\Delta_{s}=\Delta_{r}={\lambda/3}.
Refer to caption
Figure 3: Sum SE against the number of BSs for two signal processing schemes over different antenna spacing with K=8K=8, Ns=NHs×NVs=36N_{s}=N_{H_{s}}\times N_{V_{s}}=36, and Nr=NHr×NVr=81N_{r}=N_{H_{r}}\times N_{V_{r}}=81.

Figure 3 exploits the sum SE against the number of BSs for two processing schemes over different antenna spacing with K=8K=8, Ns=NHs×NVs=36N_{s}=N_{H_{s}}\times N_{V_{s}}=36, and Nr=NHr×NVr=81N_{r}=N_{H_{r}}\times N_{V_{r}}=81. For the CF XL-MIMO or the small-cell XL-MIMO, we observe that the scheme with Δs=Δr=λ/3\Delta_{s}=\Delta_{r}={\lambda}/{3} performs better than the scheme with Δs=Δr=λ/6\Delta_{s}=\Delta_{r}={\lambda}/{6}. In the CF XL-MIMO or the small-cell XL-MIMO with M=20M=20, compared with the scheme with Δs=Δr=λ/3\Delta_{s}=\Delta_{r}={\lambda}/{3}, the scheme with a lower antenna spacing Δs=Δr=λ/6\Delta_{s}=\Delta_{r}={\lambda}/{6} can result in about 78.57%78.57\% and 83.11%83.11\% sum SE loss, respectively. This can be explained by the fact that with the fixed number of antennas, smaller spacing has less surface area and leads to a higher correlation level among patch antennas. Thus, the SE performance of the scheme with smaller spacing is worse. As the number of BSs increases, the sum SE of the CF XL-MIMO undoubtedly increases while the sum SE of the small-cell XL-MIMO is constant, since the channel model in this paper only considers the small-scale fading and one UE is served by only one BS.

Figure 4 investigates the average SE as a function of the number of UEs KK for two processing schemes over different antenna spacing with M=20M=20, Ns=NHs×NVs=36N_{s}=N_{H_{s}}\times N_{V_{s}}=36, and Nr=NHr×NVr=81N_{r}=N_{H_{r}}\times N_{V_{r}}=81. We observe that the performance gap between Δs=Δr=λ/3\Delta_{s}=\Delta_{r}={\lambda}/{3} and Δs=Δr=λ/6\Delta_{s}=\Delta_{r}={\lambda}/{6} becomes smaller with the increase of KK. Moreover, we notice that the CF XL-MIMO provides higher SEs than the small-cell XL-MIMO which can be also observed in Figure 2.

Refer to caption
Figure 4: Average SE against the number of UEs for two signal processing schemes over different antenna spacing with M=20M=20, Ns=NHs×NVs=36N_{s}=N_{H_{s}}\times N_{V_{s}}=36, and Nr=NHr×NVr=81N_{r}=N_{H_{r}}\times N_{V_{r}}=81.
Refer to caption
Figure 5: Sum SE as a function of the number of BSs for the distributed XL-MIMO over different antenna spacing with K=3K=3, Ns=NHs×NVs=144N_{s}=N_{H_{s}}\times N_{V_{s}}=144, and Nr=NHr×NVr=144N_{r}=N_{H_{r}}\times N_{V_{r}}=144.

Figure 5 shows the sum SE as a function of the number of BSs for the CF XL-MIMO with K=3K=3, Ns=NHs×NVs=144N_{s}=N_{Hs}\times N_{Vs}=144, and Nr=NHr×NVr=144N_{r}=N_{Hr}\times N_{Vr}=144. We compare seven cases with different BS antenna spacing Δr\Delta_{r} and UE antenna spacing Δs\Delta_{s}. As observed, smaller spacing results in worse performance. In fact, the smaller antenna spacing, the higher the correlation level. Specifically, compared with the case with Δs=λ/6,Δr=λ/6\Delta_{s}={\lambda}/{6},\Delta_{r}={\lambda}/{6}, the case with Δs=λ/3,Δr=λ/6\Delta_{s}={\lambda}/{3},\Delta_{r}={\lambda}/{6} can achieve about 138%138\% SE improvement, while the case with Δs=λ/6,Δr=λ/3\Delta_{s}={\lambda}/{6},\Delta_{r}={\lambda}/{3} can achieve about 158%158\% SE improvement. This phenomenon indicates that the antenna spacing of BSs has a greater impact on performance than the antenna spacing of UEs. The reason is that uplink MR combining can spatially suppress transmit correlation.

V Conclusions

In this paper, we extend the channel model of single-BS multi-UE XL-MIMO to the channel model of practical multi-BS multi-UE XL-MIMO. We investigate the uplink performance of the XL-MIMO system and consider two different signal processing schemes. Then we derive exact achievable SE expressions for any combining scheme and compute the closed-form SE expression for the CF XL-MIMO with MR combining. In numerical results, we investigate the impact of antennas spacing and prove that the CF XL-MIMO outperforms the small-cell XL-MIMO. Moreover, we reveal that increasing the number of UE antennas may decrease the SE with MR combining. We also prove that the decrease of antenna spacing induces stronger correlations. Considering the impact of polarized antenna arrays and developing novel signal processing schemes based on the CF XL-MIMO channel characteristics could be important topics for future work.

𝔼{𝐡mk,nH𝐡mk,i𝐡mk,iH𝐡mk,n}=𝔼{(j1=1Ns𝐑~mknj1𝐱j1)H(j2=1Ns𝐑~mkij2𝐱j2)(j3=1Ns𝐑~mkij3𝐱j3)H(j4=1Ns𝐑~mknj4𝐱j4)}{{\mathbb{E}}\left\{{{\rm{\bf h}}_{mk,n}^{H}{{\rm{\bf h}}_{mk,i}}{\rm{\bf h}}_{mk,i}^{H}{{\rm{\bf h}}_{mk,n^{\prime}}}}\right\}}\\ ={\mathbb{E}}\left\{{{{\left({\sum\limits_{{j_{1}}=1}^{Ns}{\tilde{\rm{\bf R}}_{mk}^{nj_{1}}{{\rm{\bf x}}_{j_{1}}}}}\right)}^{H}}\left({\sum\limits_{{j_{2}}=1}^{Ns}{\tilde{\rm{\bf R}}_{mk}^{ij_{2}}{{\rm{\bf x}}_{j_{2}}}}}\right){{\left({\sum\limits_{{j_{3}}=1}^{Ns}{\tilde{\rm{\bf R}}_{mk}^{ij_{3}}{{\rm{\bf x}}_{j_{3}}}}}\right)}^{H}}\left({\sum\limits_{{j_{4}}=1}^{Ns}{\tilde{\rm{\bf R}}_{mk}^{n^{\prime}j_{4}}{{\rm{\bf x}}_{j_{4}}}}}\right)}\right\} (20)
𝔼{(j1=1Ns𝐱j1H𝐑~mkj1n𝐑~mkij1𝐱j1)(j3=1Ns𝐱j3H𝐑~mknj3𝐑~mkj3i𝐱j3)H}=j1=1Nsj3=1Nstr(𝐑~mkj1n𝐑~mkij1)tr(𝐑~mknj3𝐑~mkj3i){\mathbb{E}}\left\{{\left({\sum\limits_{j_{1}=1}^{Ns}{{\rm{\bf x}}_{j_{1}}^{H}\tilde{\rm{\bf R}}_{mk}^{j_{1}n}\tilde{\rm{\bf R}}_{mk}^{ij_{1}}{{\rm{\bf x}}_{j_{1}}}}}\right){{\left({\sum\limits_{j_{3}=1}^{Ns}{{\rm{\bf x}}_{j_{3}}^{H}\tilde{\rm{\bf R}}_{mk}^{n^{\prime}j_{3}}\tilde{\rm{\bf R}}_{mk}^{j_{3}i}{{\rm{\bf x}}_{j_{3}}}}}\right)}^{H}}}\right\}=\sum\limits_{j_{1}=1}^{Ns}{\sum\limits_{j_{3}=1}^{Ns}{{\rm{tr}}\left({\tilde{\rm{\bf R}}_{mk}^{j_{1}n}\tilde{\rm{\bf R}}_{mk}^{ij_{1}}}\right){\rm tr}\left({\tilde{\rm{\bf R}}_{mk}^{n^{\prime}j_{3}}\tilde{\rm{\bf R}}_{mk}^{j_{3}i}}\right)}} (21)
𝔼{(j1=1Ns𝐱j1H𝐑~mkj1n)(j2=1Ns𝐑~mkij2𝐱j2𝐱j2H𝐑~mkj2i)(j1=1Ns𝐑~mknj1𝐱j1)}=j1=1Nsj2=1Nstr(𝐑~mkj1n𝐑~mkij2𝐑~mkj2i𝐑~mknj1){\mathbb{E}}\left\{{\left({\sum\limits_{j_{1}=1}^{Ns}{{\rm{\bf{\bf x}}}_{j_{1}}^{H}\tilde{\rm{\bf R}}_{mk}^{j_{1}n}}}\right)\left({\sum\limits_{j_{2}=1}^{Ns}{\tilde{\rm{\bf R}}_{mk}^{ij_{2}}{{\rm{{\bf x}}}_{j_{2}}}{\rm{\bf x}}_{j_{2}}^{H}\tilde{\rm{\bf R}}_{mk}^{j_{2}i}}}\right)\left({\sum\limits_{j_{1}=1}^{Ns}{\tilde{\rm{\bf R}}_{mk}^{n^{\prime}j_{1}}{{\rm{{\bf x}}}_{j_{1}}}}}\right)}\right\}=\sum\limits_{j_{1}=1}^{Ns}{\sum\limits_{j_{2}=1}^{Ns}{{\rm{tr}}\left({\tilde{\rm{\bf R}}_{mk}^{j_{1}n}\tilde{\rm{\bf R}}_{mk}^{ij_{2}}\tilde{\rm{\bf R}}_{mk}^{j_{2}i}\tilde{\rm{\bf R}}_{mk}^{n^{\prime}j_{1}}}\right)}} (22)
[𝚪mk(2)]nn=j1=1Nsj2=1Ns[tr(𝐑~mkj1n𝐑~mkij1)tr(𝐑~mknj2𝐑~mkj2i)+tr(𝐑~mkj1n𝐑~mkij2𝐑~mkj2i𝐑~mknj1)]{\left[{{{\bm{\Gamma}}_{mk}^{(2)}}}\right]_{nn^{\prime}}}=\sum\limits_{j_{1}=1}^{Ns}\sum\limits_{j_{2}=1}^{Ns}\left[{{\rm{tr}}\left({\tilde{\rm{\bf R}}_{mk}^{j_{1}n}\tilde{\rm{\bf R}}_{mk}^{ij_{1}}}\right){\rm tr}\left({\tilde{\rm{\bf R}}_{mk}^{n^{\prime}j_{2}}\tilde{\rm{\bf R}}_{mk}^{j_{2}i}}\right)}+{{\rm{tr}}\left({\tilde{\rm{\bf R}}_{mk}^{j_{1}n}\tilde{\rm{\bf R}}_{mk}^{ij_{2}}\tilde{\rm{\bf R}}_{mk}^{j_{2}i}\tilde{\rm{\bf R}}_{mk}^{n^{\prime}j_{1}}}\right)}\right] (23)

Appendix

V-A Proof of Theorem 1

This subsection derive the closed-form SE expression for the distributed XL-MIMO based on MR combining 𝐕mk=𝐇mk{\rm{\bf V}}_{mk}={\rm{\bf H}}_{mk}.

We begin with the first term 𝐄k,(1)=pm=1M𝔼{𝐕mkH𝐇mk}=pm=1M𝐙mk{{\rm{\bf E}}_{k,(1)}}=\sqrt{p}\sum_{m=1}^{M}{{\mathbb{E}}\left\{{{\rm{\bf V}}_{mk}^{H}{{\rm{\bf H}}_{mk}}}\right\}}=\sqrt{p}\sum_{m=1}^{M}{{\rm{\bf Z}}_{mk}}, where 𝐙mk=𝔼{𝐕mkH𝐇mk}=𝔼{𝐇mkH𝐇mk}Ns×Ns{{\rm{\bf Z}}_{mk}}={{\mathbb{E}}\left\{{{\rm{\bf V}}_{mk}^{H}{{\rm{\bf H}}_{mk}}}\right\}}={{\mathbb{E}}\left\{{{\rm{\bf H}}_{mk}^{H}{{\rm{\bf H}}_{mk}}}\right\}}\in{\mathbb{C}}^{N_{s}\times N_{s}} and the (n,n)(n,n^{\prime})-th element of 𝐙mk{{\rm{\bf Z}}_{mk}} is denoted as [𝐙mk]n,n=𝔼{𝐡mk,nH𝐡mk,n}=tr(𝐑mknn)\left[{{\rm{\bf Z}}_{mk}}\right]_{n,n^{\prime}}={\mathbb{E}}\left\{{{\rm{\bf h}}_{mk,n}^{H}{{\rm{\bf h}}_{mk,n^{\prime}}}}\right\}={\rm tr}\left({{\rm{\bf R}}_{mk}^{n^{\prime}n}}\right).

Then the second term 𝔼{𝐕mkH𝐧m𝐧mH𝐕mk}{{\mathbb{E}}\left\{{{\rm{\bf V}}_{mk}^{H}{{\rm{\bf n}}_{m}}{\rm{\bf n}}_{m}^{H}{{\rm{\bf V}}_{mk}}}\right\}} can be computed as 𝔼{𝐕mkH𝐧m𝐧mH𝐕mk}=𝔼{𝐕mkH𝐕mk𝐧m𝐧mH}=𝔼{𝐇mkH𝐇mk𝐧m𝐧mH}=σw2𝐙mk{{\mathbb{E}}\left\{{{\rm{\bf V}}_{mk}^{H}{{\rm{\bf n}}_{m}}{\rm{\bf n}}_{m}^{H}{{\rm{\bf V}}_{mk}}}\right\}}={{\mathbb{E}}\left\{{{\rm{\bf V}}_{mk}^{H}{{\rm{\bf V}}_{mk}}{{\rm{\bf n}}_{m}}{\rm{\bf n}}_{m}^{H}}\right\}}={{\mathbb{E}}\left\{{{\rm{\bf H}}_{mk}^{H}{{\rm{\bf H}}_{mk}}{{\rm{\bf n}}_{m}}{\rm{\bf n}}_{m}^{H}}\right\}}=\sigma_{w}^{2}{{\rm{\bf Z}}_{mk}}.

Last but not least, we compute the last term 𝐓mkml=𝔼{𝐕mkH𝐇ml𝐕mlH𝐇mk}=𝔼{𝐇mkH𝐇ml𝐇mlH𝐇mk}{\rm{\bf T}}_{mkm^{\prime}l}={{\mathbb{E}}\left\{{{\rm{\bf V}}_{mk}^{H}{{\rm{\bf H}}_{ml}}{\rm{\bf V}}_{m^{\prime}l}^{H}{{\rm{\bf H}}_{m^{\prime}k}}}\right\}}={{\mathbb{E}}\left\{{{\rm{\bf H}}_{mk}^{H}{{\rm{\bf H}}_{ml}}{\rm{\bf H}}_{m^{\prime}l}^{H}{{\rm{\bf H}}_{m^{\prime}k}}}\right\}} for all possible AP and UE combinations.

Case 1: mm,lkm\neq m^{\prime},l\neq k

Since 𝐇mk{\rm{\bf H}}_{mk} and 𝐇ml{\rm{\bf H}}_{ml} are independent and both have zero mean, we have 𝔼{𝐇mkH𝐇ml𝐇mlH𝐇mk}=0{{\mathbb{E}}\left\{{{\rm{\bf H}}_{mk}^{H}{{\rm{\bf H}}_{ml}}{\rm{\bf H}}_{m^{\prime}l}^{H}{{\rm{\bf H}}_{m^{\prime}k}}}\right\}}=0.

Case 2: mm,l=km\neq m^{\prime},l=k

Since 𝐇mk{\rm{\bf H}}_{mk} and 𝐇mk{\rm{\bf H}}_{m^{\prime}k} are independent, we have 𝔼{𝐇mkH𝐇ml𝐇mlH𝐇mk}=𝔼{𝐇mkH𝐇mk𝐇mkH𝐇mk}=𝔼{𝐇mkH𝐇mk}𝔼{𝐇mkH𝐇mk}=𝐙mk𝐙mk{{\mathbb{E}}\left\{{{\rm{\bf H}}_{mk}^{H}{{\rm{\bf H}}_{ml}}{\rm{\bf H}}_{m^{\prime}l}^{H}{{\rm{\bf H}}_{m^{\prime}k}}}\right\}}={{\mathbb{E}}\left\{{{\rm{\bf H}}_{mk}^{H}{{\rm{\bf H}}_{mk}}{\rm{\bf H}}_{m^{\prime}k}^{H}{{\rm{\bf H}}_{m^{\prime}k}}}\right\}}\!\!=\!\!{{\mathbb{E}}\left\{{{\rm{\bf H}}_{mk}^{H}{{\rm{\bf H}}_{mk}}}\right\}}{{\mathbb{E}}\left\{{{\rm{\bf H}}_{m^{\prime}k}^{H}{{\rm{\bf H}}_{m^{\prime}k}}}\right\}}={\rm{\bf Z}}_{mk}{\rm{\bf Z}}_{m^{\prime}k}.

Case 3: m=m,lkm=m^{\prime},l\neq k

In this case, we define 𝚪mkl(1)𝔼{𝐇mkH𝐇ml𝐇mlH𝐇mk}Ns×Ns{{\bm{\Gamma}}_{mkl}^{(1)}}\triangleq{{\mathbb{E}}\left\{{{\rm{\bf H}}_{mk}^{H}{{\rm{\bf H}}_{ml}}{\rm{\bf H}}_{ml}^{H}{{\rm{\bf H}}_{mk}}}\right\}}\in{\mathbb{C}}^{N_{s}\times N_{s}} with [𝚪mkl(1)]nn=i=1Ns𝔼{𝐡mk,nH𝐡ml,i𝐡ml,iH𝐡mk,n}{\left[{{{\bm{\Gamma}}_{mkl}^{(1)}}}\right]_{nn^{\prime}}}=\sum_{i=1}^{{N_{s}}}{{\mathbb{E}}\left\{{{\rm{\bf h}}_{mk,n}^{H}{{\rm{\bf h}}_{ml,i}}{\rm{\bf h}}_{ml,i}^{H}{{\rm{\bf h}}_{mk,n^{\prime}}}}\right\}} being (n,n)(n,n^{\prime})-th element of 𝚪mkl(1){{{\bm{\Gamma}}_{mkl}^{(1)}}}. Since 𝐡mk{\rm{\bf h}}_{mk} is independent of 𝐡ml{\rm{\bf h}}_{ml}, we have 𝔼{𝐡mk,nH𝐡ml,i𝐡ml,iH𝐡mk,n}=tr(𝔼{𝐡ml,i𝐡ml,iH}𝔼{𝐡mk,n𝐡mk,nH})=tr(𝐑mlii𝐑mknn).\!\!{{\mathbb{E}}\!\left\{{{\rm{\bf h}}_{mk,n}^{H}{{\rm{\bf h}}_{ml,i}}{\rm{\bf h}}_{ml,i}^{H}{{\rm{\bf h}}_{mk,n^{\prime}}}}\right\}}=\!{\rm tr}\!\left({\mathbb{E}}\!\left\{{{\rm{\bf h}}_{ml,i}{{\rm{\bf h}}_{ml,i}^{H}}}\right\}\!{\mathbb{E}}\!\left\{{{\rm{\bf h}}_{mk,n^{\prime}}{{\rm{\bf h}}_{mk,n}^{H}}}\right\}\right)\!=\!{\rm tr}\!\left({{\rm{\bf R}}_{ml}^{ii}{\rm{\bf R}}_{mk}^{n^{\prime}n}}\right).

So, we can obtain [𝚪mkl(1)]nn=i=1Nstr(𝐑mlii𝐑mknn){\left[{{{\bm{\Gamma}}_{mkl}^{(1)}}}\right]_{nn^{\prime}}}=\sum_{i=1}^{{N_{s}}}{\rm tr}\left({{\rm{\bf R}}_{ml}^{ii}{\rm{\bf R}}_{mk}^{n^{\prime}n}}\right).

Case 4: m=m,l=km=m^{\prime},l=k

We first define 𝚪mk(2)𝔼{𝐇mkH𝐇mk𝐇mkH𝐇mk}Ns×Ns{{\bm{\Gamma}}_{mk}^{(2)}}\triangleq{{\mathbb{E}}\left\{{{\rm{\bf H}}_{mk}^{H}{{\rm{\bf H}}_{mk}}{\rm{\bf H}}_{mk}^{H}{{\rm{\bf H}}_{mk}}}\right\}}\in{\mathbb{C}}^{N_{s}\times N_{s}} whose (n,n)(n,n^{\prime})-th element is

[𝚪mk(2)]nn=i=1Ns𝔼{𝐡mk,nH𝐡mk,i𝐡mk,iH𝐡mk,n}.\displaystyle{\left[{{{\bm{\Gamma}}_{mk}^{(2)}}}\right]_{nn^{\prime}}}=\sum_{i=1}^{{N_{s}}}{{\mathbb{E}}\left\{{{\rm{\bf h}}_{mk,n}^{H}{{\rm{\bf h}}_{mk,i}}{\rm{\bf h}}_{mk,i}^{H}{{\rm{\bf h}}_{mk,n^{\prime}}}}\right\}}. (19)

According to [15], we can then rewrite 𝐡mk,i{{\rm{\bf h}}_{mk,i}} and 𝐡mk,{n,n}{{\rm{\bf h}}_{mk,\{n,n^{\prime}\}}} as 𝐡mk,i=j=1Ns𝐑~mkij𝐱j{{\rm{\bf h}}_{mk,i}}=\sum_{j=1}^{Ns}{\tilde{\rm{\bf R}}_{mk}^{ij}{{\rm{\bf x}}_{j}}}, 𝐡mk,n=j=1Ns𝐑~mknj𝐱j{{\rm{\bf h}}_{mk,n}}=\sum_{j=1}^{Ns}{\tilde{\rm{\bf R}}_{mk}^{nj}{{\rm{\bf x}}_{j}}} and 𝐡mk,n=j=1Ns𝐑~mknj𝐱j{{\rm{\bf h}}_{mk,n^{\prime}}}=\sum_{j=1}^{Ns}{\tilde{\rm{\bf R}}_{mk}^{n^{\prime}j}{{\rm{\bf x}}_{j}}}, where 𝐑~mknj\tilde{\rm{\bf R}}_{mk}^{nj} is the (n,j)(n,j)-submatrix of 𝐑~mk1/2{\tilde{\rm{\bf R}}_{mk}^{1/2}} and 𝐱j𝒞N(0,𝐈Nr){{\rm{\bf x}}_{j}}\sim{\mathcal{C}N}\left(0,{\rm{\bf I}}_{N_{r}}\right). So we can obtain (20), shown at the top of next page. According to [15], (20) will be non-zero only for the case of j1=j2,j3=j4j_{1}=j_{2},j_{3}=j_{4} and j1=j4,j2=j3j_{1}=j_{4},j_{2}=j_{3}. If j1=j2,j3=j4j_{1}=j_{2},j_{3}=j_{4}, (20) can be rewritten as (21). If j1=j4,j2=j3j_{1}=j_{4},j_{2}=j_{3}, (20) can be rewritten as (22).

Plugging (20), (21) and (22) into (19), we can obtain (23) to finish the proof.

V-B Proof of Corollary 2

Following similar steps from [15], we have

I(𝐱k;𝐱ˇmk,𝐇mk)=h(𝐱k|𝐇mk)h(𝐱k|𝐱ˇmk,𝐇mk),{\bf{\emph{I}}}\left({{{\rm{{\bf x}}}_{k}};{{{\rm{\check{\bf x}}}}_{mk}},{{\rm{{\bf H}}}_{mk}}}\right)=h\left({{\rm{{\bf x}}}_{k}|{{\rm{{\bf H}}}_{mk}}}\right)-h\left({{{\rm{{\bf x}}}_{k}}|{{{\rm{\check{\bf x}}}}_{mk}},{{\rm{{\bf H}}}_{mk}}}\right), (24)

where h()h\left(\cdot\right) denotes the differential entropy. And we have

h(𝐱k)=log2|πe𝐈NS|.h\left({{\rm{{\bf x}}}_{k}}\right)={\log_{2}}\left|{\pi e{{\rm{\bf I}}_{{N_{S}}}}}\right|. (25)

Then, the estimate of 𝐱k{{\rm{{\bf x}}}_{k}} at BS mm with 𝐱ˇmk{{{\rm{\check{\bf x}}}}_{mk}} and 𝐇mk{{\rm{{\bf H}}}_{mk}} is 𝐱¯mk=𝔼{p𝐕mkH𝐇mk|𝐇mk}𝔼{𝐱ˇmk𝐱ˇmkH|𝐇mk}1𝐱ˇmk=𝐄mk,(2)𝚿~k,(2)1𝐱ˇmk\!\!\!{{{\rm{\bar{\bf x}}}}_{mk}}={\mathbb{E}}\left\{{\sqrt{p}{\rm{\bf V}}_{mk}^{H}{{\rm{\bf H}}_{mk}}|{{\rm{{\bf H}}}_{mk}}}\right\}{\mathbb{E}}{\left\{{{{{\rm{\check{\bf x}}}}_{mk}}{\rm{\check{\bf x}}}_{mk}^{H}|{{\rm{{\bf H}}}_{mk}}}\right\}^{-1}}{{{\rm{\check{\bf x}}}}_{mk}}={{\rm{\bf{E}}}_{mk,(2)}\tilde{\bf\Psi}_{k,(2)}^{-1}{{{\rm{\check{\bf x}}}}_{mk}}}, where 𝐄mk,(2)=𝔼{p𝐕mkH𝐇mk|𝐇mk}=p𝐕mkH𝐇mk{{\rm{\bf{E}}}_{mk,(2)}}={\mathbb{E}}\left\{{\sqrt{p}{\rm{\bf V}}_{mk}^{H}{{\rm{\bf H}}_{mk}}|{{\rm{{\bf H}}}_{mk}}}\right\}=\sqrt{p}{\rm{\bf V}}_{mk}^{H}{{\rm{\bf H}}_{mk}}, 𝚿~k,(2)=𝔼{𝐱ˇmk𝐱ˇmkH|𝐇mk}=𝐕mkH(pl=1K𝐇ml𝐇mlH+σw2𝐈Nr)Vmk\tilde{\bf\Psi}_{k,(2)}={\mathbb{E}}{\left\{{{{{\rm{\check{\bf x}}}}_{mk}}{\rm{\check{\bf x}}}_{mk}^{H}|{{\rm{{\bf H}}}_{mk}}}\right\}}={\rm{\bf V}}_{mk}^{H}\left({p\sum_{l=1}^{K}{{{\rm{\bf H}}_{ml}}{\rm{\bf H}}_{ml}^{H}}+\sigma_{w}^{2}{\rm{\bf I}}_{N_{r}}}\right){V_{mk}}. The estimation error of 𝐱k{{\rm{{\bf x}}}_{k}} is denote by 𝐱~mk=𝐱mk𝐱ˇmk\tilde{\rm{{\bf x}}}_{mk}={{\rm{{\bf x}}}_{mk}}-{{{\rm{\check{\bf x}}}}_{mk}}, then h(𝐱k|𝐱ˇmk,𝐇mk)h\left({{{\rm{{\bf x}}}_{k}}|{{{\rm{\check{\bf x}}}}_{mk}},{{\rm{{\bf H}}}_{mk}}}\right) is upper bounded by

h(𝐱k|𝐱ˇmk,𝐇mk)𝔼{log2|πe𝔼{𝐱~mk𝐱~mkH|𝐇mk}|}\displaystyle h\left({{{\rm{{\bf x}}}_{k}}|{{{\rm{\check{\bf x}}}}_{mk}},{{\rm{{\bf H}}}_{mk}}}\right)\leq{\mathbb{E}}\left\{{{{\log}_{2}}\left|{\pi e{\mathbb{E}}\left\{{{\tilde{\rm{{\bf x}}}_{mk}}\tilde{\rm{{\bf x}}}_{mk}^{H}|{{\rm{\bf H}}_{mk}}}\right\}}\right|}\right\} (26)
=𝔼{log2|πe(𝐈NS𝐄mk,(2)𝚿~mk,(2)1𝐄mk,(2)H)|}.\displaystyle={\mathbb{E}}\left\{{{{\log}_{2}}\left|{\pi e\left({{\rm{\bf I}}_{N_{S}}-{{\rm{\bf{E}}}_{mk,(2)}}\tilde{\bf\Psi}_{mk,(2)}^{-1}{\rm{\bf{E}}}_{mk,(2)}^{H}}\right)}\right|}\right\}.

Plugging (25) and (26) into (24), we have I(𝐱k;𝐱ˇmk,𝐇mk)𝔼{log2|𝐈NS+𝐄mk,(2)H𝚿mk,(2)1𝐄mk,(2)|}{\bf{\emph{I}}}\left({{{\rm{{\bf x}}}_{k}};{{{\rm{\check{\bf x}}}}_{mk}},{{\rm{{\bf H}}}_{mk}}}\right)\!\geq\!{\mathbb{E}}\left\{{{{\log}_{2}}\left|{{{\rm{\bf I}}_{N_{S}}\!\!+\!{{\rm{\bf{E}}}_{mk,(2)}^{H}}{\bf\Psi}_{mk,(2)}^{-1}{\rm{\bf{E}}}_{mk,(2)}}}\right|}\right\}, where 𝚿mk,(2)=𝐕mkH(pl=1,lkK𝐇ml𝐇mlH+σw2𝐈Nr)Vmk{\bf\Psi}_{mk,(2)}={\rm{\bf V}}_{mk}^{H}\left({p\sum_{l=1,l\leq k}^{K}{{{\rm{\bf H}}_{ml}}{\rm{\bf H}}_{ml}^{H}}+\sigma_{w}^{2}{\rm{\bf I}}_{N_{r}}}\right){V_{mk}}. To finish the proof, an achievable SE for UE kk can be derived as (17).

References

  • [1] E. Björnson, L. Sanguinetti, H. Wymeersch, J. Hoydis, and T. L. Marzetta, “Massive MIMO is a reality—what is next? Five promising research directions for antenna arrays,” Digit. Signal Process., vol. 94, pp. 3–20, Nov. 2019.
  • [2] J. Zhang, E. Björnson, M. Matthaiou, D. W. K. Ng, H. Yang, and D. J. Love, “Prospective multiple antenna technologies for beyond 5G,” IEEE J. Sel. Areas Commun., vol. 38, no. 8, pp. 1637–1660, Aug. 2020.
  • [3] Z. Wang, J. Zhang, H. Du, W. E. I. Sha, B. Ai, D. Niyato, and M. Debbah, “Extremely large-scale MIMO: Fundamentals, Challenges, Solutions, and Future Directions,” arXiv:2209.12131, 2022.
  • [4] M. Cui, Z. Wu, Y. Lu, X. Wei, and L. Dai, “Near-field communications for 6G: Fundamentals, challenges, potentials, and future directions,” IEEE Commun. Mag., pp. 1–7, to appear, 2022.
  • [5] P. Ramezani and E. Björnson, “Near-field beamforming and multiplexing using extremely large aperture arrays,” arxiv:2209.03082, 2022.
  • [6] S. S. A. Yuan, Z. He, X. Chen, C. Huang, and W. E. I. Sha, “Electromagnetic effective degree of freedom of an MIMO system in free space,” IEEE Antennas Wireless Propag. Lett., vol. 21, no. 3, pp. 446–450, Mar. 2022.
  • [7] C. Huang, S. Hu, G. C. Alexandropoulos, A. Zappone, C. Yuen, R. Zhang, M. D. Renzo, and M. Debbah, “Holographic MIMO surfaces for 6G wireless networks: Opportunities, challenges, and trends,” IEEE Wireless Commun., vol. 27, no. 5, pp. 118–125, Oct. 2020.
  • [8] A. Pizzo, T. Marzetta, and L. Sanguinetti, “Holographic MIMO communications under spatially-stationary scattering,” in 2020 54th Asilomar Conf. Signals Syst. Comput., 2020, pp. 702–706.
  • [9] A. Pizzo, T. L. Marzetta, and L. Sanguinetti, “Spatially-stationary model for holographic MIMO small-scale fading,” IEEE J. Sel. Areas Commun., vol. 38, no. 9, pp. 1964–1979, Sept. 2020.
  • [10] Ö. T. Demir, E. Björnson, and L. Sanguinetti, “Channel modeling and channel estimation for holographic massive MIMO with planar arrays,” IEEE Wireless Commun. Lett., vol. 11, no. 5, pp. 997–1001, 2022.
  • [11] A. Pizzo, L. Sanguinetti, and T. L. Marzetta, “Fourier plane-wave series expansion for holographic MIMO communications,” IEEE Trans. Wirel. Commun., pp. 1–1, Mar. 2022.
  • [12] L. Wei, C. Huang, G. Alexandropoulus, W. E. Sha, Z. Zhang, M. Debbah, and C. Yuen, “Multi-user holographic MIMO surfaces: Channel modeling and spectral efficiency analysis,” IEEE J. Sel. Topics Signal Process., pp. 1–1, to appear, 2022.
  • [13] J. Zhang, S. Chen, Y. Lin, J. Zheng, B. Ai, and L. Hanzo, “Cell-free massive MIMO: A new next-generation paradigm,” IEEE Access, vol. 7, pp. 99 878–99 888, Jul. 2019.
  • [14] S. Chen, J. Zhang, E. Björnson, J. Zhang, and B. Ai, “Structured massive access for scalable cell-free massive MIMO systems,” IEEE J. Sel. Areas Commun., vol. 39, no. 4, pp. 1086–1100, Apr. 2021.
  • [15] Z. Wang, J. Zhang, B. Ai, C. Yuen, and M. Debbah, “Uplink performance of cell-free massive MIMO with multi-antenna users over jointly-correlated Rayleigh fading channels,” IEEE Trans. Wireless Commun., vol. 21, no. 9, pp. 7391–7406, Sep. 2022.