This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Universality of the Galois action on the fundamental group of P1{0,1,}{\mathbb P}^{1}\setminus\{0,1,\infty\}

Alexander Petrov Institute for Advanced Study, USA [email protected]
Abstract.

We prove that any semi-simple representation of the Galois group of a number field coming from geometry appears as a subquotient of the ring of regular functions on the pro-algebraic completion of the fundamental group of the projective line with 33 punctures.

1. Introduction

A surprising result of Belyi’s [Bel79] says that every non-unit element of the absolute Galois group GQG_{{\mathbb Q}} acts non-trivially on the étale fundamental group π1e´t(PQ¯1{0,1,})\pi_{1}^{\mathrm{\acute{e}t}}({\mathbb P}^{1}_{\overline{\mathbb{Q}}}\setminus\{0,1,\infty\}) of the projective line with 33 punctures. It can be deduced from this that every finite image representation of the Galois group can be found in the space of locally constant functions on that fundamental group:

Proposition 1.1 (Proposition 5.1).

For a number field FF, any continuous finite image representation ρ:GFGLd(Q)\rho:G_{F}\to GL_{d}({\mathbb Q}) can be embedded into the space of locally constant functions Funcloc.const.(π1e´t(PF¯1{0,1,},0v),Q)\operatorname{Func}^{\mathrm{loc.}\mathrm{const.}}(\pi_{1}^{\mathrm{\acute{e}t}}({\mathbb P}^{1}_{\overline{F}}\setminus\{0,1,\infty\},0_{v}),{\mathbb Q}). Here 0v0_{v} is a tangential base point supported at 0.

In this paper we generalize this result by proving that every semi-simple representation coming from geometry appears as a subquotient of the space of functions on the pro-algebraic completion of π1e´t(PF¯1{0,1,},0v)\pi_{1}^{\mathrm{\acute{e}t}}({\mathbb P}^{1}_{\overline{F}}\setminus\{0,1,\infty\},0_{v}). Fix a prime pp. Explicitly, the space of regular functions Qp[π1proalg(PF¯1{0,1,},0v)]{\mathbb Q}_{p}[\pi_{1}^{\mathrm{pro}-\mathrm{alg}}({\mathbb P}^{1}_{\overline{F}}\setminus\{0,1,\infty\},0_{v})] is the space of continuous functions π1e´t(PF¯1{0,1,},0v)Qp\pi_{1}^{\mathrm{\acute{e}t}}({\mathbb P}^{1}_{\overline{F}}\setminus\{0,1,\infty\},0_{v})\to{\mathbb Q}_{p} that can be factored as π1e´t(PF¯1{0,1,},0v)𝜌GLn(Qp)𝑓Qp\pi_{1}^{\mathrm{\acute{e}t}}({\mathbb P}^{1}_{\overline{F}}\setminus\{0,1,\infty\},0_{v})\xrightarrow{\rho}GL_{n}({\mathbb Q}_{p})\xrightarrow{f}{\mathbb Q}_{p} where ρ\rho is a continuous representation and fQp[GLn,Qp]f\in{\mathbb Q}_{p}[GL_{n,{\mathbb Q}_{p}}] is a regular function. Denote by Qp[π1proalg(PF¯1{0,1,},0v)]GFfinQp[π1proalg(PF¯1{0,1,},0v)]{\mathbb Q}_{p}[\pi_{1}^{\mathrm{pro}-\mathrm{alg}}({\mathbb P}^{1}_{\overline{F}}\setminus\{0,1,\infty\},0_{v})]^{G_{F}-\mathrm{fin}}\subset{\mathbb Q}_{p}[\pi_{1}^{\mathrm{pro}-\mathrm{alg}}({\mathbb P}^{1}_{\overline{F}}\setminus\{0,1,\infty\},0_{v})] the subspace of functions whose GFG_{F}-orbit spans a finite-dimensional space. This is our main result:

Theorem 1.2.

For any separated scheme XX of finite type over a number field FF and any iNi\in{\mathbb N}, the semi-simplification of the GFG_{F}-representation Hi(XF¯,Qp)H^{i}(X_{\overline{F}},{\mathbb Q}_{p}) appears as a subquotient of the space Qp[π1proalg(PF¯1{0,1,},0v)]GFfin{\mathbb Q}_{p}[\pi_{1}^{\mathrm{pro}-\mathrm{alg}}({\mathbb P}^{1}_{\overline{F}}\setminus\{0,1,\infty\},0_{v})]^{G_{F}-\mathrm{fin}}.

Conversely, it was shown in [Pet23, Corollary 8.6] that for any smooth variety YY over FF with an FF-rational base point yy, any finite-dimensional subrepresentation VV of Qp[π1proalg(YF¯,y¯)]{\mathbb Q}_{p}[\pi_{1}^{\mathrm{pro}-\mathrm{alg}}(Y_{\overline{F}},\overline{y})] is de Rham at places above pp and is almost everywhere unramified. Therefore, the Fontaine-Mazur conjecture [FM95] is equivalent to the conjunction of the following two conjectures, see Lemma 9.3:

Conjecture 1.3.

Every irreducible finite-dimensional representation of GFG_{F} that appears as a subquotient of Q¯p[π1proalg(PF¯1{0,1,},0v)]GFfin\overline{\mathbb{Q}}_{p}[\pi_{1}^{\mathrm{pro}-\mathrm{alg}}({\mathbb P}^{1}_{\overline{F}}\setminus\{0,1,\infty\},0_{v})]^{G_{F}-\mathrm{fin}} is a subquotient of He´ti(XF¯,Q¯p(j))H^{i}_{\mathrm{\acute{e}t}}(X_{\overline{F}},\overline{\mathbb{Q}}_{p}(j)) for some smooth projective variety XX and i0,jZi\geq 0,j\in{\mathbb Z}.

Conjecture 1.4.

Any irreducible Q¯p\overline{\mathbb{Q}}_{p}-representation of GFG_{F} that is almost everywhere unramified and is de Rham at places above pp can be established as a subquotient of Q¯p[π1proalg(PF¯1{0,1,},0v)]GFfin\overline{\mathbb{Q}}_{p}[\pi_{1}^{\mathrm{pro}-\mathrm{alg}}({\mathbb P}^{1}_{\overline{F}}\setminus\{0,1,\infty\},0_{v})]^{G_{F}-\mathrm{fin}} for every tangential base point 0v0_{v} supported at 0.

We will observe in Corollary 9.2, extending a result of Pridham [Pri09], that for every Galois representation appearing in Q¯p[π1proalg(PF¯1{0,1,},0v)]GFfin\overline{\mathbb{Q}}_{p}[\pi_{1}^{\mathrm{pro}-\mathrm{alg}}({\mathbb P}^{1}_{\overline{F}}\setminus\{0,1,\infty\},0_{v})]^{G_{F}-\mathrm{fin}} the Frobenius eigenvalues at almost all places are Weil numbers, a condition notably absent from the statement of the Fontaine-Mazur conjecture.

Before sketching the proof of the theorem, let us get a feel for working with the Galois action on the pro-algebraic completion of the étale fundamental group by looking at two mechanisms for producing Galois representations inside Qp[π1proalg(YF¯,y)]{\mathbb Q}_{p}[\pi_{1}^{\mathrm{pro}-\mathrm{alg}}(Y_{\overline{F}},y)], for a variety YY over FF. In Example 1.5 geometrically irreducible local systems yield Galois representations inside functions on the fundamental group, and Example 1.6 demonstrates how Belyi’s theorem implies Theorem 1.2 when XX is a curve.

Example 1.5.

If L{\mathbb L} is a Qp{\mathbb Q}_{p}-local system then the corresponding representation of the geometric fundamental group defines a morphism ρLgeom:π1proalg(YF¯,y)GLLy\rho^{\mathrm{geom}}_{{\mathbb L}}:\pi_{1}^{\mathrm{pro}-\mathrm{alg}}(Y_{\overline{F}},y)\to GL_{{\mathbb L}_{y}} to the algebraic group of invertible matrices on the space Ly{\mathbb L}_{y}. Regular functions on GLLyGL_{{\mathbb L}_{y}} then give rise to elements of Qp[π1proalg(YF¯,y)]{\mathbb Q}_{p}[\pi_{1}^{\mathrm{pro}-\mathrm{alg}}(Y_{\overline{F}},y)]. In particular, there is a GFG_{F}-equivariant map End(Ly)Qp[π1proalg(YF¯,y)]\operatorname{{End}}({\mathbb L}_{y})\to{\mathbb Q}_{p}[\pi_{1}^{\mathrm{pro}-\mathrm{alg}}(Y_{\overline{F}},y)] whose image consists of matrix coefficients of the representation ρLgeom\rho_{{\mathbb L}}^{\mathrm{geom}}; it is the space dual to the Qp{\mathbb Q}_{p}-span of the image of the map π1e´t(YF¯,y)End(Ly)\pi_{1}^{\mathrm{\acute{e}t}}(Y_{\overline{F}},y)\to\operatorname{{End}}({\mathbb L}_{y}). For example, if L|YF¯{\mathbb L}|_{Y_{\overline{F}}} is absolutely irreducible, the image of ρLgeom\rho_{{\mathbb L}}^{\mathrm{geom}} spans all of End(Ly)\operatorname{{End}}({\mathbb L}_{y}) by Burnside’s theorem and thus the map End(Ly)Qp[π1proalg(YF¯,y)]\operatorname{{End}}({\mathbb L}_{y})\to{\mathbb Q}_{p}[\pi_{1}^{\mathrm{pro}-\mathrm{alg}}(Y_{\overline{F}},y)] is an inclusion. Thus, if a Galois representation VV can be established as the fiber over yy of a geometrically absolutely irreducible local system on YY, then the adjoint representation VVV\otimes V^{\vee} of the Galois group GFG_{F} is a subspace of the ring of regular function on the pro-algebraic completion of π1e´t(YF¯,y)\pi_{1}^{\mathrm{\acute{e}t}}(Y_{\overline{F}},y).

Example 1.6.

Suppose that CC is a smooth projective curve equipped with a finite morphism f:CPF1f:C\to{\mathbb P}^{1}_{F} that is étale over PF1{0,1,}{\mathbb P}^{1}_{F}\setminus\{0,1,\infty\}. Belyi’s theorem [Bel79, Theorem 4] says that for any curve over FF one can choose such a morphism. Assume further that CC contains a rational point xC(F)x\in C(F) with f(x)=0f(x)=0. The fundamental group of the open subscheme U:=f1(PF1{0,1,})CU:=f^{-1}({\mathbb P}^{1}_{F}\setminus\{0,1,\infty\})\subset C is then a finite index subgroup f(π1e´t(UF¯,xv))π1e´t(PF¯1{0,1,},0v)f_{*}(\pi_{1}^{\mathrm{\acute{e}t}}(U_{\overline{F}},x_{v^{\prime}}))\subset\pi_{1}^{\mathrm{\acute{e}t}}({\mathbb P}^{1}_{\overline{F}}\setminus\{0,1,\infty\},0_{v}) where xvx_{v^{\prime}} and 0v0_{v} are appropriate tangential base points. By Lemma 2.2 the restriction to this finite index subgroup induces a GFG_{F}-equivariant surjection Qp[π1proalg(PF¯1{0,1,},0v)]Qp[π1proalg(UF¯,xv)]{\mathbb Q}_{p}[\pi_{1}^{\mathrm{pro}-\mathrm{alg}}({\mathbb P}^{1}_{\overline{F}}\setminus\{0,1,\infty\},0_{v})]\to{\mathbb Q}_{p}[\pi_{1}^{\mathrm{pro}-\mathrm{alg}}(U_{\overline{F}},x_{v^{\prime}})]. On the other hand, the map π1e´t(UF¯,xv)He´t1(UF¯,Qp)\pi_{1}^{\mathrm{\acute{e}t}}(U_{\overline{F}},x_{v^{\prime}})\to H^{1}_{\mathrm{\acute{e}t}}(U_{\overline{F}},{\mathbb Q}_{p})^{\vee} yields a surjective map π1proalg(UF¯,xv)He´t1(UF¯,Qp)¯\pi_{1}^{\mathrm{pro}-\mathrm{alg}}(U_{\overline{F}},x_{v^{\prime}})\to\underline{H^{1}_{\mathrm{\acute{e}t}}(U_{\overline{F}},{\mathbb Q}_{p})^{\vee}} onto the corresponding vector group. The linear functions on that vector group then give a subspace He´t1(UF¯,Qp)Qp[π1proalg(UF¯,xv)]H^{1}_{\mathrm{\acute{e}t}}(U_{\overline{F}},{\mathbb Q}_{p})\subset{\mathbb Q}_{p}[\pi_{1}^{\mathrm{pro}-\mathrm{alg}}(U_{\overline{F}},x_{v^{\prime}})]. In particular, this establishes He´t1(CF¯,Qp)H^{1}_{\mathrm{\acute{e}t}}(C_{\overline{F}},{\mathbb Q}_{p}) as a subrepresentation of Qp[π1proalg(PF¯1{0,1,},0v)]{\mathbb Q}_{p}[\pi_{1}^{\mathrm{pro}-\mathrm{alg}}({\mathbb P}^{1}_{\overline{F}}\setminus\{0,1,\infty\},0_{v})].

The only arithmetic input needed for our proof is Belyi’s theorem and the rest is a purely algebro-geometric argument that we will now describe. A related result has been recently independently obtained by Joseph Ayoub: it follows from [Ayo21, Corollary 4.47] that the action of the motivic Galois group of Q{\mathbb Q} on the motivic fundamental group of PQ¯1{0,1,}{\mathbb P}^{1}_{\overline{\mathbb{Q}}}\setminus\{0,1,\infty\} is faithful. Our Proposition 1.7 can be used to deduce Theorem 1.2 from this faithfulness result, though, to the best of my understanding, this would give a proof different from ours; in particular, our argument is constructive in that it gives an explicit way of finding a given Galois representation He´ti(XF¯,Qp)H^{i}_{\mathrm{\acute{e}t}}(X_{\overline{F}},{\mathbb Q}_{p}) inside Qp[π1proalg(PF¯1{0,1,},0v)]GFfin{\mathbb Q}_{p}[\pi_{1}^{\mathrm{pro}-\mathrm{alg}}({\mathbb P}^{1}_{\overline{F}}\setminus\{0,1,\infty\},0_{v})]^{G_{F}-\mathrm{fin}}.

Denote by 𝒞F{\mathcal{C}}_{F} the set of finite-dimensional representations of GFG_{F} that can be realized as subquotients of Qp[π1proalg(PF¯1{0,1,},0v)]GFfin{\mathbb Q}_{p}[\pi_{1}^{\mathrm{pro}-\mathrm{alg}}({\mathbb P}^{1}_{\overline{F}}\setminus\{0,1,\infty\},0_{v})]^{G_{F}-\mathrm{fin}}, for every choice of the tangential base point 0v0_{v} supported at 0. To prove the theorem, we will show first that 𝒞F{\mathcal{C}}_{F} is closed under direct sums and tensor products (in particular, every representation from 𝒞F{\mathcal{C}}_{F} appears in Qp[π1proalg(PF¯1{0,1,},0v)]{\mathbb Q}_{p}[\pi_{1}^{\mathrm{pro}-\mathrm{alg}}({\mathbb P}^{1}_{\overline{F}}\setminus\{0,1,\infty\},0_{v})] with an arbitrarily large multiplicity).

Proposition 1.7 (Proposition 4.1).

For any two Galois representations V1,V2𝒞FV_{1},V_{2}\in{\mathcal{C}}_{F} the representations V1V2V_{1}\oplus V_{2} and V1V2V_{1}\otimes V_{2} also belong to 𝒞F{\mathcal{C}}_{F}.

This is a special feature of the variety PF¯1{0,1,}{\mathbb P}^{1}_{\overline{F}}\setminus\{0,1,\infty\} which comes down to the fact that the Cartesian square of its fundamental group can be established as a subquotient of the fundamental group itself, compatibly with the Galois actions.

The proof of Theorem 1.2 now proceeds by induction on the dimension of XX. The base case dimX=0\dim X=0 is given by Proposition 1.1. Assuming that the theorem has been proven for all schemes of dimension <dimX<\dim X, using resolution of singularities and the Gysin sequence, we may freely replace XX by a birational variety. We can therefore assume that XX admits a smooth proper morphism to a (possibly open) curve. Applying Belyi’s theorem to this curve we may moreover assume that XX admits a smooth proper morphism f:XPF1{0,1,}f:X\to{\mathbb P}^{1}_{F}\setminus\{0,1,\infty\} to the projective line with three punctures.

Leray spectral sequence together with Artin vanishing now tell us that in order to show that the semi-simplification of Hn(XF¯,Qp)H^{n}(X_{\overline{F}},{\mathbb Q}_{p}) lies in 𝒞F{\mathcal{C}}_{F} it is enough to do so for the Galois representations H0(PF¯1{0,1,},RnπQp)H^{0}({\mathbb P}^{1}_{\overline{F}}\setminus\{0,1,\infty\},R^{n}\pi_{*}{\mathbb Q}_{p}) and H1(PF¯1{0,1,},Rn1πQp)H^{1}({\mathbb P}^{1}_{\overline{F}}\setminus\{0,1,\infty\},R^{n-1}\pi_{*}{\mathbb Q}_{p}). The statement about 0th cohomology is immediate from the induction assumption, because H0(PF¯1{0,1,},RnπQp)H^{0}({\mathbb P}^{1}_{\overline{F}}\setminus\{0,1,\infty\},R^{n}\pi_{*}{\mathbb Q}_{p}) embeds into a stalk (RnπQp)y=Hn(f1(y)F¯,Qp)(R^{n}\pi_{*}{\mathbb Q}_{p})_{y}=H^{n}(f^{-1}(y)_{\overline{F}},{\mathbb Q}_{p}). The assertion about 11st cohomology is proven using the following purely algebraic observation

Proposition 1.8 (Proposition 7.1).

For a Qp{\mathbb Q}_{p}-local system L{\mathbb L} on any geometrically connected finite type scheme YY over FF equipped with a base point yy, the Galois representation He´t1(YF¯,L)H^{1}_{\mathrm{\acute{e}t}}(Y_{\overline{F}},{\mathbb L}) is a subquotient of the tensor product Qp[π1proalg(YF¯,y)]GFfinLy{\mathbb Q}_{p}[\pi_{1}^{\mathrm{pro}-\mathrm{alg}}(Y_{\overline{F}},y)]^{G_{F}-\mathrm{fin}}\otimes{\mathbb L}_{y}.

This proves that H1(PF¯1{0,1,},Rn1πQp)H^{1}({\mathbb P}^{1}_{\overline{F}}\setminus\{0,1,\infty\},R^{n-1}\pi_{*}{\mathbb Q}_{p}) is in 𝒞F{\mathcal{C}}_{F} because 𝒞F{\mathcal{C}}_{F} is stable under tensor products, and this finishes the proof of the induction step.

Proposition 1.8 crucially uses matrix coefficients of non-semi-simple representations of π1e´t(PF¯1{0,1,},0v)\pi_{1}^{\mathrm{\acute{e}t}}({\mathbb P}^{1}_{\overline{F}}\setminus\{0,1,\infty\},0_{v}) and the analogous statement is false for the pro-reductive completion of π1e´t(YF¯,y)\pi_{1}^{\mathrm{\acute{e}t}}(Y_{\overline{F}},y). This begs the question:

Question 1.9.

Which representations of GFG_{F} appear as subquotients of the space Qp[π1prored(PF¯1{0,1,},0v)]GFfin{\mathbb Q}_{p}[\pi_{1}^{\mathrm{pro}-\mathrm{red}}({\mathbb P}^{1}_{\overline{F}}\setminus\{0,1,\infty\},0_{v})]^{G_{F}-\mathrm{fin}} of regular functions on the pro-reductive completion of π1e´t(PF¯1{0,1,},0v)\pi_{1}^{\mathrm{\acute{e}t}}({\mathbb P}^{1}_{\overline{F}}\setminus\{0,1,\infty\},0_{v})?

More explicitly, this question can be reformulated as asking to classify, for all finite extensions FFF^{\prime}\supset F, representations of GFG_{F^{\prime}} having the form VVV\otimes V^{\vee} where VV is the stalk at 0v0_{v} of a geometrically irreducible Q¯p\overline{\mathbb{Q}}_{p}-local system on PF1{0,1,}{\mathbb P}^{1}_{F^{\prime}}\setminus\{0,1,\infty\}, cf. Lemma 9.5.

Lastly, let us remark that the usage of tangential base points is important for our proof, but Theorem 1.2 might well be true for classical base points as well. We comment on this in Subsection 9.3, see also Corollary 9.2 for an instance of a substantial difference between the Galois action on the fundamental group with respect to a tangential base point and a classical base point.

Notation By a ‘pointed scheme’ or a ‘scheme equipped with a base point’ over a base field KK we will mean a pair (X,x)(X,x) where either XX is an arbitrary scheme over KK and xX(K)x\in X(K) is a rational point, or XX is a smooth curve over KK and xx is a tangential base point supported at a KK-point of X¯X\overline{X}\setminus X where X¯\overline{X} is the smooth compactification of XX (see Section 10 for a brief review of tangential base points). For both of these settings, π1e´t(XK¯,x)\pi_{1}^{\mathrm{\acute{e}t}}(X_{\overline{K}},x) will denote the étale fundamental group of XK¯X_{\overline{K}} with respect to the geometric base point supported at xx. It comes equipped with a continuous action of GKG_{K}. Likewise, π1e´t(X,x)=GKπ1e´t(XK¯,x)\pi_{1}^{\mathrm{\acute{e}t}}(X,x)=G_{K}\ltimes\pi_{1}^{\mathrm{\acute{e}t}}(X_{\overline{K}},x) will denote the fundamental group of the scheme XX.

Acknowledgements. I am grateful to Mark Kisin for comments and suggestions on the exposition, to Joseph Ayoub for pointing me to his work [Ayo21], and to the anonymous referee for corrections and suggestions. This research was partially conducted during the period the author served as a Clay Research Fellow, and enjoyed the hospitality of the Max Planck Institute for Mathematics in Bonn.

2. Pro-algebraic completion

Let Γ\Gamma be a topological group. For a finite extension EE of Qp{\mathbb Q}_{p} we denote by ΓEproalg\Gamma^{\mathrm{pro}-\mathrm{alg}}_{E} the pro-algebraic completion of Γ\Gamma over EE. It is defined as the affine group scheme111Recall that every affine group scheme over a field is isomorphic to an inverse limit of linear algebraic group schemes over EE equipped with a continuous (with respect to the inverse limit of the pp-adic topologies on EE-points of finite type quotients of ΓEproalg\Gamma_{E}^{\mathrm{pro}-\mathrm{alg}}) map αΓ:ΓΓEproalg(E)\alpha_{\Gamma}:\Gamma\to\Gamma^{\mathrm{pro}-\mathrm{alg}}_{E}(E) satisfying the following universal property. For any continuous homomorphism ρ:ΓGLn(E)\rho:\Gamma\to GL_{n}(E) there exists a unique morphism ρalg:ΓEproalgGLn,E\rho^{\mathrm{alg}}:\Gamma^{\mathrm{pro}-\mathrm{alg}}_{E}\to GL_{n,E} of group schemes such that the induced map on EE-points fits into the commutative diagram

(2.1) Γ{\Gamma}GLn(E){GL_{n}(E)}ΓEproalg(E){\Gamma^{\mathrm{pro}-\mathrm{alg}}_{E}(E)}ρ\scriptstyle{\rho}αΓ\scriptstyle{\alpha_{\Gamma}}ρalg\scriptstyle{\rho^{\mathrm{alg}}}

Similarly, the pro-reductive completion ΓEprored\Gamma^{\mathrm{pro}-\mathrm{red}}_{E} is the pro-reductive group over EE satisfying the analogous universal property among representations ρ:ΓGLn(E)\rho:\Gamma\to GL_{n}(E) for which the Zariski closure of the image is a reductive subgroup of GLn,EGL_{n,E}. These notions were first introduced in [HM57], see also [Pri12] for a discussion of these objects in a setup very close to ours. This section reviews all the necessary facts about pro-algebraic completions.

Let Funccont(Γ,E)\operatorname{Func}^{\operatorname{cont}}(\Gamma,E) be the space of all continuous functions ΓE\Gamma\to E. It is equipped with an action of Γ\Gamma given by (γf)(x)=f(γ1x)(\gamma\cdot f)(x)=f(\gamma^{-1}x) for γ,xΓ\gamma,x\in\Gamma and fFunccont(Γ,E)f\in\operatorname{Func}^{\operatorname{cont}}(\Gamma,E).

Lemma 2.1.

(i) For a finite extension EEE\subset E^{\prime} there is a canonical isomorphism ΓEproalgΓEproalg×SpecESpecE\Gamma_{E^{\prime}}^{\mathrm{pro}-\mathrm{alg}}\simeq\Gamma_{E}^{\mathrm{pro}-\mathrm{alg}}\times_{\operatorname{{Spec}}E}\operatorname{{Spec}}E^{\prime}.

(ii) The ring of functions E[ΓEproalg]E[\Gamma^{\mathrm{pro}-\mathrm{alg}}_{E}] admits the following description

(2.2) E[ΓEproalg]={fFunccont(Γ,E)|the span of Γf is finite-dimensional over E}E[\Gamma^{\mathrm{pro}-\mathrm{alg}}_{E}]=\{f\in\operatorname{Func}^{\operatorname{cont}}(\Gamma,E)|\text{the span of }\Gamma\cdot f\text{ is finite-dimensional over }E\}
Proof.

(ii) There is a map αΓ:E[ΓEproalg]Funccont(Γ,E)\alpha_{\Gamma}^{*}:E[\Gamma^{\mathrm{pro}-\mathrm{alg}}_{E}]\to\operatorname{Func}^{\operatorname{cont}}(\Gamma,E) given by precomposing with αΓ\alpha_{\Gamma}. By definition, a regular function on ΓEproalg\Gamma^{\mathrm{pro}-\mathrm{alg}}_{E} factors through some homomorphism ΓEproalgGLn,E\Gamma^{\mathrm{pro}-\mathrm{alg}}_{E}\to GL_{n,E}. So, to prove that the image of αΓ\alpha_{\Gamma}^{*} is contained in the right-hand side of (2.2) it is enough to observe that for any element fE[GLn,E]f\in E[GL_{n,E}] the orbit GLn(E)fGL_{n}(E)\cdot f spans a finite-dimensional EE-vector space.

Next, let ff be an element of the right-hand side of (2.2). The span of Γf\Gamma\cdot f gives a continuous finite-dimensional representation VV of Γ\Gamma and the function ff factors through the homomorphism ΓGL(V)\Gamma\to GL(V), hence it lies in the image of αΓ\alpha_{\Gamma}^{*}. Finally, αΓ\alpha_{\Gamma}^{*} is injective because any regular function on ΓEproalg\Gamma^{\mathrm{pro}-\mathrm{alg}}_{E} factors through an algebraic group and a homomorphism from ΓEproalg\Gamma^{\mathrm{pro}-\mathrm{alg}}_{E} to an algebraic group is completely determined by its restriction to Γ\Gamma.

Part (i) now follows because the right-hand side of (2.2) satisfies base change under finite extensions of EE. ∎

Lemma 2.2.

If Γ1Γ\Gamma_{1}\subset\Gamma is an open subgroup of finite index then the restriction map E[ΓEproalg]E[Γ1,Eproalg]E[\Gamma^{\mathrm{pro}-\mathrm{alg}}_{E}]\to E[\Gamma_{1,E}^{\mathrm{pro}-\mathrm{alg}}] is surjective.

Proof.

We will use the description of functions on the pro-algebraic completion provided by the right-hand side of (2.2). Let f1:Γ1Ef_{1}:\Gamma_{1}\to E be a continuous function whose translates span a finite-dimensional space. Pick representatives for the left cosets of Γ1Γ\Gamma_{1}\subset\Gamma so that Γ=i=1dgiΓ1\Gamma=\bigsqcup\limits_{i=1}^{d}g_{i}\Gamma_{1} for some g2,gdΓg_{2},\dots g_{d}\in\Gamma and g1=1g_{1}=1. Then define a function f:ΓEf:\Gamma\to E be declaring f(gih)=f1(h)f(g_{i}h)=f_{1}(h) for every hΓ1h\in\Gamma_{1}. It evidently extends f1f_{1} onto ff and its Γ\Gamma-translates span a finite-dimensional space. ∎

Remark 2.3.

Lemma 2.2 says that Γ1,Eproalg\Gamma_{1,E}^{\mathrm{pro}-\mathrm{alg}} is a closed subgroup scheme of ΓEproalg\Gamma_{E}^{\mathrm{pro}-\mathrm{alg}}. The choice of representatives of left cosets Γ/Γ1\Gamma/\Gamma_{1} moreover induces a Γ1,Eproalg\Gamma_{1,E}^{\mathrm{pro}-\mathrm{alg}}-equivariant isomorphism of algebras E[ΓEproalg]E[Γ1,Eproalg]E[Γ/Γ1]E[\Gamma^{\mathrm{pro}-\mathrm{alg}}_{E}]\simeq E[\Gamma^{\mathrm{pro}-\mathrm{alg}}_{1,E}]\otimes E[\Gamma/\Gamma_{1}]. In particular the natural map identifies the quotient ΓEproalg/Γ1,Eproalg\Gamma_{E}^{\mathrm{pro}-\mathrm{alg}}/\Gamma_{1,E}^{\mathrm{pro}-\mathrm{alg}} with the constant finite group scheme Γ/Γ1¯E\underline{\Gamma/\Gamma_{1}}_{E}.

Example 2.4.

Let Γ\Gamma be the infinite cyclic group Z{\mathbb Z} endowed with the discrete topology. As implied by the Jordan decomposition, ΓQ¯pproalgGa,Q¯p×Z^×T\Gamma_{\overline{\mathbb{Q}}_{p}}^{\mathrm{pro}-\mathrm{alg}}\simeq{\mathbb G}_{a,\overline{\mathbb{Q}}_{p}}\times\widehat{{\mathbb Z}}\times T where TT is the pro-torus with character group X(T)=Q¯p×/μX^{*}(T)=\overline{\mathbb{Q}}_{p}^{\times}/\mu_{\infty}, cf. [BLMM02, Example 1]. Here we take ΓQ¯pproalg\Gamma_{\overline{\mathbb{Q}}_{p}}^{\mathrm{pro}-\mathrm{alg}} to mean the base change ΓQpproalg×QpQ¯p\Gamma_{{\mathbb Q}_{p}}^{\mathrm{pro}-\mathrm{alg}}\times_{{\mathbb Q}_{p}}\overline{\mathbb{Q}}_{p}. The proalgebraic completion ΓQpproalg\Gamma_{{\mathbb Q}_{p}}^{\mathrm{pro}-\mathrm{alg}} itself can be described as Ga×H0×T0{\mathbb G}_{a}\times H_{0}\times T_{0} where H0H_{0} is a pro-finite étale group scheme corresponding to the GQpG_{{\mathbb Q}_{p}}-module Z^(1)\widehat{{\mathbb Z}}(1) and T0T_{0} is the (non-split) pro-torus with the GQpG_{{\mathbb Q}_{p}}-module of characters given by X(T0)=Q¯p×/μX^{*}(T_{0})=\overline{\mathbb{Q}}_{p}^{\times}/\mu_{\infty}.

Similarly, for the pro-finite group Γ=Z^\Gamma=\widehat{{\mathbb Z}} the pro-algebraic completion over Q¯p\overline{\mathbb{Q}}_{p} can be described as Ga,Q¯p×Z^×T+{\mathbb G}_{a,\overline{\mathbb{Q}}_{p}}\times\widehat{{\mathbb Z}}\times T^{+} where T+T^{+} is the pro-torus over Q¯p\overline{\mathbb{Q}}_{p} with the character group X(T+)=Z¯p×/μX^{*}(T^{+})=\overline{{\mathbb Z}}_{p}^{\times}/\mu_{\infty}, reflecting the fact that the eigenvalues of a topological generator of Z^\widehat{{\mathbb Z}} in a continuous representation must belong to Z¯p\overline{{\mathbb Z}}_{p}.

We will never work with the pro-algebraic completion in terms of its points but will rather analyze the ring of regular functions on it. Given a continuous representation ρ:ΓGL(V)\rho:\Gamma\to GL(V) on a finite-dimensional EE-vector space VV, denote by (V){\mathcal{F}}(V) the EE-span of the image of the composition Γ𝜌GL(V)EndEV\Gamma\xrightarrow{\rho}GL(V)\subset\operatorname{{End}}_{E}V. The dual space (V){\mathcal{F}}(V)^{\vee} is sometimes referred to as the space of matrix coefficients of the representation VV. One might think of the space of functions on ΓEproalg\Gamma^{\mathrm{pro}-\mathrm{alg}}_{E} as of the ring of matrix coefficients of all representations:

Lemma 2.5.

For every representation VV, there is a natural embedding (V)E[ΓEproalg]{\mathcal{F}}(V)^{\vee}\subset E[\Gamma_{E}^{\mathrm{pro}-\mathrm{alg}}] and

  1. (i)

    E[ΓEproalg]E[\Gamma_{E}^{\mathrm{pro}-\mathrm{alg}}] is equal to the union of these subspaces for varying VV.

  2. (ii)

    The space E[ΓEprored]E[\Gamma_{E}^{\mathrm{pro}-\mathrm{red}}] can be identified with the subspace of E[ΓEproalg]E[\Gamma_{E}^{\mathrm{pro}-\mathrm{alg}}] obtained by taking the union of the subspaces (V){\mathcal{F}}(V)^{\vee} for all semi-simple representations VV.

Proof.

The space (EndEV)(\operatorname{{End}}_{E}V)^{\vee} of linear functions on the vector space EndEV\operatorname{{End}}_{E}V maps to E[ΓEproalg]E[\Gamma_{E}^{\mathrm{pro}-\mathrm{alg}}] via restriction to GLVGL_{V} and pullback along the map ρalg:ΓEproalgGLV\rho^{\mathrm{alg}}:\Gamma_{E}^{\mathrm{pro}-\mathrm{alg}}\to GL_{V}. Its image in E[ΓEproalg]E[\Gamma_{E}^{\mathrm{pro}-\mathrm{alg}}] is canonically dual to (V){\mathcal{F}}(V).

Given a function fE[ΓEproalg]f\in E[\Gamma_{E}^{\mathrm{pro}-\mathrm{alg}}] denote by fopf^{\operatorname{{op}}} the function fop(γ)=f(γ1)f^{\operatorname{{op}}}(\gamma)=f(\gamma^{-1}) and let VV be the finite-dimensional EE-span of the orbit of fopf^{\operatorname{{op}}} under the action of Γ\Gamma. By adjunction, we then obtain a function α:ΓV\alpha:\Gamma\to V^{\vee}. Denote by ev1:VE\operatorname{{ev}}_{1}:V\to E the functional corresponding to the element α(1)\alpha(1).

The function ff can be obtained by composing the map ΓEnd(V)\Gamma\to\operatorname{{End}}(V) with the map End(V)E\operatorname{{End}}(V)\to E that sends an endomorphism A:VVA:V\to V to ev1(A(fop))\operatorname{{ev}}_{1}(A(f^{\operatorname{{op}}})). Thus ff lies in the subspace (V)E[ΓEproalg]{\mathcal{F}}(V)^{\vee}\subset E[\Gamma_{E}^{\mathrm{pro}-\mathrm{alg}}]. This finishes the proof of part (i).

To show part (ii), note first that the canonical surjection of group schemes ΓEproalgΓEprored\Gamma_{E}^{\mathrm{pro}-\mathrm{alg}}\twoheadrightarrow\Gamma_{E}^{\mathrm{pro}-\mathrm{red}} induces an inclusion E[ΓEprored]E[ΓEproalg]E[\Gamma_{E}^{\mathrm{pro}-\mathrm{red}}]\subset E[\Gamma_{E}^{\mathrm{pro}-\mathrm{alg}}] and for a semi-simple representation VV the subspace (V){\mathcal{F}}(V)^{\vee} is contained inside E[ΓEprored]E[\Gamma_{E}^{\mathrm{pro}-\mathrm{red}}]. Conversely, given a function fE[ΓEprored]f\in E[\Gamma_{E}^{\mathrm{pro}-\mathrm{red}}] the above strategy produces a representation VV of Γ\Gamma that factors through ΓEprored\Gamma_{E}^{\mathrm{pro}-\mathrm{red}} because the action of Γ\Gamma via translations on the space E[ΓEproalg]E[\Gamma_{E}^{\mathrm{pro}-\mathrm{alg}}] preserves the subspace E[ΓEprored]E[\Gamma_{E}^{\mathrm{pro}-\mathrm{red}}] and factors through ΓEprored\Gamma^{\mathrm{pro}-\mathrm{red}}_{E} on that subspace. Therefore VV is semi-simple as a representation of the pro-reductive group ΓEprored\Gamma^{\mathrm{pro}-\mathrm{red}}_{E} and hence is semi-simple as a representation of Γ\Gamma because the image of Γ\Gamma is Zariski dense in ΓEprored(E)\Gamma^{\mathrm{pro}-\mathrm{red}}_{E}(E). ∎

Let KK be any base field, with a chosen algebraic closure K¯K\overline{K}\supset K and (X,x)(X,x) be a KK-scheme equipped with a base point (that is, xx is a KK-point or a tangential base point at infinity). For brevity, we denote the pro-algebraic (resp. pro-reductive) completion of the topological group π1e´t(X,x)\pi_{1}^{\mathrm{\acute{e}t}}(X,x) over E=QpE={\mathbb Q}_{p} by π1proalg(X,x)\pi_{1}^{\mathrm{pro}-\mathrm{alg}}(X,x) (resp. π1prored(X,x)\pi_{1}^{\mathrm{pro}-\mathrm{red}}(X,x)). The action of GKG_{K} on π1e´t(XK¯,x)\pi_{1}^{\mathrm{\acute{e}t}}(X_{\overline{K}},x) induces an action on the spaces of functions Qp[π1proalg(XK¯,x)]{\mathbb Q}_{p}[\pi_{1}^{\mathrm{pro}-\mathrm{alg}}(X_{\overline{K}},x)] and Qp[π1prored(XK¯,x)]{\mathbb Q}_{p}[\pi_{1}^{\mathrm{pro}-\mathrm{red}}(X_{\overline{K}},x)].

Example 2.6.

In general, this action is not locally finite. For instance, consider the case of X=Gm,KX={\mathbb G}_{m,K} over a field KK of characteristic zero containing only finitely many roots of unity. Grothendieck’s quasi-unipotent monodromy theorem comes down to the fact that for a function ff on the pro-algebraic completion of π1e´t(XK¯,x¯)=Z^(1)\pi_{1}^{\mathrm{\acute{e}t}}(X_{\overline{K}},\overline{x})=\widehat{{\mathbb Z}}(1) the span of its GKG_{K}-orbit is finite-dimensional if and only if ff factors through the canonical map Z^Q¯pproalgGa,Q¯p×Z^\widehat{{\mathbb Z}}_{\overline{\mathbb{Q}}_{p}}^{\mathrm{pro}-\mathrm{alg}}\twoheadrightarrow{\mathbb G}_{a,\overline{\mathbb{Q}}_{p}}\times\widehat{{\mathbb Z}}.

We will concern ourselves only with the locally finite subspace of Qp[π1proalg(XK¯,x)]{\mathbb Q}_{p}[\pi_{1}^{\mathrm{pro}-\mathrm{alg}}(X_{\overline{K}},x)] which admits an alternative description in terms of the pro-algebraic completion of the arithmetic fundamental group:

Lemma 2.7.

The image of the restriction map Qp[π1proalg(X,x)]Qp[π1proalg(XK¯,x)]{\mathbb Q}_{p}[\pi_{1}^{\mathrm{pro}-\mathrm{alg}}(X,x)]\to{\mathbb Q}_{p}[\pi_{1}^{\mathrm{pro}-\mathrm{alg}}(X_{\overline{K}},x)] coincides with the subspace

(2.3) Qp[π1proalg(XK¯,x)]GFfin:={fQp[π1proalg(XK¯,x)]the span of σf for σGK is finite-dimensional}{\mathbb Q}_{p}[\pi_{1}^{\mathrm{pro}-\mathrm{alg}}(X_{\overline{K}},x)]^{G_{F}-\mathrm{fin}}:=\\ \{f\in{\mathbb Q}_{p}[\pi_{1}^{\mathrm{pro}-\mathrm{alg}}(X_{\overline{K}},x)]\mid\text{the span of }\sigma\cdot f\text{ for }\sigma\in G_{K}\text{ is finite-dimensional}\}
Proof.

By Lemma 2.1 (ii) the space of functions Qp[π1proalg(X,x)]{\mathbb Q}_{p}[\pi_{1}^{\mathrm{pro}-\mathrm{alg}}(X,x)] on the pro-algebraic fundamental group can be described as the subspace of the space of all continuous functions Funccont(π1e´t(X,x),Qp)\operatorname{Func}^{\operatorname{cont}}(\pi_{1}^{\mathrm{\acute{e}t}}(X,x),{\mathbb Q}_{p}) whose orbit under π1e´t(X,x)=GKπ1e´t(XK¯,x)\pi_{1}^{\mathrm{\acute{e}t}}(X,x)=G_{K}\ltimes\pi_{1}^{\mathrm{\acute{e}t}}(X_{\overline{K}},x) spans a finite-dimensional subspace. Therefore, the image of the restriction map is contained in Qp[π1proalg(XK¯,x)]GFfin{\mathbb Q}_{p}[\pi_{1}^{\mathrm{pro}-\mathrm{alg}}(X_{\overline{K}},x)]^{G_{F}-\mathrm{fin}}.

To prove the converse inclusion, consider the map ε:Funccont(π1e´t(XK¯,x))Funccont(π1e´t(XK¯,x))\varepsilon:\operatorname{Func}^{\operatorname{cont}}(\pi_{1}^{\mathrm{\acute{e}t}}(X_{\overline{K}},x))\to\operatorname{Func}^{\operatorname{cont}}(\pi_{1}^{\mathrm{\acute{e}t}}(X_{\overline{K}},x)) defined by composing a continuous function with the projection π1e´t(X,x)=GKπ1e´t(XK¯,x)π1e´t(XK¯,x)\pi_{1}^{\mathrm{\acute{e}t}}(X,x)=G_{K}\ltimes\pi_{1}^{\mathrm{\acute{e}t}}(X_{\overline{K}},x)\to\pi_{1}^{\mathrm{\acute{e}t}}(X_{\overline{K}},x) onto the second component of the semi-direct product. For an element (σ,γ)GKπ1e´t(XK¯,x)(\sigma,\gamma)\in G_{K}\ltimes\pi_{1}^{\mathrm{\acute{e}t}}(X_{\overline{K}},x) we have (σ,γ)ε(f)=γ(σε(f))(\sigma,\gamma)\cdot\varepsilon(f)=\gamma\cdot(\sigma\cdot\varepsilon(f)). In particular, if ff is an element of Qp[π1proalg(XK¯,x)]GFfin{\mathbb Q}_{p}[\pi_{1}^{\mathrm{pro}-\mathrm{alg}}(X_{\overline{K}},x)]^{G_{F}-\mathrm{fin}} then ε(f)\varepsilon(f) is a continuous function on the group π1e´t(X,x)\pi_{1}^{\mathrm{\acute{e}t}}(X,x) whose orbit under left translations spans a finite-dimensional space. By construction ε(f)|π1e´t(XK¯,x)=f\varepsilon(f)|_{\pi_{1}^{\mathrm{\acute{e}t}}(X_{\overline{K}},x)}=f, hence for every fQp[π1proalg(XK¯,x)]GFfinf\in{\mathbb Q}_{p}[\pi_{1}^{\mathrm{pro}-\mathrm{alg}}(X_{\overline{K}},x)]^{G_{F}-\mathrm{fin}} the function ε(f)\varepsilon(f) gives an element of Qp[π1e´t(X,x)]{\mathbb Q}_{p}[\pi_{1}^{\mathrm{\acute{e}t}}(X,x)] extending ff, as desired. ∎

Lemma 2.5 gives a way to produce elements in Qp[π1proalg(XK¯,x)]GFfin{\mathbb Q}_{p}[\pi_{1}^{\mathrm{pro}-\mathrm{alg}}(X_{\overline{K}},x)]^{G_{F}-\mathrm{fin}} from local systems on XX. Viewing a Qp{\mathbb Q}_{p}-local system L{\mathbb L} on XX as a representation of π1e´t(XK¯,x)\pi_{1}^{\mathrm{\acute{e}t}}(X_{\overline{K}},x) on the space Lx{\mathbb L}_{x}, we get a subspace (L)Qp[π1proalg(XK¯,x)]{\mathcal{F}}({\mathbb L})^{\vee}\subset{\mathbb Q}_{p}[\pi_{1}^{\mathrm{pro}-\mathrm{alg}}(X_{\overline{K}},x)]. Note that applying the construction (){\mathcal{F}}(-) to the space Lx{\mathbb L}_{x} as a representation of the arithmetic fundamental group π1e´t(X,x)\pi_{1}^{\mathrm{\acute{e}t}}(X,x) might potentially yield a larger space but only matrix coefficients of the geometric representation π1e´t(XK¯,x)GL(Lx)\pi_{1}^{\mathrm{\acute{e}t}}(X_{\overline{K}},x)\to GL({\mathbb L}_{x}) make a contribution to Qp[π1e´t(XK¯,x)]{\mathbb Q}_{p}[\pi_{1}^{\mathrm{\acute{e}t}}(X_{\overline{K}},x)]. Lemma 2.5 applied to Γ=π1e´t(X,x)\Gamma=\pi_{1}^{\mathrm{\acute{e}t}}(X,x) and Lemma 2.7 imply:

Lemma 2.8.

For any local system L{\mathbb L} on XX the subspace (L)Qp[π1proalg(XK¯,x)]{\mathcal{F}}({\mathbb L})^{\vee}\subset{\mathbb Q}_{p}[\pi_{1}^{\mathrm{pro}-\mathrm{alg}}(X_{\overline{K}},x)] consists of functions locally finite for the GKG_{K}-action and the space Qp[π1proalg(XK¯,x)]GKfin{\mathbb Q}_{p}[\pi_{1}^{\mathrm{pro}-\mathrm{alg}}(X_{\overline{K}},x)]^{G_{K}-\mathrm{fin}} is the union of such subspaces for varying L{\mathbb L}.

A useful consequence of Lemmas 2.2 and 2.7 is

Lemma 2.9.

If (X,x)(Y,y)(X,x)\to(Y,y) is a finite étale cover of KK-schemes equipped with base points, we get a GKG_{K}-equivariant surjection Qp[π1proalg(YK¯,y)]GKfinQp[π1proalg(XK¯,x)]GKfin{\mathbb Q}_{p}[\pi_{1}^{\mathrm{pro}-\mathrm{alg}}(Y_{\overline{K}},y)]^{G_{K}-\mathrm{fin}}\twoheadrightarrow{\mathbb Q}_{p}[\pi_{1}^{\mathrm{pro}-\mathrm{alg}}(X_{\overline{K}},x)]^{G_{K}-\mathrm{fin}}.

3. Belyi’s theorem and its immediate consequences

The driving force of all our arguments is the following surprising theorem of Belyi’s.

Theorem 3.1.

For a smooth proper geometrically connected curve CC over a number field FF and a finite set of closed points S|C|S\subset|C| there exists a finite morphism f:CPF1f:C\to{\mathbb P}^{1}_{F} such that ff is étale over PF1{0,1,}{\mathbb P}^{1}_{F}\setminus\{0,1,\infty\} and f(S){0,1,}f(S)\subset\{0,1,\infty\}.

This statement is stronger than [Bel79, Theorem 4] but this is what Belyi’s proof actually shows, see also [Ser97, Theorem 5.4.B]. We will often use the theorem paraphrased in the following way:

Corollary 3.2.

For any smooth, possibly non-proper, curve UU over FF there exists a dense open subscheme UUU^{\prime}\subset U together with a finite étale map UPF1{0,1,}U^{\prime}\to{\mathbb P}^{1}_{F}\setminus\{0,1,\infty\}.

We will use this result as a black box, except for the proof of Lemma 4.2 which will require us to write down an explicit étale cover of PF1{0,1,}{\mathbb P}^{1}_{F}\setminus\{0,1,\infty\}, using Belyi’s proof idea. The following result is an instance of Belyi’s theorem implying a universality statement for the Galois action on Qp[π1proalg(PF¯1{0,1,},0v)]{\mathbb Q}_{p}[\pi_{1}^{\mathrm{pro}-\mathrm{alg}}({\mathbb P}^{1}_{\overline{F}}\setminus\{0,1,\infty\},0_{v})].

Proposition 3.3.

Suppose that XX is a normal quasi-projective scheme of finite type over a number field FF and xX(F)x\in X(F) is a base point lying in the smooth locus of XX. Any finite-dimensional subquotient of Qp[π1proalg(XF¯,x)]GFfin{\mathbb Q}_{p}[\pi_{1}^{\mathrm{pro}-\mathrm{alg}}(X_{\overline{F}},x)]^{G_{F}-\mathrm{fin}} can be established as a subquotient of Qp[π1proalg(PF¯1{0,1,},0v)]GFfin{\mathbb Q}_{p}[\pi_{1}^{\mathrm{pro}-\mathrm{alg}}({\mathbb P}^{1}_{\overline{F}}\setminus\{0,1,\infty\},0_{v})]^{G_{F}-\mathrm{fin}}, for any choice of a tangential base point 0v0_{v} supported at 0.

Proof.

We may freely replace the scheme XX by another pointed scheme X,xX(F)X^{\prime},x^{\prime}\in X^{\prime}(F) admitting a map f:XXf:X^{\prime}\to X that induces a surjection π1e´t(XF¯,x¯)π1e´t(XF¯,x¯)\pi_{1}^{\mathrm{\acute{e}t}}(X^{\prime}_{\overline{F}},\overline{x}^{\prime})\to\pi_{1}^{\mathrm{\acute{e}t}}(X_{\overline{F}},\overline{x}), as the induced map Qp[π1proalg(XF¯,x¯)]Qp[π1proalg(XF¯,x¯)]{\mathbb Q}_{p}[\pi_{1}^{\mathrm{pro}-\mathrm{alg}}(X_{\overline{F}},\overline{x})]\to{\mathbb Q}_{p}[\pi_{1}^{\mathrm{pro}-\mathrm{alg}}(X^{\prime}_{\overline{F}},\overline{x}^{\prime})] is a GFG_{F}-equivariant embedding. We will use this observation to reduce to the case dimX=1\dim X=1.

The embedding XsmXX^{\mathrm{sm}}\subset X of the maximal open smooth subscheme induces a surjection π1e´t(XF¯sm,x¯)π1e´t(XF¯,x¯)\pi_{1}^{\mathrm{\acute{e}t}}(X^{\mathrm{sm}}_{\overline{F}},\overline{x})\twoheadrightarrow\pi_{1}^{\mathrm{\acute{e}t}}(X_{\overline{F}},\overline{x}) by [SGA71, Proposition V.8.2], so we may assume that XX is smooth. By the Lefschetz hyperplane theorem for not necessarily proper varieties [EK16, Theorem 1.1] we may further assume that XX is a (possibly non-proper) curve.

Using Theorem 3.1 we choose a quasi-finite map f:XPF1f:X\to{\mathbb P}^{1}_{F} that is finite étale over PF1{0,1,}{\mathbb P}^{1}_{F}\setminus\{0,1,\infty\} and sends xx to 0. Now let vT0PF1v\in T_{0}{\mathbb P}^{1}_{F} be a non-zero tangent vector for which we want to prove the claim. If ff is ramified at xx, it is not necessarily possible to choose an FF-rational tangential base point for Xf1({0,1,})X\setminus f^{-1}(\{0,1,\infty\}) based at xf1(0)x\in f^{-1}(0) that would map to 0v0_{v} under ff. If there happens to exist an FF-base point xwx_{w} such that f(xw)=0vf_{*}(x_{w})=0_{v}, we can conclude the proof by noticing that Lemma 2.9 yields a surjection Qp[π1proalg(PF¯1{0,1,},0v)]GFfinQp[π1proalg(XF¯f1{0,1,},xw)]GFfin{\mathbb Q}_{p}[\pi_{1}^{\mathrm{pro}-\mathrm{alg}}({\mathbb P}^{1}_{\overline{F}}\setminus\{0,1,\infty\},0_{v})]^{G_{F}-\mathrm{fin}}\twoheadrightarrow{\mathbb Q}_{p}[\pi_{1}^{\mathrm{pro}-\mathrm{alg}}(X_{\overline{F}}\setminus f^{-1}\{0,1,\infty\},x_{w})]^{G_{F}-\mathrm{fin}}, while Qp[π1proalg(XF¯,x)]GFfin{\mathbb Q}_{p}[\pi_{1}^{\mathrm{pro}-\mathrm{alg}}(X_{\overline{F}},x)]^{G_{F}-\mathrm{fin}} embeds into Qp[π1proalg(XF¯f1{0,1,},xw)]GFfin{\mathbb Q}_{p}[\pi_{1}^{\mathrm{pro}-\mathrm{alg}}(X_{\overline{F}}\setminus f^{-1}\{0,1,\infty\},x_{w})]^{G_{F}-\mathrm{fin}}.

In general, we can choose such base point xwx_{w} over F¯\overline{F} and consider the open subgroup H:=π1e´t(XF¯f1({0,1,}),xw)π1e´t(PF¯1{0,1,},0v)H:=\pi_{1}^{\mathrm{\acute{e}t}}(X_{\overline{F}}\setminus f^{-1}(\{0,1,\infty\}),x_{w})\subset\pi_{1}^{\mathrm{\acute{e}t}}({\mathbb P}^{1}_{\overline{F}}\setminus\{0,1,\infty\},0_{v}). By Lemma 2.8, it is enough to prove that for any local system L{\mathbb L} on XX the representation (L){\mathcal{F}}({\mathbb L})^{\vee} (defined with respect to the base point xx) is a subquotient of Qp[π1proalg(PF¯1{0,1,},0v)]GFfin{\mathbb Q}_{p}[\pi_{1}^{\mathrm{pro}-\mathrm{alg}}({\mathbb P}^{1}_{\overline{F}}\setminus\{0,1,\infty\},0_{v})]^{G_{F}-\mathrm{fin}}. Consider the pushforward L:=f(L|f1(PF1{0,1,})){\mathbb L}^{\prime}:=f_{*}({\mathbb L}|_{f^{-1}({\mathbb P}^{1}_{F}\setminus\{0,1,\infty\})}) which is a local system of rank degfrkL\deg f\cdot\operatorname{{rk}}{\mathbb L} on PF1{0,1,}{\mathbb P}^{1}_{F}\setminus\{0,1,\infty\}.

The stalk Lx{\mathbb L}_{x} embeds canonically into the stalk L0v{\mathbb L}^{\prime}_{0_{v}} and, under the action of π1e´t(PF¯1{0,1,},0v)\pi_{1}^{\mathrm{\acute{e}t}}({\mathbb P}^{1}_{\overline{F}}\setminus\{0,1,\infty\},0_{v}) on L0v{\mathbb L}^{\prime}_{0_{v}}, the subgroup HH preserves this subspace LxL0v{\mathbb L}_{x}\subset{\mathbb L}^{\prime}_{0_{v}}. Moreover, the action of HH on Lx{\mathbb L}_{x} factors through Hπ1e´t(XF¯,x)H\twoheadrightarrow\pi_{1}^{\mathrm{\acute{e}t}}(X_{\overline{F}},x) with π1e´t(XF¯,x)\pi_{1}^{\mathrm{\acute{e}t}}(X_{\overline{F}},x) acting on Lx{\mathbb L}_{x} via the geometric monodromy of the local system L{\mathbb L}.

Let WEnd(L0v)W\subset\operatorname{{End}}({\mathbb L}^{\prime}_{0_{v}}) be the subspace of operators AA that satisfy A(Lx)LxA({\mathbb L}_{x})\subset{\mathbb L}_{x}. The previous paragraph demonstrates that the image of HH in End(L0v)\operatorname{{End}}({\mathbb L}^{\prime}_{0_{v}}) is contained in WW and its image under the natural map WEnd(Lx)W\to\operatorname{{End}}({\mathbb L}_{x}) is equal to (L){\mathcal{F}}({\mathbb L}). Therefore (L){\mathcal{F}}({\mathbb L}) is a subquotient of (L){\mathcal{F}}({\mathbb L}^{\prime}) (the latter defined with respect to the base point 0v0_{v}) and we are done. ∎

Our proof of the main theorem will require to work simultaneously with all tangential base points supported at 0 (there is F×F^{\times} worth of those). Recall the following set of isomorphism classes of finite-dimensional Qp{\mathbb Q}_{p}-representations of GFG_{F} that was mentioned in the introduction

(3.1) 𝒞F:={VV appears as a subquotient of Qp[π1proalg(PF¯1{0,1,},0v)]GFfin for every v}{\mathcal{C}}_{F}:=\{V\mid V\text{ appears as a subquotient of }{\mathbb Q}_{p}[\pi_{1}^{\mathrm{pro}-\mathrm{alg}}({\mathbb P}^{1}_{\overline{F}}\setminus\{0,1,\infty\},0_{v})]^{G_{F}-\mathrm{fin}}\text{ for every }v\}
Corollary 3.4.

For any normal quasi-projective scheme XX over FF that admits an FF-rational base point the representation He´t1(XF¯,Qp)H^{1}_{\mathrm{\acute{e}t}}(X_{\overline{F}},{\mathbb Q}_{p}) belongs to 𝒞F{\mathcal{C}}_{F}.

Proof.

This follows from Proposition 3.3 because the canonical map π1e´t(XF¯,x)He´t1(XF¯,Qp)\pi_{1}^{\mathrm{\acute{e}t}}(X_{\overline{F}},x)\to H^{1}_{\mathrm{\acute{e}t}}(X_{\overline{F}},{\mathbb Q}_{p})^{\vee} extends to a surjective map from π1proalg(XF¯,x)\pi_{1}^{\mathrm{pro}-\mathrm{alg}}(X_{\overline{F}},x) to the vector group He´t1(XF¯,Qp)¯\underline{H^{1}_{\mathrm{\acute{e}t}}(X_{\overline{F}},{\mathbb Q}_{p})^{\vee}} and the space He´t1(XF¯,Qp)H^{1}_{\mathrm{\acute{e}t}}(X_{\overline{F}},{\mathbb Q}_{p}) is GFG_{F}-equivariantly identified with the space of linear functions on that vector group. ∎

We do not know if the analog of Proposition 3.3 is true for an XX equipped with a tangential base point xx, so there potentially might be representations appearing in Qp[π1proalg(PF¯1{0,1,},0v)]GFfin{\mathbb Q}_{p}[\pi_{1}^{\mathrm{pro}-\mathrm{alg}}({\mathbb P}^{1}_{\overline{F}}\setminus\{0,1,\infty\},0_{v})]^{G_{F}-\mathrm{fin}} for some, but not all vv, hence the necessity to work with the class 𝒞F{\mathcal{C}}_{F}.

4. Direct sum and tensor product

In this section, we show that the class 𝒞F{\mathcal{C}}_{F} is stable under direct sums and tensor products. In particular, any representation from 𝒞F{\mathcal{C}}_{F} appears in Qp[π1proalg(PF¯1{0,1,},0v)]{\mathbb Q}_{p}[\pi_{1}^{\mathrm{pro}-\mathrm{alg}}({\mathbb P}^{1}_{\overline{F}}\setminus\{0,1,\infty\},0_{v})] with infinite multiplicity. It is important for the argument that we are working with Galois representation simultaneously appearing in Qp[π1proalg(PF¯1{0,1,},0v)]{\mathbb Q}_{p}[\pi_{1}^{\mathrm{pro}-\mathrm{alg}}({\mathbb P}^{1}_{\overline{F}}\setminus\{0,1,\infty\},0_{v})] for all choices of the tangential base point at 0.

For a future application we will prove a slightly stronger statement that allows some freedom in choosing base points:

Proposition 4.1.

For a tangential base point 0v0_{v} supported at 0 there exist two other tangential base points 0v10_{v_{1}} and 0v20_{v_{2}} such that, if V1V_{1} and V2V_{2} are representations of GFG_{F} with ViV_{i} appearing as subquotients of Qp[π1proalg(PF¯1{0,1,},0vi)]GFfin{\mathbb Q}_{p}[\pi_{1}^{\mathrm{pro}-\mathrm{alg}}({\mathbb P}^{1}_{\overline{F}}\setminus\{0,1,\infty\},0_{v_{i}})]^{G_{F}-\mathrm{fin}} for i=1,2i=1,2, then V1V2V_{1}\otimes V_{2} and V1V2V_{1}\oplus V_{2} are subquotients of Qp[π1proalg(PF¯1{0,1,},0v)]GFfin{\mathbb Q}_{p}[\pi_{1}^{\mathrm{pro}-\mathrm{alg}}({\mathbb P}^{1}_{\overline{F}}\setminus\{0,1,\infty\},0_{v})]^{G_{F}-\mathrm{fin}}.

In particular, the class of representations 𝒞F{\mathcal{C}}_{F} is stable under direct sums and tensor products.

The key to the proof is the following telescopic property of the fundamental group of PF1{0,1,}{\mathbb P}^{1}_{F}\setminus\{0,1,\infty\}:

Lemma 4.2.

There exists an open subgroup Γπ1e´t(PF¯1{0,1,},0v)\Gamma\subset\pi_{1}^{\mathrm{\acute{e}t}}({\mathbb P}^{1}_{\overline{F}}\setminus\{0,1,\infty\},0_{v}) stable under GFG_{F} and admitting a GFG_{F}-equivariant surjection Γπ1e´t(PF¯1{0,1,},0v1)×π1e´t(PF¯1{0,1,},0v2)\Gamma\twoheadrightarrow\pi_{1}^{\mathrm{\acute{e}t}}({\mathbb P}^{1}_{\overline{F}}\setminus\{0,1,\infty\},0_{v_{1}})\times\pi_{1}^{\mathrm{\acute{e}t}}({\mathbb P}^{1}_{\overline{F}}\setminus\{0,1,\infty\},0_{v_{2}}) for some tangential base points 0v1,0v20_{v_{1}},0_{v_{2}} at 0.

Proof.

Consider the degree 33 finite morphism f:PF1PF1f:{\mathbb P}^{1}_{F}\to{\mathbb P}^{1}_{F} given by f(z)=274z(z1)2f(z)=\frac{27}{4}z(z-1)^{2}. We have f(z)=274(3z1)(z1)f^{\prime}(z)=\frac{27}{4}(3z-1)(z-1) so the only ramification points of ff are 13,1\frac{1}{3},1 and \infty. Since f(1)=0,f(13)=1,f()=f(1)=0,f(\frac{1}{3})=1,f(\infty)=\infty the map ff restricts to a finite étale cover PF1{0,13,1,43,}PF1{0,1,}{\mathbb P}^{1}_{F}\setminus\{0,\frac{1}{3},1,\frac{4}{3},\infty\}\to{\mathbb P}^{1}_{F}\setminus\{0,1,\infty\}. Moreover, since ff is unramified at 0, we may choose a tangential base point 0v10_{v_{1}} for PF1{0,13,1,43,}{\mathbb P}^{1}_{F}\setminus\{0,\frac{1}{3},1,\frac{4}{3},\infty\} such that f(0v1)=0vf(0_{v_{1}})=0_{v}.

Define Γ\Gamma as the subgroup f(π1e´t(PF1{0,13,1,43,},0v1))π1e´t(PF¯1{0,1,},0v)f_{*}(\pi_{1}^{\mathrm{\acute{e}t}}({\mathbb P}^{1}_{F}\setminus\{0,\frac{1}{3},1,\frac{4}{3},\infty\},0_{v_{1}}))\subset\pi_{1}^{\mathrm{\acute{e}t}}({\mathbb P}^{1}_{\overline{F}}\setminus\{0,1,\infty\},0_{v}). The inclusion maps ι1:PF1{0,13,1,43,}PF1{0,1,}\iota_{1}:{\mathbb P}^{1}_{F}\setminus\{0,\frac{1}{3},1,\frac{4}{3},\infty\}\to{\mathbb P}^{1}_{F}\setminus\{0,1,\infty\}, ι2:PF1{0,13,1,43,}PF1{0,13,43}\iota_{2}:{\mathbb P}^{1}_{F}\setminus\{0,\frac{1}{3},1,\frac{4}{3},\infty\}\to{\mathbb P}^{1}_{F}\setminus\{0,\frac{1}{3},\frac{4}{3}\} induce a GFG_{F}-equivariant homomorphism ι1×ι2:Γπ1e´t(PF¯1{0,1,},0v1)×π1e´t(PF¯1{0,13,43},0v1)\iota_{1*}\times\iota_{2*}:\Gamma\to\pi_{1}^{\mathrm{\acute{e}t}}({\mathbb P}^{1}_{\overline{F}}\setminus\{0,1,\infty\},0_{v_{1}})\times\pi_{1}^{\mathrm{\acute{e}t}}(\mathbb{P}^{1}_{\overline{F}}\setminus\{0,\frac{1}{3},\frac{4}{3}\},0_{v_{1}}). This homomorphism is surjective: it suffices to check that on corresponding topological fundamental groups as profinite completion preserves surjections. The topological space P1(C){0,13,1,43,}{\mathbb P}^{1}({\mathbb C})\setminus\{0,\frac{1}{3},1,\frac{4}{3},\infty\} is homotopy equivalent to i=14S1\bigvee\limits_{i=1}^{4}S^{1} in such a way that ι1\iota_{1} and ι2\iota_{2} are homotopic to the maps contracting the first two or the last two circles in the bouquet, respectively, which implies the surjectivity.

The map ι1×ι2\iota_{1*}\times\iota_{2*} is the desired surjection because π1e´t(PF¯1{0,13,43},0v1)\pi_{1}^{\mathrm{\acute{e}t}}(\mathbb{P}^{1}_{\overline{F}}\setminus\{0,\frac{1}{3},\frac{4}{3}\},0_{v_{1}}) can be identified via an automorphism of PF1{\mathbb P}^{1}_{F} with π1e´t(PF¯1{0,1,},0v2)\pi_{1}^{\mathrm{\acute{e}t}}({\mathbb P}^{1}_{\overline{F}}\setminus\{0,1,\infty\},0_{v_{2}}) for some tangential base point 0v20_{v_{2}}. ∎

Proof of Proposition 4.1.

For a base point 0v0_{v} choose the base points 0v1,0v20_{v_{1}},0_{v_{2}} as directed by Lemma 4.2. We will start by showing that V1V2V_{1}\otimes V_{2} is a subquotient of Qp[π1proalg(PF¯1{0,1,},0v)]GFfin{\mathbb Q}_{p}[\pi_{1}^{\mathrm{pro}-\mathrm{alg}}({\mathbb P}^{1}_{\overline{F}}\setminus\{0,1,\infty\},0_{v})]^{G_{F}-\mathrm{fin}}. The representation V1V2V_{1}\otimes V_{2} is a subquotient of the following space, where Γ\Gamma is provided by Lemma 4.2:

Qp[π1proalg(PF¯1{0,1,},0v1)]GFfinQp[π1proalg(PF¯1{0,1,},0v2)]GFfinQp[ΓQpproalg]GFfin{\mathbb Q}_{p}[\pi_{1}^{\mathrm{pro}-\mathrm{alg}}({\mathbb P}^{1}_{\overline{F}}\setminus\{0,1,\infty\},0_{v_{1}})]^{G_{F}-\mathrm{fin}}\otimes{\mathbb Q}_{p}[\pi_{1}^{\mathrm{pro}-\mathrm{alg}}({\mathbb P}^{1}_{\overline{F}}\setminus\{0,1,\infty\},0_{v_{2}})]^{G_{F}-\mathrm{fin}}\subset{\mathbb Q}_{p}[\Gamma_{{\mathbb Q}_{p}}^{\mathrm{pro}-\mathrm{alg}}]^{G_{F}-\mathrm{fin}}

The space Qp[ΓQpproalg]GFfin{\mathbb Q}_{p}[\Gamma_{{\mathbb Q}_{p}}^{\mathrm{pro}-\mathrm{alg}}]^{G_{F}-\mathrm{fin}}, in turn, is a quotient of Qp[π1proalg(PF¯1{0,1,},0v)]GFfin{\mathbb Q}_{p}[\pi_{1}^{\mathrm{pro}-\mathrm{alg}}({\mathbb P}^{1}_{\overline{F}}\setminus\{0,1,\infty\},0_{v})]^{G_{F}-\mathrm{fin}} by Lemma 2.9 so V1V2V_{1}\otimes V_{2} is a subquotient of Qp[π1proalg(PF¯1{0,1,},0v)]GFfin{\mathbb Q}_{p}[\pi_{1}^{\mathrm{pro}-\mathrm{alg}}({\mathbb P}^{1}_{\overline{F}}\setminus\{0,1,\infty\},0_{v})]^{G_{F}-\mathrm{fin}}.

Since the representation V1V2V_{1}\oplus V_{2} is a direct summand of the tensor product (V1Qp)(V2Qp)(V_{1}\oplus{\mathbb Q}_{p})\otimes(V_{2}\oplus{\mathbb Q}_{p}), to show that V1V2V_{1}\oplus V_{2} is a subquotient of Qp[π1proalg(PF¯1{0,1,},0v)]GFfin{\mathbb Q}_{p}[\pi_{1}^{\mathrm{pro}-\mathrm{alg}}({\mathbb P}^{1}_{\overline{F}}\setminus\{0,1,\infty\},0_{v})]^{G_{F}-\mathrm{fin}} it suffices to prove that for any tangential point 0w0_{w} supported at 0, if a representation VV is a subquotient of Qp[π1proalg(PF¯1{0,1,},0w)]GFfin{\mathbb Q}_{p}[\pi_{1}^{\mathrm{pro}-\mathrm{alg}}({\mathbb P}^{1}_{\overline{F}}\setminus\{0,1,\infty\},0_{w})]^{G_{F}-\mathrm{fin}} then so is VQpV\oplus{\mathbb Q}_{p}. This amounts to showing that the trivial representation Qpn{\mathbb Q}_{p}^{n} of any dimension nn is a subquotient of Qp[π1proalg(PF¯1{0,1,},0w)]GFfin{\mathbb Q}_{p}[\pi_{1}^{\mathrm{pro}-\mathrm{alg}}({\mathbb P}^{1}_{\overline{F}}\setminus\{0,1,\infty\},0_{w})]^{G_{F}-\mathrm{fin}}.

We can explicitly embed the two-dimensional trivial representation into Qp[π1e´t(PF¯1{0,1,},0w)]{\mathbb Q}_{p}[\pi_{1}^{\mathrm{\acute{e}t}}({\mathbb P}^{1}_{\overline{F}}\setminus\{0,1,\infty\},0_{w})]: the GFG_{F}-equivariant surjection π1e´t(PF¯1{0,1,},0w)π1e´t(PF¯1{0,},0w)Z^(1)Z/2\pi_{1}^{\mathrm{\acute{e}t}}({\mathbb P}^{1}_{\overline{F}}\setminus\{0,1,\infty\},0_{w})\to\pi_{1}^{\mathrm{\acute{e}t}}({\mathbb P}^{1}_{\overline{F}}\setminus\{0,\infty\},0_{w})\simeq\widehat{{\mathbb Z}}(1)\twoheadrightarrow{\mathbb Z}/2 induces an embedding Qp2Qp[Z/2]Qp[π1e´t(PF¯1{0,1,},0w)]{\mathbb Q}_{p}^{2}\simeq{\mathbb Q}_{p}[{\mathbb Z}/2]\hookrightarrow{\mathbb Q}_{p}[\pi_{1}^{\mathrm{\acute{e}t}}({\mathbb P}^{1}_{\overline{F}}\setminus\{0,1,\infty\},0_{w})]. As we have already proven the first assertion of Proposition 4.1 about tensor products, it follows that, as desired, (Qp2)n=Qp2n({\mathbb Q}_{p}^{2})^{\otimes n}={\mathbb Q}_{p}^{2^{n}} for every nn is a subquotient of Qp[π1proalg(PF¯1{0,1,},0w)]GFfin{\mathbb Q}_{p}[\pi_{1}^{\mathrm{pro}-\mathrm{alg}}({\mathbb P}^{1}_{\overline{F}}\setminus\{0,1,\infty\},0_{w})]^{G_{F}-\mathrm{fin}} for every tangential base points 0w0_{w} supported at 0. This finishes the proof that if ViV_{i} is a subquotient of Qp[π1proalg(PF¯1{0,1,},0vi)]GFfin{\mathbb Q}_{p}[\pi_{1}^{\mathrm{pro}-\mathrm{alg}}({\mathbb P}^{1}_{\overline{F}}\setminus\{0,1,\infty\},0_{v_{i}})]^{G_{F}-\mathrm{fin}} for i=1,2i=1,2, then V1V2V_{1}\oplus V_{2} is a subquotient of Qp[π1proalg(PF¯1{0,1,},0v)]GFfin{\mathbb Q}_{p}[\pi_{1}^{\mathrm{pro}-\mathrm{alg}}({\mathbb P}^{1}_{\overline{F}}\setminus\{0,1,\infty\},0_{v})]^{G_{F}-\mathrm{fin}}. ∎

Corollary 4.3.

Qp(1)𝒞F{\mathbb Q}_{p}(-1)\in{\mathcal{C}}_{F}.

Proof.

Corollary 3.4 implies that He´t1(EF¯,Qp)𝒞FH^{1}_{\mathrm{\acute{e}t}}(E_{\overline{F}},{\mathbb Q}_{p})\in{\mathcal{C}}_{F} for any elliptic curve EE. By Poincare duality, Qp(1)He´t2(EF¯,Qp){\mathbb Q}_{p}(-1)\simeq H^{2}_{\mathrm{\acute{e}t}}(E_{\overline{F}},{\mathbb Q}_{p}), which is a direct summand of He´t1(EF¯,Qp)2H^{1}_{\mathrm{\acute{e}t}}(E_{\overline{F}},{\mathbb Q}_{p})^{\otimes 2}, hence lies in 𝒞F{\mathcal{C}}_{F} as well. ∎

When running arguments with spectral sequences, we will sometimes implicitly use the following consequence of 𝒞F{\mathcal{C}}_{F} being stable under direct sums.

Corollary 4.4.

If VV is a representation from 𝒞F{\mathcal{C}}_{F} and Fi+1VFiV\dots\subset F^{i+1}V\subset F^{i}V\subset\dots is a filtration on VV then the associated graded representation iFiV/Fi+1V\bigoplus\limits_{i}F^{i}V/F^{i+1}V is also in 𝒞F{\mathcal{C}}_{F}.

5. Artin motives

Finding Galois representation attached to 0-dimensional varieties inside functions on π1proalg(PF¯1{0,1,},0v)\pi_{1}^{\mathrm{pro}-\mathrm{alg}}({\mathbb P}^{1}_{\overline{F}}\setminus\{0,1,\infty\},0_{v}) amounts to unraveling Belyi’s argument for the faithfulness of the action of GFG_{F} on π1e´t(PF¯1{0,1,},x)\pi_{1}^{\mathrm{\acute{e}t}}({\mathbb P}^{1}_{\overline{F}}\setminus\{0,1,\infty\},x).

Lemma 5.1.

For any finite set TT equipped with a continuous action of GFG_{F} the representation Qp[T]{\mathbb Q}_{p}[T] is a subquotient of Qp[π1proalg(PF¯1{0,1,},0v)]GFfin{\mathbb Q}_{p}[\pi_{1}^{\mathrm{pro}-\mathrm{alg}}({\mathbb P}^{1}_{\overline{F}}\setminus\{0,1,\infty\},0_{v})]^{G_{F}-\mathrm{fin}} for every tangential base point 0v0_{v}.

Proof.

Our plan here is to first prove that for every finite Galois extension KFK\supset F and for every tangential base point 0v0_{v} the space Qp[π1proalg(PF¯1{0,1,},0v)]GFfin{\mathbb Q}_{p}[\pi_{1}^{\mathrm{pro}-\mathrm{alg}}({\mathbb P}^{1}_{\overline{F}}\setminus\{0,1,\infty\},0_{v})]^{G_{F}-\mathrm{fin}} has some faithful representation of Gal(K/F)\operatorname{{Gal}}(K/F) as a subquotient, though it will not yet be guaranteed that there exists a common faithful representation appearing in Qp[π1proalg(PF¯1{0,1,},0v)]GFfin{\mathbb Q}_{p}[\pi_{1}^{\mathrm{pro}-\mathrm{alg}}({\mathbb P}^{1}_{\overline{F}}\setminus\{0,1,\infty\},0_{v})]^{G_{F}-\mathrm{fin}} for every base point 0v0_{v}. We will then use Proposition 4.1 to deduce that in fact, any finite-dimensional representation of GFG_{F} factoring through Gal(K/F)\operatorname{{Gal}}(K/F) appears as a subquotient of every Qp[π1proalg(PF¯1{0,1,},0v)]GFfin{\mathbb Q}_{p}[\pi_{1}^{\mathrm{pro}-\mathrm{alg}}({\mathbb P}^{1}_{\overline{F}}\setminus\{0,1,\infty\},0_{v})]^{G_{F}-\mathrm{fin}}.

We start by choosing a smooth proper geometrically connected curve CC over KK that does not descend to any smaller subfield KKK^{\prime}\subset K. For instance, we can take CC to be an elliptic curve over KK such that the jj-invariant j(C)j(C) generates the field KK over Q{\mathbb Q}. By Theorem 3.1 there exists a finite map f:CPK1f:C\to{\mathbb P}^{1}_{K} that is étale over PK1{0,1,}{\mathbb P}^{1}_{K}\setminus\{0,1,\infty\}. Denote by UCU\subset C the preimage f1(PK1{0,1,})f^{-1}({\mathbb P}^{1}_{K}\setminus\{0,1,\infty\}). Choosing a tangential F¯\overline{F}-base point xwx_{w} for CUC\setminus U that lies above 0v0_{v}, we get an open subgroup f(π1e´t(UK¯,xw))π1e´t(PK¯1{0,1,},0v)f_{*}(\pi_{1}^{\mathrm{\acute{e}t}}(U_{\overline{K}},x_{w}))\subset\pi_{1}^{\mathrm{\acute{e}t}}({\mathbb P}^{1}_{\overline{K}}\setminus\{0,1,\infty\},0_{v}). If an element σGF\sigma\in G_{F} stabilizes this subgroup then the scheme UK¯U_{\overline{K}} can be descended to the field (F¯)σ=1(\overline{F})^{\sigma=1}. Our choice of CC thus forces the stabilizer of this subgroup to be contained inside GKGFG_{K}\subset G_{F}. In particular, there is a finite GFG_{F}-equivariant quotient π1e´t(PF¯1{0,1,},0v)S\pi_{1}^{\mathrm{\acute{e}t}}({\mathbb P}^{1}_{\overline{F}}\setminus\{0,1,\infty\},0_{v})\twoheadrightarrow S such that the kernel of the action of GFG_{F} on SS is contained in GKG_{K}. All in all, there exists a GFG_{F}-equivariant finite quotient π1e´t(PF¯1{0,1,},0v)X\pi_{1}^{\mathrm{\acute{e}t}}({\mathbb P}^{1}_{\overline{F}}\setminus\{0,1,\infty\},0_{v})\to X such that the action of GFG_{F} on XX factors through a faithful action of Gal(K/F)\operatorname{{Gal}}(K/F).

Therefore, for every tangential base point 0v0_{v} there is a faithful representation WvW_{v} of Gal(K/F)\operatorname{{Gal}}(K/F) appearing as a subrepresentation of Qp[π1proalg(PF¯1{0,1,},0v)]{\mathbb Q}_{p}[\pi_{1}^{\mathrm{pro}-\mathrm{alg}}({\mathbb P}^{1}_{\overline{F}}\setminus\{0,1,\infty\},0_{v})]. Since every faithful representation of a finite group GG contains a faithful subrepresentation of dimension |G|\leq|G|, we may choose the representations WvW_{v} in a way that they all belong to finitely many isomorphism classes, as vv varies. Let W1,,WNW_{1},\dots,W_{N} be the finite list of these representations.

Fix now a particular tangential base point 0v0_{v} supported at 0. Repeatedly applying Proposition 4.1, we can conclude that for any dNd\in{\mathbb N} a tensor product of the form W1a1WNaNW_{1}^{\otimes a_{1}}\otimes\dots\otimes W_{N}^{\otimes a_{N}}, with aida_{i}\geq d for at least one ii, is a subquotient of Qp[π1proalg(PF¯1{0,1,},0v)]GFfin{\mathbb Q}_{p}[\pi_{1}^{\mathrm{pro}-\mathrm{alg}}({\mathbb P}^{1}_{\overline{F}}\setminus\{0,1,\infty\},0_{v})]^{G_{F}-\mathrm{fin}}. For a large enough dd and any ii the tensor power WidW_{i}^{\otimes d} contains the regular representation of Gal(K/F)\operatorname{{Gal}}(K/F) as a direct summand, since each WiW_{i} is a faithful representation. As the tensor product of the regular representation with any representation is a direct sum of copies of the regular representation, W1a1WNaNW_{1}^{\otimes a_{1}}\otimes\dots\otimes W_{N}^{\otimes a_{N}} as above contains the regular representation of Gal(K/F)\operatorname{{Gal}}(K/F) as a direct summand. Hence the representation Qp[Gal(K/F)]{\mathbb Q}_{p}[\operatorname{{Gal}}(K/F)] of GFG_{F} belongs to 𝒞F{\mathcal{C}}_{F}, and every finite-dimensional representation of GFG_{F} factoring through Gal(K/F)\operatorname{{Gal}}(K/F) belongs to 𝒞F{\mathcal{C}}_{F}. ∎

Corollary 5.2.

Let FFF^{\prime}\supset F be a finite extension. If for a representation VV of GFG_{F} the restriction V|GFV|_{G_{F^{\prime}}} belongs to 𝒞F{\mathcal{C}}_{F^{\prime}} then VV itself is in 𝒞F{\mathcal{C}}_{F}.

Proof.

Choose a tangent vector vT0PF1v\in T_{0}{\mathbb P}^{1}_{F} and let 0v1,0v20_{v_{1}},0_{v_{2}} be the corresponding auxiliary tangential base points provided by Proposition 4.1. By assumption, there exists a finite-dimensional subspace WQp[π1proalg(PF¯1{0,1,},0v1)]W\subset{\mathbb Q}_{p}[\pi_{1}^{\mathrm{pro}-\mathrm{alg}}({\mathbb P}^{1}_{\overline{F}}\setminus\{0,1,\infty\},0_{v_{1}})] stable under the action of GFG_{F^{\prime}} such that V|GFV|_{G_{F^{\prime}}} is a quotient of WW. Let WWW^{\prime}\supset W be the GFG_{F}-span of WW inside Qp[π1proalg(PF¯1{0,1,},0v1)]{\mathbb Q}_{p}[\pi_{1}^{\mathrm{pro}-\mathrm{alg}}({\mathbb P}^{1}_{\overline{F}}\setminus\{0,1,\infty\},0_{v_{1}})] which we view as a representation of GFG_{F}. The inclusion WWW\subset W^{\prime} gives rise to the inclusion IndGFGFWIndGFGF(W|GF)=WQp[GF/GF]\operatorname{{Ind}}_{G_{F^{\prime}}}^{G_{F}}W\subset\operatorname{{Ind}}_{G_{F^{\prime}}}^{G_{F}}(W^{\prime}|_{G_{F^{\prime}}})=W^{\prime}\otimes{\mathbb Q}_{p}[G_{F}/G_{F^{\prime}}] while VV is a quotient of IndGFGFW\operatorname{{Ind}}_{G_{F^{\prime}}}^{G_{F}}W, because the induced representation IndGFGF(V|GF)=VQp[GF/GF]\operatorname{{Ind}}_{G_{F^{\prime}}}^{G_{F}}(V|_{G_{F^{\prime}}})=V\otimes{\mathbb Q}_{p}[G_{F}/G_{F^{\prime}}] is. The representation WQp[GF/GF]W^{\prime}\otimes{\mathbb Q}_{p}[G_{F}/G_{F^{\prime}}] is a subquotient of Qp[π1proalg(PF¯1{0,1,},0v)]GFfin{\mathbb Q}_{p}[\pi_{1}^{\mathrm{pro}-\mathrm{alg}}({\mathbb P}^{1}_{\overline{F}}\setminus\{0,1,\infty\},0_{v})]^{G_{F}-\mathrm{fin}} by Proposition 4.1 and Proposition 5.1 so VV is a subquotient of Qp[π1proalg(PF¯1{0,1,},0v)]GFfin{\mathbb Q}_{p}[\pi_{1}^{\mathrm{pro}-\mathrm{alg}}({\mathbb P}^{1}_{\overline{F}}\setminus\{0,1,\infty\},0_{v})]^{G_{F}-\mathrm{fin}}, as desired. ∎

6. Dual representations

The class 𝒞F{\mathcal{C}}_{F} also turns out to be stable under duality. This is a special feature of tangential base points and the analogs of Proposition 6.1 and Lemma 6.2 for a classical base point in place of 0v0_{v} are false by Corollary 9.2. These results are not used in the proof of our main theorem but are needed for Lemma 9.3.

Proposition 6.1.

If V𝒞FV\in{\mathcal{C}}_{F} then V𝒞FV^{\vee}\in{\mathcal{C}}_{F}.

Proof.

The dual representation VV^{\vee} can be written as the tensor product ΛdimV1V(detV)\Lambda^{\dim V-1}V\otimes(\det V)^{\vee} so VV^{\vee} is a direct summand of the tensor product VdimV1(detV)V^{\otimes\dim V-1}\otimes(\det V)^{\vee}. The character (detV)(\det V)^{\vee} belongs to 𝒞F{\mathcal{C}}_{F} by Lemma 6.2 below (the assumption of the lemma is satisfied because VV is known to be de Rham at places above pp by [Pet23, Proposition 8.5]), so VV^{\vee} is also in 𝒞F{\mathcal{C}}_{F} by Proposition 4.1. ∎

Lemma 6.2.

Any continuous character χ:GFQ¯p×\chi:G_{F}\to\overline{\mathbb{Q}}_{p}^{\times} that is Hodge-Tate at all places above pp is a subquotient of Q¯p[π1proalg(PF¯1{0,1,},0v)]GFfin\overline{\mathbb{Q}}_{p}[\pi_{1}^{\mathrm{pro}-\mathrm{alg}}({\mathbb P}^{1}_{\overline{F}}\setminus\{0,1,\infty\},0_{v})]^{G_{F}-\mathrm{fin}} for every tangential base point 0v0_{v}.

Proof.

We start by proving that the cyclotomic character Qp(1){\mathbb Q}_{p}(1) embeds into Qp[π1proalg(PF¯1{0,1,},0v)]{\mathbb Q}_{p}[\pi_{1}^{\mathrm{pro}-\mathrm{alg}}({\mathbb P}^{1}_{\overline{F}}\setminus\{0,1,\infty\},0_{v})]. Let f:PF,λ1{0,1,}f:{\mathcal{E}}\to{\mathbb P}^{1}_{F,\lambda}\setminus\{0,1,\infty\} be the Legendre family of elliptic curves over the punctured projective line with coordinate λ\lambda, defined as =ProjF[λ±1,(λ1)1]F[λ±1,(λ1)1,x,y,z]/(zy2x(xz)(xλz)){\mathcal{E}}=\operatorname{Proj}_{F[\lambda^{\pm 1},(\lambda-1)^{-1}]}F[\lambda^{\pm 1},(\lambda-1)^{-1},x,y,z]/(zy^{2}-x(x-z)(x-\lambda z)). Consider the local system L=R1fQp{\mathbb L}=R^{1}f_{*}{\mathbb Q}_{p} on PF1{0,1,}{\mathbb P}^{1}_{F}\setminus\{0,1,\infty\}. The geometric local system L|XF¯{\mathbb L}|_{X_{\overline{F}}} is absolutely irreducible so we may apply the discussion of Example 1.5 to L{\mathbb L}.

The restriction of L{\mathbb L} to the punctured formal neighborhood SpecF((λ))\operatorname{{Spec}}F((\lambda)) of 0PF10\in{\mathbb P}^{1}_{F} defines a representation ρ\rho of the Galois group GF((λ))G_{F((\lambda))} on a vector space WW. The group GF((λ))G_{F((\lambda))} naturally fits into an extension

(6.1) 1Z^(1)GF¯((λ))GF((λ))GF11\to\widehat{{\mathbb Z}}(1)\simeq G_{\overline{F}((\lambda))}\to G_{F((\lambda))}\to G_{F}\to 1

in which the conjugation action of GFG_{F} on Z^(1)\widehat{{\mathbb Z}}(1) is via the cyclotomic character. Since the geometric monodromy of L{\mathbb L} at the puncture 0 is unipotent and non-trivial (e.g. by [CMSP17, p. 20]), the invariants of Z^(1)\widehat{{\mathbb Z}}(1) on WW is a 11-dimensional subspace, which is necessarily stable under the action of all of GF((λ))G_{F((\lambda))}.

Hence WW fits into a short exact sequence 0χ1Wχ200\to\chi_{1}\to W\to\chi_{2}\to 0 where χ1,χ2\chi_{1},\chi_{2} are characters of GF((q))G_{F((q))} factoring through GFG_{F}. Since Z^(1)\widehat{{\mathbb Z}}(1) acts non-trivially on WW, we have a non-zero GFG_{F}-equivariant map Z^(1)HomQp(χ2,χ1)\widehat{{\mathbb Z}}(1)\to\operatorname{{Hom}}_{{\mathbb Q}_{p}}(\chi_{2},\chi_{1}) sending gg to ρ(g)idW\rho(g)-\operatorname{{id}}_{W}. This forces χ2\chi_{2} to be isomorphic to χ1(1)\chi_{1}(-1).

The choice of a tangential base point 0v0_{v} defines a splitting sv:GFGF((λ))s_{v}:G_{F}\to G_{F((\lambda))} of the extension (6.1) such that the stalk L0v{\mathbb L}_{0_{v}} is a restriction of WW along svs_{v}. Therefore the representation L0v{\mathbb L}_{0_{v}} fits into an extension of the form 0χ1L0vχ1(1)00\to\chi_{1}\to{\mathbb L}_{0_{v}}\to\chi_{1}(-1)\to 0. By Example 1.5 the Galois representation L0vL0v{\mathbb L}_{0_{v}}\otimes{\mathbb L}_{0_{v}}^{\vee} can be embedded into Qp[π1proalg(PF¯1{0,1,},0v)]{\mathbb Q}_{p}[\pi_{1}^{\mathrm{pro}-\mathrm{alg}}({\mathbb P}^{1}_{\overline{F}}\setminus\{0,1,\infty\},0_{v})]. In particular, Qp(1)=χ1(χ1(1)){\mathbb Q}_{p}(1)=\chi_{1}\otimes(\chi_{1}(-1))^{\vee} embeds into this space of functions, as desired. This also shows that Qp(1){\mathbb Q}_{p}(-1) is a subquotient of Qp[π1proalg(PF¯1{0,1,},0v)]GFfin{\mathbb Q}_{p}[\pi_{1}^{\mathrm{pro}-\mathrm{alg}}({\mathbb P}^{1}_{\overline{F}}\setminus\{0,1,\infty\},0_{v})]^{G_{F}-\mathrm{fin}} (though we already proved this by an easier argument in Corollary 4.3).

By Corollary 3.4, for any abelian variety AA the representation He´t1(AF¯,Qp)H^{1}_{\mathrm{\acute{e}t}}(A_{\overline{F}},{\mathbb Q}_{p}) lies in 𝒞F{\mathcal{C}}_{F}. Therefore He´t1(AF¯,Qp)=He´t1(AF¯,Qp)(1)H^{1}_{\mathrm{\acute{e}t}}(A_{\overline{F}},{\mathbb Q}_{p})^{\vee}=H^{1}_{\mathrm{\acute{e}t}}(A^{\vee}_{\overline{F}},{\mathbb Q}_{p})(1) is in 𝒞F{\mathcal{C}}_{F} as well. Taking into account that all finite image representations lie in 𝒞F{\mathcal{C}}_{F}, we know that 𝒞F{\mathcal{C}}_{F} contains all the objects of the Tannakian subcategory of RepQpGF\mathrm{Rep}_{{\mathbb Q}_{p}}G_{F} generated by étale cohomology of CM abelian varieties and finite image representations. By [FM95, §6], this implies that 𝒞F{\mathcal{C}}_{F} contains all abelian representations that are Hodge-Tate at primes above pp. ∎

7. First cohomology of local systems

Proposition 7.1.

Let XX be any geometrically connected scheme of finite type over a field KK equipped with a base point xx. For a Qp{\mathbb Q}_{p}-local system L{\mathbb L} on XX the Galois representation He´t1(XK¯,L)H^{1}_{\mathrm{\acute{e}t}}(X_{\overline{K}},{\mathbb L}) is a subquotient of Qp[π1proalg(XK¯,x)]GKfinLx{\mathbb Q}_{p}[\pi_{1}^{\mathrm{pro}-\mathrm{alg}}(X_{\overline{K}},x)]^{G_{K}-\mathrm{fin}}\otimes{{\mathbb L}_{x}}.

Proof.

The first cohomology He´t1(XK¯,L)H^{1}_{\mathrm{\acute{e}t}}(X_{\overline{K}},{\mathbb L}) is isomorphic to the first group cohomology Hcont1(π1e´t(XK¯,x),Lx)H^{1}_{\operatorname{cont}}(\pi_{1}^{\mathrm{\acute{e}t}}(X_{\overline{K}},x),{\mathbb L}_{x}) compatibly with the Galois action. The group cohomology is computed by the standard complex

Lx0Funccont(π1e´t(XK¯,x),Lx)1{\mathbb L}_{x}\xrightarrow{\partial_{0}}\operatorname{Func}^{\operatorname{cont}}(\pi_{1}^{\mathrm{\acute{e}t}}(X_{\overline{K}},x),{\mathbb L}_{x})\xrightarrow{\partial_{1}}\dots

The subspace Zcont1(π1e´t(XK¯,x),Lx):=ker1Funccont(π1e´t(XK¯,x),Lx)Z^{1}_{\operatorname{cont}}(\pi_{1}^{\mathrm{\acute{e}t}}(X_{\overline{K}},x),{\mathbb L}_{x}):=\ker\partial_{1}\subset\operatorname{Func}^{\operatorname{cont}}(\pi_{1}^{\mathrm{\acute{e}t}}(X_{\overline{K}},x),{\mathbb L}_{x}) of 11-cocycles fits into the exact sequence

0H0(XK¯,L)Lx0Zcont1(π1e´t(XK¯,x),Lx)He´t1(XK¯,L)00\to H^{0}(X_{\overline{K}},{\mathbb L})\to{\mathbb L}_{x}\xrightarrow{\partial_{0}}Z^{1}_{\operatorname{cont}}(\pi_{1}^{\mathrm{\acute{e}t}}(X_{\overline{K}},x),{\mathbb L}_{x})\to H^{1}_{\mathrm{\acute{e}t}}(X_{\overline{K}},{\mathbb L})\to 0

Hence Zcont1(π1e´t(XK¯,x),Lx)Z^{1}_{\operatorname{cont}}(\pi_{1}^{\mathrm{\acute{e}t}}(X_{\overline{K}},x),{\mathbb L}_{x}) is a finite-dimensional Galois representation that has He´t1(XK¯,L)H^{1}_{\mathrm{\acute{e}t}}(X_{\overline{K}},{\mathbb L}) as a quotient.

On the other hand, as we will now compute, every element fZcont1(π1e´t(XK¯,x),Lx)f\in Z^{1}_{\operatorname{cont}}(\pi_{1}^{\mathrm{\acute{e}t}}(X_{\overline{K}},x),{\mathbb L}_{x}) extends to a function on π1proalg(XK¯,x)\pi_{1}^{\mathrm{pro}-\mathrm{alg}}(X_{\overline{K}},x) with values in the affine scheme corresponding to the vector space Lx{\mathbb L}_{x}. If f:π1e´t(XK¯,x)Lxf:\pi_{1}^{\mathrm{\acute{e}t}}(X_{\overline{K}},x)\to{\mathbb L}_{x} is a continuous 11-cocycle then its translate fgf^{g} by an element gπ1e´t(XK¯,x)g\in\pi_{1}^{\mathrm{\acute{e}t}}(X_{\overline{K}},x) is given by fg(h)=f(g1h)=g1f(h)+f(g1)f^{g}(h)=f(g^{-1}h)=g^{-1}f(h)+f(g^{-1}). Therefore, the span of the π1e´t(XK¯,x)\pi_{1}^{\mathrm{\acute{e}t}}(X_{\overline{K}},x)-orbit of the function ff is contained inside the sum of the finite-dimensional space of constant functions with the space ρL(π1e´t(XK¯,x))f\langle\rho_{{\mathbb L}}(\pi_{1}^{\mathrm{\acute{e}t}}(X_{\overline{K}},x))\rangle\cdot f where ρL(π1e´t(XK¯,x))End(Lx)\langle\rho_{{\mathbb L}}(\pi_{1}^{\mathrm{\acute{e}t}}(X_{\overline{K}},x))\rangle\subset\operatorname{{End}}({\mathbb L}_{x}) is the subalgebra generated by the image of the representation ρL|π1e´t(XK¯,x)\rho_{{\mathbb L}}|_{\pi_{1}^{\mathrm{\acute{e}t}}(X_{\overline{K}},x)}. Hence, Zcont1(π1e´t(XK¯,x),Lx)Z^{1}_{\operatorname{cont}}(\pi_{1}^{\mathrm{\acute{e}t}}(X_{\overline{K}},x),{\mathbb L}_{x}) is a subspace of Qp[π1proalg(XK¯,x)]GKfinQpLx{\mathbb Q}_{p}[\pi_{1}^{\mathrm{pro}-\mathrm{alg}}(X_{\overline{K}},x)]^{G_{K}-\mathrm{fin}}\otimes_{{\mathbb Q}_{p}}{\mathbb L}_{x} compatibly with the Galois action, so He´t1(XK¯,L)H^{1}_{\mathrm{\acute{e}t}}(X_{\overline{K}},{\mathbb L}) is a subquotient of this tensor product. ∎

Remark 7.2.

Another way to see that every 11-cocycle on π1e´t(XK¯,x)\pi_{1}^{\mathrm{\acute{e}t}}(X_{\overline{K}},x) extends to a function on the pro-algebraic completion is to observe that the canonical map Zalg1(π1proalg(XK¯,x),Lx)Zcont1(π1e´t(XK¯,x),Lx)Z^{1}_{\mathrm{alg}}(\pi_{1}^{\mathrm{pro}-\mathrm{alg}}(X_{\overline{K}},x),{\mathbb L}_{x})\to Z^{1}_{\operatorname{cont}}(\pi_{1}^{\mathrm{\acute{e}t}}(X_{\overline{K}},x),{\mathbb L}_{x}) is an isomorphism. This is the case because the source and the target of this map are extensions of Halg1(π1proalg(XK¯,x),Lx)H^{1}_{\mathrm{alg}}(\pi_{1}^{\mathrm{pro}-\mathrm{alg}}(X_{\overline{K}},x),{\mathbb L}_{x}) and Hcont1(π1e´t(XK¯,x),Lx)H^{1}_{\operatorname{cont}}(\pi_{1}^{\mathrm{\acute{e}t}}(X_{\overline{K}},x),{\mathbb L}_{x}), respectively, by the space Lx/Lxπ1e´t(XK¯,x){\mathbb L}_{x}/{\mathbb L}^{\pi_{1}^{\mathrm{\acute{e}t}}(X_{\overline{K}},x)}_{x}. The map Halg1(π1proalg(XK¯,x),Lx)Hcont1(π1e´t(XK¯,x),Lx)H^{1}_{\mathrm{alg}}(\pi_{1}^{\mathrm{pro}-\mathrm{alg}}(X_{\overline{K}},x),{\mathbb L}_{x})\to H^{1}_{\operatorname{cont}}(\pi_{1}^{\mathrm{\acute{e}t}}(X_{\overline{K}},x),{\mathbb L}_{x}) is an isomorphism because both groups classify extensions of the trivial representation Qp{\mathbb Q}_{p} by Lx{\mathbb L}_{x} and the categories of finite-dimensional representations of π1e´t(XK¯,x)\pi_{1}^{\mathrm{\acute{e}t}}(X_{\overline{K}},x) and π1proalg(XK¯,x)\pi_{1}^{\mathrm{pro}-\mathrm{alg}}(X_{\overline{K}},x) are equivalent.

8. Proof of Theorem 1.2

After the preparatory work of the previous sections, the main result will follow by induction on the dimension, exhibiting the relevant variety as a fibration over a curve and applying a Leray spectral sequence.

Proof of Theorem 1.2.

We will start with some preliminary reductions. The argument can be shortened slightly if we appeal to resolution of singularities but we take care to show that the existence of alterations [dJ96] is enough. It is harmless to assume that XX is connected and reduced. Next, choose a simplicial hh-hypercover YXY_{\bullet}\to X such that each Yi,iNY_{i},i\in{\mathbb N} is a smooth FF-scheme. By cohomological descent [SGA72, Vbis\mathrm{V}^{\mathrm{bis}}] there is a spectral sequence of Galois representations with E1ij=He´tj(Yi,F¯,Qp)E_{1}^{ij}=H^{j}_{\mathrm{\acute{e}t}}(Y_{i,\overline{F}},{\mathbb Q}_{p}) converging to He´ti+j(XF¯,Qp)H^{i+j}_{\mathrm{\acute{e}t}}(X_{\overline{F}},{\mathbb Q}_{p}). Hence any irreducible subquotient of He´tn(XF¯,Qp)H^{n}_{\mathrm{\acute{e}t}}(X_{\overline{F}},{\mathbb Q}_{p}) appears as an irreducible subquotient of some He´tj(Yi,F¯,Qp)H^{j}_{\mathrm{\acute{e}t}}(Y_{i,\overline{F}},{\mathbb Q}_{p}), so we may from now on assume that XX is smooth.

We will now argue by induction on dimX\dim X, the base case dimX=0\dim X=0 being covered by Lemma 5.1. If UXU\subset X is a dense open subscheme then the Gysin sequence and purity imply that any irreducible subquotient of the kernel or the cokernel of the restriction map He´tn(XF¯,Qp)He´tn(UF¯,Qp)H^{n}_{\mathrm{\acute{e}t}}(X_{\overline{F}},{\mathbb Q}_{p})\to H^{n}_{\mathrm{\acute{e}t}}(U_{\overline{F}},{\mathbb Q}_{p}) appears as a subquotient of the representation He´ti(ZF¯,Qp(j))H^{i}_{\mathrm{\acute{e}t}}(Z_{\overline{F}},{\mathbb Q}_{p}(-j)) for some i,j0i,j\geq 0, and ZZ a smooth variety with dimZ<dimX\dim Z<\dim X. Therefore establishing the induction step for XX is equivalent to doing so for UU (recall that by Corollary 4.3, if He´tj(ZF¯,Qp)𝒞FH^{j}_{\mathrm{\acute{e}t}}(Z_{\overline{F}},{\mathbb Q}_{p})\in{\mathcal{C}}_{F} then He´tj(ZF¯,Qp(j))𝒞FH^{j}_{\mathrm{\acute{e}t}}(Z_{\overline{F}},{\mathbb Q}_{p}(-j))\in{\mathcal{C}}_{F} for j0j\geq 0). Also, we may replace XX by a finite étale cover XXX^{\prime}\to X because, by the Leray spectral sequence, He´tn(XF¯,Qp)H^{n}_{\mathrm{\acute{e}t}}(X_{\overline{F}},{\mathbb Q}_{p}) is a direct summand of He´tn(XF¯,Qp)H^{n}_{\mathrm{\acute{e}t}}(X^{\prime}_{\overline{F}},{\mathbb Q}_{p}).

Next, we will reduce to the case where XX admits a smooth proper morphism to a dense open subscheme PF1{\mathbb P}^{1}_{F}. We may assume that XX is affine and choose a non-constant morphism f:XAF1f:X\to{\mathbb A}^{1}_{F}. Choose a possibly singular compactification X¯X\overline{X}\supset X and a projective birational morphism b:X¯X¯b:\overline{X}^{\prime}\to\overline{X} such that there is a map f~:X¯PF1\tilde{f}:\overline{X}^{\prime}\to{\mathbb P}^{1}_{F} extending ff on b1(X)Xb^{-1}(X)\simeq X. Then choose a smooth alteration a:X¯′′X¯a:\overline{X}^{\prime\prime}\to\overline{X}^{\prime} as in [dJ96, Theorem 4.1]. There exists an open dense VX¯′′V\subset\overline{X}^{\prime\prime} that is a finite étale cover of an open subscheme of XX via the composition bab\circ a, so it is enough to prove the theorem for X¯′′\overline{X}^{\prime\prime}. There exists an open dense subscheme UPF1U\subset{\mathbb P}^{1}_{F} such that f~a\tilde{f}\circ a is smooth over UU, so we have reduced to proving the theorem for the variety Y:=f1(U)Y:=f^{-1}(U) which admits a smooth proper morphism π:YU\pi:Y\to U.

There is a Leray spectral sequence with E2i,j=He´ti(UF¯,RjπQp)E_{2}^{i,j}=H^{i}_{\mathrm{\acute{e}t}}(U_{\overline{F}},R^{j}\pi_{*}{\mathbb Q}_{p}) converging to He´ti+j(YF¯,Qp)H^{i+j}_{\mathrm{\acute{e}t}}(Y_{\overline{F}},{\mathbb Q}_{p}). Therefore, to prove that the semi-simplification of He´tn(YF¯,Qp)H^{n}_{\mathrm{\acute{e}t}}(Y_{\overline{F}},{\mathbb Q}_{p}) is in 𝒞F{\mathcal{C}}_{F}, it is enough to prove the same for each of the representations Hi(UF¯,RjπQp)H^{i}(U_{\overline{F}},R^{j}\pi_{*}{\mathbb Q}_{p}), because 𝒞F{\mathcal{C}}_{F} is closed under direct sums. By Artin vanishing, the group He´ti(UF¯,RjπQp)H^{i}_{\mathrm{\acute{e}t}}(U_{\overline{F}},R^{j}\pi_{*}{\mathbb Q}_{p}) can be non-zero only for i=0i=0 or 11. Choose a rational point xU(F)x\in U(F). By smooth and proper base change theorem each of the sheaves RjπQpR^{j}\pi_{*}{\mathbb Q}_{p} is a local system on UU and the stalk (RjπQp)x(R^{j}\pi_{*}{\mathbb Q}_{p})_{x} is isomorphic to the cohomology He´tj(f1(x)F¯,Qp)H^{j}_{\mathrm{\acute{e}t}}(f^{-1}(x)_{\overline{F}},{\mathbb Q}_{p}) of the fiber above xx. Since f1(x)f^{-1}(x) is a variety of dimension <dimX<\dim X, semi-simplifications of the representations He´tj(f1(x),Qp)H^{j}_{\mathrm{\acute{e}t}}(f^{-1}(x),{\mathbb Q}_{p}) are already known to appear in 𝒞F{\mathcal{C}}_{F}, for every jj. The same immediately follows for the global sections H0(UF¯,RjπQp)(RjπQp)xH^{0}(U_{\overline{F}},R^{j}\pi_{*}{\mathbb Q}_{p})\subset(R^{j}\pi_{*}{\mathbb Q}_{p})_{x}.

Applying Proposition 7.1 to the local system RjπQpR^{j}\pi_{*}{\mathbb Q}_{p} we see that He´t1(UF¯,RjπQp)H^{1}_{\mathrm{\acute{e}t}}(U_{\overline{F}},R^{j}\pi_{*}{\mathbb Q}_{p}) is a subquotient of Qp[π1proalg(UF¯,x)]GFfin(RjπQp)x{\mathbb Q}_{p}[\pi_{1}^{\mathrm{pro}-\mathrm{alg}}(U_{\overline{F}},x)]^{G_{F}-\mathrm{fin}}\otimes(R^{j}\pi_{*}{\mathbb Q}_{p})_{x}. By Proposition 3.3 the representation Qp[π1proalg(UF¯,x)]GFfin{\mathbb Q}_{p}[\pi_{1}^{\mathrm{pro}-\mathrm{alg}}(U_{\overline{F}},x)]^{G_{F}-\mathrm{fin}} is a union of representations from 𝒞F{\mathcal{C}}_{F} and (RjπQp)x(R^{j}\pi_{*}{\mathbb Q}_{p})_{x} is in 𝒞F{\mathcal{C}}_{F} by the induction assumption. Since 𝒞F{\mathcal{C}}_{F} is closed under tensor products, the 11st cohomology group He´t1(UF¯,RjπQp)H^{1}_{\mathrm{\acute{e}t}}(U_{\overline{F}},R^{j}\pi_{*}{\mathbb Q}_{p}) is in 𝒞F{\mathcal{C}}_{F} as well so the induction step is established.

9. Variants and questions

In this section, we make miscellaneous comments on possible extensions and variations of our main theorem.

9.1. Frobenius eigenvalues

We start by formulating an analog of Weil’s Riemann Hypothesis for fundamental groups that arises from L. Lafforgue’s work on the global Langlands correspondence for function fields. These results were proven in [Pri09, Theorem 1.14, Theorem 1.17] in the case of a classical base point. We include the proofs (equivalent to those of Pridham) to highlight the different behaviors that exhibit fundamental groups with respect to classical base points and tangential base points.

Proposition 9.1.

Let XX be a geometrically connected normal variety over a finite field kk of characteristic pp and ll be a prime different from pp.

  1. (i)

    If xx is any base point of XX (that is, a kk-point or a tangential base point) then the eigenvalues of Frk\operatorname{Fr}_{k} on both Ql[π1prored(Xk¯,x)]Gkfin{\mathbb Q}_{l}[\pi_{1}^{\mathrm{pro}-\mathrm{red}}(X_{\overline{k}},x)]^{G_{k}-\mathrm{fin}} and Ql[π1proalg(Xk¯,x)]Gkfin{\mathbb Q}_{l}[\pi_{1}^{\mathrm{pro}-\mathrm{alg}}(X_{\overline{k}},x)]^{G_{k}-\mathrm{fin}} are Weil numbers.

If xX(k)x\in X(k) is a classical base point then, more specifically,

  1. (ii)

    The eigenvalues of Frk\operatorname{Fr}_{k} on Ql[π1prored(Xk¯,x¯)]Gkfin{\mathbb Q}_{l}[\pi_{1}^{\mathrm{pro}-\mathrm{red}}(X_{\overline{k}},\overline{x})]^{G_{k}-\mathrm{fin}} are Weil numbers of weight 0.

  2. (iiii)

    The eigenvalues of Frk\operatorname{Fr}_{k} on Ql[π1proalg(Xk¯,x¯)]Gkfin{\mathbb Q}_{l}[\pi_{1}^{\mathrm{pro}-\mathrm{alg}}(X_{\overline{k}},\overline{x})]^{G_{k}-\mathrm{fin}} are Weil numbers of non-negative integral weight.

Proof.

We will access the spaces Ql[π1prored(Xk¯,x)]Gkfin{\mathbb Q}_{l}[\pi_{1}^{\mathrm{pro}-\mathrm{red}}(X_{\overline{k}},x)]^{G_{k}-\mathrm{fin}} and Ql[π1proalg(Xk¯,x)]Gkfin{\mathbb Q}_{l}[\pi_{1}^{\mathrm{pro}-\mathrm{alg}}(X_{\overline{k}},x)]^{G_{k}-\mathrm{fin}} through the description of Lemma 2.8. Let L{\mathbb L} be a Ql{\mathbb Q}_{l}-local system on XX.

In the situation of (ii), by Lemma 2.5 (ii), the local system L{\mathbb L} is geometrically semi-simple. It is not necessarily semi-simple on XX, but replacing L{\mathbb L} by its semi-simplification does not affect Frobenius eigenvalues on (L){\mathcal{F}}({\mathbb L}). We can therefore assume that L{\mathbb L} is irreducible and, twisting it by a character of the Galois group GkG_{k} we can moreover assume that detL\det{\mathbb L} has finite image, by [Del80, Theoreme 1.3.1]. By [Laf02, Proposition VII.7] the sheaf L{\mathbb L} is then pure of weight 0 and hence the eigenvalues of Frk\operatorname{Fr}_{k} on (L)LxLx{\mathcal{F}}({\mathbb L})\subset{\mathbb L}_{x}\otimes{\mathbb L}^{\vee}_{x} are Weil numbers of weight zero.

To deal with (i) and (iii), recall that by [Laf02, Corollary VII.8], the local system LQlQ¯l{\mathbb L}\otimes_{{\mathbb Q}_{l}}\overline{\mathbb{Q}}_{l} admits a decomposition i=1nχiLi\bigoplus\limits_{i=1}^{n}\chi_{i}\otimes{\mathbb L}_{i} where each χi\chi_{i} is a Q¯l\overline{\mathbb{Q}}_{l}-character of GkG_{k} and Li{\mathbb L}_{i}s are mixed Q¯l\overline{\mathbb{Q}}_{l}-local systems on XX, in the sense of [Del80, Definition 1.2.2 (ii)]. Since (χiLi)=(Li){\mathcal{F}}(\chi_{i}\otimes{\mathbb L}_{i})={\mathcal{F}}({\mathbb L}_{i}) and (LQlQ¯l){\mathcal{F}}({\mathbb L}\otimes_{{\mathbb Q}_{l}}\overline{\mathbb{Q}}_{l}) embeds into i=1n(χiLi)\bigoplus\limits_{i=1}^{n}{\mathcal{F}}(\chi_{i}\otimes{\mathbb L}_{i}), we may assume from the beginning that L{\mathbb L} is a mixed Q¯l\overline{\mathbb{Q}}_{l}-local system.

In other words, there is a filtration Wm+1=0WmWn=LW_{m+1}=0\subset W_{m}\subset\dots\subset W_{n}={\mathbb L} by sub-local systems on XX such that each Wi/Wi+1W_{i}/W_{i+1} is pure of weight (i)(-i), cf. [Del80, Theoreme 3.4.1 (ii)]. The space of endomorphisms End(Lx)\operatorname{{End}}({\mathbb L}_{x}) gets equipped with a Z{\mathbb Z}-indexed filtration FiEnd(Lx)={AEnd(Lx)|A(Wj)Wj+i for all j}F_{i}\operatorname{{End}}({\mathbb L}_{x})=\{A\in\operatorname{{End}}({\mathbb L}_{x})|A(W_{j})\subset W_{j+i}\text{ for all }j\}. The image of the map π1e´t(Xk¯,x)End(Lx)\pi_{1}^{\mathrm{\acute{e}t}}(X_{\overline{k}},x)\to\operatorname{{End}}({\mathbb L}_{x}) corresponding to L{\mathbb L} lands inside F0End(Lx)F_{0}\operatorname{{End}}({\mathbb L}_{x}) because the subspaces Wj,xLxW_{j,x}\subset{\mathbb L}_{x} are preserved under the action of π1e´t(Xk¯,x)\pi_{1}^{\mathrm{\acute{e}t}}(X_{\overline{k}},x). Each of the quotients Fi/Fi+1F_{i}/F_{i+1} is identified with jHom(Wj,x/Wj+1,x,Wi+j,x/Wi+j+1,x)\bigoplus\limits_{j}\operatorname{{Hom}}(W_{j,x}/W_{j+1,x},W_{i+j,x}/W_{i+j+1,x}), compatibly with the action of GkG_{k}. Therefore each GkG_{k}-representation Fi/Fi+1F_{i}/F_{i+1} is pure of weight i-i and the eigenvalues of Frk\operatorname{Fr}_{k} on (L)F0End(Lx){\mathcal{F}}({\mathbb L})\subset F_{0}\operatorname{{End}}({\mathbb L}_{x}) are Weil numbers of weights 0\leq 0, as desired.

Finally, to prove (i) it remains to show that for a mixed local system L{\mathbb L} the stalk Lx{\mathbb L}_{x} at a tangential base point is a mixed representation of GkG_{k}. This is a consequence of Deligne’s weight monodromy theorem, as stated in [Del80, Corollaire 1.8.5]. ∎

Corollary 9.2.

Let XX be a smooth geometrically connected variety over FF equipped with a base point xx.

  1. (i)

    If xx is a tangential base point then for any finite-dimensional GFG_{F}-representation VQp[π1proalg(XF¯,x)]V\subset{\mathbb Q}_{p}[\pi_{1}^{\mathrm{pro}-\mathrm{alg}}(X_{\overline{F}},x)] there exists a finite set SS of places of FF such that for every vSv\not\in S the action of GFG_{F} on VV is unramified at vv and the eigenvalues of the Frobenius element Frv\operatorname{Fr}_{v} are #k(v)\#k(v)-Weil numbers.

  2. (ii)

    If xx is a classical base point, we can say more: for any finite-dimensional GFG_{F}-representation VQp[π1proalg(XF¯,x)]V\subset{\mathbb Q}_{p}[\pi_{1}^{\mathrm{pro}-\mathrm{alg}}(X_{\overline{F}},x)] (resp. VQp[π1prored(XF¯,x)]V\subset{\mathbb Q}_{p}[\pi_{1}^{\mathrm{pro}-\mathrm{red}}(X_{\overline{F}},x)]) there exists a finite set SS of places of FF such that for every vSv\not\in S the action of GFG_{F} on VV is unramified at vv and the eigenvalues of the Frobenius element Frv\operatorname{Fr}_{v} are #k(v)\#k(v)-Weil numbers of non-negative weights (resp. of weight 0).

Proof.

The proof is analogous to that of [Pet23, Corollary 8.6]. We will write out the argument for the pro-algebraic completion and the proof for the pro-reductive completion proceeds in the same way.

Let f:π1proalg(XF¯,x)GLn,Qpf:\pi_{1}^{\mathrm{pro}-\mathrm{alg}}(X_{\overline{F}},x)\to GL_{n,{\mathbb Q}_{p}} be a morphism such that VV is contained in the image of the induced map f:Qp[GLn,Qp]Qp[π1proalg(XF¯,x)]f^{*}:{\mathbb Q}_{p}[GL_{n,{\mathbb Q}_{p}}]\to{\mathbb Q}_{p}[\pi_{1}^{\mathrm{pro}-\mathrm{alg}}(X_{\overline{F}},x)]. The restriction of ff to π1e´t(XF¯,x)\pi_{1}^{\mathrm{\acute{e}t}}(X_{\overline{F}},x) necessarily factors through a conjugate of GLn(Zp)GLn(Qp)GL_{n}({\mathbb Z}_{p})\subset GL_{n}({\mathbb Q}_{p}) and therefore factors through the pro-SS completion π1e´t(XF¯,x)π1e´t(XF¯,x)(S)\pi_{1}^{\mathrm{\acute{e}t}}(X_{\overline{F}},x)\to\pi_{1}^{\mathrm{\acute{e}t}}(X_{\overline{F}},x)^{(S)} for a finite set of primes SS. Hence VV lies in the image of the induced map Qp[(π1e´t(XF¯,x)(S))Qpproalg]GFfinQp[π1proalg(XF¯,x)]GFfin{\mathbb Q}_{p}[(\pi_{1}^{\mathrm{\acute{e}t}}(X_{\overline{F}},x)^{(S)})^{\mathrm{pro}-\mathrm{alg}}_{{\mathbb Q}_{p}}]^{G_{F}-\mathrm{fin}}\to{\mathbb Q}_{p}[\pi_{1}^{\mathrm{pro}-\mathrm{alg}}(X_{\overline{F}},x)]^{G_{F}-\mathrm{fin}}.

Enlarging SS, we may assume that there exists a smooth proper scheme 𝔛¯\overline{\mathfrak{X}} over 𝒪F,S{\mathcal{O}}_{F,S} equipped with a horizontal normal crossings divisor 𝔇𝔛¯{\mathfrak{D}}\subset\overline{\mathfrak{X}} such that X=𝔛FX={\mathfrak{X}}_{F} for 𝔛:=𝔛¯𝔇{\mathfrak{X}}:=\overline{\mathfrak{X}}\setminus{\mathfrak{D}} and xx extends to an 𝒪F,S{\mathcal{O}}_{F,S}-base point x~\widetilde{x} of 𝔛{\mathfrak{X}}. Choose a place vv and an embedding F¯F¯v\overline{F}\subset\overline{F}_{v} yielding a decomposition subgroup GFvGFG_{F_{v}}\subset G_{F}. By [Pet23, Lemma 8.7] the space Qp[(π1e´t(XF¯,x)(S))Qpproalg]{\mathbb Q}_{p}[(\pi_{1}^{\mathrm{\acute{e}t}}(X_{\overline{F}},x)^{(S)})^{\mathrm{pro}-\mathrm{alg}}_{{\mathbb Q}_{p}}] is identified with Qp[π1e´t(𝔛k(v)¯,x~k(v))(S))Qpproalg]{\mathbb Q}_{p}[\pi_{1}^{\mathrm{\acute{e}t}}({\mathfrak{X}}_{\overline{k(v)}},\widetilde{x}_{k(v)})^{(S)})^{\mathrm{pro}-\mathrm{alg}}_{{\mathbb Q}_{p}}] compatibly with the action of the local Galois group GFvG_{F_{v}}. Therefore the restriction V|GFvV|_{G_{F_{v}}} is a subquotient of Qp[(π1e´t(𝔛k(v)¯,x~k(v))(S))Qpproalg]Qp[π1e´t(𝔛k(v)¯,x~k(v))]{\mathbb Q}_{p}[(\pi_{1}^{\mathrm{\acute{e}t}}({\mathfrak{X}}_{\overline{k(v)}},\widetilde{x}_{k(v)})^{(S)})^{\mathrm{pro}-\mathrm{alg}}_{{\mathbb Q}_{p}}]\subset{\mathbb Q}_{p}[\pi_{1}^{\mathrm{\acute{e}t}}({\mathfrak{X}}_{\overline{k(v)}},\widetilde{x}_{k(v)})] where the action factors through GFvGk(v)G_{F_{v}}\twoheadrightarrow G_{k(v)} and the result follows from Proposition 9.1. ∎

Thus, a finite-dimensional subrepresentation VQp[π1proalg(XF¯,x)]V\subset{\mathbb Q}_{p}[\pi_{1}^{\mathrm{pro}-\mathrm{alg}}(X_{\overline{F}},x)] not only satisfies the assumptions of the Fontaine-Mazur conjecture but also a potentially (though not actually if the Fontaine-Mazur conjecture is true) stronger condition on the eigenvalues of the Frobenius elements.

Let us explicate how the Fontaine-Mazur conjecture is related to Conjectures 1.3 and 1.4.

Lemma 9.3.

The Fontaine-Mazur conjecture [FM95, Conjecture 1] is equivalent to the conjunction of Conjecture 1.3 and Conjecture 1.4

Proof.

Assume that the Fontaine-Mazur conjecture is true. Conjecture 1.3 is implied by the Fontaine-Mazur conjecture because, by [Pet23, Corollary 8.6], any subquotient of Q¯p[π1proalg(PF¯1{0,1,},0v)]GFfin\overline{\mathbb{Q}}_{p}[\pi_{1}^{\mathrm{pro}-\mathrm{alg}}({\mathbb P}^{1}_{\overline{F}}\setminus\{0,1,\infty\},0_{v})]^{G_{F}-\mathrm{fin}} is geometric in the sense of [FM95]. Conjecture 1.4 similarly follows from Theorem 1.2 and Lemma 6.2, because all the representations in question arise as subquotients of some He´ti(XF¯,Qp(j))H^{i}_{\mathrm{\acute{e}t}}(X_{\overline{F}},{\mathbb Q}_{p}(j)).

Conversely, an irreducible geometric representation is a subquotient of Q¯p[π1proalg(PF¯1{0,1,},0v)]GFfin\overline{\mathbb{Q}}_{p}[\pi_{1}^{\mathrm{pro}-\mathrm{alg}}({\mathbb P}^{1}_{\overline{F}}\setminus\{0,1,\infty\},0_{v})]^{G_{F}-\mathrm{fin}} for some 0v0_{v} by Conjecture 1.4, hence comes from geometry by Conjecture 1.3. ∎

9.2. Pro-reductive completion

As mentioned in the introduction, our proof of Theorem 1.2 has the disadvantage of appealing to non-semi-simple representations of π1e´t(PF¯1{0,1,},0v)\pi_{1}^{\mathrm{\acute{e}t}}({\mathbb P}^{1}_{\overline{F}}\setminus\{0,1,\infty\},0_{v}). In this section, we discuss partial results on Galois representations appearing inside the space of functions on the pro-reductive completions of fundamental groups. Define the subclass 𝒞Fred𝒞F{\mathcal{C}}_{F}^{\mathrm{red}}\subset{\mathcal{C}}_{F} as

(9.1) 𝒞Fred:={VV appears as a subquotient of Qp[π1prored(PF¯1{0,1,},0v)] for every v}{\mathcal{C}}^{\mathrm{red}}_{F}:=\{V\mid V\text{ appears as a subquotient of }{\mathbb Q}_{p}[\pi_{1}^{\mathrm{pro}-\mathrm{red}}({\mathbb P}^{1}_{\overline{F}}\setminus\{0,1,\infty\},0_{v})]\text{ for every }v\}

This class shares some of the properties of 𝒞F{\mathcal{C}}_{F}:

Proposition 9.4.
  1. (i)

    All representations with finite image belong to 𝒞Fred{\mathcal{C}}_{F}^{\mathrm{red}}

  2. (ii)

    If V1,V2𝒞FredV_{1},V_{2}\in{\mathcal{C}}_{F}^{\mathrm{red}} then V1V2,V1V2𝒞FredV_{1}\oplus V_{2},V_{1}\otimes V_{2}\in{\mathcal{C}}_{F}^{\mathrm{red}}.

  3. (iii)

    If, for a finite extension FFF^{\prime}\supset F the restriction V|GFV|_{G_{F^{\prime}}} of a representation VV lies in 𝒞Fred{\mathcal{C}}_{F^{\prime}}^{\mathrm{red}} then V𝒞FV\in{\mathcal{C}}_{F}.

Proof.

The proofs of Lemma 2.2, Proposition 5.1, Proposition 4.1 and Corollary 5.2 go through verbatim with the pro-reductive completion in place of the pro-algebraic completion. ∎

Notably, the analog of Proposition 7.1 does not hold for the pro-reductive completion already in the case of the trivial local system L=Qp¯{\mathbb L}=\underline{{\mathbb Q}_{p}}, as Corollary 9.2 shows. We can also describe the class 𝒞Fred{\mathcal{C}}_{F}^{\mathrm{red}} more explicitly using the following

Lemma 9.5.

Let XX be a geometrically connected scheme over FF equipped with a base point xx. If a finite-dimensional Q¯p\overline{\mathbb{Q}}_{p}-representation VV of GFG_{F} can be embedded into Q¯p[π1prored(XF¯,x)]\overline{\mathbb{Q}}_{p}[\pi_{1}^{\mathrm{pro}-\mathrm{red}}(X_{\overline{F}},x)] then, for some finite extension FFF^{\prime}\supset F, the restriction V|GFV|_{G_{F^{\prime}}} is isomorphic to a direct sum of subrepresentations of representations of the form LxLx{\mathbb L}_{x}\otimes{\mathbb L}_{x}^{\vee} where L{\mathbb L} is a geometrically irreducible Q¯p\overline{\mathbb{Q}}_{p}-local system on XFX_{F^{\prime}}.

Proof.

We need to prove that if L{\mathbb L} is any geometrically semi-simple local system then the representation (L){\mathcal{F}}({\mathbb L}) has the aforementioned form.

Let L|XF¯=iIMi{\mathbb L}|_{X_{\overline{F}}}=\bigoplus\limits_{i\in I}{\mathbb M}_{i} be the decomposition into irreducible summands. The Galois group GFG_{F} then acts continuously on the set of isomorphism classes of Mi{\mathbb M}_{i}s, so, after replacing FF by a finite extension, we may assume that this action is trivial. That is, for each σGF\sigma\in G_{F} the twist Miσ{\mathbb M}_{i}^{\sigma} is isomorphic to Mi{\mathbb M}_{i}.

This implies that each Mi{\mathbb M}_{i} extends to a projective representation of π1e´t(XF,x)\pi_{1}^{\mathrm{\acute{e}t}}(X_{F^{\prime}},x) and, by Tate’s theorem [Ser77, Theorem 4] (or, alternatively automatically by passing to a finite extension of FF) each Mi{\mathbb M}_{i} in fact extends to a local system Mi~\widetilde{{\mathbb M}_{i}}. We can then consider the caonical map HomXF¯(Mi~|XF¯,L|XF¯)Mi~L\operatorname{{Hom}}_{X_{\overline{F}}}(\widetilde{{\mathbb M}_{i}}|_{X_{\overline{F}}},{\mathbb L}|_{X_{\overline{F}}})\otimes\widetilde{{\mathbb M}_{i}}\to{\mathbb L} where Wi:=HomXF¯(Mi|XF¯,L|XF¯)=H0(XF¯,(Mi~L)|XF¯)W_{i}:=\operatorname{{Hom}}_{X_{\overline{F}}}({\mathbb M}_{i}|_{X_{\overline{F}}},{\mathbb L}|_{X_{\overline{F}}})=H^{0}(X_{\overline{F}},(\widetilde{{\mathbb M}_{i}}^{\vee}\otimes{\mathbb L})|_{X_{\overline{F}}}) is viewed as a representation of GFG_{F}.

Since each Mi{\mathbb M}_{i} is irreducible, these maps induce an isomorphism iJWiMi~L\bigoplus\limits_{i\in J}W_{i}\otimes\widetilde{{\mathbb M}_{i}}\simeq{\mathbb L} for an appropriate subset JIJ\subset I. Since (L1L2){\mathcal{F}}({\mathbb L}_{1}\oplus{\mathbb L}_{2}) is a direct summand of (L1)(L2){\mathcal{F}}({\mathbb L}_{1})\oplus{\mathcal{F}}({\mathbb L}_{2}) for any local systems L1,L2{\mathbb L}_{1},{\mathbb L}_{2} on XX, we may therefore assume that L=WM{\mathbb L}=W\otimes{\mathbb M} for some geometrically irreducible M{\mathbb M} on XX. This finishes the proof because (WM)=(M){\mathcal{F}}(W\otimes{\mathbb M})={\mathcal{F}}({\mathbb M}), and (M)=MxMx{\mathcal{F}}({\mathbb M})={\mathbb M}_{x}\otimes{\mathbb M}^{\vee}_{x}. ∎

In the spirit of Theorem 1.2, geometrically irreducible local systems on any variety give rise to representations in 𝒞Fred{\mathcal{C}}_{F}^{\mathrm{red}}:

Proposition 9.6.

Let L{\mathbb L} be a geometrically irreducible Q¯p\overline{\mathbb{Q}}_{p}-local system (resp. geometrically absolutely irreducible Qp{\mathbb Q}_{p}-local system) on a variety SS over FF, equipped with a base point sS(F)s\in S(F). Then the Galois representation LsLs{\mathbb L}_{s}\otimes{\mathbb L}_{s}^{\vee} is a subquotient of Q¯p[π1prored(PF¯1{0,1,},0v)]\overline{\mathbb{Q}}_{p}[\pi_{1}^{\mathrm{pro}-\mathrm{red}}({\mathbb P}^{1}_{\overline{F}}\setminus\{0,1,\infty\},0_{v})] (resp. Qp[π1prored(PF¯1{0,1,},0v)]{\mathbb Q}_{p}[\pi_{1}^{\mathrm{pro}-\mathrm{red}}({\mathbb P}^{1}_{\overline{F}}\setminus\{0,1,\infty\},0_{v})]) for every tangential base point 0v0_{v}.

Proof.

Applying the discussion of the Example 1.5 in the introduction, we see that LsLs{\mathbb L}_{s}\otimes{\mathbb L}_{s}^{\vee} is a subrepresentation of Q¯p[π1prored(SF¯,s)]\overline{\mathbb{Q}}_{p}[\pi_{1}^{\mathrm{pro}-\mathrm{red}}(S_{\overline{F}},s)]. Proposition 3.3, reproven with pro-reductive completions in place of pro-algebraic completions then implies the claimed result. ∎

Corollary 9.7.

If V=He´t1(AF¯,Q¯p)V=H^{1}_{\mathrm{\acute{e}t}}(A_{\overline{F}},\overline{\mathbb{Q}}_{p}) for an abelian variety AA over FF or V=He´t2(XF¯,Q¯p)V=H^{2}_{\mathrm{\acute{e}t}}(X_{\overline{F}},\overline{\mathbb{Q}}_{p}) for a K3 surface XX then VV𝒞FredV\otimes V^{\vee}\in{\mathcal{C}}_{F}^{\mathrm{red}}.

Proof.

Denoting g=dimAg=\dim A let S=𝒜g,Γ(3)S={\mathcal{A}}_{g,\Gamma(3)} be the moduli space of principally polarized abelian varieties with full level 33 structure (the level structure is introduced just to ensure that 𝒜g,Γ(3){\mathcal{A}}_{g,\Gamma(3)} is representable by a smooth variety). It is equipped with the universal family π:𝒜univS\pi:{\mathcal{A}}^{\mathrm{univ}}\to S. Choosing a basis in A[3](F¯)A[3](\overline{F}) we get a point xS(F)x\in S(F^{\prime}) corresponding to AA defined over a finite extension FFF^{\prime}\supset F. The assumption of Proposition 9.6 is satisfied for L=R1πQp{\mathbb L}=R^{1}\pi_{*}{\mathbb Q}_{p} (see e.g. [Del71, Lemme 4.4.16]), so (VV)|GF(V\otimes V^{\vee})|_{G_{F^{\prime}}} is in 𝒞Fred{\mathcal{C}}_{F^{\prime}}^{\mathrm{red}} and the claim follows by Proposition 9.4 (iii).

The case of the cohomology of a K3 surface is dealt with in the same way using that the corresponding geometric monodromy representation of the fundamental group of the moduli space is irreducible, cf. [Huy16, Corollary 6.4.7]. ∎

9.3. Base points

Among the results on the representations appearing in Qp[π1proalg(PF¯1{0,1,},0v)]{\mathbb Q}_{p}[\pi_{1}^{\mathrm{pro}-\mathrm{alg}}({\mathbb P}^{1}_{\overline{F}}\setminus\{0,1,\infty\},0_{v})] that we have discussed so far, the only one that is genuinely special to tangential base points is Proposition 6.1, as Corollary 9.2 shows. I hope that the proof of Theorem 1.2 can be rectified to show that the semi-simplification of any representation of the form He´ti(YF¯,Qp)H^{i}_{\mathrm{\acute{e}t}}(Y_{\overline{F}},{\mathbb Q}_{p}), for a variety YY over FF, is a subquotient of Qp[π1proalg(PF¯1{0,1,},x)]GFfin{\mathbb Q}_{p}[\pi_{1}^{\mathrm{pro}-\mathrm{alg}}({\mathbb P}^{1}_{\overline{F}}\setminus\{0,1,\infty\},x)]^{G_{F}-\mathrm{fin}} for every base point xx. However, at present, the usage of tangential base points appears to be necessary in the proofs of Proposition 3.3 and Proposition 4.1. These difficulties would be remedied if one could answer affirmatively the following general question about Belyi maps.

Question 9.8.

Given two points x,yP1(F){0,1,}x,y\in{\mathbb P}^{1}(F)\setminus\{0,1,\infty\}, is it possible to find a finite map f:PF1PF1f:{\mathbb P}_{F}^{1}\to{\mathbb P}_{F}^{1} that is étale above PF1{0,1,}{\mathbb P}^{1}_{F}\setminus\{0,1,\infty\} such that f(0)=0,f(1)=1,f()=,f(x)=yf(0)=0,f(1)=1,f(\infty)=\infty,f(x)=y?

10. Tangential base points

In this section, we recall the notion of a tangential base point at infinity due to [Del89, §15] and collect relevant basic facts about it. Let CC be a smooth curve over an arbitrary field FF of characteristic zero and denote by C¯\overline{C} its smooth proper compactification.

Given a point x(C¯C)(F)x\in(\overline{C}\setminus C)(F) and a non-zero tangent vector vTC¯,xv\in T_{\overline{C},x}, we may choose a generator tt of the maximal ideal 𝔪x𝒪C¯,x{\mathfrak{m}}_{x}\subset{\mathcal{O}}_{\overline{C},x} such that the image of tt in 𝔪x/𝔪x2TC¯,v{\mathfrak{m}}_{x}/{\mathfrak{m}}_{x}^{2}\simeq T_{\overline{C},v}^{\vee} is equal to 11 when paired with vv. We will call such tt compatible with the tangent vector vv. This property defines tt uniquely up to multiplication by an element in 1+𝔪x1+{\mathfrak{m}}_{x}. The choice of tt defines a morphism ι:SpecF((t))C\iota:\operatorname{{Spec}}F((t))\to C inducing an isomorphism 𝒪C¯,x^[1/t]F((t))\widehat{{\mathcal{O}}_{\overline{C},x}}[1/t]\simeq F((t)). There is also an embedding ι0:SpecF((t))SpecF[t,t1]=Gm,F\iota_{0}:\operatorname{{Spec}}F((t))\to\operatorname{{Spec}}F[t,t^{-1}]={\mathbb G}_{m,F} which is fixed once and for all.

The tangential base point xvx_{v} associated to xx and vv is a functor from the category of finite étale covers of CC to the category of finite étale covers of SpecF\operatorname{{Spec}}F defined as the composition

(10.1) FE´t(C){\mathrm{F\acute{E}t}(C)}FE´t(SpecF((t))){\mathrm{F\acute{E}t}(\operatorname{{Spec}}F((t)))}FE´t(SpecF){\mathrm{F\acute{E}t}(\operatorname{{Spec}}F)}FE´t(Gm,F){\mathrm{F\acute{E}t}({\mathbb G}_{m,F})}ι\scriptstyle{\iota^{*}}\scriptstyle{\sim}t=1\scriptstyle{t=1}

Here the vertical functor is inverse to the restriction along ι0\iota_{0}. The resulting functor does not depend, up to an isomorphism, on the choice of tt by [Del89, Lemme 15.25]. If we further choose an algebraic closure FF¯F\subset\overline{F} we may define the fundamental groups of XF¯X_{\overline{F}} and XX with respect to the base point xvx_{v}, which we denote by π1e´t(XF¯,xv)\pi_{1}^{\mathrm{\acute{e}t}}(X_{\overline{F}},x_{v}) and π1e´t(X,xv)\pi_{1}^{\mathrm{\acute{e}t}}(X,x_{v}), respectively. The latter group can be described as the usual semi-direct product: π1e´t(X,xv)=GFπ1e´t(XF¯,xv)\pi_{1}^{\mathrm{\acute{e}t}}(X,x_{v})=G_{F}\ltimes\pi_{1}^{\mathrm{\acute{e}t}}(X_{\overline{F}},x_{v}). Fundamental groups defined using tangential base points interact with those defined with respect to classical points as follows:

Lemma 10.1.
  1. (i)

    Given a point xC(F)x\in C(F) and a tangent vector vTxCv\in T_{x}C, for a finite étale cover UCU\to C the geometric fibers of UU at xx and of U|CxU|_{C\setminus x} at xvx_{v} are canonically identified. In particular, there is a natural surjective homomorphism π1e´t(Cx,xv)π1e´t(C,x)\pi_{1}^{\mathrm{\acute{e}t}}(C\setminus x,x_{v})\to\pi_{1}^{\mathrm{\acute{e}t}}(C,x).

  2. (ii)

    Suppose that f:DCf:D\to C is a finite surjective, possibly ramified, morphism between smooth curves. Given a point xD(F)x\in D(F) and a tangent vector vTxDv\in T_{x}D, there exists a tangent vector wTf(x)Cw\in T_{f(x)}C such that pullback of étale covers along ff induces a morphism π1e´t(Df1(f(x)),xv)π1e´t(Cf(x),f(x)w)\pi_{1}^{\mathrm{\acute{e}t}}(D\setminus f^{-1}(f(x)),x_{v})\to\pi_{1}^{\mathrm{\acute{e}t}}(C\setminus f(x),f(x)_{w}) that is an isomorphism onto an open subgroup.

  3. (iii)

    In the situation of (ii), given a tangent vector wTf(x)Cw\in T_{f(x)}C there exists a tangential base point xvx_{v} defined over a finite Kummer extension of FF such that f(xv)=f(x)wf(x_{v})=f(x)_{w}.

Proof.

(i) This follows directly from the definition because a finite étale cover of SpecF((t))\operatorname{{Spec}}F((t)) that extends to SpecF[[t]]\operatorname{{Spec}}F[[t]] is trivial, so the fibers of the corresponding cover of Gm,K{\mathbb G}_{m,K} over 0 and 11 are canonically identified.

(ii) This is evident if ff is unramified at xx. In general, ff induces some morphism 𝒪^C,f(x)𝒪^D,x\widehat{{\mathcal{O}}}_{C,f(x)}\to\widehat{{\mathcal{O}}}_{D,x} between completed local rings. Choosing a local coordinate tt at xx compatible with vv and some local coordinate ss at f(x)f(x) we can write this map as F((s))F((t))F((s))\mapsto F((t)) given by some santn+an+1tn+1+s\mapsto a_{n}t^{n}+a_{n+1}t^{n+1}+\dots, with an0a_{n}\neq 0. The appropriate tangent vector ww is then given by ansa_{n}\cdot\frac{\partial}{\partial s}.

(iii) As in the proof of the previous part, there is an induced morphism 𝒪^C,f(x)𝒪^D,x\widehat{{\mathcal{O}}}_{C,f(x)}\to\widehat{{\mathcal{O}}}_{D,x} but this time we choose a local coordinate ss for DD that is compatible with ww. If the map between completed local rings is given by F((s))F((t)),santn+an+1tn+1+F((s))\to F((t)),s\mapsto a_{n}t^{n}+a_{n+1}t^{n+1}+\dots with an0a_{n}\neq 0 then the desired tangent vector vv is defined as an1/nta_{n}^{-1/n}\cdot\frac{\partial}{\partial t}. ∎

References

  • [Ayo21] Joesph Ayoub. Anabelian presentation of the motivic Galois group in characteristic zero. http://user.math.uzh.ch/ayoub/PDF-Files/Anabel.pdf, 2021.
  • [Bel79] G. V. Belyĭ. Galois extensions of a maximal cyclotomic field. Izv. Akad. Nauk SSSR Ser. Mat., 43(2):267–276, 479, 1979.
  • [BLMM02] Hyman Bass, Alexander Lubotzky, Andy R. Magid, and Shahar Mozes. The proalgebraic completion of rigid groups. In Proceedings of the Conference on Geometric and Combinatorial Group Theory, Part II (Haifa, 2000), volume 95, pages 19–58, 2002.
  • [CMSP17] James Carlson, Stefan Müller-Stach, and Chris Peters. Period mappings and period domains, volume 168 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, second edition, 2017.
  • [Del71] Pierre Deligne. Théorie de Hodge. II. Inst. Hautes Études Sci. Publ. Math., (40):5–57, 1971.
  • [Del80] Pierre Deligne. La conjecture de Weil. II. Inst. Hautes Études Sci. Publ. Math., (52):137–252, 1980.
  • [Del89] Pierre Deligne. Le groupe fondamental de la droite projective moins trois points. In Galois groups over 𝐐{\bf Q} (Berkeley, CA, 1987), volume 16 of Math. Sci. Res. Inst. Publ., pages 79–297. Springer, New York, 1989.
  • [dJ96] A. J. de Jong. Smoothness, semi-stability and alterations. Inst. Hautes Études Sci. Publ. Math., (83):51–93, 1996.
  • [EK16] Hélène Esnault and Lars Kindler. Lefschetz theorems for tamely ramified coverings. Proc. Amer. Math. Soc., 144(12):5071–5080, 2016.
  • [FM95] Jean-Marc Fontaine and Barry Mazur. Geometric Galois representations. In Elliptic curves, modular forms, & Fermat’s last theorem (Hong Kong, 1993), Ser. Number Theory, I, pages 41–78. Int. Press, Cambridge, MA, 1995.
  • [HM57] G. Hochschild and G. D. Mostow. Representations and representative functions of Lie groups. Ann. of Math. (2), 66:495–542, 1957.
  • [Huy16] Daniel Huybrechts. Lectures on K3 surfaces, volume 158 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 2016.
  • [Laf02] Laurent Lafforgue. Chtoucas de Drinfeld et correspondance de Langlands. Invent. Math., 147(1):1–241, 2002.
  • [Pet23] Alexander Petrov. Geometrically irreducible pp-adic local systems are de Rham up to a twist. Duke Math. J., 172(5):963–994, 2023.
  • [Pri09] Jonathan P. Pridham. Weight decompositions on étale fundamental groups. Amer. J. Math., 131(3):869–891, 2009.
  • [Pri12] Jonathan P. Pridham. On \ell-adic pro-algebraic and relative pro-\ell fundamental groups. In The arithmetic of fundamental groups—PIA 2010, volume 2 of Contrib. Math. Comput. Sci., pages 245–279. Springer, Heidelberg, 2012.
  • [Ser77] J.-P. Serre. Modular forms of weight one and Galois representations. In Algebraic number fields: LL-functions and Galois properties (Proc. Sympos., Univ. Durham, Durham, 1975), pages 193–268, 1977.
  • [Ser97] Jean-Pierre Serre. Lectures on the Mordell-Weil theorem. Aspects of Mathematics. Friedr. Vieweg & Sohn, Braunschweig, third edition, 1997. Translated from the French and edited by Martin Brown from notes by Michel Waldschmidt, With a foreword by Brown and Serre.
  • [SGA71] Revêtements étales et groupe fondamental. Lecture Notes in Mathematics, Vol. 224. Springer-Verlag, Berlin-New York, 1971. Séminaire de Géométrie Algébrique du Bois Marie 1960–1961 (SGA 1), Dirigé par Alexandre Grothendieck. Augmenté de deux exposés de M. Raynaud.
  • [SGA72] Théorie des topos et cohomologie étale des schémas. Tome 2. Lecture Notes in Mathematics, Vol. 270. Springer-Verlag, Berlin-New York, 1972. Séminaire de Géométrie Algébrique du Bois-Marie 1963–1964 (SGA 4), Dirigé par M. Artin, A. Grothendieck et J. L. Verdier. Avec la collaboration de N. Bourbaki, P. Deligne et B. Saint-Donat.