This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Universality of Persistence of Random Polynomials

Promit Ghosallabel=e1][email protected] [    Sumit Mukherjeelabel=e2][email protected] [
Abstract

We investigate the probability that a random polynomial with independent, mean-zero and finite variance coefficients has no real zeros. Specifically, we consider a random polynomial of degree 2n2n with coefficients given by an i.i.d. sequence of mean-zero, variance-1 random variables, multiplied by an α2\frac{\alpha}{2}-regularly varying sequence for α>1\alpha>-1. We show that the probability of no real zeros is asymptotically n2(bα+b0)n^{-2(b_{\alpha}+b_{0})} , where bαb_{\alpha} is the persistence exponents of a mean-zero, one-dimensional stationary Gaussian processes with covariance function sech((ts)/2)α+1\operatorname{sech}((t-s)/2)^{\alpha+1}. Our work generalizes the previous results of Dembo et al. [DPSZ02] and Dembo & Mukherjee [DM15] by removing the requirement of finite moments of all order or Gaussianity. In particular, in the special case α=0\alpha=0, our findings confirm a conjecture by Poonen and Stoll [PS99, Section 9.1] concerning random polynomials with i.i.d. coefficients.

62F12,
60F10,
Random Polynomials,
Persistence,
Universality,
Slepian’s Lemma,
keywords:
[class=MSC]
keywords:

m1Department of Statistics, University of Chicago. PG’s research is Partially supported by NSF Grant DMS-2346685. m2Department of Statistics, University of Columbia University. SM’s research is partially supported by NSF Grant DMS-1712037.

and

1 Introduction

In this paper, we consider the random polynomials

Qn(x):=i=0naixi,Q_{n}(x):=\sum_{i=0}^{n}a_{i}x^{i},

where ai=R(i)ξia_{i}=\sqrt{R(i)}\xi_{i}, with {ξi}0in\{\xi_{i}\}_{0\leq i\leq n} i.i.d. random variables 𝔼[ξi]=0\mathbb{E}[\xi_{i}]=0 and Var(ξi)=1\mathrm{Var}(\xi_{i})=1. Hhere R():+(0,)R(\cdot):\mathbb{Z}_{+}\mapsto(0,\infty) is a regularly varying function of order α>1\alpha>-1, with R(0)=1R(0)=1. The regularly varying assumption implies we can write R(i)=iαL(i)R(i)=i^{\alpha}L(i) for some α\alpha\in\mathbb{R}, and {L(i)}i0\{L(i)\}_{i\geq 0} is slowly varying at infinity, i.e.,

limiL(μi)/L(i)=1, for all μ>0.\lim_{i\to\infty}L(\mu i)/L(i)=1,\text{ for all }\mu>0.

We seek to study the decay of the persistence probability, i.e., the probability of QnQ_{n} having no real zero. To this goals, we introduce the following:

pn(α):=(Qn() has no real zero).\displaystyle p^{(\alpha)}_{n}:=\mathbb{P}\big{(}Q_{n}(\cdot)\text{ has no real zero}\big{)}. (1.1)

Since an odd degree polynomial necessarily has a real root, we have pn(α)=0p_{n}^{(\alpha)}=0 for nn odd. For nn even, the quantity logpn(α)/logn\log p^{(\alpha)}_{n}/\log n is anticipated to converge to a constant as nn\to\infty. This constant is known as the persistence exponent of the random polynomial QnQ_{n}. In the scenario when R(i)=1R(i)=1, i.e. aia_{i} are i.i.d. random variables,—Poonen and Stoll [PS99, Section 9.1] conjectured that this constant remains invariant across different distributions of aia_{i}, provided that aia_{i} satisfy the following conditions: (1) mean zero, (2) P(ai0)>0P(a_{i}\neq 0)>0, and (3) aia_{i} belongs to the domain of attraction of the normal distribution. Essentially, this conjecture suggests that the persistence exponent of QnQ_{n} is universal within the class of i.i.d. random variables with zero mean and finite variance.

Our main result, outlined below, resolves this conjecture and extends it by demonstrating the universality of persistence exponents for QnQ_{n} across a significantly broader range of random polynomial classes.

Theorem 1.1.

Fix α>1\alpha>-1, and assume ai=R(i)ξia_{i}=\sqrt{R(i)}\xi_{i} with {ξi}0in\{\xi_{i}\}_{0\leq i\leq n} i.i.d. random variables with 𝔼[ξi]=0\mathbb{E}[\xi_{i}]=0 and Var(ξi)=1\mathrm{Var}(\xi_{i})=1. Then we have

limnlogp2n(α)logn=2bα+2b0,\lim_{n\to\infty}-\frac{\log p^{(\alpha)}_{2n}}{\log n}=2b_{\alpha}+2b_{0},

where bαb_{\alpha} is defined via no-zero crossing probability of a stationary Gaussian process {Yt(α)}t0\{Y^{(\alpha)}_{t}\}_{t\geq 0}, i.e.,

bα:=limT1Tlog(Yt(α)0, for all t[0,T]),\displaystyle b_{\alpha}:=-\lim_{T\to\infty}\frac{1}{T}\log\mathbb{P}\big{(}Y^{(\alpha)}_{t}\leq 0,\text{ for all }t\in[0,T]\big{)}, (1.2)

where (Yt(α))t0(Y^{(\alpha)}_{t})_{t\geq 0} is a mean zero stationary Gaussian process with the following covariance function Cov(Ys(α),Yt(α))=sech((st)/2)α+1\mathrm{Cov}(Y^{(\alpha)}_{s},Y^{(\alpha)}_{t})=\mathrm{sech}((s-t)/2)^{\alpha+1}.

Remark 1.1.

The limit in (1.2) exists by Slepian’s Lemma, on using stationarity and non-negativity of the covariance function (see [DM15, Lem 1.1]). Theorem 1.1 can be extended to the case where ξi\xi_{i} are independent but not identically distributed random variables. To establish this generalization, an appropriate uniform integrability condition on ξi\xi_{i} is required. However, our proof techniques remain largely unchanged in this scenario. To avoid unnecessary complications, we present and prove the theorem for the case where ξi\xi_{i} are identically and independently distributed.

Significant strides have been made in the investigation of persistence in random polynomials, starting with [DPSZ02], where it was shown that when the coefficients aia_{i} of QnQ_{n} are i.i.d. and possess finite moments of all orders, the persistence exponents of QnQ_{n} are independent of the distribution of aia_{i} and are expressed as 4b0-4b_{0}. This seminal result laid the foundation for subsequent research in this field. In [DM15], the persistence probability was examined under the assumption that the coefficients of random polynomials are independent Gaussian variables with mean zero and variances that vary regularly. It was demonstrated therein that the persistence exponent in this context is given by 2bα2b0-2b_{\alpha}-2b_{0}, as stated in Theorem 1.1.

The persistence probabilities of random polynomials and other stochastic systems have also been closely scrutinized in the physics literature; see, for instance, [Maj99, SM07, SM08] for further exploration. In a recent contribution [PS18], the authors computed b0=316b_{0}=\frac{3}{16} precisely by evaluating the probability of non-real eigenvalues within the random orthogonal matrix ensemble [KPT+16]. In fact, [PS18] found also an alternative way to arrive at the same exponent by matching the persistence probabilities between a 2-dimensional heat equation started from random initial data (studied in [DM15]) and the Glauber dynamics of a semi-infinite Ising spin chain (studied in [DHP95, DHP96]).

The exploration of the zero-count of random polynomials has a rich historical backdrop. A particularly well-studied scenario involves the coefficients aii1{a_{i}}_{i\geq 1} being independent and identically distributed as standard Gaussian random variables. Early investigations, dating back to the work of Littlewood and Offord [LO38, LO39, LO43], yielded both upper and lower bounds for the expected total number of real roots, denoted as NnN_{n}. Their contributions also provided insights into the tails of this distribution, offering an initial estimate that (Nn=0)\mathbb{P}(N_{n}=0) scales as O(1logn)O\big{(}\frac{1}{\log n}\big{)} when the coefficients aia_{i} follow the distribution (ai=13)=(ai=0)=(ai=1)=13\mathbb{P}(a_{i}=-\frac{1}{3})=\mathbb{P}(a_{i}=0)=\mathbb{P}(a_{i}=1)=\frac{1}{3}.

Kac [Kac43] made a significant stride by deriving the exact formula for the expected value of NnN_{n} when aia_{i}’s are independent and identically distributed as standard normal random variables. Subsequently, over several decades, researchers honed in on the precise asymptotic behavior of 𝔼[Nn]\mathbb{E}[N_{n}], refining and extending Kac’s findings. In a more recent development, as highlighted by [NNV16], it was demonstrated that the asymptotic expectation of 𝔼[Nn]\mathbb{E}[N_{n}] equals 2πlogn+O(1)\frac{2}{\pi}\log n+O(1) for the case where aia_{i} follows a distribution with 𝔼[ai]=0\mathbb{E}[a_{i}]=0 and 𝔼[ai2+ε]<\mathbb{E}[a_{i}^{2+\varepsilon}]<\infty.

The challenge of determining the probability of a random polynomial having no real roots remained a formidable task until the seminal work of [DPSZ02]. Their work established that for even values of nn, (Nn=0)\mathbb{P}(N_{n}=0) exhibits polynomial decay, specifically as n4b0+o(1)n^{-4b_{0}+o(1)}. They also showed that the probability of Nn+kN_{n+k} to have exact kk (simple) zeros also behave in the same way. The study of non-identically distributed, but independent coefficients has been considered in [DM15], where the authors verify Theorem 1.1, under the assumption that all coefficients are Gaussian. Theorem 1.1 represents a significant generalization of the findings in [DM15] and [DPSZ02]. It achieves this by removing the requirement that aia_{i} possess finite moments of all orders or follow Gaussian distributions. In other word, it shows universality of the persistence of random polynomials. This pivotal development resolves Poonen and Stole’s conjecture on persistence of random polynomials.

2 Proof Ideas

The study of random polynomials has been a dynamic field, continually yielding fresh insights and relevant methodologies. A significant portion of this research has been devoted to investigating the presence of real roots in random polynomials. In particular, the problem of a random polynomial having no real zeros has attracted widespread attention within the mathematics and physics communities.

Many prior approaches to establish the persistence of such random polynomials have leaned heavily on comparisons with Gaussian distributions, often employing techniques like Komlos-Major-Tusnady embedding and tools such as Slepian’s inequality [DPSZ02, DM15]. However, a notable challenge in establishing the universality of this persistence lies in the absence of KMT-type results for random variables with only finite second moments. Moreover, the challenge becomes even more complex when dealing with non-identically distributed random variables. We seek to resolve this by innovating a new approach for showing the persistence. We divide the proofs into two parts which are given as follows:

lim supnlogp2n(α)logn2bα2b0𝔏𝔦𝔪𝔖𝔲𝔭,lim infnlogp2n(α)logn2bα2b0𝔏𝔦𝔪𝔫𝔣.\displaystyle\underbrace{\limsup_{n\to\infty}\frac{\log p^{(\alpha)}_{2n}}{\log n}\leq-2b_{\alpha}-2b_{0}}_{\mathfrak{LimSup}},\qquad\underbrace{\liminf_{n\to\infty}\frac{\log p^{(\alpha)}_{2n}}{\log n}\geq-2b_{\alpha}-2b_{0}}_{\mathfrak{LimInf}}. (2.1)

We show 𝔏𝔦𝔪𝔖𝔲𝔭\mathfrak{LimSup} and 𝔏𝔦𝔪𝔫𝔣\mathfrak{LimInf} in Sections 3 and 4 respectively. The proof ideas for showing these two claims are different and in what follows, we discuss those proof ideas in details. We divide the proofs of 𝔏𝔦𝔪𝔖𝔲𝔭\mathfrak{LimSup} and 𝔏𝔦𝔪𝔫𝔣\mathfrak{LimInf} into two steps. We begin with the steps of the proof of 𝔏𝔦𝔪𝔖𝔲𝔭\mathfrak{LimSup} and then proceed to the steps in the proof of 𝔏𝔦𝔪𝔫𝔣\mathfrak{LimInf}. From this point forward, we assume that nn is an even integer. However, it turns out that the proofs concerning 𝔏𝔦𝔪𝔖𝔲𝔭\mathfrak{LimSup} and 𝔏𝔦𝔪𝔫𝔣\mathfrak{LimInf} do not make use of this assumption, with the exception of Propositions 4.5 and 4.4.

Step I of 𝔏𝔦𝔪𝔖𝔲𝔭\mathfrak{LimSup}: To establish 𝔏𝔦𝔪𝔖𝔲𝔭\mathfrak{LimSup}, we initially bound p2n(α)p^{(\alpha)}_{2n} by considering the probability of having no real zeros for Qn(x)Q_{n}(x) within four small intervals. These intervals are located around two points: around +1+1 which is associated to the intervals 𝔇1:=[e1/nδ,e1/n1δ]\mathfrak{D}_{1}:=[e^{-1/n^{\delta}},e^{-1/n^{1-\delta}}] and 𝔇2:=[e1/nδ,e1/n1δ]\mathfrak{D}_{2}:=[e^{1/n^{\delta}},e^{1/n^{1-\delta}}], and 1-1 associated to intervals 𝔇3:=[e1/n1δ,e1/nδ]\mathfrak{D}_{3}:=[-e^{-1/n^{1-\delta}},-e^{-1/n^{\delta}}] and 𝔇4:=[e1/n1δ,e1/nδ]\mathfrak{D}_{4}:=[-e^{1/n^{1-\delta}},-e^{1/n^{\delta}}].

𝔇4\mathfrak{D}_{4}𝔇3\mathfrak{D}_{3}01-1𝔇1\mathfrak{D}_{1}𝔇2\mathfrak{D}_{2}
Figure 1: Illustration of contributing intervals in 𝔏𝔦𝔪𝔖𝔲𝔭\mathfrak{LimSup} Case. The probability of no real zero of Qn(x)Q_{n}(x) on the intervals 𝔇1\mathfrak{D}_{1} or 𝔇3\mathfrak{D}_{3} is O(nbα)O(n^{-b_{\alpha}}). Similarly, the probability of no real zero of Qn(x)Q_{n}(x) on the intervals 𝔇2\mathfrak{D}_{2} or 𝔇4\mathfrak{D}_{4} is O(nb0)O(n^{-b_{0}}). Combining these bounds with ‘near’ independence of these four events shows p2n(α)=O(n2(bα+b0))p^{(\alpha)}_{2n}=O(n^{-2(b_{\alpha}+b_{0})}).

Now, we need to analyze the probability of no real roots of QnQ_{n} in each of these four intervals. However, it is important to note that the events of having no zeros in these intervals are not independent. To address this challenge, we demonstrate that the probability of having no real zeros of QnQ_{n} in disjoint intervals 𝔇1,𝔇2,𝔇3,𝔇4\mathfrak{D}_{1},\mathfrak{D}_{2},\mathfrak{D}_{3},\mathfrak{D}_{4} are dictated by the disjoint components of QnQ_{n}. For instance, the probability of no zero of QnQ_{n} in the interval 𝔇1\mathfrak{D}_{1} is mainly governed by i[nδ,n1δ]aixi\sum_{i\in[n^{\delta},n^{1-\delta}]}a_{i}x^{i} and this holds roughly because the variance of i[nδ,n1δ]aixi\sum_{i\in[n^{\delta},n^{1-\delta}]}a_{i}x^{i} is greater than any other portions of QnQ_{n} when x𝔇1x\in\mathfrak{D}_{1} (see Theorem ). Consequently, we can express the probability of having no real zeros in any of these four intervals as approximately the product of the probabilities of having no real zeros in each of these intervals.

(Qn(x) has no real zeros in )\displaystyle\mathds{P}\big{(}Q_{n}(x)\text{ has no real zeros in }\mathbb{R}\big{)} (Qn(x) has no real zeros in )\displaystyle\leq\mathds{P}\big{(}Q_{n}(x)\text{ has no real zeros in }\mathbb{R}\big{)}
\displaystyle\lesssim i=14(Qn(x) has no real zero in 𝔇i)\displaystyle\prod_{i=1}^{4}\mathds{P}\Big{(}Q_{n}(x)\text{ has no real zero in }\mathfrak{D}_{i}\Big{)} (2.2)

Step II of 𝔏𝔦𝔪𝔖𝔲𝔭\mathfrak{LimSup}: Now we need to upper bound the probability of no real zero in the each of the intervals 𝔇1\mathfrak{D}_{1} and 𝔇2\mathfrak{D}_{2}. We show that probability of no zeros of QnQ_{n} in the interval 𝔇1\mathfrak{D}_{1} behaves as nbαn^{-b_{\alpha}} and the probability of no real zeros in the interval 𝔇2\mathfrak{D}_{2} behaves as nb0n^{-b_{0}} (see (1.2) for the definition of bαb_{\alpha} for any α>1\alpha>-1). By symmetry, the probabilities of no real zero in the interval 𝔇3\mathfrak{D}_{3} and 𝔇4\mathfrak{D}_{4} are respectively nbαn^{-b_{\alpha}} and nb0n^{-b_{0}}. More concretely, we show the following:

lim supn1lognlog(Qn(x) has no real zero in 𝔇1 or, 𝔇3)bα\limsup_{n\to\infty}\frac{1}{\log n}\log\mathds{P}\Big{(}Q_{n}(x)\text{ has no real zero in }\mathfrak{D}_{1}\text{ or, }\mathfrak{D}_{3}\Big{)}\leq-b_{\alpha}

and,

lim supn1lognlog(Qn(x) has no real zero in 𝔇2 or, 𝔇4)b0\limsup_{n\to\infty}\frac{1}{\log n}\log\mathds{P}\Big{(}Q_{n}(x)\text{ has no real zero in }\mathfrak{D}_{2}\text{ or, }\mathfrak{D}_{4}\Big{)}\leq-b_{0}

Sum of these yields the desired upper bound following (2.2).

We now explain why the probability of no zeros for the intervals 𝔇1\mathfrak{D}_{1} and 𝔇2\mathfrak{D}_{2} are different and how we bound those probabilities. Recall that the probability of no real zero of QnQ_{n} in the interval 𝔇1\mathfrak{D}_{1} depends on i[nδ,n1δ]aixi\sum_{i\in[n^{\delta},n^{1-\delta}]\cap\mathbb{Z}}a_{i}x^{i} whereas the probability of no real zero of QnQ_{n} in 𝔇2\mathfrak{D}_{2} is governed by i[nn1δ,nnδ]aixi\sum_{i\in[n-n^{1-\delta},n-n^{\delta}]\cap\mathbb{Z}}a_{i}x^{i}. We further divide the polynomial i[nδ,n1δ]aixi\sum_{i\in[n^{\delta},n^{1-\delta}]\cap\mathbb{Z}}a_{i}x^{i} into almost logn\log n number of sub-polynomials ir()aixi\sum_{i\in\mathcal{I}^{(-)}_{r}}a_{i}x^{i} (see (3.1) for r()\mathcal{I}^{(-)}_{r}) of varying sizes. Each of these sub-polynomials (for instance, ir()aixi\sum_{i\in\mathcal{I}^{(-)}_{r}}a_{i}x^{i}) when restricted to a particular sub-interval (𝒥r()\mathcal{J}^{(-)}_{r} of (3.3) in the case of r()\mathcal{I}^{(-)}_{r}) of 𝔇1\mathfrak{D}_{1}, converges to a Gaussian process which is directly linked to {Yt(α)}t0\{Y^{(\alpha)}_{t}\}_{t\geq 0}. These sub-polynomials are constructed in Section 3.1 (see (3.4)). Such construction also ensures that those sub-polynomials when restricted to some other sub-intervals of 𝔇1\mathfrak{D}_{1}, the covariance function decays (see Lemma 3.5). As a result, the probability of no real zeros of i[nδ,n1δ]aixi\sum_{i\in[n^{\delta},n^{1-\delta}]\cap\mathbb{Z}}a_{i}x^{i} in any of those sub-intervals of 𝔇1\mathfrak{D}_{1} can be bounded by the probability of the respective sub-polynomials not exceeding an arbitrary small negative number (Lemma 3.2). Since all these sub-polynomials are independent of each other and they weakly converges (when restricted to the respective sub-intervals) to the same Gaussian process, we do have

(Qn(x) has no real zeros in 𝔇1)\displaystyle\mathds{P}\Big{(}Q_{n}(x)\text{ has no real zeros in }\mathfrak{D}_{1}\Big{)} r=1K(ir()aixiδ, for all x𝒥r())\displaystyle\lesssim\prod_{r=1}^{K}\mathds{P}\Big{(}\sum_{i\in\mathcal{I}^{(-)}_{r}}a_{i}x^{i}\leq-\delta,\text{ for all }x\in\mathcal{J}^{(-)}_{r}\Big{)}
(Yt(α)0,t[0,logM])K\displaystyle\lesssim\mathds{P}\big{(}Y^{(\alpha)}_{t}\leq 0,t\in[0,\log M]\big{)}^{K}

where K=O(logn/logM)K=O(\log n/\log M) for any fixed M>0M>0. The constant of proportionality in the above equation is o(logn)o(\log n). Taking logarithm in both sides in the above display, dividing by logn\log n and letting nn\to\infty shows that probability of no real zeros in 𝔇1\mathfrak{D}_{1} is bounded by nbα+o(1)n^{-b_{\alpha}+o(1)}. On the other hand, to bound the similar probability for 𝔇2\mathfrak{D}_{2}, we divide i[nn1δ,nnδ]aixi\sum_{i\in[n-n^{1-\delta},n-n^{\delta}]\cap\mathbb{Z}}a_{i}x^{i} into almost logn\log n many sub-polynomials corresponding to index sets r(+)\mathcal{I}^{(+)}_{r} (see (3.2)). However, unlike the 𝔇1\mathfrak{D}_{1} case, each of these sub-polynomials (for instance, ir(+)aixi\sum_{i\in\mathcal{I}^{(+)}_{r}}a_{i}x^{i}) when restricted to a particular sub-interval (𝒥r(+)\mathcal{J}^{(+)}_{r} of (3.3) in the case of r(+)\mathcal{I}^{(+)}_{r}) of 𝔇2\mathfrak{D}_{2}, converges to a Gaussian process which is directly linked to {Yt(0)}t0\{Y^{(0)}_{t}\}_{t\geq 0}. Now, by a similar argument, we show

(Qn(x) has no real zeros in 𝔇2)\displaystyle\mathds{P}\Big{(}Q_{n}(x)\text{ has no real zeros in }\mathfrak{D}_{2}\Big{)} r=1K(ir(+)aixiδ, for all x𝒥r(+))\displaystyle\lesssim\prod_{r=1}^{K}\mathds{P}\Big{(}\sum_{i\in\mathcal{I}^{(+)}_{r}}a_{i}x^{i}\leq-\delta,\text{ for all }x\in\mathcal{J}^{(+)}_{r}\Big{)}
(Yt(0)0,t[0,logM])K\displaystyle\lesssim\mathds{P}\big{(}Y^{(0)}_{t}\leq 0,t\in[0,\log M]\big{)}^{K}

where the right hand side of the above display decays as nb0+o(1)n^{-b_{0}+o(1)}. Combining these probabilities for 𝔇1,𝔇2,𝔇3\mathfrak{D}_{1},\mathfrak{D}_{2},\mathfrak{D}_{3} and 𝔇4\mathfrak{D}_{4} yields the proof of 𝔏𝔦𝔪𝔖𝔲𝔭\mathfrak{LimSup}. Although the steps to find the exact asymptotics are straightforward, the assumption of only finite second moments enforces careful accounting of probability bounds which is executed mainly in the proof of Lemma 3.2 through employing a combinatorial selection criterion ‘move, flush and repeat’ and the required probability bounds are assimilated from several important lemmas stated and proved in Section 3.2.2.

Step I of 𝔏𝔦𝔪𝔫𝔣\mathfrak{LimInf}: The proof of 𝔏𝔦𝔪𝔫𝔣\mathfrak{LimInf} is carried out by investigating the lower bound of the probability of Qn(x)<0Q_{n}(x)<0 for all xx\in\mathbb{R}. This latter event can be rewritten as r{Qn(±eu)<0,uAr}\cap_{r}\{Q_{n}(\pm e^{u})<0,u\in A_{r}\} where the intervals {Ar:r}\{A_{r}:r\in\mathcal{R}\} (for :={2,1,0,1,2}\mathcal{R}:=\{-2,-1,0,1,2\}) are shown in (4.1) (see Figure 2).

-\inftyehlogn-\mathrm{e}^{\frac{h}{\log n}}eKn-\mathrm{e}^{\frac{K}{n}}eKn-\mathrm{e}^{\frac{-K}{n}}ehlogn-\mathrm{e}^{-\frac{h}{\log n}}0ehlogn\mathrm{e}^{-\frac{h}{\log n}}eKn\mathrm{e}^{\frac{-K}{n}}eKn\mathrm{e}^{\frac{K}{n}}ehlogn\mathrm{e}^{\frac{h}{\log n}}\infty
Figure 2: Illustration of how \mathbb{R} is divided into intervals in the 𝔏𝔦𝔪𝔫𝔣\mathfrak{LimInf} Case. Indeed, [ehlogn,eKn][-\mathrm{e}^{\frac{h}{\log n}},-\mathrm{e}^{\frac{K}{n}}], [eKn,ehlogn][-\mathrm{e}^{\frac{-K}{n}},-\mathrm{e}^{-\frac{h}{\log n}}], [ehlogn,eKn][\mathrm{e}^{-\frac{h}{\log n}},\mathrm{e}^{\frac{-K}{n}}] and [eKn,ehlogn][\mathrm{e}^{\frac{-K}{n}},\mathrm{e}^{\frac{h}{\log n}}] are the intervals which mainly contribute to the lower bound of the probability of no real zeros of Q2n(x)Q_{2n}(x) and they play same role as in the intervals 𝔇4,𝔇3,𝔇1\mathfrak{D}_{4},\mathfrak{D}_{3},\mathfrak{D}_{1} and 𝔇2\mathfrak{D}_{2} respectively as in the proof of 𝔏𝔦𝔪𝔖𝔲𝔭\mathfrak{LimSup}.

Like as in the proof of 𝔏𝔦𝔪𝔖𝔲𝔭\mathfrak{LimSup}, we notice that (Qn(±eu)<0,uAr)\mathds{P}(Q_{n}(\pm e^{u})<0,u\in A_{r}) is dictated by the sub-polynomials Qn(r)(x):=iBraixiQ^{(r)}_{n}(x):=\sum_{i\in B_{r}}a_{i}x^{i} (see (4.2) for the definitions of the sets BrB_{r}). From the definition of Qn(r)()Q^{(r)}_{n}(\cdot), it follows that Qn(x)=rQn(r)(x)Q_{n}(x)=\sum_{r\in\mathcal{R}}Q^{(r)}_{n}(x). Such decomposition of Qn(x)Q_{n}(x) implies

{Qn(x)<0,x}r{Qn(r)(±eu)σn(u)<δ,uAr,Qn(r)(±eu)σn(u)<δ/4,uAr}\displaystyle\Big{\{}Q_{n}(x)<0,x\in\mathds{R}\Big{\}}\supset\bigcap_{r\in\mathcal{R}}\Big{\{}\frac{Q_{n}^{(r)}(\pm e^{u})}{\sigma_{n}(u)}<-\delta,u\in A_{r},\frac{Q_{n}^{(r)}(\pm e^{u})}{\sigma_{n}(u)}<\delta/4,u\notin A_{r}\Big{\}}

where σn(u)\sigma_{n}(u) is the standard deviation of the random variable Qn(eu)Q_{n}(e^{u}). Since the sub-polynomials Qn(r)Q^{(r)}_{n} are independent, the probability of the event of the right hand side is equal to the product of the the following probabilities;

(Qn(r)(±eu)σn(u)<δ,uAr,Qn(r)(±eu)σn(u)<δ/4,uAr),r.\displaystyle\mathds{P}\Big{(}\frac{Q_{n}^{(r)}(\pm e^{u})}{\sigma_{n}(u)}<-\delta,u\in A_{r},\frac{Q_{n}^{(r)}(\pm e^{u})}{\sigma_{n}(u)}<\delta/4,u\notin A_{r}\Big{)},\qquad r\in\mathcal{R}. (2.3)

The main thrust of the proof of 𝔏𝔦𝔪𝔫𝔣\mathfrak{LimInf} lies in the lower bound of the above probabilities. Indeed, we derive these lower bounds in Proposition 4.14.24.34.5 and 4.4 respectively. We show in Proposition 4.1 and  4.2, that the above probabilities for r=1r=-1 and r=1r=1 are bounded below by the probabilities of no-zero crossing of two Gaussian processes which later is bounded by the non-zero crossing probabilities of the Gaussian processes Yt(α)Y^{(\alpha)}_{t} and Yt(0)Y^{(0)}_{t} respectively (through Lemma 4.22). Thus the probabilities of the above display for r=1r=-1 and r=1r=1 roughly contributes n2bαn^{-2b_{\alpha}} and n2b0n^{-2b_{0}} in the lower bound to the probability of Qn(x)<0Q_{n}(x)<0 for all xx\in\mathbb{R}. Furthermore, Propositions 4.34.5 and 4.4 shows that the probabilities of the above display corresponding to r=0,2,2r=0,-2,2 are bound below by no(1)n^{-o(1)}. Assembling these bounds together yields the proof of 𝔏𝔦𝔪𝔫𝔣\mathfrak{LimInf}. In the next step, we discuss the ideas that we use in lower bounding the probabilities in the above display for r=1r=-1 and r=1r=1. It is important to note that, while the probabilities in (2.3) for r=2,2r=-2,2 do not directly contribute to the exact value of the persistence exponent, the proof of their lower bound (which is of the order no(1)n^{-o(1)}) in Propositions 4.5 and 4.4 relies heavily on the fact that QnQ_{n} is a polynomial of even degree.

Step II of 𝔏𝔦𝔪𝔫𝔣\mathfrak{LimInf}:

We discuss here strategies to bound (2.3) for r=1,1r=-1,1. As in the proof of 𝔏𝔦𝔪𝔖𝔲𝔭\mathfrak{LimSup}, we divide the intervals A1A_{-1} and A+1A_{+1} into Tn=O(logn)T_{n}=O(\log n) many intervals. These are now denoted as {𝒥~p():1pTn}\{\tilde{\mathcal{J}}^{(-)}_{p}:1\leq p\leq T_{n}\} and {𝒥~p(+):1pTn}\{\tilde{\mathcal{J}}^{(+)}_{p}:1\leq p\leq T_{n}\} respectively. On the other hand, the index sets B1B_{-1} and B+1B_{+1} are also divided into {~p():1rTn}\{\tilde{\mathcal{I}}^{(-)}_{p}:1\leq r\leq T_{n}\} and {~p(+):1rTn}\{\tilde{\mathcal{I}}^{(+)}_{p}:1\leq r\leq T_{n}\} (see (4.3) and (4.4)). We show that the probability in (2.3) could be lower bounded by product of certain probabilities of the polynomials Q~n(1),p(x)=i~p()aixi\tilde{Q}^{(-1),p}_{n}(x)=\sum_{i\in\tilde{\mathcal{I}}^{(-)}_{p}}a_{i}x^{i} when r=1r=-1 and Q~n(1),p(x)=i~p()aixi\tilde{Q}^{(-1),p}_{n}(x)=\sum_{i\in\tilde{\mathcal{I}}^{(-)}_{p}}a_{i}x^{i} when r=+1r=+1. We show below how this bound follows for r=1r=-1 case:

p=1Tn(B1pB2pB3pB4p){Qn(r)(±eu)σn(u)<δ,uAr,Qn(r)(±eu)σn(u)<δ/4,uAr}.\displaystyle\bigcap_{p=1}^{T_{n}}(B_{1p}\cap B_{2p}\cap B_{3p}\cap B_{4p})\subset\Big{\{}\frac{Q_{n}^{(r)}(\pm e^{u})}{\sigma_{n}(u)}<-\delta,u\in A_{r},\frac{Q_{n}^{(r)}(\pm e^{u})}{\sigma_{n}(u)}<\delta/4,u\notin A_{r}\Big{\}}.

where B1,B2,B3B_{1\cdot},B_{2\cdot},B_{3\cdot} and B4B_{4\cdot} are defined in (4.40), (4.41), (4.42) and (4.43) respectively. In words, B1pB_{1p} signifies the event that Q~n(1),p(eu)\tilde{Q}^{(-1),p}_{n}(e^{u}) (when scaled by σn(u)\sigma_{n}(u)) to be less then a small negative constant for all uu inside and around a neighborhood of 𝒥p()\mathcal{J}^{(-)}_{p} whereas B2,B3B_{2\cdot},B_{3\cdot} and B4B_{4\cdot} signifies Q~n(1),p(eu)/σn(eu)\tilde{Q}^{(-1),p}_{n}(e^{u})/\sigma_{n}(e^{u}) to be less than positive numbers which decays as uu moves away 𝒥p()\mathcal{J}^{(-)}_{p}. We show that (B1pB2pB3pB4p)(B1p)\mathds{P}(B_{1p}\cap B_{2p}\cap B_{3p}\cap B_{4p})\approx\mathds{P}(B_{1p}) and (B1p)\mathds{P}(B_{1p}) can be lower bounded by probability of the Gaussian process Yt(α)Y^{(\alpha)}_{t} being smaller a small negative number everywhere inside an interval whose length grows as neTnne^{-T_{n}}. This last probability is indeed same as the no-zeros crossing probability of the Gaussian process Yt(α)Y^{(\alpha)}_{t} when the small constant is taken to 0. We show the above mentioned lower bound by combining Lemma 4.8, Lemma 4.9, Lemma 4.10 with Lemma 4.22. The first three lemma required careful derivation of the decay of probabilities of Q~n(1),p(eu)/σn(eu)\tilde{Q}^{(-1),p}_{n}(e^{u})/\sigma_{n}(e^{u}) exceeding a positive constants as uu moves away from 𝒥p()\mathcal{J}^{(-)}_{p}. Since we have assumed only second moments of aia_{i}’s finite, the derivation of these probabilities poses several challenges which are overcome in Lemma 4.6. Taking the product of the aforementioned lower bound over all p[1,Tn]p\in[1,T_{n}]\cap\mathbb{Z} shows that the probability in (2.3) for r=1r=-1 can be bounded from below by the product of TnT_{n} many no-zero crossing probability of Yt(α)Y^{(\alpha)}_{t}. Similarly, the probability in (2.3) for r=+1r=+1 can be bounded from below by the product of TnT_{n} many no-zero crossing probability of Yt(0)Y^{(0)}_{t}. These explain the bounds obtained in Proposition 4.1 and 4.2 which are the most import components in the proof of 𝔏𝔦𝔪𝔫𝔣\mathfrak{LimInf}.

3 Upper bound

3.1 Fixation of notations

Fix δ>0\delta>0, and let

A+:=[1n1δ,1nδ],A:=A+.A_{+}:=\Big{[}\frac{1}{n^{1-\delta}},\frac{1}{n^{\delta}}\Big{]},\quad A_{-}:=-A_{+}.

Define the positive weight function σn(u)\sigma_{n}(u) as

σn2(u):=\displaystyle\sigma_{n}^{2}(u):= enuL(n)|u|\displaystyle\frac{e^{nu}L(n)}{|u|} if uA+\displaystyle\text{ if }u\in A_{+}
=\displaystyle= L(1/|u|)|u|α+1\displaystyle\frac{L(1/|u|)}{|u|^{\alpha+1}} if uA1.\displaystyle\text{ if }u\in A_{-1}.

Also, define

B1:=(nn1δ,nnδ],B1:=[nδ,n1δ).\displaystyle B_{1}:=\big{(}n-n^{1-\delta},n-n^{\delta}\big{]}\cap\mathbb{Z},\quad B_{-1}:=\big{[}n^{\delta},n^{1-\delta}\big{)}\cap\mathbb{Z}.

Fixing M>0M>0, let K:=(12δ)lognlogMK:=\big{\lfloor}\frac{(1-2\delta)\log n}{\log M}\big{\rfloor}. Define the sets {r()}1rK\{\mathcal{I}^{(-)}_{r}\}_{1\leq r\leq K}, by setting

r():=\displaystyle\mathcal{I}^{(-)}_{r}:= [nδMr1,nδMr),1rK,\displaystyle\cap\big{[}n^{\delta}M^{r-1},n^{\delta}M^{r}\big{)},\quad\forall 1\leq r\leq K, (3.1)

and use the bound MKn12δM^{K}\leq n^{1-2\delta} to note that

r=1Kr()=[nδ,nδMK)[nδ,n1δ)=B1.\cup_{r=1}^{K}\mathcal{I}^{(-)}_{r}=[n^{\delta},n^{\delta}M^{K})\cap\mathbb{Z}\subseteq\big{[}n^{\delta},n^{1-\delta}\big{)}=B_{-1}.

Similarly, define the sets {r(+)}1rK\{\mathcal{I}^{(+)}_{r}\}_{1\leq r\leq K}, where

r(+):=(nnδMr,nnδMr1],1rK,\displaystyle\begin{split}\mathcal{I}^{(+)}_{r}:=&\mathbb{Z}\cap\big{(}n-n^{\delta}M^{r},n-n^{\delta}M^{r-1}\big{]},\quad\forall 1\leq r\leq K,\\ \end{split} (3.2)

and again use MKn12δM^{K}\leq n^{1-2\delta} to note that

r=1Kr(+)=(nnδMK,nnδ](nn1δ,nnδ]=B+.\cup_{r=1}^{K}\mathcal{I}^{(+)}_{r}=\mathbb{Z}\cap(n-n^{\delta}M^{K},n-n^{\delta}]\subseteq\Big{(}n-n^{1-\delta},n-n^{\delta}\Big{]}=B_{+}.

We will now partition a proper subset AaA_{a}, for a{+,}a\in\{+,-\}. For 1rK1\leq r\leq K, define

𝒥r(+):=(1nδMrδ,1nδMr1+δ], and 𝒥r():=𝒥r(+).\displaystyle\mathcal{J}_{r}^{(+)}:=\Big{(}\frac{1}{n^{\delta}M^{r-\delta}},\frac{1}{n^{\delta}M^{r-1+\delta}}\Big{]},\quad\text{ and }\quad\mathcal{J}_{r}^{(-)}:=-\mathcal{J}_{r}^{(+)}. (3.3)

Then we have r=1K𝒥r(a)Aa\cup_{r=1}^{K}\mathcal{J}_{r}^{(a)}\subset A_{a}, for a{+,}.a\in\{+,-\}.

For a{+,}a\in\{+,-\} set

Qn(a),r(x):=ir(a)aixi.\displaystyle Q^{(a),r}_{n}(x):=\sum_{i\in\mathcal{I}^{(a)}_{r}}a_{i}x^{i}. (3.4)

We will create a back-log of objects. For a{+,}a\in\{+,-\}, define

Ξn,r(a)(δ):=\displaystyle\Xi^{(a)}_{n,r}(\delta):= {maxb{+,}supu𝒥r(a)Qn(a),r(beu)σn(u)<δ},\displaystyle\Big{\{}\max_{b\in\{+,-\}}\sup_{u\in\mathcal{J}^{(a)}_{r}}\frac{Q^{(a),r}_{n}(be^{u})}{\sigma_{n}(u)}<\delta\Big{\}},
𝒦n,δ(a)(r1,r2):=\displaystyle\mathcal{K}^{(a)}_{n,\delta}(r_{1},r_{2}):= {minb{+,}infu𝒥r2(a)Qn(a),r1(beu)σn(u)<δ}.\displaystyle\Big{\{}\min_{b\in\{+,-\}}\inf_{u\in\mathcal{J}^{(a)}_{r_{2}}}\frac{Q^{(a),r_{1}}_{n}(be^{u})}{\sigma_{n}(u)}<-\delta\Big{\}}. (3.5)

We further define the index set

ext(a):=[n]0/r=1Kr(a),[n]0:={0,1,2,,n}.\displaystyle\mathcal{I}^{(a)}_{\mathrm{ext}}:=[n]_{0}/\cup_{r=1}^{K}\mathcal{I}^{(a)}_{r},\qquad[n]_{0}:=\{0,1,2,\cdots,n\}.

Let us also define Qn(a,ext)(x):=iext(a)aixiQ_{n}^{(a,\mathrm{ext})}(x):=\sum_{i\in\mathcal{I}^{(a)}_{\mathrm{ext}}}a_{i}x^{i}, and set

𝒦n,δ(a)(ext,r):={minb{+,}infu𝒥r(a)Qn(a),ext(beu)σn(u)<δ}.\displaystyle\mathcal{K}^{(a)}_{n,\delta}(\mathrm{ext},r):=\Big{\{}\min_{b\in\{+,-\}}\inf_{u\in\mathcal{J}^{(a)}_{r}}\frac{Q_{n}^{(a),\mathrm{ext}}(be^{u})}{\sigma_{n}(u)}<-\delta\Big{\}}.

3.2 Proof of 𝔏𝔦𝔪𝔖𝔲𝔭\mathfrak{LimSup}

We claim that it suffices to show that

lim supn1lognlog(supxQ2n(x)<0)2b02bα.\displaystyle\limsup_{n\to\infty}\frac{1}{\log n}\log\mathds{P}\big{(}\sup_{x\in\mathds{R}}Q_{2n}(x)<0\big{)}\leq-2b_{0}-2b_{\alpha}. (3.6)

Indeed, using the above display for the polynomial Q~2n(x)=i=0n(ai)xi\widetilde{Q}_{2n}(x)=\sum_{i=0}^{n}(-a_{i})x^{i}, we get

lim supn1lognlog(infxQ2n(x)>0)2b02bα.\limsup_{n\to\infty}\frac{1}{\log n}\log\mathds{P}\big{(}\inf_{x\in\mathds{R}}Q_{2n}(x)>0\big{)}\leq-2b_{0}-2b_{\alpha}.

The upper bound lim supnlogp2n(α)/logn2b02bα\limsup_{n\to\infty}\log p^{(\alpha)}_{2n}/\log n\leq-2b_{0}-2b_{\alpha} follows by combining the above two bounds. We now proceed now to show (3.6). We assume nn is an even integer. To this effect, first note the trivial upper bound

(supxQn(x)<0)\displaystyle\mathds{P}\big{(}\sup_{x\in\mathds{R}}Q_{n}(x)<0\big{)}\leq (a,b{+,}supuAaQn(beu)σn(u)<0).\displaystyle\mathds{P}\Big{(}\cap_{a,b\in\{+,-\}}\sup_{u\in A_{a}}\frac{Q_{n}(be^{u})}{\sigma_{n}(u)}<0\Big{)}. (3.7)

Recalling that r=1K𝒥r(a)Aa\bigcup_{r=1}^{K}\mathcal{J}^{(a)}_{r}\subset A_{a} for a{,+}a\in\{-,+\} (see (3.3)), a union bound gives, for any ω(0,1/2)\omega\in(0,1/2),

(maxa,b{+,}supuAaQn(beu)σn(u)<0)\displaystyle\mathds{P}\left(\max_{a,b\in\{+,-\}}\sup_{u\in A_{a}}\frac{Q_{n}(be^{u})}{\sigma_{n}(u)}<0\right)
\displaystyle\leq (maxa,b{,+}maxωKr(1ω)Ksupu𝒥r(a)Qn(beu)σn(u)<0)\displaystyle\mathds{P}\left(\max_{a,b\in\{-,+\}}\max_{\omega K\leq r\leq(1-\omega)K}\sup_{u\in\mathcal{J}^{(a)}_{r}}\frac{Q_{n}(be^{u})}{\sigma_{n}(u)}<0\right)
\displaystyle\leq (a{,+}r=ωK(1ω)K{Ξn,r(a)(δ)([K],r𝒦n,|r|2Cδ(a)(,r))𝒦n,δ/2(a)(ext,r)}),\displaystyle\mathds{P}\left(\bigcap_{a\in\{-,+\}}\bigcap_{r=\omega K}^{(1-\omega)K}\Big{\{}{\Xi}^{(a)}_{n,r}(\delta)\cup\Big{(}\bigcup_{\ell\in[K],\ell\neq r}\mathcal{K}^{(a)}_{n,|\ell-r|^{-2}C\delta}(\ell,r)\Big{)}\cup\mathcal{K}^{(a)}_{n,\delta/2}(\mathrm{ext},r)\Big{\}}\right), (3.8)

where C>0C>0 is chosen such that 2Cr=11r2=122C\sum_{r=1}^{\infty}\frac{1}{r^{2}}=\frac{1}{2}, and the last line follows on noting that for u𝒥r(a)u\in\mathcal{J}_{r}^{(a)} we can write

Qn(beu)=\displaystyle Q_{n}(be^{u})= i=0nai(beu)i=ir(a)ai(beu)i+[K]/{r}i(a)ai(beu)i+iext(a)ai(beu)i\displaystyle\sum_{i=0}^{n}a_{i}(be^{u})^{i}=\sum_{i\in{\mathcal{I}}^{(a)}_{r}}a_{i}(be^{u})^{i}+\sum_{\ell\in[K]/\{r\}}\sum_{i\in{{\mathcal{I}}}^{(a)}_{\ell}}a_{i}(be^{u})^{i}+\sum_{i\in\mathcal{I}_{\mathrm{ext}}^{(a)}}a_{i}(be^{u})^{i}
=\displaystyle= Qn(a),r(beu)+[K]/{r}Qn(a),(beu)+Qn(a),ext(beu)\displaystyle Q_{n}^{(a),r}(be^{u})+\sum_{\ell\in[K]/\{r\}}Q_{n}^{(a),\ell}(be^{u})+Q_{n}^{(a),\mathrm{ext}}(be^{u})

The r.h.s. of (3.2) can be further bounded above by

\displaystyle\mathds{P} (a{,+}r=ωK(1ω)K{Ξn,r(a)(δ)([K],r𝒦n,|r|2Cδ(a)(,r)))\displaystyle\left(\bigcap_{a\in\{-,+\}}\bigcap_{r=\omega K}^{(1-\omega)K}\Big{\{}{\Xi}^{(a)}_{n,r}(\delta)\cup\Big{(}\bigcup_{\ell\in[K],\ell\neq r}\mathcal{K}^{(a)}_{n,|\ell-r|^{-2}C\delta}(\ell,r)\Big{)}\right) (3.9)
+maxa{+,}ωKr(1ω)K(𝒦n,δ/2(a)(ext,r)).\displaystyle+\max_{a\in\{+,-\}}\sum_{\omega K\leq r\leq(1-\omega)K}\mathds{P}\left(\mathcal{K}^{(a)}_{n,\delta/2}(\mathrm{ext},r)\right). (3.10)

We now state a lemma to bound the second term in the RHS of (3.9), deferring the proof of the Lemma to the end of the section.

Lemma 3.1.

There exist θ=θ(ω,δ,M),C=C(ω,δ,M)>0\theta=\theta(\omega,\delta,M),C=C(\omega,\delta,M)>0 such that

maxωKr(1ω)K,a{,+}{(𝒦(a)n,δ/2(ext,r))}eCnθ.\displaystyle\max_{\omega K\leq r\leq(1-\omega)K,a\in\{-,+\}}\left\{\mathds{P}\left(\mathcal{K}^{(a)_{n,\delta/2}(\mathrm{ext},r)}\right)\right\}\leq e^{-Cn^{\theta}}. (3.11)

Lemma 3.1 is proved in Section 3.3. As a result of Lemma 3.1, the second term in the RHS of (3.9) is bounded above by KeCnθKe^{-Cn^{\theta}}. Now we proceed to bound the first term. Notice that the events {Ξn,r(+)(δ)}r[K]\{{\Xi}^{(+)}_{n,r}(\delta)\}_{r\in[K]} and {𝒦n,|r|2(+)},r[K]\{\mathcal{K}^{(+)}_{n,|\ell-r|^{-2}}\}_{\ell,r\in[K]} are jointly independent of {Ξn,r(+)(δ)}r[K]\{{\Xi}^{(+)}_{n,r}(\delta)\}_{r\in[K]} and {𝒦n,|r|2(+)},r[K]\{\mathcal{K}^{(+)}_{n,|\ell-r|^{-2}}\}_{\ell,r\in[K]}. As a result, we can write the first term in the RHS of (3.9)

a{+,}\displaystyle\prod_{a\in\{+,-\}} (r=ωK(1ω)K{Ξn,r(a)(δ)([K],r𝒦n,|r|2Cδ(a)(,r))})\displaystyle\mathds{P}\left(\bigcap_{r=\omega K}^{(1-\omega)K}\Big{\{}{\Xi}^{(a)}_{n,r}(\delta)\cup\Big{(}\bigcup_{\ell\in[K],\ell\neq r}\mathcal{K}^{(a)}_{n,|\ell-r|^{-2}C\delta}(\ell,r)\Big{)}\Big{\}}\right)
=a{+,}(r=ωK(1ω)K{Ξn,r(a)(δ)𝒦n,δ(a)(r)}),\displaystyle=\prod_{a\in\{+,-\}}\mathds{P}\left(\bigcap_{r=\omega K}^{(1-\omega)K}\Big{\{}{\Xi}^{(a)}_{n,r}(\delta)\cup\mathcal{K}^{(a)}_{n,\delta}(r)\Big{\}}\right),

where 𝒦n,δ(a)(r):=[K],r𝒦n,Cδ|r|2(a)(,r)\mathcal{K}^{(a)}_{n,\delta}(r):=\bigcup_{\ell\in[K],\ell\neq r}\mathcal{K}^{(a)}_{n,C\delta|\ell-r|^{-2}}(\ell,r). To bound the RHS of the above display, by union bound, we write

(r=ωK(1ω)K{Ξn,r(a)(δ)𝒦n,δ(a)(r)})\displaystyle\mathds{P}\left(\bigcap_{r=\omega K}^{(1-\omega)K}\Big{\{}{\Xi}^{(a)}_{n,r}(\delta)\cup\mathcal{K}^{(a)}_{n,\delta}(r)\Big{\}}\right) 𝐫:length(𝐫)(13ω)K(r𝐫Ξn,r(a)(δ))\displaystyle\leq\sum_{\vec{\mathbf{r}}:\mathrm{length}(\vec{\mathbf{r}})\geq(1-3\omega)K}\mathbb{P}\Big{(}\bigcap_{r\in\vec{\mathbf{r}}}{\Xi}^{(a)}_{n,r}(\delta)\Big{)}
+𝐫:length(𝐫)ωK(r𝔍𝐫Ξn,r(a)(δ)r𝐫𝒦n,δ(a)(r)),\displaystyle+\sum_{\vec{\mathbf{r}}:\mathrm{length}(\vec{\mathbf{r}})\geq\omega K}\mathbb{P}\Big{(}\bigcap_{r\in\mathfrak{J}_{\vec{\mathbf{r}}}}{\Xi}^{(a)}_{n,r}(\delta)\cap\bigcap_{r\in\vec{\mathbf{r}}}\mathcal{K}^{(a)}_{n,\delta}(r)\Big{)}, (3.12)

where 𝔍𝐫:=[ωK,(1ω)K]/{𝐫}\mathfrak{J}_{\vec{\mathbf{r}}}:=[\omega K,(1-\omega)K]/\{\vec{\mathbf{r}}\}. Notice that length(𝐫)\mathrm{length}(\vec{\mathbf{r}}) is upper bounded by KK. So the number of terms in the above sums are finite. We now proceed to bound the two terms in the right hand side of (3.12).

Lemma 3.2.

(i) For any h>0h>0, there exists a positive integer n0n_{0} (depending on M,ω,h,δ,κ,α,M,\omega,h,\delta,\kappa,\alpha,) such that for all nn0n\geq n_{0} we have

(r𝐫Ξn,r(a)(δ))\displaystyle\mathbb{P}\Big{(}\bigcap_{r\in\vec{\mathbf{r}}}{\Xi}^{(a)}_{n,r}(\delta)\Big{)}\leq (1+h)length(𝐫)(maxb{+,}supt[0,M12κ]Y0,M(a)(b,t)<δ)|𝐫|.\displaystyle(1+h)^{\mathrm{length}(\vec{\mathbf{r}})}\mathds{P}(\max_{b\in\{+,-\}}\sup_{t\in[0,M^{1-2\kappa}]}Y^{(a)}_{0,M}(b,t)<\delta)^{|\vec{\mathbf{r}}|}. (3.13)

Here {Y0,M(a)(b,.),b{,+}}\{Y_{0,M}^{(a)}(b,.),b\in\{-,+\}\} are i.i.d. centered Gaussian process with covariance Definition 3.3.

(ii) For any h>0h>0, there exists a positive integer n0n_{0} (depending on M,ω,h,δ,κ,αM,\omega,h,\delta,\kappa,\alpha) and an absolute constant CC such that for all nn0n\geq n_{0} and 𝐫[K]\vec{\mathbf{r}}\in[K] we have

(r𝔍𝐫Ξn,r(a)(δ)r𝐫𝒦n,δ(a)(r))\displaystyle\mathbb{P}\Big{(}\bigcap_{r\in\mathfrak{J}_{\vec{\mathbf{r}}}}{\Xi}^{(a)}_{n,r}(\delta)\cap\bigcap_{r\in\vec{\mathbf{r}}}\mathcal{K}^{(a)}_{n,\delta}(r)\Big{)}\leq 2[C(1+h)]|𝔍~𝐫,|(supt[1,M12κ]Y0,M(a)(b,t)<δ)2|𝔍~𝐫,|\displaystyle 2[C(1+h)]^{|\tilde{\mathfrak{J}}_{\vec{\mathbf{r}},\lessgtr}|}\mathds{P}(\sup_{t\in[1,M^{1-2\kappa}]}Y_{0,M}^{(a)}(b,t)<\delta)^{2|\tilde{\mathfrak{J}}_{\vec{\mathbf{r}},\lessgtr}|}
×Mc1i[N](sr~ir~i)+c2ωK,\displaystyle\times M^{-c_{1}\sum_{i\in[N]}(s_{\tilde{r}_{i}}-\tilde{r}_{i})+c_{2}\omega K}, (3.14)

where c1=α+13δ,c2=(α+3)δc_{1}=\alpha+1-3\delta,c_{2}=(\alpha+3)\delta if a=a=-, and c1=1,c2=δc_{1}=1,c_{2}=\delta if a=+a=+. Here |𝔍~𝐫,||\tilde{\mathfrak{J}}_{\vec{\mathbf{r}},\lessgtr}| denotes max{|𝔍~𝐫,>|,|𝔍~𝐫,<|}\max\{|\tilde{\mathfrak{J}}_{\vec{\mathbf{r}},>}|,|\tilde{\mathfrak{J}}_{\vec{\mathbf{r}},<}|\} where 𝔍~𝐫,>\tilde{\mathfrak{J}}_{\vec{\mathbf{r}},>} and 𝔍~𝐫,<\tilde{\mathfrak{J}}_{\vec{\mathbf{r}},<} are defined as follows

𝔍~𝐫,:={r𝐫:srr where 𝒦n,Cδ|srr|2(a)(sr,r) occurs}\displaystyle\tilde{\mathfrak{J}}_{\vec{\mathbf{r}},\lessgtr}:=\{r\in\vec{\mathbf{r}}:s_{r}\lessgtr r\text{ where }\mathcal{K}^{(a)}_{n,C\delta|s_{r}-r|^{-2}}(s_{r},r)\text{ occurs}\}

and they satisfy the relation

|𝔍~𝐫,>|+i[N](sr~ir~i)+N=(1ω)K.\displaystyle|\tilde{\mathfrak{J}}_{\vec{\mathbf{r}},>}|+\sum_{i\in[N]}(s_{\tilde{r}_{i}}-\tilde{r}_{i})+N=(1-\omega)K. (3.15)

Before proceeding to the proof of Lemma 3.2 we first complete the proof of the upper bound. Owing to (3.2), (3.9), (3.12), (3.13) and (3.2) and Lemma 3.1, we obtain

(Qn(x)<0,x)\displaystyle\mathbb{P}\Big{(}Q_{n}(x)<0,x\in\mathbb{R}\Big{)} a{,+}((a)+𝔇(a))\displaystyle\leq\prod_{a\in\{-,+\}}(\mathfrak{C}^{(a)}+\mathfrak{D}^{(a)})

where

(a):\displaystyle\mathfrak{C}^{(a)}: =(1+h)K|𝐫:length(𝐫)K(13ω)|\displaystyle=(1+h)^{K}|\vec{\mathbf{r}}:\mathrm{length}(\vec{\mathbf{r}})\geq K(1-3\omega)|
×(maxb{+,}supt[1,M12κ]Y0,M(a)(b,t)<δ)2(13ω)K\displaystyle\times\mathds{P}\Big{(}\max_{b\in\{+,-\}}\sup_{t\in[1,M^{1-2\kappa}]}Y^{(a)}_{0,M}(b,t)<\delta\Big{)}^{2(1-3\omega)K}
𝔇(a):\displaystyle\mathfrak{D}^{(a)}: =2[C(1+h)]K\displaystyle=2[C(1+h)]^{K}
×a{+,}𝐫;|𝐫|ωK(supt[1,M12κ]Y0,M(a)(b,t)<δ)2|𝔍~𝐫,|Mc1i[N](sr~ir~i)+c2ωK\displaystyle\times\prod_{a\in\{+,-\}}\sum_{\vec{\mathbf{r}};|\vec{\mathbf{r}}|\geq\omega K}\mathds{P}\Big{(}\sup_{t\in[1,M^{1-2\kappa}]}Y_{0,M}^{(a)}(b,t)<\delta\Big{)}^{2|\tilde{\mathfrak{J}}_{\vec{\mathbf{r}},\lessgtr}|}M^{-c_{1}\sum_{i\in[N]}(s_{\tilde{r}_{i}}-\tilde{r}_{i})+c_{2}\omega K}

Taking logarithm on both sides and using the inequality log((a)+𝔇(a))log2(max{(a),𝔇(a)})\log(\mathfrak{C}^{(a)}+\mathfrak{D}^{(a)})\leq\log 2(\max\{\mathfrak{C}^{(a)},\mathfrak{D}^{(a)}\}) to bound the logarithm of the right hand sides of the above display yields,

log(Qn(x)<0,x)a{,+}(logmax{(a),𝔇(a)}+log2)\displaystyle\log\mathbb{P}(Q_{n}(x)<0,x\in\mathbb{R})\leq\sum_{a\in\{-,+\}}\Big{(}\log\max\Big{\{}\mathfrak{C}^{(a)},\mathfrak{D}^{(a)}\Big{\}}+\log 2\Big{)} (3.16)

Now we divide both sides of (3.16) by logn\log n. Notice that

lim¯n1nlog(a)\displaystyle\varlimsup_{n\to\infty}\frac{1}{n}\log\mathfrak{C}^{(a)} =lim¯nKlognlog(1+h)\displaystyle=\varlimsup_{n\to\infty}\frac{K}{\log n}\log(1+h) (3.17)
+lim¯n1lognlog|𝐫:length(𝐫)K(13ω)|\displaystyle+\varlimsup_{n\to\infty}\frac{1}{\log n}\log|\vec{\mathbf{r}}:\mathrm{length}(\vec{\mathbf{r}})\geq K(1-3\omega)| (3.18)
+lim¯n(13ω)Klognlog(maxb{+,}supt[1,M12κ]Y0,M(a)(b,t)<δ)\displaystyle+\varlimsup_{n\to\infty}\frac{(1-3\omega)K}{\log n}\log\mathds{P}\Big{(}\max_{b\in\{+,-\}}\sup_{t\in[1,M^{1-2\kappa}]}Y^{(a)}_{0,M}(b,t)<\delta\Big{)}

Since K/lognK/\log n is arbitrarily small when MM gets large and furthermore, |𝐫:length(𝐫)K(13ω)|2K|\vec{\mathbf{r}}:\mathrm{length}(\vec{\mathbf{r}})\geq K(1-3\omega)|\leq 2^{K}, we have

lim¯M\displaystyle\varlimsup_{M\to\infty} lim¯δ0lim¯κ0lim¯n1lognlog(a)\displaystyle\varlimsup_{\delta\to 0}\varlimsup_{\kappa\to 0}\varlimsup_{n\to\infty}\frac{1}{\log n}\log\mathfrak{C}^{(a)}
lim¯Mlim¯δ0lim¯κ0lim¯n(13ω)Klognlog(maxb{+,}supt[1,M12κ]Y0,M(a)(b,t)<δ)\displaystyle\leq\varlimsup_{M\to\infty}\varlimsup_{\delta\to 0}\varlimsup_{\kappa\to 0}\varlimsup_{n\to\infty}\frac{(1-3\omega)K}{\log n}\log\mathds{P}\Big{(}\max_{b\in\{+,-\}}\sup_{t\in[1,M^{1-2\kappa}]}Y^{(a)}_{0,M}(b,t)<\delta\Big{)}
(13ω)lim¯M1logMlog(maxb{+,}supt[1,M]Y0,M(a)(b,t)<0)\displaystyle\leq(1-3\omega)\varlimsup_{M\to\infty}\frac{1}{\log M}\log\mathds{P}\Big{(}\max_{b\in\{+,-\}}\sup_{t\in[1,M]}Y^{(a)}_{0,M}(b,t)<0\Big{)}
(13ω){lim¯M2logMlog(supt[1,M]Ylogt(α)<0) if a=lim¯M2logMlog(supt[1,M]Ylogt(0)<0)) if a=+\displaystyle\leq(1-3\omega)\begin{cases}\varlimsup_{M\to\infty}\frac{2}{\log M}\log\mathds{P}\Big{(}\sup_{t\in[1,M]}Y^{(\alpha)}_{\log t}<0\Big{)}&\text{ if }a=-\\ \varlimsup_{M\to\infty}\frac{2}{\log M}\log\mathds{P}\Big{(}\sup_{t\in[1,M]}Y^{(0)}_{\log t}<0\Big{)}\Big{)}&\text{ if }a=+\end{cases}
=(13ω){2bα if a=2b0 if a=+.\displaystyle=(1-3\omega)\begin{cases}2b_{\alpha}&\text{ if }a=-\\ 2b_{0}&\text{ if }a=+\end{cases}.

The second to the last inequality follows since {Y0,M(a)(+,t):t}\{Y^{(a)}_{0,M}(+,t):t\in\mathbb{R}\} and {Y0,M(a)(,t):t}\{Y^{(a)}_{0,M}(-,t):t\in\mathbb{R}\} are independent Gaussian processes, and, furthermore, as we show below, the covariance functions of Y0,M(a)(,t)Y^{(a)}_{0,M}(-,t) and Y0,M(a)(+,t)Y^{(a)}_{0,M}(+,t) are bounded respectively by the covariance functions of t(α+1)/2Ylogt(α)t^{-(\alpha+1)/2}Y^{(\alpha)}_{\log t} and t1/2Ylogt(0)t^{-1/2}Y^{(0)}_{\log t}. Here, Yt(α)Y^{(\alpha)}_{t} and Yt(0)Y^{(0)}_{t} are the centered Gaussian processes same as in Theorem 1.1. To see this, recall from Definition 3.3 that

Cov(Y0,M(a)(b,t1),Y0,M(a)(b,t2))=h0,M(a)(t1+t2)={h0,M,α if a=h0,M,0 if a=+\displaystyle\mathrm{Cov}(Y_{0,M}^{(a)}(b,t_{1}),Y_{0,M}^{(a)}(b,t_{2}))=h_{0,M}^{(a)}(t_{1}+t_{2})=\begin{cases}h_{0,M,\alpha}&\text{ if }a=-\\ h_{0,M,0}&\text{ if }a=+\end{cases}

where h0,M,α=Mδ1Mδxαext𝑑th_{0,M,\alpha}=\int^{M^{\delta}}_{M^{\delta-1}}x^{\alpha}e^{-xt}dt. As MM\to\infty, Cov(Y0,M(a)(,t1),Y0,M(a)(,t2))\mathrm{Cov}(Y_{0,M}^{(a)}(-,t_{1}),Y_{0,M}^{(a)}(-,t_{2})) increases up to (t1+t2)(α+1)(t_{1}+t_{2})^{-(\alpha+1)} which is equal to Cov(t1(α+1)/2Ylogt1(α),t2(α+1)/2Ylogt2(α))\mathrm{Cov}(t^{-(\alpha+1)/2}_{1}Y^{(\alpha)}_{\log t_{1}},t^{-(\alpha+1)/2}_{2}Y^{(\alpha)}_{\log t_{2}}). Similarly, Cov(Y0,M(a)(+,t1),Y0,M(a)(+,t2))\mathrm{Cov}(Y_{0,M}^{(a)}(+,t_{1}),Y_{0,M}^{(a)}(+,t_{2})) increases up to (t1+t2)(α+1)(t_{1}+t_{2})^{-(\alpha+1)} which is equal to the covariance function Cov(t11/2Ylogt1(0),t21/2Ylogt2(0))\mathrm{Cov}(t^{-1/2}_{1}Y^{(0)}_{\log t_{1}},t^{-1/2}_{2}Y^{(0)}_{\log t_{2}}). Due to this, the second to the last inequality follows by the Slepian’s inequality.

Since ω\omega is arbitrary, letting ω\omega to 0 yields the right hand side of the above display to be 2bα2b_{\alpha} when a=a=- and 2b02b_{0} when a=+a=+. On the other hand, we have

log𝔇(a)\displaystyle\log\mathfrak{D}^{(a)} 2KlogC+log|𝐫:|𝐫|ωK|\displaystyle\leq 2K\log C+\log|\vec{\mathbf{r}}:|\vec{\mathbf{r}}|\geq\omega K| (3.19)
+max𝐫:|𝐫|ωK\displaystyle+\max_{\vec{\mathbf{r}}:|\vec{\mathbf{r}}|\geq\omega K} log((supt[1,M12κ]Y0,M(a)(b,t)<δ)2|𝔍~𝐫,|Mc1i[N](sr~ir~i)+c2ωK)\displaystyle\log\Big{(}\mathds{P}\Big{(}\sup_{t\in[1,M^{1-2\kappa}]}Y_{0,M}^{(a)}(b,t)<\delta\Big{)}^{2|\tilde{\mathfrak{J}}_{\vec{\mathbf{r}},\lessgtr}|}M^{-c_{1}\sum_{i\in[N]}(s_{\tilde{r}_{i}}-\tilde{r}_{i})+c_{2}\omega K}\Big{)}

By using the same argument as in above (using Slepian’s lemma), we can bound the probability (supt[1,M12κ]Y0,M(a)(b,t)<0)2|𝔍~𝐫,|\mathds{P}(\sup_{t\in[1,M^{1-2\kappa}]}Y_{0,M}^{(a)}(b,t)<0)^{2|\tilde{\mathfrak{J}}_{\vec{\mathbf{r}},\lessgtr}|} by (supt[1,M12κ]Ylogt(α)<0)2|𝔍~𝐫,|\mathds{P}(\sup_{t\in[1,M^{1-2\kappa}]}Y^{(\alpha)}_{\log t}<0)^{{}^{2|\tilde{\mathfrak{J}}_{\vec{\mathbf{r}},\lessgtr}|}} when a=a=- and by (supt[1,M12κ]Ylogt(0)<0)2|𝔍~𝐫,|\mathds{P}(\sup_{t\in[1,M^{1-2\kappa}]}Y^{(0)}_{\log t}<0)^{{}^{2|\tilde{\mathfrak{J}}_{\vec{\mathbf{r}},\lessgtr}|}} when a=+a=+.

Following [PS99, Lemma 2.5] and [DM15], we know that

(supt[1,M12κ]Ylogt(0)<0)M(1δ)(1κ)/21,(supt[1,M12κ]Ylogt(α)<0)M(α+1δ)(1κ)/21\displaystyle\frac{\mathds{P}\big{(}\sup_{t\in[1,M^{1-2\kappa}]}Y^{(0)}_{\log t}<0\big{)}}{M^{-(1-\delta)(1-\kappa)/2}}\gtrsim 1,\qquad\frac{\mathds{P}\big{(}\sup_{t\in[1,M^{1-2\kappa}]}Y^{(\alpha)}_{\log t}<0\big{)}}{M^{-(\alpha+1-\delta)(1-\kappa)/2}}\gtrsim 1

for MM large and κ,δ>0\kappa,\delta>0 very small. On the other hand, both (supt[1,M12κ]Ylogt(0)<0)\mathds{P}\big{(}\sup_{t\in[1,M^{1-2\kappa}]}Y^{(0)}_{\log t}<0\big{)} and (supt[1,M12κ]Ylogt(α)<0)\mathds{P}\big{(}\sup_{t\in[1,M^{1-2\kappa}]}Y^{(\alpha)}_{\log t}<0\big{)} is upper bounded by Mβ(12κ)/2M^{-\beta(1-2\kappa)/2} for all M>0M>0 large and β,κ>0\beta,\kappa>0 small. Hence we get (first taking δ0\delta\to 0),

lim¯n\displaystyle\varlimsup_{n\to\infty} 1lognmax𝐫:|𝐫|ωKlog((supt[1,M12κ]Y0,M(a)(b,t)<δ)2|𝔍~𝐫,|Mc1i[N](sr~ir~i)+c2ωK)\displaystyle\frac{1}{\log n}\max_{\vec{\mathbf{r}}:|\vec{\mathbf{r}}|\geq\omega K}\log\Big{(}\mathds{P}\Big{(}\sup_{t\in[1,M^{1-2\kappa}]}Y_{0,M}^{(a)}(b,t)<\delta\Big{)}^{2|\tilde{\mathfrak{J}}_{\vec{\mathbf{r}},\lessgtr}|}M^{-c_{1}\sum_{i\in[N]}(s_{\tilde{r}_{i}}-\tilde{r}_{i})+c_{2}\omega K}\Big{)}
lim¯n\displaystyle\leq\varlimsup_{n\to\infty} 1lognmax𝐫:|𝐫|ωK{log((supt[1,M12κ]Ylogt(α)<0)ψ𝐫)a=log((supt[1,M12κ]Ylogt(0)<0)ψ𝐫)a=+\displaystyle\frac{1}{\log n}\max_{\vec{\mathbf{r}}:|\vec{\mathbf{r}}|\geq\omega K}\begin{cases}\log\Big{(}\mathbb{P}\Big{(}\sup_{t\in[1,M^{1-2\kappa}]}Y^{(\alpha)}_{\log t}<0\Big{)}^{\psi_{\vec{\mathbf{r}}}}\Big{)}&a=-\\ \log\Big{(}\mathbb{P}\Big{(}\sup_{t\in[1,M^{1-2\kappa}]}Y^{(0)}_{\log t}<0\Big{)}^{\psi_{\vec{\mathbf{r}}}}\Big{)}&a=+\end{cases}
\displaystyle\leq\qquad {2bαa=2b0a=+as M,κ,ω0\displaystyle\begin{cases}-2b_{\alpha}&a=-\\ -2b_{0}&a=+\end{cases}\quad\text{as }M\to\infty,\kappa,\omega\to 0

where ψ𝐫:=2(|𝔍~𝐫,|+112κ(i[N](sr~ir~i))c2β(12κ)ωK)\psi_{\vec{\mathbf{r}}}:=2(|\tilde{\mathfrak{J}}_{\vec{\mathbf{r}},\lessgtr}|+\frac{1}{1-2\kappa}(\sum_{i\in[N]}(s_{\tilde{r}_{i}}-\tilde{r}_{i}))-\frac{c_{2}}{\beta(1-2\kappa)}\omega K). The last inequality follows by combining (3.15) with also letting ω0\omega\to 0. Combining (3.16), (3.17) and (3.19) yields that

lim¯n1lognlog(Qn(x)<0,x)2(bα+b0).\varlimsup_{n\to\infty}\frac{1}{\log n}\log\mathbb{P}(Q_{n}(x)<0,x\in\mathbb{R})\leq-2(b_{\alpha}+b_{0}).

3.2.1 Proof of Lemma 3.2

We first state the following definition and a lemma, which we will use to verify Lemma 3.2. We defer the proof of the lemma to Section 3.2.2.

Definition 3.3.

Set for a{,+}a\in\{-,+\},

hn,r,M(a),(t):=i(a)R(n)eitτ, where τ:=τn(r,M)=1nδMrδ.h_{n,r,M}^{(a),\ell}(t):=\sum_{i\in\mathcal{I}_{\ell}^{(a)}}R(n)e^{it\tau},\text{ where }\tau:=\tau_{n}(r,M)=\frac{1}{n^{\delta}M^{r-\delta}}.

Also, for any integer ss\in\mathds{Z} and t0t\geq 0 set

hs,M,α(t):=Ms+δ1Ms+δxαext𝑑x.h_{s,M,\alpha}(t):=\int_{M^{s+\delta-1}}^{M^{s+\delta}}x^{\alpha}e^{-xt}dx.

Fixing a{,+},,r[K]a\in\{-,+\},\ell,r\in[K], define a process on {,+}×[1,M12δ]\{-,+\}\times[1,M^{1-2\delta}] by setting

Yn,r,M(a),(b,t):=Qn(a),(beatτ)σn(atτ).Y_{n,r,M}^{(a),\ell}(b,t):=\frac{Q_{n}^{(a),\ell}(be^{at\tau})}{\sigma_{n}(at\tau)}.

Also let {Ys,M(a)(b,.)}b{+,}\{Y_{s,M}^{(a)}(b,.)\}_{b\in\{+,-\}} be i.i.d. centered Gaussian processes, with

Corr(Ys,M(a)(b,t1),Ys,M(a)(b,t2))=hs,M(a)(t1+t2)hs,M(a)(2t1)hs,M(a)(2t2)\displaystyle Corr(Y_{s,M}^{(a)}(b,t_{1}),Y_{s,M}^{(a)}(b,t_{2}))=\frac{h_{s,M}^{(a)}(t_{1}+t_{2})}{\sqrt{h_{s,M}^{(a)}(2t_{1})h_{s,M}^{(a)}(2t_{2})}}

where

hs,M(a)(t):={hs,M,α(t) if a=1,hs,M,0(t) if a=0.\displaystyle h_{s,M}^{(a)}(t):=\begin{cases}h_{s,M,\alpha}(t)&\text{ if }a=-1,\\ h_{s,M,0}(t)&\text{ if }a=0.\end{cases}
Lemma 3.4.

For any a{+,}a\in\{+,-\} and (rn,n)[K](r_{n},\ell_{n})\in[K] with nrns\ell_{n}-r_{n}\to s\in\mathds{Z}, we have

{Yn,rn,M(a),n(b,t),b{,+},t[1,M12δ]}d{Ys,M(a)(b,t),b{,+},t[1,M12δ]}.\{Y_{n,r_{n},M}^{(a),\ell_{n}}(b,t),b\in\{-,+\},t\in[1,M^{1-2\delta]}\}\stackrel{{\scriptstyle d}}{{\to}}\{Y_{s,M}^{(a)}(b,t),b\in\{-,+\},t\in[1,M^{1-2\delta}]\}.

where the convergence is in the weak topology of 𝒞([1,M12δ]2)\mathcal{C}([1,M^{1-2\delta}]^{\otimes 2}).

Proof of Lemma 3.2.
  1. (a)

    Proof of (3.13)

    Recall the definition of the sets Ξn,r(a)(δ)\Xi^{(a)}_{n,r}(\delta) from (3.1). Using the independence of the sets {Ξn,r(a)(δ),rr}\{{\Xi}^{(a)}_{n,r}(\delta),r\in\vec{r}\} we have

    (r𝐫Ξn,r(a)(δ))=i=1|𝐫|(r𝐫Ξn,r(a)(δ)).\mathbb{P}\Big{(}\bigcap_{r\in\vec{\mathbf{r}}}{\Xi}^{(a)}_{n,r}(\delta)\Big{)}=\prod_{i=1}^{|\vec{\mathbf{r}}|}\mathbb{P}\Big{(}\bigcap_{r\in\vec{\mathbf{r}}}{\Xi}^{(a)}_{n,r}(\delta)\Big{)}.

    Lemma 3.4 implies that for any given a{,+}a\in\{-,+\},

    maxb{,+}supt[1,M12κ]Yn,r,M(a),r(b,t)dmaxb{,+}supt[1,M12κ]Y0,M(a)(b,t).\max_{b\in\{-,+\}}\sup_{t\in[1,M^{1-2\kappa}]}Y_{n,r,M}^{(a),r}(b,t)\stackrel{{\scriptstyle d}}{{\to}}\max_{b\in\{-,+\}}\sup_{t\in[1,M^{1-2\kappa}]}Y_{0,M}^{(a)}(b,t).

    As a result, given any h>0h>0 there exists n0n_{0} depending on (M,ω,h)(M,\omega,h), such that for all nn0n\geq n_{0}

    (Ξn,r(a)(δ))\displaystyle\mathbb{P}\Big{(}\Xi^{(a)}_{n,r}(\delta)\Big{)} =(maxb{,+}supt[1,M12κ]Yn,r,M(a),r(b,t)<δ)\displaystyle=\mathds{P}\Big{(}\max_{b\in\{-,+\}}\sup_{t\in[1,M^{1-2\kappa}]}Y_{n,r,M}^{(a),r}(b,t)<\delta\Big{)}
    (1+h)(maxb{+,}supt[1,M12κ]Y0,M(a)(b,t)<δ).\displaystyle\leq(1+h)\mathds{P}\Big{(}\max_{b\in\{+,-\}}\sup_{t\in[1,M^{1-2\kappa}]}Y_{0,M}^{(a)}(b,t)<\delta\Big{)}.

    Combining the last two displays, the desired conclusion follows.

  2. (b)

    Proof of (3.2)

    We prove the lemma for a=a=-, noting that the proof of a=+a=+ follows by a similar argument.

    For any set finite set AA, we denote the number of elements in AA by |A||A|. If the event {r𝔍𝐫Ξn,r(a)(δ)r𝐫𝒦n,δ(a)(r)}\Big{\{}\bigcap_{r\in\mathfrak{J}_{\vec{\mathbf{r}}}}{\Xi}^{(a)}_{n,r}(\delta)\cap\bigcap_{r\in\vec{\mathbf{r}}}\mathcal{K}^{(a)}_{n,\delta}(r)\Big{\}} occurs, for every r𝐫r\in\vec{\mathbf{r}} there exists sr[K]s_{r}\in[K] such that 𝒦n,δ(a)(sr,r)\mathcal{K}^{(a)}_{n,\delta}(s_{r},r) occurs. Also, since length(𝐫)ωK\mathrm{length}(\vec{\mathbf{r}})\geq\omega K, we either have |r𝐫:sr>r|ωK2|r\in\vec{\mathbf{r}}:s_{r}>r|\geq\frac{\omega K}{2} or |r𝐫:sr<r|ωK2|r\in\vec{\mathbf{r}}:s_{r}<r|\geq\frac{\omega K}{2}. Without loss of generality assume that we are in the first case. In this case we construct a subset ~𝐫,>\widetilde{\mathcal{L}}_{\vec{\mathbf{r}},>} of the set 𝐫,>:={r𝐫:sr>r}\mathcal{L}_{\vec{\mathbf{r}},>}:=\{r\in\vec{\mathbf{r}}:s_{r}>r\}, using the following algorithm which we call as ‘move, flush and repeat’:

    • Move: Pick the smallest element in the set 𝐫,>\mathcal{L}_{\vec{\mathbf{r}},>}, say rr, and put it in the subset ~𝐫,>\widetilde{\mathcal{L}}_{\vec{\mathbf{r}},>}. By definition of 𝐫,>\mathcal{L}_{\vec{\mathbf{r}},>} we have sr>rs_{r}>r.

    • Flush: Remove all elements of 𝐫,>\mathcal{L}_{\vec{\mathbf{r}},>} in the interval [r,sr][r,s_{r}].

    • Repeat: If 𝐫,>\mathcal{L}_{\vec{\mathbf{r}},>} is empty, stop and output the subset ~𝐫,>\widetilde{\mathcal{L}}_{\vec{\mathbf{r}},>}. If not, go back to step 1.

    With this construction, we have ~𝐫,>𝐫,>\widetilde{\mathcal{L}}_{\vec{\mathbf{r}},>}\subset{\mathcal{L}}_{\vec{\mathbf{r}},>}. Let N:=|~𝐫,>|N:=|\widetilde{\mathcal{L}}_{\vec{\mathbf{r}},>}|, and let {r~1,,r~N}\{\tilde{r}_{1},\ldots,\tilde{r}_{N}\} denote the elements of ~𝐫,>\widetilde{\mathcal{L}}_{\vec{\mathbf{r}},>}. Also, set 𝔎𝐫,>:={sr~i,1iN},\mathfrak{K}_{\vec{\mathbf{r}},>}:=\{s_{\tilde{r}_{i}},1\leq i\leq N\}, and note that the set 𝔎𝐫,>\mathfrak{K}_{\vec{\mathbf{r}},>} necessarily consists of distinct elements in [K][K]. Thus the number of choices for the set 𝔎𝐫,>\mathfrak{K}_{\vec{\mathbf{r}},>} is at most 2K2^{K}. Set

    𝔍~𝐫,>:=i=0N[sr~i+1,r~i+1],\displaystyle\tilde{\mathfrak{J}}_{\vec{\mathbf{r}},>}:=\bigcup_{i=0}^{N}[s_{\tilde{r}_{i}}+1,\tilde{r}_{i+1}], (3.20)

    where sr~0:=ωK/2s_{\tilde{r}_{0}}:=\omega K/2, and r~N+1:=(1ω/2)K\tilde{r}_{N+1}:=(1-\omega/2)K. Setting c1:=1+αδc_{1}:=1+\alpha-\delta and c2:=(α+3)δc_{2}:=(\alpha+3)\delta we have

    (r𝔍𝐫Ξn,r(a)(δ)r𝐫𝒦n,δ(a)(r))\displaystyle\mathds{P}\left(\bigcap_{r\in\mathfrak{J}_{\vec{\mathbf{r}}}}{\Xi}^{(a)}_{n,r}(\delta)\cap\bigcap_{r\in\vec{\mathbf{r}}}\mathcal{K}^{(a)}_{n,\delta}(r)\right)
    \displaystyle\leq 2𝔎𝐫,>(r𝔍𝐫,>Ξn,r(a)i=1N𝒦n,δ(a)(sr~i,r~i))\displaystyle 2\sum_{\mathfrak{K}_{\vec{\mathbf{r}},>}}\mathds{P}\left(\bigcap_{r\in{\mathfrak{J}}_{\vec{\mathbf{r}},>}}{\Xi}^{(a)}_{n,r}\cap\bigcap_{i=1}^{N}\mathcal{K}_{n,\delta}^{(a)}(s_{\tilde{r}_{i}},\tilde{r}_{i})\right)
    =\displaystyle= 2𝔎𝐫,>r𝔍𝐫,>(Ξn,r(a))i=1N(𝒦n,δ(a)(sr~i,r~i))\displaystyle 2\sum_{\mathfrak{K}_{\vec{\mathbf{r}},>}}\prod_{r\in{\mathfrak{J}}_{\vec{\mathbf{r}},>}}\mathds{P}({\Xi}^{(a)}_{n,r})\prod_{i=1}^{N}\mathds{P}(\mathcal{K}_{n,\delta}^{(a)}(s_{\tilde{r}_{i}},\tilde{r}_{i}))
    \displaystyle\leq 2[(1+h)C]|𝔍~𝐫,>|(supt[1,M12κ]YM,0(a)(b,t)<δ)2||𝔍~𝐫,>|\displaystyle 2[(1+h)C]^{|\tilde{\mathfrak{J}}_{\vec{\mathbf{r}},>}|}\mathds{P}(\sup_{t\in[1,M^{1-2\kappa}]}Y_{M,0}^{(a)}(b,t)<\delta)^{2||\tilde{\mathfrak{J}}_{\vec{\mathbf{r}},>}|}
    ×i[N]:sr~ir~iω11Mc1(sr~ir~i)+c2i[N]:sr~ir~i>ω11Mc1(sr~ir~i)c2\displaystyle\times\prod_{i\in[N]:s_{\tilde{r}_{i}}-\tilde{r}_{i}\leq\omega^{-1}}\frac{1}{M^{c_{1}(s_{\tilde{r}_{i}}-\tilde{r}_{i})+c_{2}}}\prod_{i\in[N]:s_{\tilde{r}_{i}}-\tilde{r}_{i}>\omega^{-1}}\frac{1}{M^{c_{1}(s_{\tilde{r}_{i}}-\tilde{r}_{i})-c_{2}}}

    The right hand side of the last inequality could be further written as

    2[(1+h)C]|𝔍~𝐫,>|(supt[1,M12κ]Y0,M(a)(b,t)<δ)2||𝔍~𝐫,>|\displaystyle 2[(1+h)C]^{|\tilde{\mathfrak{J}}_{\vec{\mathbf{r}},>}|}\mathds{P}(\sup_{t\in[1,M^{1-2\kappa}]}Y_{0,M}^{(a)}(b,t)<\delta)^{2||\tilde{\mathfrak{J}}_{\vec{\mathbf{r}},>}|}
    exp(logM[i[N]:sr~ir~iω1[c1(sr~ir~i)+c2]\displaystyle\exp\Big{(}-\log M\Big{[}\sum_{i\in[N]:s_{\tilde{r}_{i}}-\tilde{r}_{i}\leq\omega^{-1}}[c_{1}(s_{\tilde{r}_{i}}-\tilde{r}_{i})+c_{2}]
    +i[N]:sr~ir~i>ω1[c1(sr~ir~i)c2]]).\displaystyle+\sum_{i\in[N]:s_{\tilde{r}_{i}}-\tilde{r}_{i}>\omega^{-1}}[c_{1}(s_{\tilde{r}_{i}}-\tilde{r}_{i})-c_{2}]\Big{]}\Big{)}.

    The fits inequality in the above display follows from the union bound. The following equality holds true {Ξn,r(a)(δ):r𝔍𝐫}\{{\Xi}^{(a)}_{n,r}(\delta):r\in\mathfrak{J}_{\vec{\mathbf{r}}}\} and {𝒦n,δ(a)(sr~i,r~i):r𝔍𝐫}\{\mathcal{K}_{n,\delta}^{(a)}(s_{\tilde{r}_{i}},\tilde{r}_{i}):r\in\mathfrak{J}_{\vec{\mathbf{r}}}\} are mutually independent by the construction of set ~𝐫,>\widetilde{\mathcal{L}}_{\vec{\mathbf{r}},>}. The second inequality follows by noticing that

    (Ξn,r(a)(δ))(supt[1,M12κ]YM,0(a)(b,t)<δ)\mathds{P}(\Xi^{(a)}_{n,r}(\delta))\to\mathds{P}(\sup_{t\in[1,M^{1-2\kappa}]}Y_{M,0}^{(a)}(b,t)<\delta)

    as nn\to\infty. Here there exists n0n_{0}\in\mathbb{N} depending on (M,ω,h)(M,\omega,h) such that (Ξn,r(a)(δ))\mathds{P}(\Xi^{(a)}_{n,r}(\delta)) is less than (1+h)(supt[1,M12κ]YM,0(a)(b,t)<δ)(1+h)\mathds{P}(\sup_{t\in[1,M^{1-2\kappa}]}Y_{M,0}^{(a)}(b,t)<\delta) for all nn0n\geq n_{0}. Furthermore, (𝒦n,δ(a)(sr~i,r~i))\mathds{P}(\mathcal{K}_{n,\delta}^{(a)}(s_{\tilde{r}_{i}},\tilde{r}_{i})) are bounded by M(c1(sr~ir~i)+c2)M^{-(c_{1}(s_{\tilde{r}_{i}}-\tilde{r}_{i})+c_{2})} for sr~ir~iω1s_{\tilde{r}_{i}}-\tilde{r}_{i}\leq\omega^{-1} by Lemma 3.8 and bounded by M(c1(sr~ir~i)c2)M^{-(c_{1}(s_{\tilde{r}_{i}}-\tilde{r}_{i})-c_{2})} for sr~ir~iω1s_{\tilde{r}_{i}}-\tilde{r}_{i}\geq\omega^{-1} by Lemma 3.7. To bound the exponent in the RHS of ((b)), using sr~0=ωK/2s_{\tilde{r}_{0}}=\omega K/2, and r~N+1=(1ω/2)K\tilde{r}_{N+1}=(1-\omega/2)K we note

    |𝔍~𝐫,>|+i[N](sr~ir~i)+N=(1ω)K.\displaystyle|\tilde{\mathfrak{J}}_{\vec{\mathbf{r}},>}|+\sum_{i\in[N]}(s_{\tilde{r}_{i}}-\tilde{r}_{i})+N=(1-\omega)K. (3.21)

    As a result, we get

    i[N]:sr~ir~i>ω1(sr~ir~i)K, which implies |i[N]:sr~ir~i>ω1|ωK.\sum_{i\in[N]:s_{\tilde{r}_{i}}-\tilde{r}_{i}>\omega^{-1}}(s_{\tilde{r}_{i}}-\tilde{r}_{i})\leq K,\text{ which implies }\Big{|}i\in[N]:s_{\tilde{r}_{i}}-\tilde{r}_{i}>\omega^{-1}\Big{|}\leq\omega K.

    Combining the above two displays, the exponent of logM\log M in the second term in the RHS of ((b)) equals

    c1i[N](sr~ir~i)c2|i[N]:sr~ir~iω1|c2|i[N]:sr~ir~i>ω1|\displaystyle c_{1}\sum_{i\in[N]}(s_{\tilde{r}_{i}}-\tilde{r}_{i})-c_{2}\Big{|}i\in[N]:s_{\tilde{r}_{i}}-\tilde{r}_{i}\leq\omega^{-1}\Big{|}-c_{2}\Big{|}i\in[N]:s_{\tilde{r}_{i}}-\tilde{r}_{i}>\omega^{-1}\Big{|}
    =\displaystyle= c1i[N](sr~ir~i)+c2N2c2|i[N]:sr~ir~i>ω1|\displaystyle c_{1}\sum_{i\in[N]}(s_{\tilde{r}_{i}}-\tilde{r}_{i})+c_{2}N-2c_{2}\Big{|}i\in[N]:s_{\tilde{r}_{i}}-\tilde{r}_{i}>\omega^{-1}\Big{|}
    \displaystyle\geq c1i[N](sr~ir~i)2c2ωK.\displaystyle c_{1}\sum_{i\in[N]}(s_{\tilde{r}_{i}}-\tilde{r}_{i})-2c_{2}\omega K.

    Along with ((b)), this gives

    (r𝔍𝐫Ξn,r(a)(δ)r𝐫𝒦n,δ(a)(r))\displaystyle\mathds{P}\left(\bigcap_{r\in\mathfrak{J}_{\vec{\mathbf{r}}}}{\Xi}^{(a)}_{n,r}(\delta)\cap\bigcap_{r\in\vec{\mathbf{r}}}\mathcal{K}^{(a)}_{n,\delta}(r)\right)
    \displaystyle\leq 2[C(1+h)]|𝔍~𝐫,>|(supt[1,M12κ]Y0,M(a)(b,t)<δ)2||𝔍~𝐫,>|\displaystyle 2[C(1+h)]^{|\tilde{\mathfrak{J}}_{\vec{\mathbf{r}},>}|}\mathds{P}\Big{(}\sup_{t\in[1,M^{1-2\kappa}]}Y_{0,M}^{(a)}(b,t)<\delta\Big{)}^{2||\tilde{\mathfrak{J}}_{\vec{\mathbf{r}},>}|}
    ×Mc1i[N](sr~ir~i)+c2ωK,\displaystyle\times M^{-c_{1}\sum_{i\in[N]}(s_{\tilde{r}_{i}}-\tilde{r}_{i})+c_{2}\omega K},

    which completes the proof of part (ii).

3.2.2 Proof of Lemma 3.4

Before proceeding to the proof Lemma 3.4, we derive few facts about the process Yn,r,M(a),(b,t)Y^{(a),\ell}_{n,r,M}(b,t) (see Definition 3.3) in Lemma 3.5. We use these facts in our proof of Lemma 3.4. We first state Lemma 3.5 and use it prove Lemma 3.4 and thereafter, complete the proof of Lemma 3.5. In the proof of Lemma 3.4, one needs tightness of the processes Yn,r,M(a),(b,t)Y^{(a),\ell}_{n,r,M}(b,t) which we prove in Lemma 3.6.

Lemma 3.5.

Set for a{,+}a\in\{-,+\}. Recall hn,r,M(a),(t)h_{n,r,M}^{(a),\ell}(t), hs,M,α(t)h_{s,M,\alpha}(t) and τ=τn(r,M)\tau=\tau_{n}(r,M) from Definition 3.3.

  1. (1)

    Consider the case a=a=-.

    (i) For all nn large enough (depending on δ\delta and L(.)L(.)) we have

    M(|r|+1)δL(nδM)τα+1hn,r,M(t)hn,r,M(),(t)M(|r|+1)δL(nδM)τα+1hr,M,α(t).M^{-(|\ell-r|+1)\delta}\frac{L(n^{\delta}M^{\ell})}{\tau^{\alpha+1}}h_{n,r,M}(t)\lesssim h_{n,r,M}^{(-),\ell}(t)\lesssim M^{(|\ell-r|+1)\delta}\frac{L(n^{\delta}M^{\ell})}{\tau^{\alpha+1}}h_{\ell-r,M,\alpha}(t).

    (ii) For any positive integer κ\kappa we have

    limnmaxr,[K]:|r|κ|τα+1hn,r,M(),(t)L(nδMr)hr,M,α(t)1|=0.\displaystyle\lim_{n\to\infty}\max_{r,\ell\in[K]:|r-\ell|\leq\kappa}\left|\frac{\tau^{\alpha+1}h_{n,r,M}^{(-),\ell}(t)}{L(n^{\delta}M^{r})h_{\ell-r,M,\alpha}(t)}-1\right|=0. (3.22)

    (iii) If b1=b2b_{1}=b_{2}, for any positive integer κ\kappa and t1,t2[1,M12δ]t_{1},t_{2}\in[1,M^{1-2\delta}] we have

    limnmaxr,[K],|r|κ|Cov(Qn(),(b1eat1τ)σn(at1τ),Qn(),(b2eat2τ)σn(at2τ))Cs,M,α(t1,t2)1|=0,\lim_{n\to\infty}\max_{r,\ell\in[K],|r-\ell|\leq\kappa}\left|\frac{Cov\Big{(}\frac{Q_{n}^{(-),\ell}(b_{1}e^{at_{1}\tau})}{\sigma_{n}(at_{1}\tau)},\frac{Q_{n}^{(-),\ell}(b_{2}e^{at_{2}\tau})}{\sigma_{n}(at_{2}\tau)}\Big{)}}{C_{s,M,\alpha}(t_{1},t_{2})}-1\right|=0,

    where Cs,M,α(t1,t2):=hs,M,α(t1+t2)h0,M,α(2t1)h0,M,α(2t2)C_{s,M,\alpha}(t_{1},t_{2}):=\frac{h_{s,M,\alpha}(t_{1}+t_{2})}{\sqrt{h_{0,M,\alpha}(2t_{1})h_{0,M,\alpha}(2t_{2})}} for t1,t2[1,M12δ]t_{1},t_{2}\in[1,M^{1-2\delta}].

  2. (2)

    Consider the case a=+a=+.

    (i) For all nn large enough (depending on δ\delta and L(.)L(.)) we have

    hn,r,M(+),(t)R(n)entττhr,M,0(t).h_{n,r,M}^{(+),\ell}(t)\asymp\frac{R(n)e^{nt\tau}}{\tau}h_{\ell-r,M,0}(t).

    (ii) For any M>0M>0, t[1,M12δ]t\in[1,M^{1-2\delta}] and positive integer κ\kappa we have

    limnmaxr,[K]:|r|κ|τhn,r,M(+),(t)R(n)entτhr,M,0(t)1|=0.\lim_{n\to\infty}\max_{r,\ell\in[K]:|r-\ell|\leq\kappa}\left|\frac{\tau h_{n,r,M}^{(+),\ell}(t)}{R(n)e^{nt\tau}h_{\ell-r,M,0}(t)}-1\right|=0.

    (iii) If b1=b2b_{1}=b_{2}, for any positive integer κ\kappa and t1,t2[1,M12δ]t_{1},t_{2}\in[1,M^{1-2\delta}] we have

    limnmaxr,[K]:|r|κ|Cov(Qn(+),(b1eat1τ)σn(at1τ),Qn(+),(b2eat2τ)σn(at2τ))Cr,M,0(t1,t2)1|=0.\lim_{n\to\infty}\max_{r,\ell\in[K]:|r-\ell|\leq\kappa}\left|\frac{Cov\Big{(}\frac{Q_{n}^{(+),\ell}(b_{1}e^{at_{1}\tau})}{\sigma_{n}(at_{1}\tau)},\frac{Q_{n}^{(+),\ell}(b_{2}e^{at_{2}\tau})}{\sigma_{n}(at_{2}\tau)}\Big{)}}{C_{\ell-r,M,0}(t_{1},t_{2})}-1\right|=0.
  3. (3)

    If b1b2b_{1}\neq b_{2} then for any t1,t2[1,M12δ]t_{1},t_{2}\in[1,M^{1-2\delta}] and positive integer κ\kappa we have

    limnmaxr,[K]:|r|κ|Cov(Qn(a),(b1eat1τ)σn(at1τ),Qn(a),(b2eat2τ)σn(at2τ))|=0.\lim_{n\to\infty}\max_{r,\ell\in[K]:|r-\ell|\leq\kappa}\Big{|}Cov\Big{(}\frac{Q_{n}^{(a),\ell}(b_{1}e^{at_{1}\tau})}{\sigma_{n}(at_{1}\tau)},\frac{Q_{n}^{(a),\ell}(b_{2}e^{at_{2}\tau})}{\sigma_{n}(at_{2}\tau)}\Big{)}\Big{|}=0.
Proof of Lemma 3.4.

We show the desired convergence of the stochastic process by checking convergence of finite dimensional distributions and tightness.

Step 1 - Convergence of finite dimensional distributions: For showing convergence of finite dimensional distributions, we will show that for any real vector (t1,,tk)[1,M12δ]k(t_{1},\cdots,t_{k})\in[1,M^{1-2\delta}]^{k} we have

{Yn,rn,b,M(a),n(t1),,Yn,rn,b,M(a),n(tk),b{+,}}D{Ys,b,M(a)(t1),,Ys,b,M(a)(tk),b{+,}}.\{Y_{n,r_{n},b,M}^{(a),\ell_{n}}(t_{1}),\cdots,{Y}_{n,r_{n},b,M}^{(a),\ell_{n}}(t_{k}),b\in\{+,-\}\}\stackrel{{\scriptstyle D}}{{\rightarrow}}\{Y_{s,b,M}^{(a)}(t_{1}),\cdots,Y_{s,b,M}^{(a)}(t_{k}),b\in\{+,-\}\}.

For this, fixing γ:=(γ1,b,,γk,b,b{+,})2k\gamma:=(\gamma_{1,b},\cdots,\gamma_{k,b},b\in\{+,-\})\in\mathds{R}^{2k} it suffices to show that

An(γ)\displaystyle A_{n}(\gamma) :=b{+,}d=1kγd,bYn,rn,b,M(a),n(td)\displaystyle:=\sum_{b\in\{+,-\}}\sum_{d=1}^{k}\gamma_{d,b}Y_{n,r_{n},b,M}^{(a),\ell_{n}}(t_{d})
DN(0,b{+,}d,d=1kγd,bγd,bCov(Ys,b,M(a)(td),Ys,b,M(a)(td))).\displaystyle\stackrel{{\scriptstyle D}}{{\rightarrow}}N\Big{(}0,\sum_{b\in\{+,-\}}\sum_{d,d^{\prime}=1}^{k}\gamma_{d,b}\gamma_{d^{\prime},b}Cov(Y_{s,b,M}^{(a)}(t_{d}),Y_{s,b,M}^{(a)}(t_{d^{\prime}}))\Big{)}.

To this effect, note that

An(γ)=\displaystyle A_{n}(\gamma)= b{+,}d=1kγd,bin(a)ξibieiatdτσn(atdτ(rn,M))\displaystyle\sum_{b\in\{+,-\}}\sum_{d=1}^{k}\gamma_{d,b}\sum_{i\in{\mathcal{I}}_{\ell_{n}}^{(a)}}\frac{\xi_{i}b^{i}e^{iat_{d}\tau}}{\sigma_{n}(at_{d}\tau(r_{n},M))}
=\displaystyle= in(a)ξi[b{+,}d=1kγd,bbieiatdτn(rn,M)σn(atdτn(rn,M))]\displaystyle\sum_{i\in{\mathcal{I}}_{\ell_{n}}^{(a)}}\xi_{i}\left[\sum_{b\in\{+,-\}}\sum_{d=1}^{k}\gamma_{d,b}\frac{b^{i}e^{iat_{d}\tau_{n}(r_{n},M)}}{\sigma_{n}(at_{d}\tau_{n}(r_{n},M))}\right]
=\displaystyle= in(a)ξiVn(i),Vn(i):=[b{+,}d=1kγd,bbieiatdτn(rn,M)σn(atdτn(rn,M))]\displaystyle\sum_{i\in{\mathcal{I}}_{\ell_{n}}^{(a)}}\xi_{i}V_{n}(i),\quad V_{n}(i):=\left[\sum_{b\in\{+,-\}}\sum_{d=1}^{k}\gamma_{d,b}\frac{b^{i}e^{iat_{d}\tau_{n}(r_{n},M)}}{\sigma_{n}(at_{d}\tau_{n}(r_{n},M))}\right]

is a sum of independent components with mean 0. To verify the convergence in distribution of An(γ)A_{n}(\gamma) we will use the Lindeberg Feller CLT. Since

Var(An(γ))=\displaystyle Var(A_{n}(\gamma))= b,b{+,}d,d=1kγd,bγd,bCov(Qn(a),rn(betdτ)σn(atdτn(rn,M)),Qn(a),r(betdτn(rn,M))σn(atdτ)),\displaystyle\sum_{b,b^{\prime}\in\{+,-\}}\sum_{d,d^{\prime}=1}^{k}\gamma_{d,b}\gamma_{d^{\prime},b^{\prime}}Cov\Big{(}\frac{Q_{n}^{(a),r_{n}}(be^{t_{d}\tau})}{\sigma_{n}(at_{d}\tau_{n}(r_{n},M))},\frac{Q_{n}^{(a),r}(b^{\prime}e^{t_{d^{\prime}}\tau_{n}(r_{n},M)})}{\sigma_{n}(at_{d^{\prime}}\tau)}\Big{)},

on taking nn\to\infty and using parts (a), (b), (c) of Lemma 3.5 we get

limnVar(An(γ))=b{+,}d,d=1kγd,bγd,bCov(Ys,b,M(a)(td),Ys,b,M(a)(td)).\displaystyle\lim_{n\rightarrow\infty}Var(A_{n}(\gamma))=\sum_{b\in\{+,-\}}\sum_{d,d^{\prime}=1}^{k}\gamma_{d,b}\gamma_{d^{\prime},b}Cov\Big{(}Y^{(a)}_{s,b,M}(t_{d}),Y^{(a)}_{s,b,M}(t_{d^{\prime}})\Big{)}. (3.23)

To complete the proof, it suffices to verify the Lindeberg Feller condition, which in this case is equivalent to verifying that for every ψ>0\psi>0 we have

limnin(a)R(i)Vn(i)2𝔼ξi~21{|ξ~i|R(i)Vn(i)>ψ}=0,\displaystyle\lim_{n\rightarrow\infty}\sum_{i\in{\mathcal{I}}_{\ell_{n}}^{(a)}}R(i)V_{n}(i)^{2}\mathds{E}\tilde{\xi_{i}}^{2}1\{|\tilde{\xi}_{i}|\sqrt{R(i)}V_{n}(i)>\psi\}=0,

where ξ~i:=ξiR(i)\tilde{\xi}_{i}:=\frac{\xi_{i}}{\sqrt{R(i)}} has mean 0 and variance 11. We now claim that

ψn:=maxin(a)|Vn(i)|R(i)0.\displaystyle\psi_{n}:=\max_{i\in{\mathcal{I}}_{\ell_{n}}^{(a)}}|V_{n}(i)|\sqrt{R(i)}\rightarrow 0. (3.24)

Before proceeding to the proof of (3.24), let us show how this this claim proves the Lindeberg Feller condition. Notice that

in(a)\displaystyle\sum_{i\in{\mathcal{I}}_{\ell_{n}}^{(a)}} Vn(i)2R(i)𝔼ξ~i21{|ξ~iVn(i)R(i)|>ψ}\displaystyle V_{n}(i)^{2}R(i)\mathds{E}\tilde{\xi}_{i}^{2}1\{|\tilde{\xi}_{i}V_{n}(i)\sqrt{R(i)}|>\psi\}
(maxin(a)𝔼ξi~21{|ξ~i|>ψψn})(in(a)Vn(i)2R(i)).\displaystyle\leq\Big{(}\max_{i\in{\mathcal{I}}_{\ell_{n}}^{(a)}}\mathds{E}\tilde{\xi_{i}}^{2}1\Big{\{}|\tilde{\xi}_{i}|>\frac{\psi}{\psi_{n}}\Big{\}}\Big{)}\Big{(}\sum_{i\in{\mathcal{I}}_{\ell_{n}}^{(a)}}V_{n}(i)^{2}R(i)\Big{)}.

By our assumption, {ξ~i2}i0\{\tilde{\xi}^{2}_{i}\}_{i\geq 0} are uniformly integrable which implies that

maxin(a)𝔼ξi~21{|ξ~i|>ψψn}0\max_{i\in{\mathcal{I}}_{\ell_{n}}^{(a)}}\mathds{E}\tilde{\xi_{i}}^{2}1\Big{\{}|\tilde{\xi}_{i}|>\frac{\psi}{\psi_{n}}\Big{\}}\to 0

as nn\to\infty. To show the Lindeberg Feller condition holds, it suffices now to prove that in(a)Vn(i)2R(i)\sum_{i\in{\mathcal{I}}_{\ell_{n}}^{(a)}}V_{n}(i)^{2}R(i) has a finite limit as nn\to\infty. Notice that (a), (b), (c) of Lemma 3.5 implies Var(An(γ))=in(a)Vn(i)2R(i)\mathrm{Var}(A_{n}(\gamma))=\sum_{i\in{\mathcal{I}}_{\ell_{n}}^{(a)}}V_{n}(i)^{2}R(i) converges to a finite limit. This proves the Lindeberg-Feller condition. It remains to show (3.24).

For verifying (3.24), we split the proof into two cases, depending on the value of aa. If a=a=-, using the regular variation of R(.)R(.) along with part (b) of Lemma 3.5, for any in()i\in{\mathcal{I}}_{\ell_{n}}^{(-)} we have

|Vn(i)R(i)|\displaystyle|V_{n}(i)\sqrt{R(i)}|\lesssim τn(rn,M)α+12iα2L(i)L(1/τ)d=1keiτtdτn(rn,M)1/2,\displaystyle\tau_{n}(r_{n},M)^{\frac{\alpha+1}{2}}i^{\frac{\alpha}{2}}\sqrt{\frac{L(i)}{L(1/\tau)}}\sum_{d=1}^{k}e^{-i\tau t_{d}}\lesssim\tau_{n}(r_{n},M)^{1/2},

where we use the fact that iτn(rn,M)1i\tau_{n}(r_{n},M)\asymp 1. Similarly, if a=+a=+, using the regular variation of R(.)R(.) along with part (c) of Lemma 3.5, for any in(+)i\in{\mathcal{I}}_{\ell_{n}}^{(+)} we have

|Vn(i)R(i)|\displaystyle|V_{n}(i)\sqrt{R(i)}|\lesssim τn(rn,M)1/2R(i)R(n)d=1ke(in)τn(rn,M)tdτn(rn,M)1/2.\displaystyle\tau_{n}(r_{n},M)^{1/2}\sqrt{\frac{R(i)}{R(n)}}\sum_{d=1}^{k}e^{(i-n)\tau_{n}(r_{n},M)t_{d}}\lesssim\tau_{n}(r_{n},M)^{1/2}.

Since τn(rn,M)nδ\tau_{n}(r_{n},M)\leq n^{-\delta}, on combining the above two displays (3.24) follows.

Step 2 - Tightness: Proceeding to show tightness in 𝒞[0,M12δ]2\mathcal{C}[0,M^{1-2\delta}]^{\otimes 2} we will invoke the Kolmogorov-Chentsov criterion, for which it suffices to show that for any t1,t2t_{1},t_{2} in this interval we have

𝔼[Yn,rn,b,M(a),n(t1)Yn,rn,b,M(a),n(t2]2M(t1t2)2.\mathds{E}[Y_{n,r_{n},b,M}^{(a),\ell_{n}}(t_{1})-Y_{n,r_{n},b,M}^{(a),\ell_{n}}(t_{2}]^{2}\lesssim_{M}(t_{1}-t_{2})^{2}.

But this follows from Lemma 3.6 for any n,rn\ell_{n},r_{n}.

Proof of Lemma 3.5.

To begin, for any t1,t2[1,M12δ]t_{1},t_{2}\in[1,M^{1-2\delta}], we have

Cov(Qn(a),(b1eat1τ)σn(at1τ),Qn(a),(b2eat2τ)σn(at2τ))=\displaystyle Cov\Big{(}\frac{Q_{n}^{(a),\ell}(b_{1}e^{at_{1}\tau})}{\sigma_{n}(at_{1}\tau)},\frac{Q_{n}^{(a),\ell}(b_{2}e^{at_{2}\tau})}{\sigma_{n}(at_{2}\tau)}\Big{)}= i(a)R(i)(b1b2)ieia(t1+t2)τir(a)R(i)e2iat1τir(a)R(i)e2iat2τ\displaystyle\frac{\sum_{i\in\mathcal{I}_{\ell}^{(a)}}R(i)(b_{1}b_{2})^{i}e^{ia(t_{1}+t_{2})\tau}}{\sqrt{\sum_{i\in\mathcal{I}_{r}^{(a)}}R(i)e^{2iat_{1}\tau}}\sqrt{\sum_{i\in\mathcal{I}_{r}^{(a)}}R(i)e^{2iat_{2}\tau}}}
=i(a)R(i)(b1b2)ieia(t1+t2)τi(a)R(i)eia(t1+t2)τ\displaystyle=\frac{\sum_{i\in\mathcal{I}_{\ell}^{(a)}}R(i)(b_{1}b_{2})^{i}e^{ia(t_{1}+t_{2})\tau}}{\sum_{i\in\mathcal{I}_{\ell}^{(a)}}R(i)e^{ia(t_{1}+t_{2})\tau}} hn,r,M(a),(t1+t2)hn,M,r,α(a),r(2t1)hn,M,r,α(a),r(2t2).\displaystyle\frac{h_{n,r,M}^{(a),\ell}(t_{1}+t_{2})}{\sqrt{h_{n,M,r,\alpha}^{(a),r}(2t_{1})h_{n,M,r,\alpha}^{(a),r}(2t_{2})}}. (3.25)

Now we proceed to prove the claim made in the parts (1), (2), (3) of Lemma 3.5.

  1. (1)

    We start by recalling that

    ()=[nδM1,nδM)[nδM1,nδM),τ=1nδMrδ.\mathcal{I}_{\ell}^{(-)}=\mathbb{Z}\cap[n^{\delta}M^{\ell-1},n^{\delta}M^{\ell})\subset[n^{\delta}M^{\ell-1},n^{\delta}M^{\ell}),\qquad\tau=\frac{1}{n^{\delta}M^{r-\delta}}.

    Writing R(i)=L(i)iαR(i)=L(i)i^{\alpha} with L(.)L(.) slowly varying, fixing ε>0\varepsilon>0 for all nn large (depending on δ\delta, and the function L(.)L(.)) we have

    M(|r|+1)ωL(i)L(nδMr)M(|r|+1)ω,i().\displaystyle M^{-(|\ell-r|+1)\omega}\leq\frac{L(i)}{L(n^{\delta}M^{r})}\leq M^{(|\ell-r|+1)\omega},\quad\quad\forall i\in\mathcal{I}_{\ell}^{(-)}. (3.26)

    for some ω>0\omega>0 which is close to 0 as nn approaches to \infty. Also, noting that

    limnsupM1supt[1,M12δ]supx[i1,i+1]maxr,[K]maxi[nδM1,nδM)|xαextτiαeitτ1|=0\displaystyle\lim_{n\to\infty}\sup_{M\geq 1}\sup_{t\in[1,M^{1-2\delta}]}\sup_{x\in[i-1,i+1]}\max_{r,\ell\in[K]}\max_{i\in[n^{\delta}M^{\ell-1},n^{\delta}M^{\ell})}\Big{|}\frac{x^{\alpha}e^{-xt\tau}}{i^{\alpha}e^{-it\tau}}-1\Big{|}=0 (3.27)

    shows us

    limnsupM1supt[1,M12δ]maxr,[K]|i[nδM1,nδM)iαeitτnδM1nδMxαextτ𝑑x1|=0.\displaystyle\lim_{n\to\infty}\sup_{M\geq 1}\sup_{t\in[1,M^{1-2\delta}]}\max_{r,\ell\in[K]}\left|\frac{\sum_{i\in[n^{\delta}M^{\ell-1},n^{\delta}M^{\ell})}i^{\alpha}e^{-it\tau}}{\int_{n^{\delta}M^{\ell-1}}^{n^{\delta}M^{\ell}}x^{\alpha}e^{-xt\tau}dx}-1\right|=0. (3.28)

    Finally, a change of variable gives

    nδM1nδMxαextτ𝑑x=1τα+1Mr+δ1Mr+δxαext𝑑x=1τα+1hr,M,α(t).\displaystyle\int_{n^{\delta}M^{\ell-1}}^{n^{\delta}M^{\ell}}x^{\alpha}e^{-xt\tau}dx=\frac{1}{\tau^{\alpha+1}}\int_{M^{\ell-r+\delta-1}}^{M^{\ell-r+\delta}}x^{\alpha}e^{-xt}dx=\frac{1}{\tau_{\alpha+1}}h_{\ell-r,M,\alpha}(t). (3.29)

    Combining (3.26), (3.28) and (3.29), we get that for all nn large (depending only on ε,δ\varepsilon,\delta and L(.)L(.)) , any M1,t[1,M12δ],r,[K]M\geq 1,t\in[1,M^{1-2\delta}],r,\ell\in[K] we have

    (1ε)M(|r|+1)ωτα+1hn,r,M(),(t)L(nδMr)hr,M,α(t)(1+ε)M(|r|+1)ω.\displaystyle(1-\varepsilon)M^{-(|\ell-r|+1)\omega}\leq\frac{\tau^{\alpha+1}h_{n,r,M}^{(-),\ell}(t)}{L(n^{\delta}M^{r})h_{\ell-r,M,\alpha}(t)}\leq(1+\varepsilon)M^{(|\ell-r|+1)\omega}.

    The conclusion of part (i) now follows from the above inequalities since ω\omega approaches to 0 as nn goes to \infty.

    The conclusion of part (ii) follows on noting that |r|κ|r-\ell|\leq\kappa stays bounded, and MM stays fixed. The conclusion of part (iii) follows on noting that if b1=b2b_{1}=b_{2} the first term in the RHS of (3.2.2) equals 1, and taking ratios using part (ii).

  2. (2)

    Recall that

    r(+)=(nnδM,nnδM1](nn1δ,nnδ],\mathcal{I}_{r}^{(+)}=\mathbb{Z}\cap(n-n^{\delta}M^{\ell},n-n^{\delta}M^{\ell-1}]\subset(n-n^{1-\delta},n-n^{\delta}],

    and use the fact that R(.)R(.) is regularly varying to conclude that

    limnmaxr,[K]maxi(nnδM,nnδM1]|R(i)R(n)1|=0.\displaystyle\lim_{n\to\infty}\max_{r,\ell\in[K]}\max_{i\in(n-n^{\delta}M^{\ell},n-n^{\delta}M^{\ell-1}]}\Big{|}\frac{R(i)}{R(n)}-1\Big{|}=0. (3.30)

    Also, note that

    i(nnδM,nnδM1]eitτ=entτi[nδM1,nδM)eitτ.\displaystyle\sum_{i\in(n-n^{\delta}M^{\ell},n-n^{\delta}M^{\ell-1}]}e^{it\tau}=e^{nt\tau}\sum_{i\in[n^{\delta}M^{\ell-1},n^{\delta}M^{\ell})}e^{-it\tau}. (3.31)

    Combining (3.30), (3.31), and (3.28) with α=0\alpha=0, for all nn large (depending only on ε,δ\varepsilon,\delta and L(.)L(.)), any M1,t[1,M12δ],r,[K]M\geq 1,t\in[1,M^{1-2\delta}],r,\ell\in[K] we have

    (1ε)τhn,r,M(+),(t)R(n)entτhr,M,α(t)(1+ε).\displaystyle(1-\varepsilon)\leq\frac{\tau h_{n,r,M}^{(+),\ell}(t)}{R(n)e^{nt\tau}h_{\ell-r,M,\alpha}(t)}\leq(1+\varepsilon).

    As before, all the three conclusions (i), (ii) and (iii) follow from the above display.

  3. (3)

    If b1b2b_{1}\neq b_{2}, the first term in the RHS of (3.2.2) converges to 0, on using the fact that

    limnmax[K]maxi(a)|R(i)R(i1)1|=0.\lim_{n\to\infty}\max_{\ell\in[K]}\max_{i\in\mathcal{I}_{\ell}^{(a)}}\Big{|}\frac{R(i)}{R(i-1)}-1\Big{|}=0.

    The desired conclusion follows, on noting that the second term converges to a finite number as nn\to\infty, on invoking parts (a) and (b).

The next two lemmas aims to show the tightness (Lemma 3.6) and the tail probabilities (Lemma 3.7) of the processes Yn,r,M(a),n(b,t)Y^{(a),\ell_{n}}_{n,r,M}(b,t) for a,b{+,}a,b\in\{+,-\}. The latter is shown using Proposition 3.9 which derives a maximal inequality of a stochastic process based on the pointwise bound on the second moments of the stochastic process. Finally the tail probabilities of Yn,r,M(a),n(b,t)Y^{(a),\ell_{n}}_{n,r,M}(b,t) are used to derive bounds (𝒦n,δ()(,r))\mathds{P}(\mathcal{K}_{n,\delta}^{(-)}(\ell,r)) (recall the definitions of 𝒦n,δ()(,r)\mathcal{K}_{n,\delta}^{(-)}(\ell,r) from (3.1)) in Lemma 3.8, a crucial input needed to complete of the proof of the upper bound in Theorem 1.1.

Lemma 3.6.

Setting Yn,r,b,M(a),n(t)=Qn(a),(beatτ)σn(atτ){Y}_{n,r,b,M}^{(a),\ell_{n}}(t)=\frac{Q_{n}^{(a),\ell}(be^{at\tau})}{\sigma_{n}(at\tau)} for t[1,M12δ]t\in[1,M^{1-2\delta}], for all n,Mn,M large enough (depending only on δ\delta) we have the following bounds:

𝔼[Yn,r,b,M(),(t1)Yn,r,b,M(),(t2)]2\displaystyle\mathds{E}\Big{[}{Y}_{n,r,b,M}^{(-),\ell}(t_{1})-{Y}_{n,r,b,M}^{(-),\ell}(t_{2})\Big{]}^{2}\lesssim M|r|(α+13δ)+(α+3)δ(t1t2)2,\displaystyle M^{-|\ell-r|(\alpha+1-3\delta)+(\alpha+3)\delta}(t_{1}-t_{2})^{2},
𝔼[Yn,r,b,M(+),(t1)Yn,r,b,M(+),(t2)]2\displaystyle\mathds{E}\Big{[}{Y}_{n,r,b,M}^{(+),\ell}(t_{1})-{Y}_{n,r,b,M}^{(+),\ell}(t_{2})\Big{]}^{2}\lesssim M(δ|r|)(t1t2)2.\displaystyle M^{(\delta-|\ell-r|)}(t_{1}-t_{2})^{2}.
Proof of Lemma 3.6.

Recalling that σn2(atτ)=jr(a)R(j)e2jatτ\sigma_{n}^{2}(at\tau)=\sum_{j\in\mathcal{I}_{r}^{(a)}}R(j)e^{2jat\tau}, a direct computation gives

𝔼[Yn,r,b,M(a),(t1)Yn,r,b,M(a),(t2)]2\displaystyle\mathds{E}\Big{[}{Y}_{n,r,b,M}^{(a),\ell}(t_{1})-{Y}_{n,r,b,M}^{(a),\ell}(t_{2})\Big{]}^{2}
=\displaystyle= i(a)R(i)[eiat1τσn(at1τ)eiat2τσn(at2τ)]2\displaystyle\sum_{i\in\mathcal{I}_{\ell}^{(a)}}R(i)\Big{[}\frac{e^{iat_{1}\tau}}{\sigma_{n}(at_{1}\tau)}-\frac{e^{iat_{2}\tau}}{\sigma_{n}(at_{2}\tau)}\Big{]}^{2}
=\displaystyle= (t1t2)2i(a)[σn(aζτ)iaτeiaζτeiaζτaτ2jr(a)jR(j)e2jaζτ2σn(aζτ)σn(aζτ)2]2\displaystyle(t_{1}-t_{2})^{2}\sum_{i\in\mathcal{I}_{\ell}^{(a)}}\left[\frac{\sigma_{n}(a\zeta\tau)ia\tau e^{ia\zeta\tau}-e^{ia\zeta\tau}a\tau\frac{2\sum_{j\in\mathcal{I}_{r}^{(a)}}jR(j)e^{2ja\zeta\tau}}{2\sigma_{n}(a\zeta\tau)}}{\sigma_{n}(a\zeta\tau)^{2}}\right]^{2}
=\displaystyle= (t1t2)2τ2σn(aζτ)2i(a)R(i)e2iaτζ[ijr(a)R(j)je2jaτζσn(aζτ)2]2.\displaystyle\frac{(t_{1}-t_{2})^{2}\tau^{2}}{\sigma_{n}(a\zeta\tau)^{2}}\sum_{i\in\mathcal{I}_{\ell}^{(a)}}R(i)e^{2ia\tau\zeta}\left[i-\frac{\sum_{j\in\mathcal{I}_{r}^{(a)}}R(j)je^{2ja\tau\zeta}}{\sigma_{n}(a\zeta\tau)^{2}}\right]^{2}. (3.32)

where in the second equality we have used the mean value theorem. Note that ζ(t1,t2)\zeta\in(t_{1},t_{2}). We now analyze the right hand side of (3.2.2) by splitting the argument depending on whether a=a=- or a=+a=+.

Case: a=a=- In this case Lemma 3.5 part (1)(i) shows that for all nn large enough (depending on L(.)L(.) and δ\delta),

jr()R(j)je2jτζ\displaystyle\sum_{j\in\mathcal{I}_{r}^{(-)}}R(j)je^{-2j\tau\zeta} M(|r|+1)δL(nδMr)τα+2h0,M,α+1()(2ζ),\displaystyle\lesssim M^{(|\ell-r|+1)\delta}\frac{L(n^{\delta}M^{r})}{\tau^{\alpha+2}}h_{0,M,\alpha+1}^{(-)}(2\zeta),
σn2(ζτ)\displaystyle\sigma_{n}^{2}(-\zeta\tau) MδL(nδMr)τα+1h0,M,α()(2ζ),\displaystyle\gtrsim M^{-\delta}\frac{L(n^{\delta}M^{r})}{\tau^{\alpha+1}}h_{0,M,\alpha}^{(-)}(2\zeta),

which on taking ratio gives

jr()R(j)je2jτζσn2(aτζ)M(|r|+2)δτh0,M,α+1()(2ζ)h0,M,α()(2ζ)αM(|r|+2)δτζ,\displaystyle\frac{\sum_{j\in\mathcal{I}_{r}^{(-)}}R(j)je^{-2j\tau\zeta}}{\sigma_{n}^{2}(a\tau\zeta)}\lesssim\frac{M^{(|\ell-r|+2)\delta}}{\tau}\frac{h_{0,M,\alpha+1}^{(-)}(2\zeta)}{h_{0,M,\alpha}^{(-)}(2\zeta)}\lesssim_{\alpha}\frac{M^{(|\ell-r|+2)\delta}}{\tau\zeta},

where the last inequality uses the estimate

h0,M,k(2ζ)=Mδ1Mδe2xζxk𝑑xk1ζk+1\displaystyle{h_{0,M,k}(2\zeta)}=\int_{M^{\delta-1}}^{M^{\delta}}e^{-2x\zeta}x^{k}dx\asymp_{k}\frac{1}{\zeta^{k+1}} (3.33)

for ζ[1,M12δ],M1\zeta\in[1,M^{1-2\delta}],M\geq 1, for any k>1k>-1, for the particular choices k=α,α+1k=\alpha,\alpha+1. Along with (3.2.2), this gives

𝔼[Yn,r,b,M(),(t1)Yn,r,b,M(),(t2)]2(t1t2)2\displaystyle\frac{\mathds{E}\Big{[}{Y}_{n,r,b,M}^{(-),\ell}(t_{1})-{Y}_{n,r,b,M}^{(-),\ell}(t_{2})\Big{]}^{2}}{(t_{1}-t_{2})^{2}}
\displaystyle\lesssim τα+3L(nδMr)h0,M,α()(2ζ)i()R(i)e2iτζ[i+M(|r|+2)δτζ]2\displaystyle\frac{\tau^{\alpha+3}}{L(n^{\delta}M^{r})h_{0,M,\alpha}^{(-)}(2\zeta)}\sum_{i\in\mathcal{I}_{\ell}^{(-)}}R(i)e^{-2i\tau\zeta}\Big{[}i+\frac{M^{(|\ell-r|+2)\delta}}{\tau\zeta}\Big{]}^{2}
\displaystyle\lesssim L(nδMr)τα+3M|r|δL(nδMr)h0,M,α()(2ζ)[hr,M,α+2(2ζ)τα+3+M(|r|+2)2δhr,M,α+2(2ζ)τα+3ζ2]\displaystyle\frac{L(n^{\delta}M^{r})\tau^{\alpha+3}M^{|\ell-r|\delta}}{L(n^{\delta}M^{r})h_{0,M,\alpha}^{(-)}(2\zeta)}\Big{[}\frac{h_{\ell-r,M,\alpha+2}(2\zeta)}{\tau^{\alpha+3}}+\frac{M^{(|\ell-r|+2)2\delta}h_{\ell-r,M,\alpha+2}(2\zeta)}{\tau^{\alpha+3}\zeta^{2}}\Big{]}
\displaystyle\lesssim M2|r|δh0,M,α()(2ζ)[hr,M,α+2(2ζ)+M(|r|+2)2δhr,M,α+2(2ζ)]\displaystyle\frac{M^{2|\ell-r|\delta}}{h_{0,M,\alpha}^{(-)}(2\zeta)}\Big{[}h_{\ell-r,M,\alpha+2}(2\zeta)+M^{(|\ell-r|+2)2\delta}h_{\ell-r,M,\alpha+2}(2\zeta)\Big{]}
\displaystyle\lesssim M2|r|δζα+1[hr,M,α+2(2ζ)+M(|r|+2)2δhr,M,α+2(2ζ)].\displaystyle M^{2|\ell-r|\delta}\zeta^{\alpha+1}\Big{[}h_{\ell-r,M,\alpha+2}(2\zeta)+M^{(|\ell-r|+2)2\delta}h_{\ell-r,M,\alpha+2}(2\zeta)\Big{]}. (3.34)

We obtained the second inequality by using Using Lemma 3.5 part (a)(i), the third inequality by using (3.26), and ζ1\zeta\geq 1 and the last inequality by (3.33).

We now consider 22 cases, depending on the relative values of (,r)(\ell,r).

Sub-case: r\ell\leq r A change of variable gives that for any k>1k>-1 we have

hr,M,k(2ζ)0Mr+δxk𝑑xkM(r+δ)(k+1).\displaystyle h_{\ell-r,M,k}(2\zeta)\leq\int_{0}^{M^{\ell-r+\delta}}x^{k}dx\lesssim_{k}M^{(\ell-r+\delta)(k+1)}. (3.35)

Combining (3.33) and (3.35) with k=α,α+2k=\alpha,\alpha+2, and using the bound ζM12δ\zeta\leq M^{1-2\delta} the RHS of (3.2.2) can be bounded by

M2(r)δ+(12δ)(α+1)[M(r+δ)(α+3)+M(r+2)2δM(r+δ)(α+1)]\displaystyle M^{2(r-\ell)\delta+(1-2\delta)(\alpha+1)}[M^{(\ell-r+\delta)(\alpha+3)}+M^{(r-\ell+2)2\delta}M^{(\ell-r+\delta)(\alpha+1)}]
\displaystyle\lesssim M2(r)δ+(r+2)δ+(r+δ)(α+1)=M(r)(α+13δ)+(α+3)δ.\displaystyle M^{2(r-\ell)\delta+(r-\ell+2)\delta+(\ell-r+\delta)(\alpha+1)}=M^{(\ell-r)(\alpha+1-3\delta)+(\alpha+3)\delta}.

and so the conclusion of the lemma holds in this case.

Sub-case: >r\ell>r To this effect, for any k>1k>-1 we have

hr,M,k(2ζ)kMr+δ1exζ𝑑xeMr+δ11M(k+1)(rδ),\displaystyle h_{\ell-r,M,k}(2\zeta)\lesssim_{k}\int_{M^{\ell-r+\delta-1}}^{\infty}e^{-x\zeta}dx\leq e^{-M^{\ell-r+\delta-1}}\leq\frac{1}{M^{(k+1)(\ell-r-\delta)}}, (3.36)

where the last inequality holds for all MM large enough (depending only on k,δk,\delta). Combining (3.33) and (3.36) with k=α,α+2k=\alpha,\alpha+2, the RHS of (3.2.2) can be bounded by

M2(r)δ+(12δ)(α+1)\displaystyle M^{2(\ell-r)\delta+(1-2\delta)(\alpha+1)} [M(α+3)(r+δ)+M(r+2)2δ+(r+δ)(α+1)]\displaystyle[M^{(\alpha+3)(r-\ell+\delta)}+M^{(r-\ell+2)2\delta+(r-\ell+\delta)(\alpha+1)}]
M(r)(α+13δ)+(α+3)δ,\displaystyle\lesssim M^{(r-\ell)(\alpha+1-3\delta)+(\alpha+3)\delta},

and so again the conclusion of the lemma holds in this case.

Case: a=+a=+ As before, we need to bound the RHS of (3.2.2). Note that

jr(+)R(j)je2jτζσn(aζτ)2=jr()R(nj)(nj)e2jτζjr()R(nj)e2jτζ=njr()R(nj)je2jτζjr()R(nj)e2jτζ,\displaystyle\frac{\sum_{j\in\mathcal{I}_{r}^{(+)}}R(j)je^{2j\tau\zeta}}{\sigma_{n}(a\zeta\tau)^{2}}=\frac{\sum_{j\in\mathcal{I}_{r}^{(-)}}R(n-j)(n-j)e^{-2j\tau\zeta}}{\sum_{j\in\mathcal{I}_{r}^{(-)}}R(n-j)e^{-2j\tau\zeta}}=n-\frac{\sum_{j\in\mathcal{I}_{r}^{(-)}}R(n-j)je^{-2j\tau\zeta}}{\sum_{j\in\mathcal{I}_{r}^{(-)}}R(n-j)e^{-2j\tau\zeta}},

which gives the following bound to the RHS of (3.2.2) (without the factor (t1t2)2(t_{1}-t_{2})^{2}):

τ2σn(ζτ)2i(+)R(i)e2iτζ[ijr(a)R(j)je2jτζσn(ζτ)2]2\displaystyle\frac{\tau^{2}}{\sigma_{n}(\zeta\tau)^{2}}\sum_{i\in\mathcal{I}_{\ell}^{(+)}}R(i)e^{2i\tau\zeta}\left[i-\frac{\sum_{j\in\mathcal{I}_{r}^{(a)}}R(j)je^{2j\tau\zeta}}{\sigma_{n}(\zeta\tau)^{2}}\right]^{2}
=\displaystyle= τ2σn(ζτ)2i(+)R(i)e2iτζ[nijr()R(nj)je2jτζjr()R(nj)e2jτζ]2\displaystyle\frac{\tau^{2}}{\sigma_{n}(\zeta\tau)^{2}}\sum_{i\in\mathcal{I}_{\ell}^{(+)}}R(i)e^{2i\tau\zeta}\left[n-i-\frac{\sum_{j\in\mathcal{I}_{r}^{(-)}}R(n-j)je^{-2j\tau\zeta}}{\sum_{j\in\mathcal{I}_{r}^{(-)}}R(n-j)e^{-2j\tau\zeta}}\right]^{2}
=\displaystyle= τ2e2nτζσn(ζτ)2i()R(ni)e2iτζ[ijr()R(nj)je2jτζjr()R(nj)e2jτζ]2\displaystyle\frac{\tau^{2}e^{2n\tau\zeta}}{\sigma_{n}(\zeta\tau)^{2}}\sum_{i\in\mathcal{I}_{\ell}^{(-)}}R(n-i)e^{-2i\tau\zeta}\left[i-\frac{\sum_{j\in\mathcal{I}_{r}^{(-)}}R(n-j)je^{-2j\tau\zeta}}{\sum_{j\in\mathcal{I}_{r}^{(-)}}R(n-j)e^{-2j\tau\zeta}}\right]^{2}
\displaystyle\lesssim τ2e2nτζR(n)σn(ζτ)2i()e2iτζ[i+jr()je2jτζjr()e2jτζ]2 [Using regular variation of R(.)].\displaystyle\frac{\tau^{2}e^{2n\tau\zeta}R(n)}{\sigma_{n}(\zeta\tau)^{2}}\sum_{i\in\mathcal{I}_{\ell}^{(-)}}e^{-2i\tau\zeta}\left[i+\frac{\sum_{j\in\mathcal{I}_{r}^{(-)}}je^{-2j\tau\zeta}}{\sum_{j\in\mathcal{I}_{r}^{(-)}}e^{-2j\tau\zeta}}\right]^{2}{\footnotesize\text{ [Using regular variation of }R(.)]}. (3.37)

Using Lemma 3.5 part (b)(i) along with (3.33) gives

σn(ζτ)2=jr(+)R(j)e2jζτR(n)e2nζττh0,M,0(2ζ)R(n)e2nζτζτ.\displaystyle\sigma_{n}(\zeta\tau)^{2}=\sum_{j\in\mathcal{I}_{r}^{(+)}}R(j)e^{2j\zeta\tau}\asymp\frac{R(n)e^{2n\zeta\tau}}{\tau}h_{0,M,0}(2\zeta)\asymp\frac{R(n)e^{2n\zeta\tau}}{\zeta\tau}. (3.38)

On the other hand, invoking (3.28) and (3.29) gives

jr()jke2jτζkh0,M,k(2ζ)τk+1k1(ζτ)k+1,\displaystyle\sum_{j\in\mathcal{I}_{r}^{(-)}}j^{k}e^{-2j\tau\zeta}\asymp_{k}\frac{h_{0,M,k}(2\zeta)}{\tau^{k+1}}\asymp_{k}\frac{1}{(\zeta\tau)^{k+1}}, (3.39)
j()jke2jτζkhr,M,k(2ζ)τk+1kM(k+1)(δ|r|)τk+1,\displaystyle\sum_{j\in\mathcal{I}_{\ell}^{(-)}}j^{k}e^{-2j\tau\zeta}\asymp_{k}\frac{h_{\ell-r,M,k}(2\zeta)}{\tau^{k+1}}\lesssim_{k}\frac{M^{(k+1)(\delta-|\ell-r|)}}{\tau^{k+1}}, (3.40)

where the last estimate of the second inequality uses (3.35) and (3.36). Using (3.38) and (3.39) with k=0,1k=0,1 the RHS of (3.2.2) can be bounded by

ζτ3ie2iτζ[i+1ζτ]2ζ[M3(δ|r|)+Mδ|r|ζ2]Mδ|r|.\displaystyle\zeta\tau^{3}\sum_{i\in\mathcal{I}_{\ell}^{-}}e^{-2i\tau\zeta}\Big{[}i+\frac{1}{\zeta\tau}\Big{]}^{2}\lesssim\zeta\Big{[}M^{3(\delta-|\ell-r|)}+\frac{M^{\delta-|\ell-r|}}{\zeta^{2}}\Big{]}\lesssim M^{\delta-|\ell-r|}.

This completes the proof of the lemma. ∎

Lemma 3.7.

For any ,r[K]\ell,r\in[K] and b{,+}b\in\{-,+\} we have the following bounds:

  1. (i)

    If a=a=-, then

    (supt[1,M12δ]Yn,r,M(),(b,t)>δ)\displaystyle\mathds{P}\Big{(}\sup_{t\in[1,M^{1-2\delta}]}Y_{n,r,M}^{(-),\ell}(b,t)>\delta\Big{)}\lesssim M|r|(1+αδ)+(α+3)δ,\displaystyle M^{-|\ell-r|(1+\alpha-\delta)+(\alpha+3)\delta},
    𝔼supt[1,M12δ]|Yn,r,M(),(b,t)|\displaystyle\mathds{E}\sup_{t\in[1,M^{1-2\delta}]}|Y_{n,r,M}^{(-),\ell}(b,t)|\lesssim M|r|(1+αδ)+(α+3)δ.\displaystyle M^{-|\ell-r|(1+\alpha-\delta)+(\alpha+3)\delta}.
  2. (ii)

    If a=+a=+, then

    (supt[1,M12δ]Yn,r,M(),(b,t)>δ)\displaystyle\mathds{P}\Big{(}\sup_{t\in[1,M^{1-2\delta}]}Y_{n,r,M}^{(-),\ell}(b,t)>\delta\Big{)}\lesssim M|r|+δ,\displaystyle M^{-|\ell-r|+\delta},
    𝔼supt[1,M12δ]|Yn,r,M(),(b,t)|\displaystyle\mathds{E}\sup_{t\in[1,M^{1-2\delta}]}|Y_{n,r,M}^{(-),\ell}(b,t)|\lesssim M|r|+δ.\displaystyle M^{-|\ell-r|+\delta}.
Proof.

To prove this lemma we will use Proposition 3.9 for the choices [T1,T2]=[1,M12δ][T_{1},T_{2}]=[1,M^{1-2\delta}],and W(.):=Yn,r,M(),(b,.).W(.):=Y_{n,r,M}^{(-),\ell}(b,.). We split the proof into two cases, depending on the value of aa.

  1. (i)

    a=a=-

    In this case we have

    𝔼Yn,r,M(),(b,1)2=hn,r,M(),(2)hn,r,M(),r(2)\displaystyle\mathds{E}Y_{n,r,M}^{(-),\ell}(b,1)^{2}=\frac{h^{(-),\ell}_{n,r,M}(2)}{h^{(-),r}_{n,r,M}(2)} M(|r|+2)δhr,M,α(2)h0,M,α(2)\displaystyle\lesssim M^{(|\ell-r|+2)\delta}\frac{h_{\ell-r,M,\alpha}(2)}{h_{0,M,\alpha}(2)}
    M(|r|+2)δM(|r|+δ)(1+α)\displaystyle\lesssim M^{(|\ell-r|+2)\delta}M^{(-|\ell-r|+\delta)(1+\alpha)}
    =M|r|(1+αδ)+(α+3)δ,\displaystyle=M^{-|\ell-r|(1+\alpha-\delta)+(\alpha+3)\delta},

    where the inequality in the first line uses Lemma 3.5 part (a)(i) and in the second line uses (3.33) for the denominator, and (3.35) and (3.36) for the numerator. Thus we can take γ1=CM|r|(1+αδ)+(α+3)δ,\gamma_{1}=CM^{-|\ell-r|(1+\alpha-\delta)+(\alpha+3)\delta},, where C>0C>0 is a universal constant. Proceeding to estimate γ2\gamma_{2} of Proposition 3.9, using Lemma 3.6 we can take γ2=CM|r|(α+13δ)+(α+3)δ\gamma_{2}=CM^{-|\ell-r|(\alpha+1-3\delta)+(\alpha+3)\delta}. Invoking Proposition 3.9 the desired conclusions follow.

  2. (ii)

    a=+a=+

    In this case we have

    𝔼Yn,r,M(+),(b,1)2=hn,r,M(+),(2)hn,r,M(+),r(2)\displaystyle\mathds{E}Y_{n,r,M}^{(+),\ell}(b,1)^{2}=\frac{h^{(+),\ell}_{n,r,M}(2)}{h^{(+),r}_{n,r,M}(2)}\asymp hr,M,α(2)h0,M,α(2) [ Using Lemma 3.5 part (b)(i)]\displaystyle\frac{h_{\ell-r,M,\alpha}(2)}{h_{0,M,\alpha}(2)}\text{ [ Using Lemma \ref{lem:weak*} part (b)(i)]}
    \displaystyle\lesssim M(|r|+δ),\displaystyle M^{(-|\ell-r|+\delta)},

    where the inequality in the second line uses (3.33) for the denominator, and (3.35) and (3.36) for the numerator. Thus we can take γ1=CM|r|+δ,\gamma_{1}=CM^{-|\ell-r|+\delta},, where C>0C>0 is a universal constant. Using Lemma 3.6 we can take γ2=CMδ|r|\gamma_{2}=CM^{\delta-|\ell-r|}. Invoking Proposition 3.9 the desired conclusions follow as before.

Lemma 3.8.

For any h(0,1)h\in(0,1) and L>0L>0 , for all nn0(M,δ,h,L,α)n\geq n_{0}(M,\delta,h,L,\alpha) and MM0(δ,L,α)M\geq M_{0}(\delta,L,\alpha) we have

  1. 1.

    when |r|s|\ell-r|\leq s for some fixed integer ss,

    (𝒦n,δ()(,r))M(α+13δ)|r|(α+3)δ,\displaystyle\mathds{P}(\mathcal{K}_{n,\delta}^{(-)}(\ell,r))\leq M^{-(\alpha+1-3\delta)|\ell-r|-(\alpha+3)\delta},
    (𝒦n,δ(+)(,r))M|r|δ.\displaystyle\mathds{P}(\mathcal{K}_{n,\delta}^{(+)}(\ell,r))\leq M^{-|\ell-r|-\delta}.
  2. 2.

    for ,r\ell,r such that |r|>s|\ell-r|>s,

    (𝒦n,δ()(,r))M(α+13δ)|r|+(α+3)δ,\displaystyle\mathds{P}(\mathcal{K}_{n,\delta}^{(-)}(\ell,r))\leq M^{-(\alpha+1-3\delta)|\ell-r|+(\alpha+3)\delta},
    (𝒦n,δ(+)(,r))M|r|+δ.\displaystyle\mathds{P}(\mathcal{K}_{n,\delta}^{(+)}(\ell,r))\leq M^{-|\ell-r|+\delta}.
Proof of Lemma 3.8.

Use (3.1) and definition 3.3 to note that

Ξn,r(a)(δ)=\displaystyle{\Xi}_{n,r}^{(a)}(\delta)= {maxb{+,}supu𝒥r(a)Qn(a),r(beu)σn(u)<δ}={maxb{+,}supt[1,M12δ]Yn,r,M(a),r(b,t)<δ},\displaystyle\Big{\{}\max_{b\in\{+,-\}}\sup_{u\in\mathcal{J}_{r}^{(a)}}\frac{Q_{n}^{(a),r}(be^{u})}{\sigma_{n}(u)}<\delta\Big{\}}=\Big{\{}\max_{b\in\{+,-\}}\sup_{t\in[1,M^{1-2\delta}]}Y_{n,r,M}^{(a),r}(b,t)<\delta\Big{\}},
𝒦n,δ(a)(,r)=\displaystyle\mathcal{K}_{n,\delta}^{(a)}(\ell,r)= {minb{+,}infu𝒥r(a)Qn(a),(beu)σn(u)<δ}={minb{+,}inft[1,M12δ]Yn,r,M(a),(b,t)<δ}.\displaystyle\Big{\{}\min_{b\in\{+,-\}}\inf_{u\in\mathcal{J}^{(a)}_{r}}\frac{Q^{(a),\ell}_{n}(be^{u})}{\sigma_{n}(u)}<-\delta\Big{\}}=\Big{\{}\min_{b\in\{+,-\}}\inf_{t\in[1,M^{1-2\delta}]}Y_{n,r,M}^{(a),\ell}(b,t)<-\delta\Big{\}}.

where τ(n,M)=1nδMrδ\tau(n,M)=\frac{1}{n^{\delta}M^{r-\delta}} as in Lemma 3.5.

Using Lemma 3.4, we get that whenever nrns\ell_{n}-r_{n}\to s, we have

{minb{+,}inft[1,M12δ]Yn,r,M(a),(b,t)<δ}d{minb{+,}inft[1,M12δ]Ys,M(a)(b,t)<δ}.\displaystyle\Big{\{}\min_{b\in\{+,-\}}\inf_{t\in[1,M^{1-2\delta}]}Y_{n,r,M}^{(a),\ell}(b,t)<-\delta\Big{\}}\stackrel{{\scriptstyle d}}{{\to}}\Big{\{}\min_{b\in\{+,-\}}\inf_{t\in[1,M^{1-2\delta}]}Y_{s,M}^{(a)}(b,t)<-\delta\Big{\}}. (3.41)

We show how the conclusions in (1) follows from the above convergence. Lemma 3.7 shows that inft[1,M12δ]Yn,r,M(a),(b,t)\inf_{t\in[1,M^{1-2\delta}]}Y_{n,r,M}^{(a),\ell}(b,t) are uniformly tight. Furthermore, for any t[1,M1δ]t\in[1,M^{1-\delta}] and ss\in\mathbb{Z}, we have Var(Ys,M(a)(b,t))=s+δ1s+δxαetx𝑑x\mathrm{Var}\big{(}Y_{s,M}^{(a)}(b,t)\big{)}=\int^{s+\delta}_{s+\delta-1}x^{\alpha}e^{-tx}dx. Recall that α>0\alpha>0 for a=a=- and α=0\alpha=0 if a=+a=+. In the case when s0s\neq 0, we get the following bound

Var(Ys,M(a)(b,t)){M(α+13δ)|s|3δeMs+1δs1,M(α+1)seMsδs1.\displaystyle\mathrm{Var}\big{(}Y_{s,M}^{(a)}(b,t)\big{)}\leq\begin{cases}M^{-(\alpha+1-3\delta)|s|-3\delta}e^{-M^{s+1-\delta}}&s\leq-1,\\ M^{(\alpha+1)s}e^{-M^{s-\delta}}&s\geq 1.\end{cases}

Without loss of generality, one can bound the right hand side of the above equation by M(α+13δ)|s|3δeMs+1δM^{-(\alpha+1-3\delta)|s|-3\delta}e^{-M^{s+1-\delta}}. By the maximal inequality of Gaussian processes, the probability (inft[1,M12δ]Ys,M(a)(b,t)<δ)\mathbb{P}\big{(}\inf_{t\in[1,M^{1-2\delta}]}Y_{s,M}^{(a)}(b,t)<-\delta\big{)} could now be bounded by M(α+13δ)|s|3δM^{-(\alpha+1-3\delta)|s|-3\delta}. The conclusion in (1) now follows from this bound and the weak convergence in the display (3.41).

To establish conclusion (2), it suffices to show that for any s[L,L]s\in[-L,L] there exists M0M_{0}, such that for all M>M0M>M_{0} we have

(inft[1,M12δ]Ys,M(a)(b,t)<δ){M(α+13δ)|s|+(α+3)δa=M|s|+δa=+.\displaystyle\mathds{P}\big{(}\inf_{t\in[1,M^{1-2\delta}]}Y_{s,M}^{(a)}(b,t)<-\delta\big{)}\leq\begin{cases}M^{-(\alpha+1-3\delta)|s|+(\alpha+3)\delta}&a=-\\ M^{-|s|+\delta}&a=+\end{cases}. (3.42)

To this effect, we use Lemma 3.7 to get the appropriate γ>0\gamma>0 (depending on α\alpha), such that

𝔼supt[1,M12δ]|Ys,M(a)(b,t)|Mγ.\mathds{E}\sup_{t\in[1,M^{1-2\delta}]}|Y_{s,M}^{(a)}(b,t)|\lesssim M^{-\gamma}.

The desired conclusion then follows by an application of Borel-TIS inequality ([AT09, Chapter 2]) for all MM large enough, depending on (α,δ,L)(\alpha,\delta,L). ∎

Proposition 3.9.

Suppose {W(t)}t[T1,T2]\{W(t)\}_{t\in[T_{1},T_{2}]} be a continuous time stochastic process with mean 0 and continuous sample paths, such that for some constants γ1,γ2\gamma_{1},\gamma_{2} positive and β>1\beta>1 we have

𝔼W(T1)2γ1,𝔼(W(t)W(s))2γ2(st)β.\mathds{E}W(T_{1})^{2}\leq\gamma_{1},\quad\mathds{E}(W(t)-W(s))^{2}\leq\gamma_{2}(s-t)^{\beta}.

Then there exists a constant KK depending only on β\beta such that the following hold:

(supt[T1,T2]|W(t)|>δ)K(γ1+γ2)δ2,𝔼supt[T1,T2]|W(t)|K(γ1+γ2).\mathds{P}\left(\sup_{t\in[T_{1},T_{2}]}|W(t)|>\delta\right)\leq\frac{K(\gamma_{1}+\gamma_{2})}{\delta^{2}},\quad\mathds{E}\sup_{t\in[T_{1},T_{2}]}|W(t)|\leq K(\gamma_{1}+\gamma_{2}).
Proof.

Since the second conclusion follows from the first one, it suffices to verify the first conclusion. To this effect, for every q1q\geq 1, partition the interval [T1,T2][T_{1},T_{2}] into dyadic rationals of the form ij:=T1+(T2T1)j2ji_{j}:=T_{1}+(T_{2}-T_{1})\frac{j}{2^{j}} for 0j2q0\leq j\leq 2^{q}. Then continuity of sample paths gives

supt[T1,T2]|W(t)||W(T1)|+q=1max1j2q|W(ij)W(ij1)|\sup_{t\in[T_{1},T_{2}]}|W(t)|\leq|W(T_{1})|+\sum_{q=1}^{\infty}\max_{1\leq j\leq 2^{q}}|W(i_{j})-W(i_{j-1})|

and so

(supt[T1,T2]|W(t)|>δ)\displaystyle\mathds{P}\Big{(}\sup_{t\in[T_{1},T_{2}]}|W(t)|>\delta\Big{)}\leq (|W(T1)|>δ2)+q=1j=12q(|W(ij)W(ij)|>cδq2).\displaystyle\mathds{P}\Big{(}|W(T_{1})|>\frac{\delta}{2}\Big{)}+\sum_{q=1}^{\infty}\sum_{j=1}^{2^{q}}\mathds{P}\Big{(}|W(i_{j})-W(i_{j})|>\frac{c\delta}{q^{2}}\Big{)}.

where c>0c>0 is chosen such that cq=11q2=12c\sum_{q=1}^{\infty}\frac{1}{q^{2}}=\frac{1}{2}. The desired conclusion then follows by an application of Chebyshev’s inequality, on noting that

(|W(ij)W(ij)|>cδq2)γ2q4c2δ22qβ.\mathds{P}\Big{(}|W(i_{j})-W(i_{j})|>\frac{c\delta}{q^{2}}\Big{)}\leq\frac{\gamma_{2}q^{4}}{c^{2}\delta^{2}2^{q\beta}}.

3.3 Proof of Lemma 3.1

Recall that

𝒦n,δ(a)(ext,r)={minb{+,}infu𝒥r(a)Qn(a),ext(beu)σn(u)<δ}.\displaystyle\mathcal{K}^{(a)}_{n,\delta}(\mathrm{ext},r)=\Big{\{}\min_{b\in\{+,-\}}\inf_{u\in\mathcal{J}^{(a)}_{r}}\frac{Q_{n}^{(a),\mathrm{ext}}(be^{u})}{\sigma_{n}(u)}<-\delta\Big{\}}.

where Qn(a,ext)(x):=iext(a)aixiQ_{n}^{(a,\mathrm{ext})}(x):=\sum_{i\in\mathcal{I}^{(a)}_{\mathrm{ext}}}a_{i}x^{i}. To bound (𝒦n,δ(a)(ext,r))\mathds{P}(\mathcal{K}^{(a)}_{n,\delta}(\mathrm{ext},r)) uniformly for ωKr(1ω)K\omega K\leq r\leq(1-\omega)K, notice that {infu𝒥r(a)Qn(a),ext(beu)σn(u)}\{\inf_{u\in\mathcal{J}^{(a)}_{r}}\frac{Q_{n}^{(a),\mathrm{ext}}(be^{u})}{\sigma_{n}(u)}\} behaves very similarly as {infu𝒥r(a)Qn(a),(beatτ)σn(atτ)δ}\{\inf_{u\in\mathcal{J}^{(a)}_{r}}\frac{Q_{n}^{(a),\ell}(be^{at\tau})}{\sigma_{n}(at\tau)}\leq-\delta\} for the case when r>ωK\ell-r>\omega K. By computing the variance, we get

Var(Qn(a),(beatτ)σn(atτ))M(α+1)seMrδ for r1.\displaystyle\mathrm{Var}\Big{(}\frac{Q_{n}^{(a),\ell}(be^{at\tau})}{\sigma_{n}(at\tau)}\Big{)}\leq M^{(\alpha+1)s}e^{-M^{\ell-r-\delta}}\qquad\text{ for }\ell-r\geq 1.

Plugging rωK\ell-r\geq\omega K and using the variance bound to first bound the probability of (Qn(a),ext(beu)σn(u)<δ)\mathds{P}(\frac{Q_{n}^{(a),\mathrm{ext}}(be^{u})}{\sigma_{n}(u)}<-\delta) and then, to bound (𝒦n,δ(a)(ext,r))\mathds{P}(\mathcal{K}^{(a)}_{n,\delta}(\mathrm{ext},r)) using Borel-TIS [AT09] proves the result.

4 Lower Bound

4.1 Fixation of Notations

Before proceeding to the proof, we introduce few notations. To begin, fix positive reals M,M~,hM,\tilde{M},h. Define the sets

A0:=[Kn,Kn],A+1:=(Kn,\displaystyle A_{0}:=\Big{[}-\frac{K}{n},\frac{K}{n}\Big{]},\quad A_{+1}:=\Big{(}\frac{K}{n}, hlogn],A+2:=(hlogn,),\displaystyle\frac{h}{\log n}\Big{]},\quad A_{+2}:=\Big{(}\frac{h}{\log n},\infty\Big{)},
A1:=A1,\displaystyle\quad A_{-1}:=-A_{1}, A2:=A2\displaystyle\quad A_{-2}:=-A_{2} (4.1)
B0:=(nD,nnD],B1:=(nnD,\displaystyle B_{0}:=\Big{(}\frac{n}{D},n-\frac{n}{D}\Big{]},\quad B_{1}:=\big{(}n-\frac{n}{D}, nLlogn],B2:=(nLlogn,n],\displaystyle n-L\log n\big{]},\quad B_{2}:=(n-L\log n,n],\quad
B1:=(Llogn,nD],\displaystyle B_{-1}:=\Big{(}L\log n,\frac{n}{D}\Big{]}, B2:=[0,Llogn],\displaystyle\quad B_{-2}:=[0,L\log n], (4.2)

and note that rAr=,rBr=[0,n]\cup_{r\in\mathcal{R}}A_{r}=\mathds{R},\cup_{r\in\mathcal{R}}B_{r}=[0,n] are disjoint partitions, where :={0,±1,±2}\mathcal{R}:=\{0,\pm 1,\pm 2\}. We intend to partition the interval B1B_{1} and B1B_{-1} into sub-intervals (blocks) of size MM. The choice of K,M,DK,M,D are made in a way such that KM,DK.K\gg M,D\gg K. For any rr\in\mathcal{R}, define

Qn(r)(x):=iBraixi.Q^{(r)}_{n}(x):=\sum_{i\in B_{r}\cap\mathbb{Z}}a_{i}x^{i}.

We now divide B1=(Llogn,nD]B_{-1}=(L\log n,\frac{n}{D}] and B1=(nnD,nLlogn]B_{1}=(n-\frac{n}{D},n-L\log n] into Tn:=lognhKlogMT_{n}:=\lceil\frac{\log\frac{nh}{K}}{\log M}\rceil many sub-intervals. Define the sets {1rTn()}\{\mathcal{I}^{(-)}_{1\leq r\leq T_{n}}\} by setting

~r()=[LMr1logn,LMrlogn),1rTn\displaystyle\tilde{\mathcal{I}}^{(-)}_{r}=\mathbb{Z}\cap[LM^{r-1}\log n,LM^{r}\log n),\quad 1\leq r\leq T_{n} (4.3)

and note that

B1r=1TnI~r().B_{-1}\subset\cup^{T_{n}}_{r=1}\tilde{I}^{(-)}_{r}.

Similarly, define the sets {~r(+)}1rTn\{\tilde{\mathcal{I}}^{(+)}_{r}\}_{1\leq r\leq T_{n}} where

~r(+)=(nLMrlogn,nLMr1logn],1rTn,\displaystyle\tilde{\mathcal{I}}^{(+)}_{r}=\mathbb{Z}\cap(n-LM^{r}\log n,n-LM^{r-1}\log n],\quad 1\leq r\leq T_{n}, (4.4)

and note that

B+1r=1Tn~r().B_{+1}\subset\cup^{T_{n}}_{r=1}\tilde{\mathcal{I}}^{(-)}_{r}.

For 1pTn1\leq p\leq T_{n}, define

Q~n(1),p(x):=i~r()aixi,Q~n(+1),p(x):=i~r(+)aixi for 1pTn,\tilde{Q}_{n}^{(-1),p}(x):=\sum_{i\in\tilde{\mathcal{I}}^{(-)}_{r}}a_{i}x^{i},\quad\tilde{Q}_{n}^{(+1),p}(x):=\sum_{i\in\tilde{\mathcal{I}}^{(+)}_{r}}a_{i}x^{i}\quad\text{ for }\quad 1\leq p\leq T_{n}, (4.5)

Define the positive weight function σn(u)\sigma_{n}(u) as

σn2(u):={nα+1L(n)e2nu if uA0enuL(n)u if uA1A2|u|α1L(1/|u|) if uA1A2.\displaystyle\sigma_{n}^{2}(u):=\begin{cases}n^{\alpha+1}L(n)e^{2nu}&\text{ if }u\in A_{0}\\ \frac{e^{nu}L(n)}{u}&\text{ if }u\in A_{1}\cup A_{2}\\ |u|^{-\alpha-1}L(1/|u|)&\text{ if }u\in A_{-1}\cup A_{-2}.\end{cases} (4.6)

4.2 Proof of 𝔏𝔦𝔪𝔫𝔣\mathfrak{LimInf}

For any δ>0\delta>0, we have

(Qn(x)<0,x)=\displaystyle\mathds{P}(Q_{n}(x)<0,x\in\mathds{R})= (Qn(±eu)σn(u)<0,u)\displaystyle\mathds{P}\Big{(}\frac{Q_{n}(\pm e^{u})}{\sigma_{n}(u)}<0,u\in\mathds{R}\Big{)} (4.7)
\displaystyle\geq r(Qn(r)(±eu)σn(u)<δ,uAr,Qn(r)(±eu)σn(u)<δ/4,uAr).\displaystyle\prod_{r\in\mathcal{R}}\mathds{P}\Big{(}\frac{Q_{n}^{(r)}(\pm e^{u})}{\sigma_{n}(u)}<-\delta,u\in A_{r},\frac{Q_{n}^{(r)}(\pm e^{u})}{\sigma_{n}(u)}<\delta/4,u\notin A_{r}\Big{)}.

where the last line uses the fact that {Qn(r)(.),r}\{Q_{n}^{(r)}(.),r\in\mathcal{R}\} are independent. For any rr\in\mathcal{R}, define

δ[Qn;r]:=(Qn(r)(±eu)σn(u)<δ,uAr,Qn(r)(±eu)σn(u)<δ/4,uAr).\mathbb{P}_{\delta}[Q_{n};r]:=\mathds{P}\Big{(}\frac{Q_{n}^{(r)}(\pm e^{u})}{\sigma_{n}(u)}<-\delta,u\in A_{r},\frac{Q_{n}^{(r)}(\pm e^{u})}{\sigma_{n}(u)}<\delta/4,u\notin A_{r}\Big{)}.

Below we find lower bound to r[Qn]\mathbb{P}_{r}[Q_{n}] for each rr\in\mathcal{R}.

Proposition 4.1.

Consider any p>0[1,Tn]p\in\mathbb{Z}_{>0}\cap[1,T_{n}]. There exists Γ=Γ(δ)>0\Gamma=\Gamma(\delta)>0 such that for all nn0n\geq n_{0} and MM large,

δ[Qn;1]2ΓTn(supt[1,M]Y~0,M()(t)δ)2Tn\displaystyle\mathbb{P}_{\delta}[Q_{n};-1]\geq 2^{-\Gamma T_{n}}\mathbb{P}\big{(}\sup_{t\in[1,M]}\tilde{Y}^{(-)}_{0,M}(t)\leq-\delta\big{)}^{2T_{n}} (4.8)

where the Gaussian process Y~s,M()\tilde{Y}^{(-)}_{s,M} is defined in Definition 4.18.

Proposition 4.1 is proven in Section 4.3.

Proposition 4.2.

Consider any p>0[1,N]p\in\mathbb{Z}_{>0}\cap[1,N]. There exists Γ=Γ(δ)>0\Gamma=\Gamma(\delta)>0 such that for all nn0n\geq n_{0} and MM large,

δ[Qn;+1]2ΓTn(supt[1,M]Y~0,M(+)(t)δ)2Tn.\displaystyle\mathds{P}_{\delta}[Q_{n};+1]\geq 2^{-\Gamma T_{n}}\mathbb{P}\big{(}\sup_{t\in[1,M]}\tilde{Y}^{(+)}_{0,M}(t)\leq-\delta\big{)}^{2T_{n}}. (4.9)

The Gaussian process Y~s,M(+)\tilde{Y}^{(+)}_{s,M} is defined in Definition 4.18.

Proposition 4.1 is proven in Section 4.4.

Proposition 4.3.

There exists δ0>0\delta_{0}>0 and C1,C2>0C_{1},C_{2}>0 such that for all nn and KK large and δ<δ0\delta<\delta_{0},

δ[Qn;0]4C1δ1θKlogKeC2K2.\displaystyle\mathds{P}_{\delta}[Q_{n};0]\geq 4^{-C_{1}\delta^{-1-\theta}K\log K}-e^{-C_{2}K^{2}}. (4.10)

Proposition 4.1 is proven in Section 4.5.

Proposition 4.4.

Assume that there exists ρ>0,η(0,1)\rho>0,\eta\in(0,1) and a small c=c(ρ,η)>0c=c(\rho,\eta)>0 such that for ξi:=ai/R(i)\xi_{i}:=a_{i}/\sqrt{R(i)},

(ξiρ)c,(ξi[ηρ,0])c,or,(ξi[0,ρ])c,1in.\mathds{P}(\xi_{i}\leq-\rho)\geq c,\quad\mathds{P}(\xi_{i}\in[-\eta\rho,0])\geq c,\quad\text{or,}\quad\mathds{P}(\xi_{i}\in[0,\rho])\geq c,\quad\forall 1\leq i\leq n.

Then for all large nn,

δ[Qn;+2]cLlogn\displaystyle\mathds{P}_{\delta}[Q_{n};+2]\geq c^{L\log n} (4.11)

where L>0L>0 is an arbitrarily small number.

Proposition 4.1 is proven in Section 4.6.

Proposition 4.5.

Assume that there exists ρ>0,η(0,1)\rho>0,\eta\in(0,1) and c=c(ρ)>0c=c(\rho)>0, such that for ξi=ai/R(i)\xi_{i}=a_{i}/\sqrt{R(i)},

(ξiρ)c,(ξi[ηρ,0])c,or, (ξi[0,ρ])c,1in.\mathds{P}(\xi_{i}\leq-\rho)\geq c,\quad\mathds{P}(\xi_{i}\in[-\eta\rho,0])\geq c,\quad\text{or, }\quad\mathds{P}(\xi_{i}\in[0,\rho])\geq c,\quad\forall 1\leq i\leq n.

Then for all large nn,

δ[Qn;2]cLlogn\displaystyle\mathds{P}_{\delta}[Q_{n};-2]\geq c^{L\log n} (4.12)

for some arbitrarily small number L>0L>0.

Proposition 4.1 is proven in Section 4.7.

Final Stage of the proof: Continuing (4.7), we can write

(Qn(x)<0,x)\displaystyle\mathds{P}(Q_{n}(x)<0,x\in\mathds{R}) rδ[Qn;r]\displaystyle\geq\prod_{r\in\mathcal{R}}\mathds{P}_{\delta}[Q_{n};r]
22ΓTn(supt[1,M]Y~0,M()(t)δ)2Tn(supt[1,M]Y~0,M(+)(t)δ)2Tn\displaystyle\geq 2^{-2\Gamma T_{n}}\mathbb{P}\big{(}\sup_{t\in[1,M]}\tilde{Y}^{(-)}_{0,M}(t)\leq-\delta\big{)}^{2T_{n}}\mathbb{P}\big{(}\sup_{t\in[1,M]}\tilde{Y}^{(+)}_{0,M}(t)\leq-\delta\big{)}^{2T_{n}}
×c2logn(4C1δ1θKlogKeC2K2).\displaystyle\times c^{2\log n}(4^{-C_{1}\delta^{-1-\theta}K\log K}-e^{-C_{2}K^{2}}).

Taking logarithm on both sides and dividing both sides by logn\log n shows

log(Qn(x)<0,x)logn2ΓTnlogn+2Llogc+1lognlog(4C1δ1θKlogKeC2K2)\displaystyle\frac{\log\mathds{P}(Q_{n}(x)<0,x\in\mathds{R})}{\log n}\geq-\frac{2\Gamma T_{n}}{\log n}+2L\log c+\frac{1}{\log n}\log\big{(}4^{-C_{1}\delta^{-1-\theta}K\log K}-e^{-C_{2}K^{2}}\big{)}
+2Tnlognlog(supt[1,M]Y~0,M()(t)δ)+2Tnlognlog(supt[1,M]Y~0,M(+)(t)δ)\displaystyle+\frac{2T_{n}}{\log n}\log\mathbb{P}\big{(}\sup_{t\in[1,M]}\tilde{Y}^{(-)}_{0,M}(t)\leq-\delta\big{)}+\frac{2T_{n}}{\log n}\log\mathbb{P}\big{(}\sup_{t\in[1,M]}\tilde{Y}^{(+)}_{0,M}(t)\leq-\delta\big{)} (4.13)

As n,Mn,M\to\infty and δ0\delta\to 0, we know

limM\displaystyle\lim_{M\to\infty} limδ0limn1logMlog(supt[1,M]Y~0,M()(t)δ)\displaystyle\lim_{\delta\to 0}\lim_{n\to\infty}\frac{1}{\log M}\log\mathbb{P}\big{(}\sup_{t\in[1,M]}\tilde{Y}^{(-)}_{0,M}(t)\leq-\delta\big{)}
=limM1logMlog(supt[1,M]Y~0,M()(t)0)=2bα\displaystyle=\lim_{M\to\infty}\frac{1}{\log M}\log\mathbb{P}\big{(}\sup_{t\in[1,M]}\tilde{Y}^{(-)}_{0,M}(t)\leq 0\big{)}=2b_{\alpha}

and

limM\displaystyle\lim_{M\to\infty} limδ0limnTnlognlog(supt[1,M]Y~0,M(+)(t)δ)\displaystyle\lim_{\delta\to 0}\lim_{n\to\infty}\frac{T_{n}}{\log n}\log\mathbb{P}\big{(}\sup_{t\in[1,M]}\tilde{Y}^{(+)}_{0,M}(t)\leq-\delta\big{)}
=limM1logMlog(supt[1,M]Y~0,M(+)(t)0)=2b.\displaystyle=\lim_{M\to\infty}\frac{1}{\log M}\log\mathbb{P}\big{(}\sup_{t\in[1,M]}\tilde{Y}^{(+)}_{0,M}(t)\leq 0\big{)}=2b_{\infty}.

Combining these limits and plugging back into (4.2) yields the results

lim infnp2n2b2bα.\liminf_{n\to\infty}p_{2n}\geq-2b_{\infty}-2b_{\alpha}.

It remains to show that the conditions of Proposition 4.4 and 4.5 are satisfied when ξi=ai/R(i)\xi_{i}=a_{i}/\sqrt{R(i)} are i.i.d. random variables with 𝔼[ξi]=0\mathbb{E}[\xi_{i}]=0 and Var(ξi)=1\mathrm{Var}(\xi_{i})=1. Since 𝔼[ξi]=0\mathbb{E}[\xi_{i}]=0, there must exists ρ>0\rho>0 such that (ξiρ)>0\mathds{P}(\xi_{i}\leq-\rho)>0. If any of the probabilities (ξi(ρ,0])\mathds{P}(\xi_{i}\in(-\rho,0]) or (ξi[0,ρ])\mathds{P}(\xi_{i}\in[0,\rho]) is positive, then the conditions of the propositions are satisfied. Otherwise there must exists ρ>ρ\rho^{\prime}>\rho such that (ξρ)>0\mathbb{P}(\xi\geq\rho^{\prime})>0 since 𝔼[ξi]=0\mathbb{E}[\xi_{i}]=0. Therefore we arrive at the condition (ξiρ)>c\mathbb{P}(\xi_{i}\geq\rho^{\prime})>c and (ξi[0,ρ])>c\mathbb{P}(\xi_{i}\in[0,\rho^{\prime}])>c for some small constant. Under these revised conditions, using the same arguments as in Proposition 4.4 and 4.5, we obtain

(Qn(r)(±eu)σn(u)>δ,uAr,Qn(r)(±eu)σn(u)>δ/4,uA2)\displaystyle\mathds{P}\Big{(}\frac{Q_{n}^{(r)}(\pm e^{u})}{\sigma_{n}(u)}>\delta,u\in A_{r},\frac{Q^{(r)}_{n}(\pm e^{u})}{\sigma_{n}(u)}>-\delta/4,u\notin A_{2}\Big{)}

for r{2,+2}r\in\{-2,+2\}. By flipping the sign of the coefficients aia_{i} for iB1B0B+1i\in B_{-1}\cup B_{0}\cup B_{+1} and using Proposition 4.14.3 and 4.2 respectively, we obtain for r{1,+1}r\in\{-1,+1\},

(\displaystyle\mathds{P}\Big{(} Qn(r)(±eu)σn(u)>δ,uAr,Qn(r)(±eu)σn(u)>δ/4,uAr)\displaystyle\frac{Q_{n}^{(r)}(\pm e^{u})}{\sigma_{n}(u)}>\delta,u\in A_{r},\frac{Q_{n}^{(r)}(\pm e^{u})}{\sigma_{n}(u)}>-\delta/4,u\notin A_{r}\Big{)}
2ΓTn(supt[1,M]Y~0,M(±)(t)<δ)2Tn\displaystyle\geq 2^{-\Gamma T_{n}}\mathbb{P}\big{(}\sup_{t\in[1,M]}\tilde{Y}^{(\pm)}_{0,M}(t)<-\delta\big{)}^{2T_{n}}

and,

(\displaystyle\mathds{P}\Big{(} Qn(0)(±eu)σn(u)>δ,uA0,Qn(0)(±eu)σn(u)>δ/4,uA0)\displaystyle\frac{Q_{n}^{(0)}(\pm e^{u})}{\sigma_{n}(u)}>\delta,u\in A_{0},\frac{Q_{n}^{(0)}(\pm e^{u})}{\sigma_{n}(u)}>-\delta/4,u\notin A_{0}\Big{)}
4C1δ1θKlogKeC2K2.\displaystyle\geq 4^{-C_{1}\delta^{-1-\theta}K\log K}-e^{-C_{2}K^{2}}.

These bounds together shows that

lim infn1lognlog(Q2n(x) has no real zero)2bα2b0.\liminf_{n\to\infty}\frac{1}{\log n}\log\mathds{P}(Q_{2n}(x)\text{ has no real zero})\geq-2b_{\alpha}-2b_{0}.

4.3 Proof of Proposition 4.1: r=1r=-1 Case

We consider the following decomposition Qn(1)(x)=p=1TnQ~n(1),p(x)Q_{n}^{(-1)}(x)=\sum_{p=1}^{T_{n}}\tilde{Q}_{n}^{(-1),p}(x), and so

(Qn(1)(±eu)σn(u)<δ,uA1,Qn(1)(±eu)σn(u)<δ/4,uA1)\displaystyle\mathds{P}\Big{(}\frac{Q_{n}^{(-1)}(\pm e^{u})}{\sigma_{n}(u)}<-\delta,u\in A_{-1},\frac{Q_{n}^{(-1)}(\pm e^{u})}{\sigma_{n}(u)}<\delta/4,u\notin A_{-1}\Big{)}
\displaystyle\geq p=1N(B1pB2pB3pB4p)\displaystyle\prod_{p=1}^{N}\mathds{P}\Big{(}B_{1p}\cap B_{2p}\cap B_{3p}\cap B_{4p}\Big{)}
\displaystyle\geq p=1N[(B1p)(¬B2p)(¬B3p)(¬B4p)],\displaystyle\prod_{p=1}^{N}\Big{[}\mathds{P}(B_{1p})-\mathds{P}(\neg B_{2p})-\mathds{P}(\neg B_{3p})-\mathds{P}(\neg B_{4p})\Big{]}, (4.14)

where for a non negative sequence ρ(.)\rho(.) satisfying i=1ρ(i)<1/2\sum_{i=1}^{\infty}\rho(i)<1/2 and a large but fixed integer Γ\Gamma, we define

B1p:=\displaystyle B_{1p}:= q:|qp|ΓB1,p(q),where B1p(q):={supuIqQ~n(1),p(±eu)σn(u)<2δ,|pq|Γ},\displaystyle\bigcap_{q:|q-p|\leq\Gamma}B^{(q)}_{1,p},\quad\text{where }B^{(q)}_{1p}:=\Big{\{}\sup_{u\in I_{q}}\frac{\tilde{Q}_{n}^{(-1),p}(\pm e^{-u})}{\sigma_{n}(-u)}<-2\delta,|p-q|\leq\Gamma\Big{\}}, (4.15)
B2p:=\displaystyle B_{2p}:= q:|qp|>ΓB2p(q),where B2p(q):={supuIqQ~n(1),p(±eu)σn(u)<δρ(pq)},\displaystyle\bigcap_{q:|q-p|>\Gamma}B^{(q)}_{2p},\quad\text{where }B^{(q)}_{2p}:=\Big{\{}\sup_{u\in I_{q}}\frac{\tilde{Q}_{n}^{(-1),p}(\pm e^{-u})}{\sigma_{n}(-u)}<\delta\rho(p-q)\Big{\}}, (4.16)
B3p:=\displaystyle B_{3p}:= {supuA0A1A2Q~n(1),p(±eu)σn(u)<δρ(N+1p)},\displaystyle\Big{\{}\sup_{u\in A_{0}\cup A_{1}\cup A_{2}}\frac{\tilde{Q}_{n}^{(-1),p}(\pm e^{u})}{\sigma_{n}(u)}<\delta\rho(N+1-p)\Big{\}}, (4.17)
B4p:=\displaystyle B_{4p}:= {supuA2Q~n(1),p(±eu)σn(u)<δρ(p)},\displaystyle\Big{\{}\sup_{u\in A_{2}}\frac{\tilde{Q}_{n}^{(-1),p}(\pm e^{-u})}{\sigma_{n}(-u)}<\delta\rho(p)\Big{\}}, (4.18)

For simplicity, we will choose to work with ρ(i)=κi2\rho(i)=\frac{\kappa}{i^{2}} for some small constant κ>0\kappa>0.

Proceeding to estimate the probability of the sets above, we claim the following Lemma, whose proof we defer to the end of the section.

Lemma 4.6.

Fix any p{1,,Tn}p\in\{1,\ldots,T_{n}\}. Fix an interval [c,d][c,d] such that [c,d][c,d] is far away from ~()\tilde{\mathcal{I}}^{(-)}, i.e., either c>1lognMp1ωc>\frac{1}{\log nM^{p-1-\omega}} or d<1lognMp+ωd<\frac{1}{\log nM^{p+\omega}} for some ω>0\omega>0. Denote sn,p:=Mplogns_{n,p}:=M^{p}\log n.

  1. (a)

    If d<Mpωlognd<\frac{M^{-p-\omega}}{\log n}, for any λ>0\lambda>0 we have

    (supu[c,d]|Q~n(1),p(±eu)|>λ)α,ωmaxi~()L(i)λ2sn,pα+1[sn,p2(cd)2+1].\displaystyle\mathds{P}\Big{(}\sup_{u\in[c,d]}|\tilde{Q}_{n}^{(-1),p}(\pm e^{-u})|>\lambda\Big{)}\lesssim_{\alpha,\omega}\frac{\max_{i\in\tilde{\mathcal{I}}^{(-)}}L(i)}{\lambda^{2}}s^{\alpha+1}_{n,p}\left[s^{2}_{n,p}(c-d)^{2}+1\right]. (4.19)
  2. (b)

    If c>Mp+1+ωlognc>\frac{M^{-p+1+\omega}}{\log n}, for any λ>0\lambda>0 we have

    (supu[c,d]|Q~n(1),p(±eu)|>λ)α,ωecsn,p/Mmaxi~()L(i)λ2[(cd)2cα+3+1cα+1].\displaystyle\mathds{P}\Big{(}\sup_{u\in[c,d]}|\tilde{Q}_{n}^{(-1),p}(\pm e^{-u})|>\lambda\Big{)}\lesssim_{\alpha,\omega}\frac{e^{-cs_{n,p}/M}\max_{i\in\tilde{\mathcal{I}}^{(-)}}L(i)}{\lambda^{2}}\left[\frac{(c-d)^{2}}{c^{\alpha+3}}+\frac{1}{c^{\alpha+1}}\right]. (4.20)
Proof of Lemma 4.6.

We prove the lemma for Q~n(1),p(eu)\tilde{Q}_{n}^{(-1),p}(e^{-u}). Proof in the other case follows from same argument.

  1. (a)

    To begin, for any u,v[c,d]u,v\in[c,d] with d<Mpωlognd<\frac{M^{-p-\omega}}{\log n}, we have

    𝔼[Q~n(1,p)(eu)Q~n(1,p)(ev)]2\displaystyle\mathds{E}\Big{[}\tilde{Q}_{n}^{(-1,p)}(e^{-u})-\tilde{Q}_{n}^{(-1,p)}(e^{-v})\Big{]}^{2} =iIp1iαL(i)(eiueiv)2\displaystyle=\sum_{i\in I_{p}^{-1}}i^{\alpha}L(i)\Big{(}e^{-iu}-e^{-iv}\Big{)}^{2}
    (uv)2supξ[c,d]i~()iα+2L(i)e2iξ\displaystyle\leq(u-v)^{2}\sup_{\xi\in[c,d]}\sum_{i\in\tilde{\mathcal{I}}^{(-)}}i^{\alpha+2}L(i)e^{-2i\xi}
    (uv)2maxi~()L(i)i~()iα+2e2ic\displaystyle\leq(u-v)^{2}\max_{i\in\tilde{\mathcal{I}}^{(-)}}L(i)\sum_{i\in\tilde{\mathcal{I}}^{(-)}}i^{\alpha+2}e^{-2ic}
    α,ω(uv)2(lognMp)α+3maxi~()L(i).\displaystyle\lesssim_{\alpha,\omega}(u-v)^{2}(\log nM^{p})^{\alpha+3}\max_{i\in\tilde{\mathcal{I}}^{(-)}}L(i).

    We obtain the last inequality by using Lemma 4.7. Invoking Lemma 4.21 with C2=(lognMp)α+3maxi~()L(i)C^{2}=(\log nM^{p})^{\alpha+3}\max_{i\in\tilde{\mathcal{I}}^{(-)}}L(i) gives

    (supu[c,d]|Q~n(1),p(u)Q~n,(1),p(d)|>λ)(lognMp)α+3maxi~()L(i)(cd)2λ2.\displaystyle\mathds{P}\Big{(}\sup_{u\in[c,d]}|\tilde{Q}_{n}^{(-1),p}(u)-\tilde{Q}_{n,}^{(-1),p}(d)|>\lambda\Big{)}\lesssim(\log nM^{p})^{\alpha+3}\max_{i\in\tilde{\mathcal{I}}^{(-)}}L(i)\frac{(c-d)^{2}}{\lambda^{2}}.

    Finally we use Chebyshev’s inequality to get

    (|Q~n(1),p(d)|>λ)α,ω1λ2(lognMp)α+1maxi~()L(i),\displaystyle\mathds{P}(|\tilde{Q}_{n}^{(-1),p}(d)|>\lambda)\lesssim_{\alpha,\omega}\frac{1}{\lambda^{2}}(\log nM^{p})^{\alpha+1}\max_{i\in\tilde{\mathcal{I}}^{(-)}}L(i),

    which along with the bound in the previous display gives the desired estimates of (4.19).

  2. (b)

    As before, fixing u,v[c,d]u,v\in[c,d] with c>Mp+1+ωlognc>\frac{M^{-p+1+\omega}}{\log n} we have

    𝔼[Q~n(1),p(u)Q~n(1),p(v)]2\displaystyle\mathds{E}\Big{[}\tilde{Q}_{n}^{(-1),p}(u)-\tilde{Q}_{n}^{(-1),p}(v)\Big{]}^{2} =iIp1iαL(i)(eiueiv)2\displaystyle=\sum_{i\in I_{p}^{-1}}i^{\alpha}L(i)\Big{(}e^{-iu}-e^{-iv}\Big{)}^{2}
    (uv)2maxi~()L(i)i~()iαeci\displaystyle\leq(u-v)^{2}\max_{i\in\tilde{\mathcal{I}}^{(-)}}L(i)\sum_{i\in\tilde{\mathcal{I}}^{(-)}}i^{\alpha}e^{-ci}
    α,ω(uv)2maxi~()L(i)(1c)α+3ecsn,p/M,\displaystyle\lesssim_{\alpha,\omega}(u-v)^{2}\max_{i\in\tilde{\mathcal{I}}^{(-)}}L(i)\Big{(}\frac{1}{c}\Big{)}^{\alpha+3}e^{-cs_{n,p}/M},

    where we have used Lemma 4.7 to obtain the last inequality. The above bound along with Lemma 4.21 gives

    (supu[c,d]|Q~n(1),p(u)Q~n,(1),p(c)|>λ)α,ω1λ2ecsn,p/M(cd)2cα+3.\mathds{P}\Big{(}\sup_{u\in[c,d]}|\tilde{Q}_{n}^{(-1),p}(u)-\tilde{Q}_{n,}^{(-1),p}(c)|>\lambda\Big{)}\lesssim_{\alpha,\omega}\frac{1}{\lambda^{2}}e^{-cs_{n,p}/M}\frac{(c-d)^{2}}{c^{\alpha+3}}.

    Again, using Chebyshev’s inequality and Lemma 4.7 gives

    (|Q~n(1),p(c)|>λ)α,ω1λ2cα+1ecsn,p/M,\displaystyle\mathds{P}(|\tilde{Q}_{n}^{(-1),p}(c)|>\lambda)\lesssim_{\alpha,\omega}\frac{1}{\lambda^{2}c^{\alpha+1}}e^{-cs_{n,p}/M},

    from which the desired conclusion follows as before.

Armed with Lemma 4.6, we now deal with each of these terms in the RHS of (4.14) separately.

Lemma 4.7.

Consider the following function

H(+)(R,u):=i=Riαeiu,H()(R,u):=i=1Riαeiu.\displaystyle H^{(+)}(R,u):=\sum_{i=R}^{\infty}i^{\alpha}e^{-iu},\quad H^{(-)}(R,u):=\sum_{i=1}^{R}i^{\alpha}e^{-iu}. (4.21)

Fix some positive number ω>0\omega>0. There exists M0=M0(ω)>0M_{0}=M_{0}(\omega)>0 such that for all M>M0M>M_{0}, R1(αMωu,)R_{1}\in(\frac{\alpha M^{\omega}}{u},\infty) and R2(0,αuMω)R_{2}\in(0,\frac{\alpha}{uM^{\omega}}),

H(+)(R1,u)α,ωeR1u2uα+1,H()(R2,u)α,ωR2α+1.\displaystyle H^{(+)}(R_{1},u)\lesssim_{\alpha,\omega}\frac{e^{-\frac{R_{1}u}{2}}}{u^{\alpha+1}},\quad H^{(-)}(R_{2},u)\lesssim_{\alpha,\omega}R^{\alpha+1}_{2}. (4.22)
Proof.

Note that f:>0>0f:\mathbb{R}_{>0}\to\mathbb{R}_{>0} which we define as f(x)=xαeαxf(x)=x^{\alpha}e^{-\alpha x} is increasing on the interval (0,αuMω)(0,\frac{\alpha}{uM^{\omega}}) and decreasing on the interval (αMωu,)(\frac{\alpha M^{\omega}}{u},\infty). Bounding the sum by its integral approximation shows

H(+)(R1,u)R11xαexu𝑑x,H()(R2,u)0R2xαexu𝑑x.\displaystyle H^{(+)}(R_{1},u)\leq\int^{\infty}_{R_{1}-1}x^{\alpha}e^{-xu}dx,\quad H^{(-)}(R_{2},u)\leq\int^{R_{2}}_{0}x^{\alpha}e^{-xu}dx. (4.23)

Since R1αMωuR_{1}\geq\frac{\alpha M^{\omega}}{u} and R2αuMωR_{2}\leq\frac{\alpha}{uM^{\omega}}, we know

R11xαexu𝑑xα,ωeR1u2uα+1,0R2xαexu𝑑xα,ωR2α+1.\int^{\infty}_{R_{1}-1}x^{\alpha}e^{-xu}dx\lesssim_{\alpha,\omega}\frac{e^{-\frac{R_{1}u}{2}}}{u^{\alpha+1}},\quad\int^{R_{2}}_{0}x^{\alpha}e^{-xu}dx\lesssim_{\alpha,\omega}R^{\alpha+1}_{2}.

This completes the proof. ∎

4.3.1 Lower Bound on (B1p)\mathds{P}(B_{1p})

Lemma 4.8.

Consider the Gaussian process {Y~0,M(1)(b,t)}b{+,},t[1,M]\{\tilde{Y}^{(-1)}_{0,M}(b,t)\}_{b\in\{+,-\},t\in[1,M]} defined in 4.18. For all large nn, we have

(B1p)24Γ(supt[1,M]Y~0,M(1)(t)δ)2.\displaystyle\mathbb{P}\big{(}B_{1p}\big{)}\geq 2^{-4\Gamma}\mathbb{P}\big{(}\sup_{t\in[1,M]}\tilde{Y}^{(-1)}_{0,M}(t)\leq-\delta\big{)}^{2}. (4.24)
Proof.

Recall the definition of Q~\tilde{Q} from (4.5). By Lemma 4.19, we have

{uq(),b{+,}:Q~n(1),p(beu)σn(u)}\displaystyle\Big{\{}u\in\mathcal{I}^{(-)}_{q},b\in\{+,-\}:\frac{\tilde{Q}^{(-1),p}_{n}(be^{-u})}{\sigma_{n}(-u)}\Big{\}} d{t[M1,1],b{+,}:Y~qp,M(1)(b,t)}\displaystyle\stackrel{{\scriptstyle d}}{{\to}}\big{\{}t\in[M^{-1},1],b\in\{+,-\}:\tilde{Y}^{(-1)}_{q-p,M}(b,t)\big{\}} (4.25)

as nn\to\infty where Y~qp,M(1)(b,)\tilde{Y}^{(-1)}_{q-p,M}(b,\cdot) is a centered Gaussian process as defined in 4.18.

Now we proceed to prove (4.24) using (4.25). By the weak convergence, for all large nn

\displaystyle\mathbb{P} (B1pB2pB3pB4p)\displaystyle\Big{(}B_{1p}\cap B_{2p}\cap B_{3p}\cap B_{4p}\Big{)} (4.26)
(b{+,}{supt[M1,1]Y~0,M(1)(b,t)δ}b{+,}\displaystyle\geq\mathbb{P}\Big{(}\bigcap_{b\in\{+,-\}}\big{\{}\sup_{t\in[M^{-1},1]}\tilde{Y}^{(-1)}_{0,M}(b,t)\leq-\delta\big{\}}\bigcap\bigcap_{b\in\{+,-\}} (4.27)
q:|qp|Γ{inft[M1,1]Y~qp,M(1)(b,t)ρ(|pq|)δ})\displaystyle\qquad\qquad\bigcap_{q:|q-p|\leq\Gamma}\Big{\{}\inf_{t\in[M^{-1},1]}\tilde{Y}^{(-1)}_{q-p,M}(b,t)\leq\rho(|p-q|)\delta\Big{\}}\Big{)}
(b{+,}{supt[M1,1]Y~0,M(1)(b,t)δ})\displaystyle\geq\mathbb{P}\Big{(}\bigcap_{b\in\{+,-\}}\Big{\{}\sup_{t\in[M^{-1},1]}\tilde{Y}^{(-1)}_{0,M}(b,t)\leq-\delta\Big{\}}\Big{)} (4.28)
×q:|pq|Γ,pq(b{+,}{inft[M1,1]Y~qp,M(1)(b,t)ρ(|pq|)δ})\displaystyle\times\prod_{q:|p-q|\leq\Gamma,p\neq q}\mathbb{P}\Big{(}\bigcap_{b\in\{+,-\}}\Big{\{}\inf_{t\in[M^{-1},1]}\tilde{Y}^{(-1)}_{q-p,M}(b,t)\leq\rho(|p-q|)\delta\Big{\}}\Big{)} (4.29)

where the last inequality follows by applying the Slepian’s inequality for the Gaussian processes.

Recall that Y~qp,M(1)(+,)\tilde{Y}^{(-1)}_{q-p,M}(+,\cdot) and Y~qp,M(+1)(,)\tilde{Y}^{(+1)}_{q-p,M}(-,\cdot) are independent centered Gaussian processes. As a result, we have

(b{+,}{inft[M1,1]Y~qp,M(1)(+,t)ρ(|pq|)δ})14.\displaystyle\mathbb{P}\Big{(}\bigcap_{b\in\{+,-\}}\Big{\{}\inf_{t\in[M^{-1},1]}\tilde{Y}^{(-1)}_{q-p,M}(+,t)\leq\rho(|p-q|)\delta\Big{\}}\Big{)}\geq\frac{1}{4}.

Plugging this bound in the last line of (4.47) yields

r.h.s. of (4.47) 24Γ(b{+,}{supt[M1,1]Y~0,M(1)(b,t)δ})\displaystyle\geq 2^{-4\Gamma}\mathbb{P}\Big{(}\bigcap_{b\in\{+,-\}}\Big{\{}\sup_{t\in[M^{-1},1]}\tilde{Y}^{(-1)}_{0,M}(b,t)\leq-\delta\Big{\}}\Big{)}
=24Γ({supt[M1,1]Y~0,M(1)(+,t)δ})2\displaystyle=2^{-4\Gamma}\mathbb{P}\Big{(}\Big{\{}\sup_{t\in[M^{-1},1]}\tilde{Y}^{(-1)}_{0,M}(+,t)\leq-\delta\Big{\}}\Big{)}^{2}

for all large nn. The equality in the last display follows since Y~0,M(1)(+,)\tilde{Y}^{(-1)}_{0,M}(+,\cdot) and Y~0,M(1)(,)\tilde{Y}^{(-1)}_{0,M}(-,\cdot) are independent Gaussian process and their marginal laws are same. This completes the proof.

4.3.2 Upper Bound on (¬B2p)\mathds{P}(\neg B_{2p})

Lemma 4.9.

Recall B2pB_{2p} from (4.41). For all large nn, we have

(¬B2p)MΓ+1.\displaystyle\mathbb{P}\big{(}\neg B_{2p}\big{)}\lesssim M^{-\Gamma+1}. (4.30)
Proof.

Recall that

B2p=q:|pq|>ΓB2p(q),where B2p(q)={supu𝒥~q()Q~n(1),p(±eu)σn(u)<δρ(pq)}.B_{2p}=\bigcap_{q:|p-q|>\Gamma}B^{(q)}_{2p},\quad\text{where }B^{(q)}_{2p}=\Big{\{}\sup_{u\in\tilde{\mathcal{J}}^{(-)}_{q}}\frac{\tilde{Q}_{n}^{(-1),p}(\pm e^{-u})}{\sigma_{n}(-u)}<\delta\rho(p-q)\Big{\}}.

Notice that

¬B2p(q){supu𝒥~q()|Q~n(1),p(eu)|>δρ(pq)sq1α+1}.\neg B^{(q)}_{2p}\subset\Big{\{}\sup_{u\in\tilde{\mathcal{J}}^{(-)}_{q}}|\tilde{Q}_{n}^{(-1),p}(e^{-u})|>\frac{\delta\rho(p-q)}{\sqrt{s_{q-1}^{\alpha+1}}}\Big{\}}.

where sq1:=(maxu𝒥~q()σn2(u))1/(α+1)s_{q-1}:=(\max_{u\in\tilde{\mathcal{J}}^{(-)}_{q}}\sigma^{2}_{n}(u))^{-1/(\alpha+1)}. For fixed p,q[1,N]p,q\in[1,N] with pq+2p\geq q+2, applying part (a) of Lemma 4.6 with [c,d]=𝒥~q()[c,d]=\tilde{\mathcal{J}}^{(-)}_{q} gives

(supu𝒥~q()|Q~n(1),p(eu)|>δρ(pq)sq1α+1)\displaystyle\mathds{P}\Big{(}\sup_{u\in\tilde{\mathcal{J}}^{(-)}_{q}}|\tilde{Q}_{n}^{(-1),p}(e^{-u})|>\frac{\delta\rho(p-q)}{\sqrt{s_{q-1}^{\alpha+1}}}\Big{)} sq1α+1δ2ρ2(pq)[sn,q2sn,pα+3+sn,pα+1]\displaystyle\lesssim\frac{s_{q-1}^{\alpha+1}}{\delta^{2}\rho^{2}(p-q)}\left[s^{2}_{n,q}s_{n,p}^{\alpha+3}+s_{n,p}^{\alpha+1}\right]
M(qp+1)(α+3)+M(qp+1)(α+1)δ2ρ2(pq).\displaystyle\leq\frac{M^{(q-p+1)(\alpha+3)}+M^{(q-p+1)(\alpha+1)}}{\delta^{2}\rho^{2}(p-q)}. (4.31)

where the second inequality follows since sr=O(Mr/Llogn)s_{r}=O(M^{-r}/L\log n) for all r[1,Tn]r\in[1,T_{n}] and sn,p=LMplogns_{n,p}=LM^{p}\log n. On the other hand, for p,q[1,Tn]p,q\in[1,T_{n}] such that pq2p\leq q-2, using part (b) of Lemma 4.6 with [c,d]=𝒥~q()[c,d]=\tilde{\mathcal{J}}^{(-)}_{q} we have

(supu𝒥~q()|Q~n(1),p(eu)|>δρ(pq)sq1α+1)\displaystyle\mathds{P}\Big{(}\sup_{u\in\tilde{\mathcal{J}}^{(-)}_{q}}|\tilde{Q}_{n}^{(-1),p}(e^{-u})|>\frac{\delta\rho(p-q)}{\sqrt{s_{q-1}^{\alpha+1}}}\Big{)} sq1α+1δ2ρ2(pq)eMqp1[sn,q+12sn,qα+3+sn,q1α+1]\displaystyle\lesssim\frac{s_{q-1}^{\alpha+1}}{\delta^{2}\rho^{2}(p-q)}e^{-M^{q-p-1}}\left[s_{n,q+1}^{2}s_{n,q}^{\alpha+3}+s_{n,q-1}^{\alpha+1}\right] (4.32)
eMqp1(M2+1)δ2ρ2(pq).\displaystyle\leq e^{-M^{q-p-1}}\frac{(M^{2}+1)}{\delta^{2}\rho^{2}(p-q)}. (4.33)

Using union bound and combining the inequalities in (4.38) and (4.32) as qq varies over the set {q:|pq|>Γ}\{q:|p-q|>\Gamma\} yields

(¬B2p)2q[1,Tn],|pq|Γ(supu𝒥~q()|Q~n(1),p(eu)|>δρ(pq)sq1α+1)MΓ+1.\displaystyle\mathds{P}(\neg B_{2p})\leq 2\sum_{q\in[1,T_{n}],|p-q|\geq\Gamma}\mathds{P}\Big{(}\sup_{u\in\tilde{\mathcal{J}}^{(-)}_{q}}|\tilde{Q}_{n}^{(-1),p}(e^{-u})|>\frac{\delta\rho(p-q)}{\sqrt{s_{q-1}^{\alpha+1}}}\Big{)}\lesssim M^{-\Gamma+1}. (4.34)

Note that the above inequality follows since ii2MΓiMΓ+1\sum_{i}i^{2}M^{-\Gamma-i}\lesssim M^{-\Gamma+1}. This completes the proof. ∎

4.3.3 Upper Bound on (¬B3p)\mathds{P}(\neg B_{3p}) & (¬B4p)\mathds{P}(\neg B_{4p})

Lemma 4.10.

We have

(¬B3p)α,δ,K(LMplogn)α+1nα+1,(¬B4p)α,δM(Γp+2)(α+3)+M(Γp+2)(α+1).\displaystyle\mathbb{P}(\neg B_{3p})\lesssim_{\alpha,\delta,K}\frac{(LM^{p}\log n)^{\alpha+1}}{n^{\alpha+1}},\qquad\mathbb{P}(\neg B_{4p})\lesssim_{\alpha,\delta}M^{(-\Gamma-p+2)(\alpha+3)}+M^{(-\Gamma-p+2)(\alpha+1)}. (4.35)
Proof.

Bound on (¬B3p)\mathds{P}(\neg B_{3p}): We write A1A2=[Kn,)=KJA_{1}\cup A_{2}=[\frac{K}{n},\infty)=\cup_{\ell\geq K}J_{\ell} where J=[n,+1n]J_{\ell}=[\frac{\ell}{n},\frac{\ell+1}{n}] for 0\ell\geq 0. By the union bound, we have

(¬B3p)\displaystyle\mathbb{P}(\neg B_{3p}) 0(supuJQ~n(1),p(eu)δinfuJσn(u))=:(𝐈)\displaystyle\leq\underbrace{\sum_{\ell\geq 0}\mathds{P}\Big{(}\sup_{u\in J_{\ell}}\tilde{Q}_{n}^{(-1),p}(e^{u})\geq\delta\inf_{u\in J_{\ell}}\sigma_{n}(u)\Big{)}}_{=:(\mathbf{I})} (4.36)
+(supuA0Q~n(1),p(eu)δinfuA0σn(u))=:(𝐈𝐈)\displaystyle+\underbrace{\mathds{P}\Big{(}\sup_{u\in A_{0}}\tilde{Q}_{n}^{(-1),p}(e^{u})\geq\delta\inf_{u\in A_{0}}\sigma_{n}(u)\Big{)}}_{=:(\mathbf{II})} (4.37)

Now we first bound (𝐈)(\mathbf{I}) and then, bound (𝐈𝐈)(\mathbf{II}).

Fix any 0\ell\in\mathbb{Z}_{\geq 0}. For any u,vJu,v\in J_{\ell},

𝔼[Q~n(1),p(eu)Q~n(1),p(ev)]2\displaystyle\mathds{E}\Big{[}\tilde{Q}_{n}^{(-1),p}(e^{u})-\tilde{Q}_{n}^{(-1),p}(e^{v})\Big{]}^{2}\leq (uv)2supξJi~p()iα+2L(i)e2iξ\displaystyle(u-v)^{2}\sup_{\xi\in J_{\ell}}\sum_{i\in\tilde{\mathcal{I}}^{(-)}_{p}}i^{\alpha+2}L(i)e^{2i\xi}
\displaystyle\leq (uv)2exp(2lognnMp)i~p()iα+2L(i)\displaystyle(u-v)^{2}\exp\Big{(}\frac{2\ell\log n}{nM^{p}}\Big{)}\sum_{i\in\tilde{\mathcal{I}}^{(-)}_{p}}i^{\alpha+2}L(i)
α\displaystyle\lesssim_{\alpha} (uv)2exp(2lognnMp)maxi~p()L(i)(LlognMp+1)α+3.\displaystyle(u-v)^{2}\exp\Big{(}\frac{2\ell\log n}{nM^{p}}\Big{)}\max_{i\in\tilde{\mathcal{I}}^{(-)}_{p}}L(i)(L\log nM^{p+1})^{\alpha+3}.

A similar calculation gives

supuJ\displaystyle\sup_{u\in J_{\ell}} 𝔼(Q~n(1),p(u))2i~p()iαL(i)e2(+1)i/n\displaystyle\mathds{E}(\tilde{Q}_{n}^{(-1),p}(u))^{2}\leq\sum_{i\in\tilde{\mathcal{I}}^{(-)}_{p}}i^{\alpha}L(i)e^{2(\ell+1)i/n}
exp(2lognnMp)maxi~p()L(i)(LlognMp+1)α+1.\displaystyle\lesssim\exp\Big{(}\frac{2\ell\log n}{nM^{p}}\Big{)}\max_{i\in\tilde{\mathcal{I}}^{(-)}_{p}}L(i)(L\log nM^{p+1})^{\alpha+1}.

Applying part (b) of Lemma 4.21 with λ=δinfuJσn(u)=δen(n/)α+1\lambda=\delta\inf_{u\in J_{\ell}}\sigma_{n}(u)=\delta e^{n\ell}(n/\ell)^{\alpha+1} gives

(\displaystyle\mathds{P}\big{(} supuJQn(1),p(eu)>δinfuJσn(u))\displaystyle\sup_{u\in J_{\ell}}Q_{n}^{(-1),p}(e^{u})>\delta\inf_{u\in J_{\ell}}\sigma_{n}(u)\big{)}
αmaxi~p()L(i)exp(2(1LlognMpn))(LlognMp+1)α+1nα+1.\displaystyle\lesssim_{\alpha}\max_{i\in\tilde{\mathcal{I}}^{(-)}_{p}}L(i)\exp\Big{(}-2\ell\Big{(}1-\frac{L\log nM^{p}}{n}\Big{)}\Big{)}\frac{(L\ell\log nM^{p+1})^{\alpha+1}}{n^{\alpha+1}}.

By summing the above bounds, we get

(𝐈)α(LlognMp+1)α+1nα+1.\displaystyle(\mathbf{I})\lesssim_{\alpha}\frac{(L\log nM^{p+1})^{\alpha+1}}{n^{\alpha+1}}.

Now we turn to bound (𝐈𝐈)(\mathbf{II}). For u,vA0=[Kn,Kn]u,v\in A_{0}=[-\frac{K}{n},\frac{K}{n}], we have

𝔼[Qn(1),p(eu)Qn(1),p(ev)]2\displaystyle\mathds{E}\big{[}Q_{n}^{(-1),p}(e^{u})-Q_{n}^{(-1),p}(e^{v})\big{]}^{2}\leq (uv)2supξA0i~p()iα+2L(i)e2iξ\displaystyle(u-v)^{2}\sup_{\xi\in A_{0}}\sum_{i\in\tilde{\mathcal{I}}^{(-)}_{p}}i^{\alpha+2}L(i)e^{2i\xi}
\displaystyle\leq (uv)2e2KLMplognni~p()iα+2L(i)\displaystyle(u-v)^{2}e^{\frac{2KLM^{p}\log n}{n}}\sum_{i\in\tilde{\mathcal{I}}^{(-)}_{p}}i^{\alpha+2}L(i)
\displaystyle\lesssim (uv)2maxi~p()L(i)e2KLMplognn(LlognMp)α+3.\displaystyle(u-v)^{2}\max_{i\in\tilde{\mathcal{I}}^{(-)}_{p}}L(i)e^{\frac{2KLM^{p}\log n}{n}}(L\log nM^{p})^{\alpha+3}.

A similar calculation gives

supuA0𝔼(Qn(1),p(eu))2maxi~p()L(i)e2KLMplognn(LlognMp)α+3.\displaystyle\sup_{u\in A_{0}}\mathds{E}(Q_{n}^{(-1),p}(e^{u}))^{2}\leq\max_{i\in\tilde{\mathcal{I}}^{(-)}_{p}}L(i)e^{\frac{2KLM^{p}\log n}{n}}(L\log nM^{p})^{\alpha+3}.

Using Lemma 4.21 with λ=δinfuA0σn(u)\lambda=\delta\inf_{u\in A_{0}}\sigma_{n}(-u) where σn(u)=e2nunα+1L(n)\sigma_{n}(u)=e^{2nu}n^{\alpha+1}L(n) gives

(\displaystyle\mathds{P}( supuA0Qn(1),p(eu)>δinfuJσn(u))\displaystyle\sup_{u\in A_{0}}Q_{n}^{(-1),p}(e^{-u})>\delta\inf_{u\in J_{\ell}}\sigma_{n}(-u))
maxi~p()L(i)e2KLMplognn+2K(LlognMp)α+31nα+1L(n)\displaystyle\lesssim\max_{i\in\tilde{\mathcal{I}}^{(-)}_{p}}L(i)e^{\frac{2KLM^{p}\log n}{n}+2K}(L\log nM^{p})^{\alpha+3}\frac{1}{n^{\alpha+1}L(n)}

which implies

(𝐈𝐈)αe3K(LlognMp+1)α+1nα+1.\displaystyle(\mathbf{II})\leq_{\alpha}e^{3K}\frac{(L\log nM^{p+1})^{\alpha+1}}{n^{\alpha+1}}.

Combining the bound on (𝐈)(\mathbf{I}) and (𝐈𝐈)(\mathbf{II}) shows the upper bound on (¬B3p)\mathds{P}(\neg B_{3p})

Bound on (¬B4p)\mathds{P}(\neg B_{4p}): We now write A2==Γ(Mlogn,M1logn)A_{-2}=\cup_{\ell=\Gamma}^{\infty}(-\frac{M^{\ell}}{\log n},-\frac{M^{\ell-1}}{\log n}). Let us denote W:=(Mlogn,M1logn)W_{\ell}:=(-\frac{M^{\ell}}{\log n},-\frac{M^{\ell-1}}{\log n}). For any pp\in\mathbb{N} and Γ\ell\geq\Gamma, we note that M1logn1lognMpΓ+1-\frac{M^{\ell-1}}{\log n}\leq-\frac{1}{\log nM^{p-\Gamma+1}}. Applying part (a) of Lemma 4.6 with [c,d]=W[c,d]=W_{\ell} gives

(supuW|Q~n(1),p(eu)|>δ2sWα+1)2M(p+1)(α+3)+M(p+1)(α+1)δ2.\displaystyle\mathds{P}\Big{(}\sup_{u\in W_{\ell}}|\tilde{Q}_{n}^{(-1),p}(e^{-u})|>\frac{\delta}{\ell^{2}\sqrt{s_{W_{\ell}}^{\alpha+1}}}\Big{)}\lesssim\ell^{2}\frac{M^{(-\ell-p+1)(\alpha+3)}+M^{(-\ell-p+1)(\alpha+1)}}{\delta^{2}}. (4.38)

Therefore by the union bound, we get

(supuA2|Q~n(1),p(eu)|σn(u)>δ)\displaystyle\mathds{P}\Big{(}\sup_{u\in A_{-2}}\frac{|\tilde{Q}_{n}^{(-1),p}(e^{-u})|}{\sigma_{n}(u)}>\delta\Big{)} =Γ(supuW|Q~n(1),p(eu)|>δ2sWα+1)\displaystyle\leq\sum_{\ell=\Gamma}^{\infty}\mathds{P}\Big{(}\sup_{u\in W_{\ell}}|\tilde{Q}_{n}^{(-1),p}(e^{-u})|>\frac{\delta}{\ell^{2}\sqrt{s_{W_{\ell}}^{\alpha+1}}}\Big{)}
=Γ2M(p+1)(α+3)+M(p+1)(α+1)δ2\displaystyle\lesssim\sum_{\ell=\Gamma}^{\infty}\ell^{2}\frac{M^{(-\ell-p+1)(\alpha+3)}+M^{(-\ell-p+1)(\alpha+1)}}{\delta^{2}}
M(Γp+2)(α+3)+M(Γp+2)(α+1)δ2\displaystyle\lesssim\frac{M^{(-\Gamma-p+2)(\alpha+3)}+M^{(-\Gamma-p+2)(\alpha+1)}}{\delta^{2}}

This proves the desired claim.

4.3.4 Proof of Proposition 4.1

Recall the last line of the inequality (4.14) which says

(\displaystyle\mathds{P}\Big{(} Qn(1)(±eu)σn(u)δ,uA1,Qn(1)(±eu)σn(u)<δ4,uA1)\displaystyle\frac{Q^{(-1)}_{n}(\pm e^{u})}{\sigma_{n}(u)}\leq-\delta,u\in A_{-1},\frac{Q^{(-1)}_{n}(\pm e^{u})}{\sigma_{n}(u)}<\frac{\delta}{4},u\in A_{-1}\Big{)}
(B1p)(¬B2p)(¬B3p)(¬B4p).\displaystyle\geq\mathds{P}(B_{1p})-\mathds{P}(\neg B_{2p})-\mathds{P}(\neg B_{3p})-\mathds{P}(\neg B_{4p}).

Substituting the the lower bound on (B1p)\mathds{P}(B_{1p}) from Lemma 4.8 and the upper bounds on (¬B2p)\mathds{P}(\neg B_{2p}), (¬B3p)\mathds{P}(\neg B_{3p}) and (¬B4p)\mathds{P}(\neg B_{4p}) from Lemma 4.9 and 4.10 into the right hand side of the above display completes the proof.

4.4 Proof of Proposition 4.2: r=1r=1 Case

We divide B1=(nnD,nLlogn]B_{1}=(n-\frac{n}{D},n-L\log n] into Tn=lognhKlogMT_{n}=\lceil\frac{\log\frac{nh}{K}}{\log M}\rceil many sub-intervals. Recall the set of intervals {~r(+)}1rTn\{\tilde{\mathcal{I}}^{(+)}_{r}\}_{1\leq r\leq T_{n}} where

~r(+)=(nLMrlogn,nLMr1logn],1rTn,\tilde{\mathcal{I}}^{(+)}_{r}=\mathbb{Z}\cap(n-LM^{r}\log n,n-LM^{r-1}\log n],\quad 1\leq r\leq T_{n},

and note that

B1r=1Tn~r(+).B_{1}\subset\cup^{T_{n}}_{r=1}\tilde{\mathcal{I}}^{(+)}_{r}.

As in (4.5), we define

Q~n(+1),p(x):=i~p(+)aixi if 2pN2,1pTn.\displaystyle\tilde{Q}_{n}^{(+1),p}(x):=\sum_{i\in\tilde{\mathcal{I}}_{p}^{(+)}}a_{i}x^{i}\text{ if }2\leq p\leq N-2,\quad 1\leq p\leq T_{n}. (4.39)

As a result, we have Q~n(+1)(x)=p=1TnQ~n(+1),p(x)\tilde{Q}^{(+1)}_{n}(x)=\sum_{p=1}^{T_{n}}\tilde{Q}^{(+1),p}_{n}(x) and in the same spirit as in (4.14), we get

\displaystyle\mathds{P} (Qn(+1)(±eu)σn(u)<δ,uA1,Qn(1)(±eu)σn(u)<δ/4,uA1)\displaystyle\Big{(}\frac{Q_{n}^{(+1)}(\pm e^{u})}{\sigma_{n}(u)}<-\delta,u\in A_{1},\frac{Q_{n}^{(1)}(\pm e^{u})}{\sigma_{n}(u)}<\delta/4,u\notin A_{1}\Big{)}
p=1N[(B1p+)(¬B2p+)(¬B3p+)(¬B4p+)]\displaystyle\geq\prod_{p=1}^{N}\Big{[}\mathds{P}(B^{+}_{1p})-\mathds{P}(\neg B^{+}_{2p})-\mathds{P}(\neg B^{+}_{3p})-\mathds{P}(\neg B^{+}_{4p})\Big{]}

where

B~1p+:=\displaystyle\tilde{B}^{+}_{1p}:= q:|qp|ΓB~1,p(q),where B~1p(q):={supuIqQ~n(+1),p(±eu)σn(u)<2δ,|pq|Γ},\displaystyle\bigcap_{q:|q-p|\leq\Gamma}\tilde{B}^{(q)}_{1,p},\quad\text{where }\tilde{B}^{(q)}_{1p}:=\Big{\{}\sup_{u\in I_{q}}\frac{\tilde{Q}_{n}^{(+1),p}(\pm e^{-u})}{\sigma_{n}(-u)}<-2\delta,|p-q|\leq\Gamma\}, (4.40)
B~2p+:=\displaystyle\tilde{B}^{+}_{2p}:= q:|qp|>ΓB~2p(q),where B~2p(q):={supuIqQ~n(+1),p(±eu)σn(u)<δρ(pq)},\displaystyle\bigcap_{q:|q-p|>\Gamma}\tilde{B}^{(q)}_{2p},\quad\text{where }\tilde{B}^{(q)}_{2p}:=\Big{\{}\sup_{u\in I_{q}}\frac{\tilde{Q}_{n}^{(+1),p}(\pm e^{-u})}{\sigma_{n}(-u)}<\delta\rho(p-q)\Big{\}}, (4.41)
B~3p+:=\displaystyle\tilde{B}^{+}_{3p}:= {supuA0A1A2Q~n(+1),)(±eu)σn(u)<δρ(N+1p)},\displaystyle\Big{\{}\sup_{u\in A_{0}\cup A_{-1}\cup A_{-2}}\frac{\tilde{Q}_{n}^{(+1),)}(\pm e^{u})}{\sigma_{n}(u)}<\delta\rho(N+1-p)\Big{\}}, (4.42)
B~4p+:=\displaystyle\tilde{B}^{+}_{4p}:= {supuA2Q~n(+1),p(±eu)σn(u)<δρ(p)}.\displaystyle\Big{\{}\sup_{u\in A_{2}}\frac{\tilde{Q}_{n}^{(+1),p}(\pm e^{-u})}{\sigma_{n}(-u)}<\delta\rho(p)\Big{\}}. (4.43)

Recall that ρ()=12\rho(\ell)=\frac{1}{\ell^{2}} for any \{0}\ell\in\mathbb{Z}\backslash\{0\}.

Proposition 4.2 will be proved by showing lower bound to (B~1p+)\mathds{P}(\tilde{B}^{+}_{1p}) and upper bounds to (¬B~2p+)\mathds{P}(\neg\tilde{B}^{+}_{2p}), (¬B~3p+)\mathds{P}(\neg\tilde{B}^{+}_{3p}) and (¬B~4p+)\mathds{P}(\neg\tilde{B}^{+}_{4p}). We show these as follows by using Lemma 3.54.20 and 4.21.

4.4.1 Lower Bound on (B~1p+)\mathds{P}(\tilde{B}^{+}_{1p})

Lemma 4.11.

Consider the Gaussian process {Y~0,M(+)(b,t)}b{,+},t[1,M]\{\tilde{Y}^{(+)}_{0,M}(b,t)\}_{b\in\{-,+\},t\in[1,M]} defined in 4.18. For all large nn, we have

(B~1p+)24Γ(supt[1,M]Y~0,M(+)(b,t)δ)2\displaystyle\mathds{P}(\tilde{B}^{+}_{1p})\geq 2^{-4\Gamma}\mathds{P}\Big{(}\sup_{t\in[1,M]}\tilde{Y}^{(+)}_{0,M}(b,t)\leq-\delta\Big{)}^{2} (4.44)
Proof.

Recall the process Y~0,M(+1)(b,t)\tilde{Y}^{(+1)}_{0,M}(b,t) from Definition 4.18. By Lemma 4.19, we know

{uJ~q(+),b{+,}:Q~n(+1),p(beu)σn(u)}d{t[1,M],b{+,}:Y~qp,M(+)(b,t)}\displaystyle\Big{\{}u\in\tilde{J}^{(+)}_{q},b\in\{+,-\}:\frac{\tilde{Q}^{(+1),p}_{n}(be^{u})}{\sigma_{n}(u)}\Big{\}}\stackrel{{\scriptstyle d}}{{\to}}\Big{\{}t\in[1,M],b\in\{+,-\}:\tilde{Y}^{(+)}_{q-p,M}(b,t)\Big{\}} (4.45)

as nn\to\infty where Y~qp,M(+)(b,)\tilde{Y}^{(+)}_{q-p,M}(b,\cdot) is a centered Gaussian process as defined in 4.18. We now show (4.44) using (4.45). This proof is very similar to the proof of Lemma 4.8.

Now we proceed to prove (4.24) using (4.25). By the weak convergence, for all large nn

\displaystyle\mathbb{P} (B~1p+B~2p+B~3p+B~1p+)\displaystyle\Big{(}\tilde{B}^{+}_{1p}\cap\tilde{B}^{+}_{2p}\cap\tilde{B}^{+}_{3p}\cap\tilde{B}^{+}_{1p}\Big{)}
(b{+,}{supt[1,M]Y~0,M(+1)(b,t)δ}\displaystyle\geq\mathbb{P}\Big{(}\bigcap_{b\in\{+,-\}}\big{\{}\sup_{t\in[1,M]}\tilde{Y}^{(+1)}_{0,M}(b,t)\leq-\delta\big{\}}\bigcap (4.46)
b{+,}q:|qp|Γ{inft[1,M]Y~qp,M(+1)(b,t)ρ(|pq|)δ})\displaystyle\qquad\bigcap_{b\in\{+,-\}}\bigcap_{q:|q-p|\leq\Gamma}\Big{\{}\inf_{t\in[1,M]}\tilde{Y}^{(+1)}_{q-p,M}(b,t)\leq\rho(|p-q|)\delta\Big{\}}\Big{)}
(b{+,}{supt[1,M]Y~0,M(+1)δ})\displaystyle\geq\mathbb{P}\Big{(}\bigcap_{b\in\{+,-\}}\Big{\{}\sup_{t\in[1,M]}\tilde{Y}^{(+1)}_{0,M}\leq-\delta\Big{\}}\Big{)}
×q:|pq|Γ,pq(b{+,}{inft[1,M]Y~qp,M(+1)(b,t)ρ(|pq|)δ})\displaystyle\times\prod_{q:|p-q|\leq\Gamma,p\neq q}\mathbb{P}\Big{(}\bigcap_{b\in\{+,-\}}\Big{\{}\inf_{t\in[1,M]}\tilde{Y}^{(+1)}_{q-p,M}(b,t)\leq\rho(|p-q|)\delta\Big{\}}\Big{)} (4.47)

where the last inequality follows by applying the Slepian’s inequality for the Gaussian processes. Since Y~qp,M(+1)(b,t)\tilde{Y}^{(+1)}_{q-p,M}(b,t) is centered Gaussian process, the product in the last line of the above display is lower bounded by 24Γ2^{-4\Gamma}. Substituting this into the right hand side of the above inequality completes the proof.

4.4.2 Upper bound on (¬B~2p+)\mathds{P}(\neg\tilde{B}^{+}_{2p})

Lemma 4.12.

Recall the event B~2p+\tilde{B}^{+}_{2p}. For all large nn,

(¬B~2p+)MΓ\displaystyle\mathds{P}\big{(}\neg\tilde{B}^{+}_{2p}\big{)}\lesssim M^{-\Gamma} (4.48)
Proof.

Recall that

B~2p+=q:|qp|>γB~2p(q),where B~2p(q):={supuIqQ~n(1),p(±eu)σn(u)<δρ(pq)}.\tilde{B}^{+}_{2p}=\bigcap_{q:|q-p|>\gamma}\tilde{B}^{(q)}_{2p},\quad\text{where }\tilde{B}^{(q)}_{2p}:=\Big{\{}\sup_{u\in I_{q}}\frac{\tilde{Q}_{n}^{(-1),p}(\pm e^{-u})}{\sigma_{n}(-u)}<\delta\rho(p-q)\Big{\}}.

By the union bound, (¬B~2p+)\mathds{P}\big{(}\neg\tilde{B}^{+}_{2p}\big{)} can be bounded above by q:|pq|>Γ(¬B~2p(q))\sum_{q:|p-q|>\Gamma}\mathds{P}\big{(}\neg\tilde{B}^{(q)}_{2p}\big{)}. Throughout the rest of the proof, we bound (B~2p(q))\mathds{P}(\tilde{B}^{(q)}_{2p}). We claim that for all large n,Mn,M and uniformly for any qq such that |pq|>Γ|p-q|>\Gamma,

(¬B~2p(q))α,ω{eMqp1δ2ρ(pq)2maxi~p(+)L(i)maxi~p(+)L(i)when qp+21δ2ρ(pq)2M(pq1)maxi~p(+)L(i)mini~p(+)L(i)when pq+Γ\displaystyle\mathds{P}(\neg\tilde{B}^{(q)}_{2p})\lesssim_{\alpha,\omega}\begin{cases}\frac{e^{-M^{q-p-1}}}{\delta^{2}\rho(p-q)^{2}}\frac{\max_{i\in\tilde{\mathcal{I}}^{(+)}_{p}}L(i)}{\max_{i\in\tilde{\mathcal{I}}^{(+)}_{p}}L(i)}&\text{when }q\geq p+2\\ \frac{1}{\delta^{2}\rho(p-q)^{2}}M^{-(p-q-1)}\frac{\max_{i\in\tilde{\mathcal{I}}^{(+)}_{p}}L(i)}{\min_{i\in\tilde{\mathcal{I}}^{(+)}_{p}}L(i)}&\text{when }p\geq q+\Gamma\end{cases} (4.49)

From (4.49), the inequality in (4.48) follows by the union bound. We divide the proof of (4.49) into two stage. In Stage 1, we consider the case when qp+Γq\geq p+\Gamma (where Γ2\Gamma\geq 2) and in Stage 2, we consider the case when pq+2p\geq q+2.

Stage 1: For qp+Γq\geq p+\Gamma and (u,v)𝒥~q(+)(u,v)\in\tilde{\mathcal{J}}^{(+)}_{q} we have

𝔼[Q~n(+1),p(eu)enuQn(+1),p(ev)env]2=\displaystyle\mathds{E}\Big{[}\frac{\tilde{Q}_{n}^{(+1),p}(e^{u})}{e^{nu}}-\frac{Q_{n}^{(+1),p}(e^{v})}{e^{nv}}\Big{]}^{2}= i~p(+)iαL(i)[e2uie2nue2vie2nv]2\displaystyle\sum_{i\in\tilde{\mathcal{I}}^{(+)}_{p}}i^{\alpha}L(i)\Big{[}\frac{e^{2ui}}{e^{2nu}}-\frac{e^{2vi}}{e^{2nv}}\Big{]}^{2}
\displaystyle\leq nαmaxi~p()L(i)~p(+)[e2uie2vi]2\displaystyle n^{\alpha}\max_{i\in\tilde{\mathcal{I}}^{(-)}_{p}}L(i)\sum_{\tilde{\mathcal{I}}^{(+)}_{p}}[e^{-2ui}-e^{-2vi}]^{2}
\displaystyle\lesssim nα(uv)2nαmaxξ𝒥~q(+)i~p()e2iξ\displaystyle n^{\alpha}(u-v)^{2}n^{\alpha}\max_{\xi\in\tilde{\mathcal{J}}^{(+)}_{q}}\sum_{i\in\tilde{\mathcal{I}}^{(-)}_{p}}e^{-2i\xi}
α,ωnα(uv)2eMqp1maxi~q(+)L(i).\displaystyle\lesssim_{\alpha,\omega}n^{\alpha}(u-v)^{2}e^{-M^{q-p-1}}\max_{i\in\tilde{\mathcal{I}}^{(+)}_{q}}L(i).

A similar calculation gives

𝔼[Q~n(+1),p(eu)enu]2α,ωnαeMqp1maxi~q(+)L(i).\displaystyle\mathds{E}\Big{[}\frac{\tilde{Q}_{n}^{(+1),p}(e^{u})}{e^{nu}}\Big{]}^{2}\lesssim_{\alpha,\omega}n^{\alpha}e^{-M^{q-p-1}}\max_{i\in\tilde{\mathcal{I}}^{(+)}_{q}}L(i).

Using Lemma 4.21 and Chebyshev’s inequality, we have

(¬B~2p(q))\displaystyle\mathds{P}(\neg\tilde{B}^{(q)}_{2p}) (supu𝒥~q(+)|enuQ~n(+1),p(eu)|>δρ(pq)infu𝒥~q(+)enuσn(u))\displaystyle\leq\mathds{P}\Big{(}\sup_{u\in\tilde{\mathcal{J}}^{(+)}_{q}}|e^{-nu}\tilde{Q}_{n}^{(+1),p}(e^{u})|>\delta\rho(p-q)\inf_{u\in\tilde{\mathcal{J}}^{(+)}_{q}}e^{-nu}\sigma_{n}(u)\Big{)}
(supu,v𝒥~q(+)|enuQ~n(+1),p(eu)envQ~n(+1),p(ev)|>δρ(pq)infu𝒥~q(+)enuσn(u))\displaystyle\leq\mathds{P}\Big{(}\sup_{u,v\in\tilde{\mathcal{J}}^{(+)}_{q}}\big{|}e^{-nu}\tilde{Q}_{n}^{(+1),p}(e^{u})-e^{-nv}\tilde{Q}_{n}^{(+1),p}(e^{v})\big{|}>\delta\rho(p-q)\inf_{u\in\tilde{\mathcal{J}}^{(+)}_{q}}e^{-nu}\sigma_{n}(u)\Big{)}
+(|Q~n(+1),p(eMq/Llogn)|>δρ(pq)enMq/Llognσn(Mq/Llogn))\displaystyle+\mathds{P}\Big{(}|\tilde{Q}_{n}^{(+1),p}(e^{M^{-q}/L\log n})|>\delta\rho(p-q)e^{-nM^{-q}/L\log n}\sigma_{n}(M^{-q}/L\log n)\Big{)}
α,ωeMqp1δ2ρ(pq)2maxi~p(+)L(i)mini~p(+)L(i).\displaystyle\lesssim_{\alpha,\omega}\frac{e^{-M^{q-p-1}}}{\delta^{2}\rho(p-q)^{2}}\frac{\max_{i\in\tilde{\mathcal{I}}^{(+)}_{p}}L(i)}{\min_{i\in\tilde{\mathcal{I}}^{(+)}_{p}}L(i)}.

Stage 2: For pq+Γp\geq q+\Gamma and (u,v)𝒥~q(+)(u,v)\in\tilde{\mathcal{J}}^{(+)}_{q}, we have

𝔼[Q~n(+1),p(eu)enuQ~n(+1),p(ev)env]2=\displaystyle\mathds{E}\Big{[}\frac{\tilde{Q}_{n}^{(+1),p}(e^{u})}{e^{nu}}-\frac{\tilde{Q}_{n}^{(+1),p}(e^{v})}{e^{nv}}\Big{]}^{2}= i~p(+)iαL(i)[e2uie2nue2vie2nv]2\displaystyle\sum_{i\in\tilde{\mathcal{I}}^{(+)}_{p}}i^{\alpha}L(i)\Big{[}\frac{e^{2ui}}{e^{2nu}}-\frac{e^{2vi}}{e^{2nv}}\Big{]}^{2}
\displaystyle\leq nαmaxi~p()L(i)i~p()[e2uie2vi]2\displaystyle n^{\alpha}\max_{i\in\tilde{\mathcal{I}}^{(-)}_{p}}L(i)\sum_{i\in\tilde{\mathcal{I}}^{(-)}_{p}}\big{[}e^{-2ui}-e^{-2vi}\big{]}^{2}
\displaystyle\leq (uv)2nαmaxi~p()L(i)maxξ𝒥~p(+)i~p()e2iξ\displaystyle(u-v)^{2}n^{\alpha}\max_{i\in\tilde{\mathcal{I}}^{(-)}_{p}}L(i)\max_{\xi\in\tilde{\mathcal{J}}^{(+)}_{p}}\sum_{i\in\tilde{\mathcal{I}}^{(-)}_{p}}e^{-2i\xi}
\displaystyle\lesssim (uv)2nαmaxi~p()L(i)MpLlogn.\displaystyle(u-v)^{2}n^{\alpha}\max_{i\in\tilde{\mathcal{I}}^{(-)}_{p}}L(i)M^{p}L\log n.

By a similar computation, we get

𝔼[Q~n(+1),p(eu)enu]2nαmaxi~p()L(i)MpLlogn.\displaystyle\mathds{E}\Big{[}\frac{\tilde{Q}_{n}^{(+1),p}(e^{u})}{e^{nu}}\Big{]}^{2}\leq n^{\alpha}\max_{i\in\tilde{\mathcal{I}}^{(-)}_{p}}L(i)M^{p}L\log n.

Using Lemma 4.21 and Chebyshev’s inequality, we have

(¬\displaystyle\mathds{P}(\neg B~2p(q))(supu𝒥~q(+)|enuQ~n(+1),p(eu)|>δinfu𝒥~q(+)enuσn(u)ρ(pq))\displaystyle\tilde{B}^{(q)}_{2p})\leq\mathds{P}\Big{(}\sup_{u\in\tilde{\mathcal{J}}^{(+)}_{q}}|e^{-nu}\tilde{Q}_{n}^{(+1),p}(e^{u})|>\delta\inf_{u\in\tilde{\mathcal{J}}^{(+)}_{q}}e^{-nu}\sigma_{n}(u)\rho(p-q)\Big{)}
(supu,v𝒥~q(+)|enuQ~n(+1),p(eu)envQ~n(+1),p(ev)|>δinfu𝒥~q(+)enuσn(u)ρ(pq))\displaystyle\leq\mathds{P}\Big{(}\sup_{u,v\in\tilde{\mathcal{J}}^{(+)}_{q}}|e^{-nu}\tilde{Q}_{n}^{(+1),p}(e^{u})-e^{-nv}\tilde{Q}_{n}^{(+1),p}(e^{v})|>\delta\inf_{u\in\tilde{\mathcal{J}}^{(+)}_{q}}e^{-nu}\sigma_{n}(u)\rho(p-q)\Big{)}
+(|envQ~n(+1),p(ev)|>δinfu𝒥~q(+)enuσn(u)ρ(pq))\displaystyle+\mathds{P}\Big{(}|e^{-nv}\tilde{Q}_{n}^{(+1),p}(e^{v})|>\delta\inf_{u\in\tilde{\mathcal{J}}^{(+)}_{q}}e^{-nu}\sigma_{n}(u)\rho(p-q)\Big{)}
α,ω1δ2ρ(pq)2M(pq1)maxi~p(+)L(i)mini~p(+)L(i).\displaystyle\lesssim_{\alpha,\omega}\frac{1}{\delta^{2}\rho(p-q)^{2}}M^{-(p-q-1)}\frac{\max_{i\in\tilde{\mathcal{I}}^{(+)}_{p}}L(i)}{\min_{i\in\tilde{\mathcal{I}}^{(+)}_{p}}L(i)}.

Now we complete showing the bound on (¬B~2p+)\mathds{P}(\neg\tilde{B}^{+}_{2p}). Recall that ρ(i)=(3/π2)11i2\rho(i)=(3/\pi^{2})^{-1}\frac{1}{i^{2}} for i\{0}i\in\mathbb{Z}\backslash\{0\}. By the union bound,

(¬B~2p+)q:|qp|>Γ(¬B~2p(q))\displaystyle\mathds{P}(\neg\tilde{B}^{+}_{2p})\leq\sum_{q:|q-p|>\Gamma}\mathds{P}(\neg\tilde{B}^{(q)}_{2p}) δqp+Γ|pq|2eMqp1+pq+Γ|pq|2M(pq1)\displaystyle\lesssim_{\delta}\sum_{q\geq p+\Gamma}|p-q|^{2}e^{-M^{q-p-1}}+\sum_{p\geq q+\Gamma}|p-q|^{2}M^{-(p-q-1)}
δMΓ.\displaystyle\lesssim_{\delta}M^{-\Gamma}.

This completes the proof of (4.48). ∎

4.4.3 Upper bound on (¬B~3p+)\mathds{P}(\neg\tilde{B}^{+}_{3p}) & (¬B~4p+)\mathds{P}(\neg\tilde{B}^{+}_{4p})

Lemma 4.13.

For all large nn, we have

(¬B~4p+)ehD,(¬B~3p+)1δ2KM(p1)(α+1)+1δ2Mp1eK.\displaystyle\mathds{P}\big{(}\neg\tilde{B}^{+}_{4p}\big{)}\leq e^{-hD},\quad\mathds{P}\big{(}\neg\tilde{B}^{+}_{3p}\big{)}\leq\frac{1}{\delta^{2}}\frac{K}{M^{(p-1)(\alpha+1)}}+\frac{1}{\delta^{2}M^{p-1}}e^{-K}. (4.50)
Proof.

The proof is divided in two stages: in Stage 1, we prove the bound on (B~4p+)\mathds{P}(\tilde{B}^{+}_{4p}) and Stage 2 will contain the bound on (B~3p+)\mathds{P}(\tilde{B}^{+}_{3p}).

Stage 1: From the definition of B~4p+\tilde{B}^{+}_{4p},

(¬B~4p+)(supuA2Q~n(+1),pσn(u)(±eu)>δρ(p))\displaystyle\mathds{P}\big{(}\neg\tilde{B}^{+}_{4p}\big{)}\leq\mathds{P}\Big{(}\sup_{u\in A_{2}}\frac{\tilde{Q}_{n}^{(+1),p}}{\sigma_{n}(u)}(\pm e^{u})>\delta\rho(p)\Big{)} (4.51)

In what follows, we seek to bound the right hand side of the above inequality. We write A2:==ΓW~A_{2}:=\cup^{\infty}_{\ell=\Gamma}\tilde{W}_{\ell} where W:=[M1logn,Mlogn)W_{\ell}:=[\frac{M^{\ell-1}}{\log n},\frac{M^{\ell}}{\log n}). For any fixed 1\ell\in\mathbb{Z}_{\geq 1} and u,vJu,v\in J_{\ell}, we have

𝔼[enuQ~n(+1),p(eu)envQ~n(+1),p(ev)]2\displaystyle\mathds{E}[e^{-nu}\tilde{Q}_{n}^{(+1),p}(e^{u})-e^{-nv}\tilde{Q}_{n}^{(+1),p}(e^{v})]^{2}\leq nα(uv)2supξJi~p(+)L(i)(ni)2e2ξ(ni)\displaystyle n^{\alpha}(u-v)^{2}\sup_{\xi\in J_{\ell}}\sum_{i\in\tilde{\mathcal{I}}^{(+)}_{p}}L(i)(n-i)^{2}e^{-2\xi(n-i)}
\displaystyle\leq (uv)2nαmaxi~p(+)L(i)maxξJi~p()i2e2iξ\displaystyle(u-v)^{2}n^{\alpha}\max_{i\in\tilde{\mathcal{I}}^{(+)}_{p}}L(i)\max_{\xi\in J_{\ell}}\sum_{i\in\tilde{\mathcal{I}}^{(-)}_{p}}i^{2}e^{-2i\xi}
\displaystyle\lesssim (uv)2nα+2L(n)e2nuue2/Mp.\displaystyle(u-v)^{2}n^{\alpha+2}L(n)\frac{e^{2nu}}{u}e^{-2\ell/M^{p}}.

A similar calculation gives

𝔼[Qn(+1),p(eu)]2nαL(n)e2nuue2/Mp.\displaystyle\mathds{E}[Q_{n}^{(+1),p}(e^{u})]^{2}\lesssim n^{\alpha}L(n)\frac{e^{2nu}}{u}e^{-2\ell/M^{p}}.

Using Lemma 4.21, this gives

(supuJQn(+1),p(eu)>δσn(u))e2/Mp.\displaystyle\mathds{P}(\sup_{u\in J_{\ell}}Q_{n}^{(+1),p}(e^{u})>\delta\sigma_{n}(u))\leq e^{-2\ell/M^{p}}.

A union bound then gives

(supuA2Qn(+1),p(eu)>δσn(u))e2nh/MpehD,\displaystyle\mathds{P}(\sup_{u\in A_{2}}Q_{n}^{(+1),p}(e^{u})>\delta\sigma_{n}(u))\leq e^{-2nh/M^{p}}\leq e^{-hD},

from which the desired conclusion follows on noting that D1h+MD\gg\frac{1}{h}+M. This proves the bound on (B4p+)\mathds{P}(B^{+}_{4p}) of (4.50).

Stage 2: By the union bound, we write

(¬B3p+)\displaystyle\mathds{P}(\neg B^{+}_{3p}) (supuA0Q~n(+1),p(±eu)σn(u)>δρ(N+1p))(𝐈)\displaystyle\leq\underbrace{\mathds{P}\Big{(}\sup_{u\in A_{0}}\frac{\tilde{Q}_{n}^{(+1),p}(\pm e^{u})}{\sigma_{n}(u)}>\delta\rho(N+1-p)\Big{)}}_{(\mathbf{I})}
+(supuA1A2Q~n(+1),p(±eu)σn(u)>δρ(N+1p))(𝐈𝐈).\displaystyle+\underbrace{\mathds{P}\Big{(}\sup_{u\cup A_{-1}\cup A_{-2}}\frac{\tilde{Q}_{n}^{(+1),p}(\pm e^{u})}{\sigma_{n}(u)}>\delta\rho(N+1-p)\Big{)}}_{(\mathbf{II})}.

In what follows, we seek to bound (𝐈)(\mathbf{I}) and (𝐈𝐈)(\mathbf{II}) separately. We claim and prove that for all large nn,

(𝐈)1δ2KM(p1)(α+1),(𝐈𝐈)1δ2eKMp1.(\mathbf{I})\leq\frac{1}{\delta^{2}}\frac{K}{M^{(p-1)(\alpha+1)}},\quad(\mathbf{II})\leq\frac{1}{\delta^{2}}\frac{e^{-K}}{M^{p-1}}.

Bound on (𝐈)(\mathbf{I}): For u,vJu,v\in J_{\ell} for [0,K]\ell\in\mathbb{Z}_{[0,K]} we have

𝔼[Qn(+1),p(eu)Qn(+1),p(ev)]2\displaystyle\mathds{E}[Q_{n}^{(+1),p}(e^{u})-Q_{n}^{(+1),p}(e^{v})]^{2}\leq (uv)2supξJiI~piα+2L(i)e2ξi\displaystyle(u-v)^{2}\sup_{\xi\in J_{\ell}}\sum_{i\in\widetilde{I}_{p}}i^{\alpha+2}L(i)e^{2\xi i}
\displaystyle\leq (uv)2e2/MpiI~piα+2L(i)\displaystyle(u-v)^{2}e^{2\ell/M^{p}}\sum_{i\in\widetilde{I}_{p}}i^{\alpha+2}L(i)
(uv)2nα+3M(p1)(α+3)L(n)e2/Mp.\displaystyle\lesssim(u-v)^{2}\frac{n^{\alpha+3}}{M^{(p-1)(\alpha+3)}}L(n)e^{2\ell/M^{p}}.

A similar calculation gives

supuJ𝔼[Qn(+1),p(eu)2]\displaystyle\sup_{u\in J_{\ell}}\mathds{E}[Q_{n}^{(+1),p}(e^{u})^{2}]\lesssim nα+1M(p1)(α+1)L(n)e2/Mp.\displaystyle\frac{n^{\alpha+1}}{M^{(p-1)(\alpha+1)}}L(n)e^{2\ell/M^{p}}.

Noting that σn2(u)=nαL(n)e2nu/u\sigma^{2}_{n}(u)=n^{\alpha}L(n)e^{2nu}/u gives

(𝐈)2[0,K](supuJQn(+1),p(eu)>δinfuJσn(u))\displaystyle(\mathbf{I})\leq 2\sum_{\ell\in\mathbb{Z}_{[0,K]}}\mathds{P}(\sup_{u\in J_{\ell}}Q_{n}^{(+1),p}(e^{u})>\delta\inf_{u\in J_{\ell}}\sigma_{n}(u)) 1δ2nuM(p1)(α+1)\displaystyle\lesssim\frac{1}{\delta^{2}}\frac{nu}{M^{(p-1)(\alpha+1)}}
1δ2KM(p1)(α+1).\displaystyle\leq\frac{1}{\delta^{2}}\frac{K}{M^{(p-1)(\alpha+1)}}.

The desired bound on (𝐈)(\mathbf{I}) follows by taking pp large, or equivalently DKD\gg K.

Bound on (𝐈𝐈)(\mathbf{II}): Note that A1A2=(,Kn]A_{-1}\cup A_{-2}=(-\infty,-\frac{K}{n}]. For u,vKnu,v\geq\frac{K}{n} we have

𝔼[Qn(+1),p(eu)Qn(+1),p(ev)]2\displaystyle\mathds{E}[Q_{n}^{(+1),p}(e^{-u})-Q_{n}^{(+1),p}(e^{-v})]^{2}\leq (uv)2supξJiI~piα+2L(i)e2ξi\displaystyle(u-v)^{2}\sup_{\xi\in J_{\ell}}\sum_{i\in\widetilde{I}_{p}}i^{\alpha+2}L(i)e^{-2\xi i}
\displaystyle\leq (uv)2supuJL(1/u)uδiI~piα+2+δe2ui\displaystyle(u-v)^{2}\sup_{u\in J_{\ell}}L(1/u)u^{\delta}\sum_{i\in\widetilde{I}_{p}}i^{\alpha+2+\delta}e^{-2ui}
\displaystyle\leq (uv)2L(1/u)uδnα+3+δe2u(nn/Mp)1Mp1.\displaystyle(u-v)^{2}L(1/u)u^{\delta}n^{\alpha+3+\delta}e^{-2u(n-n/M^{p})}\frac{1}{M^{p-1}}.

A similar calculation gives

𝔼[Qn(+1),p(eu)2]\displaystyle\mathds{E}[Q_{n}^{(+1),p}(e^{-u})^{2}]\lesssim L(1/u)uδnα+1+δe2u(nn/Mp)1Mp1.\displaystyle L(1/u)u^{\delta}n^{\alpha+1+\delta}e^{-2u(n-n/M^{p})}\frac{1}{M^{p-1}}.

Noting that σn2(u)=L(1/u)/uα+1\sigma^{2}_{n}(u)=L(1/u)/u^{\alpha+1} gives

(Qn(+1),p(eu)>δσn(u))1δ2(nu)α+δ+1enu1δ2M(p1)e/2.\displaystyle\mathds{P}(Q_{n}^{(+1),p}(e^{-u})>\delta\sigma_{n}(u))\lesssim\frac{1}{\delta^{2}}(nu)^{\alpha+\delta+1}e^{-nu}\leq\frac{1}{\delta^{2}M^{(p-1)}}e^{-\ell/2}.

Summing over \ell gives the bound 1δ2eKMp1\frac{1}{\delta^{2}}\frac{e^{-K}}{M^{p-1}}.

4.5 Proof of Proposition 4.3: r=0r=0 Case

Proposition 4.3 follows from the following theorem.

Theorem 4.14.

Fix θ(0,1)\theta\in(0,1). Consider the following event:

Ξn(K):={n1/2Qn(0)(ex/n)\displaystyle\Xi_{n}(K):=\Big{\{}n^{-1/2}Q^{(0)}_{n}(e^{x/n}) δx,x[K,K],\displaystyle\leq-\delta_{x},\forall x\in\big{[}-K,K\big{]},
n1/2Qn(0)(ex/n)\displaystyle n^{-1/2}Q^{(0)}_{n}(e^{x/n}) δx/4,x(,K),\displaystyle\leq\delta_{x}/4,\forall x\in\big{(}-\infty,-K\big{)},
n1/2exQn(0)(ex/n)\displaystyle n^{-1/2}e^{-x}Q^{(0)}_{n}(e^{x/n}) δx/4,x(K,)}\displaystyle\leq\delta_{x}/4,\forall x\in\big{(}K,\infty\big{)}\Big{\}} (4.52)

where δ0=δ\delta_{0}=\delta and δx=δ/j\delta_{x}=\delta/\sqrt{j} if x[j,j+1)(j1,j]x\in[-j,j+1)\cup(j-1,j] for any jj\in\mathbb{N}. Then, there exists δ0>0\delta_{0}>0, M0>0M_{0}>0 and C1,C2>0C_{1},C_{2}>0 such that for all δ<δ0\delta<\delta_{0} and M>M0M>M_{0},

lim infn(Ξn)4C1δ1θKlogKeC2K2\displaystyle\liminf_{n\to\infty}\mathbb{P}(\Xi_{n})\geq 4^{-C_{1}\delta^{-1-\theta}K\log K}-e^{-C_{2}K^{2}} (4.53)
Proof.

We use the following shorthand notations:

Ξn(1)(K):={n1/2Qn(0)(ex/n)\displaystyle\Xi^{(1)}_{n}(K):=\Big{\{}n^{-1/2}Q^{(0)}_{n}(e^{x/n}) δx,x[K,K],\displaystyle\leq-\delta_{x},\forall x\in\big{[}-K,K\big{]},
n1/2Qn(0)(ex/n)\displaystyle n^{-1/2}Q^{(0)}_{n}(e^{x/n}) δx/4,x[K3,K],\displaystyle\leq\delta_{x}/4,\forall x\in\big{[}-K^{3},-K\big{]},
n1/2exQn(0)(ex/n)\displaystyle n^{-1/2}e^{-x}Q^{(0)}_{n}(e^{x/n}) δx/4,x[K,K3]}\displaystyle\leq\delta_{x}/4,\forall x\in\big{[}K,K^{3}\big{]}\Big{\}}
Ξn(2)(K):={n1/2Qn(0)(ex/n)\displaystyle\Xi^{(2)}_{n}(K):=\Big{\{}n^{-1/2}Q^{(0)}_{n}(e^{x/n}) δx/4,x(,K3],\displaystyle\leq\delta_{x}/4,\forall x\in(-\infty,-K^{3}],
n1/2exQn(0)(ex/n)\displaystyle n^{-1/2}e^{-x}Q^{(0)}_{n}(e^{x/n}) δx/4,x[K3,+])}\displaystyle\leq\delta_{x}/4,\forall x\in[K^{3},+\infty])\Big{\}}

It is straightforward to see that Ξn(K)=Ξn(1)(K)Ξn(2)(K)\Xi_{n}(K)=\Xi^{(1)}_{n}(K)\cup\Xi^{(2)}_{n}(K). Thus, (Ξn(K))\mathbb{P}(\Xi_{n}(K)) is bounded below by (Ξn(1)(K))(¬Ξn(2)(K))\mathbb{P}(\Xi^{(1)}_{n}(K))-\mathbb{P}(\neg\Xi^{(2)}_{n}(K)). In what follows, we show there exist δ0,M0>0\delta_{0},M_{0}>0 and C1,C2>0C_{1},C_{2}>0 such that for all δ<δ0\delta<\delta_{0} and M>M0M>M_{0},

lim infn(Ξn(1)(K))eC1δ1θKlogK𝔏𝔦𝔪𝔫𝔣,lim supn(¬Ξn(2)(K))eC2K2𝔏𝔦𝔪𝔖𝔲𝔭\displaystyle\underbrace{\liminf_{n\to\infty}\mathbb{P}(\Xi^{(1)}_{n}(K))\geq e^{-C_{1}\delta^{-1-\theta}K\log K}}_{\mathfrak{LimInf}},\quad\underbrace{\limsup_{n\to\infty}\mathbb{P}(\neg\Xi^{(2)}_{n}(K))\leq e^{-C_{2}K^{2}}}_{\mathfrak{LimSup}} (4.54)

where ¬Ξn(2)\neg\Xi^{(2)}_{n} is the complement of the event Ξn(2)\Xi^{(2)}_{n}. Combining the bounds on lim infn(Ξn(1))\liminf_{n\to\infty}\mathbb{P}(\Xi^{(1)}_{n}) and lim supn(Ξn(2))\limsup_{n\to\infty}\mathbb{P}(\Xi^{(2)}_{n}) and substituting those into the inequality (Ξ)(Ξn(1))(¬Ξn(2))\mathbb{P}(\Xi)\geq\mathbb{P}(\Xi^{(1)}_{n})-\mathbb{P}(\neg\Xi^{(2)}_{n}) proves (4.53).

Proof of 𝔏𝔦𝔪𝔫𝔣\mathfrak{LimInf}: Lemma 4.16 shows that {n1/2Qn(0)(ex/n):x[K3,K3]}\{n^{-1/2}Q^{(0)}_{n}(e^{x/n}):x\in\big{[}-K^{3},K^{3}\big{]}\} weakly converges to {Y0K(x):x[K3,K3]}\{Y^{K}_{0}(x):x\in\big{[}-K^{3},K^{3}\big{]}\} as nn\to\infty. Thus, lim infn(Ξn(1))\liminf_{n\to\infty}\mathbb{P}(\Xi^{(1)}_{n}) can be bounded below by (𝔉)\mathbb{P}(\mathfrak{F}) (see (4.17) for the definition of 𝔉\mathfrak{F}). The lower bound of lim infn(Ξn(1))\liminf_{n\to\infty}\mathbb{P}(\Xi^{(1)}_{n}) now follows from Lemma 4.17.

Proof of 𝔏𝔦𝔪𝔖𝔲𝔭\mathfrak{LimSup}: Since limnL(nnD)/L(n/D)=1\lim_{n\to\infty}L\big{(}n-\frac{n}{D}\big{)}/L\big{(}n/D\big{)}=1, we get that for any x,y>0x,y>0,

𝔼[n1αexyQn(0)(ex/n)Qn(0)(ey/n)]L(n)e(x+y)/D1e(11/D)(x+y)x+y.\displaystyle\mathbb{E}\Big{[}n^{-1-\alpha}e^{-x-y}Q^{(0)}_{n}(e^{x/n})Q^{(0)}_{n}(e^{y/n})\Big{]}\sim L(n)e^{-(x+y)/D}\frac{1-e^{-(1-1/D)(x+y)}}{x+y}.

Similarly, for any x,y<0x,y<0,

𝔼[n1αQn(0)(ex/n)Qn(0)(ey/n)]Dαe(x+y)/D1e(11/D)(x+y)|x+y|.\displaystyle\mathbb{E}\Big{[}n^{-1-\alpha}Q^{(0)}_{n}(e^{x/n})Q^{(0)}_{n}(e^{y/n})\Big{]}\sim D^{-\alpha}e^{(x+y)/D}\frac{1-e^{(1-1/D)(x+y)}}{|x+y|}.

As a consequence, we get

n1α𝔼\displaystyle n^{-1-\alpha}\mathbb{E} [(Qn(0)(ex/n)exQn(0)(ey/n)ey)2]\displaystyle\Big{[}\Big{(}\tfrac{Q^{(0)}_{n}(e^{x/n})}{e^{x}}-\tfrac{Q^{(0)}_{n}(e^{y/n})}{e^{y}}\Big{)}^{2}\Big{]}
Cmin{x,y}eK3/Dmin{(xK3),(yK3)}/D|xy|2,x,y>K3\displaystyle\leq\frac{C}{\min\{x,y\}}e^{-K^{3}/D-\min\{(x-K^{3}),(y-K^{3})\}/D}|x-y|^{2},\quad\forall x,y>K^{3}
n1α𝔼\displaystyle n^{-1-\alpha}\mathbb{E} [(Qn(0)(ex/n)Qn(0)(ey/n))2]\displaystyle\Big{[}\Big{(}Q^{(0)}_{n}(e^{x/n})-Q^{(0)}_{n}(e^{y/n})\Big{)}^{2}\Big{]}
Cmin{|x|,|y|}eK3/Dmin{(|x|K3),(|y|K3)}/D|xy|2,x,y<K3\displaystyle\leq\frac{C}{\min\{|x|,|y|\}}e^{-K^{3}/D-\min\{(|x|-K^{3}),(|y|-K^{3})\}/D}|x-y|^{2},\quad\forall x,y<-K^{3}

This upper bound in conjunction with Kolmogorov-Centsov’s type argument shows there exists C2>0C_{2}>0 such that for all large integer nn and K>0K>0,

(¬Ξn(2))eC2K3/D.\displaystyle\mathbb{P}\big{(}\neg\Xi^{(2)}_{n}\big{)}\leq e^{-C_{2}K^{3}/D}. (4.55)

This completes the proof of (4.54) and hence, completes the proof the result. ∎

Lemma 4.15.

Consider the stochastic process {Qn(0)(ex/n)/n:x[K3,K3]}\big{\{}Q^{(0)}_{n}(e^{x/n})/\sqrt{n}:x\in[-K^{3},K^{3}]\big{\}}. Then, there exists C=C(M)>0C=C(M)>0 such that for all s>0s>0,

(maxx[K3,K3]1n3/2|ddzQ(0)n(z)|z=ex/n|s)Cs2.\displaystyle\mathbb{P}\Big{(}\max_{x\in[-K^{3},K^{3}]}\frac{1}{n^{3/2}}\Big{|}\frac{d}{dz}Q^{(0)}_{n}(z)\big{|}_{z=e^{x/n}}\Big{|}\geq s\Big{)}\leq\frac{C}{s^{2}}. (4.56)
Proof.

For any x[K3,K3]x\in[-K^{3},K^{3}],

ddzQ(0)n(z)|z=ex/n=i=nKnnDj=nDiai(ie(i1)x/n(i+1)eix/n)+(n+1)exnnKj=nMaj.\displaystyle\frac{d}{dz}Q^{(0)}_{n}(z)\big{|}_{z=e^{x/n}}=\sum_{i=\frac{n}{K}}^{n-\frac{n}{D}}\sum_{j=\frac{n}{D}}^{i}a_{i}\big{(}ie^{(i-1)x/n}-(i+1)e^{ix/n}\big{)}+(n+1)e^{x}\sum^{n-\frac{n}{K}}_{j=\frac{n}{M}}a_{j}. (4.57)

By the Kolmogorov’s maxmimal inequality, there exists c1=c1(M)>0c_{1}=c_{1}(M)>0 such that

(maxnDinnD|j=nDiai|L(n)s(i=n/Dnn/Diα)12)c1s2.\displaystyle\mathbb{P}\Big{(}\max_{\frac{n}{D}\leq i\leq n-\frac{n}{D}}\Big{|}\sum_{j=\frac{n}{D}}^{i}a_{i}\Big{|}\geq L(n)s\big{(}\sum_{i=n/D}^{n-n/D}i^{\alpha}\big{)}^{\frac{1}{2}}\Big{)}\leq\frac{c_{1}}{s^{2}}. (4.58)

Note that there exists C=C(D,K)>0C=C(D,K)>0 such that supx[K3,K3]max1in|ie(i1)x/n(i+1)eix/n|C\sup_{x\in[-K^{3},K^{3}]}\max_{1\leq i\leq n}\big{|}ie^{(i-1)x/n}-(i+1)e^{ix/n}\big{|}\leq C. Furthermore, we have i=n/Dnn/Diα=(nnD)1+α(nD)1+α\sum_{i=n/D}^{n-n/D}i^{\alpha}=(n-\frac{n}{D})^{1+\alpha}-\big{(}\frac{n}{D}\big{)}^{1+\alpha}. Combining this with the inequality in the above display shows that there exists c2=c2(K,D)>0c_{2}=c_{2}(K,D)>0 such that

(supx[K3,K3]|ddzQ(0)n(z)|z=ex/n|L(n)sn(1+α)/2)c2s2.\displaystyle\mathbb{P}\Big{(}\sup_{x\in[-K^{3},K^{3}]}\Big{|}\frac{d}{dz}Q^{(0)}_{n}(z)\big{|}_{z=e^{x/n}}\Big{|}\geq L(n)sn^{(1+\alpha)/2}\Big{)}\leq\frac{c_{2}}{s^{2}}. (4.59)

This completes the proof. ∎

Lemma 4.16.

Then the sequence of stochastic processes {Q(0)n(ex/n)/[L(n)nα+12]:x[K3,K3]}\{Q^{(0)}_{n}(e^{x/n})/[L(n)n^{\frac{\alpha+1}{2}}]:x\in[-K^{3},K^{3}]\} is uniformly equi-continuous and converges to the Gaussian process {YD0(x):x[K3,K3]}\{Y^{D}_{0}(x):x\in[-K^{3},K^{3}]\} as nn\to\infty where YD0Y^{D}_{0} has the following covariance structure:

𝔼[YD0(x)YD0(y)]=11D1Dtαet(x+y)dt.\displaystyle\mathbb{E}\Big{[}Y^{D}_{0}(x)Y^{D}_{0}(y)\Big{]}=\int^{1-\frac{1}{D}}_{\frac{1}{D}}t^{\alpha}e^{t(x+y)}dt.

Fix any interval [a,b][K3,0][a,b]\subset[-K^{3},0]. Then, there exists C>0C>0 such that for any s>0s>0,

(supxy[a,b]|YD0(x)YD0(y)||xy|smax{|b|,1})Cs2.\displaystyle\mathbb{P}\Big{(}\sup_{x\neq y\in[a,b]}\frac{|Y^{D}_{0}(x)-Y^{D}_{0}(y)|}{|x-y|}\geq\frac{s}{\max\{|b|,1\}}\Big{)}\leq\frac{C}{s^{2}}. (4.60)

Similarly, for any [b,a][0,K3][b,a]\subset[0,K^{3}]

(supxy[a,b]|exYD0(x)eyYD0(y)||xy|smax{|b|,1})Cs2.\displaystyle\mathbb{P}\Big{(}\sup_{x\neq y\in[a,b]}\frac{|e^{-x}Y^{D}_{0}(x)-e^{-y}Y^{D}_{0}(y)|}{|x-y|}\geq\frac{s}{\max\{|b|,1\}}\Big{)}\leq\frac{C}{s^{2}}. (4.61)
Proof.

By the mean value theorem, for all n1n\geq 1.

supxy[K2,K2]|Q(0)(ex/n)Q(0)n(ey/n)||xy|supx[K2,K2]n1|ddzQ(0)(z)|z=ex/n|.\displaystyle\sup_{x\neq y\in[-K^{2},K^{2}]}\frac{|Q^{(0)}(e^{x/n})-Q^{(0)}_{n}(e^{y/n})|}{|x-y|}\leq\sup_{x\in[-K^{2},K^{2}]}n^{-1}\Big{|}\frac{d}{dz}Q^{(0)}(z)\big{|}_{z=e^{x/n}}\Big{|}. (4.62)

Combining this with Lemma 4.15, there exists C=C(M)>0C=C(M)>0 such that for all s>0s>0,

(maxxy[K2,K2]|Q(0)(ex/n)Q(0)(ey/n)||xy|L(n)sn(1+α)/2)Cs2.\displaystyle\mathbb{P}\Big{(}\max_{x\neq y\in[-K^{2},K^{2}]}\frac{|Q^{(0)}(e^{x/n})-Q^{(0)}(e^{y/n})|}{|x-y|}\geq L(n)sn^{(1+\alpha)/2}\Big{)}\leq\frac{C}{s^{2}}. (4.63)

This shows that {Q(0)n(x)/[L(n)n1+α2][K3,K3]}\{Q^{(0)}_{n}(x)/[L(n)n^{\frac{1+\alpha}{2}}]\in[-K^{3},K^{3}]\} is uniformly equi-continuous as nn goes to \infty. Moreover, for any x,y[K3,K3]x,y\in[-K^{3},K^{3}],

𝔼[Q(0)n(ex/n)Q(0)(ey/n)]=i=nKnnKL(i)iαei(x+y)/nn11K1Ktαet(x+y)dt.\displaystyle\mathbb{E}\big{[}Q^{(0)}_{n}(e^{x/n})Q^{(0)}(e^{y/n})\big{]}=\sum_{i=\frac{n}{K}}^{n-\frac{n}{K}}L(i)i^{\alpha}e^{i(x+y)/n}\stackrel{{\scriptstyle n\to\infty}}{{\rightarrow}}\int^{1-\frac{1}{K}}_{\frac{1}{K}}t^{\alpha}e^{t(x+y)}dt. (4.64)

By Lindeberg-Feller’s theorem, for any x1,,xn[K3,K3]x_{1},\ldots,x_{n}\in[-K^{3},K^{3}],

(Q(0)n(ex1/n),Q(0)n(ex2/n),,Q(0)n(ex1/n))d(YK0(x1),,YK0(xn))\displaystyle\big{(}Q^{(0)}_{n}(e^{x_{1}/n}),Q^{(0)}_{n}(e^{x_{2}/n}),\ldots,Q^{(0)}_{n}(e^{x_{1}/n})\big{)}\stackrel{{\scriptstyle d}}{{\to}}\big{(}Y^{K}_{0}(x_{1}),\ldots,Y^{K}_{0}(x_{n})\big{)} (4.65)

where YK0Y^{K}_{0} is the same Gaussian process as stated in the lemma. The above display shows the finite dimensional convergence of process {Q(0)n(ex/n):x[K3,K3]}\{Q^{(0)}_{n}(e^{x/n}):x\in[-K^{3},K^{3}]\}. Allying this with the tightness in (4.63) yields the weak convergence.

It remains to show (4.60) and (4.61). We only show (4.60). The proof of (4.61) follows from similar argument. By the mean-value theorem, for any x,y[b1,b2][K3,0]x,y\in[b_{1},b_{2}]\subset[-K^{3},0]

|Q(0)n(ex/n)Q(0)n(ey/n)|\displaystyle\big{|}Q^{(0)}_{n}(e^{x/n})-Q^{(0)}_{n}(e^{y/n})\big{|} |xy|nsupw[b1,b2]|ddzQ(0)n(z)|z=ew/n|\displaystyle\leq\frac{|x-y|}{n}\sup_{w\in[b_{1},b_{2}]}\Big{|}\frac{d}{dz}Q^{(0)}_{n}(z)\big{|}_{z=e^{w/n}}\Big{|} (4.66)
|xy|nsupn/Dinn/D\displaystyle\leq\frac{|x-y|}{n}\sup_{n/D\leq i\leq n-n/D} (4.67)
×|j=n/Miai|supw[b1,b2](j=n/Dnn/D|je(j1)w/n(j+1)ejw/n|).\displaystyle\times|\sum_{j=n/M}^{i}a_{i}|\sup_{w\in[b_{1},b_{2}]}\Big{(}\sum_{j=n/D}^{n-n/D}|je^{(j-1)w/n}-(j+1)e^{jw/n}|\Big{)}. (4.68)

where the last inequality follows by expanding ddzQ(0)n(z)|z=ew/n\frac{d}{dz}Q^{(0)}_{n}(z)\big{|}_{z=e^{w/n}}. Approximating the sum j=n/Dnn/D|je(j1)w/n(j+1)ejw/n|\sum_{j=n/D}^{n-n/D}|je^{(j-1)w/n}-(j+1)e^{jw/n}| by the integral (n11/D1/D|wtetwetw|dt+o(n))(n\int^{1-1/D}_{1/D}|wte^{tw}-e^{tw}|dt+o(n)) and substituting into the right hand side of the above display yields

r.h.s. of (4.68) |xy|supn/Dinn/D|j=n/Diai|supw[b1,b2]\displaystyle\leq|x-y|\sup_{n/D\leq i\leq n-n/D}|\sum_{j=n/D}^{i}a_{i}|\sup_{w\in[b_{1},b_{2}]} (4.69)
×(11/D1/D|wtetwetw|dt+o(1)).\displaystyle\quad\times\big{(}\int^{1-1/D}_{1/D}|wte^{tw}-e^{tw}|dt+o(1)\Big{)}. (4.70)

Note that there exists constant C1=C1(D)>0C_{1}=C_{1}(D)>0 such that 11/D1/D|wtetwetw|dt\int^{1-1/D}_{1/D}|wte^{tw}-e^{tw}|dt can be bounded above by C1/max{|w|,1}C_{1}/\max\{|w|,1\}. The maximum value of this lower bound as ww varies in [b1,b2][K3,0][b_{1},b_{2}]\subset[-K^{3},0] is C/max{|b1|,1}C/\max\{|b_{1}|,1\}. By using this upper bound for supw[b1,b2]11/D1/D|wtetwetw|dt\sup_{w\in[b_{1},b_{2}]}\int^{1-1/D}_{1/D}|wte^{tw}-e^{tw}|dt and Doobs’s maximal inequality for the martingale M=i=n/DaiM_{\ell}=\sum_{i=n/D}^{\ell}a_{i} to control the tail probability of supn/Dinn/D|j=n/Diai|\sup_{n/D\leq i\leq n-n/D}|\sum_{j=n/D}^{i}a_{i}| shows

(supxy[b1,b2]|n(1+α)/2Q(0)n(x)n(1+α)/2Q(0)n(y)||xy|L(n)s|b|)Cs2.\displaystyle\mathbb{P}\Big{(}\sup_{x\neq y\in[b_{1},b_{2}]}\frac{\big{|}n^{-(1+\alpha)/2}Q^{(0)}_{n}(x)-n^{-(1+\alpha)/2}Q^{(0)}_{n}(y)\big{|}}{|x-y|}\geq L(n)\frac{s}{|b|}\Big{)}\leq\frac{C}{s^{2}}. (4.71)

Now (4.60) follows from the above inequality by letting nn\to\infty on both sides. ∎

Lemma 4.17.

Fix δ>0\delta>0. Consider the Gaussian process {YD0(x):x[K3,K3]}\{Y^{D}_{0}(x):x\in[-K^{3},K^{3}]\} as in Lemma 4.16. Define

𝔉:={YD0(x)δxx[K,K],\displaystyle\mathfrak{F}:=\Big{\{}Y^{D}_{0}(x)\leq-\delta_{x}\forall x\in[-K,K], YD0(x)δ/4x[K3,K],\displaystyle\quad Y^{D}_{0}(x)\leq\delta/4\forall x\in[-K^{3},-K],
exYD0(x)\displaystyle e^{-x}Y^{D}_{0}(x) δx/4x[K,K3]}\displaystyle\leq\delta_{x}/4\forall x\in[K,K^{3}]\Big{\}} (4.72)

where

δx:=δ/j,if x[j,j+1)(j1,j]\delta_{x}:=\delta/\sqrt{j},\text{if }x\in[-j,-j+1)\cup(j-1,j]

for j=1,M2j=1,\ldots\lceil M^{2}\rceil. Then, there exists D0=D0(δ)>0D_{0}=D_{0}(\delta)>0 and b=b(δ)>0b=b(\delta)>0 such that for all D>D0D>D_{0}

(𝔉)ebKlogK.\displaystyle\mathbb{P}(\mathfrak{F})\geq e^{-bK\log K}. (4.73)
Proof.

Fix some large number C>0C>0. We use the following shorthand notations:

𝔉1\displaystyle\mathfrak{F}_{1} :={YD0(x)δx,x[M,M]},\displaystyle:=\Big{\{}Y^{D}_{0}(x)\leq-\delta_{x},x\in[-M,M]\Big{\}},
𝔉2\displaystyle\mathfrak{F}_{2} :={YD0(x)δx/4,x[CKlogK,K]},\displaystyle:=\Big{\{}Y^{D}_{0}(x)\leq\delta_{x}/4,x\in[-CK\log K,-K]\Big{\}},
𝔉3\displaystyle\mathfrak{F}_{3} :={exYD0(x)δx/4,x[K,CKlogK]}\displaystyle:=\Big{\{}e^{-x}Y^{D}_{0}(x)\leq\delta_{x}/4,x\in[K,CK\log K]\}
𝔉4\displaystyle\mathfrak{F}_{4} :={YD0(x)δx/4,x[K3,CKlogK]}\displaystyle:=\Big{\{}Y^{D}_{0}(x)\leq\delta_{x}/4,x\in[-K^{3},-CK\log K]\Big{\}}
𝔉5\displaystyle\mathfrak{F}_{5} :={exYD0(x)δx/4,x[CKlogK,K3]}\displaystyle:=\Big{\{}e^{-x}Y^{D}_{0}(x)\leq\delta_{x}/4,x\in[CK\log K,K^{3}]\Big{\}}

Notice that 𝔉\mathfrak{F} is equal to 𝔉1𝔉2𝔉3𝔉4𝔉5\mathfrak{F}_{1}\cap\mathfrak{F}_{2}\cap\mathfrak{F}_{3}\cap\mathfrak{F}_{4}\cap\mathfrak{F}_{5}. Since YM0Y^{M}_{0} is a Gaussian process with positive correlation, we may apply Slepian’s inequality to write

(𝔉)=(𝔉1𝔉2𝔉3𝔉4𝔉5)i=15(𝔉i).\displaystyle\mathbb{P}(\mathfrak{F})=\mathbb{P}\Big{(}\mathfrak{F}_{1}\cap\mathfrak{F}_{2}\cap\mathfrak{F}_{3}\cap\mathfrak{F}_{4}\cap\mathfrak{F}_{5}\Big{)}\geq\prod_{i=1}^{5}\mathbb{P}(\mathfrak{F}_{i}). (4.74)

Fix θ(0,1)\theta\in(0,1). In what follows, we claim and show the following: there exists δ0>0\delta_{0}>0 such that for all δ<δ0\delta<\delta_{0}

(𝔉1)4δ1θK,(𝔉2),(𝔉3)4Cδ1KlogK,(𝔉4),(𝔉5)14.\displaystyle\mathbb{P}(\mathfrak{F}_{1})\geq 4^{-\delta^{-1-\theta}K},\quad\mathbb{P}(\mathfrak{F}_{2}),\mathbb{P}(\mathfrak{F}_{3})\geq 4^{-C\delta^{-1}K\log K},\quad\mathbb{P}(\mathfrak{F}_{4}),\mathbb{P}(\mathfrak{F}_{5})\geq\frac{1}{4}. (4.75)

Substituting these lower bounds on {(𝔉i)}1i5\{\mathbb{P}(\mathfrak{F}_{i})\}_{1\leq i\leq 5} to the right hand side of (4.74) proves (4.73). In the rest of the proof, we focus on showing (4.75). We only show the lower bound for (𝔉1)\mathbb{P}(\mathfrak{F}_{1}), (𝔉2)\mathbb{P}(\mathfrak{F}_{2}) and (𝔉4)\mathbb{P}(\mathfrak{F}_{4}). The bound for (𝔉3)\mathbb{P}(\mathfrak{F}_{3}) and (𝔉5)\mathbb{P}(\mathfrak{F}_{5}) follow from similar argument for (𝔉2)\mathbb{P}(\mathfrak{F}_{2}) and (𝔉4)\mathbb{P}(\mathfrak{F}_{4}) respectively.

Proof (𝔉4)1/4\mathbb{P}(\mathfrak{F}_{4})\geq 1/4: Note that there exists c1=c1(D)>0c_{1}=c_{1}(D)>0 such that 𝔼[(YD0(x))2]\mathbb{E}[(Y^{D}_{0}(x))^{2}] is less than c1KCc_{1}K^{-C} for all x[K3D,CKDlogK]x\in[-K^{3}D,-CKD\log K]. Furthermore, it is straightforward to check that for any x,y[K3D,CKDlogK]x,y\in[-K^{3}D,-CKD\log K]

𝔼[(YD0(x)YD0(y))2]c11KC+1|xy|2,𝔼[(YD0(x))2]c11KC+1\displaystyle\mathbb{E}\big{[}\big{(}Y^{D}_{0}(x)-Y^{D}_{0}(y)\big{)}^{2}\big{]}\leq c_{1}\frac{1}{K^{C+1}}|x-y|^{2},\qquad\mathbb{E}\big{[}(Y^{D}_{0}(x))^{2}\big{]}\leq c_{1}\frac{1}{K^{C+1}}

For any x,y[K3D,KDlogK]x,y\in[-K^{3}D,-KD\log K], define dYD0(x,y)=𝔼[(YD0(x)YD0(y))2]d_{Y^{D}_{0}}(x,y)=\sqrt{\mathbb{E}[(Y^{D}_{0}(x)-Y^{D}_{0}(y))^{2}]}. By Dudley’s entropy theorem [Dud10, Theorem 7.1], we have

𝔼\displaystyle\mathbb{E} [supx[K3D,CKDlogK]|YD0(x)|]\displaystyle\Big{[}\sup_{x\in[-K^{3}D,-CKD\log K]}|Y^{D}_{0}(x)|\Big{]}
c2K2C+12(1+0logN([K3D,CKDlogK],dYD0,ε)dε)\displaystyle\leq c_{2}K^{2-\frac{C+1}{2}}\big{(}1+\int^{\infty}_{0}\sqrt{\log N\big{(}[-K^{3}D,-CKD\log K],d_{Y^{D}_{0}},\varepsilon\big{)}}d\varepsilon\big{)}
c2K2C+12\displaystyle\leq c^{\prime}_{2}K^{2-\frac{C+1}{2}}

for some c2,c2>0c_{2},c^{\prime}_{2}>0. Let us define

Δ:=c2K2C+12logK+𝔼[supx[K3D,CKDlogK]|YD0(x)|].\Delta:=-c^{\prime}_{2}K^{2-\frac{C+1}{2}}\log K+\mathbb{E}\Big{[}\sup_{x\in[-K^{3}D,-CKD\log K]}|Y^{D}_{0}(x)|\Big{]}.

Note that Δ<0\Delta<0. As a result, we get

\displaystyle\mathbb{P} (supx[K3D,CKDlogK]YD0(x)>δ/4)\displaystyle\Big{(}\sup_{x\in[-K^{3}D,-CKD\log K]}Y^{D}_{0}(x)>\delta/4\Big{)}
(supx[K3D,CKDlogK]YD0(x)δ4K+Δ)\displaystyle\leq\mathbb{P}\Big{(}\sup_{x\in[-K^{3}D,-CKD\log K]}Y^{D}_{0}(x)\geq\frac{\delta}{4\sqrt{K}}+\Delta\Big{)}
exp(82KC43/2δ2)\displaystyle\leq\exp\big{(}-8^{-2}K^{\frac{C}{4}-3/2}\delta^{2}\big{)}

where the last inequality follows by Borel-Tis inequality. This shows

(supx[K3D,CKDlogM]YD0(x)δ/4)1exp(KC43/2δ).\mathbb{P}\Big{(}\sup_{x\in[-K^{3}D,-CKD\log M]}Y^{D}_{0}(x)\leq\delta/4\Big{)}\geq 1-\exp(-K^{\frac{C}{4}-3/2}\delta).

For KK large, this lower bound is bounded below by 12\frac{1}{2}. This proves the lower bound for (𝔉4)\mathbb{P}(\mathfrak{F}_{4}).

Proof (𝔉1)4δ1θD\mathbb{P}\big{(}\mathfrak{F}_{1}\big{)}\geq 4^{-\delta^{-1-\theta}D}: By Slepian’s inequality which we can apply since YD0Y^{D}_{0} is a Gaussian process,

(𝔉1)({YD0(x)δx,x[K,0]})({YD0(x)δx,x[0,K]}).\displaystyle\mathbb{P}(\mathfrak{F}_{1})\geq\mathbb{P}\Big{(}\big{\{}Y^{D}_{0}(x)\leq-\delta_{x},x\in[-K,0]\big{\}}\Big{)}\mathbb{P}\Big{(}\big{\{}Y^{D}_{0}(x)\leq-\delta_{x},x\in[0,K]\big{\}}\Big{)}. (4.76)

By symmetry of YD0([K,0])Y^{D}_{0}([-K,0]) between YD0([0,K])Y^{D}_{0}([0,K]) , it suffices to show

({YD0(x)δx,x[K,0]})eδ2K\displaystyle\mathbb{P}\Big{(}\big{\{}Y^{D}_{0}(x)\leq-\delta_{x},x\in[-K,0]\big{\}}\Big{)}\geq e^{-\delta^{-2}K} (4.77)

for some constant c>0c>0. We show this follows.

We divide the interval [K,0][-K,0] into K1:=δ1θKK_{1}:=\lceil\delta^{-1-\theta}K\rceil many intervals of equal length and denote them as 1,,K1\mathcal{I}_{1},\ldots,\mathcal{I}_{K_{1}} where i:=[K+(i1)K/K1,K+iK/K1]\mathcal{I}_{i}:=[-K+(i-1)K/K_{1},-K+iK/K_{1}]. By Slepian’s inequality,

({YD0(x)δx,x[K,0]})i=1K1({YD0(x)δx,xi}).\displaystyle\mathbb{P}\Big{(}\big{\{}Y^{D}_{0}(x)\leq-\delta_{x},x\in[-K,0]\big{\}}\Big{)}\geq\prod_{i=1}^{K_{1}}\mathbb{P}\Big{(}\big{\{}Y^{D}_{0}(x)\leq-\delta_{x},x\in\mathcal{I}_{i}\big{\}}\Big{)}. (4.78)

We first lower bound each term of the product of the right hand side of the above display. Applying (4.60) of Lemma 4.16, we notice

(supxj|YD0(x)YD0(K+iK/K1)|KK1smax{K(1i/K1),1})Cs2.\displaystyle\mathbb{P}\Big{(}\sup_{x\in\mathcal{I}_{j}}|Y^{D}_{0}(x)-Y^{D}_{0}(-K+iK/K_{1})|\geq\frac{K}{K_{1}}\frac{s}{\max\{K(1-i/K_{1}),1\}}\Big{)}\leq\frac{C}{s^{2}}.

Fix ξ(0,1/2)\xi\in(0,1/2). Note that K/K1K/K_{1} is less than δ1+θ\delta^{1+\theta}. Letting s:=δθ/2C1(max{K(1i/K1),1})1/2ξs:=\delta^{-\theta/2}\sqrt{C^{-1}}(\max\{K(1-i/K_{1}),1\})^{1/2-\xi}, we see that the right hand side of the above inequality is bounded by δθ(max{K(1i/K1),1})1+2ξ\delta^{\theta}(\max\{K(1-i/K_{1}),1\})^{-1+2\xi}. This implies

\displaystyle\mathbb{P} (supxj|YD0(x)YD(K+iK/K1)|δ1+θ/2(max{K(1i/K1),1})1/2+ξ)\displaystyle\Big{(}\sup_{x\in\mathcal{I}_{j}}|Y^{D}_{0}(x)-Y^{D}(-K+iK/K_{1})|\geq\frac{\delta^{1+\theta/2}}{(\max\{K(1-i/K_{1}),1\})^{1/2+\xi}}\Big{)}
δθ(max{K(1i/K1),1})1+2ξ.\displaystyle\leq\delta^{\theta}(\max\{K(1-i/K_{1}),1\})^{-1+2\xi}.

Suppose K+iK1[j1,j]-K+iK_{1}\in[-j-1,-j] for some ii\in\mathbb{N}. Since δ/j+1δ1+θ/2/(max{K(1i/K1),1})1/2+ξ\delta/\sqrt{j+1}\geq\delta^{1+\theta/2}/(\max\{K(1-i/K_{1}),1\})^{1/2+\xi} for all large KK, we write

\displaystyle\mathbb{P} (YD0(x)δx,x[K+(i1)K1,K+iK1])\displaystyle\Big{(}Y^{D}_{0}(x)\leq-\delta_{x},x\in[-K+(i-1)K_{1},-K+iK_{1}]\Big{)}
(YD0(M+iK1)2δj+1)\displaystyle\geq\mathbb{P}\Big{(}Y^{D}_{0}(-M+iK_{1})\leq-\frac{2\delta}{\sqrt{j+1}}\Big{)}
(supxj|YD0(x)YD(K+iK/K1)|δ1+θ/2(max{K(1i/K1),1})1/2+ξ)\displaystyle-\mathbb{P}\Big{(}\sup_{x\in\mathcal{I}_{j}}|Y^{D}_{0}(x)-Y^{D}(-K+iK/K_{1})|\geq\frac{\delta^{1+\theta/2}}{(\max\{K(1-i/K_{1}),1\})^{1/2+\xi}}\Big{)}
Φ(e(1i/K1)jK(1i/K1)1e(K1)(1i/K1)δ)δθ(max{K(1i/K1),1})1+2ξ\displaystyle\geq\Phi\Big{(}-\frac{e^{(1-i/K_{1})}}{\sqrt{j}}\frac{\sqrt{K(1-i/K_{1})}}{\sqrt{1-e^{-(K-1)(1-i/K_{1})}}}\delta\Big{)}-\delta^{\theta}(\max\{K(1-i/K_{1}),1\})^{-1+2\xi}

where Φ()\Phi(\cdot) is the cumulative distribution function of a standard normal distribution. The last line of the above display can be bounded below by Φ(Cδ)δθ\Phi(-C\delta)-\delta^{\theta} for some constant C>0C>0 which does not depend on δ\delta. By taking δ\delta small, we can lower bound Φ(Cδ)δθ\Phi(-C\delta)-\delta^{\theta} by 1/41/4 for some C>0C^{\prime}>0. This shows a lower bound to ii-th term of the product in (4.78). Substituting all these bounds into the right hand side of (4.78) shows (4.77). This completes showing the lower bound on (𝔉1)\mathbb{P}(\mathfrak{F}_{1}).

Proof of (𝔉2)4Cδ1KlogK\mathbb{P}(\mathfrak{F}_{2})\geq 4^{-C\delta^{-1}K\log K}: We divide the interval [CKlogK,K][-CK\log K,-K] into K2K_{2} many sub-intervals 1,,K2\mathcal{I}^{\prime}_{1},\ldots,\mathcal{I}^{\prime}_{K_{2}} of equal length for K2:=δ1(CKlogK)K_{2}:=\lceil\delta^{-1}(CK\log K)\rceil where

i:=[CKlogK+(i1)K2(CKlogKK),CKlogK+iK2(CKlogKK)].\mathcal{I}^{\prime}_{i}:=[-CK\log K+\frac{(i-1)}{K_{2}}(CK\log K-K),-CK\log K+\frac{i}{K_{2}}(CK\log K-K)].

Applying the Slepian’s inequality, we may write

(𝔉2)i=1K2(YD0(x)δx/4,xi).\displaystyle\mathbb{P}\big{(}\mathfrak{F}_{2}\big{)}\geq\prod_{i=1}^{K_{2}}\mathbb{P}\Big{(}Y^{D}_{0}(x)\leq\delta_{x}/4,x\in\mathcal{I}^{\prime}_{i}\Big{)}. (4.79)

In what follows, we find a lower bound to the to each term of the product in the right hand side of the above display. Fix i{1,,K2}i\in\{1,\ldots,K_{2}\} and suppose CKlogK+i(CKlogKK)/K2[j,j+1)-CK\log K+i(CK\log K-K)/K_{2}\in[-j,-j+1) for some jj\in\mathbb{N}. Let us denote

U\displaystyle U :={YD0(x)δx/4,xi},\displaystyle:=\Big{\{}Y^{D}_{0}(x)\leq\delta_{x}/4,x\in\mathcal{I}^{\prime}_{i}\Big{\}},
U1\displaystyle U_{1} :={YD0(CKlogK(1i/K2)Ki/K2)δ/8j}\displaystyle:=\Big{\{}Y^{D}_{0}(-CK\log K(1-i/K_{2})-Ki/K_{2})\leq\delta/8\sqrt{j}\Big{\}}
U2\displaystyle U_{2} :={supxi|YD0(x)YD0(CKlogK(1i/K2)Ki/K2)|δi}.\displaystyle:=\Big{\{}\sup_{x\in\mathcal{I}_{i}}\big{|}Y^{D}_{0}(x)-Y^{D}_{0}(-CK\log K(1-i/K_{2})-Ki/K_{2})\big{|}\leq\frac{\delta}{\aleph_{i}}\Big{\}}.

where i:=8CKlogK(1i/K2)+Ki/K2\aleph_{i}:=8\sqrt{CK\log K(1-i/K_{2})+Ki/K_{2}}. Notice that U1U2UU_{1}\cap U_{2}\subset U. Thus, (U)\mathbb{P}(U) can be bounded below by (U1)(¬U2)\mathbb{P}(U_{1})-\mathbb{P}(\neg U_{2}) where ¬U2\neg U_{2} denotes the complement of the event U2U_{2}. Since YD0(CKlogK(1i/K2)Ki/K2)Y^{D}_{0}(-CK\log K(1-i/K_{2})-Ki/K_{2}) is a Gaussian r.v. with mean zero, (U1)\mathbb{P}(U_{1}) is bounded below by 1/21/2. To obtain a lower bound to (U2)\mathbb{P}(U_{2}), it suffices to bound (¬U2)\mathbb{P}(\neg U_{2}) from above. Due to (4.60),

(\displaystyle\mathbb{P}\Big{(} supxi|YD0(x)YD0(CKlogK(1i/K2)+Ki/K2)|\displaystyle\sup_{x\in\mathcal{I}^{\prime}_{i}}\big{|}Y^{D}_{0}(x)-Y^{D}_{0}(-CK\log K(1-i/K_{2})+Ki/K_{2})\big{|}
|i|sCKlogK(1i/K2)Ki/K2)Cs2.\displaystyle\geq|\mathcal{I}_{i}|\frac{s}{CK\log K(1-i/K_{2})-Ki/K_{2}}\Big{)}\leq\frac{C}{s^{2}}.

Note that |i|sCKlogK(1i/K2)Ki/K2|\mathcal{I}_{i}|\frac{s}{CK\log K(1-i/K_{2})-Ki/K_{2}} is less than δ\delta when

s=CKlogK(1i/K2)Ki/K2.s=\sqrt{CK\log K(1-i/K_{2})-Ki/K_{2}}.

This shows (¬U2)\mathbb{P}(\neg U_{2}) is bounded above by the left hand side of the above display when ss is equal to CKlogK(1i/K2)Ki/K2\sqrt{CK\log K(1-i/K_{2})-Ki/K_{2}}. Furthermore, by setting the following s:=CKlogK(1i/K2)Ki/K2s:=\sqrt{CK\log K(1-i/K_{2})-Ki/K_{2}}, the right hand side is bounded by C(CKlogK(1i/K2)Ki/K2)1C(CK\log K(1-i/K_{2})-Ki/K_{2})^{-1}. As a consequence, (¬U2)\mathbb{P}(\neg U_{2}) is bounded above by C(CKlogK(1i/K2)Ki/K2)1C(CK\log K(1-i/K_{2})-Ki/K_{2})^{-1}. Combining

(U)(U1)(¬U2)12C(CKlogK(1i/K2)Ki/K2)1.\displaystyle\mathbb{P}(U)\geq\mathbb{P}(U_{1})-\mathbb{P}(\neg U_{2})\geq\frac{1}{2}-C(CK\log K(1-i/K_{2})-Ki/K_{2})^{-1}. (4.80)

For large KK, the right side of the last inequality is bounded below by 1/41/4. This provides a lower bound to the ii-th term of the product (4.79). Substituting these lower bounds into the right hand side of (4.79) yields the lower bound of (𝔉2)\mathbb{P}(\mathfrak{F}_{2}) in (4.75). ∎

4.6 Proof of Proposition 4.4: r=2r=2 Case

Recall that A2=[δlogn,)A_{2}=[\frac{\delta}{\log n},\infty) and B2=[0,Llogn]B_{2}=[0,L\log n].

Proof of Proposition 4.4.

Recall that ξi=ai/R(i)\xi_{i}=a_{i}/{\sqrt{R(i)}}. We divide the proof into two cases: (a)(a) when (ξiρ)>c\mathds{P}(\xi_{i}\leq-\rho)>c and (ξi[θ,0])>c\mathds{P}(\xi_{i}\in[-\theta,0])>c for some θ[0,ρ)\theta\in[0,\rho) and (b)(b) when (ξiρ)>c\mathds{P}\big{(}\xi_{i}\leq-\rho\big{)}>c and (ai[0,ρ])>c\mathds{P}\big{(}a_{i}\in[0,\rho]\big{)}>c.

Case (a)(a): Consider the following event:

ΓQ,2:={ξ2iρ,θξ2i+10,when i is odd,iB2}\displaystyle\Gamma_{Q,2}:=\Big{\{}\xi_{2i}\leq-\rho,-\theta\leq\xi_{2i+1}\leq 0,\text{when }i\text{ is odd},i\in B_{2}\Big{\}}

for some ρ>0\rho>0 and η(0,1)\eta\in(0,1). Since ξ\xi’s are independent, we write

(ΓQ,2)i:2iB2(ξ2iρ)(θξ2i+10)cLlogn.\displaystyle\mathds{P}(\Gamma_{Q,2})\geq\prod_{i:2i\in B_{2}}\mathds{P}(\xi_{2i}\leq-\rho)\mathds{P}(-\theta\leq\xi_{2i+1}\leq 0)\geq c^{L\log n}. (4.81)

where the last inequality follows since (ξiρ)>c,(θξi0)>c(0,1)\mathds{P}(\xi_{i}\leq-\rho)>c,\mathds{P}(-\theta\leq\xi_{i}\leq 0)>c\in(0,1) by our assumption and #{i:iB2}Llogn\#\{i:i\in B_{2}\}\leq L\log n. We now claim and prove that for all large nn and δ>0\delta>0 such that δρfη,ϵ\delta\leq\rho f_{\eta,\epsilon},

(Q(2)n(±eu)σn(u)δ, for uδlogn,Q(2)n(±eu)σn(u)δ, for uδlogn)(ΓQ,2).\displaystyle\mathds{P}\Big{(}\frac{Q^{(2)}_{n}(\pm e^{u})}{\sigma_{n}(u)}\leq-\delta,\text{ for }u\geq\frac{\delta}{\log n},\frac{Q^{(2)}_{n}(\pm e^{u})}{\sigma_{n}(u)}\leq\delta,\text{ for }u\leq\frac{\delta}{\log n}\Big{)}\geq\mathds{P}(\Gamma_{Q,2}). (4.82)

On the event ΓQ,2\Gamma_{Q,2}, we have

iB2aixi\displaystyle\sum_{i\in B_{2}}a_{i}x^{i} =122iB2x2i(ξ2iR(2i)+2ξ2i+1xR(2i+1)+ξ2i+2x2R(2i+1))\displaystyle=\frac{1}{2}\sum_{2i\in B_{2}}x^{2i}\big{(}\xi_{2i}\sqrt{R(2i)}+2\xi_{2i+1}x\sqrt{R(2i+1)}+\xi_{2i+2}x^{2}\sqrt{R(2i+1)}\big{)}
i:2iB2R(2i)x2i(ρ2|x|θR(2i+1)R(2i)+R(2i+1)R(2i)ρx2)\displaystyle\leq-\sum_{i:2i\in B_{2}}\sqrt{R(2i)}x^{2i}\big{(}\rho-2|x|\theta\frac{\sqrt{R(2i+1)}}{\sqrt{R(2i)}}+\frac{\sqrt{R(2i+1)}}{\sqrt{R(2i)}}\rho x^{2}\big{)}

where 𝔼[ξi]=0\mathbb{E}[\xi_{i}]=0 and 𝔼[ξ2i]=1\mathbb{E}[\xi^{2}_{i}]=1. Fix ε>0\varepsilon>0 such that θ2(1+ε)2<(1ε)\theta^{2}(1+\varepsilon)^{2}<(1-\varepsilon). Recall that limiR(i+1)/R(i)=1\lim_{i\to\infty}R(i+1)/R(i)=1. Thus for all large nn, we have

(1ε)R(i+1)R(i)(1+ε).(1-\varepsilon)\leq\frac{R(i+1)}{R(i)}\leq(1+\varepsilon).

For large nn, on the event ΓQ,2\Gamma_{Q,2} for η:=θρ1\eta:=\theta\rho^{-1}, we have

iB2aixi\displaystyle\sum_{i\in B_{2}}a_{i}x^{i} ρ2i:2iB2x2i(12η|x|(1+ε)+(1ε)x2)\displaystyle\leq-\frac{\rho}{2}\sum_{i:2i\in B_{2}}x^{2i}\big{(}1-2\eta|x|(1+\varepsilon)+(1-\varepsilon)x^{2}\big{)}
=ρ2(12η|x|(1+ε)+(1ε)x2)i:2iB2x2i\displaystyle=-\frac{\rho}{2}\big{(}1-2\eta|x|(1+\varepsilon)+(1-\varepsilon)x^{2}\big{)}\sum_{i:2i\in B_{2}}x^{2i}

Note that 𝒫(x)=12|x|η(1+ε)+(1ε)x2\mathcal{P}(x)=1-2|x|\eta(1+\varepsilon)+(1-\varepsilon)x^{2} is greater than 0 for all xx\in\mathbb{R} since the discriminant of 𝒫\mathcal{P} is less than 0 because θ2(1+ε)2<(1ε)\theta^{2}(1+\varepsilon)^{2}<(1-\varepsilon). Therefore, {Q(2)n(x)ρfη,εi:2iB2x2i}\{Q^{(2)}_{n}(x)\leq-\rho f_{\eta,\varepsilon}\sum_{i:2i\in B_{2}}x^{2i}\} for all xx\in\mathbb{R} where fη,εf_{\eta,\varepsilon} is some positive constant which only depends on η\eta and ε\varepsilon. We start by recalling that σn(u)enuu\sigma_{n}(u)\sim\frac{e^{nu}}{u} for u>0u>0 and furthermore, for x=±eux=\pm e^{u},

i:2iB2R(i)x2ienuuσn(u),when uL1logn.\sum_{i:2i\in B_{2}}R(i)x^{2i}\sim\frac{e^{nu}}{u}\sim\sigma_{n}(u),\quad\text{when }u\geq\frac{L^{-1}}{\log n}.

Recall that Q(2)n(x)ηfη,ϵi:2iB2x2iQ^{(2)}_{n}(x)\leq-\eta f_{\eta,\epsilon}\sum_{i:2i\in B_{2}}x^{2i} for all xx\in\mathbb{R} on the event ΓQ,2\Gamma_{Q,2}. Hence Q(2)n(eu)ηfη,ϵσn(u)Q^{(2)}_{n}(e^{u})\leq-\eta f_{\eta,\epsilon}\sigma_{n}(u) for all uδlognu\geq\frac{\delta}{\log n} and Q(2)n(eu)0Q^{(2)}_{n}(e^{u})\leq 0 for all uδlognu\leq\frac{\delta}{\log n}. This shows the claim in (4.82).

Substituting the lower bound of (ΓQ,2)\mathds{P}(\Gamma_{Q,2}) from (4.81) to the right hand side of (4.82) yields (4.11).

Case (b)(b): Consider the event

Γ~Q,2:={ξ2iρ,0ξ2i+1[0,ρ], for all s.t. 2iB2}.\tilde{\Gamma}_{Q,2}:=\big{\{}\xi_{2i}\leq-\rho,0\leq\xi_{2i+1}\in[0,\rho],\text{ for all s.t. }2i\in B_{2}\big{\}}.

Note that (Γ~Q,2)\mathds{P}(\tilde{\Gamma}_{Q,2}) is bounded above cLlognc^{L\log n} since ξi\xi_{i}’s are independent, (ξ2iρ)c\mathds{P}(\xi_{2i}\leq-\rho)\geq c and (0ξ2i+1ρ)c\mathds{P}(0\leq\xi_{2i+1}\leq\rho)\geq c. In the same spirit of (4.82), we now show that

(Q(2)n(eu)σn(u)δ, for uδlogn,Q(2)n(eu)σn(u)δ, for uδlogn)(Γ~Q,2).\displaystyle\mathds{P}\Big{(}\frac{Q^{(2)}_{n}(e^{u})}{\sigma_{n}(u)}\leq-\delta,\text{ for }u\geq\frac{\delta}{\log n},\frac{Q^{(2)}_{n}(e^{u})}{\sigma_{n}(u)}\leq\delta,\text{ for }u\leq\frac{\delta}{\log n}\Big{)}\geq\mathds{P}(\tilde{\Gamma}_{Q,2}). (4.83)

On the event Γ~Q,2\tilde{\Gamma}_{Q,2}, we have

iB2ξixi\displaystyle\sum_{i\in B_{2}}\xi_{i}x^{i} =122iB2x2i(a2iR(2i)+2a2i+1xR(2i+1)+a2i+2x2R(2i+1))\displaystyle=\frac{1}{2}\sum_{2i\in B_{2}}x^{2i}\big{(}a_{2i}\sqrt{R(2i)}+2a_{2i+1}x\sqrt{R(2i+1)}+a_{2i+2}x^{2}\sqrt{R(2i+1)}\big{)}
12i:2iB2ρR(2i)x2i(12|x|R(2i+1)R(2i)+R(2i+1)R(2i)x2).\displaystyle\leq-\frac{1}{2}\sum_{i:2i\in B_{2}}\rho\sqrt{R(2i)}x^{2i}\Big{(}1-2|x|\frac{\sqrt{R(2i+1)}}{\sqrt{R(2i)}}+\frac{\sqrt{R(2i+1)}}{\sqrt{R(2i)}}x^{2}\Big{)}. (4.84)

Recall that limiR(i+1)/R(i)=1\lim_{i\to\infty}R(i+1)/R(i)=1 and let i0>0i_{0}>0 be such that R(i+1)/R(i)(1ε,1+ε)R(i+1)/R(i)\in(1-\varepsilon,1+\varepsilon). For all large nn, we have

r.h.s. of (4.84)ρ2i:2iB2R(2i)x2i(12η(1+ε)|x|+(1ε)x2).\displaystyle\text{r.h.s. of \eqref{eq:Case_2RHS}}\leq-\frac{\rho}{2}\sum_{i:2i\in B_{2}}\sqrt{R(2i)}x^{2i}\Big{(}1-2\eta(1+\varepsilon)|x|+(1-\varepsilon)x^{2}\Big{)}.

Note that the discriminant of the quadratic polynomial 𝒫~(x)=12η(1+ε)x+(1ε)x2\tilde{\mathcal{P}}(x)=1-2\eta(1+\varepsilon)x+(1-\varepsilon)x^{2} is 4(η2(1+ε)(1ε))<04\big{(}\eta^{2}(1+\varepsilon)-(1-\varepsilon)\big{)}<0 since the choice of η\eta is made in such a way to satisfy this inequality. This shows the right hand side of (4.84) is bounded above ρ+ϵ2fρ,η,ϵi:2iB2R(2i)x2i-\frac{\rho+\epsilon}{2}f_{\rho,\eta,\epsilon}\sum_{i:2i\in B_{2}}\sqrt{R(2i)}x^{2i} for some positive constant fρ,η,ϵf_{\rho,\eta,\epsilon}. This implies (4.83) and hence, completes the proof. ∎

4.7 Proof of Proposition 4.5: r=2r=-2 Case

The dominant interval here is A2=(,δlogn]A_{-2}=(-\infty,-\frac{\delta}{\log n}] and the corresponding interval for the coefficient indices is B2=[0,Llogn]B_{-2}=[0,L\log n]\cap\mathbb{Z}.

Proof of Proposition 4.5.

One can prove this proposition by exactly in the same way as in Proposition 4.5, We skip the details for brevity.

4.8 Supporting Lemmas

We first state the following two lemmas, which we will use to lower bound the terms in the product (4.2). We begin by introducing the following notations.

Definition 4.18.

Fixing a{,+}a\in\{-,+\}, define a process on [M1,1]×{,+}[M^{-1},1]\times\{-,+\} by setting

Y~n,r,M(a),p(b,t):=Q~n(a),p(beatτ^)σn(atτ^),τ^:=τ^n(r,M)=1Mrlogn.\tilde{Y}_{n,r,M}^{(a),p}(b,t):=\frac{\tilde{Q}_{n}^{(a),p}(be^{at\hat{\tau}})}{\sigma_{n}(at\hat{\tau})},\quad\hat{\tau}:=\hat{\tau}_{n}(r,M)=\frac{1}{M^{r}\log n}.

Note that

Cov(Y~n,r,M(a),p(b,t1),Y~n,r,M(a),p(b,t2))=h~n,r,M(a),p(t1+t2)h~n,r,M(a),p(2t1)h~n,r,M(a),p(2t2)\displaystyle\mathrm{Cov}(\tilde{Y}_{n,r,M}^{(a),p}(b,t_{1}),\tilde{Y}_{n,r,M}^{(a),p}(b,t_{2}))=\frac{\tilde{h}_{n,r,M}^{(a),p}(t_{1}+t_{2})}{\sqrt{\tilde{h}_{n,r,M}^{(a),p}(2t_{1})\tilde{h}_{n,r,M}^{(a),p}(2t_{2})}} (4.85)

where h~\tilde{h} is defined as

h~n,r,M(a),p(t)=iI1pR(i)eitτ^.\displaystyle\tilde{h}_{n,r,M}^{(a),p}(t)=\sum_{i\in I^{-1}_{p}}R(i)e^{it\hat{\tau}}. (4.86)

For any integer ss\in\mathds{Z} and t0t\geq 0 set

h~(1)s,M(t):=MsMs+1xαextdx,h~(+1)s,M(t):=MsMs+1extdx.\tilde{h}^{(-1)}_{s,M}(t):=\int_{M^{s}}^{M^{s+1}}x^{\alpha}e^{-xt}dx,\quad\tilde{h}^{(+1)}_{s,M}(t):=\int_{M^{s}}^{M^{s+1}}e^{-xt}dx.

Also let {Y~s,M(a)(b,.)}b{+,}\{\tilde{Y}_{s,M}^{(a)}(b,.)\}_{b\in\{+,-\}} be i.i.d. centered Gaussian processes defined on the interval [M1,1][M^{-1},1], with

Cov(Y~s,M(a)(b,t1),Y~s,M(a)(b,t2))=h~s,M(a)(t1+t2)h~0,M(a)(2t1)h~0,M(a)(2t2)\displaystyle\mathrm{Cov}(\tilde{Y}_{s,M}^{(a)}(b,t_{1}),\tilde{Y}_{s,M}^{(a)}(b,t_{2}))=\frac{\tilde{h}_{s,M}^{(a)}(t_{1}+t_{2})}{\sqrt{\tilde{h}_{0,M}^{(a)}(2t_{1})\tilde{h}_{0,M}^{(a)}(2t_{2})}} (4.87)
Lemma 4.19.

For any a{+,}a\in\{+,-\} and (rn,n)[K](r_{n},\ell_{n})\in[K] with pnrnsp_{n}-r_{n}\to s\in\mathds{Z}, we have

{Y~n,rn,M(a),pn(b,t),b{,+},t[1,M]}D{Y~s,M(a)(b,t),b{,+},t[1,M]}.\big{\{}\tilde{Y}_{n,r_{n},M}^{(a),p_{n}}(b,t),b\in\{-,+\},t\in[1,M]\big{\}}\stackrel{{\scriptstyle D}}{{\to}}\big{\{}\tilde{Y}_{s,M}^{(a)}(b,t),b\in\{-,+\},t\in[1,M]\big{\}}.

Here the convergence is in the topology of 𝒞[1,M]2\mathcal{C}[1,M]^{\otimes 2}.

Lemma 4.20.

Recall the functions h~n,r,M(a),p(t)\tilde{h}_{n,r,M}^{(a),p}(t) and h~(1)s,M(t)\tilde{h}^{(-1)}_{s,M}(t).

  1. (1)

    Suppose a=a=-.

    • (i)

      For all nn large enough (depending on δ\delta and L(.)L(.)) we have

      M|r|δL(nδM)τ^α+1h~r,M,α(t)h~n,r,M(),(t)M|r|δL(nδM)τα+1h~r,M,α(t).M^{-|\ell-r|\delta}\frac{L(n^{\delta}M^{\ell})}{\hat{\tau}^{\alpha+1}}\tilde{h}_{\ell-r,M,\alpha}(t)\lesssim\tilde{h}_{n,r,M}^{(-),\ell}(t)\lesssim M^{|\ell-r|\delta}\frac{L(n^{\delta}M^{\ell})}{\tau^{\alpha+1}}\tilde{h}_{\ell-r,M,\alpha}(t).
    • (ii)

      For any positive integer κ\kappa, we have

      limnmaxr,[K]:|r|κ|τ^α+1h~n,r,M(),(t)L(nδMr)h~r,M,α(t)1|=0.\displaystyle\lim_{n\to\infty}\max_{r,\ell\in[K]:|r-\ell|\leq\kappa}\left|\frac{\hat{\tau}^{\alpha+1}\tilde{h}_{n,r,M}^{(-),\ell}(t)}{L(n^{\delta}M^{r})\tilde{h}_{\ell-r,M,\alpha}(t)}-1\right|=0. (4.88)
    • (iii)

      If b1=b2b_{1}=b_{2}, for any positive integer κ\kappa and t1,t2[1,M]t_{1},t_{2}\in[1,M] we have

      limnmaxr,[K],|r|κ|Cov(Q~n(),(b1eat1τ^)σn(at1τ^),Q~n(),(b2eat2τ^)σn(at2τ^))C~s,M,α(t1,t2)1|=0,\lim_{n\to\infty}\max_{r,\ell\in[K],|r-\ell|\leq\kappa}\left|\frac{Cov\Big{(}\frac{\tilde{Q}_{n}^{(-),\ell}(b_{1}e^{at_{1}\hat{\tau}})}{\sigma_{n}(at_{1}\hat{\tau})},\frac{\tilde{Q}_{n}^{(-),\ell}(b_{2}e^{at_{2}\hat{\tau}})}{\sigma_{n}(at_{2}\hat{\tau})}\Big{)}}{\tilde{C}_{s,M,\alpha}(t_{1},t_{2})}-1\right|=0,

      where C~s,M,α(t1,t2):=h~s,M,α(t1+t2)h~0,M,α(2t1)h~0,M,α(2t2)\tilde{C}_{s,M,\alpha}(t_{1},t_{2}):=\frac{\tilde{h}_{s,M,\alpha}(t_{1}+t_{2})}{\sqrt{\tilde{h}_{0,M,\alpha}(2t_{1})\tilde{h}_{0,M,\alpha}(2t_{2})}} for t1,t2[1,M]t_{1},t_{2}\in[1,M].

  2. (2)

    Suppose a=+a=+.

    • (i)

      For all nn large enough (depending on δ\delta and L(.)L(.)) we have

      h~n,r,M(+),(t)R(n)entτ^τ^h~r,M,α(t).\tilde{h}_{n,r,M}^{(+),\ell}(t)\asymp\frac{R(n)e^{nt\hat{\tau}}}{\hat{\tau}}\tilde{h}_{\ell-r,M,\alpha}(t).
    • (ii)

      For any M>0M>0, t[1,M]t\in[1,M] and positive integer κ\kappa we have

      limnmaxr,[K]:|r|κ|τ^h~n,r,M(+),(t)R(n)entτ^h~r,M,0(t)1|=0.\lim_{n\to\infty}\max_{r,\ell\in[K]:|r-\ell|\leq\kappa}\left|\frac{\hat{\tau}\tilde{h}_{n,r,M}^{(+),\ell}(t)}{R(n)e^{nt\hat{\tau}}\tilde{h}_{\ell-r,M,0}(t)}-1\right|=0.
    • (iii)

      If b1=b2b_{1}=b_{2}, for any positive integer κ\kappa and t1,t2[1,M]t_{1},t_{2}\in[1,M] we have

      limnmaxr,[K]:|r|κ|Cov(Q~n(+),(b1eat1τ^)σn(at1τ^),Q~n(+),(b2eat2τ^)σn(at2τ^))Cr,M,0(t1,t2)1|=0.\lim_{n\to\infty}\max_{r,\ell\in[K]:|r-\ell|\leq\kappa}\left|\frac{Cov\Big{(}\frac{\tilde{Q}_{n}^{(+),\ell}(b_{1}e^{at_{1}\hat{\tau}})}{\sigma_{n}(at_{1}\hat{\tau})},\frac{\tilde{Q}_{n}^{(+),\ell}(b_{2}e^{at_{2}\hat{\tau}})}{\sigma_{n}(at_{2}\hat{\tau})}\Big{)}}{C_{\ell-r,M,0}(t_{1},t_{2})}-1\right|=0.
  3. (3)

    If b1b2b_{1}\neq b_{2} then for any t1,t2[1,M]t_{1},t_{2}\in[1,M] and positive integer κ\kappa we have

    limnmaxr,[K]:|r|κ|Cov(Q~n(a),(b1eat1τ^)σn(at1τ^),Q~n(a),(b2eat2τ^)σn(at2τ^))|=0.\lim_{n\to\infty}\max_{r,\ell\in[K]:|r-\ell|\leq\kappa}\Big{|}Cov\Big{(}\frac{\tilde{Q}_{n}^{(a),\ell}(b_{1}e^{at_{1}\hat{\tau}})}{\sigma_{n}(at_{1}\hat{\tau})},\frac{\tilde{Q}_{n}^{(a),\ell}(b_{2}e^{at_{2}\hat{\tau}})}{\sigma_{n}(at_{2}\hat{\tau})}\Big{)}\Big{|}=0.

The proof of Lemma 4.19 and 4.20 are very similar to that of Lemma 3.4 and Lemma 4.20. We will skip the details.

Lemma 4.21.

Suppose {X(t),t[c,d]}\{X(t),t\in[c,d]\} is a continuous time stochastic process with continuous sample paths, such that 𝔼X(t)=0\mathds{E}X(t)=0 and 𝔼(X(s)X(t))2C2(st)2\mathds{E}(X(s)-X(t))^{2}\leq C^{2}(s-t)^{2}. Then the following holds:

(supt[c,d]|X(t)X(d)|>λ)C2(cd)2λ2\displaystyle\mathds{P}(\sup_{t\in[c,d]}|X(t)-X(d)|>\lambda)\lesssim\frac{C^{2}(c-d)^{2}}{\lambda^{2}} (4.89)
limδ0limn(sups,t[c,d],|st|δ|Xn(s)Xn(t)|>ε)\displaystyle\lim_{\delta\rightarrow 0}\lim_{n\rightarrow\infty}\mathds{P}(\sup_{s,t\in[c,d],|s-t|\leq\delta}|X_{n}(s)-X_{n}(t)|>\varepsilon) p0, for any ε>0.\displaystyle\stackrel{{\scriptstyle p}}{{\rightarrow}}0,\text{ for any }\varepsilon>0. (4.90)
Proof of Lemma 4.21.

For a non negative integer mm and [2m]\ell\in[2^{m}], setting rm():=c+(dc)2mr_{m}(\ell):=c+(d-c)\frac{\ell}{2^{m}} we can write [c,d]==12m[rm(1),rm()][c,d]=\cup_{\ell=1}^{2^{m}}[r_{m}(\ell-1),r_{m}(\ell)]. For m0m\geq 0 and uIau\in I_{a} let πm(u):=\pi_{m}(u):=\ell if u[rm(1),rm()]u\in[r_{m}(\ell-1),r_{m}(\ell)]. Then, using continuity of sample paths and noting that π0(t)=d\pi_{0}(t)=d we can write

X(t)X(d)=\displaystyle X(t)-X(d)= m=1(X(πm(t))X(πm1(t))).\displaystyle\sum_{m=1}^{\infty}\Big{(}X(\pi_{m}(t))-X(\pi_{m-1}(t))\Big{)}. (4.91)

To prove (4.89), use (4.91) along with a union bound to get

(supt[c,d]|X(t)X(d)|>λ)\displaystyle\mathds{P}(\sup_{t\in[c,d]}|X(t)-X(d)|>\lambda)\leq m=1=12m(2m/4|X(rm())X(rm(1))|>λ)\displaystyle\sum_{m=1}^{\infty}\sum_{\ell=1}^{2^{m}}\mathds{P}\Big{(}2^{m/4}|X(r_{m}(\ell))-X(r_{m}(\ell-1))|>\lambda\Big{)}
\displaystyle\lesssim C2(cd)2λ2m=12m/4,\displaystyle\frac{C^{2}(c-d)^{2}}{\lambda^{2}}\sum_{m=1}^{\infty}2^{-m/4},

where the last line uses Chebyshev’s inequality. The desired conclusion is immediate from this. ∎

Lemma 4.22.

Consider the centered Gaussian processes {Y~(a)s,M(b,)}b{1,+1}\{\tilde{Y}^{(a)}_{s,M}(b,\cdot)\}_{b\in\{-1,+1\}} of Definition 4.18. For any given ε>0\varepsilon>0, there exists θ0=θ0(ε)(0,12)\theta_{0}=\theta_{0}(\varepsilon)\in(0,\frac{1}{2}) such that for any 0<θ<θ00<\theta<\theta_{0} one gets M0=M0(ϵ,θ)>0M_{0}=M_{0}(\epsilon,\theta)>0 satisfying

1logMlog(supt[1M,1]Y~(1)0,M(t)δ)\displaystyle\frac{1}{\log M}\log\mathds{P}\Big{(}\sup_{t\in[\frac{1}{M},1]}\tilde{Y}^{(-1)}_{0,M}(t)\leq-\delta\Big{)} 1logMlog(supt[0,(12θ)logM]Y(α)tδ)ε,\displaystyle\geq\frac{1}{\log M}\log\mathbb{P}\Big{(}\sup_{t\in[0,(1-2\theta)\log M]}Y^{(\alpha)}_{t}\leq-\delta\Big{)}-\varepsilon, (4.92)
1logMlog(supt[1M,1]Y~(+1)0,M(t)δ)\displaystyle\frac{1}{\log M}\log\mathds{P}\Big{(}\sup_{t\in[\frac{1}{M},1]}\tilde{Y}^{(+1)}_{0,M}(t)\leq-\delta\Big{)} 1logMlog(supt[0,(12θ)logM]Y(0)tδ)ε\displaystyle\geq\frac{1}{\log M}\log\mathbb{P}\Big{(}\sup_{t\in[0,(1-2\theta)\log M]}Y^{(0)}_{t}\leq-\delta\Big{)}-\varepsilon (4.93)

for all M>M0M>M_{0}.

Proof.

Here we show how to prove (4.92). Proof of (4.93) follows from similar arguments. Fix θ(0,12)\theta\in(0,\frac{1}{2}) small. To this end, we divide [0,M][0,M] into three sub-intervals; 𝔄1:=[M1,M1+θ),𝔄2:=[M1+θ,Mθ]\mathfrak{A}_{1}:=[M^{-1},M^{-1+\theta}),\mathfrak{A}_{2}:=[M^{-1+\theta},M^{-\theta}] and (Mθ,1](M^{-\theta},1]. Recall that the covariance function h~(1)0,M\tilde{h}^{(-1)}_{0,M} of Y~(1)0,M(t)\tilde{Y}^{(-1)}_{0,M}(t) from (4.87). Since the covariance is non-negative, by Slepian’s inequality of the Gaussian process, we get

log(supt[1M,1]Y~(1)0,M(t)δ)\displaystyle\log\mathds{P}\Big{(}\sup_{t\in[\frac{1}{M},1]}\tilde{Y}^{(-1)}_{0,M}(t)\leq-\delta\Big{)} log(supt𝔄2Y~(1)0,M(t)δ)\displaystyle\geq\log\mathds{P}\Big{(}\sup_{t\in\mathfrak{A}_{2}}\tilde{Y}^{(-1)}_{0,M}(t)\leq-\delta\Big{)}
+log(supt𝔄1𝔄3Y~(1)0,M(t)δ)\displaystyle+\log\mathds{P}\Big{(}\sup_{t\in\mathfrak{A}_{1}\cup\mathfrak{A}_{3}}\tilde{Y}^{(-1)}_{0,M}(t)\leq-\delta\Big{)}

For any fixed s1,s2>0s_{1},s_{2}>0 such that t1:=es1,t2:=es2𝔄t_{1}:=e^{s_{1}},t_{2}:=e^{s_{2}}\in\mathfrak{A}, we have limMh~(1)0,M(t1)=1xαet1xdx\lim_{M\to\infty}\tilde{h}^{(-1)}_{0,M}(t_{1})=\int^{\infty}_{1}x^{\alpha}e^{-t_{1}x}dx and limMh~(1)0,M(t2)=1xαet2xdx\lim_{M\to\infty}\tilde{h}^{(-1)}_{0,M}(t_{2})=\int^{\infty}_{1}x^{\alpha}e^{-t_{2}x}dx. This shows

Corr(Y~(1)0,M(es1),Y~(1)0,M(es2))sech(s1s2)α+1\mathrm{Corr}(\tilde{Y}^{(-1)}_{0,M}(e^{s_{1}}),\tilde{Y}^{(-1)}_{0,M}(e^{s_{2}}))\to\mathrm{sech}(s_{1}-s_{2})^{\alpha+1}

as MM approaches \infty. Recall that sech(s1s2)α+1\mathrm{sech}(s_{1}-s_{2})^{\alpha+1} is the correlation function of the stationary Gaussian process Y(α)Y^{(\alpha)}. We now intend to apply Theorem 1.6 of [DM15] which will imply that

limM\displaystyle\lim_{M\to\infty} 1logMlog(supt𝔄2Y~(1)0,M(t)δ)\displaystyle\frac{1}{\log M}\log\mathds{P}\Big{(}\sup_{t\in\mathfrak{A}_{2}}\tilde{Y}^{(-1)}_{0,M}(t)\leq-\delta\Big{)}
=limM1logMlog(sups[0,(12θ)logM]Y(α)sδ).\displaystyle=\lim_{M\to\infty}\frac{1}{\log M}\log\mathds{P}\Big{(}\sup_{s\in[0,(1-2\theta)\log M]}Y^{(\alpha)}_{s}\leq-\delta\Big{)}. (4.94)

However, according to [DM15, Theorem 1.6], the above limit holds when the covariance function of the Gaussian processes Y(1)0,M(es)Y^{(-1)}_{0,M}(e^{s}) satisfy condition (1.15) of [DM15, Theorem 1.6]. For this it suffices to check Condition (1.23) of [DM15, Theorem 1.6] which is given as

lim supu0\displaystyle\limsup_{u\to 0} |logu|ηsupM1{2\displaystyle|\log u|^{\eta}\sup_{M\geq 1}\Big{\{}2
2infs0,τ[0,u]M1xαexp((es+es+τ)x)dxM1xαexp(2esx)x)dxM1xαexp(2es+τx))dx}<\displaystyle-2\inf_{s\geq 0,\tau\in[0,u]}\frac{\int^{M}_{1}x^{\alpha}\exp(-(e^{s}+e^{s+\tau})x)dx}{\sqrt{\int^{M}_{1}x^{\alpha}\exp(-2e^{s}x)x)dx}\sqrt{\int^{M}_{1}x^{\alpha}\exp(-2e^{s+\tau}x))dx}}\Big{\}}<\infty (4.95)

for some η>0\eta>0. To show the above condition, we first claim and prove that there exists γ>0\gamma>0 such that

M1xαexp((es+es+τ)x)dxM1xαexp(2esx)x)dxM1xαexp(2es+τx))dxeτγ\displaystyle\frac{\int^{M}_{1}x^{\alpha}\exp(-(e^{s}+e^{s+\tau})x)dx}{\sqrt{\int^{M}_{1}x^{\alpha}\exp(-2e^{s}x)x)dx}\sqrt{\int^{M}_{1}x^{\alpha}\exp(-2e^{s+\tau}x))dx}}\geq e^{\tau\gamma} (4.96)

for all M,s,τ>0M,s,\tau>0. Recall that for any t1,t2[1M,1]t_{1},t_{2}\in[\frac{1}{M},1]

Cov(Y~(1)0,M(t1),Y~(1)0,M(t1))=M1xαe(t1+t2)xdxM1xαe2t1xdxM1xαe2t2xdx.\displaystyle\mathrm{Cov}\Big{(}\tilde{Y}^{(-1)}_{0,M}(t_{1}),\tilde{Y}^{(-1)}_{0,M}(t_{1})\Big{)}=\frac{\int^{M}_{1}x^{\alpha}e^{-(t_{1}+t_{2})x}dx}{\sqrt{\int^{M}_{1}x^{\alpha}e^{-2t_{1}x}dx}\sqrt{\int^{M}_{1}x^{\alpha}e^{-2t_{2}x}dx}}. (4.97)

Suppose that t1t2t_{1}\leq t_{2}. In that case, we get the following following bound

r.h.s. of (4.97)M1xαe2t2xdxM1xαe2t1xdx1xαe2t2xdx1xαe2t1xdx\displaystyle\text{r.h.s. of \eqref{eq:CovOftildeY}}\geq\frac{\sqrt{\int^{M}_{1}x^{\alpha}e^{-2t_{2}x}dx}}{\sqrt{\int^{M}_{1}x^{\alpha}e^{-2t_{1}x}dx}}\geq\frac{\sqrt{\int^{\infty}_{1}x^{\alpha}e^{-2t_{2}x}dx}}{\sqrt{\int^{\infty}_{1}x^{\alpha}e^{-2t_{1}x}dx}} (4.98)

where the second inequality follows since xαetxx^{\alpha}e^{-tx} strictly decreases as xx increases to \infty and xαet2xxαet1xx^{\alpha}e^{-t_{2}x}\leq x^{\alpha}e^{-t_{1}x} for all x>0x>0. Now we claim and prove that there exists some γ>0\gamma>0 such that

r.h.s. of (4.98)(t1t2)γ\text{r.h.s. of \eqref{eq:NewInequality}}\geq\big{(}\frac{t_{1}}{t_{2}}\big{)}^{\gamma}

for all M1t1t21M^{-1}\leq t_{1}\leq t_{2}\leq 1. To show this, we consider the function g:[M1,1]>0g:[M^{-1},1]\to\mathbb{R}_{>0} defined as g(t)=t2γ1xαetxdxg(t)=t^{2\gamma}\int^{\infty}_{1}x^{\alpha}e^{-tx}dx. Note that

g(t)g(t)=2γt1xα+1etxdx1xα+1etxdx.\frac{g^{\prime}(t)}{g(t)}=\frac{2\gamma}{t}-\frac{\int^{\infty}_{1}x^{\alpha+1}e^{-tx}dx}{\int^{\infty}_{1}x^{\alpha+1}e^{-tx}dx}.

This shows that if γ\gamma is chosen such that

2γsupt[0,1]t1xα+1etxdx1xα+1etxdx,2\gamma\geq\sup_{t\in[0,1]}t\frac{\int^{\infty}_{1}x^{\alpha+1}e^{-tx}dx}{\int^{\infty}_{1}x^{\alpha+1}e^{-tx}dx},

g()g(\cdot) will be strictly increasing on the interval [M1,1][M^{-1},1] for all MM. Hence, for all γ>0\gamma>0 satisfying the above inequality, we get for all M1t1t21M^{-1}\leq t_{1}\leq t_{2}\leq 1

r.h.s. of (4.98)(t1t2)γ.\text{r.h.s. of \eqref{eq:NewInequality}}\geq\Big{(}\frac{t_{1}}{t_{2}}\Big{)}^{\gamma}.

Taking t1=est_{1}=e^{s} and t2=es+τt_{2}=e^{s+\tau} shows (4.96). From (4.96), it follows that

22infs0,τ[0,u]M1xαexp((es+es+τ)x)dxM1xαexp(2esx)x)dxM1xαexp(2es+τx))dx2(1euγ)2-2\inf_{s\geq 0,\tau\in[0,u]}\frac{\int^{M}_{1}x^{\alpha}\exp(-(e^{s}+e^{s+\tau})x)dx}{\sqrt{\int^{M}_{1}x^{\alpha}\exp(-2e^{s}x)x)dx}\sqrt{\int^{M}_{1}x^{\alpha}\exp(-2e^{s+\tau}x))dx}}\leq 2(1-e^{u\gamma})

uniformly for all M>0M>0. The above inequality shows that (LABEL:eq:DMCondition) holds for any η>0\eta>0 since |logu|η(2euγ)0|\log u|^{\eta}(2-e^{u\gamma})\to 0 as u0u\to 0.

To complete the proof, it suffices to show that there exists θ0(0,12)\theta_{0}\in(0,\frac{1}{2}) such that for all 0<θ<θ00<\theta<\theta_{0} and MM large, one has

1logMlog(supt𝔄1Y~(1)0,M(t)δ)\displaystyle\frac{1}{\log M}\log\mathds{P}\Big{(}\sup_{t\in\mathfrak{A}_{1}}\tilde{Y}^{(-1)}_{0,M}(t)\leq-\delta\Big{)} ε2,\displaystyle\geq-\frac{\varepsilon}{2},
1logMlog(supt𝔄3Y~(1)0,M(t)δ)\displaystyle\frac{1}{\log M}\log\mathds{P}\Big{(}\sup_{t\in\mathfrak{A}_{3}}\tilde{Y}^{(-1)}_{0,M}(t)\leq-\delta\Big{)} ε2.\displaystyle\geq-\frac{\varepsilon}{2}. (4.99)

We only show the first inequality. The second follows from similar arguments. Note that 𝔄2\mathfrak{A}_{2} transforms to [(1θ)logM,θlogM][-(1-\theta)\log M,-\theta\log M] under the change of variable tlogtt\mapsto\log t. Furthermore, by the stationarity of Y(α)Y^{(\alpha)}, we have

sup[(1θ)logM,θlogM]Y(α)s=dsups[0,(12θ)logM]Y(α)s.\sup_{[-(1-\theta)\log M,-\theta\log M]}Y^{(\alpha)}_{s}\stackrel{{\scriptstyle d}}{{=}}\sup_{s\in[0,(1-2\theta)\log M]}Y^{(\alpha)}_{s}.

This shows why ss takes values on the interval [0,(12δ)logM][0,(1-2\delta)\log M] in the right hand of (4.8). Now we we lower bound log(supt𝔄1𝔄3Y~(1)0,M(t)δ)\log\mathds{P}\Big{(}\sup_{t\in\mathfrak{A}_{1}\cup\mathfrak{A}_{3}}\tilde{Y}^{(-1)}_{0,M}(t)\leq-\delta\Big{)}. By Slepian’s inequality, we know

log(supt𝔄1𝔄3Y~(1)0,M(t)δ)\displaystyle\log\mathds{P}\Big{(}\sup_{t\in\mathfrak{A}_{1}\cup\mathfrak{A}_{3}}\tilde{Y}^{(-1)}_{0,M}(t)\leq-\delta\Big{)} log(supt𝔄1Y~(1)0,M(t)δ)\displaystyle\geq\log\mathds{P}\Big{(}\sup_{t\in\mathfrak{A}_{1}}\tilde{Y}^{(-1)}_{0,M}(t)\leq-\delta\Big{)}
+log(supt𝔄3Y~(1)0,M(t)δ).\displaystyle+\log\mathds{P}\Big{(}\sup_{t\in\mathfrak{A}_{3}}\tilde{Y}^{(-1)}_{0,M}(t)\leq-\delta\Big{)}.

Consider a mean zero Gaussian process {(γ)t}t0\{\mathfrak{Z}^{(\gamma)}_{t}\}_{t\geq 0} such that Cov((γ)t1,(γ)t2)=(t1/t2)γ\mathrm{Cov}(\mathfrak{Z}^{(\gamma)}_{t_{1}},\mathfrak{Z}^{(\gamma)}_{t_{2}})=(t_{1}/t_{2})^{\gamma} for tt2t\leq t_{2}. Due to (4.96) and Slepian’s inequality, we get

(supt𝔄1Y~(1)0,M(t)δ)(supt𝔄1(γ)tδ)=(supt[log,(1θ)logM](γ)etδ)\displaystyle\mathbb{P}\big{(}\sup_{t\in\mathfrak{A}_{1}}\tilde{Y}^{(-1)}_{0,M}(t)\leq-\delta\big{)}\geq\mathds{P}\big{(}\sup_{t\in\mathfrak{A}_{1}}\mathfrak{Z}^{(\gamma)}_{t}\leq-\delta\big{)}=\mathds{P}\Big{(}\sup_{t\in[-\log,-(1-\theta)\log M]}\mathfrak{Z}^{(\gamma)}_{e^{t}}\leq-\delta\Big{)} (4.100)

Note that (γ)et\mathfrak{Z}^{(\gamma)}_{e^{t}} is a stationary Gaussian process. By [DM15, Theorem 1.6],

limM1θlogMlogP(supt[log,(1θ)logM](γ)etδ)<.-\lim_{M\to\infty}\frac{1}{\theta\log M}\log P\Big{(}\sup_{t\in[-\log,-(1-\theta)\log M]}\mathfrak{Z}^{(\gamma)}_{e^{t}}\leq-\delta\Big{)}<\infty.

Combining the above fact with (4.100) shows that there exists θ0=θ0(ϵ)>0\theta_{0}=\theta_{0}(\epsilon)>0 such that for all θ<θ0\theta<\theta_{0} and large MM large, first inequality of (4.8) holds. The proof of the second inequality is similar. ∎

References

  • [AT09] Robert J Adler and Jonathan E Taylor. Random fields and geometry. Springer Science & Business Media, 2009.
  • [DHP95] Bernard Derrida, Vincent Hakim, and Vincent Pasquier. Exact first-passage exponents of 1d domain growth: relation to a reaction-diffusion model. Physical review letters, 75(4):751, 1995.
  • [DHP96] Bernard Derrida, Vincent Hakim, and Vincent Pasquier. Exact exponent for the number of persistent spins in the zero-temperature dynamics of the one-dimensional potts model. Journal of statistical physics, 85:763–797, 1996.
  • [DM15] A. Dembo and S. Mukherjee. No zero-crossings for random polynomials and the heat equation. Ann. Probab., 43(1):85–118, 2015.
  • [DPSZ02] A. Dembo, B. Poonen, Q.-M. Shao, and O. Zeitouni. Random polynomials having few or no real zeros. J. Amer. Math. Soc., 15(4):857–892, 2002.
  • [Dud10] R. M. Dudley. The sizes of compact subsets of Hilbert space and continuity of Gaussian processes [mr0220340]. In Selected works of R. M. Dudley, Sel. Works Probab. Stat., pages 125–165. Springer, New York, 2010.
  • [Kac43] M. Kac. On the average number of real roots of a random algebraic equation. Bull. Amer. Math. Soc., 49:314–320, 1943.
  • [KPT+16] Eugene Kanzieper, Mihail Poplavskyi, Carsten Timm, Roger Tribe, and Oleg Zaboronski. What is the probability that a large random matrix has no real eigenvalues? 2016.
  • [LO38] J. E. Littlewood and A. C. Offord. On the Number of Real Roots of a Random Algebraic Equation. J. London Math. Soc., 13(4):288–295, 1938.
  • [LO39] J. E. Littlewood and A. C. Offord. On the number of real roots of a random algebraic equation. II. Proc. Cambridge Philos. Soc., 12/35:133–148, 1939.
  • [LO43] J. E. Littlewood and A. C. Offord. On the number of real roots of a random algebraic equation. III. Rec. Math. [Mat. Sbornik] N.S., 12/54:277–286, 1943.
  • [Maj99] Satya N Majumdar. Persistence in nonequilibrium systems. Current Science, pages 370–375, 1999.
  • [NNV16] H. Nguyen, O. Nguyen, and V. Vu. On the number of real roots of random polynomials. Commun. Contemp. Math., 18(4):1550052, 17, 2016.
  • [PS99] B. Poonen and M. Stoll. The cassels-tate pairing on polarized abelian varieties. Annals of Mathematics, pages 1109–1149, 1999.
  • [PS18] Mihail Poplavskyi and Grégory Schehr. Exact persistence exponent for the 2 d-diffusion equation and related kac polynomials. Physical review letters, 121(15):150601, 2018.
  • [SM07] Grégory Schehr and Satya N Majumdar. Statistics of the number of zero crossings: from random polynomials to the diffusion equation. Physical review letters, 99(6):060603, 2007.
  • [SM08] Grégory Schehr and Satya N Majumdar. Real roots of random polynomials and zero crossing properties of diffusion equation. Journal of Statistical Physics, 132(2):235–273, 2008.