This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Universal Analytic Model of Irradiation Defect Dynamics in Silica-Silicon Structures

Yu Song yusong@njtc.edu.cn College of Physics and Electronic Information Engineering, Neijiang Normal University, Neijiang 641112, China Microsystem and Terahertz Research Center & Institute of Electronic Engineering, China Academy of Engineering Physics, Chengdu 610200, China    Guanghui Zhang Microsystem and Terahertz Research Center & Institute of Electronic Engineering, China Academy of Engineering Physics, Chengdu 610200, China    Xue-Fen Cai Beijing Computational Science Research Center, Beijing 100193, China    Yang Liu Microsystem and Terahertz Research Center & Institute of Electronic Engineering, China Academy of Engineering Physics, Chengdu 610200, China    Hang Zhou Microsystem and Terahertz Research Center & Institute of Electronic Engineering, China Academy of Engineering Physics, Chengdu 610200, China    Le Zhong Microsystem and Terahertz Research Center & Institute of Electronic Engineering, China Academy of Engineering Physics, Chengdu 610200, China    Gang Dai Microsystem and Terahertz Research Center & Institute of Electronic Engineering, China Academy of Engineering Physics, Chengdu 610200, China    Xu Zuo College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300071, China    Su-Huai Wei suhuaiwei@csrc.ac.cn Beijing Computational Science Research Center, Beijing 100193, China
Abstract

Irradiation damage is a key physics issue for semiconductor devices under extreme environments. For decades, the ionization-irradiation-induced damage in transistors with silica-silicon structures under constant dose rate is modeled by a uniform generation of EE^{\prime} centers in the bulk silica region and their irreversible conversion to PbP_{b} centers at the silica-silicon interface. But, the traditional model fails to explain experimentally observed dependence of the defect concentrations on dose, especially at low dose rate. Here, we propose that, the generation of EE^{\prime} is decelerated due to the dispersive diffusion of induced holes in the disordered silica and the conversion of PbP_{b} is reversible due to recombination-enhanced defect reactions under irradiation. It is shown that the derived analytic model based on these new understandings can consistently explain the fundamental but puzzling dependence of the defect concentrations on dose and dose rate in a wide range.

The electrical properties of the most-widely-used silicon devices degrade in the outer space and other extreme environments Adell and Boch (2014). This is because persistent ionizing irradiation induces EE\textquoteright centers in the dielectric silica layer and PbP_{b} centers at the silica-silicon interface, respectively Lenahan and Dressendorfer (1984); Poindexter et al. (1984). The dominating EE\textquoteright centers are positively charged states of oxygen vacancies with puckered configuration (VOγV_{O\gamma}Weeks (1956); Lenahan and Dressendorfer (1984), while the PbP_{b} centers are positively charged silicon dangling bonds Poindexter et al. (1981, 1984). These defects act as oxide and interface traps in the silica-silicon structures Fleetwood et al. (1993), which alter the performance of the devices. To understand the microscopic picture and model the irradiation-induced defect dynamics is essential to evaluate, predict, and control the irradiation damage. Since the pioneer work of Mclean in 1980 McLean (1980), a series of works have made earnest efforts to determine the atomic-scale physical mechanisms. For reviews, see Refs. Oldham and McLean (2003); Fleetwood (2017); Adell and Boch (2014).

It has been proposed that, EE^{\prime} and PbP_{b} centers are produced by four main processes in the silica-silicon structures Oldham and McLean (2003). Firstly, the irradiation generates electron-hole-pairs in the silica region, and a fraction of which will subject to prompt recombination Shaneyfelt et al. (1991); Boch et al. (2006a). Secondly, the remaining holes transport via hopping among relatively shallow defects such as oxygen vacancies with dimer configuration (VOδV_{O\delta}) broadly distributed in silica Hughes (1977); Boesch et al. (1975); Nicklaw et al. (2002) and are captured by relatively deep defects such as VOγV_{O\gamma} concentrated near the interface Lenahan and Dressendorfer (1984); Conley and Lenahan (1993a); Conley Jr et al. (1994a); Blöchl (2000); Lu et al. (2002). VOδ+V_{O\delta}^{+} has a large electron capture cross section and can act as recombination centers Conley Jr et al. (1994b, a); Yang et al. (2016). Thirdly, the generated EE\textquoteright centers (VOγ+V_{O\gamma}^{+}) can crack molecule hydrogen (H2\rm H_{2}) in the system and release protons (H+\rm H^{+}Conley and Lenahan (1993a, b); Stahlbush et al. (1993); Tuttle et al. (2010). Fourthly, the released protons travel to the interface where they de-passivate H-passivated dangling bonds (PbHP_{b}H) by forming PbP_{b} centers and H2\rm H_{2} Stahlbush et al. (1993); Mrstik and Rendell (1991); Stathis and Cartier (1994); Rashkeev et al. (2001). These processes formed the bases for the modeling and simulation of the irradiation damage Hjalmarson et al. (2003); Rowsey et al. (2011, 2012a, 2012b); Hughart et al. (2012). These processes can be described as a generation-conversion framework: h+k0Ekb1kf1H+kf2Pbh^{+}\stackrel{{\scriptstyle k_{0}}}{{\rightarrow}}E^{\prime}\stackrel{{\scriptstyle k_{f1}}}{{\underset{k_{b1}}{\rightleftarrows}}}H^{+}\stackrel{{\scriptstyle k_{f2}}}{{\rightarrow}}P_{b}, where kf,bk_{f,b}’s denote forward (f) and backward (b) conversion rate constants Fahey et al. (1989). k0=2Dh0Lck_{0}=2D_{h0}L_{c} is assumed to be a uniform generation rate constant, where Dh0D_{h0} is the diffusion coefficient of holes in silica and LcL_{c} is an estimated critical length similar to the concept of capture cross section. The conversion from EE^{\prime} to H+\rm H^{+} is reversible due to small reaction barriers for both directions Tuttle et al. (2010). However, the conversion from H+\rm H^{+} to PbP_{b} is assumed to be irreversible as the backward reaction barrier is considered to be large (about 1.3eV) Rashkeev et al. (2001). Accordingly, the whole backward conversion from PbP_{b} to EE^{\prime} is assumed to be negligible.

This uniform-generation and irreversible-conversion model has dominated the field for more than 3 decades. However, we notice that the fundamental dependence of the concentration of EE^{\prime}, [EE^{\prime}], on the irradiation dose cannot be properly explained by this “standard” picture. A monotonous growth profile is expected for [EE^{\prime}] according to the traditional model, however, an initial increase and then decrease behavior is recently found at low dose rate (at 10 mrad/s) Li et al. (2019). This abnormal non-monotonous dose dependence cannot be explained by the traditional model, unless extra nonradiative recombination of charge carriers, which is normally expected for high-dose-rate case, is assumed exclusively for the low-dose-rate case Li et al. (2019). Moreover, a striking negative dose-rate dependence (or enhanced low-dose-rate sensitivity, ELDRS) has been experimentally found for irradiation-induced [PbP_{b}] in 1991 Enlow et al. (1991), which becomes the main obstacle for people to deduce the extremely long time low-dose-rate irradiation damage from the high-dose-rate experiments carried out at relatively short time. Since then, great efforts have been made and many possible mechanisms have been proposed Fleetwood et al. (1994); Rashkeev et al. (2002); Hjalmarson et al. (2003); Rowsey et al. (2012b); Boch et al. (2006b). However,till now, there is still no solid experimental evidence supporting these claimed mechanisms.

In this Letter, we introduce two new concepts, decelerated generation of EE^{\prime} and reversible conversion from EE^{\prime} to PbP_{b}, in the framework of irradiation defect dynamics,

h+k(t)Ekb1(q)kf1(q)H+kb2(q)kf2(q)Pb,{\rm h^{+}}\stackrel{{\scriptstyle k(t)}}{{{\rightarrow}}}E^{\prime}\stackrel{{\scriptstyle k_{f1}(q)}}{{\underset{k_{b1}(q)}{\rightleftarrows}}}{\rm H^{+}}\stackrel{{\scriptstyle k_{f2}(q)}}{{\underset{k_{b2}(q)}{\rightleftarrows}}}P_{b}, (1)

where a time-dependent generation rate constant k(t)k(t) and dose-rate (qq)-dependent conversion rate constants kf,b(q)k_{f,b}(q) are introduced that are distinct from the existing models. The physical bases are the dispersive diffusion of irradiation-induced holes in the disordered silica and recombination-enhanced conversion reactions under irradiation, respectively. Based on these new concepts, we derive a new analytic model of the dose dependence of the defect concentrations and test it through γ\gamma-ray irradiation experiments on gated lateral PNP transistors. A perfect match is found for an extremely wide dose rate range from 58 μ\murad/s to 1 rad/s, which not only verify our new concepts but also provides insights into the origin of the dose rate dependence.

The concept of decelerated generation of EE\textquoteright centers is proposed based on the well-known dispersive feature of the hopping transport of holes in disordered silica Hughes (1977); Boesch et al. (1975); Nicklaw et al. (2002). In disordered silica the difference in atomic configurations of localized VOδV_{O\delta} states results in an exponential distribution of activation energy for holes Bendler and Shlesinger (1985). In this situation, the holes undergo a continuous-time random walk (CTRW) among localized states, and the pausing-time has a broad distribution of ψ(t)t(1+α)\psi(t)\propto t^{-(1+\alpha)}, where 0<α<10<\alpha<1 is a dispersion parameter Scher and Montroll (1975); Shlesinger and Montroll (1984). As a result of CTRW, the diffusion coefficient of the holes is not a constant but a power-law decay function of time, Dh(t)=Dh0(w0t)αD_{h}(t)=D_{h0}(w_{0}t)^{-\alpha}, where w0w_{0} is an attempt frequency. This unique behavior has been experimentally observed Pfister and Scher (1978); Scher and Montroll (1975); Kakalios et al. (1987). From the generation reaction of h++VOγEh^{+}+V_{O\gamma}\rightarrow E^{\prime}, the rate equation of [VOγV_{O\gamma}] is given by d[VOγ](t)/dt=k(t)[h][VOγ](t)d[V_{O\gamma}](t)/dt=-k(t)[h][V_{O\gamma}](t), where k(t)=k0(w0t)αk(t)=k_{0}(w_{0}t)^{-\alpha} and [h][h] is the equilibrium concentration of holes under irradiation and recombination Fowler (1956); Chen et al. (1981). The energy levels of the recombination centers such as VOδV_{O\delta} distribute exponentially Nicklaw et al. (2002), so [h]=cq0.5[h]=cq^{0.5} Fowler (1956); Fowler and Farmer (1954). The time dependence of [VOγV_{O\gamma}] is solved as a stretched exponentially decay function Williams and Watts (1970); Kohlrausch (1854), [VOγV_{O\gamma}](t)=P0ekqtβ(t)=P_{0}e^{-k\textquoteright\sqrt{q}t^{\beta}}, where P0P_{0} is the initial concentration of VOγV_{O\gamma}, β=1α\beta=1-\alpha, and k=cβ1w0αk0k\textquoteright=c\beta^{-1}w_{0}^{-\alpha}k_{0}. The concentration of EE^{\prime} is then given by [E](t)=P0[VOγ](t)[E\textquoteright](t)=P_{0}-[V_{O\gamma}](t), which reduces to a fractional power law (FPL) dose dependence, [E]=kP0qtβ[E\textquoteright]=k\textquoteright P_{0}\sqrt{q}t^{\beta}, for a relatively short time. Such a general FPL dependence with β\beta<1 implies a decelerated generation of EE\textquoteright centers and has been observed in bulk silica Griscom (1990); Imai and Hirashima (1994); Mashkov et al. (1996). For comparison, in the case of constant diffusion coefficient as suggested in traditional models, [P][P] is a simple exponential decay function of time, [P]=P0ek0cqt[P]=P_{0}e^{-k_{0}c\sqrt{q}t}, and [E][E\textquoteright] displays a linear dependence on time, [E]=k0P0cqt[E\textquoteright]=k_{0}P_{0}c\sqrt{q}t. Thus, the concept of decelerated generation of EE\textquoteright follows directly from the dispersive diffusion mechanism. The generation equation as a function of dose (D=qtD=qt) reads

(dE/dD)g=geβDβ1,(dE^{\prime}/dD)_{g}=g_{e}\beta D^{\beta-1}, (2a)
where ge=kP0q0.5βg_{e}=k^{\prime}P_{0}q^{0.5-\beta} is an effective generation efficiency. This result also implies a dose rate dependence of q0.5βq^{0.5-\beta} for a fixed DD, which is q0.5q^{-0.5} in the case of traditional model.

The concept of a reversible conversion between EE^{\prime} and PbP_{b} centers is based on the fact that the conversion reactions depend on the irradiation. Under the irradiation, the non-radiative recombination of induced carriers at the broadly distributed VOδV_{O\delta} Conley Jr et al. (1994b, a) can release energy and enhance all the four conversion rate constants and promote a nonzero kb2(q)k_{b2}(q) in Eq. (1) Kimerling (1978); Weeks et al. (1975). This so-called recombination-enhanced defect reaction mechanism has been observed in many experiments Lang and Kimerling (1974); Zhang et al. (1995). The re-generated protons can go back to the near-interface region and convert to EE^{\prime} with a rate constant of kb1(q)k_{b1}(q), as indicated in Eq. (1). Hence, the whole conversion between EE^{\prime} and PbP_{b} becomes reversible. From the conversion reactions of E+H2EH+H+E^{\prime}+H_{2}\rightleftarrows EH+H^{+} and H++PbHH2+PbH^{+}+P_{b}H\rightleftarrows H_{2}+P_{b}, the rate equations can be obtained as (dE/dt)c=kf1[H2]E+kb1[EH][H+](dE^{\prime}/dt)_{c}=-k_{f1}{\rm[H_{2}]}E^{\prime}+k_{b1}{\rm[EH]}{\rm[H^{+}]}, d[H+]/dt=kf1[H2]Ekb1[EH][H+]kf2[PbH][H+]+kb2[H2]Pbd{\rm[H^{+}]}/dt=k_{f1}{\rm[H_{2}]}E^{\prime}-k_{b1}{\rm[EH]}{\rm[H^{+}]}-k_{f2}{\rm[P_{b}H]}{\rm[H^{+}]}+k_{b2}{\rm[H_{2}]}P_{b}, and dPb/dt=kf2[PbH][H+]kb2[H2]PbdP_{b}/dt=k_{f2}{\rm[P_{b}H]}{\rm[H^{+}]}-k_{b2}{\rm[H_{2}]}P_{b}. Here H2\rm H_{2} can be recycled and the initial [EH\rm EH] and [PbHP_{b}H] are much higher than the changes due to the reactions Rowsey et al. (2011), thus they keep almost constant during the irradiation process. Note that the protons are simultaneously released and annihilated, a quasi-steady-state condition can be assumed for protons: d[H+]/dt=0d{\rm[H^{+}]}/dt=0. Then the rate equations of EE^{\prime} and PbP_{b} can be reduced as

(dE/dD)c=dPb/dD=q1κfE+q1κbPb,(dE^{\prime}/dD)_{c}=-dP_{b}/dD=-q^{-1}\kappa_{f}E^{\prime}+q^{-1}\kappa_{b}P_{b}, (2b)

where κf=kf1[H2]kf2[PbH]/(kb1[EH]+kf2[PbH])\kappa_{f}=k_{f1}{\rm[H_{2}]}k_{f2}{\rm[P_{b}H]}/(k_{b1}{\rm[EH]}+k_{f2}{\rm[P_{b}H]}) and κb=kb2[H2]kb1[EH]/(kb1[EH]+kf2[PbH])\kappa_{b}=k_{b2}{\rm[H_{2}]}k_{b1}{\rm[EH]}/(k_{b1}{\rm[EH]}+k_{f2}{\rm[P_{b}H]}) are effective conversion rate constants.

The solution of Eq. (2b) with E(0)=E0E^{\prime}(0)=E_{0} and Pb(0)=0P_{b}(0)=0 provides insights in the dose and dose rate dependence of the conversion process. The results are E(D)=(1λ)E0+λE0eD/DcE\textquoteright(D)=(1-\lambda)E_{0}+\lambda E_{0}e^{-D/D_{c}} and Pb(D)=λE0λE0eD/DcP_{b}(D)=\lambda E_{0}-\lambda E_{0}e^{-D/D_{c}}, where λ=κf/(κf+κb)\lambda=\kappa_{f}/(\kappa_{f}+\kappa_{b}) and Dc=q/(κf+κb)D_{c}=q/(\kappa_{f}+\kappa_{b}). From these results, we can see that the ratio between the irradiation time tr=D/qt_{r}=D/q and the characteristic conversion time τc=1/(κf+κb)\tau_{c}=1/(\kappa_{f}+\kappa_{b}) is D/DcD/D_{c}. So, DcD_{c} is a characteristic conversion dose. For trτct_{r}\gg\tau_{c} (DDcD\gg D_{c}), the conversion process is complete, and [PbP_{b}] is balanced at Pb=λE0P_{b}=\lambda E_{0}. So, λ\lambda is a conversion ratio from EE^{\prime} to PbP_{b}. As the dose rate increases, all the four kf,bk_{f,b}’s should increase because the non-radiative recombination increases. However, the forward conversion reaction barriers in Eq. (1) are lower than the backward conversion reaction barriers Tuttle et al. (2010); Rashkeev et al. (2001), so, the effect of the non-radiative recombination energy on κf\kappa_{f} should be less than on κb\kappa_{b}. This will result in a decreasing λ\lambda as the dose rate increases. For comparison, in the traditional model, no dose rate dependence is present in the conversion ratio, i.e., κb=0\kappa_{b}=0 and λ=1\lambda=1 for any dose rate.

To verify these new concepts, we have derived an analytic model of the defect concentrations as a function of the irradiation dose. This can be done by combining Eqs. (2a) and (2b) and using the initial conditions of E(0)=Pb(0)=0E^{\prime}(0)=P_{b}(0)=0 Lenahan and Dressendorfer (1984); Poindexter et al. (1984). The results are

E(D)=(1λ)geDβ+λgeDcβeD/DcβΓ[β,0,D/Dc],E^{\prime}(D)=(1-\lambda)g_{e}D^{\beta}+\lambda g_{e}D_{c}^{\beta}e^{-D/D_{c}}\beta\Gamma[\beta,0,D/D_{c}],\\ (3a)
Pb(D)=λgeDβλgeDcβeD/DcβΓ[β,0,D/Dc].P_{b}(D)=\lambda g_{e}D^{\beta}-\lambda g_{e}D_{c}^{\beta}e^{-D/D_{c}}\beta\Gamma[\beta,0,D/D_{c}]. (3b)

This new analytic model of Eq. (3) contains only 4 effective parameters: β\beta and geg_{e} for defect generation, and DcD_{c} and λ\lambda for defect conversion. Γ(β,0,D/Dc)=0D/Dcxβ1ex𝑑x\Gamma(\beta,0,D/D_{c})=\int_{0}^{D/D_{c}}x^{\beta-1}e^{-x}dx is a generalized incomplete gamma function in terms of β\beta and D/DcD/D_{c}, which reflects the interplay between the decelerated generation and reversible conversion dynamics.

Refer to caption
Figure 1: Dose dependence of [E+PbE^{\prime}+P_{b}] (black), [EE^{\prime}] (red), and [PbP_{b}] (blue) for (a, d) β=λ=1\beta=\lambda=1, (b, e) β=2/3\beta=2/3, λ=1\lambda=1, and (c, f) β=λ=2/3\beta=\lambda=2/3. For all cases geg_{e} and DcD_{c} are set as 1.

If neither new concepts were introduced in Eq. (1), i.e., β=λ=1\beta=\lambda=1, the above dose dependence reduces to E(D)=geDc(1eD/Dc)E^{\prime}(D)=g_{e}D_{c}(1-e^{-D/D_{c}}) and Pb(D)=geDgeDc(1eD/Dc)P_{b}(D)=g_{e}D-g_{e}D_{c}(1-e^{-D/D_{c}}) as plotted in Fig. 1 (a) and (d), respectively. It is clear that, the total concentration (black dashed) increases linearly as the dose increases and [EE^{\prime}] (red solid) increases asymptotically as EE\textquoteright centers are simultaneously generated and annihilated. If only the concept of decelerated generation is introduced (β<1\beta<1 and λ=1\lambda=1), the results become E(D)=geDcββeD/DcΓ[β,0,D/Dc]E^{\prime}(D)=g_{e}D_{c}^{\beta}\beta e^{-D/D_{c}}\Gamma[\beta,0,D/D_{c}] and Pb(D)=geDβgeDcββeD/DcΓ[β,0,D/Dc]P_{b}(D)=g_{e}D^{\beta}-g_{e}D_{c}^{\beta}\beta e^{-D/D_{c}}\Gamma[\beta,0,D/D_{c}], as plotted in Fig. 1 (b) and (e), respectively. It is seen that, the linear dependence of [E+PbE^{\prime}+P_{b}] becomes an FPL dependence, and the asymptotical increase of [EE^{\prime}] becomes a non-monotonic dependent. As the generation rate constant k(t)k(t) decays with time, the continuous irreversible conversion makes [EE^{\prime}] decay for large dose. If the concept of reversible conversion was further introduced (β<1\beta<1 and λ<1\lambda<1), the results become Eq. (3) as plotted in Fig. 1 (c) and (f). It is found that [EE^{\prime}] has an essentially different sublinear dependence on the dose, due to a sublinear FPL term from the backward conversion that dominates the dose profile. It is also noticed that the near-linear dependence of [PbP_{b}] profile at big dose range in Fig. (1d) (blue line) changes to a sublinear dependence in Figs. (1e) and (1f) due to β<1\beta<1.

Refer to caption
Figure 2: (a) [EE^{\prime}] and (b) [PbP_{b}] as a function of irradiation dose at different dose rate as indicated in the figure. Dots are for measured data and curves are for fitting.

To test the derived model, we measured [EE^{\prime}] and [PbP_{b}] by carrying out γ\gamma-ray irradiation experiments on lateral PNP transistors with gated silica-silicon structures Pease et al. (2004) in an extremely wide range of dose rate. The sum of [EE^{\prime}] and [PbP_{b}] is extracted from the voltage shift of sub-threshold sweep curves of the structure, while the value of [EE^{\prime}] can be deduced from the voltage shift of the peak position of the gate sweep curves McWhorter and Winokur (1986); Ball et al. (2002). The concentrations are investigated as a function of the irradiation dose and dose rate. DD is limited to 10 krad (Si) where the FPL applies. qq varies from 58 μ\murad/s to 1 rad/s, which spend 5 order of magnitudes. For each dose rate 3 samples are adopted to include sample-to-sample variability Song and Wei (2020); Song et al. (2020). The test at each dose is completed within half an hour, during which the annealing of EE^{\prime} and PbP_{b} can be ignored Adell and Boch (2014).

The typical data of [E+PbE^{\prime}+P_{b}] are present in Fig. S1 in the supplementary materials (SM), from which a clear sublinear dose dependence is observed. This behavior is totally different from the case of Fig. 1 (d), but is similar to the cases in Figs. 1 (e) and 1 (f), reflecting the necessity of including the concept of decelerated generation in the defect dynamics. The data is fitted by the sum of Eqs. (3a) and (3b), geDβg_{e}D^{\beta}, from which a perfect match is found in Fig. S1 in the SM. The fitting parameters β\beta and geg_{e} are plotted in Fig. 3 (a) and (b) as a function of dose rate. The parameter β\beta with an average value of about 2/3 is a direct result of the dispersive transport of holes (α=1/3\alpha=1/3). The generation efficiency geg_{e} is found to decrease with a negative power law of the dose rate, geq0.12g_{e}\propto q^{-0.12}. This result suggests a dose rate dependence of the hole concentration, [h]q0.55[h]\propto q^{0.55}, which is consistent with the recombination on exponentially distributed defects Fowler (1956); Fowler and Farmer (1954).

The typical measured data of [EE^{\prime}] and [PbP_{b}] are shown in Fig. 2 (a) and 2 (b) as the dots. The non-monotonous dependence of [EE\textquoteright] at relatively low dose rate is totally different from the curve in Figs. 1 (a) and 1 (c), but exactly corresponds to the case of Fig. 1 (b), further confirming the concept of decelerated generation and negligible EPbE^{\prime}\leftarrow P_{b} conversion at low dose rate. The sublinear dependence of [EE\textquoteright] at relatively high dose rate is also totally different from the curves in Figs. 1 (a) and 1 (b), but exactly corresponds to the case of Fig. 1 (c). This proves the presence of a remarkable backward conversion at high dose rate, which provides a dominating FPL term in the dose profile. In Fig. 2 (b) where [PbP_{b}] is plotted, it is seen that in both low or high dose rate, a super-linear and sublinear dose dependence is observed at small and large dose, respectively. This is consistent with the cases of Figs. 1(e) and 1(f) but differs from the case of Fig. 1(d). For D>3DcD>3D_{c}, [PbP_{b}] tends to reach an asymptotic value of Pb(D)=λgeDβP_{b}(D)=\lambda g_{e}D^{\beta}. This naturally explains a universal 2/3 power law dose dependence that has been experimentally observed for [PbP_{b}Winokur and Boesch (1980).

The individual values of [EE^{\prime}] and [PbP_{b}] can be fitted by our model with the already extracted geg_{e} and β\beta. A good match is found between the data and models in Fig. 2. The experimental results also display clear sample-to-sample variability, but also can be perfectly fitted by the model, see Fig. S2 in the SM. The extracted conversion rate constants κf\kappa_{f} and κb\kappa_{b} are plotted in Fig. 3(c) as a function of dose rate. It is seen that κb\kappa_{b} (blue) is negligible at low dose rate, which is consistent with the large reaction barrier of H+PbH^{+}\leftarrow P_{b}. Both κb\kappa_{b} and κf\kappa_{f} increase as the dose rate increases. This is a result of the increased carrier recombination. From Fig. 3 (c), it is also noticed κf\kappa_{f} increases slower than κb\kappa_{b} as the dose rate increases. This is consistent with the different barriers of the forward and backward reactions as analyzed before. Accordingly, λ\lambda show a negative qq dependence, as seen in Fig. S3 (a) in the SM. The larger κf\kappa_{f} increases sublinearly with dose rate, hence Dc=q/(κf+κb)D_{c}=q/(\kappa_{f}+\kappa_{b}) increases slightly with dose rate, see Fig. S3 (b) in the SM.

Refer to caption
Figure 3: (a) β\beta, (b) geg_{e}, (c) κf\kappa_{f} (red), and κb\kappa_{b} (blue) from the fitting of the data as a function of dose rate.

For D>3DcD>3D_{c}, [PbP_{b}]=λgeDβ\lambda g_{e}D^{\beta} and the negative qq dependence of it at a fixed DD originates from the negative qq dependence of geg_{e} and λ\lambda, whose origins have been discussed above. For D<3DcD<3D_{c}, the dose rate dependence of DcD_{c} is also responsible for the ELDRS effect. It would be interesting to compare our results with the mechanisms deduced from the traditional models. The “competition” mechanism Boch et al. (2006b) suggests that a competition between hole trapping and recombination is the dominating reason for the qq dependence of the generation process, which would have a q0.51q^{0.5-1} dependence due to an exponential distribution of the defect energy levels (giving q\sqrt{q}Fowler (1956); Fowler and Farmer (1954) and the difference in the time cost at different dose rates (giving q1q^{-1}). However, our results indicate that the dispersive transport of holes in disordered silica leads to a much gentle dependence of q0.5βq^{0.5-\beta}, where the difference in the time costs is reduced to q(1α)q^{-(1-\alpha)}. The “hydrogen dimerization” mechanism Hjalmarson et al. (2003); Rowsey et al. (2012b) suggests that a negative qq dependence of the conversion ratio can arise from the EH+E^{\prime}\leftarrow H^{+} backward conversion at high dose rate, in which case, the protons pile up at the silica-silicon interface before reacting. From Eq. (3) and the conversion rate equations, we obtain [H+\rm H^{+}]=kf1[H2]kb2[H2](1λ)1kb1[EH]λ1kf2[PbH]geDβ\frac{k_{f1}{\rm[H_{2}]}-k_{b2}{\rm[H_{2}]}}{(1-\lambda)^{-1}k_{b1}{\rm[EH]}-\lambda^{-1}k_{f2}{\rm[P_{b}H]}}g_{e}D^{\beta} for D>3DcD>3D_{c}, which indicates that the H+PbH^{+}\leftarrow P_{b} backward conversion also contributes to the pile up of protons. The “space charge” mechanism Fleetwood et al. (1994); Rashkeev et al. (2002) suggests that the negative qq dependence of the conversion ratio can also arise from the Coulomb repulsion of positive EE^{\prime} on the transport of positive H+\rm H^{+} to the interface. However, our extracted κf\kappa_{f} indicates that the transport and reaction of protons should be accelerated at high dose rate.

The proposed and verified analytic model, Eq. (3), indicates exactly what factors in the silica-silicon structure influence the concentration of generated defects, so it can be used to guide the design of radiation-hard devices. For example, [E+PbE^{\prime}+P_{b}]=kP0q0.5βDβ=k\textquoteright P_{0}q^{0.5-\beta}D^{\beta}. So, it is crucial to decrease the concentration of VOγV_{O\gamma} (P0P_{0}) to reduce the total concentration of the irradiation-induced defects. For fixed kf,bk_{f,b}’s, the conversion ratio λ\lambda can be tuned by the ratio of [EH\rm EH]/[PbH{\rm P_{b}H}]. This means that, the weight of [PbP_{b}] ([EE^{\prime}]) in the total concentration can be reduced by increasing (decreasing) this ratio.

In summary, we have proposed a new irradiation-induced defect dynamics model in silica/silicon structures based on two new concepts. The first concept is a decelerated generation of EE^{\prime} centers in bulk silica, which originates from the dispersive diffusion of induced holes in disordered silica and is responsible for the general FPL dose dependence of [EE^{\prime}+PbP_{b}], the non-monotonic dose dependence of [EE^{\prime}] for low-dose-rate irradiation, as well as the gentle dose rate dependence of the generation process. The second concept is a reversible conversion between EE^{\prime} and PbP_{b} at the silica/silicon interface, which originates from the recombination enhanced reaction under irradiation and is indispensable for the sublinear dose dependence of [EE^{\prime}] for high-dose-rate irradiation as well as the negative dose rate dependence of the conversion process. The derived analytical model based on these two new concepts can quantitatively describe the experimental data measured with wide dose and dose rate spectrum. These remarkable results provide a solid foundation in the goal of understanding, predicting, and control the irradiation damage of silicon-based semiconductor devices.

This work was financially supported by the Science Challenge Project under Grant Nos. TZ2016003 and TZ2018004, and NSFC under Grant Nos. 11991060, 12088101, 11634003, and U1930402.

References

  • Adell and Boch (2014) P. Adell and J. Boch, Proc NSREC Short Course  (2014).
  • Lenahan and Dressendorfer (1984) P. M. Lenahan and P. Dressendorfer, J. Appl. Phys. 55, 3495 (1984).
  • Poindexter et al. (1984) E. Poindexter, G. Gerardi, M.-E. Rueckel, P. Caplan, N. Johnson,  and D. Biegelsen, J. Appl. Phys. 56, 2844 (1984).
  • Weeks (1956) R. Weeks, J. Appl. Phys. 27, 1376 (1956).
  • Poindexter et al. (1981) E. H. Poindexter, P. J. Caplan, B. E. Deal,  and R. R. Razouk, J. Appl. Phys. 52, 879 (1981).
  • Fleetwood et al. (1993) D. Fleetwood, P. Winokur, R. Reber Jr, T. Meisenheimer, J. Schwank, M. Shaneyfelt,  and L. Riewe, J. Appl. Phys. 73, 5058 (1993).
  • McLean (1980) F. McLean, IEEE Trans. Nucl. Sci. 27, 1651 (1980).
  • Oldham and McLean (2003) T. R. Oldham and F. McLean, IEEE Trans. Nucl. Sci. 50, 483 (2003).
  • Fleetwood (2017) D. M. Fleetwood, IEEE Trans. Nucl. Sci. 65, 1465 (2017).
  • Shaneyfelt et al. (1991) M. Shaneyfelt, D. Fleetwood, J. Schwank,  and K. Hughes, IEEE Trans. Nucl. Sci. 38, 1187 (1991).
  • Boch et al. (2006a) J. Boch, F. Saigne, L. Dusseau,  and R. Schrimpf, Appl. Phys. Lett. 89, 042108 (2006a).
  • Hughes (1977) R. Hughes, Phys. Rev. B 15, 2012 (1977).
  • Boesch et al. (1975) H. Boesch, F. McLean, J. McGarrity,  and G. Ausman, IEEE Trans. Nucl. Sci. 22, 2163 (1975).
  • Nicklaw et al. (2002) C. Nicklaw, Z.-Y. Lu, D. Fleetwood, R. Schrimpf,  and S. Pantelides, IEEE Trans. Nucl. Sci. 49, 2667 (2002).
  • Conley and Lenahan (1993a) J. Conley and P. Lenahan, Appl. Phys. Lett. 62, 40 (1993a).
  • Conley Jr et al. (1994a) J. F. Conley Jr, P. M. Lenahan, H. Evans, R. Lowry,  and T. Morthorst, J. Appl. Phys. 76, 2872 (1994a).
  • Blöchl (2000) P. E. Blöchl, Phys. Rev. B 62, 6158 (2000).
  • Lu et al. (2002) Z.-Y. Lu, C. Nicklaw, D. Fleetwood, R. Schrimpf,  and S. Pantelides, Phys. Rev. Lett. 89, 285505 (2002).
  • Conley Jr et al. (1994b) J. F. Conley Jr, P. Lenahan, H. Evans, R. Lowry,  and T. Morthorst, Appl. Phys. Lett. 65, 2281 (1994b).
  • Yang et al. (2016) J.-H. Yang, L. Shi, L.-W. Wang,  and S.-H. Wei, Sci. Rep. 6, 1 (2016).
  • Conley and Lenahan (1993b) J. Conley and P. Lenahan, IEEE Trans. Nucl. Sci. 40, 1335 (1993b).
  • Stahlbush et al. (1993) R. Stahlbush, A. Edwards, D. Griscom,  and B. Mrstik, J. Appl. Phys. 73, 658 (1993).
  • Tuttle et al. (2010) B. R. Tuttle, D. R. Hughart, R. D. Schrimpf, D. M. Fleetwood,  and S. T. Pantelides, IEEE Trans. Nucl. Sci. 57, 3046 (2010).
  • Mrstik and Rendell (1991) B. Mrstik and R. Rendell, IEEE Trans. Nucl. Sci. 38, 1101 (1991).
  • Stathis and Cartier (1994) J. Stathis and E. Cartier, Phys. Rev. Lett. 72, 2745 (1994).
  • Rashkeev et al. (2001) S. Rashkeev, D. Fleetwood, R. Schrimpf,  and S. Pantelides, Phys. Rev. Lett. 87, 165506 (2001).
  • Hjalmarson et al. (2003) H. P. Hjalmarson, R. L. Pease, S. C. Witczak, M. R. Shaneyfelt, J. R. Schwank, A. H. Edwards, C. E. Hembree,  and T. R. Mattsson, IEEE Trans. Nucl. Sci. 50, 1901 (2003).
  • Rowsey et al. (2011) N. L. Rowsey, M. E. Law, R. D. Schrimpf, D. M. Fleetwood, B. R. Tuttle,  and S. T. Pantelides, IEEE Trans. Nucl. Sci. 58, 2937 (2011).
  • Rowsey et al. (2012a) N. L. Rowsey, M. E. Law, R. D. Schrimpf, D. M. Fleetwood, B. R. Tuttle,  and S. T. Pantelides, IEEE Trans. Nucl. Sci. 59, 755 (2012a).
  • Rowsey et al. (2012b) N. L. Rowsey, M. E. Law, R. D. Schrimpf, D. M. Fleetwood, B. R. Tuttle,  and S. T. Pantelides, IEEE Trans. Nucl. Sci. 59, 3069 (2012b).
  • Hughart et al. (2012) D. Hughart, R. Schrimpf, D. Fleetwood, N. Rowsey, M. Law, B. Tuttle,  and S. Pantelides, IEEE Trans. Nucl. Sci. 59, 3087 (2012).
  • Fahey et al. (1989) P. M. Fahey, P. Griffin,  and J. Plummer, Rev. Mod. Phys. 61, 289 (1989).
  • Li et al. (2019) X. Li, J. Yang, H. Chen, S. Dong,  and G. Lv, IEEE Trans. Nucl. Sci. 66, 1612 (2019).
  • Enlow et al. (1991) E. W. Enlow, R. L. Pease, W. Combs,  and R. D. Schrimpf, IEEE Trans. Nucl. Sci. 38, 1342 (1991).
  • Fleetwood et al. (1994) D. Fleetwood, S. Kosier, R. Nowlin, R. Schrimpf, R. Reber, M. DeLaus, P. Winokur, A. Wei, W. Combs,  and R. Pease, IEEE Trans. Nucl. Sci. 41, 1871 (1994).
  • Rashkeev et al. (2002) S. N. Rashkeev, C. R. Cirba, D. M. Fleetwood, R. D. Schrimpf, S. C. Witczak, A. Michez,  and S. T. Pantelides, IEEE Trans. Nucl. Sci. 49, 2650 (2002).
  • Boch et al. (2006b) J. Boch, F. Saigne, A. D. Touboul, S. Ducret, J. F. Carlotti, M. Bernard, R. D. Schrimpf, F. Wrobel,  and G. Sarrabayrouse, Appl. Phys. Lett. 88, 232113 (2006b).
  • Bendler and Shlesinger (1985) J. T. Bendler and M. F. Shlesinger, Macromolecules 18, 591 (1985).
  • Scher and Montroll (1975) H. Scher and E. W. Montroll, Phys. Rev. B 12, 2455 (1975).
  • Shlesinger and Montroll (1984) M. F. Shlesinger and E. W. Montroll, Proc. Natl. Acad. Sci. 81, 1280 (1984).
  • Pfister and Scher (1978) G. Pfister and H. Scher, Adv. Phys. 27, 747 (1978).
  • Kakalios et al. (1987) J. Kakalios, R. Street,  and W. Jackson, Phys. Rev. Lett. 59, 1037 (1987).
  • Fowler (1956) J. F. Fowler, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences 236, 464 (1956).
  • Chen et al. (1981) R. Chen, S. McKeever,  and S. Durrani, Phys. Rev. B 24, 4931 (1981).
  • Fowler and Farmer (1954) J. F. Fowler and F. Farmer, Nature 173, 317 (1954).
  • Williams and Watts (1970) G. Williams and D. C. Watts, Transactions of the Faraday society 66, 80 (1970).
  • Kohlrausch (1854) R. Kohlrausch, Ann. Phys. 167, 179 (1854).
  • Griscom (1990) D. L. Griscom, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 46, 12 (1990).
  • Imai and Hirashima (1994) H. Imai and H. Hirashima, J. Non. Cryst. Solids 179, 202 (1994).
  • Mashkov et al. (1996) V. Mashkov, W. R. Austin, L. Zhang,  and R. Leisure, Phys. Rev. Lett. 76, 2926 (1996).
  • Kimerling (1978) L. Kimerling, Solid-State Electron. 21, 1391 (1978).
  • Weeks et al. (1975) J. D. Weeks, J. C. Tully,  and L. Kimerling, Phys. Rev. B 12, 3286 (1975).
  • Lang and Kimerling (1974) D. Lang and L. Kimerling, Phys. Rev. Lett. 33, 489 (1974).
  • Zhang et al. (1995) L. Zhang, V. Mashkov,  and R. Leisure, Phys. Rev. Lett. 74, 1605 (1995).
  • Pease et al. (2004) R. L. Pease, D. G. Platteter, G. Dunham, J. Seiler, H. Barnaby, R. Schrimpf, M. R. Shaneyfelt, M. Maher,  and R. Nowlin, IEEE Trans. Nucl. Sci. 51, 3773 (2004).
  • McWhorter and Winokur (1986) P. McWhorter and P. Winokur, Appl. Phys. Lett. 48, 133 (1986).
  • Ball et al. (2002) D. R. Ball, R. D. Schrimpf,  and H. J. Barnaby, IEEE Trans. Nucl. Sci. 49, 3185 (2002).
  • Song and Wei (2020) Y. Song and S.-H. Wei, ACS Appl. Electron. Mater. 2, 3783 (2020).
  • Song et al. (2020) Y. Song, H. Zhou, X.-F. Cai, Y. Liu, P. Yang, G.-H. Zhang, Y. Zhang, M. Lan,  and S.-H. Wei, ACS Appl. Mater. Interfaces 12, 29993 (2020).
  • Winokur and Boesch (1980) P. Winokur and H. Boesch, IEEE Trans. Nucl. Sci. 27, 1647 (1980).

I supplementary materials

[Uncaptioned image]

Fig. S1. The total concentration of EE^{\prime} and PbP_{b} centers as a function of the irradiation dose at different dose rates. Dots are for data and curves are for fitting.

[Uncaptioned image]

Fig. S2. The concentration of EE^{\prime} center (a) and PbP_{b} center (b) as a function of ionizing dose at 10 mrad/s for three different samples. Insert in (b): the fitting of Li et al’s EE^{\prime} data [33]. Dots are for data and curves are for fitting.

[Uncaptioned image]

Fig. S3. The conversion ratio (a) and characteristic conversion dose (b) extracted from the data.