This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Uniqueness of Landau levels and their analogs with higher Chern numbers

Bruno Mera Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai 980-8577, Japan Instituto de Telecomunicações and Departmento de Matemática, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais 1, 1049-001 Lisboa, Portugal    Tomoki Ozawa Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai 980-8577, Japan
Abstract

Landau levels are the eigenstates of a charged particle in two dimensions under a magnetic field, and are at the heart of the integer and fractional quantum Hall effects, which are two prototypical phenomena showing topological features. Following recent discoveries of fractional quantum Hall phases in van der Waals materials, there is a rapid progress in understanding of the precise condition under which the fractional quantum Hall phases can be stabilized. It is now understood that the key to obtaining the fractional quantum Hall phases is the energy band whose eigenstates are holomorphic functions in both real and momentum space coordinates. Landau levels are indeed examples of such energy bands with an additional special property of having flat geometrical features. In this paper, we prove that, in fact, the only energy eigenstates having holomorphic wave functions with a flat geometry are the Landau levels and their higher Chern number analogs. Since it has been known that any holomorphic eigenstates can be constructed from the ones with a flat geometry such as the Landau levels, our uniqueness proof of the Landau levels allows one to construct any possible holomorphic eigenstate with which the fractional quantum Hall phases can be stabilized.

Introduction

There is an increasing interest in topological flat bands. Here, the adjective flat may refer not only to the energy dispersion but also to the geometrical properties in momentum space such as the Berry curvature and the quantum metric. The lowest Landau level is an example of such an energetically and geometrically flat band. Additionally, the lowest Landau level has a special property that the wave function can be taken as a holomorphic function both in real and momentum space [1, 2]. It has been known that when bands fulfill the holomorphicity condition and the Berry curvature is flat, their projected density operators obey the Girvin-MacDonald-Platzman (GMP) algebra [3], which implies that a fractional topological phase can be stabilized under short-range interactions [4]. Recently, it has been found that the holomorphicity is the key to obtaining the fractional topological phases, and the strict flatness of the Berry curvature is not necessary [5]. It is known that any holomorphic state can be constructed by modifying holomorphic wave functions with uniform Berry curvature. Twisted bilayer graphene in the chiral limit [6, 7, 8, 9, 10, 11, 12] provides an example of such a holomorphic state. With the recent discovery of fractional quantum Hall states in bilayer graphene [13, 14] and fractional quantum anomalous Hall states in twisted moiré lattices [15, 16, 17, 18, 19], it is of urgent interest to identify the class of wave functions where the fractional topological phases can be stabilized.

In this paper, we show that the lowest Landau level is not just an example of geometrically flat bands fulfilling the holomorphicity condition, but rather they are the only possibility of such an isotropic flat band in two dimensions with unit Chern number. We also show that geometrically flat bands with higher Chern numbers, such as those constructed in [20], are also uniquely determined once one fixes the Chern number and one parameter governing the anisotropy called the modular parameter. Finally we provide explicit expressions of those wave functions. On the one hand, our result places a strict constraint on the types of wave functions one can consider in exploring bands fulfilling the GMP algebra. On the other hand, our explicit expressions of the desired wave functions, which are exhaustive due to the uniqueness, can provide a solid basis to further study fractional topological physics in such bands.

This paper is structured as follows. In Sec. I we present our results. We begin by recalling and discussing the recently introduced concept of Kähler bands in Sec. I.1, then we present our main theorem in Sec. I.2, and in Sec. I.3 we present its proof. In Sec. II we discuss our results. In Sec. III we present some technical results used in the proof of the main theorem.

I Results

I.1 Kähler bands

Before stating our main theorem and presenting its proof, we first introduce the basic terminology of Bloch bands and the concept of Kähler band which will be used in the discussion to follow. We focus on two spatial dimensions.

Energy bands of a particle in a periodic potential are characterized, via Bloch’s theorem, by the quasimomentum 𝐤𝐤\mathbf{k}, a parameter which is taken from a two-torus known as the Brillouin zone BZ2superscriptBZ2\textnormal{\text{BZ}}^{2}. For a given 𝐤𝐤\mathbf{k}, an eigenstate for a given band is described by a Bloch wave function |u𝐤ketsubscript𝑢𝐤|u_{\mathbf{k}}\rangle which takes values in a suitable Hilbert space \mathcal{H}. Since multiplying |u𝐤ketsubscript𝑢𝐤|u_{\mathbf{k}}\rangle by a nonzero complex number defines the same quantum state, a quantum state is specified by a one-dimensional vector subspace of \mathcal{H} i.e., a point in a complex projective space. A Bloch band thus defines a map from the Brillouin zone to a complex projective space.

In Refs. [21, 22, 23], we have introduced the concept of a (anti)-Kähler band, a Bloch band for which the associated map from the Brillouin zone to the space of quantum states, regarded appropriately as a map between complex manifolds, is a (anti)-holomorphic map with nonvanishing derivative [mathematically, the map is a (anti)-holomorphic immersion]. For (anti)-Kähler bands, the quantum metric g𝑔g and Berry curvature F𝐹F are connected by a complex structure J𝐽J, a tensor which squares to 11-1, giving BZ2superscriptBZ2\textnormal{\text{BZ}}^{2} the structure of a (anti)-Kähler manifold. In the periodic coordinates k=(kx,ky)ksubscript𝑘𝑥subscript𝑘𝑦\textnormal{{k}}=(k_{x},k_{y}) of the BZ2superscriptBZ2\textnormal{\text{BZ}}^{2} 111we use a convention for which the irreducible representations (irreps) of the real space lattice 2superscript2\mathbb{Z}^{2} are written as e2πikRsuperscript𝑒2𝜋𝑖kRe^{2\pi i\textnormal{{k}}\cdot\textnormal{{{{R}}}}}, with R2Rsuperscript2\textnormal{{R}}\in\mathbb{Z}^{2}, so that k and k+GkG\textnormal{{k}}+\textnormal{{G}}, with G2Gsuperscript2\textnormal{{G}}\in\mathbb{Z}^{2}, determine the same irrep and hence the same Bloch quasimomentum in BZ2superscriptBZ2\textnormal{\text{BZ}}^{2}., denoting the two-by-two matrices representing g𝑔g, F𝐹F and J𝐽J, respectively, by the same letters g(k)=[gij]1i,j2𝑔ksubscriptdelimited-[]subscript𝑔𝑖𝑗formulae-sequence1𝑖𝑗2g(\textnormal{{k}})=[g_{ij}]_{1\leq i,j\leq 2}, F(k)=[Fij]1i,j2𝐹ksubscriptdelimited-[]subscript𝐹𝑖𝑗formulae-sequence1𝑖𝑗2F(\textnormal{{k}})=[F_{ij}]_{1\leq i,j\leq 2} and J(k)=[Jij]1i,j2𝐽ksubscriptdelimited-[]subscript𝐽𝑖𝑗formulae-sequence1𝑖𝑗2J(\textnormal{{k}})=[J_{ij}]_{1\leq i,j\leq 2}, the condition that a Kähler band must satisfy is equivalent to the matrix equation

g(k)=i2F(k)J(k),𝑔k𝑖2𝐹k𝐽k\displaystyle g(\textnormal{{k}})=-\frac{i}{2}F(\textnormal{{k}})J(\textnormal{{k}}), (1)

which taking determinants gives the quantum metric-Berry curvature relation

det(g(k))=|F12(k)|2.𝑔ksubscript𝐹12k2\displaystyle\sqrt{\det(g(\textnormal{{k}}))}=\frac{|F_{12}(\textnormal{{k}})|}{2}. (2)

(Note that we use the convention that the Berry curvature F𝐹F is purely imaginary.) In Ref. [21], the lowest Landau level appears as a special case of a Kähler band with 𝒞=1𝒞1\mathcal{C}=1 for which the quantum geometry of the Brillouin zone is independent of 𝐤𝐤\mathbf{k}, i.e., it is invariant under the full translation group 2superscript2\mathbb{R}^{2} of the Brillouin zone—we refer to these Bloch bands as geometrically flat Kähler bands 222We note that concepts closely related to Kähler bands have been proposed by several authors, and we would like to clarify their relations here. Ideal flatbands [2, 5] refer to energetically flat Kähler bands with a constant complex structure J𝐽J. Vortexable bands refer to bands where one can add vortices without leaving the eigenspace of bands; in the presence of a lattice translation symmetry, vortexable bands are equivalent to ideal flatbands [43]..

I.2 Main theorem

The main result of this paper is the following theorem:

Theorem 1 (Uniqueness of geometrically flat Kähler bands).

Geometrically flat (anti-)Kähler bands i.e., bands in which the equality Eq. (1) holds and g𝑔g is independent of k, are unique up to a gauge choice, given the Chern number 𝒞0𝒞subscriptabsent0\mathcal{C}\in\mathbb{Z}_{\neq 0} and the constant complex structure J𝐽J.

Some remarks are in order. The cases 𝒞>0𝒞0\mathcal{C}>0 corresponds to Kähler bands, while 𝒞<0𝒞0\mathcal{C}<0 corresponds to anti-Kähler bands. Below we assume 𝒞>0𝒞0\mathcal{C}>0, but the uniqueness proof holds for 𝒞<0𝒞0\mathcal{C}<0 mutatis mutandis; in particular, ones obtains the wave function for 𝒞<0𝒞0\mathcal{C}<0 by taking the complex conjugate of the wave function for 𝒞>0𝒞0\mathcal{C}>0.

The assumption that g𝑔g is constant, together with Eq. (2), implies that F𝐹F is also constant in momentum space. Besides, from Eq. (1), one sees that J𝐽J is also constant. Such a Kähler band is thus translation-invariant in momentum space. Translation-invariant complex structures J𝐽J in the Brillouin zone BZ2superscriptBZ2\textnormal{\text{BZ}}^{2} can be conveniently parametrized in terms of a modular parameter τ𝜏\tau\in\mathbb{H} as J=1Im(τ)(Re(τ)|τ|21Re(τ))𝐽1Im𝜏matrixRe𝜏superscript𝜏21Re𝜏J=\dfrac{1}{\mathrm{Im}(\tau)}\begin{pmatrix}-\mathrm{Re}(\tau)&-|\tau|^{2}\\ 1&\mathrm{Re}(\tau)\end{pmatrix}, where ={τ:Im(τ)>0}conditional-set𝜏Im𝜏0\mathbb{H}=\{\tau\in\mathbb{C}:\mathrm{Im}(\tau)>0\} is the upper half of the complex plane [23]. We then parametrize momentum space by the complex coordinate zτ=kx+τkysubscript𝑧𝜏subscript𝑘𝑥𝜏subscript𝑘𝑦z_{\tau}=k_{x}+\tau k_{y}. Note that the Brillouin zone equipped with this complex coordinate becomes a complex torus /ΛτsubscriptΛ𝜏\mathbb{C}/\Lambda_{\tau}, where Λτ=+τsubscriptΛ𝜏𝜏\Lambda_{\tau}=\mathbb{Z}+\tau\mathbb{Z}.

We will see that one cannot obtain a geometrically flat Kähler band with a finite number of total bands—a result which was already alternatively proved in Refs. [23, 26].

The outline of the proof of the Theorem is the following. We first consider Kähler bands with constant J𝐽J and show that Bloch wave functions must be written as a linear combination of theta functions with characteristics. We then assume that g𝑔g, and hence F𝐹F, are constant and, via the Stone-von Neumann theorem, show that only one possible combination of theta functions is allowed.

I.3 Proof

Kähler bands for translation-invariant J𝐽J.— We describe the Bloch wave function 333Here the Bloch wave function refers to the unit-cell periodic (up to a suitable phase when under a magnetic field) part of the eigenstate with a given quasimomentum. in two spatial dimensions by a collection of nonvanishing vectors |ukketsubscript𝑢k|u_{\textnormal{{k}}}\rangle\in\mathcal{H} smoothly parametrized by k2ksuperscript2\textnormal{{k}}\in\mathbb{R}^{2} where 2superscript2\mathbb{R}^{2} is the universal cover of BZ2superscriptBZ2\textnormal{\text{BZ}}^{2}, and \mathcal{H} is a fixed Hilbert space which can be finite or infinite dimensional. We need |ukketsubscript𝑢k|u_{\textnormal{{k}}}\rangle and |uk+Gketsubscript𝑢kG|u_{\textnormal{{k}}+\textnormal{{G}}}\rangle for arbitrary G in the reciprocal lattice to define the same quantum state. If the momentum space Hamiltonian H𝐤subscript𝐻𝐤H_{\mathbf{k}} obeys the periodicity H𝐤+𝐆=H𝐤subscript𝐻𝐤𝐆subscript𝐻𝐤H_{\mathbf{k}+\mathbf{G}}=H_{\mathbf{k}}, |ukketsubscript𝑢k|u_{\textnormal{{k}}}\rangle and |uk+Gketsubscript𝑢kG|u_{\textnormal{{k}}+\textnormal{{G}}}\rangle differ, in general, by multiplication by a non-vanishing complex number eG(k)subscript𝑒Gke_{\textnormal{{G}}}(\textnormal{{k}}):

|uk+G=|ukeG(k).ketsubscript𝑢kGketsubscript𝑢ksubscript𝑒Gk\displaystyle|u_{\textnormal{{k}}+\textnormal{{G}}}\rangle=|u_{\textnormal{{k}}}\rangle e_{\textnormal{{G}}}(\textnormal{{k}}). (3)

By associativity of the sum (see Eq. (6)), one can show that the functions eG(k)subscript𝑒Gke_{\textnormal{{G}}}(\textnormal{{k}}) satisfy a cocycle condition

eG1+G2(k)=eG1(k+G2)eG2(k).subscript𝑒subscriptG1subscriptG2ksubscript𝑒subscriptG1ksubscriptG2subscript𝑒subscriptG2k\displaystyle e_{\textnormal{{G}}_{1}+\textnormal{{G}}_{2}}(\textnormal{{k}})=e_{\textnormal{{G}}_{1}}(\textnormal{{k}}+\textnormal{{G}}_{2})e_{\textnormal{{G}}_{2}}(\textnormal{{k}}). (4)

The family of functions then defines what is called a system of multipliers for a line bundle LBZ2𝐿superscriptBZ2L\to\textnormal{\text{BZ}}^{2} (see, for example, Refs. [28, 29]). There is a gauge degree of freedom in defining the Bloch wave function |ukketsubscript𝑢k|u_{\textnormal{{k}}}\rangle because a state in quantum mechanics is a one-dimensional subspace of the Hilbert space. Below, we will indeed frequently use non-normalized vectors because it is convenient in the holomorphic setting. Concretely, we are free to multiply |ukketsubscript𝑢k|u_{\textnormal{{k}}}\rangle by g(k)GL(1;)=𝑔kGL1superscriptg(\textnormal{{k}})\in\mathrm{GL}(1;\mathbb{C})=\mathbb{C}^{*} depending smoothly on k2ksuperscript2\textnormal{{k}}\in\mathbb{R}^{2}. This changes the multipliers to g(k+G)g(k)eG(k)𝑔kG𝑔ksubscript𝑒Gk\frac{g(\textnormal{{k}}+\textnormal{{G}})}{g(\textnormal{{k}})}e_{\textnormal{{G}}}(\textnormal{{k}}), which does not change the isomorphism class of L𝐿L [29]. We assume that this line bundle has Chern number 𝒞𝒞\mathcal{C}, which is nothing but the Chern number of the band under consideration.

More generally, the momentum-space Hamiltonian can transform as H𝐤+𝐆=V𝐆H𝐤V𝐆1subscript𝐻𝐤𝐆subscript𝑉𝐆subscript𝐻𝐤superscriptsubscript𝑉𝐆1H_{\mathbf{k}+\mathbf{G}}=V_{\mathbf{G}}H_{\mathbf{k}}V_{\mathbf{G}}^{-1}, where, as a consequence of Wigner’s theorem [30], V𝐆subscript𝑉𝐆V_{\mathbf{G}} is either a unitary or anti-unitary transformation corresponding to a projective representation of the symmetry group consisting of the reciprocal lattice 2superscript2\mathbb{Z}^{2}. Physically, V𝐆subscript𝑉𝐆V_{\mathbf{G}} is determined by the spatial structure within a unit cell, which can affect the resulting quantum geometry [31]. Therefore, there can be a collection of unitary or anti-unitary transformations VGsubscript𝑉GV_{\textnormal{{G}}} of \mathcal{H}, G2Gsuperscript2\textnormal{{G}}\in\mathbb{Z}^{2}, such that

|uk+G=(VG|uk)eG(k),ketsubscript𝑢kGsubscript𝑉Gketsubscript𝑢ksubscript𝑒Gk\displaystyle|u_{\textnormal{{k}}+\textnormal{{G}}}\rangle=\left(V_{\textnormal{{G}}}|u_{\textnormal{{k}}}\rangle\right)e_{\textnormal{{G}}}(\textnormal{{k}}), (5)

and such that VG1+G2subscript𝑉subscriptG1subscriptG2V_{\textnormal{{G}}_{1}+\textnormal{{G}}_{2}} equals to VG1VG2subscript𝑉subscriptG1subscript𝑉subscriptG2V_{\textnormal{{G}}_{1}}V_{\textnormal{{G}}_{2}} up to a phase factor which depends on G1subscriptG1\textnormal{{G}}_{1} and G2subscriptG2\textnormal{{G}}_{2}. These matrices can not depend on k otherwise the Berry curvature and quantum metric, which are tensors in the Brillouin zone, would not be periodic in k with respect to reciprocal lattice translations. Since an anti-unitary VGsubscript𝑉GV_{\textnormal{{G}}} would necessarily change the sign of the Berry curvature implying the existence of zero of the Berry curvature, contradicting with the assumption 444The property that the Kähler band is an immersion to the complex projective space implies that the quantum metric must be non-degenerate over the entire Brillouin zone, and hence det(g)0𝑔0\sqrt{\det(g)}\neq 0 and thus |F12|0subscript𝐹120|F_{12}|\neq 0., the projective representation must be unitary. Additionally, we note that, by associativity of the sum,

|uk+(G1+G2)=(VG1+G2|uk)eG1+G2(k)ketsubscript𝑢ksubscriptG1subscriptG2subscript𝑉subscriptG1subscriptG2ketsubscript𝑢ksubscript𝑒subscriptG1subscriptG2k\displaystyle|u_{\textnormal{{k}}+\left(\textnormal{{G}}_{1}+\textnormal{{G}}_{2}\right)}\rangle=\left(V_{\textnormal{{G}}_{1}+\textnormal{{G}}_{2}}|u_{\textnormal{{k}}}\rangle\right)e_{\textnormal{{G}}_{1}+\textnormal{{G}}_{2}}(\textnormal{{k}}) (6)
=\displaystyle= |u(k+G2)+G1=(VG1VG2|uk)eG1(k+G2)eG2(k).ketsubscript𝑢ksubscriptG2subscriptG1subscript𝑉subscriptG1subscript𝑉subscriptG2ketsubscript𝑢ksubscript𝑒subscriptG1ksubscriptG2subscript𝑒subscriptG2k\displaystyle|u_{\left(\textnormal{{k}}+\textnormal{{G}}_{2}\right)+\textnormal{{G}}_{1}}\rangle=\left(V_{\textnormal{{G}}_{1}}V_{\textnormal{{G}}_{2}}|u_{\textnormal{{k}}}\rangle\right)e_{\textnormal{{G}}_{1}}(\textnormal{{k}}+\textnormal{{G}}_{2})e_{\textnormal{{G}}_{2}}(\textnormal{{k}}).

Since this condition holds for every k, we may assume, in what concerns the Bloch wave function, VG1+G2=VG1VG2subscript𝑉subscriptG1subscriptG2subscript𝑉subscriptG1subscript𝑉subscriptG2V_{\textnormal{{G}}_{1}+\textnormal{{G}}_{2}}=V_{\textnormal{{G}}_{1}}V_{\textnormal{{G}}_{2}}, i.e., we have a unitary representation of 2superscript2\mathbb{Z}^{2}. We can then split V𝐆subscript𝑉𝐆V_{\mathbf{G}} into unitary irreducibles, which are parameterized in terms of real unit cell positions r: e2πiGrsuperscript𝑒2𝜋𝑖Gre^{-2\pi i\textnormal{{G}}\cdot\textnormal{{r}}}, with r and r+RrR\textnormal{{r}}+\textnormal{{R}}, for R2Rsuperscript2\textnormal{{R}}\in\mathbb{Z}^{2}, determining the same irreducible representation. This decomposition gives us uk(r)rsubscript𝑢krsubscriptru_{\textnormal{{k}}}(\textnormal{{r}})\in\mathcal{H}_{\textnormal{{r}}}, where rsubscriptr\mathcal{H}_{\textnormal{{r}}} is a direct summand in the decomposition of the representation into irreducibles and it has the property that for each G2Gsuperscript2\textnormal{{G}}\in\mathbb{Z}^{2}: VGuk(r)=e2πiGruk(r)subscript𝑉Gsubscript𝑢krsuperscript𝑒2𝜋𝑖Grsubscript𝑢krV_{\textnormal{{G}}}u_{\textnormal{{k}}}(\textnormal{{r}})=e^{-2\pi i\textnormal{{G}}\cdot\textnormal{{r}}}u_{\textnormal{{k}}}(\textnormal{{r}}). We note that uk(r)subscript𝑢kru_{\textnormal{{k}}}(\textnormal{{r}}) can be a spinor containing multiple components. If \mathcal{H} is a finite dimensional Hilbert space, r takes values in a discrete subset of the real space unit cell, otherwise it may be the whole of the unit cell—the decomposition is then a direct-integral decomposition. This discussion allows us to derive the relation

uk+G(r)=eG(k)e2πiGruk(r),subscript𝑢kGrsubscript𝑒Gksuperscript𝑒2𝜋𝑖Grsubscript𝑢kr\displaystyle u_{\textnormal{{k}}+\textnormal{{G}}}(\textnormal{{r}})=e_{\textnormal{{G}}}(\textnormal{{k}})e^{-2\pi i\textnormal{{G}}\cdot\textnormal{{r}}}u_{\textnormal{{k}}}(\textnormal{{r}}), (7)

namely uk(r)subscript𝑢kru_{\textnormal{{k}}}(\textnormal{{r}}) behaves as a smooth section of a line bundle LrBZ2subscript𝐿rsuperscriptBZ2L_{\textnormal{{r}}}\to\textnormal{\text{BZ}}^{2} whose multipliers are eG(k)e2πiGrsubscript𝑒Gksuperscript𝑒2𝜋𝑖Gre_{\textnormal{{G}}}(\textnormal{{k}})e^{-2\pi i\textnormal{{G}}\cdot\textnormal{{r}}}. We point out that L𝐿L is the “basic line” bundle over the Brillouin zone responsible for the topological twist of |ukketsubscript𝑢k|u_{\textnormal{{k}}}\rangle and the line bundles Lrsubscript𝐿rL_{\textnormal{{r}}}, all of them topologically isomorphic to L𝐿L, carry information about the real-space unit cell through the variable r. Unlike earlier works [2, 5], we do not assume spatial periodicity of uk(r)subscript𝑢kru_{\textnormal{{k}}}(\textnormal{{r}}), but rather allow a more general quasi-periodicity condition, where uk(r)subscript𝑢kru_{\textnormal{{k}}}(\textnormal{{r}}) translated by a lattice vector acquires a phase compatible with a possible net magnetic field present in a unit cell. We see that such a phase factor is necessary to obtain Landau levels, as explicitly derived in Eq. (41) of Sec. III.

Now we fix a translation-invariant complex structure on BZ2superscriptBZ2\textnormal{\text{BZ}}^{2} described by the complex coordinate zτ=kx+τkysubscript𝑧𝜏subscript𝑘𝑥𝜏subscript𝑘𝑦z_{\tau}=k_{x}+\tau k_{y}. The condition for |ukketsubscript𝑢k|u_{\textnormal{{k}}}\rangle to determine a Kähler band is [22]

z¯τ|ukuk|z¯τ|ukuk|uk|uk=0,subscript¯𝑧𝜏ketsubscript𝑢kquantum-operator-productsubscript𝑢ksubscript¯𝑧𝜏subscript𝑢kinner-productsubscript𝑢ksubscript𝑢kketsubscript𝑢k0\displaystyle\frac{\partial}{\partial\bar{z}_{\tau}}|u_{\textnormal{{k}}}\rangle-\frac{\langle u_{\textnormal{{k}}}|\frac{\partial}{\partial\bar{z}_{\tau}}|u_{\textnormal{{k}}}\rangle}{\langle u_{\textnormal{{k}}}|u_{\textnormal{{k}}}\rangle}|u_{\textnormal{{k}}}\rangle=0, (8)

which essentially says that |ukketsubscript𝑢k|u_{\textnormal{{k}}}\rangle is holomorphic up to an overall nonholomorphic nonvanishing multiplicative factor and so, after going to a holomorphic gauge so that the Berry gauge field is represented by a (1,0)10(1,0)-form (uk|z¯τ|uk=0quantum-operator-productsubscript𝑢ksubscript¯𝑧𝜏subscript𝑢k0\langle u_{\textnormal{{k}}}|\frac{\partial}{\partial\bar{z}_{\tau}}|u_{\textnormal{{k}}}\rangle=0),

z¯τ|uk=0,subscript¯𝑧𝜏ketsubscript𝑢k0\displaystyle\frac{\partial}{\partial\bar{z}_{\tau}}|u_{\textnormal{{k}}}\rangle=0, (9)

which is simply the requirement of holomorphicity of |ukketsubscript𝑢k|u_{\textnormal{{k}}}\rangle.

This holomorphicity condition in turn implies, upon appropriate gauge choice, that the multipliers eG(k)subscript𝑒Gke_{\textnormal{{G}}}(\textnormal{{k}}) are holomorphic in zτsubscript𝑧𝜏z_{\tau} and that LBZ2𝐿superscriptBZ2L\to\textnormal{\text{BZ}}^{2} and, as a matter of fact, all of the LrBZ2subscript𝐿rsuperscriptBZ2L_{\textnormal{{r}}}\to\textnormal{\text{BZ}}^{2}, for r running in the real space unit cell, are holomorphic line bundles. Because holomorphic line bundles over complex tori, i.e., 2/2superscript2superscript2\mathbb{R}^{2}/\mathbb{Z}^{2} equipped with a translation-invariant complex structure J𝐽J, are determined, up to isomorphism, by the holomorphic line bundles whose spaces of holomorphic sections are described by theta functions [33, 28] the form of |ukketsubscript𝑢k|u_{\textnormal{{k}}}\rangle is already heavily constrained. This is because this condition together with Eq. (7) tells us that uk(r)subscript𝑢kru_{\textnormal{{k}}}(\textnormal{{r}}) behaves as a holomorphic section of Lrsubscript𝐿rL_{\textnormal{{r}}}. The space of such sections is a finite dimensional vector space, denoted H0(/Λτ,Lr)superscript𝐻0subscriptΛ𝜏subscript𝐿rH^{0}(\mathbb{C}/\Lambda_{\tau},L_{\textnormal{{r}}}) and whose dimension equals, by the Riemann-Roch theorem [34, 35], 𝒞=deg(Lr)𝒞degreesubscript𝐿r\mathcal{C}=\deg(L_{\textnormal{{r}}}). Moreover, we can describe H0(/Λτ,Lr)superscript𝐻0subscriptΛ𝜏subscript𝐿rH^{0}(\mathbb{C}/\Lambda_{\tau},L_{\textnormal{{r}}}) quite explicitly in terms of theta functions. Namely, we may assume that [29], after multiplication of |ukketsubscript𝑢k|u_{\textnormal{{k}}}\rangle by a suitable global nonvanishing holomorphic function g(k)𝑔kg(\textnormal{{k}}) (in the universal cover 2superscript2\mathbb{R}^{2})

eG(k)=eiπτ𝒞my22πi𝒞myzτ, with G=(mx,my)2,formulae-sequencesubscript𝑒Gksuperscript𝑒𝑖𝜋𝜏𝒞superscriptsubscript𝑚𝑦22𝜋𝑖𝒞subscript𝑚𝑦subscript𝑧𝜏 with Gsubscript𝑚𝑥subscript𝑚𝑦superscript2\displaystyle e_{\textnormal{{G}}}(\textnormal{{k}})=e^{-i\pi\tau\mathcal{C}m_{y}^{2}-2\pi i\mathcal{C}m_{y}z_{\tau}},\text{ with }\textnormal{{G}}=(m_{x},m_{y})\in\mathbb{Z}^{2}, (10)

and then this forces the components of uk(r)rsubscript𝑢krsubscriptru_{\textnormal{{k}}}(\textnormal{{r}})\in\mathcal{H}_{\textnormal{{r}}}, once a basis for rsubscriptr\mathcal{H}_{\textnormal{{r}}} is chosen, to be linear combinations with possibly r-dependent coefficients of the theta functions

θr,α(zτ):=ϑ[α𝒞x𝒞y](𝒞zτ,𝒞τ),α=0,,𝒞1,formulae-sequenceassignsubscript𝜃r𝛼subscript𝑧𝜏italic-ϑdelimited-[]𝛼𝒞𝑥𝒞𝑦𝒞subscript𝑧𝜏𝒞𝜏𝛼0𝒞1\displaystyle\theta_{\textnormal{{r}},\alpha}(z_{\tau}):=\vartheta\left[\begin{array}[]{c}\frac{\alpha}{\mathcal{C}}-\frac{x}{\mathcal{C}}\\ y\end{array}\right](\mathcal{C}z_{\tau},\mathcal{C}\tau),\ \alpha=0,\dots,\mathcal{C}-1, (13)

where ϑ[ab](zτ,τ)=neiπτ(n+a)2+2πi(n+a)(zτ+b)italic-ϑdelimited-[]𝑎𝑏subscript𝑧𝜏𝜏subscript𝑛superscript𝑒𝑖𝜋𝜏superscript𝑛𝑎22𝜋𝑖𝑛𝑎subscript𝑧𝜏𝑏\vartheta\left[\begin{array}[]{c}a\\ b\end{array}\right](z_{\tau},\tau)=\sum_{n\in\mathbb{Z}}e^{i\pi\tau\left(n+a\right)^{2}+2\pi i\left(n+a\right)\left(z_{\tau}+b\right)} is known as the theta function with characteristics prescribed by a,b𝑎𝑏a,b\in\mathbb{R}.

Uniqueness of flat Kähler bands.— We now require the quantum metric to be flat and derive a much more restrictive condition on |ukketsubscript𝑢k|u_{\textnormal{{k}}}\rangle. Because a Kähler band is essentially a holomorphic immersion of a complex torus in a projective space, the translation-invariance of the quantum geometry implies that, after fixing one reference quasimomentum, say the zero vector, each translation vector k2ksuperscript2\textnormal{{k}}\in\mathbb{R}^{2} lifts to a quantum symmetry—a symmetry of the target projective space equipped with the Fubini-Study metric—relating |u0ketsubscript𝑢0|u_{0}\rangle and |ukketsubscript𝑢k|u_{\textnormal{{k}}}\rangle. Once again, due to Wigner’s theorem, quantum symmetries are realized by a projective representation of the symmetry group in question, where the transformations are either unitary or anti-unitary. The key step now is to note that there exist some unitary or anti-unitary operators Uksubscript𝑈kU_{\textnormal{{k}}}, k2ksuperscript2\textnormal{{k}}\in\mathbb{R}^{2}, such that, in a suitable gauge,

|uk=Uk|u0, for k2,formulae-sequenceketsubscript𝑢ksubscript𝑈kketsubscript𝑢0 for ksuperscript2\displaystyle|u_{\textnormal{{k}}}\rangle=U_{\textnormal{{k}}}|u_{0}\rangle,\text{ for }\textnormal{{k}}\in\mathbb{R}^{2}, (14)

which is a consequence of Calabi’s rigidity theorem [36]; see Sec. III for a proof of the above result. We cannot allow U𝐤subscript𝑈𝐤U_{\mathbf{k}} to be anti-unitary, because, if so, the Berry curvature at k and 00 would change sign contradicting the fact that it is assumed to be constant. Hence, we are lead to looking at projective unitary representations of 2superscript2\mathbb{R}^{2}. What this means is that for all k1,k22subscriptk1subscriptk2superscript2\textnormal{{k}}_{1},\textnormal{{k}}_{2}\in\mathbb{R}^{2} we have

Uk1Uk2=Uk1+k2ψ(k1,k2),subscript𝑈subscriptk1subscript𝑈subscriptk2subscript𝑈subscriptk1subscriptk2𝜓subscriptk1subscriptk2\displaystyle U_{\textnormal{{k}}_{1}}U_{\textnormal{{k}}_{2}}=U_{\textnormal{{k}}_{1}+\textnormal{{k}}_{2}}\psi(\textnormal{{k}}_{1},\textnormal{{k}}_{2}), (15)

for ψ(k1,k2)𝜓subscriptk1subscriptk2\psi(\textnormal{{k}}_{1},\textnormal{{k}}_{2}) a U(1)U1\mathrm{U}(1)-valued 222-cocycle, i.e., ψ(k1,k2)𝜓subscriptk1subscriptk2\psi(\textnormal{{k}}_{1},\textnormal{{k}}_{2}) are phases satisfying

ψ(k1,k2+k3)ψ(k2,k3)=ψ(k1,k2)ψ(k1+k2,k3).𝜓subscriptk1subscriptk2subscriptk3𝜓subscriptk2subscriptk3𝜓subscriptk1subscriptk2𝜓subscriptk1subscriptk2subscriptk3\displaystyle\psi(\textnormal{{k}}_{1},\textnormal{{k}}_{2}+\textnormal{{k}}_{3})\psi(\textnormal{{k}}_{2},\textnormal{{k}}_{3})=\psi(\textnormal{{k}}_{1},\textnormal{{k}}_{2})\psi(\textnormal{{k}}_{1}+\textnormal{{k}}_{2},\textnormal{{k}}_{3}). (16)

We note that U𝐆=V𝐆subscript𝑈𝐆subscript𝑉𝐆U_{\mathbf{G}}=V_{\mathbf{G}} for reciprocal lattice vectors 𝐆𝐆\mathbf{G}. Projective unitary representations of 2superscript2\mathbb{R}^{2} are equivalent to certain unitary representations of central extensions G𝐺G of 2superscript2\mathbb{R}^{2} by U(1)U1\mathrm{U}(1). Mathematically this means there exists a short exact sequence of groups

1U(1)G20,1U1𝐺superscript20\displaystyle 1\longrightarrow\mathrm{U}(1)\longrightarrow G\longrightarrow\mathbb{R}^{2}\longrightarrow 0, (17)

where each arrow is a group homomorphism and the kernel of each arrow is the image of the previous one. The group G𝐺G as a set is just the Cartesian product 2×U(1)superscript2U1\mathbb{R}^{2}\times\mathrm{U}(1). As a group, we equip it with the product law

(k1,λ1)(k2,λ2)=(k1+k2,λ1λ2ψ(k1,k2)).subscriptk1subscript𝜆1subscriptk2subscript𝜆2subscriptk1subscriptk2subscript𝜆1subscript𝜆2𝜓subscriptk1subscriptk2\displaystyle(\textnormal{{k}}_{1},\lambda_{1})\cdot(\textnormal{{k}}_{2},\lambda_{2})=(\textnormal{{k}}_{1}+\textnormal{{k}}_{2},\lambda_{1}\lambda_{2}\psi(\textnormal{{k}}_{1},\textnormal{{k}}_{2})). (18)

It is then not hard to see that U(g):=Ukλassign𝑈𝑔subscript𝑈k𝜆U(g):=U_{\textnormal{{k}}}\lambda with g=(k,λ)G𝑔k𝜆𝐺g=(\textnormal{{k}},\lambda)\in G satisfies U(g1)U(g2)=U(g1g2)𝑈subscript𝑔1𝑈subscript𝑔2𝑈subscript𝑔1subscript𝑔2U(g_{1})U(g_{2})=U(g_{1}\cdot g_{2}) for all g1,g2Gsubscript𝑔1subscript𝑔2𝐺g_{1},g_{2}\in G and hence gives a unitary representation of G𝐺G. It is useful to define the commutator s(k1,k2)=ψ(k1,k2)/ψ(k2,k1)𝑠subscriptk1subscriptk2𝜓subscriptk1subscriptk2𝜓subscriptk2subscriptk1s(\textnormal{{k}}_{1},\textnormal{{k}}_{2})=\psi(\textnormal{{k}}_{1},\textnormal{{k}}_{2})/\psi(\textnormal{{k}}_{2},\textnormal{{k}}_{1}) which satisfies, see Ref. [37],

  1. (i)

    Antisymmetry: s(k1,k2)=s1(k2,k1)𝑠subscriptk1subscriptk2superscript𝑠1subscriptk2subscriptk1s(\textnormal{{k}}_{1},\textnormal{{k}}_{2})=s^{-1}(\textnormal{{k}}_{2},\textnormal{{k}}_{1})

  2. (ii)

    Alternating: s(k,k)=1𝑠kk1s(\textnormal{{k}},\textnormal{{k}})=1

  3. (iii)

    Bimultiplicativity: s(k1+k2,k3)=s(k1,k3)s(k2,k3)𝑠subscriptk1subscriptk2subscriptk3𝑠subscriptk1subscriptk3𝑠subscriptk2subscriptk3s(\textnormal{{k}}_{1}\!+\!\textnormal{{k}}_{2},\textnormal{{k}}_{3})=s(\textnormal{{k}}_{1},\textnormal{{k}}_{3})s(\textnormal{{k}}_{2},\textnormal{{k}}_{3})
    Bimultiplicativitys(k1,k2+k3)=s(k1,k2)s(k1,k3)𝑠subscriptk1subscriptk2subscriptk3𝑠subscriptk1subscriptk2𝑠subscriptk1subscriptk3s(\textnormal{{k}}_{1},\textnormal{{k}}_{2}\!+\!\textnormal{{k}}_{3})=s(\textnormal{{k}}_{1},\textnormal{{k}}_{2})s(\textnormal{{k}}_{1},\textnormal{{k}}_{3}).

The three properties imply existence of an antisymmetric bilinear form ω𝜔\omega in 2superscript2\mathbb{R}^{2} with the property s(k1,k2)=eiω(k1,k2)𝑠subscriptk1subscriptk2superscript𝑒𝑖𝜔subscriptk1subscriptk2s(\textnormal{{k}}_{1},\textnormal{{k}}_{2})=e^{i\omega(\textnormal{{k}}_{1},\textnormal{{k}}_{2})}, where ω(k1,k2):=Dk1×k2assign𝜔subscriptk1subscriptk2𝐷subscriptk1subscriptk2\omega(\textnormal{{k}}_{1},\textnormal{{k}}_{2}):=D\textnormal{{k}}_{1}\times\textnormal{{k}}_{2}, for some D𝐷D\in\mathbb{R} and k1×k2=kt(0110)k2=k1,xk2,yk1,yk2,xsubscriptk1subscriptk2superscriptk𝑡0110subscriptk2subscript𝑘1𝑥subscript𝑘2𝑦subscript𝑘1𝑦subscript𝑘2𝑥\textnormal{{k}}_{1}\times\textnormal{{k}}_{2}=\textnormal{{k}}^{t}\left(\begin{array}[]{cc}0&1\\ -1&0\end{array}\right)\textnormal{{k}}_{2}=k_{1,x}k_{2,y}-k_{1,y}k_{2,x}.

Theorem 1 of Ref. [37] (see also Refs. [33, 38] for more on Heisenberg groups and central extensions) implies that G𝐺G is, up to isomorphism, uniquely determined by s(k1,k2)𝑠subscriptk1subscriptk2s(\textnormal{{k}}_{1},\textnormal{{k}}_{2}). When ω𝜔\omega is non-degenerate, i.e., for D0𝐷0D\neq 0, then G𝐺G is referred to as a Heisenberg group. A particular realization of G𝐺G for a given D𝐷D is determined by setting

ψ(k1,k2)=eiDk1,xk2,y.𝜓subscriptk1subscriptk2superscript𝑒𝑖𝐷subscript𝑘1𝑥subscript𝑘2𝑦\displaystyle\psi(\textnormal{{k}}_{1},\textnormal{{k}}_{2})=e^{iDk_{1,x}k_{2,y}}. (19)

All other realizations are obtained in terms of non-vanishing U(1)U1\mathrm{U}(1)-valued functions g(k)𝑔kg(\textnormal{{k}}) as ψ(k1,k2)=g(k1+k2)g(k1)g(k2)ψ(k1,k2)superscript𝜓subscriptk1subscriptk2𝑔subscriptk1subscriptk2𝑔subscriptk1𝑔subscriptk2𝜓subscriptk1subscriptk2\psi^{\prime}(\textnormal{{k}}_{1},\textnormal{{k}}_{2})=\frac{g(\textnormal{{k}}_{1}+\textnormal{{k}}_{2})}{g(\textnormal{{k}}_{1})g(\textnormal{{k}}_{2})}\psi(\textnormal{{k}}_{1},\textnormal{{k}}_{2}) (note that s(k1,k2)𝑠subscriptk1subscriptk2s(\textnormal{{k}}_{1},\textnormal{{k}}_{2}) is invariant under this change). Observe that with this realization of the central extension G𝐺G, D=0𝐷0D=0 corresponds to a trivial central extension where G𝐺G is really the direct product of groups 2×U(1)superscript2U1\mathbb{R}^{2}\times\mathrm{U}(1). This last case will not be relevant to us as we shall see below, because 𝒞0𝒞0\mathcal{C}\neq 0.

Now the Stone-von Neumann theorem [33], states that the Heisenberg group G𝐺G has, up to unitary isomorphism, a unique unitary irreducible representation for which U(1)U1\mathrm{U}(1) acts as (0,λ)ψ=λψ0𝜆𝜓𝜆𝜓(0,\lambda)\cdot\psi=\lambda\cdot\psi, (0,λ)U(1)G0𝜆U1𝐺(0,\lambda)\in\mathrm{U}(1)\subset G and ψ𝜓\psi\in\mathcal{H}. We will later see that this unitary degree of freedom corresponds to unitary gauge transformations. This irrep is the familiar Hilbert space of square-integrable functions =L2()superscript𝐿2\mathcal{H}=L^{2}(\mathbb{R}) of one variable q𝑞q, where we have the commutation relation [q,p]=i/D𝑞𝑝𝑖𝐷[q,p]=i/D, with p=1iDq𝑝1𝑖𝐷𝑞p=\frac{1}{iD}\frac{\partial}{\partial q}. At this point, the variable q𝑞q describes an abstract coordinate, but we derive how one can transform from q𝑞q to the more physical position coordinate 𝐫𝐫\mathbf{r} in Sec. III. Then,

Ukψ(q)subscript𝑈k𝜓𝑞\displaystyle U_{\textnormal{{k}}}\psi(q) =eiDkypeiDkxxψ(q)absentsuperscript𝑒𝑖𝐷subscript𝑘𝑦𝑝superscript𝑒𝑖𝐷subscript𝑘𝑥𝑥𝜓𝑞\displaystyle=e^{iDk_{y}p}e^{-iDk_{x}x}\psi(q)
=eiDkx(q+ky)ψ(q+ky).absentsuperscript𝑒𝑖𝐷subscript𝑘𝑥𝑞subscript𝑘𝑦𝜓𝑞subscript𝑘𝑦\displaystyle=e^{-iDk_{x}\left(q+k_{y}\right)}\psi(q+k_{y}). (20)

Indeed, it is easy to see that Uk1Uk2=Uk1+k2ψ(k1,k2)subscript𝑈subscriptk1subscript𝑈subscriptk2subscript𝑈subscriptk1subscriptk2𝜓subscriptk1subscriptk2U_{\textnormal{{k}}_{1}}U_{\textnormal{{k}}_{2}}=U_{\textnormal{{k}}_{1}+\textnormal{{k}}_{2}}\psi(\textnormal{{k}}_{1},\textnormal{{k}}_{2}). Note that D𝐷D takes, in L2()superscript𝐿2L^{2}(\mathbb{R}), the role of the inverse of Planck’s constant. We note that it is this step which requires that the number of bands, which is the dimension of the Hilbert space \mathcal{H}, must be infinite.

We can write, using the Baker-Campbell-Hausdorff formula,

Uk=eiD(kypkxq)ei2Dkxky.subscript𝑈ksuperscript𝑒𝑖𝐷subscript𝑘𝑦𝑝subscript𝑘𝑥𝑞superscript𝑒𝑖2𝐷subscript𝑘𝑥subscript𝑘𝑦\displaystyle U_{\textnormal{{k}}}=e^{iD\left(k_{y}p-k_{x}q\right)}e^{\frac{i}{2}Dk_{x}k_{y}}. (21)

Using zτ=kx+τkysubscript𝑧𝜏subscript𝑘𝑥𝜏subscript𝑘𝑦z_{\tau}=k_{x}+\tau k_{y}, we can then write

i(kypkxq)=12τ2[zτ(τ¯q+p)z¯τ(τq+p)].𝑖subscript𝑘𝑦𝑝subscript𝑘𝑥𝑞12subscript𝜏2delimited-[]subscript𝑧𝜏¯𝜏𝑞𝑝subscript¯𝑧𝜏𝜏𝑞𝑝\displaystyle i\left(k_{y}p-k_{x}q\right)=\frac{1}{2\tau_{2}}\left[z_{\tau}\left(\bar{\tau}q+p\right)-\bar{z}_{\tau}\left(\tau q+p\right)\right]. (22)

Now observe that, because q𝑞q and p𝑝p are self-adjoint, τ¯q+p¯𝜏𝑞𝑝\bar{\tau}q+p is the adjoint to τq+p𝜏𝑞𝑝\tau q+p and that

[τ¯q+p,τq+p]=iτ¯DiτD=2τ2D.¯𝜏𝑞𝑝𝜏𝑞𝑝𝑖¯𝜏𝐷𝑖𝜏𝐷2subscript𝜏2𝐷\displaystyle[\bar{\tau}q+p,\tau q+p]=i\frac{\bar{\tau}}{D}-i\frac{\tau}{D}=\frac{2\tau_{2}}{D}. (23)

It is then convenient to introduce bosonic creation and annihilation operators

aτ:=D2τ2(τq+p) and aτ:=D2τ2(τ¯q+p),assignsubscript𝑎𝜏𝐷2subscript𝜏2𝜏𝑞𝑝 and superscriptsubscript𝑎𝜏assign𝐷2subscript𝜏2¯𝜏𝑞𝑝\displaystyle a_{\tau}:=\sqrt{\frac{D}{2\tau_{2}}}\left(\tau q+p\right)\text{ and }a_{\tau}^{\dagger}:=\sqrt{\frac{D}{2\tau_{2}}}\left(\bar{\tau}q+p\right), (24)

which satisfy the canonical commutation relations [aτ,aτ]=1subscript𝑎𝜏superscriptsubscript𝑎𝜏1[a_{\tau},a_{\tau}^{\dagger}]=1 and we may write

Uksubscript𝑈k\displaystyle U_{\textnormal{{k}}} =eiD2kxkye12Dτ2(zτaτz¯τaτ)absentsuperscript𝑒𝑖𝐷2subscript𝑘𝑥subscript𝑘𝑦superscript𝑒12𝐷subscript𝜏2subscript𝑧𝜏superscriptsubscript𝑎𝜏subscript¯𝑧𝜏subscript𝑎𝜏\displaystyle=e^{i\frac{D}{2}k_{x}k_{y}}e^{\frac{1}{\sqrt{2D\tau_{2}}}\left(z_{\tau}a_{\tau}^{\dagger}-\bar{z}_{\tau}a_{\tau}\right)}
=eiD2kxkye14τ2D|zτ|2e12Dτ2zτaτe12Dτ2z¯τaτ.absentsuperscript𝑒𝑖𝐷2subscript𝑘𝑥subscript𝑘𝑦superscript𝑒14subscript𝜏2𝐷superscriptsubscript𝑧𝜏2superscript𝑒12𝐷subscript𝜏2subscript𝑧𝜏superscriptsubscript𝑎𝜏superscript𝑒12𝐷subscript𝜏2subscript¯𝑧𝜏subscript𝑎𝜏\displaystyle=e^{i\frac{D}{2}k_{x}k_{y}}e^{-\frac{1}{4\tau_{2}D}|z_{\tau}|^{2}}e^{\frac{1}{\sqrt{2D\tau_{2}}}z_{\tau}a_{\tau}^{\dagger}}e^{-\frac{1}{\sqrt{2D\tau_{2}}}\bar{z}_{\tau}a_{\tau}}. (25)

It is then clear that, after changing gauge, canceling all nonholomorphic nonvanishing multiplicative factors, we see that to have a holomorphic |ukketsubscript𝑢k|u_{\textnormal{{k}}}\rangle we must have z¯τ(e12Dτ2z¯τaτ|u0)=0aτ|u0=0iffsubscript¯𝑧𝜏superscript𝑒12𝐷subscript𝜏2subscript¯𝑧𝜏subscript𝑎𝜏ketsubscript𝑢00subscript𝑎𝜏ketsubscript𝑢00\frac{\partial}{\partial\bar{z}_{\tau}}\left(e^{-\frac{1}{\sqrt{2D\tau_{2}}}\bar{z}_{\tau}a_{\tau}}|u_{0}\rangle\right)=0\iff a_{\tau}|u_{0}\rangle=0. Now the condition aτ|u0=0subscript𝑎𝜏ketsubscript𝑢00a_{\tau}|u_{0}\rangle=0 is just the statement that |u0ketsubscript𝑢0|u_{0}\rangle is the groundstate of the bosonic mode aτsubscript𝑎𝜏a_{\tau}. The only solution, up to an overall constant, is

u0(q)=eiDτ2q2,subscript𝑢0𝑞superscript𝑒𝑖𝐷𝜏2superscript𝑞2\displaystyle u_{0}(q)=e^{-\frac{iD\tau}{2}q^{2}}, (26)

which is in L2()superscript𝐿2L^{2}(\mathbb{R}) iff D<0𝐷0D<0. So a holomorphic state exists iff D<0𝐷0D<0. This does not preclude us from considering other representations of G𝐺G that are not irreducible. However, due to the above finding that |u0ketsubscript𝑢0|u_{0}\rangle\in\mathcal{H} is unique (up to rescale) this actually implies that the resulting Kähler band is unique in a precise sense. The reason is as follows. Suppose Uksubscript𝑈kU_{\textnormal{{k}}} was reducible. Then the Hilbert space assumes the form ldirect-sumtensor-productsuperscript𝑙\mathcal{H}\oplus\dots\oplus\mathcal{H}\cong\mathcal{H}\otimes\mathbb{C}^{l}, where \mathcal{H} is the unique irrep of G𝐺G and l𝑙l is the number of times it appears (l𝑙l may not be finite, but this does not change the argument). The group G𝐺G then acts only on the left factor in ltensor-productsuperscript𝑙\mathcal{H}\otimes\mathbb{C}^{l}. Due to there existing only one possible choice (up to rescale) for |u0ketsubscript𝑢0|u_{0}\rangle in \mathcal{H} that we can take in Eq. (14), this then implies that the augmented state in ltensor-productsuperscript𝑙\mathcal{H}\otimes\mathbb{C}^{l} will necessarily be of the form |uk|ctensor-productketsubscript𝑢kket𝑐|u_{\textnormal{{k}}}\rangle\otimes|c\rangle for some constant nonzero vector |clket𝑐superscript𝑙|c\rangle\in\mathbb{C}^{l} and |ukketsubscript𝑢k|u_{\textnormal{{k}}}\rangle\in\mathcal{H} as in Eq. (14). This just corresponds to taking the same Bloch band and introducing a new degree of freedom, such as spin, which decouples and hence the resulting Bloch band has a definite “spin polarization.”

Finally, we use the condition Eq. (5) to find the value of D𝐷D. Note that

|uk+G=ψ1(G,k)UGUk|u0=ψ1(G,k)UG|uk.ketsubscript𝑢kGsuperscript𝜓1Gksubscript𝑈Gsubscript𝑈kketsubscript𝑢0superscript𝜓1Gksubscript𝑈Gketsubscript𝑢k\displaystyle|u_{\textnormal{{k}}+\textnormal{{G}}}\rangle=\psi^{-1}(\textnormal{{G}},\textnormal{{k}})U_{\textnormal{{G}}}U_{\textnormal{{k}}}|u_{0}\rangle=\psi^{-1}(\textnormal{{G}},\textnormal{{k}})U_{\textnormal{{G}}}|u_{\textnormal{{k}}}\rangle. (27)

Then, eG(k):=ψ1(G,k)assignsubscript𝑒Gksuperscript𝜓1Gke_{\textnormal{{G}}}(\textnormal{{k}}):=\psi^{-1}(\textnormal{{G}},\textnormal{{k}}) should be unitary (since Uksubscript𝑈kU_{\textnormal{{k}}} is unitary) multipliers for a line bundle over BZ2superscriptBZ2\textnormal{\text{BZ}}^{2}, and thus

eG(k)=eiDmxky with G=(mx,my)2.subscript𝑒Gksuperscript𝑒𝑖𝐷subscript𝑚𝑥subscript𝑘𝑦 with Gsubscript𝑚𝑥subscript𝑚𝑦superscript2\displaystyle e_{\textnormal{{G}}}(\textnormal{{k}})=e^{-iDm_{x}k_{y}}\text{ with }\textnormal{{G}}=(m_{x},m_{y})\in\mathbb{Z}^{2}. (28)

A connection on the line bundle L𝐿L is determined by a one-form that is compatible with the system of multipliers:

A(k+G)=A(k)+eG(k)deG1(k)=A(k)+iDmxdky.𝐴kG𝐴ksubscript𝑒Gk𝑑subscriptsuperscript𝑒1Gk𝐴k𝑖𝐷subscript𝑚𝑥𝑑subscript𝑘𝑦\displaystyle A(\textnormal{{k}}+\textnormal{{G}})=A(\textnormal{{k}})+e_{\textnormal{{G}}}(\textnormal{{k}})de^{-1}_{\textnormal{{G}}}(\textnormal{{k}})=A(\textnormal{{k}})+iDm_{x}dk_{y}. (29)

One possible choice is A=iDkxdky𝐴𝑖𝐷subscript𝑘𝑥𝑑subscript𝑘𝑦A=iDk_{x}dk_{y}. We then see that the Chern number of L𝐿L being equal to 𝒞𝒞\mathcal{C} forces D=2π𝒞𝐷2𝜋𝒞D=-2\pi\mathcal{C}. This concludes the proof of the Theorem, as the Kähler band we are looking for is precisely |uk=Uk|u0ketsubscript𝑢ksubscript𝑈kketsubscript𝑢0|u_{\textnormal{{k}}}\rangle=U_{\textnormal{{k}}}|u_{0}\rangle for the Heisenberg group determined by the Chern number 𝒞𝒞\mathcal{C} and |u0ketsubscript𝑢0|u_{0}\rangle such that aτ|u0=0subscript𝑎𝜏ketsubscript𝑢00a_{\tau}|u_{0}\rangle=0. Please note how 𝒞𝒞\mathcal{C} enters in G𝐺G and fixes the Uksubscript𝑈kU_{\textnormal{{k}}}’s and \mathcal{H}, τ𝜏\tau fixes what |u0ketsubscript𝑢0|u_{0}\rangle must be.

We now proceed to give an explicit expression of uk(r)subscript𝑢kru_{\textnormal{{k}}}(\textnormal{{r}}) in terms of theta functions—hence using the particular realization of G𝐺G. We refer the reader to Sec. III, where we show that r𝒞subscriptrsuperscript𝒞\mathcal{H}_{\textnormal{{r}}}\cong\mathbb{C}^{\mathcal{C}}, corresponding to the internal “color” degree of freedom, and

uk(r)=e2πi𝒞kxkyeiπ𝒞τky2(θr,0(zτ),,θr,𝒞1(zτ)).subscript𝑢krsuperscript𝑒2𝜋𝑖𝒞subscript𝑘𝑥subscript𝑘𝑦superscript𝑒𝑖𝜋𝒞𝜏superscriptsubscript𝑘𝑦2subscript𝜃r0subscript𝑧𝜏subscript𝜃r𝒞1subscript𝑧𝜏\displaystyle u_{\textnormal{{k}}}(\textnormal{{r}})=e^{2\pi i\mathcal{C}k_{x}k_{y}}e^{i\pi\mathcal{C}\tau k_{y}^{2}}\left(\theta_{\textnormal{{r}},0}(z_{\tau}),\dots,\theta_{\textnormal{{r}},\mathcal{C}-1}(z_{\tau})\right). (30)

For the particular case 𝒞=1𝒞1\mathcal{C}=1 and τ=i𝜏𝑖\tau=i, this is exactly the lowest Landau level Bloch wave function in the Landau gauge—see Sec. III for a detailed derivation of this fact, while for higher 𝒞𝒞\mathcal{C} is the color-entangled lowest Landau level Bloch wave function previously considered in the literature [20, 5].

We remark that the fact that the unitary irrep of G𝐺G is unique up to unitary isomorphism corresponds to the freedom of gauge choice. Indeed, since the isomorphism intertwines the action of G𝐺G, it must, in particular, preserve the quantum number associated to reciprocal lattice translations r. It implies that we are allowed to perform U(𝒞)U𝒞\mathrm{U}(\mathcal{C})-gauge transformations to u𝐤(𝐫)subscript𝑢𝐤𝐫u_{\mathbf{k}}(\mathbf{r}). We note that this is also equivalent to choosing a different orthogonal basis of theta functions consistent with the Chern number 𝒞𝒞\mathcal{C} and the irrep of the reciprocal lattice associated with r. In summary, in Eq.(30), we have two kinds of gauge degrees of freedom:

  • (i)

    U(𝒞)U𝒞\mathrm{U}(\mathcal{C}) real space gauge transformations uk(r)S(r)uk(r)maps-tosubscript𝑢kr𝑆rsubscript𝑢kru_{\textnormal{{k}}}(\textnormal{{r}})\mapsto S(\textnormal{{r}})u_{\textnormal{{k}}}(\textnormal{{r}}), for S(r)U(𝒞)𝑆rU𝒞S(\textnormal{{r}})\in\mathrm{U}(\mathcal{C});

  • (ii)

    superscript\mathbb{C}^{*} momentum space gauge transformations uk(r)g(k)uk(r)maps-tosubscript𝑢kr𝑔ksubscript𝑢kru_{\textnormal{{k}}}(\textnormal{{r}})\mapsto g(\textnormal{{k}})u_{\textnormal{{k}}}(\textnormal{{r}}), for g(k)𝑔ksuperscriptg(\textnormal{{k}})\in\mathbb{C}^{*}.

In more physical terms, the transformation (i) corresponds, for example in the case of lowest Landau levels, to go from the Landau gauge to the symmetric gauge, whereas the transformation (ii) corresponds to choosing the normalization and phase of the Bloch wave function at each momentum.

II Discussion

We have shown the uniqueness of the geometrically flat Kähler bands for given Chern number and modular parameter. In previous works, the effect of the modular parameter τ𝜏\tau is little explored; the situation τi𝜏𝑖\tau\neq i can arise when the effective mass of a particle is anisotropic, cf. Ref. [39] where the Galilean metric includes the information of τ𝜏\tau. Our result shows that there is a continuous family of geometrically flat Kähler bands parameterized by τ𝜏\tau, which provides novel degrees of freedom to explore fractional topological physics with flat Kähler bands.

It is known that any holomorphic wave function with a constant J𝐽J, known also as ideal Chern bands or ideal Kähler bands, can be obtained by modulating geometrically flat Kähler bands [5]. The GMP algebra of density operators crucial in obtaining stable Abelian fractional quantum Hall phases has been shown to be recovered for such ideal Kähler bands. A tower of higher Landau level analogs, which can support non-Abelian fractionalized states, has also be constructed starting from ideal Kähler bands [40]. Thus, the uniqueness of the geometrically flat Kähler bands proved in this work allows one to write down all possible wave functions which serve as building blocks for these fractional quantum Hall phases.

III Technical Results

III.1 Proof of existence of the projective unitary representation of the translation group under the flatness assumption

We wish to proof existence of Uqsubscript𝑈qU_{\textnormal{{q}}} as in Eq. (12) in the main text. The proof is based on Calabi’s rigidity theorem. As we will see, we can only determine the action of Uqsubscript𝑈qU_{\textnormal{{q}}} on the minimal linear subspace (subspace obtained by projectivization of a vector subspace of n+1superscript𝑛1\mathbb{C}^{n+1}) of Pnsuperscript𝑃𝑛\mathbb{C}P^{n} which contains the immersed submanifold determined by |ukketsubscript𝑢k|u_{\textnormal{{k}}}\rangle (concretely, span{|uk:k2}n+1\mathrm{span}\{|u_{\textnormal{{k}}}\rangle:\textnormal{{k}}\in\mathbb{R}^{2}\}\subset\mathbb{C}^{n+1}). But this linear subspace of Pnsuperscript𝑃𝑛\mathbb{C}P^{n} is generally much larger than just the individual one-dimensional subspaces associated to the occupied bands. (For example, for a Chern insulator, even if we consider one band with nonzero Chern number to be occupied, we should take multiple bands whose sum of the Chern numbers is zero.) Thus, Uqsubscript𝑈qU_{\textnormal{{q}}} determines a projective representation once we restrict our Bloch wave function so that Pnsuperscript𝑃𝑛\mathbb{C}P^{n} in the target coincides with the minimal linear subspace we need to consider. In physical terms, if we add “trivial unoccupied bands,” we cannot determine how Uqsubscript𝑈qU_{\textnormal{{q}}} acts on these bands, which is very reasonable, and we restrict ourselves to the situation where such trivial bands are excluded.

Theorem 2 (Rigidity theorem (Calabi) [36, 41]).

Let M𝑀M be a connected Kähler manifold and let f:MPn:𝑓𝑀superscript𝑃𝑛f:M\to\mathbb{C}P^{n} and f:MPn:superscript𝑓𝑀superscript𝑃superscript𝑛f^{\prime}:M\to\mathbb{C}P^{n^{\prime}} be Kähler immersions (i.e., holomorphic immersions of M𝑀M whose Kähler structure coincides with the induced Kähler structure) so that their images do not lie in any proper linear subspace of the projective space (i.e., a subspace of the projective space obtained by projectivization of a vector subspace). Then n=n𝑛superscript𝑛n=n^{\prime} and there exists a unitary operator UU(n+1)𝑈U𝑛1U\in\mathrm{U}(n+1) such that Uf=f𝑈𝑓superscript𝑓U\circ f=f^{\prime}, where, by abuse of notation, we have also denoted by U𝑈U the induced diffeomorphism in Pnsuperscript𝑃𝑛\mathbb{C}P^{n}.

We remark that the dimension n𝑛n in the above Theorem 2 and also below can be infinity. The assumption that the images do not lie in any proper linear subspace of the projective space implies that we have excluded benign trivial bands from consideration as we commented above.

Proposition 1.

Suppose we have a a Kähler immersion f:2Pn:𝑓superscript2superscript𝑃𝑛f:\mathbb{R}^{2}\to\mathbb{C}P^{n} with respect to some complex structure j𝑗j in the plane. Suppose also that the image f(2)𝑓superscript2f(\mathbb{R}^{2}) does not lie in any proper linear subspace of Pnsuperscript𝑃𝑛\mathbb{C}P^{n}. Suppose ϕ:22:italic-ϕsuperscript2superscript2\phi:\mathbb{R}^{2}\to\mathbb{R}^{2} is a biholomorphism, with respect to j𝑗j, preserving the pullback under f𝑓f of the Fubini-Study metric fgFSsuperscript𝑓subscript𝑔𝐹𝑆f^{*}g_{FS}, i.e. a holomorphic isometry of fgFSsuperscript𝑓subscript𝑔𝐹𝑆f^{*}g_{FS}. Then there exists a unitary operator UϕU(n+1)subscript𝑈italic-ϕU𝑛1U_{\phi}\in\mathrm{U}(n+1), unique up to a phase, such that fϕ=Uϕf𝑓italic-ϕsubscript𝑈italic-ϕ𝑓f\circ\phi=U_{\phi}\circ f, where we have also denoted by Uϕsubscript𝑈italic-ϕU_{\phi} the induced diffeomorphism in Pnsuperscript𝑃𝑛\mathbb{C}P^{n}.

Proof.

By assumption, the maps fϕ:2Pn:𝑓italic-ϕsuperscript2superscript𝑃𝑛f\circ\phi:\mathbb{R}^{2}\to\mathbb{C}P^{n} and f:2Pn:𝑓superscript2superscript𝑃𝑛f:\mathbb{R}^{2}\to\mathbb{C}P^{n} are both Kähler immersions. It follows from Theorem 2 that there exists UϕU(n+1)subscript𝑈italic-ϕU𝑛1U_{\phi}\in\mathrm{U}(n+1) such that fϕ=Uϕf𝑓italic-ϕsubscript𝑈italic-ϕ𝑓f\circ\phi=U_{\phi}\circ f. We now prove the uniqueness of Uϕsubscript𝑈italic-ϕU_{\phi} up to a phase, following the arguments given in the proof of Theorem 4.3. in Ref. [42], which we briefly reproduce here. Let us assume that two unitary matrices Uϕ,UϕU(n+1)subscript𝑈italic-ϕsubscriptsuperscript𝑈italic-ϕU𝑛1U_{\phi},U^{\prime}_{\phi}\in\mathrm{U}(n+1) satisfy Uϕf=fϕsubscript𝑈italic-ϕ𝑓𝑓italic-ϕU_{\phi}\circ f=f\circ\phi and Uϕf=fϕsubscriptsuperscript𝑈italic-ϕ𝑓𝑓italic-ϕU^{\prime}_{\phi}\circ f=f\circ\phi. Then it follows that ((Uϕ)1Uϕ)f=fsuperscriptsubscriptsuperscript𝑈italic-ϕ1subscript𝑈italic-ϕ𝑓𝑓\left(\left(U^{\prime}_{\phi}\right)^{-1}U_{\phi}\right)\circ f=f. Let us define U:=(Uϕ)1UϕU(n+1)assign𝑈superscriptsubscriptsuperscript𝑈italic-ϕ1subscript𝑈italic-ϕU𝑛1U:=\left(U^{\prime}_{\phi}\right)^{-1}U_{\phi}\in\mathrm{U}(n+1) and show that U𝑈U is just a phase, which implies that Uϕsubscript𝑈italic-ϕU_{\phi} and Uϕsubscriptsuperscript𝑈italic-ϕU^{\prime}_{\phi} differ only by a phase.

We choose choose an orthogonal basis of n+1superscript𝑛1\mathbb{C}^{n+1} where U𝑈U is diagonalized, for which U𝑈U is given by the diagonal matrix diag(α1,,α1,,αr,,αr)diagsubscript𝛼1subscript𝛼1subscript𝛼𝑟subscript𝛼𝑟\mathrm{diag}(\alpha_{1},\dots,\alpha_{1},\dots,\alpha_{r},\dots,\alpha_{r}) with each eigenvalue αisubscript𝛼𝑖\alpha_{i}, having, possibly, some multiplicity. Now observe that if vn+1𝑣superscript𝑛1v\in\mathbb{C}^{n+1} is an eigenvector of U𝑈U, it follows that the one-dimensional subspace of Pnsuperscript𝑃𝑛\mathbb{C}P^{n} generated by v𝑣v, denoted by vPnsubscript𝑣superscript𝑃𝑛\ell_{v}\in\mathbb{C}P^{n}, is a fixed point of the induced map U:PnPn:𝑈superscript𝑃𝑛superscript𝑃𝑛U:\mathbb{C}P^{n}\to\mathbb{C}P^{n}, i.e., U(v)=v𝑈subscript𝑣subscript𝑣U(\ell_{v})=\ell_{v}. It follows that the set of fixed points of the isometry U:PnPn:𝑈superscript𝑃𝑛superscript𝑃𝑛U:\mathbb{C}P^{n}\to\mathbb{C}P^{n} is given by the disjoint union i=1rS(αi)superscriptsubscriptcoproduct𝑖1𝑟𝑆subscript𝛼𝑖\coprod_{i=1}^{r}S(\alpha_{i}) with S(αi)𝑆subscript𝛼𝑖S(\alpha_{i}) being the image of the eigenspace associated with the eigenvalue αisubscript𝛼𝑖\alpha_{i} under the quotient map π:n+1{0}Pn:𝜋superscript𝑛10superscript𝑃𝑛\pi:\mathbb{C}^{n+1}-\{0\}\to\mathbb{C}P^{n}, i=1,,r𝑖1𝑟i=1,\dots,r. Since in f(2)𝑓superscript2f(\mathbb{R}^{2}) the map induced by the unitary U𝑈U is the identity and because f(2)𝑓superscript2f(\mathbb{R}^{2}) is connected (2superscript2\mathbb{R}^{2} is connected and f𝑓f is continuous), it follows that f(2)S(αi)𝑓superscript2𝑆subscript𝛼𝑖f(\mathbb{R}^{2})\subset S(\alpha_{i}), for some i𝑖i. However, each S(αi)𝑆subscript𝛼𝑖S(\alpha_{i}) is a linear subspace of Pnsuperscript𝑃𝑛\mathbb{C}P^{n} By the assumption that f(2)𝑓superscript2f(\mathbb{R}^{2}) does not lie in any proper linear subspace of Pnsuperscript𝑃𝑛\mathbb{C}P^{n} it follows that r=1𝑟1r=1 and S(α1)=Pn𝑆subscript𝛼1superscript𝑃𝑛S(\alpha_{1})=\mathbb{C}P^{n}. Therefore, U𝑈U is just a multiple of the identity by a phase factor, as we wanted to show. ∎

Theorem 3.

Suppose we have a Kähler immersion f:2Pn:𝑓superscript2superscript𝑃𝑛f:\mathbb{R}^{2}\to\mathbb{C}P^{n} with respect to some complex structure j𝑗j in the plane. Suppose also that the image f(2)𝑓superscript2f(\mathbb{R}^{2}) does not lie in any proper linear subspace of Pnsuperscript𝑃𝑛\mathbb{C}P^{n}. Suppose a group G𝐺G acts in 2superscript2\mathbb{R}^{2} by holomorphic isometries, ϕg:22:subscriptitalic-ϕ𝑔superscript2superscript2\phi_{g}:\mathbb{R}^{2}\to\mathbb{R}^{2} for gG𝑔𝐺g\in G, of fgFSsuperscript𝑓subscript𝑔𝐹𝑆f^{*}g_{FS}. Then there exists a projective unitary representation U:GPU(n+1):𝑈𝐺PU𝑛1U:G\to\mathrm{PU}(n+1) with the property fϕg=U(g)f𝑓subscriptitalic-ϕ𝑔𝑈𝑔𝑓f\circ\phi_{g}=U(g)\circ f.

Proof.

For each gG𝑔𝐺g\in G, ϕgsubscriptitalic-ϕ𝑔\phi_{g} is a holomorphic isometry of fgFSsuperscript𝑓subscript𝑔𝐹𝑆f^{*}g_{FS}. Therefore, by Proposition 1 there exists a Ug:=UϕgU(n+1)assignsubscript𝑈𝑔subscript𝑈subscriptitalic-ϕ𝑔U𝑛1U_{g}:=U_{\phi_{g}}\in\mathrm{U}(n+1) uniquely defined up to a phase such that fϕg=Ugf𝑓subscriptitalic-ϕ𝑔subscript𝑈𝑔𝑓f\circ\phi_{g}=U_{g}\circ f. Furthermore, by assumption, we have ϕg1g2=ϕg1ϕg2subscriptitalic-ϕsubscript𝑔1subscript𝑔2subscriptitalic-ϕsubscript𝑔1subscriptitalic-ϕsubscript𝑔2\phi_{g_{1}g_{2}}=\phi_{g_{1}}\circ\phi_{g_{2}} and this implies

(Ug1Ug2)f=Ug1g2f.subscript𝑈subscript𝑔1subscript𝑈subscript𝑔2𝑓subscript𝑈subscript𝑔1subscript𝑔2𝑓\displaystyle\left(U_{g_{1}}\circ U_{g_{2}}\right)\circ f=U_{g_{1}g_{2}}\circ f. (31)

The previous equation implies, using the same arguments as in the proof of Proposition 1 to show uniqueness of Uϕsubscript𝑈italic-ϕU_{\phi} up to phase, that Ug1Ug2=Ug1g2subscript𝑈subscript𝑔1subscript𝑈subscript𝑔2subscript𝑈subscript𝑔1subscript𝑔2U_{g_{1}}U_{g_{2}}=U_{g_{1}g_{2}} holds projectively, implying that the assignment gUgmaps-to𝑔subscript𝑈𝑔g\mapsto U_{g} determines a projective unitary representation of G𝐺G. ∎

Letting f:2Pn:𝑓superscript2superscript𝑃𝑛f:\mathbb{R}^{2}\to\mathbb{C}P^{n} be the map induced by the Bloch wave function |ukketsubscript𝑢k|u_{\textnormal{{k}}}\rangle, letting G𝐺G be the translation group 2superscript2\mathbb{R}^{2} which acts by holomorphic isometries in 2superscript2\mathbb{R}^{2} equipped with a translation-invariant metric and complex structure—translation-invariant quantum geometry—, the existence of the projective representation U𝐪subscript𝑈𝐪U_{\mathbf{q}} follows from Theorem 3.

The discussion above does not give a concrete form of the Uqsubscript𝑈qU_{\textnormal{{q}}}’s, rather it just guarantees their existence. The projective representation is determined up to isomorphism of projective representations. Essentially this means that one can take Uq=Uqg1(q)subscriptsuperscript𝑈qsubscript𝑈qsuperscript𝑔1qU^{\prime}_{\textnormal{{q}}}=U_{\textnormal{{q}}}g^{-1}(\textnormal{{q}}) , with g(q)𝑔qg(\textnormal{{q}}) a phase factor—because this does not change uk+q|uk+qinner-productsubscript𝑢kqsubscript𝑢kq\langle u_{\textnormal{{k}}+\textnormal{{q}}}|u_{\textnormal{{k}}+\textnormal{{q}}}\rangle. This means that if

Uq1Uq2=Uq1+q2ψ(q1,q2),subscript𝑈subscriptq1subscript𝑈subscriptq2subscript𝑈subscriptq1subscriptq2𝜓subscriptq1subscriptq2\displaystyle U_{\textnormal{{q}}_{1}}U_{\textnormal{{q}}_{2}}=U_{\textnormal{{q}}_{1}+\textnormal{{q}}_{2}}\psi(\textnormal{{q}}_{1},\textnormal{{q}}_{2}), (32)

then

Uq1Uq2=Uq1+q2ψ(q1,q2)g(q1+q2)g(q1)g(q2),subscriptsuperscript𝑈subscriptq1subscriptsuperscript𝑈subscriptq2subscriptsuperscript𝑈subscriptq1subscriptq2𝜓subscriptq1subscriptq2𝑔subscriptq1subscriptq2𝑔subscriptq1𝑔subscriptq2\displaystyle U^{\prime}_{\textnormal{{q}}_{1}}U^{\prime}_{\textnormal{{q}}_{2}}=U^{\prime}_{\textnormal{{q}}_{1}+\textnormal{{q}}_{2}}\psi(\textnormal{{q}}_{1},\textnormal{{q}}_{2})\frac{g(\textnormal{{q}}_{1}+\textnormal{{q}}_{2})}{g(\textnormal{{q}}_{1})g(\textnormal{{q}}_{2})}, (33)

and we see that ψ(q1,q2)𝜓subscriptq1subscriptq2\psi(\textnormal{{q}}_{1},\textnormal{{q}}_{2}) and ψ(q1,q2)g(q1+q2)g(q1)g(q2)𝜓subscriptq1subscriptq2𝑔subscriptq1subscriptq2𝑔subscriptq1𝑔subscriptq2\psi(\textnormal{{q}}_{1},\textnormal{{q}}_{2})\frac{g(\textnormal{{q}}_{1}+\textnormal{{q}}_{2})}{g(\textnormal{{q}}_{1})g(\textnormal{{q}}_{2})} differ by an exact cocycle. Later in the maintext, it is found that this cocycle is canonically specified by the Chern number 𝒞𝒞\mathcal{C}.

The explicit construction of Uqsubscript𝑈qU_{\textnormal{{q}}} then comes from the argument of uniqueness of the representation (where the phase factors act in the standard way) of the central extension of the translation group by U(1)U1\mathrm{U}(1) which is the content of the Stone-von Neumann theorem.

III.2 Obtaining the lowest Landau level type wave functions from an explicit realization of the Heisenberg group G𝐺G

We derive an explicit expression of uk(r)subscript𝑢kru_{\textnormal{{k}}}(\textnormal{{r}}) in terms of theta functions—this will allow us to recover the lowest Landau level wave function and the color-entangled wave functions. To do this, we need to extract the component uk(r)subscript𝑢kru_{\textnormal{{k}}}(\textnormal{{r}}) corresponding to the irreducible representation of 2superscript2\mathbb{Z}^{2} labeled by r. Hence, the defining property of uk(r)subscript𝑢kru_{\textnormal{{k}}}(\textnormal{{r}}) is UGuk(r)=e2πiGruk(r)subscript𝑈Gsubscript𝑢krsuperscript𝑒2𝜋𝑖Grsubscript𝑢krU_{\textnormal{{G}}}u_{\textnormal{{k}}}(\textnormal{{r}})=e^{-2\pi i\textnormal{{G}}\cdot\textnormal{{r}}}u_{\textnormal{{k}}}(\textnormal{{r}}) for all G2Gsuperscript2\textnormal{{G}}\in\mathbb{Z}^{2}. This can be done through the Bloch-Zak transform which takes |uk=L2()ketsubscript𝑢ksuperscript𝐿2|u_{\textnormal{{k}}}\rangle\in\mathcal{H}=L^{2}(\mathbb{R}) to

uk(r)=G2e2πirGUG|uk,subscript𝑢krsubscriptGsuperscript2superscript𝑒2𝜋𝑖rGsubscript𝑈Gketsubscript𝑢k\displaystyle u_{\textnormal{{k}}}(\textnormal{{r}})=\sum_{\textnormal{{G}}\in\mathbb{Z}^{2}}e^{2\pi i\textnormal{{r}}\cdot\textnormal{{G}}}U_{\textnormal{{G}}}|u_{\textnormal{{k}}}\rangle, (34)

and provides a Hilbert space isomorphism L2()u.c.d2rrsuperscript𝐿2subscriptsuperscriptdirect-sumu.c.superscript𝑑2rsubscriptrL^{2}(\mathbb{R})\cong\int^{\oplus}_{\text{u.c.}}d^{2}\textnormal{{r}}\;\mathcal{H}_{\textnormal{{r}}} where u.c. stands for the real space unit cell labeling irreps of the reciprocal lattice 2superscript2\mathbb{Z}^{2}. For the transform to be an isomorphism we need to define the inner product in rsubscriptr\mathcal{H}_{\textnormal{{r}}} appropriately. For a general element |fL2()ket𝑓superscript𝐿2|f\rangle\in L^{2}(\mathbb{R}), let us denote its value at a point q𝑞q\in\mathbb{R} by f(q)𝑓𝑞f(q). The Bloch-Zak transform determines an element f(r)r𝑓rsubscriptrf(\textnormal{{r}})\in\mathcal{H}_{\textnormal{{r}}} from |fL2()ket𝑓superscript𝐿2|f\rangle\in L^{2}(\mathbb{R}), which evaluated at a point q𝑞q\in\mathbb{R} reads

(f(r))(q)=G2e2πirGUGf(q)𝑓r𝑞subscriptGsuperscript2superscript𝑒2𝜋𝑖rGsubscript𝑈G𝑓𝑞\displaystyle\left(f(\textnormal{{r}})\right)(q)=\sum_{\textnormal{{G}}\in\mathbb{Z}^{2}}e^{2\pi i\textnormal{{r}}\cdot\textnormal{{G}}}U_{\textnormal{{G}}}f(q)
=mx,my2e2πi𝒞mx(q+my)+2πixmx+2πiymyf(q+my)absentsubscriptsubscript𝑚𝑥subscript𝑚𝑦superscript2superscript𝑒2𝜋𝑖𝒞subscript𝑚𝑥𝑞subscript𝑚𝑦2𝜋𝑖𝑥subscript𝑚𝑥2𝜋𝑖𝑦subscript𝑚𝑦𝑓𝑞subscript𝑚𝑦\displaystyle=\sum_{m_{x},m_{y}\in\mathbb{Z}^{2}}e^{2\pi i\mathcal{C}m_{x}\left(q+m_{y}\right)+2\pi ixm_{x}+2\pi iym_{y}}f(q+m_{y})
=mx,my2e2πi(𝒞q+x)mx+2πiymyf(q+my),absentsubscriptsubscript𝑚𝑥subscript𝑚𝑦superscript2superscript𝑒2𝜋𝑖𝒞𝑞𝑥subscript𝑚𝑥2𝜋𝑖𝑦subscript𝑚𝑦𝑓𝑞subscript𝑚𝑦\displaystyle=\sum_{m_{x},m_{y}\in\mathbb{Z}^{2}}e^{2\pi i(\mathcal{C}q+x)m_{x}+2\pi iym_{y}}f(q+m_{y}), (35)

where we wrote 𝐆=(mx,my)𝐆subscript𝑚𝑥subscript𝑚𝑦\mathbf{G}=(m_{x},m_{y}) and 𝐫=(x,y)𝐫𝑥𝑦\mathbf{r}=(x,y) and used Eq.(18) of the main text. One can easily check that the inverse transformation is |f=u.c.d2rf(r)ket𝑓subscriptu.c.superscript𝑑2r𝑓r|f\rangle=\int_{\text{u.c.}}d^{2}\textnormal{{r}}\;f(\textnormal{{r}}). Using an expression of the series expansion of the Dirac comb, pδ(tp)=me2πitmsubscript𝑝𝛿𝑡𝑝subscript𝑚superscript𝑒2𝜋𝑖𝑡𝑚\sum_{p\in\mathbb{Z}}\delta(t-p)=\sum_{m\in\mathbb{Z}}e^{2\pi itm}, we obtain

(f(r))(q)=mypδ(𝒞q+xp)e2πiymyf(q+my)𝑓r𝑞subscriptsubscript𝑚𝑦subscript𝑝𝛿𝒞𝑞𝑥𝑝superscript𝑒2𝜋𝑖𝑦subscript𝑚𝑦𝑓𝑞subscript𝑚𝑦\displaystyle\left(f(\textnormal{{r}})\right)(q)=\sum_{m_{y}\in\mathbb{Z}}\sum_{p\in\mathbb{Z}}\delta(\mathcal{C}q+x-p)e^{2\pi iym_{y}}f(q+m_{y})
=mypδ(𝒞q+xp)e2πiymyf(x𝒞+p𝒞+my).absentsubscriptsubscript𝑚𝑦subscript𝑝𝛿𝒞𝑞𝑥𝑝superscript𝑒2𝜋𝑖𝑦subscript𝑚𝑦𝑓𝑥𝒞𝑝𝒞subscript𝑚𝑦\displaystyle=\sum_{m_{y}\in\mathbb{Z}}\sum_{p\in\mathbb{Z}}\delta(\mathcal{C}q+x-p)e^{2\pi iym_{y}}f\left(-\frac{x}{\mathcal{C}}+\frac{p}{\mathcal{C}}+m_{y}\right). (36)

We now write p=α+p~𝒞𝑝𝛼~𝑝𝒞p=\alpha+\tilde{p}\mathcal{C} where α{0,,𝒞1}𝛼0𝒞1\alpha\in\{0,\dots,\mathcal{C}-1\} and p~~𝑝\tilde{p}\in\mathbb{Z} so that p=α=0𝒞1p~subscript𝑝superscriptsubscript𝛼0𝒞1subscript~𝑝\sum_{p\in\mathbb{Z}}=\sum_{\alpha=0}^{\mathcal{C}-1}\sum_{\tilde{p}\in\mathbb{Z}}. Then,

(f(r))(q)𝑓r𝑞\displaystyle\left(f(\textnormal{{r}})\right)(q) =myα=0𝒞1p~δ(𝒞q+xα𝒞p~)e2πiymyf(x𝒞+α𝒞+my+p~)absentsubscriptsubscript𝑚𝑦superscriptsubscript𝛼0𝒞1subscript~𝑝𝛿𝒞𝑞𝑥𝛼𝒞~𝑝superscript𝑒2𝜋𝑖𝑦subscript𝑚𝑦𝑓𝑥𝒞𝛼𝒞subscript𝑚𝑦~𝑝\displaystyle=\sum_{m_{y}\in\mathbb{Z}}\sum_{\alpha=0}^{\mathcal{C}-1}\sum_{\tilde{p}\in\mathbb{Z}}\delta(\mathcal{C}q+x-\alpha-\mathcal{C}\tilde{p})e^{2\pi iym_{y}}f\left(-\frac{x}{\mathcal{C}}+\frac{\alpha}{\mathcal{C}}+m_{y}+\tilde{p}\right)
=myα=0𝒞1p~δ(𝒞q+xα𝒞p~)e2πiy(myp~)f(x𝒞+α𝒞+my)absentsubscriptsubscript𝑚𝑦superscriptsubscript𝛼0𝒞1subscript~𝑝𝛿𝒞𝑞𝑥𝛼𝒞~𝑝superscript𝑒2𝜋𝑖𝑦subscript𝑚𝑦~𝑝𝑓𝑥𝒞𝛼𝒞subscript𝑚𝑦\displaystyle=\sum_{m_{y}\in\mathbb{Z}}\sum_{\alpha=0}^{\mathcal{C}-1}\sum_{\tilde{p}\in\mathbb{Z}}\delta(\mathcal{C}q+x-\alpha-\mathcal{C}\tilde{p})e^{2\pi iy(m_{y}-\tilde{p})}f\left(-\frac{x}{\mathcal{C}}+\frac{\alpha}{\mathcal{C}}+m_{y}\right)
=α=0𝒞1(myf(x𝒞+α𝒞+my)e2πi1𝒞y(x+α+𝒞my))(p~δ(𝒞q+xα𝒞p~)e2πi1𝒞y(x+α+𝒞p~))absentsuperscriptsubscript𝛼0𝒞1subscriptsubscript𝑚𝑦𝑓𝑥𝒞𝛼𝒞subscript𝑚𝑦superscript𝑒2𝜋𝑖1𝒞𝑦𝑥𝛼𝒞subscript𝑚𝑦subscript~𝑝𝛿𝒞𝑞𝑥𝛼𝒞~𝑝superscript𝑒2𝜋𝑖1𝒞𝑦𝑥𝛼𝒞~𝑝\displaystyle=\sum_{\alpha=0}^{\mathcal{C}-1}\left(\sum_{m_{y}\in\mathbb{Z}}f\left(-\frac{x}{\mathcal{C}}+\frac{\alpha}{\mathcal{C}}+m_{y}\right)e^{2\pi i\frac{1}{\mathcal{C}}y\left(-x+\alpha+\mathcal{C}m_{y}\right)}\right)\left(\sum_{\tilde{p}\in\mathbb{Z}}\delta(\mathcal{C}q+x-\alpha-\mathcal{C}\tilde{p})e^{-2\pi i\frac{1}{\mathcal{C}}y\left(-x+\alpha+\mathcal{C}\tilde{p}\right)}\right)
α=0𝒞1fα(𝐫)δα𝐫(q),absentsuperscriptsubscript𝛼0𝒞1subscript𝑓𝛼𝐫superscriptsubscript𝛿𝛼𝐫𝑞\displaystyle\equiv\sum_{\alpha=0}^{\mathcal{C}-1}f_{\alpha}(\mathbf{r})\delta_{\alpha}^{\mathbf{r}}(q), (37)

where we defined

δαr(q)::superscriptsubscript𝛿𝛼r𝑞absent\displaystyle\delta_{\alpha}^{\textnormal{{r}}}(q): =pδ(𝒞q+xα𝒞p)e2πi1𝒞y(x+α+𝒞p),absentsubscript𝑝𝛿𝒞𝑞𝑥𝛼𝒞𝑝superscript𝑒2𝜋𝑖1𝒞𝑦𝑥𝛼𝒞𝑝\displaystyle=\sum_{p\in\mathbb{Z}}\delta(\mathcal{C}q+x-\alpha-\mathcal{C}p)e^{-2\pi i\frac{1}{\mathcal{C}}y\left(-x+\alpha+\mathcal{C}p\right)}, (38)
fα(r)::subscript𝑓𝛼rabsent\displaystyle f_{\alpha}(\textnormal{{r}}): =myf(x𝒞+α𝒞+my)e2πi1𝒞y(x+α+𝒞my).absentsubscriptsubscript𝑚𝑦𝑓𝑥𝒞𝛼𝒞subscript𝑚𝑦superscript𝑒2𝜋𝑖1𝒞𝑦𝑥𝛼𝒞subscript𝑚𝑦\displaystyle=\sum_{m_{y}\in\mathbb{Z}}f\left(-\frac{x}{\mathcal{C}}+\frac{\alpha}{\mathcal{C}}+m_{y}\right)e^{2\pi i\frac{1}{\mathcal{C}}y\left(-x+\alpha+\mathcal{C}m_{y}\right)}. (39)

We can regard the vector space rsubscriptr\mathcal{H}_{\textnormal{{r}}} to be the span of the distributions δαr(q)superscriptsubscript𝛿𝛼r𝑞\delta_{\alpha}^{\textnormal{{r}}}(q). We see that periodicity f(𝐫+𝐑)=f(𝐫)𝑓𝐫𝐑𝑓𝐫f(\mathbf{r}+\mathbf{R})=f(\mathbf{r}) holds because δαr(q)superscriptsubscript𝛿𝛼r𝑞\delta_{\alpha}^{\textnormal{{r}}}(q) and fα(r)subscript𝑓𝛼rf_{\alpha}(\textnormal{{r}}) transform in the opposite ways; for R=(ax,ay)2Rsubscript𝑎𝑥subscript𝑎𝑦superscript2\textnormal{{R}}=(a_{x},a_{y})\in\mathbb{Z}^{2},

δαr+R(q)=e2πi1𝒞ay(x+ax+α)δαaxr(q) and δα+𝒞r=δαr,α=0,,𝒞1,formulae-sequencesuperscriptsubscript𝛿𝛼rR𝑞superscript𝑒2𝜋𝑖1𝒞subscript𝑎𝑦𝑥subscript𝑎𝑥𝛼subscriptsuperscript𝛿r𝛼subscript𝑎𝑥𝑞 and superscriptsubscript𝛿𝛼𝒞rsuperscriptsubscript𝛿𝛼r𝛼0𝒞1\displaystyle\delta_{\alpha}^{\textnormal{{r}}+\textnormal{{R}}}(q)=e^{-2\pi i\frac{1}{\mathcal{C}}a_{y}\left(-x+a_{x}+\alpha\right)}\delta^{\textnormal{{r}}}_{\alpha-a_{x}}(q)\text{ and }\delta_{\alpha+\mathcal{C}}^{\textnormal{{r}}}=\delta_{\alpha}^{\textnormal{{r}}},\ \alpha=0,\dots,\mathcal{C}-1, (40)
fα(r+R)=e2πi1𝒞ay(x+ax+α)fαax(r) and fα+𝒞(r)=fα(r),α=0,,𝒞1.formulae-sequencesubscript𝑓𝛼rRsuperscript𝑒2𝜋𝑖1𝒞subscript𝑎𝑦𝑥subscript𝑎𝑥𝛼subscript𝑓𝛼subscript𝑎𝑥r and subscript𝑓𝛼𝒞rsubscript𝑓𝛼r𝛼0𝒞1\displaystyle f_{\alpha}(\textnormal{{r}}+\textnormal{{R}})=e^{2\pi i\frac{1}{\mathcal{C}}a_{y}\left(-x+a_{x}+\alpha\right)}f_{\alpha-a_{x}}(\textnormal{{r}})\text{ and }f_{\alpha+\mathcal{C}}(\textnormal{{r}})=f_{\alpha}(\textnormal{{r}}),\ \alpha=0,\dots,\mathcal{C}-1. (41)

This periodicity is consistent with the requirement of the periodicity of the Hilbert space, r+R=rsubscriptrRsubscriptr\mathcal{H}_{\textnormal{{r}}+\textnormal{{R}}}=\mathcal{H}_{\textnormal{{r}}} coming from e2πiG(r+R)=e2πiGrsuperscript𝑒2𝜋𝑖GrRsuperscript𝑒2𝜋𝑖Gre^{-2\pi i\textnormal{{G}}\cdot\left(\textnormal{{r}}+\textnormal{{R}}\right)}=e^{-2\pi i\textnormal{{G}}\cdot\textnormal{{r}}}, which holds for any G in the reciprocal lattice.

If we define a Hilbert space structure by declaring

δαr,δβr=1𝒞δαβ,superscriptsubscript𝛿𝛼rsuperscriptsubscript𝛿𝛽r1𝒞subscript𝛿𝛼𝛽\displaystyle\langle\delta_{\alpha}^{\textnormal{{r}}},\delta_{\beta}^{\textnormal{{r}}}\rangle=\frac{1}{\mathcal{C}}\delta_{\alpha\beta}, (42)

then we get the desired Hilbert space isomorphism L2()u.c.d2rrsuperscript𝐿2subscriptsuperscriptdirect-sumu.c.superscript𝑑2rsubscriptrL^{2}(\mathbb{R})\cong\int^{\oplus}_{\text{u.c.}}d^{2}\textnormal{{r}}\;\mathcal{H}_{\textnormal{{r}}}, where the right-hand side can be interpreted as the space of square-integrable sections of a Hilbert bundle over the real space unit cell torus, obtained by identifying rr+Rsimilar-torrR\textnormal{{r}}\sim\textnormal{{r}}+\textnormal{{R}} with R2Rsuperscript2\textnormal{{R}}\in\mathbb{Z}^{2}, and whose fiber is rsubscriptr\mathcal{H}_{\textnormal{{r}}}. A section of this Hilbert bundle is identified with a collection of smooth functions f0(r),,f𝒞1(r)subscript𝑓0rsubscript𝑓𝒞1rf_{0}(\textnormal{{r}}),\dots,f_{\mathcal{C}-1}(\textnormal{{r}}) satisfying the conditions in Eq. (41). The collection {δαr}α=0𝒞1superscriptsubscriptsuperscriptsubscript𝛿𝛼r𝛼0𝒞1\{\delta_{\alpha}^{\textnormal{{r}}}\}_{\alpha=0}^{\mathcal{C}-1} can then be interpreted as a global multivalued orthogonal frame field for this Hilbert bundle. To see that it is indeed a Hilbert space isomorphism, one shows that for f,gL2()𝑓𝑔superscript𝐿2f,g\in L^{2}(\mathbb{R}), we have

1𝒞α=0𝒞1u.c.d2rfα(r)¯gα(r)1𝒞superscriptsubscript𝛼0𝒞1subscriptu.c.superscript𝑑2r¯subscript𝑓𝛼rsubscript𝑔𝛼r\displaystyle\frac{1}{\mathcal{C}}\sum_{\alpha=0}^{\mathcal{C}-1}\int_{\text{u.c.}}d^{2}\textnormal{{r}}\;\overline{f_{\alpha}(\textnormal{{r}})}g_{\alpha}(\textnormal{{r}})
=1𝒞α=0𝒞101𝑑xmyf(x𝒞+α𝒞+my)¯g(x𝒞+α𝒞+my)absent1𝒞superscriptsubscript𝛼0𝒞1superscriptsubscript01differential-d𝑥subscriptsubscript𝑚𝑦¯𝑓𝑥𝒞𝛼𝒞subscript𝑚𝑦𝑔𝑥𝒞𝛼𝒞subscript𝑚𝑦\displaystyle=\frac{1}{\mathcal{C}}\sum_{\alpha=0}^{\mathcal{C}-1}\int_{0}^{1}dx\;\sum_{m_{y}\in\mathbb{Z}}\overline{f\left(-\frac{x}{\mathcal{C}}+\frac{\alpha}{\mathcal{C}}+m_{y}\right)}g\left(-\frac{x}{\mathcal{C}}+\frac{\alpha}{\mathcal{C}}+m_{y}\right)
=𝑑qf(q)¯g(q)=f|g,absentsubscriptdifferential-d𝑞¯𝑓𝑞𝑔𝑞inner-product𝑓𝑔\displaystyle=\int_{\mathbb{R}}dq\;\overline{f(q)}g(q)=\langle f|g\rangle, (43)

where we have used 01𝑑ye2πiy(mn)=δm,nsuperscriptsubscript01differential-d𝑦superscript𝑒2𝜋𝑖𝑦𝑚𝑛subscript𝛿𝑚𝑛\int_{0}^{1}dy\;e^{2\pi iy(m-n)}=\delta_{m,n} for m,n𝑚𝑛m,n\in\mathbb{Z}. We also refer to (f0(r),,f𝒞1(r))subscript𝑓0rsubscript𝑓𝒞1r(f_{0}(\textnormal{{r}}),\dots,f_{\mathcal{C}-1}(\textnormal{{r}})) as the Bloch-Zak transform of |fket𝑓|f\rangle—we are explicitly using the isomorphism r𝒞subscriptrsuperscript𝒞\mathcal{H}_{\textnormal{{r}}}\cong\mathbb{C}^{\mathcal{C}} provided by the orthogonal basis determined by the δαrsuperscriptsubscript𝛿𝛼r\delta_{\alpha}^{\textnormal{{r}}}’s. Physically, these 𝒞𝒞\mathcal{C} degrees of freedom can be spins, orbitals, or other internal degrees of freedom.

Now we explicitly evaluate the Bloch-Zak transform for |f=|ukket𝑓ketsubscript𝑢k|f\rangle=|u_{\textnormal{{k}}}\rangle. First note that, From Eqs.(18) and (24) of the main text,

uk(q)=Uku0(q)=eiπ𝒞τ(q+ky)2+2πi𝒞kx(q+ky).subscript𝑢k𝑞subscript𝑈ksubscript𝑢0𝑞superscript𝑒𝑖𝜋𝒞𝜏superscript𝑞subscript𝑘𝑦22𝜋𝑖𝒞subscript𝑘𝑥𝑞subscript𝑘𝑦\displaystyle u_{\textnormal{{k}}}(q)=U_{\textnormal{{k}}}u_{0}(q)=e^{i\pi\mathcal{C}\tau\left(q+k_{y}\right)^{2}+2\pi i\mathcal{C}k_{x}\left(q+k_{y}\right)}. (44)

Then we find,

fα(r)subscript𝑓𝛼r\displaystyle f_{\alpha}(\textnormal{{r}}) =myu𝐤(x𝒞+α𝒞+my)e2πi1𝒞y(x+α+𝒞my)absentsubscriptsubscript𝑚𝑦subscript𝑢𝐤𝑥𝒞𝛼𝒞subscript𝑚𝑦superscript𝑒2𝜋𝑖1𝒞𝑦𝑥𝛼𝒞subscript𝑚𝑦\displaystyle=\sum_{m_{y}\in\mathbb{Z}}u_{\mathbf{k}}\left(-\frac{x}{\mathcal{C}}+\frac{\alpha}{\mathcal{C}}+m_{y}\right)e^{2\pi i\frac{1}{\mathcal{C}}y\left(-x+\alpha+\mathcal{C}m_{y}\right)} (45)
=myeiπ𝒞τ(x𝒞+α𝒞+ky+my)2+2πi𝒞kx(x𝒞+α𝒞+ky+my)+2πi1𝒞y(x+α+𝒞my)absentsubscriptsubscript𝑚𝑦superscript𝑒𝑖𝜋𝒞𝜏superscript𝑥𝒞𝛼𝒞subscript𝑘𝑦subscript𝑚𝑦22𝜋𝑖𝒞subscript𝑘𝑥𝑥𝒞𝛼𝒞subscript𝑘𝑦subscript𝑚𝑦2𝜋𝑖1𝒞𝑦𝑥𝛼𝒞subscript𝑚𝑦\displaystyle=\sum_{m_{y}\in\mathbb{Z}}e^{i\pi\mathcal{C}\tau\left(-\frac{x}{\mathcal{C}}+\frac{\alpha}{\mathcal{C}}+k_{y}+m_{y}\right)^{2}+2\pi i\mathcal{C}k_{x}\left(-\frac{x}{\mathcal{C}}+\frac{\alpha}{\mathcal{C}}+k_{y}+m_{y}\right)+2\pi i\frac{1}{\mathcal{C}}y\left(-x+\alpha+\mathcal{C}m_{y}\right)}
=e2πi𝒞kxkyeiπ𝒞τky2ϑ[α𝒞x𝒞y](𝒞zτ,𝒞τ),absentsuperscript𝑒2𝜋𝑖𝒞subscript𝑘𝑥subscript𝑘𝑦superscript𝑒𝑖𝜋𝒞𝜏superscriptsubscript𝑘𝑦2italic-ϑdelimited-[]𝛼𝒞𝑥𝒞𝑦𝒞subscript𝑧𝜏𝒞𝜏\displaystyle=e^{2\pi i\mathcal{C}k_{x}k_{y}}e^{i\pi\mathcal{C}\tau k_{y}^{2}}\vartheta\left[\begin{array}[]{c}\frac{\alpha}{\mathcal{C}}-\frac{x}{\mathcal{C}}\\ y\end{array}\right](\mathcal{C}z_{\tau},\mathcal{C}\tau), (48)

where zτ=kx+τkysubscript𝑧𝜏subscript𝑘𝑥𝜏subscript𝑘𝑦z_{\tau}=k_{x}+\tau k_{y}, and we have introduced the theta functions with characteristics a,b𝑎𝑏a,b\in\mathbb{R} as

ϑ[ab](z,τ):=neiπτ(n+a)2+2πi(n+a)(z+b),assignitalic-ϑdelimited-[]𝑎𝑏𝑧𝜏subscript𝑛superscript𝑒𝑖𝜋𝜏superscript𝑛𝑎22𝜋𝑖𝑛𝑎𝑧𝑏\displaystyle\vartheta\left[\begin{array}[]{c}a\\ b\end{array}\right](z,\tau):=\sum_{n\in\mathbb{Z}}e^{i\pi\tau(n+a)^{2}+2\pi i(n+a)(z+b)}, (51)

for z𝑧z\in\mathbb{C}. Therefore, the real-space representation of the Bloch state |u𝐤ketsubscript𝑢𝐤|u_{\mathbf{k}}\rangle is thus given by a 𝒞𝒞\mathcal{C}-component wave function of the following form:

uk(r)=e2πi𝒞kxkyeiπ𝒞τky2(ϑ[x𝒞y](𝒞zτ,𝒞τ),,ϑ[𝒞1𝒞x𝒞y](𝒞zτ,𝒞τ)).subscript𝑢krsuperscript𝑒2𝜋𝑖𝒞subscript𝑘𝑥subscript𝑘𝑦superscript𝑒𝑖𝜋𝒞𝜏superscriptsubscript𝑘𝑦2italic-ϑdelimited-[]𝑥𝒞𝑦𝒞subscript𝑧𝜏𝒞𝜏italic-ϑdelimited-[]𝒞1𝒞𝑥𝒞𝑦𝒞subscript𝑧𝜏𝒞𝜏\displaystyle u_{\textnormal{{k}}}(\textnormal{{r}})=e^{2\pi i\mathcal{C}k_{x}k_{y}}e^{i\pi\mathcal{C}\tau k_{y}^{2}}\left(\vartheta\left[\begin{array}[]{c}-\frac{x}{\mathcal{C}}\\ y\end{array}\right](\mathcal{C}z_{\tau},\mathcal{C}\tau),\dots,\vartheta\left[\begin{array}[]{c}\frac{\mathcal{C}-1}{\mathcal{C}}-\frac{x}{\mathcal{C}}\\ y\end{array}\right](\mathcal{C}z_{\tau},\mathcal{C}\tau)\right). (56)

Since the overall normalization of the wave function can be chosen arbitrarily, the 𝐤𝐤\mathbf{k}-dependent exponential factors in front of the theta functions can be removed if one wishes. This degree of freedom corresponds to choosing U𝐤subscript𝑈𝐤U_{\mathbf{k}} and the normalization of u0(q)subscript𝑢0𝑞u_{0}(q) different from ones we used in Eq.(44). Furthermore, as noted in the main text, there is a U(𝒞)𝑈𝒞U(\mathcal{C}) real-space gauge degree freedom; this is to multiply u𝐤(𝐫)subscript𝑢𝐤𝐫u_{\mathbf{k}}(\mathbf{r}) by an element of U(𝒞)𝑈𝒞U(\mathcal{C}), which can depend on 𝐫𝐫\mathbf{r}.

For the particular case 𝒞=1𝒞1\mathcal{C}=1 and τ=i𝜏𝑖\tau=i, the wave function u𝐤(𝐫)subscript𝑢𝐤𝐫u_{\mathbf{k}}(\mathbf{r}) is just the lowest Landau level Bloch wave function (in the Landau gauge), while for higher 𝒞𝒞\mathcal{C} is the so-called color-entangled lowest Landau level Bloch wave function. Since the Landau level wave function expressed in terms of theta functions may not be familiar to some readers, we include, for completeness, its derivation in the Appendix.

Acknowledgments

B. M. is very grateful to J. P. Nunes, J. M. Mourão, and T. Baier for very fruitful discussions. This work is supported by JSPS KAKENHI Grant No. JP20H01845, JST PRESTO Grant No. JPMJPR19L2, and JST CREST Grant No. JPMJCR19T1. B. M. acknowledges support from the Security and Quantum Information Group (SQIG) in Instituto de Telecomunicações, Lisbon. This work is funded by FCT (Fundação para a Ciência e a Tecnologia) through national funds FCT I.P. and, when eligible, by COMPETE 2020 FEDER funds, under Award UIDB/50008/2020 and the Scientific Employment Stimulus—Individual Call (CEEC Individual)—2022.05522.CEECIND/CP1716/CT0001, with DOI 10.54499/2022.05522.CEECIND/CP1716/CT0001.

References

  • Yoshioka [2002] D. Yoshioka, The quantum Hall effect (Springer Berlin, Heidelberg, 2002).
  • Wang et al. [2021] J. Wang, J. Cano, A. J. Millis, Z. Liu, and B. Yang, Exact landau level description of geometry and interaction in a flatband, Phys. Rev. Lett. 127, 246403 (2021).
  • Girvin et al. [1986] S. M. Girvin, A. H. MacDonald, and P. M. Platzman, Magneto-roton theory of collective excitations in the fractional quantum Hall effect, Phys. Rev. B 33, 2481 (1986).
  • Roy [2014] R. Roy, Band geometry of fractional topological insulators, Phys. Rev. B 90, 165139 (2014).
  • Wang et al. [2023] J. Wang, S. Klevtsov, and Z. Liu, Origin of model fractional Chern insulators in all topological ideal flatbands: Explicit color-entangled wave function and exact density algebra, Phys. Rev. Res. 5, 023167 (2023).
  • Bistritzer and MacDonald [2011] R. Bistritzer and A. H. MacDonald, Moiré bands in twisted double-layer graphene, Proceedings of the National Academy of Sciences 108, 12233 (2011).
  • Cao et al. [2018a] Y. Cao, V. Fatemi, S. Fang, K. Watanabe, T. Taniguchi, E. Kaxiras, and P. Jarillo-Herrero, Unconventional superconductivity in magic-angle graphene superlattices, Nature 556, 43 (2018a).
  • Cao et al. [2018b] Y. Cao, V. Fatemi, A. Demir, S. Fang, S. L. Tomarken, J. Y. Luo, J. D. Sanchez-Yamagishi, K. Watanabe, T. Taniguchi, E. Kaxiras, et al., Correlated insulator behaviour at half-filling in magic-angle graphene superlattices, Nature 556, 80 (2018b).
  • Andrei and MacDonald [2020] E. Y. Andrei and A. H. MacDonald, Graphene bilayers with a twist, Nature Materials 19, 1265 (2020).
  • Ledwith et al. [2020] P. J. Ledwith, G. Tarnopolsky, E. Khalaf, and A. Vishwanath, Fractional Chern insulator states in twisted bilayer graphene: An analytical approach, Phys. Rev. Res. 2, 023237 (2020).
  • Wang and Liu [2022] J. Wang and Z. Liu, Hierarchy of Ideal Flatbands in Chiral Twisted Multilayer Graphene Models, Phys. Rev. Lett. 128, 176403 (2022).
  • Herzog-Arbeitman et al. [2022] J. Herzog-Arbeitman, A. Chew, and B. A. Bernevig, Magnetic Bloch theorem and reentrant flat bands in twisted bilayer graphene at 2π2𝜋2\pi flux, Phys. Rev. B 106, 085140 (2022).
  • Spanton et al. [2018] E. M. Spanton, A. A. Zibrov, H. Zhou, T. Taniguchi, K. Watanabe, M. P. Zaletel, and A. F. Young, Observation of fractional Chern insulators in a van der Waals heterostructure, Science 360, 62 (2018).
  • Xie et al. [2021] Y. Xie, A. T. Pierce, J. M. Park, D. E. Parker, E. Khalaf, P. Ledwith, Y. Cao, S. H. Lee, S. Chen, P. R. Forrester, et al., Fractional Chern insulators in magic-angle twisted bilayer graphene, Nature 600, 439 (2021).
  • Cai et al. [2023] J. Cai, E. Anderson, C. Wang, X. Zhang, X. Liu, W. Holtzmann, Y. Zhang, F. Fan, T. Taniguchi, K. Watanabe, et al., Signatures of fractional quantum anomalous Hall states in twisted MoTe2, Nature 622, 63 (2023).
  • Park et al. [2023] H. Park, J. Cai, E. Anderson, Y. Zhang, J. Zhu, X. Liu, C. Wang, W. Holtzmann, C. Hu, Z. Liu, et al., Observation of fractionally quantized anomalous Hall effect, Nature 622, 74 (2023).
  • Zeng et al. [2023] Y. Zeng, Z. Xia, K. Kang, J. Zhu, P. Knüppel, C. Vaswani, K. Watanabe, T. Taniguchi, K. F. Mak, and J. Shan, Thermodynamic evidence of fractional Chern insulator in moiré MoTe2, Nature 622, 69 (2023).
  • Xu et al. [2023] F. Xu, Z. Sun, T. Jia, C. Liu, C. Xu, C. Li, Y. Gu, K. Watanabe, T. Taniguchi, B. Tong, J. Jia, Z. Shi, S. Jiang, Y. Zhang, X. Liu, and T. Li, Observation of Integer and Fractional Quantum Anomalous Hall Effects in Twisted Bilayer MoTe2subscriptMoTe2{\mathrm{MoTe}}_{2}Phys. Rev. X 13, 031037 (2023).
  • Lu et al. [2024] Z. Lu, T. Han, Y. Yao, A. P. Reddy, J. Yang, J. Seo, K. Watanabe, T. Taniguchi, L. Fu, and L. Ju, Fractional quantum anomalous Hall effect in multilayer graphene, Nature 626, 759 (2024).
  • Wu et al. [2013] Y.-L. Wu, N. Regnault, and B. A. Bernevig, Bloch Model Wave Functions and Pseudopotentials for All Fractional Chern Insulators, Phys. Rev. Lett. 110, 106802 (2013).
  • Ozawa and Mera [2021] T. Ozawa and B. Mera, Relations between topology and the quantum metric for Chern insulators, Phys. Rev. B 104, 045103 (2021).
  • Mera and Ozawa [2021a] B. Mera and T. Ozawa, Kähler geometry and Chern insulators: Relations between topology and the quantum metric, Phys. Rev. B 104, 045104 (2021a).
  • Mera and Ozawa [2021b] B. Mera and T. Ozawa, Engineering geometrically flat Chern bands with Fubini-Study Kähler structure, Phys. Rev. B 104, 115160 (2021b).
  • Note [1] We use a convention for which the irreducible representations (irreps) of the real space lattice 2superscript2\mathbb{Z}^{2} are written as e2πikRsuperscript𝑒2𝜋𝑖kRe^{2\pi i\textnormal{{k}}\cdot\textnormal{{{{R}}}}}, with R2Rsuperscript2\textnormal{{R}}\in\mathbb{Z}^{2}, so that k and k+GkG\textnormal{{k}}+\textnormal{{G}}, with G2Gsuperscript2\textnormal{{G}}\in\mathbb{Z}^{2}, determine the same irrep and hence the same Bloch quasimomentum in BZ2superscriptBZ2\textnormal{\text{BZ}}^{2}.
  • Note [2] We note that concepts closely related to Kähler bands have been proposed by several authors, and we would like to clarify their relations here. Ideal flatbands [2, 5] refer to energetically flat Kähler bands with a constant complex structure J𝐽J. Vortexable bands refer to bands where one can add vortices without leaving the eigenspace of bands; in the presence of a lattice translation symmetry, vortexable bands are equivalent to ideal flatbands [43].
  • Varjas et al. [2022] D. Varjas, A. Abouelkomsan, K. Yang, and E. J. Bergholtz, Topological lattice models with constant Berry curvature, SciPost Phys. 12, 118 (2022).
  • Note [3] Here the Bloch wave function refers to the unit-cell periodic (up to a suitable phase when under a magnetic field) part of the eigenstate with a given quasimomentum.
  • Mumford et al. [1974] D. Mumford, C. P. Ramanujam, and J. I. Manin, Abelian Varieties, Vol. 5 (Oxford university press Oxford, 1974).
  • Beauville [2013] A. Beauville, Theta functions, old and new, Open Problems and Surveys of Contemporary Mathematics 6, 99 (2013).
  • Freed [2012] D. S. Freed, On Wigner’s theorem, Geometry & Topology Monographs 18, 83 (2012).
  • Huhtinen et al. [2022] K.-E. Huhtinen, J. Herzog-Arbeitman, A. Chew, B. A. Bernevig, and P. Törmä, Revisiting flat band superconductivity: Dependence on minimal quantum metric and band touchings, Phys. Rev. B 106, 014518 (2022).
  • Note [4] The property that the Kähler band is an immersion to the complex projective space implies that the quantum metric must be non-degenerate over the entire Brillouin zone, and hence det(g)0𝑔0\sqrt{\det(g)}\neq 0 and thus |F12|0subscript𝐹120|F_{12}|\neq 0.
  • Mumford [2007] D. Mumford, Tata Lectures on Theta (I-III), Vol. 43 (Springer, 2007).
  • Miranda [1995] R. Miranda, Algebraic Curves and Riemann Surfaces, Vol. 5 (American Mathematical Society, 1995).
  • Huybrechts [2005] D. Huybrechts, Complex Geometry: An Introduction, Vol. 78 (Springer, 2005).
  • Calabi [1953] E. Calabi, Isometric imbedding of complex manifolds, Annals of Mathematics , 1 (1953).
  • Freed et al. [2007a] D. S. Freed, G. W. Moore, and G. Segal, Heisenberg groups and noncommutative fluxes, Annals of Physics 322, 236 (2007a).
  • Freed et al. [2007b] D. S. Freed, G. W. Moore, and G. Segal, The uncertainty of fluxes, Communications in Mathematical Physics 271, 247 (2007b).
  • Haldane [2011] F. D. M. Haldane, Geometrical description of the fractional quantum hall effect, Phys. Rev. Lett. 107, 116801 (2011).
  • Liu et al. [2024] Z. Liu, B. Mera, M. Fujimoto, T. Ozawa, and J. Wang, Theory of Generalized Landau Levels and Implication for non-Abelian States, arXiv:2405.14479 10.48550/arXiv.2405.14479 (2024), arXiv:2405.14479 [cond-mat.mes-hall] .
  • Takeuchi [1978] M. Takeuchi, Homogeneous Kähler submanifolds in complex projective spaces, Japanese journal of mathematics. New series 4, 171 (1978).
  • Nakagawa and Takagi [1976] H. Nakagawa and R. Takagi, On locally symmetric Kaehler submanifolds in a complex projective space, Journal of the Mathematical Society of Japan 28, 638 (1976).
  • Ledwith et al. [2023] P. J. Ledwith, A. Vishwanath, and D. E. Parker, Vortexability: A unifying criterion for ideal fractional Chern insulators, Phys. Rev. B 108, 205144 (2023).

Appendix A Lowest Landau level Bloch wave function

Here, for completeness, we present a derivation of the lowest Landau level Bloch wave function. The quantity r=(x,y)r𝑥𝑦\textnormal{{r}}=(x,y) will denote coordinates in the plane. The Hamiltonian of an electron in a uniform magnetic field is given by

H=12[(x+2πiy)2+y2],𝐻12delimited-[]superscriptsubscript𝑥2𝜋𝑖𝑦2subscriptsuperscript2𝑦\displaystyle H=-\frac{1}{2}\left[(\partial_{x}+2\pi iy)^{2}+\partial^{2}_{y}\right], (57)

where we assume the standard Euclidean metric in the plane and we use (rescaled) coordinates and a (unitary) Landau gauge such that A=2πiydx𝐴2𝜋𝑖𝑦𝑑𝑥A=2\pi iydx. Note that we use a convention for which the gauge field is purely imaginary (instead of purely real).

The Hamiltonian H𝐻H is not invariant under the standard action of the translation group of the plane. However, we may introduce a projective action of the translation group such that H𝐻H is invariant under it. Taking an element t=(tx,ty)2tsubscript𝑡𝑥subscript𝑡𝑦superscript2\textnormal{{t}}=(t_{x},t_{y})\in\mathbb{R}^{2}, its action on a wave function is given by a unitary operator U(t)𝑈tU(\textnormal{{t}}), which we refer to as a magnetic translation, defined by

U(t)ψ(r)=e2πityxψ(r+t).𝑈t𝜓rsuperscript𝑒2𝜋𝑖subscript𝑡𝑦𝑥𝜓rt\displaystyle U(\textnormal{{t}})\psi(\textnormal{{r}})=e^{2\pi it_{y}x}\psi(\textnormal{{r}}+\textnormal{{t}}). (58)

The action is projective because

U(t1)U(t2)=U(t1+t2)e2πit1,xt2,y𝑈subscriptt1𝑈subscriptt2𝑈subscriptt1subscriptt2superscript𝑒2𝜋𝑖subscript𝑡1𝑥subscript𝑡2𝑦\displaystyle U(\textnormal{{t}}_{1})U(\textnormal{{t}}_{2})=U(\textnormal{{t}}_{1}+\textnormal{{t}}_{2})e^{2\pi it_{1,x}t_{2,y}} (59)

The set of operators {U(t)λ:t2,λU(1)}conditional-set𝑈t𝜆formulae-sequencetsuperscript2𝜆U1\{U(\textnormal{{t}})\lambda:\textnormal{{t}}\in\mathbb{R}^{2},\ \lambda\in\text{U}(1)\} forms a Heisenberg group, centrally extending the translation group 2superscript2\mathbb{R}^{2} of the plane by U(1)U1\mathrm{U}(1).

The covariant derivative =d+A𝑑𝐴\nabla=d+A, where d=dxx+dyy𝑑𝑑𝑥subscript𝑥𝑑𝑦subscript𝑦d=dx\partial_{x}+dy\partial_{y} is the exterior derivative, commutes with U(t)𝑈tU(\textnormal{{t}}):

U(t)(ψ)=(U(t)ψ),𝑈t𝜓𝑈t𝜓\displaystyle U(\textnormal{{t}})\left(\nabla\psi\right)=\nabla\left(U(\textnormal{{t}})\psi\right), (60)

and because of this it also commutes with the Hamiltonian. It follows that H𝐻H is magnetic translation invariant. If we now consider the lattice 2superscript2\mathbb{Z}^{2}, we note that for R1,R22subscriptR1subscriptR2superscript2\textnormal{{R}}_{1},\textnormal{{R}}_{2}\in\mathbb{Z}^{2}, we have

U(R1)U(R2)=U(R1+R2).𝑈subscriptR1𝑈subscriptR2𝑈subscriptR1subscriptR2\displaystyle U(\textnormal{{R}}_{1})U(\textnormal{{R}}_{2})=U(\textnormal{{R}}_{1}+\textnormal{{R}}_{2}). (61)

It follows that the operators {U(R):R2}conditional-set𝑈RRsuperscript2\{U(\textnormal{{R}}):\textnormal{{R}}\in\mathbb{Z}^{2}\} give a unitary representation of the lattice and H𝐻H is invariant under it. We can then apply Bloch’s theorem, namely, look for eigenvectors of H𝐻H that are also simultaneous eigenvectors of the lattice magnetic translations. This will be wave functions ψk(r)subscript𝜓kr\psi_{\textnormal{{k}}}(\textnormal{{r}}) satisfying

U(R)ψk(r)=e2πikRψk(r),𝑈Rsubscript𝜓krsuperscript𝑒2𝜋𝑖kRsubscript𝜓kr\displaystyle U(\textnormal{{R}})\psi_{\textnormal{{k}}}(\textnormal{{r}})=e^{2\pi i\textnormal{{k}}\cdot\textnormal{{R}}}\psi_{\textnormal{{k}}}(\textnormal{{r}}), (62)

which is equivalent to, setting R=(m,n)2R𝑚𝑛superscript2\textnormal{{R}}=(m,n)\in\mathbb{Z}^{2},

ψk(x+m,y+n)=e2πinxe2πikRψk(x,y).subscript𝜓k𝑥𝑚𝑦𝑛superscript𝑒2𝜋𝑖𝑛𝑥superscript𝑒2𝜋𝑖kRsubscript𝜓k𝑥𝑦\displaystyle\psi_{\textnormal{{k}}}(x+m,y+n)=e^{-2\pi inx}e^{2\pi i\textnormal{{k}}\cdot\textnormal{{R}}}\psi_{\textnormal{{k}}}(x,y). (63)

As usual, Bloch waves are not be normalizable in the whole of 2superscript2\mathbb{R}^{2}, but only in the unit cell of the lattice. The unit cell of the lattice, due to the above periodicity constraint should be understood, topologically, as a torus 2/2superscript2superscript2\mathbb{R}^{2}/\mathbb{Z}^{2}, and the wave functions at momentum k, as sections of an appropriate line bundle over this torus.

We then want to look for wave functions in the lowest Landau level satisfying the quasiperiodicity condition in equation Eq. (63). We now introduce the complex coordinate w=x+iy𝑤𝑥𝑖𝑦w=x+iy in real space. We note that in this paper, the symbol zτ=kx+τkysubscript𝑧𝜏subscript𝑘𝑥𝜏subscript𝑘𝑦z_{\tau}=k_{x}+\tau k_{y} refers to momentum space complex coordinate, while w𝑤w refers to the real space complex coordinate. The covariant derivatives along the complex coordinate direction and its complex conjugate are

wsubscript𝑤\displaystyle\nabla_{w} =w+π2(ww¯) and w¯=w¯+π2(ww¯),formulae-sequenceabsent𝑤𝜋2𝑤¯𝑤 and subscript¯𝑤¯𝑤𝜋2𝑤¯𝑤\displaystyle=\frac{\partial}{\partial w}+\frac{\pi}{2}(w-\bar{w})\quad\text{ and }\quad\nabla_{\bar{w}}=\frac{\partial}{\partial\bar{w}}+\frac{\pi}{2}(w-\bar{w}), (64)

and thus the Hamiltomnian looks

H𝐻\displaystyle H =12(xx+yy)=(ww¯+w¯w)=2ww¯+π.absent12subscript𝑥subscript𝑥subscript𝑦subscript𝑦subscript𝑤subscript¯𝑤subscript¯𝑤subscript𝑤2subscript𝑤subscript¯𝑤𝜋\displaystyle=-\frac{1}{2}\left(\nabla_{x}\nabla_{x}+\nabla_{y}\nabla_{y}\right)=-\left(\nabla_{w}\nabla_{\bar{w}}+\nabla_{\bar{w}}\nabla_{w}\right)=-2\nabla_{w}\nabla_{\bar{w}}+\pi. (65)

Noting that wsubscript𝑤-\nabla_{w} is the L2limit-fromsuperscript𝐿2L^{2}-adjoint of w¯subscript¯𝑤\nabla_{\bar{w}}, the energy due to the first term for any state |ψket𝜓|\psi\rangle is ψ|(2ww¯)|ψ=2w¯|ψ20quantum-operator-product𝜓2subscript𝑤subscript¯𝑤𝜓2superscriptnormsubscript¯𝑤ket𝜓20\langle\psi|(-2\nabla_{w}\nabla_{\bar{w}})|\psi\rangle=2||\nabla_{\bar{w}}|\psi\rangle||^{2}\geq 0 and so the ground state, namely the lowest Landau level, must satisfy w¯ψ(𝐫)=0subscript¯𝑤𝜓𝐫0\nabla_{\bar{w}}\psi(\mathbf{r})=0, and the corresponding energy is π𝜋\pi.

If we write ψ(𝐫)=eπy2ϕ(𝐫)𝜓𝐫superscript𝑒𝜋superscript𝑦2italic-ϕ𝐫\psi(\mathbf{r})=e^{-\pi y^{2}}\phi(\mathbf{r}), the condition w¯ψ(𝐫)=0subscript¯𝑤𝜓𝐫0\nabla_{\bar{w}}\psi(\mathbf{r})=0 can be re-written as

ϕ(𝐫)w¯=0,italic-ϕ𝐫¯𝑤0\displaystyle\frac{\partial\phi(\mathbf{r})}{\partial\bar{w}}=0, (66)

i.e. ϕ(𝐫)ϕ(w)italic-ϕ𝐫italic-ϕ𝑤\phi(\mathbf{r})\equiv\phi(w) is holomorphic. The lowest Landau level is precisely the space of wave functions which are holomorphic in the sense of Eq. (66) and square-integrable.

It turns out, as we shall prove below, that for fixed momentum k=(kx,ky)ksubscript𝑘𝑥subscript𝑘𝑦\textnormal{{k}}=(k_{x},k_{y}), there is only one linearly independent solution consistent with the quasiperiodicity condition in equation Eq. (63) given by

ψk(r)subscript𝜓kr\displaystyle\psi_{\textnormal{{k}}}(\textnormal{{r}}) =eπy2e2πikxkyϑ[kxky](w,i)=eπy2leπ(l+kx)2+2πi(l+kx)w2πilkyabsentsuperscript𝑒𝜋superscript𝑦2superscript𝑒2𝜋𝑖subscript𝑘𝑥subscript𝑘𝑦italic-ϑdelimited-[]subscript𝑘𝑥subscript𝑘𝑦𝑤𝑖superscript𝑒𝜋superscript𝑦2subscript𝑙superscript𝑒𝜋superscript𝑙subscript𝑘𝑥22𝜋𝑖𝑙subscript𝑘𝑥𝑤2𝜋𝑖𝑙subscript𝑘𝑦\displaystyle=e^{-\pi y^{2}}e^{2\pi ik_{x}k_{y}}\vartheta\left[\begin{array}[]{c}k_{x}\\ -k_{y}\end{array}\right](w,i)=e^{-\pi y^{2}}\sum_{l\in\mathbb{Z}}e^{-\pi(l+k_{x})^{2}+2\pi i(l+k_{x})w-2\pi ilk_{y}} (69)

One can explicitly check that the condition Eq. (63) is satisfied by using the following identity for the theta function which holds for general wτ=x+τysubscript𝑤𝜏𝑥𝜏𝑦w_{\tau}=x+\tau y and γ=m+τn𝛾𝑚𝜏𝑛\gamma=m+\tau n, where τ𝜏\tau\in\mathbb{H} and 𝐑=(m,n)2𝐑𝑚𝑛superscript2\mathbf{R}=(m,n)\in\mathbb{Z}^{2}:

ϑ[ab](wτ+γ,τ)=eiπτn22πinwτe2πi(ambn)ϑ[ab](wτ,τ).italic-ϑdelimited-[]𝑎𝑏subscript𝑤𝜏𝛾𝜏superscript𝑒𝑖𝜋𝜏superscript𝑛22𝜋𝑖𝑛subscript𝑤𝜏superscript𝑒2𝜋𝑖𝑎𝑚𝑏𝑛italic-ϑdelimited-[]𝑎𝑏subscript𝑤𝜏𝜏\displaystyle\vartheta\left[\begin{array}[]{c}a\\ b\end{array}\right](w_{\tau}\!+\!\gamma,\tau)\!=\!e^{-i\pi\tau n^{2}-2\pi inw_{\tau}}e^{2\pi i(am-bn)}\vartheta\left[\begin{array}[]{c}a\\ b\end{array}\right](w_{\tau},\tau). (74)

The uniqueness of this solution (69) at fixed momentum k can be seen in the following way. As we have seen above, if we write ψk(r)=eπy2ϕ𝐤(r)subscript𝜓krsuperscript𝑒𝜋superscript𝑦2subscriptitalic-ϕ𝐤r\psi_{\textnormal{{k}}}(\textnormal{{r}})=e^{-\pi y^{2}}\phi_{\mathbf{k}}(\textnormal{{r}}), ϕ𝐤(r)ϕ𝐤(w)subscriptitalic-ϕ𝐤rsubscriptitalic-ϕ𝐤𝑤\phi_{\mathbf{k}}(\textnormal{{r}})\equiv\phi_{\mathbf{k}}(w) is holomorphic in the complex variable w𝑤w, and due to the condition (63), it has to satisfy

ϕ𝐤(w+γ)=eγ(w)e2πi(kxm+kyn)ϕ𝐤(w),subscriptitalic-ϕ𝐤𝑤𝛾subscript𝑒𝛾𝑤superscript𝑒2𝜋𝑖subscript𝑘𝑥𝑚subscript𝑘𝑦𝑛subscriptitalic-ϕ𝐤𝑤\displaystyle\phi_{\mathbf{k}}(w+\gamma)=e_{\gamma}(w)e^{2\pi i(k_{x}m+k_{y}n)}\phi_{\mathbf{k}}(w), (75)

with the holomorphic multipliers

eγ(w):=eπn22πinw,γ=m+ni+i,formulae-sequenceassignsubscript𝑒𝛾𝑤superscript𝑒𝜋superscript𝑛22𝜋𝑖𝑛𝑤𝛾𝑚𝑛𝑖𝑖\displaystyle e_{\gamma}(w):=e^{\pi n^{2}-2\pi inw},\ \gamma=m+ni\in\mathbb{Z}+i\mathbb{Z}, (76)

Setting γ=1𝛾1\gamma=1, we see that ϕ𝐤(w+1)=ϕ𝐤(w)e2πikxsubscriptitalic-ϕ𝐤𝑤1subscriptitalic-ϕ𝐤𝑤superscript𝑒2𝜋𝑖subscript𝑘𝑥\phi_{\mathbf{k}}(w+1)=\phi_{\mathbf{k}}(w)e^{2\pi ik_{x}}. Hence we can expand it in Fourier series ϕ𝐤(w)=lcle2πi(l+kx)wsubscriptitalic-ϕ𝐤𝑤subscript𝑙subscript𝑐𝑙superscript𝑒2𝜋𝑖𝑙subscript𝑘𝑥𝑤\phi_{\mathbf{k}}(w)=\sum_{l\in\mathbb{Z}}c_{l}e^{2\pi i(l+k_{x})w} and, working out the relations between the coefficients from Eq. (75), one obtains the recursive relation

cln=cleπn2+2πn(l+kx)+2πikynsubscript𝑐𝑙𝑛subscript𝑐𝑙superscript𝑒𝜋superscript𝑛22𝜋𝑛𝑙subscript𝑘𝑥2𝜋𝑖subscript𝑘𝑦𝑛\displaystyle c_{l-n}=c_{l}e^{-\pi n^{2}+2\pi n(l+k_{x})+2\pi ik_{y}n} (77)

whose general solution is cl=ceπ(l+kx)22πilkysubscript𝑐𝑙𝑐superscript𝑒𝜋superscript𝑙subscript𝑘𝑥22𝜋𝑖𝑙subscript𝑘𝑦c_{l}=ce^{-\pi(l+k_{x})^{2}-2\pi ilk_{y}}, where the prefactor c𝑐c may depend on 𝐤𝐤\mathbf{k}. One then obtains the solution Eq. (69). We note that the holomorphic multipliers eγ(w)subscript𝑒𝛾𝑤e_{\gamma}(w) satisfy the co-cycle condition eγ1+γ2(w)=eγ2(w+γ1)eγ1(w)subscript𝑒subscript𝛾1subscript𝛾2𝑤subscript𝑒subscript𝛾2𝑤subscript𝛾1subscript𝑒subscript𝛾1𝑤e_{\gamma_{1}+\gamma_{2}}(w)=e_{\gamma_{2}}(w+\gamma_{1})e_{\gamma_{1}}(w). One can see the uniqueness of the solution (69) also from the fact that such holomorphic multipliers define a holomorphic line bundle with degree 111 (1st Chern number) over the unit cell, which has a unique holomorphic section by the Riemann-Roch theorem.

Finally we look for the expression of the cell (quasi)-periodic part of the Bloch wave, denoted by u𝐤(𝐫)subscript𝑢𝐤𝐫u_{\mathbf{k}}(\mathbf{r}), which is defined by

ψk(r)=e2πikruk(r).subscript𝜓krsuperscript𝑒2𝜋𝑖krsubscript𝑢kr\displaystyle\psi_{\textnormal{{k}}}(\textnormal{{r}})=e^{2\pi i\textnormal{{k}}\cdot\textnormal{{r}}}u_{\textnormal{{k}}}(\textnormal{{r}}). (78)

The plane wave part of the above formula makes it so that the quasi-periodicity condition from Eq.(63) that uk(r)subscript𝑢kru_{\textnormal{{k}}}(\textnormal{{r}}) must satisfy has the coefficient independent of 𝐤𝐤\mathbf{k}:

uk(x+m,y+n)=e2πinxuk(x,y),m,n,formulae-sequencesubscript𝑢k𝑥𝑚𝑦𝑛superscript𝑒2𝜋𝑖𝑛𝑥subscript𝑢k𝑥𝑦𝑚𝑛\displaystyle u_{\textnormal{{k}}}(x+m,y+n)=e^{-2\pi inx}u_{\textnormal{{k}}}(x,y),\ m,n\in\mathbb{Z}, (79)

so they can all be interpreted as (square integrable) sections of the same line bundle over the unit cell torus, hence they belong to the same Hilbert space—see also the main text on the definition of a Bloch wave function, which uses |ukketsubscript𝑢k|u_{\textnormal{{k}}}\rangle\in\mathcal{H} for fixed \mathcal{H} independently of k. From the explicit expression of ψ𝐤(𝐫)subscript𝜓𝐤𝐫\psi_{\mathbf{k}}(\mathbf{r}) in Eq. (69), we see that

uk(x,y)=e2πi𝐤𝐫eπy2e2πikxkyϑ[kxky](w,i).subscript𝑢k𝑥𝑦superscript𝑒2𝜋𝑖𝐤𝐫superscript𝑒𝜋superscript𝑦2superscript𝑒2𝜋𝑖subscript𝑘𝑥subscript𝑘𝑦italic-ϑdelimited-[]subscript𝑘𝑥subscript𝑘𝑦𝑤𝑖\displaystyle u_{\textnormal{{k}}}(x,y)=e^{-2\pi i\mathbf{k}\cdot\mathbf{r}}e^{-\pi y^{2}}e^{2\pi ik_{x}k_{y}}\vartheta\left[\begin{array}[]{c}k_{x}\\ -k_{y}\end{array}\right](w,i). (82)

This expression of the Bloch wave function of the lowest Landau level should coincide with the general expression obtained in Eq. (56) in Sec. III with the replacement 𝒞=1𝒞1\mathcal{C}=1 and τ=i𝜏𝑖\tau=i. So far, they do not look the same; the characteristics of the theta function is the momentum for the former and real-space coordinate for the latter. They are indeed the same and we are going to show it by interchanging the characteristics and the argument of the theta function. We use the notation z=kx+iky𝑧subscript𝑘𝑥𝑖subscript𝑘𝑦z=k_{x}+ik_{y} from the previous section to describe the complex coordinate in momentum space.

We first note that the following identity for theta functions is known:

ϑ[ab](wτ,τ)=eiπτa2e2πia(wτ+b)ϑ[00](wτ+b+τa,τ).italic-ϑdelimited-[]𝑎𝑏subscript𝑤𝜏𝜏superscript𝑒𝑖𝜋𝜏superscript𝑎2superscript𝑒2𝜋𝑖𝑎subscript𝑤𝜏𝑏italic-ϑdelimited-[]00subscript𝑤𝜏𝑏𝜏𝑎𝜏\displaystyle\vartheta\left[\begin{array}[]{c}a\\ b\end{array}\right](w_{\tau},\tau)=e^{i\pi\tau a^{2}}e^{2\pi ia(w_{\tau}+b)}\vartheta\left[\begin{array}[]{c}0\\ 0\end{array}\right](w_{\tau}+b+\tau a,\tau). (87)

This identity, together with Jacobi identity of the basic theta function under modular transformations, ϑ[00](wτ/τ,τ)=(iτ)12eπτiwτ2ϑ[00](wτ,τ)italic-ϑdelimited-[]00subscript𝑤𝜏𝜏𝜏superscript𝑖𝜏12superscript𝑒𝜋𝜏𝑖superscriptsubscript𝑤𝜏2italic-ϑdelimited-[]00subscript𝑤𝜏𝜏\vartheta\left[\begin{array}[]{c}0\\ 0\end{array}\right](w_{\tau}/\tau,\tau)=(-i\tau)^{\frac{1}{2}}e^{\frac{\pi}{\tau}iw_{\tau}^{2}}\vartheta\left[\begin{array}[]{c}0\\ 0\end{array}\right](w_{\tau},\tau), we can interchange the characteristics and the argument and rewrite the expression in the following way:

uk(x,y)subscript𝑢k𝑥𝑦\displaystyle u_{\textnormal{{k}}}(x,y) =e2πi𝐤𝐫eπy2e2πikxkyeπkx2+2πikx(wky)ϑ[00](w+iz,i)absentsuperscript𝑒2𝜋𝑖𝐤𝐫superscript𝑒𝜋superscript𝑦2superscript𝑒2𝜋𝑖subscript𝑘𝑥subscript𝑘𝑦superscript𝑒𝜋superscriptsubscript𝑘𝑥22𝜋𝑖subscript𝑘𝑥𝑤subscript𝑘𝑦italic-ϑdelimited-[]00𝑤𝑖𝑧𝑖\displaystyle=e^{-2\pi i\mathbf{k}\cdot\mathbf{r}}e^{-\pi y^{2}}e^{2\pi ik_{x}k_{y}}e^{-\pi k_{x}^{2}+2\pi ik_{x}(w-k_{y})}\vartheta\left[\begin{array}[]{c}0\\ 0\end{array}\right](w+iz,i) (90)
=e2πi𝐤𝐫eπy2e2πikxkyeπkx2+2πikx(wky)eπ(w+iz)2ϑ[00](ziw,i)absentsuperscript𝑒2𝜋𝑖𝐤𝐫superscript𝑒𝜋superscript𝑦2superscript𝑒2𝜋𝑖subscript𝑘𝑥subscript𝑘𝑦superscript𝑒𝜋superscriptsubscript𝑘𝑥22𝜋𝑖subscript𝑘𝑥𝑤subscript𝑘𝑦superscript𝑒𝜋superscript𝑤𝑖𝑧2italic-ϑdelimited-[]00𝑧𝑖𝑤𝑖\displaystyle=e^{-2\pi i\mathbf{k}\cdot\mathbf{r}}e^{-\pi y^{2}}e^{2\pi ik_{x}k_{y}}e^{-\pi k_{x}^{2}+2\pi ik_{x}(w-k_{y})}e^{-\pi(w+iz)^{2}}\vartheta\left[\begin{array}[]{c}0\\ 0\end{array}\right](z-iw,i) (93)
=e2πi𝐤𝐫eπy2e2πikxkyeπkx2+2πikx(wky)eπ(w+iz)2eπx2e2πix(z+y)ϑ[xy](z,i)absentsuperscript𝑒2𝜋𝑖𝐤𝐫superscript𝑒𝜋superscript𝑦2superscript𝑒2𝜋𝑖subscript𝑘𝑥subscript𝑘𝑦superscript𝑒𝜋superscriptsubscript𝑘𝑥22𝜋𝑖subscript𝑘𝑥𝑤subscript𝑘𝑦superscript𝑒𝜋superscript𝑤𝑖𝑧2superscript𝑒𝜋superscript𝑥2superscript𝑒2𝜋𝑖𝑥𝑧𝑦italic-ϑdelimited-[]𝑥𝑦𝑧𝑖\displaystyle=e^{-2\pi i\mathbf{k}\cdot\mathbf{r}}e^{-\pi y^{2}}e^{2\pi ik_{x}k_{y}}e^{-\pi k_{x}^{2}+2\pi ik_{x}(w-k_{y})}e^{-\pi(w+iz)^{2}}e^{\pi x^{2}}e^{2\pi ix(z+y)}\vartheta\left[\begin{array}[]{c}-x\\ y\end{array}\right](z,i) (96)
=e2πikxkyπky2ϑ[xy](z,i).absentsuperscript𝑒2𝜋𝑖subscript𝑘𝑥subscript𝑘𝑦𝜋superscriptsubscript𝑘𝑦2italic-ϑdelimited-[]𝑥𝑦𝑧𝑖\displaystyle=e^{2\pi ik_{x}k_{y}-\pi k_{y}^{2}}\vartheta\left[\begin{array}[]{c}-x\\ y\end{array}\right](z,i). (99)

This is nothing but the expression obtained in Eq. (56) in Sec. III for 𝒞=1𝒞1\mathcal{C}=1 and τ=i𝜏𝑖\tau=i. This completes our proof that the lowest Landau level wave function is precisely the unique geometrically flat Kähler band with 𝒞=1𝒞1\mathcal{C}=1 and τ=i𝜏𝑖\tau=i.