This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Uniqueness of conformal-harmonic maps on locally conformally flat 4-manifolds

Longzhi Lin and Jingyong Zhu Longzhi Lin: Mathematics Department, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA [email protected] Jingyong Zhu: Department of Mathematics, Sichuan University, No.24 South Section 1, Yihuan Road, Chengdu, 610065, China [email protected]
Abstract.

Motivated by the theory of harmonic maps on Riemannian surfaces, conformal-harmonic maps between two Riemannian manifolds β„³\mathcal{M} and 𝒩\mathcal{N} were introduced in search of a natural notion of β€œharmonicity” for maps defined on a general even dimensional Riemannian manifold β„³\mathcal{M}. They are critical points of a conformally invariant energy functional and reassemble the GJMS operators when the target is the set of real or complex numbers. On a four dimensional manifold, conformal-harmonic maps are the conformally invariant counterparts of the intrinsic bi-harmonic maps and a mapping version of the conformally invariant Paneitz operator for functions.

In this paper, we consider conformal-harmonic maps from locally conformally flat 4-manifolds into spheres. We prove a quantitative uniqueness result for such conformal-harmonic maps as an immediate consequence of convexity for the conformally-invariant energy functional. To this end, we are led to prove a version of second order Hardy inequality on manifolds, which may be of independent interest.

Key words and phrases:
conformal-harmonic map, uniqueness, Hardy inequality
2020 Mathematics Subject Classification:
58E15, 35J58, 58E20

1. Introduction

The most prominent and classic problem in calculus of variations for mappings between two Riemannian manifolds (β„³,g)(\mathcal{M},g) and (𝒩,h)β†ͺ𝐑K(\mathcal{N},h)\hookrightarrow\mathbf{R}^{K} is the study of harmonic maps, which are critical points u:ℳ→𝒩u:\mathcal{M}\to\mathcal{N} of the Dirichlet energy

E1​(u,β„³):=βˆ«β„³|d​u|2​ωg,E_{1}(u,\mathcal{M}):=\int_{\mathcal{M}}|du|^{2}\omega_{g}\,,

where Ο‰g\omega_{g} is the volume measure on β„³\mathcal{M} defined by the metric gg and |d​u|2|du|^{2} is the Hilbert-Schmidt norm square of d​udu. The conformal invariance of E1​(u,β„³)E_{1}(u,\mathcal{M}) on a Riemannian surface β„³\mathcal{M} (with respect to the metric gg of β„³\mathcal{M}) and its connection to the theory of minimal surfaces make harmonic maps on two dimensional domains the most widely studied topic in the field of geometric analysis ever since the pioneering work of J. Eells and J. Sampson [13], see also [19]. Motivated by the theory of harmonic maps on Riemannian surfaces, the Paneitz operator [39] and GJMS operators [17], in a recent work [2] V. BΓ©rard has shown the existence of an intrinsically defined energy functional for smooth maps between two Riemannian manifolds (β„³2​m,g)(\mathcal{M}^{2m},g) (of even dimension 2​m2m where mβ‰₯1m\geq 1) and 𝒩\mathcal{N}, denoted by Em​(u,β„³)E_{m}(u,\mathcal{M}), which is conformally invariant with respect to gg and coincides with the above Dirichlet energy E1​(u,β„³)E_{1}(u,\mathcal{M}) when m=1m=1. Following the terminology of A. Gastel and A. Nerf in [15] who considered an extrinsic analogue (i.e., a variant dependent of the embedding 𝒩β†ͺ𝐑K\mathcal{N}\hookrightarrow\mathbf{R}^{K}) of Em​(u,β„³)E_{m}(u,\mathcal{M}), we will call Em​(u,β„³)E_{m}(u,\mathcal{M}) an intrinsic Paneitz energy when m=2m=2 and intrinsic Paneitz poly-energy when mβ‰₯3m\geq 3. The critical points of Em​(u,β„³)E_{m}(u,\mathcal{M}) are called conformal-harmonic maps or C-harmonic maps, which generalize the harmonic maps on surfaces (i.e., m=1m=1) and satisfy a system of nonlinear PDEs with leading term Ξ”m\Delta^{m}. When 𝒩=𝐑\mathcal{N}=\mathbf{R} or 𝐂\mathbf{C}, the induced operators for the critical points reassemble the GJMS operators [17], see also Chang-Yang [6]. In particular, when m=2m=2 the intrinsic Paneitz energy reads as

(1.1) ℰ​(u,β„³):=E2​(u,β„³4)=βˆ«β„³|τ​(u)|2+23​Scℳ​|d​u|2βˆ’2​R​i​cℳ​(d​u,d​u),\mathcal{E}(u,\mathcal{M}):=E_{2}(u,\mathcal{M}^{4})=\int_{\mathcal{M}}|\tau(u)|^{2}+\frac{2}{3}{\rm Sc}^{\mathcal{M}}|du|^{2}-2{\rm Ric}^{\mathcal{M}}(du,du)\,,

where τ​(u)∈uβˆ—β€‹T​𝒩\tau(u)\in u^{*}T\mathcal{N} is the tension field, we denote the scalar curvature and Ricci curvature of β„³\mathcal{M} by Scβ„³{\rm Sc}^{\mathcal{M}} and Ricβ„³{\rm Ric}^{\mathcal{M}}, respectively. We remark that ℰ​(u,β„³)\mathcal{E}(u,\mathcal{M}) is conformally invariant on a four dimensional manifold β„³\mathcal{M} (see Appendix A) and critical points of ℰ​(u,β„³)\mathcal{E}(u,\mathcal{M}) are the conformal-invariant counterparts of the intrinsic bi-harmonic maps, i.e., the critical points of the intrinsic bi-energy

ℱ​(u,β„³):=βˆ«β„³|τ​(u)|2.\mathcal{F}(u,\mathcal{M}):=\int_{\mathcal{M}}|\tau(u)|^{2}\,.

Conformal-harmonic maps are also generalizations of the Paneitz operator in the context of maps, and intrinsically they satisfy the following system of 44-th order PDEs (c.f. [22, 27, 37]):

Ξ”u​τ​(u)=R𝒩​(βˆ‡u,τ​(u))β€‹βˆ‡u+23​(Scℳ​τ​(u)+βˆ‡Scβ„³β€‹βˆ‡u)βˆ’2​d​i​v​(Ricℳ​(βˆ‡u,β‹…)),\Delta^{u}\tau(u)=R^{\mathcal{N}}(\nabla u,\tau(u))\nabla u+\frac{2}{3}\left({\rm Sc}^{\mathcal{M}}\tau(u)+\nabla{\rm Sc}^{\mathcal{M}}\nabla u\right)-2{\rm div}({\rm Ric}^{\mathcal{M}}(\nabla u,\cdot)),

where Ξ”u\Delta^{u} is the induced Laplace operator on the pullback vector bundle uβˆ—β€‹T​𝒩u^{\ast}T\mathcal{N} over β„³\mathcal{M} or equivalently and extrinsically (c.f. [32, equation (1.2)], [31, equation (9)])

Ξ”2​u=\displaystyle\Delta^{2}u= βˆ’Ξ”β€‹(βˆ‡PβŠ₯β€‹βˆ‡u)βˆ’div​(βˆ‡PβŠ₯​Δ​u)+2β€‹βˆ‡PβŠ₯β€‹βˆ‡(βˆ‡PβŠ₯β€‹βˆ‡u)\displaystyle-\Delta(\nabla P^{\bot}\nabla u)-{\rm div}(\nabla P^{\bot}\Delta u)+2\nabla P^{\bot}\nabla(\nabla P^{\bot}\nabla u)
+2β€‹βˆ‡PβŠ₯β€‹βˆ‡PβŠ₯​Δ​uβˆ’(βˆ‡P​PβŠ₯βˆ’PβŠ₯β€‹βˆ‡P)β€‹βˆ‡Ξ”β€‹u\displaystyle+2\nabla P^{\bot}\nabla P^{\bot}\Delta u-(\nabla PP^{\bot}-P^{\bot}\nabla P)\nabla\Delta u
(1.2) +Pβ€‹βŸ¨βˆ‡PβŠ₯β€‹βˆ‡u,Du​(Du​PβŠ₯)β€‹βˆ‡uβ€‹βˆ‡uβŸ©βˆ’2​d​i​vβ€‹βŸ¨βˆ‡PβŠ₯β€‹βˆ‡u,βˆ‡PβŠ₯​P⟩\displaystyle+P\langle\nabla P^{\bot}\nabla u,{D}_{u}({D}_{u}P^{\bot})\nabla u\nabla u\rangle-2{\rm div}\langle\nabla P^{\bot}\nabla u,\nabla P^{\bot}P\rangle
+2β€‹βŸ¨βˆ‡PβŠ₯β€‹βˆ‡u,βˆ‡PβŠ₯β€‹βˆ‡P⟩+23​Scℳ​(Δ​u+βˆ‡PβŸ‚β€‹βˆ‡u)\displaystyle+2\langle\nabla P^{\bot}\nabla u,\nabla P^{\bot}\nabla P\rangle+\frac{2}{3}{\rm Sc}^{\mathcal{M}}(\Delta u+\nabla P^{\perp}\nabla u)
+23β€‹βˆ‡Scβ„³β€‹βˆ‡uβˆ’2β€‹βˆ‡Ricℳ​(βˆ‡u,β‹…)βˆ’2​R​i​cℳ​(P​(βˆ‡2u),β‹…),\displaystyle+\frac{2}{3}\nabla{\rm Sc}^{\mathcal{M}}\nabla u-2\nabla\text{Ric}^{\mathcal{M}}(\nabla u,\cdot)-2{\rm Ric}^{\mathcal{M}}(P(\nabla^{2}u),\cdot)\,,

see Appendix B for a detailed derivation of this equation. Here R𝒩R^{\mathcal{N}} is the curvature tensor of 𝒩\mathcal{N}, βˆ‡\nabla and Ξ”\Delta are the Levi-Civita connection and Laplace–Beltrami operator on β„³\mathcal{M} respectively, τ​(u)=(Δ​u)T\tau(u)=(\Delta u)^{T} is the tension field, P​(u)P(u) is the orthogonal projection to the tangent plane Tu​𝒩T_{u}\mathcal{N}, DD is the derivative with respect to the standard coordinates of 𝐑K\mathbf{R}^{K} and A​(β‹…,β‹…)A(\cdot,\cdot) denotes the second fundamental form of 𝒩β†ͺ𝐑K\mathcal{N}\hookrightarrow\mathbf{R}^{K}. Note that this conformal-harmonic map equation (1) differs from the intrinsic biharmonic map equation by lower order terms which make (1) conformally invariant.

Higher order geometric variational problems, including the study of (both extrinsic and intrinsic) biharmonic maps and polyharmonic maps, have attracted much attention in the last two decades, see e.g. [11, 5, 43, 45, 29, 40, 42, 16, 30, 15, 35, 1, 18, 10] for the extrinsic case and [45, 25, 38, 16, 32] for the intrinsic case. The corresponding heat flows have been studied extensively as well, as a tool to prove the existence of biharmonic maps and polyharmonic maps in a given homotopy class, see e.g. [26, 27, 14, 46, 20, 21, 32]. It should be noted that the extrinsic and intrinsic cases come in two different flavors: the intrinsic variants are considered more geometrically natural because they do not depend on the embedding of the target manifold 𝒩β†ͺ𝐑K\mathcal{N}\hookrightarrow\mathbf{R}^{K}, although they are less natural from the variational point of view due to the lack of coercivity for the intrinsic energies (and thus they are considerably more difficult analytically and less studied); on the other hand, the extrinsic variants are more natural from the analytical point of view but in turn they do depend on the embedding of 𝒩β†ͺ𝐑K\mathcal{N}\hookrightarrow\mathbf{R}^{K}. Among them, the conformally invariant problems (both extrinsic and intrinsic) are considered the most geometric, see e.g., [11, 15]. Most of the results in the current literature concern the regularity and existence of (the weak solutions of) the critical points of the higher order geometric variational problems because they are associated to systems of higher order PDEs with critical growth nonlinearities. However, the uniqueness problem of these critical points have been left largely open. In [32] P. Laurain and the first author proved a version of bienergy convexity (and thus the uniqueness) for weakly intrinsic biharmonic maps in W2,2​(B1,𝐒n)W^{2,2}(B_{1},\mathbf{S}^{n}) with small bienergy and prescribed boundary data, where B1βŠ‚π‘4B_{1}\subset\mathbf{R}^{4} is the unit 4-ball and 𝐒nβŠ‚π‘n+1\mathbf{S}^{n}\subset\mathbf{R}^{n+1} is the standard unit sphere. We shall remark that such energy convexity plays an essential role in the discrete replacement min-max construction of geometric objects of interest (such as minimal spheres and free boundary minimal disks in manifolds), see e.g. Colding-Minicozzi [8], Lamm-Lin [28], Lin-Sun-Zhou [34] and Laurain-Petrides [33].

We shall remark that the intrinsic Paneitz energy functional ℰ​(u,β„³)\mathcal{E}(u,\mathcal{M}) defined in (1.1) on 𝐒4\mathbf{S}^{4} was already used by T. Lamm in [27] as a tool to prove that every weakly intrinsic biharmonic maps from 𝐑4\mathbf{R}^{4} into a non-positively curved target manifold with finite bienergy has to be constant. More recently, O. Biquard and F. Madani in [3] used the corresponding heat flow for ℰ​(u,β„³)\mathcal{E}(u,\mathcal{M}) to prove an existence result for conformal-harmonic maps from a certain class of 4-manifolds into a non-positively curved manifold 𝒩\mathcal{N}. Here the conformal-harmonic map heat flow (or, the negative L2L^{2}-gradient flow of ℰ​(β‹…,β„³)\mathcal{E}(\cdot,\mathcal{M})) is defined as follow (when βˆ‚β„³=βˆ…\partial\mathcal{M}=\emptyset):

(1.3) {βˆ‚uβˆ‚t+Ξ”u​τ​(u)=R𝒩​(βˆ‡u,τ​(u))β€‹βˆ‡u+23​(Scℳ​τ​(u)+βˆ‡Scβ„³β€‹βˆ‡u)βˆ’2​d​i​v​(Ricℳ​(βˆ‡u,β‹…))Β on ​ℳ×[0,T)u=u0Β on ​ℳ×{0},\left\{\begin{aligned} \frac{\partial u}{\partial t}+\Delta^{u}\tau(u)=&R^{\mathcal{N}}(\nabla u,\tau(u))\nabla u+\frac{2}{3}\left({\rm Sc}^{\mathcal{M}}\tau(u)+\nabla{\rm Sc}^{\mathcal{M}}\nabla u\right)\\ &-2{\rm div}({\rm Ric}^{\mathcal{M}}(\nabla u,\cdot))\quad\text{ on }\mathcal{M}\times[0,T)\\ u=&\,u_{0}\quad\text{ on }\mathcal{M}\times\{0\}\,,\end{aligned}\right.

and (when βˆ‚β„³β‰ βˆ…\partial\mathcal{M}\neq\emptyset)

(1.4) {βˆ‚uβˆ‚t+Ξ”u​τ​(u)=R𝒩​(βˆ‡u,τ​(u))β€‹βˆ‡u+23​(Scℳ​τ​(u)+βˆ‡Scβ„³β€‹βˆ‡u)βˆ’2​d​i​v​(Ricℳ​(βˆ‡u,β‹…))Β on ​ℳ×[0,T)u=u0Β on ​ℳ×{0}u=u0,βˆ‚Ξ½u=βˆ‚Ξ½u0Β onΒ β€‹βˆ‚β„³Γ—[0,T),\left\{\begin{aligned} \frac{\partial u}{\partial t}+\Delta^{u}\tau(u)=&R^{\mathcal{N}}(\nabla u,\tau(u))\nabla u+\frac{2}{3}\left({\rm Sc}^{\mathcal{M}}\tau(u)+\nabla{\rm Sc}^{\mathcal{M}}\nabla u\right)\\ &-2{\rm div}({\rm Ric}^{\mathcal{M}}(\nabla u,\cdot))\quad\text{ on }\mathcal{M}\times[0,T)\\ u=&\,u_{0}\quad\text{ on }\mathcal{M}\times\{0\}\\ u=&\,u_{0}\,,\quad\partial_{\nu}u=\partial_{\nu}u_{0}\quad\text{ on }\partial\mathcal{M}\times[0,T)\,,\end{aligned}\right.

where u0∈C∞∩W2,2​(β„³Β―,𝒩)u_{0}\in C^{\infty}\cap W^{2,2}(\overline{\mathcal{M}},\mathcal{N}). More precisely, in [3] O. Biquard and F. Madani proved

Theorem 1.1.

Let (β„³,g)(\mathcal{M},g) and (𝒩,h)(\mathcal{N},h) be compact Riemannian manifolds of four dimensions and nn dimensions respectively. Assume that 𝒩\mathcal{N} has non-positive curvature, the Yamabe invariant

μ​(β„³,[g]):=infgβ€²βˆˆ[g]βˆ«β„³Scg′​𝑑vgβ€²(βˆ«β„³π‘‘vgβ€²)1/2>0\mu(\mathcal{M},[g]):=\inf_{g^{\prime}\in[g]}\frac{\int_{\mathcal{M}}\text{Sc}_{g^{\prime}}dv_{g^{\prime}}}{\left(\int_{\mathcal{M}}dv_{g^{\prime}}\right)^{1/2}}>0

and the conformally invariant total QQ-curvature

κ​(β„³,[g]):=112β€‹βˆ«β„³(Scg2βˆ’3​|Ricg|2)​𝑑vg\kappa(\mathcal{M},[g]):=\frac{1}{12}\int_{\mathcal{M}}\left(\text{Sc}^{2}_{g}-3|\text{Ric}_{g}|^{2}\right)dv_{g}

satisfies ΞΊ+16​μ2>0\kappa+\frac{1}{6}\mu^{2}>0. Then the conformal-harmonic map heat flow 1.3 exists and is smooth for all time and converges subsequently to a smooth conformal-harmonic map uβˆžβ€‹(β„³,𝒩)u_{\infty}(\mathcal{M},\mathcal{N}) as tβ†’βˆžt\to\infty. Consequently, there exists a conformal-harmonic map in each homotopy class in Cβˆžβ€‹(β„³,𝒩)C^{\infty}(\mathcal{M},\mathcal{N}).

In this paper, we consider the intrinsic Paneitz energy ℰ​(u,β„³)\mathcal{E}(u,\mathcal{M}) for W2,2W^{2,2} maps from locally conformally flat 4-manifolds with smooth boundaries into spheres and study the (quantitative) uniqueness of the critical points. The first main result of this paper is a version of energy convexity for ℰ​(u,β„³)\mathcal{E}(u,\mathcal{M}), more precisely, we prove

Theorem 1.2.

Let (β„³,g)(\mathcal{M},g) be a four dimensional compact locally conformally flat Riemannian manifold with a smooth boundary βˆ‚β„³\partial\mathcal{M}. There exist Ο΅0>0,C>0\epsilon_{0}>0,C>0 depending only on β„³\mathcal{M} such that for any u,v∈W2,2​(β„³,𝐒n)u,v\in W^{2,2}(\mathcal{M},\mathbf{S}^{n}) with u=vu=v, βˆ‚Ξ½u=βˆ‚Ξ½v\partial_{\nu}u=\partial_{\nu}v on βˆ‚β„³\partial\mathcal{M},

(1.5) βˆ«β„³|Δ​u|2​𝑑vg≀ϡ0,βˆ«β„³|βˆ‡v|4​𝑑vg≀ϡ0\int_{\mathcal{M}}|\Delta u|^{2}dv_{g}\leq\epsilon_{0},\quad\int_{\mathcal{M}}|\nabla v|^{4}dv_{g}\leq\epsilon_{0}

and uu is a weakly conformal-harmonic map, we have

(1.6) 1Cβ€‹βˆ«β„³|Δ​vβˆ’Ξ”β€‹u|2​𝑑vg≀ℰ​(v,β„³)βˆ’β„°β€‹(u,β„³).\frac{1}{C}\int_{\mathcal{M}}|\Delta v-\Delta u|^{2}dv_{g}\leq\mathcal{E}(v,\mathcal{M})-\mathcal{E}(u,\mathcal{M})\,.
Remark 1.3.

Our proof relies locally on the result of Laurain and the first author [32], which was established on the unit ball in Euclidean space. Our results could also extend to general source and target manifolds if the Laurain-Lin result is generalized to such settings.

In order to prove this theorem, we are led to show a second order Hardy inequality on smooth manifolds with smooth boundaries. Inspired by the recent work of D’Ambrosio-Dipierro [9] (which followed the techniques introduced by Mitidieri in [36]), we are able to prove the following version of second order Hardy inequality on certain smooth manifolds, for details see Section 3.

Theorem 1.4.

Let (β„³,g)(\mathcal{M},g) be an nn dimensional compact Riemannian manifold with a smooth boundary βˆ‚β„³\partial\mathcal{M} and ρ∈Wl​o​c1,2​(β„³,𝐑)\rho\in W^{1,2}_{loc}(\mathcal{M},\mathbf{R}) be a nonnegative function such that Δ​ρ≀0\Delta\rho\leq 0 on β„³\mathcal{M} in the weak sense and |βˆ‡Ο|β‰₯Ξ΄|\nabla\rho|\geq\delta a.e. on β„³\mathcal{M} for some Ξ΄>0\delta>0, then there exits C:=C​(β„³)>0C:=C(\mathcal{M})>0 such that

βˆ«β„³|w|2​|βˆ‡Ο|2ρ4​𝑑vg≀C​(1+Ξ΄βˆ’2)2β€‹βˆ«β„³|Δ​w|2​𝑑vg\int_{\mathcal{M}}\frac{|w|^{2}|\nabla\rho|^{2}}{\rho^{4}}dv_{g}\leq C(1+\delta^{-2})^{2}\int_{\mathcal{M}}|\Delta w|^{2}dv_{g}

for any w∈C0βˆžβ€‹(β„³,𝐑)w\in C^{\infty}_{0}(\mathcal{M},\mathbf{R}).

In fact, based on Theorem 1.4 we are able to prove a general version of second order Hardy inequality that is valid on any smooth manifold.

Theorem 1.5.

Let (β„³,g)(\mathcal{M},g) be an nn dimensional compact Riemannian manifold with a smooth boundary βˆ‚β„³\partial\mathcal{M} and ρ\rho be the distance function to the boundary. Then there exits C:=C​(β„³)>0C:=C(\mathcal{M})>0 such that

βˆ«β„³|w|2ρ4​𝑑vg≀Cβ€‹βˆ«β„³|Δ​w|2​𝑑vg\int_{\mathcal{M}}\frac{|w|^{2}}{\rho^{4}}dv_{g}\leq C\int_{\mathcal{M}}|\Delta w|^{2}dv_{g}

for any w∈C0βˆžβ€‹(β„³,𝐑)w\in C^{\infty}_{0}(\mathcal{M},\mathbf{R}).

Proof.

Let ψ>0\psi>0 be the eigenfunction associated to the first eigenvalue Ξ»1>0\lambda_{1}>0 of βˆ’Ξ”g-\Delta_{g} on β„³\mathcal{M} with ψ|βˆ‚β„³=0\psi|_{\partial\mathcal{M}}=0. Then we have ψ∈Cβˆžβ€‹(β„³Β―)\psi\in C^{\infty}(\overline{\mathcal{M}}) and |βˆ‡Οˆ|>0|\nabla\psi|>0 on βˆ‚β„³\partial{\mathcal{M}} by the Hopf boundary point Lemma (see e.g. [7, Theorem E.4]), noting that βˆ‚Οˆβˆ‚Ξ½<0\frac{\partial\psi}{\partial\nu}<0 and the tangential derivative of ψ\psi vanishes on the boundary. Now as in the proof of [9, Theorem 6.2], for fixed Ξ³>0\gamma>0, define

β„³Ξ³={xβˆˆβ„³:ρ​(x)β‰₯Ξ³}\mathcal{M}_{\gamma}=\{x\in\mathcal{M}:\rho(x)\geq\gamma\}

and

β„³Ξ³={xβˆˆβ„³:ρ​(x)<Ξ³}.\mathcal{M}^{\gamma}=\{x\in\mathcal{M}:\rho(x)<\gamma\}.

Then there exist constants Ο΅,L,Ξ΄>0\epsilon,L,\delta>0 depending on β„³\mathcal{M} and a smooth cut-off function Ο‡βˆˆCβˆžβ€‹(β„³Β―,𝐑)\chi\in C^{\infty}(\overline{\mathcal{M}},\mathbf{R}) such that

Οˆβ€‹(x)≀L​ρ​(x),xβˆˆβ„³and|βˆ‡Οˆ|​(x)β‰₯Ξ΄,xβˆˆβ„³2​ϡ,\psi(x)\leq L\rho(x),\quad x\in\mathcal{M}\quad\text{and}\quad|\nabla\psi|(x)\geq\delta,\quad x\in\mathcal{M}^{2\epsilon}\,,

Ο‡=1\chi=1 on ℳϡ¯\overline{\mathcal{M}^{\epsilon}}, Ο‡=0\chi=0 on Mβˆ–β„³2​ϡM\setminus\mathcal{M}^{2\epsilon}, and |βˆ‡iΟ‡|≀Cβ€‹Ο΅βˆ’i,i=1,2|\nabla^{i}\chi|\leq C\epsilon^{-i},i=1,2 on β„³2β€‹Ο΅βˆ–β„³Ο΅\mathcal{M}^{2\epsilon}\setminus\mathcal{M}^{\epsilon}. For any w∈C0βˆžβ€‹(β„³,𝐑)w\in C^{\infty}_{0}(\mathcal{M},\mathbf{R}), denote

w~=wβ‹…Ο‡βˆˆC0βˆžβ€‹(β„³2​ϡ,𝐑).\tilde{w}=w\cdot\chi\in C^{\infty}_{0}(\mathcal{M}^{2\epsilon},\mathbf{R}).

Then by Theorem 1.4 (replacing β„³\mathcal{M} by β„³2​ϡ\mathcal{M}^{2\epsilon}, ww by w~\tilde{w} and ρ\rho by ψ\psi) we get

βˆ«β„³Ο΅|w|2ρ4​𝑑vg\displaystyle\int_{\mathcal{M^{\epsilon}}}\frac{|w|^{2}}{\rho^{4}}dv_{g} ≀L4Ξ΄2β€‹βˆ«β„³2​ϡ|w~|2​|βˆ‡Οˆ|2ψ4​𝑑vg\displaystyle\leq\frac{L^{4}}{\delta^{2}}\int_{\mathcal{M}^{2\epsilon}}\frac{|\tilde{w}|^{2}|\nabla\psi|^{2}}{\psi^{4}}dv_{g}
≀C​(β„³)​(1+Ξ΄βˆ’2)2​L4Ξ΄2β€‹βˆ«β„³2​ϡ|Δ​w~|2​𝑑vg\displaystyle\leq\frac{C(\mathcal{M})(1+\delta^{-2})^{2}L^{4}}{\delta^{2}}\int_{\mathcal{M}^{2\epsilon}}|\Delta\tilde{w}|^{2}dv_{g}
(1.7) ≀C​(β„³,Ο΅)​(1+Ξ΄βˆ’2)2​L4Ξ΄2β€‹βˆ«β„³|Δ​w|2​𝑑vg.\displaystyle\leq\frac{C(\mathcal{M},\epsilon)(1+\delta^{-2})^{2}L^{4}}{\delta^{2}}\int_{\mathcal{M}}|\Delta w|^{2}dv_{g}\,.

Now let mΟ΅=minβ„³Ο΅β‘Οˆ>0,D=maxβ„³β‘Οˆ>0m_{\epsilon}=\min_{\mathcal{M}_{\epsilon}}\psi>0,D=\max_{\mathcal{M}}\psi>0, then by [9, Theorem 6.3] (with p=2,s=12p=2,s=\frac{1}{2}) we have

βˆ«β„³Ο΅|w|2ρ4​𝑑vg\displaystyle\int_{\mathcal{M_{\epsilon}}}\frac{|w|^{2}}{\rho^{4}}dv_{g} ≀mΟ΅βˆ’12β€‹Ο΅βˆ’4β€‹βˆ«β„³|w|2β€‹Οˆ12​𝑑vg\displaystyle\leq m_{\epsilon}^{-\frac{1}{2}}\epsilon^{-4}\int_{\mathcal{M}}|w|^{2}\psi^{\frac{1}{2}}dv_{g}
≀8​mΟ΅βˆ’12β€‹Ο΅βˆ’4​λ1βˆ’1​D12β€‹βˆ«β„³|βˆ‡w|2​𝑑vg\displaystyle\leq 8m_{\epsilon}^{-\frac{1}{2}}\epsilon^{-4}\lambda_{1}^{-1}D^{\frac{1}{2}}\int_{\mathcal{M}}|\nabla w|^{2}dv_{g}
(1.8) ≀C​(β„³,Ο΅,mΟ΅,Ξ»1,D)β€‹βˆ«β„³|Δ​w|2​𝑑vg.\displaystyle\leq C(\mathcal{M},\epsilon,m_{\epsilon},\lambda_{1},D)\int_{\mathcal{M}}|\Delta w|^{2}dv_{g}\,.

Combining (1) and (1) completes the proof. ∎

As an immediate corollary of Theorem 1.2 we get the following uniqueness result for weakly conformal-harmonic maps from a locally conformally flat 44-manifold β„³\mathcal{M} into spheres.

Corollary 1.6.

Let (β„³,g)(\mathcal{M},g) be a four dimensional compact locally conformally flat Riemannian manifold with a smooth boundary βˆ‚β„³\partial\mathcal{M}. Then there exists Ο΅0>0\epsilon_{0}>0 depending only on β„³\mathcal{M} such that for any weakly conformal-harmonic maps u,v∈W2,2​(β„³,𝐒n)u,v\in W^{2,2}(\mathcal{M},\mathbf{S}^{n}) with u=vu=v, βˆ‚Ξ½u=βˆ‚Ξ½v\partial_{\nu}u=\partial_{\nu}v on βˆ‚β„³\partial\mathcal{M} and

βˆ«β„³|Δ​u|2​𝑑vg≀ϡ0,βˆ«β„³|Δ​v|2​𝑑vg≀ϡ0,\int_{\mathcal{M}}|\Delta u|^{2}dv_{g}\leq\epsilon_{0},\quad\int_{\mathcal{M}}|\Delta v|^{2}dv_{g}\leq\epsilon_{0},

we have u≑vu\equiv v on β„³\mathcal{M}.

Acknowledgement

We would like to thank the referees for their valuable comments, which have significantly improved the presentation of the results in this paper. The first author acknowledges partial support from a COR research funding at UC Santa Cruz. The second author would like to thank the support by the National Natural Science Foundation of China (Grant No. 12201440) and the Fundamental Research Funds for the Central Universities (Grant No. YJ2021136).

2. Preliminary

In this section, we will fix some notations and recall a technical theorem (Ο΅\epsilon-regularity) that will be used later. Throughout this section, (β„³,g)(\mathcal{M},g) denotes a smooth 44-dimensional compact Riemannian manifold with a smooth boundary βˆ‚β„³\partial\mathcal{M} and (𝒩,h)(\mathcal{N},h) is an nn-dimensional smooth closed Riemannian manifold which can be embedded into 𝐑K\mathbf{R}^{K}. As mentioned in the introduction, a weakly conformal-harmonic map uu from β„³\mathcal{M} into 𝒩β†ͺ𝐑k\mathcal{N}\hookrightarrow{\mathbf{R}}^{k} is a map in W2,2​(β„³,𝐑k)W^{2,2}(\mathcal{M},{\mathbf{R}}^{k}) that is a critical point of the conformally invariant energy ℰ​(β‹…,β„³)\mathcal{E}(\cdot,\mathcal{M}) defined in (1.1) and takes values almost everywhere in 𝒩\mathcal{N}.

Note that the dimension 44 is critical for the analysis of weakly conformal-harmonic maps (e.g. a W2,2W^{2,2} map falls in LpL^{p} for any p<∞p<\infty but barely fails to be continuous in dimension 44). Now let Ξ :𝒩δ→𝒩\Pi:\mathcal{N}_{\delta}\rightarrow\mathcal{N} be the nearest point projection map, which is well defined and smooth for Ξ΄>0\delta>0 small enough. Here 𝒩δ={yβˆˆπ‘k|dist​(y,𝒩)≀δ}\mathcal{N}_{\delta}=\{y\in{\mathbf{R}}^{k}\,|\,\text{dist}\,(y,\mathcal{N})\leq\delta\}. For yβˆˆπ’©y\in\mathcal{N}, let

P​(y)≑D​Π​(y):𝐑kβ†’Ty​𝒩P(y)\equiv D\Pi(y):{\mathbf{R}}^{k}\rightarrow T_{y}\mathcal{N}

be the orthogonal projection onto the tangent plane Ty​𝒩T_{y}\mathcal{N}, and

PβŠ₯​(y)≑Idβˆ’D​Π​(y):𝐑kβ†’(Ty​𝒩)βŠ₯,P^{\bot}(y)\equiv\text{Id}-D\Pi(y):{\mathbf{R}}^{k}\rightarrow(T_{y}\mathcal{N})^{\bot}\,,

where DD is the derivative with respect to the standard coordinates of 𝐑K\mathbf{R}^{K}. In the following, we will write PP (resp. PβŠ₯P^{\bot}) instead of P​(y)P(y) (resp. PβŠ₯​(y)P^{\bot}(y)) and we will identify these linear transformations with their matrix representations in MnM_{n}. We also note that these projections are in W2,2​(β„³,Mn)W^{2,2}(\mathcal{M},M_{n}) as soon as uu is in W2,2​(β„³,𝒩)W^{2,2}(\mathcal{M},\mathcal{N}) . Finally, note that the second fundamental form A​(β‹…)​(β‹…,β‹…)A(\,\cdot\,)(\,\cdot\,,\,\cdot\,) of π’©βŠ‚π‘k\mathcal{N}\subset{\mathbf{R}}^{k} is defined by

A​(y)​(Y,Z):=DY​PβŠ₯​(y)​(Z),βˆ€yβˆˆπ’©andY,Z∈Ty​𝒩.A(y)(Y,Z):=D_{Y}P^{\bot}(y)(Z),\quad\forall\,y\in\mathcal{N}\quad\text{and}\quad Y,Z\in T_{y}\mathcal{N}.

We know that u=(u1,…,uk)∈W2,2​(β„³,𝒩)u=(u^{1},...,u^{k})\in W^{2,2}(\mathcal{M},\mathcal{N}) is an intrinsic bi-harmonic map if it satisfies the fourth order PDE (see [44] and [31] for details)

Ξ”2​u=\displaystyle\Delta^{2}u= βˆ’Ξ”β€‹(βˆ‡PβŠ₯β€‹βˆ‡u)βˆ’div​(βˆ‡PβŠ₯​Δ​u)+2β€‹βˆ‡PβŠ₯β€‹βˆ‡(βˆ‡PβŠ₯β€‹βˆ‡u)\displaystyle-\Delta(\nabla P^{\bot}\nabla u)-{\rm div}(\nabla P^{\bot}\Delta u)+2\nabla P^{\bot}\nabla(\nabla P^{\bot}\nabla u)
+2β€‹βˆ‡PβŠ₯β€‹βˆ‡PβŠ₯​Δ​uβˆ’(βˆ‡P​PβŠ₯βˆ’PβŠ₯β€‹βˆ‡P)β€‹βˆ‡Ξ”β€‹u\displaystyle+2\nabla P^{\bot}\nabla P^{\bot}\Delta u-(\nabla PP^{\bot}-P^{\bot}\nabla P)\nabla\Delta u
(2.1) +Pβ€‹βŸ¨βˆ‡PβŠ₯β€‹βˆ‡u,Du​(Du​PβŠ₯)β€‹βˆ‡uβ€‹βˆ‡uβŸ©βˆ’2​d​i​vβ€‹βŸ¨βˆ‡PβŠ₯β€‹βˆ‡u,βˆ‡PβŠ₯​P⟩\displaystyle+P\langle\nabla P^{\bot}\nabla u,{D}_{u}({D}_{u}P^{\bot})\nabla u\nabla u\rangle-2{\rm div}\langle\nabla P^{\bot}\nabla u,\nabla P^{\bot}P\rangle
+2β€‹βŸ¨βˆ‡PβŠ₯β€‹βˆ‡u,βˆ‡PβŠ₯β€‹βˆ‡P⟩.\displaystyle+2\langle\nabla P^{\bot}\nabla u,\nabla P^{\bot}\nabla P\rangle\,.

Here Du​PβŠ₯=Dy​PβŠ₯​(y)|y=uD_{u}P^{\bot}=D_{y}P^{\bot}(y)|_{y=u}. Note that

(2.2) βˆ‡PβŸ‚=Du​PβŸ‚β€‹βˆ‡u,\nabla P^{\perp}=D_{u}P^{\perp}\nabla u\,,

and the following two terms in (2) are equivalent to:

(2.3) βˆ‡PβŸ‚β€‹P=Du​PβŸ‚β€‹βˆ‡u​P=A​(u)​(βˆ‡u,P)\nabla P^{\perp}P={D}_{u}P^{\perp}\nabla uP=A(u)(\nabla u,P)

and

(2.4) βˆ‡PβŸ‚β€‹βˆ‡P=Du​PβŸ‚β€‹βˆ‡uβ€‹βˆ‡P=A​(u)​(βˆ‡u,βˆ‡P).\nabla P^{\perp}\nabla P={D}_{u}P^{\perp}\nabla u\nabla P=A(u)(\nabla u,\nabla P).

When 𝒩=𝐒n\mathcal{N}=\mathbf{S}^{n}, we have (note that Δ​u=τ​(u)βˆ’A​(u)​(βˆ‡u,βˆ‡u)\Delta u=\tau(u)-A(u)(\nabla u,\nabla u)).

(2.5) PβŸ‚β€‹(Δ​u)=βˆ’βˆ‡PβŸ‚β€‹βˆ‡u=βˆ’u​|βˆ‡u|2,P^{\perp}(\Delta u)=-\nabla P^{\perp}\nabla u=-u|\nabla u|^{2}\,,

and therefore

(2.6) A​(u)​(βˆ‡u,βˆ‡u)=βˆ‡PβŸ‚β€‹βˆ‡u=u​|βˆ‡u|2.A(u)(\nabla u,\nabla u)=\nabla P^{\perp}\nabla u=u|\nabla u|^{2}.

In particular, when 𝒩=𝐒n\mathcal{N}=\mathbf{S}^{n}, the intrinsic bi-harmonic map equation can be rewritten as (see e.g. Lamm-RiviΓ¨re [29])

(2.7) Ξ”2​u=Δ​(Vβ‹…βˆ‡u)+div ​(wβ€‹βˆ‡u)+Wβ‹…βˆ‡u,\Delta^{2}u\,=\,\Delta(V\cdot\nabla u)+\text{div }(w\nabla u)+W\cdot\nabla u\,,

where

(2.8) {Vi​j=uiβ€‹βˆ‡ujβˆ’ujβ€‹βˆ‡uiwi​j=div​(Vi​j)Wi​j=βˆ‡wi​j+2​[Δ​uiβ€‹βˆ‡ujβˆ’Ξ”β€‹ujβ€‹βˆ‡ui+|βˆ‡u|2​(uiβ€‹βˆ‡ujβˆ’ujβ€‹βˆ‡ui)].\left\{\begin{aligned} V^{ij}&=u^{i}\nabla u^{j}-u^{j}\nabla u^{i}\\ w^{ij}&=\text{div}\left(V^{ij}\right)\\ W^{ij}&=\nabla w^{ij}+2\left[\Delta u^{i}\nabla u^{j}-\Delta u^{j}\nabla u^{i}+|\nabla u|^{2}(u^{i}\nabla u^{j}-u^{j}\nabla u^{i})\right]\,.\end{aligned}\right.
Remark 2.1.

In local coordinates, the terms in (2) read as

P​(βŸ¨βˆ‡PβŠ₯β€‹βˆ‡u,Du​(Du​PβŠ₯)β€‹βˆ‡uβ€‹βˆ‡u⟩)\displaystyle P\left(\langle\nabla P^{\bot}\nabla u,D_{u}(D_{u}P^{\bot})\nabla u\nabla u\rangle\right)
=βˆ‘Ξ±,Ξ²,Ξ³,i,j,k,mPl​kβˆ‡Ξ±(PβŠ₯)i​jβˆ‡Ξ±ujDukDuΞ²(PβŠ₯)i​mβˆ‡Ξ³uΞ²βˆ‡Ξ³um;\displaystyle=\sum_{\alpha,\beta,\gamma,i,j,k,m}P_{lk}\nabla_{\alpha}(P^{\bot})_{ij}\nabla_{\alpha}u^{j}D_{u^{k}}D_{u^{\beta}}(P^{\bot})_{im}\nabla_{\gamma}u^{\beta}\nabla_{\gamma}u^{m};
βŸ¨βˆ‡PβŠ₯β€‹βˆ‡u,βˆ‡PβŠ₯β€‹βˆ‡P⟩\displaystyle\langle\nabla P^{\bot}\nabla u,\nabla P^{\bot}\nabla P\rangle\, =βˆ‘Ξ±,Ξ²,i,j,kβˆ‡Ξ±(PβŠ₯)i​jβˆ‡Ξ±ujβˆ‡Ξ²(PβŠ₯)i​kβˆ‡Ξ²Pk​l;\displaystyle=\,\sum_{\alpha,\beta,i,j,k}\nabla_{\alpha}(P^{\bot})_{ij}\nabla_{\alpha}u^{j}\nabla_{\beta}(P^{\bot})_{ik}\nabla_{\beta}P_{kl}\,;
divβ€‹βŸ¨βˆ‡PβŠ₯β€‹βˆ‡u,βˆ‡PβŠ₯​P⟩\displaystyle\text{div}\,\langle\nabla P^{\bot}\nabla u,\nabla P^{\bot}P\rangle\, =βˆ‘Ξ±,Ξ²,i,j,kβˆ‡Ξ²[βˆ‡Ξ±(PβŠ₯)i​jβˆ‡Ξ±ujβˆ‡Ξ²(PβŠ₯)i​kPk​l],\displaystyle=\,\sum_{\alpha,\beta,i,j,k}\nabla_{\beta}\left[\nabla_{\alpha}(P^{\bot})_{ij}\nabla_{\alpha}u^{j}\nabla_{\beta}(P^{\bot})_{ik}P_{kl}\right]\,,

where βˆ‡Ξ±:=βˆ‡eΞ±\nabla_{\alpha}:=\nabla_{e_{\alpha}} and {eΞ±}Ξ±=1,β‹―,4\{e_{\alpha}\}_{\alpha=1,\cdots,4} is a local orthonormal frame on β„³\mathcal{M}.

To end this section, let us recall the following version of Ξ΅\varepsilon-regularity for approximate intrinsic and extrinsic bi-harmonic maps into spheres, which will be useful later. Throughout the rest of this paper, βˆ‡Β―\bar{\nabla} and Δ¯\bar{\Delta} will denote the connection and Laplacian with respect to the Euclidean metric.

Theorem 2.2.

([32, Theorem A.4], c.f. [29, 31]) Let B1βŠ‚π‘4B_{1}\subset\mathbf{R}^{4} be the unit 4-ball. There exist Ξ΅>0{\varepsilon}>0, 0<Ξ΄<10<\delta<1, Ξ±>0\alpha>0 and C>0C>0 independent of uu such that if u∈W2,2​(B1,𝐒n)u\in W^{2,2}(B_{1},\mathbf{S}^{n}) is a solution of

(2.9) Δ¯2​u=Δ¯​(Vβ€‹βˆ‡Β―β€‹u)+div​(wβ€‹βˆ‡Β―β€‹u)+βˆ‡Β―β€‹Ο‰β€‹βˆ‡Β―β€‹u+Fβ€‹βˆ‡Β―β€‹u,\bar{\Delta}^{2}u=\bar{\Delta}(V\bar{\nabla}u)+\text{div}(w\bar{\nabla}u)+\bar{\nabla}\omega\bar{\nabla}u+F\bar{\nabla}u,

where V∈W1,2​(B1,Mn+1βŠ—Ξ›1​𝐑4)V\in W^{1,2}(B_{1},M_{n+1}\otimes\Lambda^{1}{\mathbf{R}}^{4}), w∈L2​(B1,Mn+1)w\in L^{2}(B_{1},M_{n+1}), Ο‰βˆˆL2​(B1,s​on+1)\omega\in L^{2}(B_{1},\mathrm{s}o_{n+1}) and F∈L2β‹…W1,2​(B1,Mn+1βŠ—Ξ›1​𝐑4)F\in L^{2}\cdot W^{1,2}(B_{1},M_{n+1}\otimes\Lambda^{1}{\mathbf{R}}^{4}), which satisfy

(2.10) |V|≀C​|βˆ‡Β―β€‹u|,|F|≀C​|βˆ‡Β―β€‹u|​(|βˆ‡Β―2​u|+|βˆ‡Β―β€‹u|2),|w|+|Ο‰|≀C​(|βˆ‡Β―2​u|+|βˆ‡Β―β€‹u|2)\begin{split}|V|&\leq C|\bar{\nabla}u|\,,\\ |F|&\leq C|\bar{\nabla}u|\left(|\bar{\nabla}^{2}u|+|\bar{\nabla}u|^{2}\right)\,,\\ |w|+|\omega|&\leq C\left(|\bar{\nabla}^{2}u|+|\bar{\nabla}u|^{2}\right)\end{split}

almost everywhere (where C>0C>0 is a constant depending only on 𝒩\mathcal{N}) and

(2.11) ‖Δ¯​uβ€–L2​(B1)≀Ρ,\|\bar{\Delta}u\|_{L^{2}(B_{1})}\leq{\varepsilon},

then we have u∈Wl​o​c3,4/3​(B1,𝐑n+1)u\in W_{loc}^{3,4/3}(B_{1},{\mathbf{R}}^{n+1}) and

β€–βˆ‡Β―3​uβ€–L43​(B​(p,ρ))+β€–βˆ‡Β―2​uβ€–L2​(B​(p,ρ))+β€–βˆ‡Β―β€‹uβ€–L4​(B​(p,ρ))≀C​ρα​‖Δ¯​uβ€–L2​(B1)\|\bar{\nabla}^{3}u\|_{L^{\frac{4}{3}}(B(p,\rho))}+\|\bar{\nabla}^{2}u\|_{L^{2}(B(p,\rho))}+\|\bar{\nabla}u\|_{L^{4}(B(p,\rho))}\leq C\rho^{\alpha}\|\bar{\Delta}u\|_{L^{2}(B_{1})}

for all p∈B14p\in B_{\frac{1}{4}} and 0≀ρ≀δ0\leq\rho\leq\delta. Moreover, u∈W3,βˆžβ€‹(B116,𝐑n+1)u\in W^{3,\infty}(B_{\frac{1}{16}},{\mathbf{R}}^{n+1}) and for l=1,2,3l=1,2,3 we have

(2.12) |βˆ‡Β―l​u|​(0)≀Cl​‖Δ¯​uβ€–L2​(B1)|\bar{\nabla}^{l}u|(0)\leq C_{l}\|\bar{\Delta}u\|_{L^{2}(B_{1})}

for some constant Cl>0C_{l}>0. In particular, by rescaling we have for x∈B1x\in B_{1} and l=1,2,3l=1,2,3:

(2.13) |βˆ‡Β―l​u|​(x)≀Cl​(1βˆ’|x|)βˆ’l​‖Δ¯​uβ€–L2​(B1).|\bar{\nabla}^{l}u|(x)\leq C_{l}(1-|x|)^{-l}\|\bar{\Delta}u\|_{L^{2}(B_{1})}\,.

3. Second-order Hardy inequality on manifolds

The first order Hardy inequality on Euclidean domains is well-known. Let’s recall the second order Hardy inequality on Euclidean domains (see e.g. [12, 23]).

Theorem 3.1.

([12, Theorem 2]) Let Ξ©βŠ‚π‘n\Omega\subset\mathbf{R}^{n} be a bounded Lipschitz domain. There exists a constant C>0C>0 depending only on Ξ©\Omega such that if w∈W02,2​(Ξ©,𝐑K)w\in W^{2,2}_{0}(\Omega,\mathbf{R}^{K}), then we have

(3.1) ∫Ω|w|2​(dist​(x,βˆ‚Ξ©))βˆ’4​𝑑x≀Cβ€‹βˆ«Ξ©|Δ¯​w|2​𝑑x.\int_{\Omega}|w|^{2}(\text{dist}(x,\partial\Omega))^{-4}dx\leq C\int_{\Omega}|\bar{\Delta}w|^{2}dx.

Recently, in [9] D’Ambrosio and Dipierro extended the first order Hardy inequality to the Riemannian manifold setting (c.f. [4, 24]), more precisely, among other things they proved:

Theorem 3.2.

[9, Theorem 2.1] Let (β„³,g)(\mathcal{M},g) be an nn dimensional compact Riemannian manifold with a smooth boundary βˆ‚β„³\partial\mathcal{M}. Let ρ∈Wl​o​c1,2​(β„³,𝐑)\rho\in W^{1,2}_{loc}(\mathcal{M},\mathbf{R}) be a nonnegative function such that Δ​ρ≀0\Delta\rho\leq 0 on β„³\mathcal{M} in the weak sense, then we have |βˆ‡Ο|2|ρ|2∈Ll​o​c1​(β„³,𝐑)\frac{|\nabla\rho|^{2}}{|\rho|^{2}}\in L^{1}_{loc}(\mathcal{M},\mathbf{R}) and

βˆ«β„³|w|2ρ2​|βˆ‡Ο|2​𝑑vg≀4β€‹βˆ«β„³|βˆ‡w|2​𝑑vg\int_{\mathcal{M}}\frac{|w|^{2}}{\rho^{2}}|\nabla\rho|^{2}dv_{g}\leq 4\int_{\mathcal{M}}|\nabla w|^{2}dv_{g}

for any w∈C0βˆžβ€‹(β„³,𝐑)w\in C^{\infty}_{0}(\mathcal{M},\mathbf{R}).

Building on the work of D’Ambrosio and Dipierro [9], which utilizes techniques introduced by Mitidieri in [36], we establish a general version of the second-order Hardy inequality applicable to any smooth manifold (Theorem 1.5). Since Theorem 1.5 relies on Theorem 1.4, which is valid for certain smooth manifolds, we first provide a proof of Theorem 1.4.

Proof.

(of Theorem 1.4) First note that by the assumption Δ​ρ≀0\Delta\rho\leq 0 we have in the weak sense that

Δ​(12​ρ2)=div​(βˆ’βˆ‡ΟΟ3)=βˆ’Ξ”β€‹ΟΟ3+3​|βˆ‡Ο|2ρ4β‰₯3​|βˆ‡Ο|2ρ4.\Delta\left(\frac{1}{2\rho^{2}}\right)=\text{div}\left(-\frac{\nabla\rho}{\rho^{3}}\right)=-\frac{\Delta\rho}{\rho^{3}}+\frac{3|\nabla\rho|^{2}}{\rho^{4}}\geq\frac{3|\nabla\rho|^{2}}{\rho^{4}}.

Therefore, for any w∈C0βˆžβ€‹(β„³,𝐑)w\in C^{\infty}_{0}(\mathcal{M},\mathbf{R}) we have

3β€‹βˆ«β„³|w|2​|βˆ‡Ο|2ρ4​𝑑vgβ‰€βˆ«β„³|w|2​Δ​(12​ρ2)​𝑑vg\displaystyle 3\int_{\mathcal{M}}\frac{|w|^{2}|\nabla\rho|^{2}}{\rho^{4}}dv_{g}\leq\int_{\mathcal{M}}|w|^{2}\Delta\left(\frac{1}{2\rho^{2}}\right)dv_{g}
=\displaystyle= βˆ’2β€‹βˆ«β„³wβ€‹βˆ‡wβ‹…βˆ‡(12​ρ2)⁑d​vg=2β€‹βˆ«β„³(|βˆ‡w|2+w​Δ​w)​(12​ρ2)​𝑑vg\displaystyle-2\int_{\mathcal{M}}w\nabla w\cdot\nabla\left(\frac{1}{2\rho^{2}}\right)dv_{g}=2\int_{\mathcal{M}}\left(|\nabla w|^{2}+w\Delta w\right)\left(\frac{1}{2\rho^{2}}\right)dv_{g}
(3.2) ≀\displaystyle\leq (βˆ«β„³3​|w|2​|βˆ‡Ο|2ρ4​𝑑vg)1/2​(βˆ«β„³|Δ​w|23​|βˆ‡Ο|2​𝑑vg)1/2+βˆ«β„³|βˆ‡w|2ρ2​𝑑vg.\displaystyle\left(\int_{\mathcal{M}}\frac{3|w|^{2}|\nabla\rho|^{2}}{\rho^{4}}dv_{g}\right)^{1/2}\left(\int_{\mathcal{M}}\frac{|\Delta w|^{2}}{3|\nabla\rho|^{2}}dv_{g}\right)^{1/2}+\int_{\mathcal{M}}\frac{|\nabla w|^{2}}{\rho^{2}}dv_{g}\,.

By applying the first-order Hardy inequality (Theorem 3.2) to |βˆ‡w||\nabla w|, and using the fact that |βˆ‡Ο|β‰₯Ξ΄|\nabla\rho|\geq\delta a.e. on β„³\mathcal{M}, along with Kato’s inequality, Reilly’s formula, and the PoincarΓ© inequality, we obtain:

βˆ«β„³|βˆ‡w|2ρ2​𝑑vg≀1Ξ΄2β€‹βˆ«β„³|βˆ‡w|2ρ2​|βˆ‡Ο|2​𝑑vg≀4Ξ΄2β€‹βˆ«β„³|βˆ‡2w|2​𝑑vg≀C​(β„³)Ξ΄2β€‹βˆ«β„³|Δ​w|2​𝑑vg.\int_{\mathcal{M}}\frac{|\nabla w|^{2}}{\rho^{2}}dv_{g}\leq\frac{1}{\delta^{2}}\int_{\mathcal{M}}\frac{|\nabla w|^{2}}{\rho^{2}}|\nabla\rho|^{2}dv_{g}\leq\frac{4}{\delta^{2}}\int_{\mathcal{M}}|\nabla^{2}w|^{2}dv_{g}\leq\frac{C(\mathcal{M})}{\delta^{2}}\int_{\mathcal{M}}|\Delta w|^{2}dv_{g}\,.

Inserting this back to (3) we get

βˆ«β„³|w|2​|βˆ‡Ο|2ρ4​𝑑vg≀C​(β„³)​(1+Ξ΄βˆ’2)2β€‹βˆ«β„³|Δ​w|2​𝑑vg\displaystyle\int_{\mathcal{M}}\frac{|w|^{2}|\nabla\rho|^{2}}{\rho^{4}}dv_{g}\leq C(\mathcal{M})(1+\delta^{-2})^{2}\int_{\mathcal{M}}|\Delta w|^{2}dv_{g}

for some C​(β„³)>0C(\mathcal{M})>0. ∎

4. Proof of the main result

In this section, we prove Theorem 1.2. Let us first fix some notations. Since β„³\mathcal{M} is compact and locally conformally flat with a smooth boundary βˆ‚β„³\partial\mathcal{M}, we can choose a smooth atlas

{Ξ¦i:B2​ri​(pi)→𝐑4}i=1N\{\Phi_{i}:B_{2r_{i}}(p_{i})\to\mathbf{R}^{4}\}_{i=1}^{N}

for β„³\mathcal{M} such that {pi}i=1kβŠ‚β„³,{pi}i=k+1NβŠ‚βˆ‚β„³\{p_{i}\}_{i=1}^{k}\subset\mathcal{M},\{p_{i}\}_{i=k+1}^{N}\subset\partial\mathcal{M} and B2​ri​(pi)B_{2r_{i}}(p_{i}) is conformally flat for each ii. We assume that

(4.1) g=e2​ϕi​gΒ―on ​B2​ri​(pi),g=e^{2\phi_{i}}\bar{g}\quad\text{on }B_{2r_{i}}(p_{i})\,,

where gΒ―\bar{g} is the Euclidean metric. Here B2​ri​(pi)βŠ‚β„³B_{2r_{i}}(p_{i})\subset\mathcal{M} denotes the set

B2​ri​(pi):={yβˆˆβ„³βˆͺβˆ‚β„³:distg​(y,pi)<2​ri},i=1,β‹―,N.B_{2r_{i}}(p_{i}):=\{y\in\mathcal{M}\cup\partial\mathcal{M}:\text{dist}_{g}(y,p_{i})<2r_{i}\},\quad i=1,\cdots,N.

Moreover,

β„³βˆͺβˆ‚β„³β€‹Β is covered by ​{Bri​(pi)}i=1N\mathcal{M}\cup\partial\mathcal{M}\text{ is covered by }\left\{B_{r_{i}}(p_{i})\right\}_{i=1}^{N}

and every point in β„³βˆͺβˆ‚β„³\mathcal{M}\cup\partial\mathcal{M} is covered by {B2​ri​(pi)}i=1N\left\{B_{2r_{i}}(p_{i})\right\}_{i=1}^{N} at most LL times, see e.g. [41, Lemma 3.3]. For i=1,β‹―,Ni=1,\cdots,N, let

Ui:=Ξ¦i​(Bri​(pi))and2​Ui:=Ξ¦i​(B2​ri​(pi)).U_{i}:=\Phi_{i}(B_{r_{i}}(p_{i}))\quad\text{and}\quad 2U_{i}:=\Phi_{i}(B_{2r_{i}}(p_{i}))\,.

When choosing the smooth atlas, we additionally require that there exists Ξ΄>0\delta>0 depending only on β„³\mathcal{M} and βˆ‚β„³\partial\mathcal{M} such that for any i=k+1,β‹―,Ni=k+1,\cdots,N and any point x∈{yβˆˆβ„³:dist​(y,βˆ‚β„³)≀δ}∩Bri​(pi)x\in\{y\in\mathcal{M}:\text{dist}(y,\partial\mathcal{M})\leq\delta\}\cap B_{r_{i}}(p_{i}) we have

(4.2) Ξ¦i​(Bρ​(x)​(x))βŠ‚Ujfor some ​j=k+1,β‹―,N,\Phi_{i}(B_{\rho(x)}(x))\subset U_{j}\quad\text{for some }j=k+1,\cdots,N\,,

where ρ​(x)=distg​(x,βˆ‚β„³)\rho(x)=\text{dist}_{g}(x,\partial\mathcal{M})111To see this, let Ξ£i=βˆ‚Bri​(pi)βˆ©βˆ‚β„³,i=k+1,β‹―,N\Sigma_{i}=\partial B_{r_{i}}(p_{i})\cap\partial\mathcal{M},i=k+1,\cdots,N be the projection of Bri​(pi)B_{r_{i}}(p_{i}) onto βˆ‚M\partial M by normal geodesics. Ξ“i=βˆ‚Ξ£i\Gamma_{i}=\partial\Sigma_{i} denotes its boundary in βˆ‚β„³\partial\mathcal{M}. We choose the smooth atlas of β„³\mathcal{M} in such a way that every Ξ£i\Sigma_{i} is covered by finitely many Ξ£jΞ±\Sigma_{j_{\alpha}}’s and all the intersecting points qs​t=Ξ“sβˆ©Ξ“t∩Σiq_{st}=\Gamma_{s}\cap\Gamma_{t}\cap\Sigma_{i} stay in the interior of Ξ£l\Sigma_{l}, where Ξ±=1,…,Ξ±i\alpha=1,\dots,\alpha_{i}, jα∈[k+1,N]j_{\alpha}\in[k+1,N], lβ‰ s,tl\neq s,t and s,t,l=i,j1,…,jΞ±is,t,l=i,j_{1},\dots,j_{\alpha_{i}}. Then there exists a constant Ci>0C_{i}>0 such that for any y0∈Σiy_{0}\in\Sigma_{i}, there holds dist​(y0,Ξ“l)β‰₯Ci\text{dist}(y_{0},\Gamma_{l})\geq C_{i} for some l=i,j1,…,jkil=i,j_{1},\dots,j_{k_{i}}. Now, for any x∈{yβˆˆβ„³:distg​(y,βˆ‚β„³)≀δ}x\in\{y\in\mathcal{M}:\text{dist}_{g}(y,\partial\mathcal{M})\leq\delta\}, there exists x0βˆˆβˆ‚β„³x_{0}\in\partial\mathcal{M} such that x0∈Σix_{0}\in\Sigma_{i} for some i∈[k+1,N]i\in[k+1,N] and ρ​(x)=distg​(x,βˆ‚β„³)=distg​(x,x0)\rho(x)=\text{dist}_{g}(x,\partial\mathcal{M})=\text{dist}_{g}(x,x_{0}). Since Bρ​(x)​(x)βŠ‚Bδ​(x)βŠ‚B2​δ​(x0)B_{\rho(x)}(x)\subset B_{\delta}(x)\subset B_{2\delta}(x_{0}), we have Bρ​(x)​(x)βŠ‚Bri​(pi)B_{\rho(x)}(x)\subset B_{r_{i}}(p_{i}) for some i=k+1,…,Ni=k+1,\dots,N if we choose 2​δ<mini=k+1,…,N⁑{Ci}2\delta<\min\limits_{i=k+1,\dots,N}\{C_{i}\}.. Moreover,

(4.3) {yβˆˆβ„³:dist​(y,βˆ‚β„³)β‰₯Ξ΄}βŠ‚β‹ƒi=1,β‹―,kBri​(pi).\left\{y\in\mathcal{M}:\text{dist}(y,\partial\mathcal{M})\geq\delta\right\}\subset\bigcup_{i=1,\cdots,k}B_{r_{i}}(p_{i})\,.

Let Ξ©1:=Br1​(p1)\Omega_{1}:=B_{r_{1}}(p_{1}) and

(4.4) Ξ©i+1:=(⋃j=1,β‹―,i+1Brj​(pj))βˆ–(⋃j=1,β‹―,iΞ©j),i=1,β‹―,Nβˆ’1\Omega_{i+1}:=\left(\bigcup_{j=1,\cdots,i+1}B_{r_{j}}(p_{j})\right)\setminus\left(\bigcup_{j=1,\cdots,i}\Omega_{j}\right),\quad i=1,\cdots,N-1

be a disjoint partition of β„³\mathcal{M}. Now for any u∈W2,2​(β„³,𝐒n)u\in W^{2,2}(\mathcal{M},\mathbf{S}^{n}) we define

(4.5) uΒ―i​(x):=u​(Ξ¦iβˆ’1​(x)),x∈2​Ui,i=1,β‹―,N.\bar{u}_{i}(x):=u\left(\Phi_{i}^{-1}(x)\right)\,,\quad x\in 2U_{i},\quad i=1,\cdots,N\,.
Remark 4.1.

Note that by Proposition A.1 we know that if uu is a conformal-harmonic map on β„³\mathcal{M}, then uΒ―i\bar{u}_{i} defined in (4.5) is an intrinsic biharmonic map on 2​Ui,i=1,β‹―,N2U_{i},i=1,\cdots,N.

In what follows, we will denote |β‹…||\cdot| the norm with respect to the Euclidean metric in 𝐑K\mathbf{R}^{K}. As before, βˆ‡Β―\bar{\nabla} and Δ¯\bar{\Delta} will denote the connection and Laplacian with respect to the Euclidean metric gΒ―\bar{g}, but note that on each Ξ©i,i=1,β‹―,N\Omega_{i},i=1,\cdots,N the information of Ξ¦i\Phi_{i} is embedded in these two operators and we do not differentiate the notations.

Lemma 4.2.

There exists Ο΅0>0\epsilon_{0}>0 depending only on β„³\mathcal{M} such that if u,vu,v are as in Theorem 1.2, then we have

(4.6) βˆ«β„³|Δ¯​(vβˆ’u)|2​𝑑vg¯≀4β€‹βˆ«β„³|τ¯​(v)βˆ’Ο„Β―β€‹(u)|2​𝑑vgΒ―,\int_{\mathcal{M}}|\bar{\Delta}(v-u)|^{2}dv_{\bar{g}}\leq 4\int_{\mathcal{M}}|\bar{\tau}(v)-\bar{\tau}(u)|^{2}dv_{\bar{g}}\,,

where τ¯​(u)=(Δ¯​u)T\bar{\tau}(u)=(\bar{\Delta}u)^{T} is the tension field of uu with respect to the flat connection.

Proof.

Let uΒ―i,vΒ―i\bar{u}_{i},\bar{v}_{i} be defined as in (4.5), then use the conformal change of Laplacian (c.f. (A.6)), for i=1,β‹―,Ni=1,\cdots,N we get

∫2​Ui|Δ¯​uΒ―i|2​𝑑x\displaystyle\int_{2U_{i}}|\bar{\Delta}\bar{u}_{i}|^{2}dx =∫B2​ri​(pi)|Δ¯​u|2​𝑑vgΒ―\displaystyle=\int_{B_{2r_{i}}(p_{i})}|\bar{\Delta}u|^{2}dv_{\bar{g}}
(4.7) ≀Ciβ€‹βˆ«B2​ri​(pi)(|Δ​u|2+|βˆ‡u|2)​𝑑vg≀Ci​ϡ0\displaystyle\leq C_{i}\int_{B_{2r_{i}}(p_{i})}(|\Delta u|^{2}+|\nabla u|^{2})dv_{g}\leq C_{i}\sqrt{\epsilon_{0}}

and

(4.8) ∫2​Ui|βˆ‡Β―β€‹vΒ―i|4​𝑑x=∫B2​ri​(pi)|βˆ‡Β―β€‹v|4​𝑑vgΒ―=∫B2​ri​(pi)|βˆ‡v|4​𝑑vg≀ϡ0,\int_{2U_{i}}|\bar{\nabla}\bar{v}_{i}|^{4}dx=\int_{B_{2r_{i}}(p_{i})}|\bar{\nabla}v|^{4}dv_{\bar{g}}=\int_{B_{2r_{i}}(p_{i})}|\nabla v|^{4}dv_{g}\leq\epsilon_{0}\,,

where Ci=Ci​(Ξ¦i,Ο•i)>0C_{i}=C_{i}(\Phi_{i},\phi_{i})>0 are positive constants. Moreover, using (4), (4.8), (1.5) and

βˆ«β„³|Δ​u|2​𝑑vg=βˆ«β„³|τ​(u)|2​𝑑vg+βˆ«β„³|βˆ‡u|4​𝑑vg,\int_{\mathcal{M}}|\Delta u|^{2}dv_{g}=\int_{\mathcal{M}}|\tau(u)|^{2}dv_{g}+\int_{\mathcal{M}}|\nabla u|^{4}dv_{g}\,,

we have

(4.9) βˆ«β„³|Δ¯​u|2​𝑑vg¯≀Cβ€‹βˆ«β„³(|Δ​u|2+|βˆ‡u|2)​𝑑vg≀C​ϡ0\int_{\mathcal{M}}|\bar{\Delta}u|^{2}dv_{\bar{g}}\leq C\int_{\mathcal{M}}\left(|\Delta u|^{2}+|\nabla u|^{2}\right)dv_{g}\leq C\sqrt{\epsilon_{0}}

and

(4.10) βˆ«β„³|βˆ‡Β―β€‹v|4​𝑑vgΒ―=βˆ«β„³|βˆ‡v|4​𝑑vg≀ϡ0,\int_{\mathcal{M}}|\bar{\nabla}v|^{4}dv_{\bar{g}}=\int_{\mathcal{M}}|\nabla v|^{4}dv_{g}\leq\epsilon_{0}\,,

where C>0C>0 may depend on all Ο•i\phi_{i} and Ξ¦i,i=1,β‹―,N\Phi_{i},i=1,\cdots,N. Now using the decomposition Δ¯​u=τ¯​(u)βˆ’u​|βˆ‡Β―β€‹u|2\bar{\Delta}u=\bar{\tau}(u)-u|\bar{\nabla}u|^{2}, we have

βˆ«β„³|Δ¯​(vβˆ’u)|2​𝑑vgΒ―=βˆ«β„³|τ¯​(v)βˆ’Ο„Β―β€‹(u)βˆ’v​|βˆ‡Β―β€‹v|2+u​|βˆ‡Β―β€‹u|2|2​𝑑vgΒ―\displaystyle\int_{\mathcal{M}}|\bar{\Delta}(v-u)|^{2}dv_{\bar{g}}=\int_{\mathcal{M}}|\bar{\tau}(v)-\bar{\tau}(u)-v|\bar{\nabla}v|^{2}+u|\bar{\nabla}u|^{2}|^{2}dv_{\bar{g}}
≀\displaystyle\leq 2β€‹βˆ«β„³|τ¯​(v)βˆ’Ο„Β―β€‹(u)|2​𝑑vgΒ―+2β€‹βˆ«β„³|v​|βˆ‡Β―β€‹v|2βˆ’u​|βˆ‡Β―β€‹u|2|2​𝑑vgΒ―\displaystyle 2\int_{\mathcal{M}}|\bar{\tau}(v)-\bar{\tau}(u)|^{2}dv_{\bar{g}}+2\int_{\mathcal{M}}\left|v|\bar{\nabla}v|^{2}-u|\bar{\nabla}u|^{2}\right|^{2}dv_{\bar{g}}
=\displaystyle= 2β€‹βˆ«β„³|τ¯​(v)βˆ’Ο„Β―β€‹(u)|2​𝑑vgΒ―+2β€‹βˆ«β„³|v​(|βˆ‡Β―β€‹v|2βˆ’|βˆ‡Β―β€‹u|2)+(vβˆ’u)​|βˆ‡Β―β€‹u|2|2​𝑑vgΒ―\displaystyle 2\int_{\mathcal{M}}|\bar{\tau}(v)-\bar{\tau}(u)|^{2}dv_{\bar{g}}+2\int_{\mathcal{M}}\left|v\left(|\bar{\nabla}v|^{2}-|\bar{\nabla}u|^{2}\right)+(v-u)|\bar{\nabla}u|^{2}\right|^{2}dv_{\bar{g}}
≀\displaystyle\leq 2β€‹βˆ«β„³|τ¯​(v)βˆ’Ο„Β―β€‹(u)|2​𝑑vgΒ―+4β€‹βˆ«β„³||βˆ‡Β―β€‹v|2βˆ’|βˆ‡Β―β€‹u|2|2​𝑑vgΒ―+4β€‹βˆ«β„³|vβˆ’u|2​|βˆ‡Β―β€‹u|4​𝑑vgΒ―\displaystyle 2\int_{\mathcal{M}}|\bar{\tau}(v)-\bar{\tau}(u)|^{2}dv_{\bar{g}}+4\int_{\mathcal{M}}\left||\bar{\nabla}v|^{2}-|\bar{\nabla}u|^{2}\right|^{2}dv_{\bar{g}}+4\int_{\mathcal{M}}|v-u|^{2}|\bar{\nabla}u|^{4}dv_{\bar{g}}
≀\displaystyle\leq 2β€‹βˆ«β„³|τ¯​(v)βˆ’Ο„Β―β€‹(u)|2​𝑑vgΒ―+4​(βˆ«β„³|βˆ‡Β―β€‹(v+u)|4​𝑑vgΒ―)12​(βˆ«β„³|βˆ‡Β―β€‹(vβˆ’u)|4​𝑑vgΒ―)12​d​vgΒ―\displaystyle 2\int_{\mathcal{M}}|\bar{\tau}(v)-\bar{\tau}(u)|^{2}dv_{\bar{g}}+4\left(\int_{\mathcal{M}}|\bar{\nabla}(v+u)|^{4}dv_{\bar{g}}\right)^{\frac{1}{2}}\left(\int_{\mathcal{M}}|\bar{\nabla}(v-u)|^{4}dv_{\bar{g}}\right)^{\frac{1}{2}}dv_{\bar{g}}
+4β€‹βˆ«β„³|vβˆ’u|2​|βˆ‡Β―β€‹u|4​𝑑vgΒ―\displaystyle+4\int_{\mathcal{M}}|v-u|^{2}|\bar{\nabla}u|^{4}dv_{\bar{g}}
≀\displaystyle\leq 2β€‹βˆ«β„³|τ¯​(v)βˆ’Ο„Β―β€‹(u)|2​𝑑vgΒ―+C​ϡ0β€‹βˆ«β„³|Δ¯​(vβˆ’u)|2​𝑑vgΒ―+4β€‹βˆ«β„³|vβˆ’u|2​|βˆ‡Β―β€‹u|4​𝑑vgΒ―,\displaystyle 2\int_{\mathcal{M}}|\bar{\tau}(v)-\bar{\tau}(u)|^{2}dv_{\bar{g}}+C\sqrt{\epsilon_{0}}\int_{\mathcal{M}}|\bar{\Delta}(v-u)|^{2}dv_{\bar{g}}+4\int_{\mathcal{M}}|v-u|^{2}|\bar{\nabla}u|^{4}dv_{\bar{g}}\,,

where we have used (1.5), (4.9), (4.10),

(4.11) βˆ«β„³|βˆ‡Β―β€‹u|4​𝑑vgΒ―β‰€βˆ«β„³|Δ¯​u|2​𝑑vg¯≀C​ϡ0\int_{\mathcal{M}}|\bar{\nabla}u|^{4}dv_{\bar{g}}\leq\int_{\mathcal{M}}|\bar{\Delta}u|^{2}dv_{\bar{g}}\leq C\sqrt{\epsilon_{0}}

and

(4.12) (βˆ«β„³|βˆ‡Β―β€‹(vβˆ’u)|4​𝑑vgΒ―)14≀C​(βˆ«β„³|Δ¯​(vβˆ’u)|2​𝑑vgΒ―)12,\left(\int_{\mathcal{M}}|\bar{\nabla}(v-u)|^{4}dv_{\bar{g}}\right)^{\frac{1}{4}}\leq C\left(\int_{\mathcal{M}}|\bar{\Delta}(v-u)|^{2}dv_{\bar{g}}\right)^{\frac{1}{2}}\,,

where C>0C>0 is a universal constant. For the last term above, we claim that

(4.13) βˆ«β„³|vβˆ’u|2​|βˆ‡Β―β€‹u|4​𝑑vg¯≀C0​ϡ0β€‹βˆ«β„³|vβˆ’u|2β€‹Οβˆ’4​𝑑vg,\int_{\mathcal{M}}|v-u|^{2}|\bar{\nabla}u|^{4}dv_{\bar{g}}\leq C_{0}{\epsilon_{0}}\int_{\mathcal{M}}|v-u|^{2}\rho^{-4}dv_{g}\,,

where ρ​(x)=distg​(x,βˆ‚β„³)\rho(x)=\text{dist}_{g}(x,\partial\mathcal{M}) and C0=C0​(β„³)>0C_{0}=C_{0}(\mathcal{M})>0. If the claim (4.13) is true, then the second Hardy inequality (Theorem 1.5) imply that (since vβˆ’u∈W02,2​(β„³,𝐒n)v-u\in W^{2,2}_{0}(\mathcal{M},\mathbf{S}^{n}) and βˆ‚(vβˆ’u)βˆ‚Ξ½=0\frac{\partial(v-u)}{\partial\nu}=0 on βˆ‚β„³\partial\mathcal{M})

βˆ«β„³|vβˆ’u|2​|βˆ‡Β―β€‹u|4​𝑑vg¯≀C​ϡ0β€‹βˆ«β„³|Δ​(vβˆ’u)|2​𝑑vg\displaystyle\int_{\mathcal{M}}|v-u|^{2}|\bar{\nabla}u|^{4}dv_{\bar{g}}\leq C{\epsilon_{0}}\int_{\mathcal{M}}|\Delta(v-u)|^{2}dv_{g}
=\displaystyle= C​ϡ0β€‹βˆ‘i=1,β‹―,N∫Ωi|Δ​(vβˆ’u)|2​𝑑vg\displaystyle C{\epsilon_{0}}\sum_{i=1,\cdots,N}\int_{\Omega_{i}}|\Delta(v-u)|^{2}dv_{g}
≀\displaystyle\leq C​ϡ0β€‹βˆ‘i=1,β‹―,N∫Ωi(|Δ¯​(vβˆ’u)|2+|βˆ‡Β―β€‹(vβˆ’u)|2)​𝑑vgΒ―\displaystyle C{\epsilon_{0}}\sum_{i=1,\cdots,N}\int_{\Omega_{i}}\left(|\bar{\Delta}(v-u)|^{2}+|\bar{\nabla}(v-u)|^{2}\right)dv_{\bar{g}}
(4.14) =\displaystyle= C​ϡ0β€‹βˆ«β„³(|Δ¯​(vβˆ’u)|2+|βˆ‡Β―β€‹(vβˆ’u)|2)​𝑑vg¯≀C​ϡ0β€‹βˆ«β„³|Δ¯​(vβˆ’u)|2​𝑑vgΒ―.\displaystyle C{\epsilon_{0}}\int_{\mathcal{M}}\left(|\bar{\Delta}(v-u)|^{2}+|\bar{\nabla}(v-u)|^{2}\right)dv_{\bar{g}}\leq C{\epsilon_{0}}\int_{\mathcal{M}}|\bar{\Delta}(v-u)|^{2}dv_{\bar{g}}\,.

where we used ∫Ωi|Δ​(vβˆ’u)|2​𝑑vg≀Ciβ€‹βˆ«Ξ©i(|Δ¯​(vβˆ’u)|2+|βˆ‡Β―β€‹(vβˆ’u)|2)​𝑑vgΒ―\int_{\Omega_{i}}|\Delta(v-u)|^{2}dv_{g}\leq C_{i}\int_{\Omega_{i}}\left(|\bar{\Delta}(v-u)|^{2}+|\bar{\nabla}(v-u)|^{2}\right)dv_{\bar{g}} for each ii, which is similar to (4). Therefore, we obtain (4.6) by choosing Ο΅0\epsilon_{0} sufficiently small. To complete the proof of this lemma, it remains to show that the claim (4.13) holds.

Using (4), Remark 4.1 and Theorem 2.2, and choosing Ο΅0\epsilon_{0} small enough we have

(4.15) |βˆ‡Β―l​uΒ―i|​(x)≀C​(distg¯​(x,βˆ‚(2​Ui)))βˆ’l​ϡ01/4,|\bar{\nabla}^{l}\bar{u}_{i}|(x)\leq C(\text{dist}_{\bar{g}}(x,\partial(2U_{i})))^{-l}{\epsilon_{0}}^{1/4}\,,

for any x∈2​Ui,i=1,β‹―,kx\in 2U_{i},i=1,\cdots,k and l=1,2,3l=1,2,3, where C>0C>0 depends on the CiC_{i} above. In particular, define

r0:=mini=1,β‹―,k⁑distg¯​(Ui,βˆ‚(2​Ui)),r_{0}:=\min_{i=1,\cdots,k}\text{dist}_{\bar{g}}(U_{i},\partial(2U_{i}))\,,

then we have

(4.16) |βˆ‡Β―l​uΒ―i|​(x)≀C​r0βˆ’l​ϡ01/4for any ​x∈Ui,i=1,β‹―,k​ and ​l=1,2,3,|\bar{\nabla}^{l}\bar{u}_{i}|(x)\leq Cr_{0}^{-l}{\epsilon_{0}}^{1/4}\quad\text{for any }x\in U_{i},i=1,\cdots,k\text{ and }l=1,2,3,
(4.17) |βˆ‡Β―l​u|​(x)≀C​r0βˆ’l​ϡ01/4for any ​x∈Bri​(pi),i=1,β‹―,k​ and ​l=1,2,3,|\bar{\nabla}^{l}u|(x)\leq Cr_{0}^{-l}{\epsilon_{0}}^{1/4}\quad\text{for any }x\in B_{r_{i}}(p_{i}),i=1,\cdots,k\text{ and }l=1,2,3,

and therefore

(4.18) |βˆ‡Β―l​u|​(x)≀C​r0βˆ’l​ϡ01/4​(diamg​(β„³))lβ€‹Οβˆ’l​(x)≀C1​ϡ01/4β€‹Οβˆ’l​(x)|\bar{\nabla}^{l}u|(x)\leq Cr_{0}^{-l}{\epsilon_{0}}^{1/4}(\text{diam}_{g}(\mathcal{M}))^{l}\rho^{-l}(x)\leq C_{1}{\epsilon_{0}}^{1/4}\rho^{-l}(x)

for any x∈Bri​(pi),i=1,β‹―,kx\in B_{r_{i}}(p_{i}),i=1,\cdots,k and l=1,2,3l=1,2,3, where the C>0C>0 in (4.17) and (4.18) may depend on Ξ¦i,i=1,β‹―,k,\Phi_{i},i=1,\cdots,k, and

C1:=maxl=1,2,3⁑{C​r0βˆ’l​(diamg​(β„³))l}.C_{1}:=\max_{l=1,2,3}\left\{Cr_{0}^{-l}(\text{diam}_{g}(\mathcal{M}))^{l}\right\}\,.

Now by the choice of the smooth atlas, in particular, (4.2), with a similar argument as above, we have

(4.19) |βˆ‡Β―l​u|​(x)≀C2​ϡ01/4β€‹Οβˆ’l​(x)|\bar{\nabla}^{l}u|(x)\leq C_{2}{\epsilon_{0}}^{1/4}\rho^{-l}(x)

for any x∈Bri​(pi)∩{yβˆˆβ„³:dist​(y,βˆ‚β„³)≀δ},i=k+1,β‹―,Nx\in B_{r_{i}}(p_{i})\cap\{y\in\mathcal{M}:\text{dist}(y,\partial\mathcal{M})\leq\delta\},i=k+1,\cdots,N and l=1,2,3l=1,2,3. Here C2>0C_{2}>0 may depend on all Ξ¦i\Phi_{i} and Ο•i,i=k,β‹―,N.\phi_{i},i=k,\cdots,N. Then with a argument similar to (4) we get (4.13). This completes the proof of the lemma. ∎

Lemma 4.3.

There exists Ο΅0>0\epsilon_{0}>0 depending only on β„³\mathcal{M} such that if u,vu,v are as in Theorem 1.2, then we have

βˆ«β„³|Δ¯​v|2​𝑑vgΒ―βˆ’βˆ«β„³|Δ¯​u|2​𝑑vgΒ―βˆ’βˆ«β„³|Δ¯​(vβˆ’u)|2​𝑑vgΒ―\displaystyle\int_{\mathcal{M}}|\bar{\Delta}v|^{2}dv_{\bar{g}}-\int_{\mathcal{M}}|\bar{\Delta}u|^{2}dv_{\bar{g}}-\int_{\mathcal{M}}|\bar{\Delta}(v-u)|^{2}dv_{\bar{g}}
(4.20) β‰₯\displaystyle\geq βˆ’C​ϡ01/4β€‹βˆ«β„³|Δ¯​(vβˆ’u)|2​𝑑vgΒ―+4β€‹βˆ«β„³|βˆ‡Β―β€‹u|2β€‹βˆ‡Β―β€‹uβ‹…βˆ‡Β―β€‹(vβˆ’u)​𝑑vgΒ―.\displaystyle-C{\epsilon_{0}}^{1/4}\int_{\mathcal{M}}|\bar{\Delta}(v-u)|^{2}dv_{\bar{g}}+4\int_{\mathcal{M}}|\bar{\nabla}u|^{2}\bar{\nabla}u\cdot\bar{\nabla}(v-u)dv_{\bar{g}}\,.
Proof.

By Remark 4.1, we know that uu is an intrinsic biharmonic map on each Ξ©i,i=1,β‹―,N,\Omega_{i},i=1,\cdots,N, with respect to the flat connection βˆ‡Β―\bar{\nabla}, namely, we have

Δ¯2​u=\displaystyle\bar{\Delta}^{2}u= P​(Δ¯2​u)+Pβ€‹βŸ¨βˆ‡Β―β€‹PβŠ₯β€‹βˆ‡Β―β€‹u,Du​(Du​PβŠ₯)β€‹βˆ‡Β―β€‹uβ€‹βˆ‡Β―β€‹u⟩\displaystyle P(\bar{\Delta}^{2}u)+P\langle\bar{\nabla}P^{\bot}\bar{\nabla}u,{D}_{u}({D}_{u}P^{\bot})\bar{\nabla}u\bar{\nabla}u\rangle
βˆ’2​d​i​vgΒ―β€‹βŸ¨βˆ‡Β―β€‹PβŠ₯β€‹βˆ‡Β―β€‹u,βˆ‡Β―β€‹PβŠ₯​P⟩+2β€‹βŸ¨βˆ‡Β―β€‹PβŠ₯β€‹βˆ‡Β―β€‹u,βˆ‡Β―β€‹PβŠ₯β€‹βˆ‡Β―β€‹P⟩.\displaystyle-2{\rm div}_{\bar{g}}\langle\bar{\nabla}P^{\bot}\bar{\nabla}u,\bar{\nabla}P^{\bot}P\rangle+2\langle\bar{\nabla}P^{\bot}\bar{\nabla}u,\bar{\nabla}P^{\bot}\bar{\nabla}P\rangle\,.

Since u=vu=v, βˆ‚Ξ½u=βˆ‚Ξ½v\partial_{\nu}u=\partial_{\nu}v on βˆ‚β„³\partial\mathcal{M}, we have

βˆ«β„³|Δ¯​v|2​𝑑vgΒ―βˆ’βˆ«β„³|Δ¯​u|2​𝑑vgΒ―βˆ’βˆ«β„³|Δ¯​(vβˆ’u)|2​𝑑vgΒ―\displaystyle\int_{\mathcal{M}}|\bar{\Delta}v|^{2}dv_{\bar{g}}-\int_{\mathcal{M}}|\bar{\Delta}u|^{2}dv_{\bar{g}}-\int_{\mathcal{M}}|\bar{\Delta}(v-u)|^{2}dv_{\bar{g}}
=\displaystyle= 2β€‹βˆ«β„³βŸ¨Ξ”Β―2​u,vβˆ’uβŸ©β€‹π‘‘vgΒ―\displaystyle 2\int_{\mathcal{M}}\left\langle\bar{\Delta}^{2}u,v-u\right\rangle dv_{\bar{g}}
=\displaystyle= 2β€‹βˆ«β„³βŸ¨PβŠ₯​(Δ¯2​u),vβˆ’uβŸ©β€‹π‘‘vgΒ―+2β€‹βˆ«β„³βŸ¨P​(βŸ¨βˆ‡Β―β€‹PβŠ₯β€‹βˆ‡Β―β€‹u,Du​(Du​PβŠ₯)β€‹βˆ‡Β―β€‹uβ€‹βˆ‡Β―β€‹u⟩),vβˆ’uβŸ©β€‹π‘‘vgΒ―\displaystyle 2\int_{\mathcal{M}}\left\langle P^{\bot}(\bar{\Delta}^{2}u),v-u\right\rangle dv_{\bar{g}}+2\int_{\mathcal{M}}\left\langle P(\langle\bar{\nabla}P^{\bot}\bar{\nabla}u,{D}_{u}({D}_{u}P^{\bot})\bar{\nabla}u\bar{\nabla}u\rangle),v-u\right\rangle dv_{\bar{g}}
βˆ’4β€‹βˆ«β„³βŸ¨divgΒ―β€‹βŸ¨βˆ‡Β―β€‹PβŠ₯β€‹βˆ‡Β―β€‹u,βˆ‡Β―β€‹PβŠ₯​P⟩,vβˆ’uβŸ©β€‹π‘‘vgΒ―+4β€‹βˆ«β„³βŸ¨βŸ¨βˆ‡Β―β€‹PβŠ₯β€‹βˆ‡Β―β€‹u,βˆ‡Β―β€‹PβŠ₯β€‹βˆ‡Β―β€‹P⟩,vβˆ’uβŸ©β€‹π‘‘vgΒ―\displaystyle-4\int_{\mathcal{M}}\left\langle{\rm div}_{\bar{g}}\langle\bar{\nabla}P^{\bot}\bar{\nabla}u,\bar{\nabla}P^{\bot}P\rangle,v-u\right\rangle dv_{\bar{g}}+4\int_{\mathcal{M}}\left\langle\langle\bar{\nabla}P^{\bot}\bar{\nabla}u,\bar{\nabla}P^{\bot}\bar{\nabla}P\rangle,v-u\right\rangle dv_{\bar{g}}
=\displaystyle= 2β€‹βˆ«β„³βŸ¨PβŠ₯​(Δ¯2​u),vβˆ’uβŸ©β€‹π‘‘vgΒ―+2β€‹βˆ«β„³βŸ¨βŸ¨βˆ‡Β―β€‹PβŠ₯β€‹βˆ‡Β―β€‹u,Du​(Du​PβŠ₯)β€‹βˆ‡Β―β€‹uβ€‹βˆ‡Β―β€‹u⟩,P​(vβˆ’u)βŸ©β€‹π‘‘vgΒ―\displaystyle 2\int_{\mathcal{M}}\left\langle P^{\bot}(\bar{\Delta}^{2}u),v-u\right\rangle dv_{\bar{g}}+2\int_{\mathcal{M}}\left\langle\langle\bar{\nabla}P^{\bot}\bar{\nabla}u,{D}_{u}({D}_{u}P^{\bot})\bar{\nabla}u\bar{\nabla}u\rangle,P(v-u)\right\rangle dv_{\bar{g}}
+4β€‹βˆ«β„³βŸ¨βŸ¨βˆ‡Β―β€‹PβŠ₯β€‹βˆ‡Β―β€‹u,βˆ‡Β―β€‹PβŠ₯​P⟩,βˆ‡Β―β€‹(vβˆ’u)βŸ©β€‹π‘‘vgΒ―+4β€‹βˆ«β„³βŸ¨βŸ¨βˆ‡Β―β€‹PβŠ₯β€‹βˆ‡Β―β€‹u,βˆ‡Β―β€‹PβŠ₯β€‹βˆ‡Β―β€‹P⟩,vβˆ’uβŸ©β€‹π‘‘vgΒ―\displaystyle+4\int_{\mathcal{M}}\left\langle\langle\bar{\nabla}P^{\bot}\bar{\nabla}u,\bar{\nabla}P^{\bot}P\rangle,\bar{\nabla}(v-u)\right\rangle dv_{\bar{g}}+4\int_{\mathcal{M}}\left\langle\langle\bar{\nabla}P^{\bot}\bar{\nabla}u,\bar{\nabla}P^{\bot}\bar{\nabla}P\rangle,v-u\right\rangle dv_{\bar{g}}
=:\displaystyle=: I+II+III+IV.\displaystyle\textbf{I}+\textbf{II}+\textbf{III}+\textbf{IV}.

For term I, we can use 1.5, a similar argument as in the proof of (4.13) and the second order Hardy inequality (Theorem 1.5) to get

2β€‹βˆ«β„³βŸ¨PβŠ₯​(Δ¯2​u),vβˆ’uβŸ©β€‹π‘‘vgΒ―\displaystyle 2\int_{\mathcal{M}}\left\langle P^{\bot}(\bar{\Delta}^{2}u),v-u\right\rangle dv_{\bar{g}} β‰₯βˆ’Cβ€‹βˆ«β„³|(vβˆ’u)βŠ₯|β‹…|PβŠ₯​(Ξ”2​u)|​𝑑vgΒ―\displaystyle\geq-C\int_{\mathcal{M}}\left|(v-u)^{\bot}\right|\cdot\left|P^{\bot}(\Delta^{2}u)\right|dv_{\bar{g}}
β‰₯βˆ’C​ϡ01/4β€‹βˆ«β„³|vβˆ’u|2​ρ​(x)βˆ’4​𝑑vg\displaystyle\geq-C{\epsilon_{0}}^{1/4}\int_{\mathcal{M}}|v-u|^{2}\rho(x)^{-4}dv_{g}
β‰₯βˆ’C​ϡ01/4β€‹βˆ«β„³|Δ​(vβˆ’u)|2​𝑑vg\displaystyle\geq-C{\epsilon_{0}}^{1/4}\int_{\mathcal{M}}|\Delta(v-u)|^{2}dv_{g}
(4.21) β‰₯βˆ’C​ϡ01/4β€‹βˆ«β„³|Δ¯​(vβˆ’u)|2​𝑑vgΒ―.\displaystyle\geq-C{\epsilon_{0}}^{1/4}\int_{\mathcal{M}}|\bar{\Delta}(v-u)|^{2}dv_{\bar{g}}\,.

For term II, we note that the integrand reads as

βˆ‘Ξ±,Ξ²,Ξ³,i,j,k,m,lPl​kβ€‹βˆ‡Β―Ξ±β€‹(PβŠ₯)i​jβ€‹βˆ‡Β―Ξ±β€‹uj​Duk​Duβ​(PβŠ₯)i​mβ€‹βˆ‡Β―Ξ³β€‹uΞ²β€‹βˆ‡Β―Ξ³β€‹um​(vβˆ’u)l.\sum_{\alpha,\beta,\gamma,i,j,k,m,l}P_{lk}\bar{\nabla}_{\alpha}(P^{\bot})_{ij}\bar{\nabla}_{\alpha}u^{j}D_{u^{k}}D_{u^{\beta}}(P^{\bot})_{im}\bar{\nabla}_{\gamma}u^{\beta}\bar{\nabla}_{\gamma}u^{m}(v-u)^{l}\,.

Now since the target manifold is 𝐒n\mathbf{S}^{n}, we know that uu is the unit normal vector at the point uβˆˆπ’nu\in\mathbf{S}^{n} and PβŠ₯​(𝐯)=⟨𝐯,uβŸ©β€‹uP^{\bot}({\mathbf{v}})=\langle{\mathbf{v}},u\rangle u for any vector 𝐯∈Tu​(𝐑n+1){\mathbf{v}}\in T_{u}(\mathbf{R}^{n+1}) so that

Pi​jβŠ₯=ui​ujandPβŠ₯​(Δ¯​u)=βˆ’βˆ‡Β―β€‹PβŠ₯β€‹βˆ‡Β―β€‹u=βˆ’u​|βˆ‡Β―β€‹u|2.P^{\bot}_{ij}=u^{i}u^{j}\quad\text{and}\quad P^{\bot}(\bar{\Delta}u)=-\bar{\nabla}P^{\bot}\bar{\nabla}u=-u|\bar{\nabla}u|^{2}\,.

Therefore, in this case the integrand in term II becomes

(4.22) βˆ‘Ξ²,Ξ³,i,k,m,lPl​k​ui​|βˆ‡u|2​(Ξ΄i​β​δm​k+Ξ΄i​k​δm​β)β€‹βˆ‡Β―Ξ³β€‹uΞ²β€‹βˆ‡Β―Ξ³β€‹um​(vβˆ’u)l= 0.\sum_{\beta,\gamma,i,k,m,l}P_{lk}u^{i}|\nabla u|^{2}(\delta_{i\beta}\delta_{mk}+\delta_{ik}\delta_{m\beta})\bar{\nabla}_{\gamma}u^{\beta}\bar{\nabla}_{\gamma}u^{m}(v-u)^{l}\,=\,0\,.

For term III, we have (using again Pi​jβŠ₯=ui​ujP^{\bot}_{ij}=u^{i}u^{j})

(4.23) βŸ¨βŸ¨βˆ‡Β―β€‹PβŠ₯β€‹βˆ‡Β―β€‹u,βˆ‡Β―β€‹PβŠ₯​P⟩,βˆ‡Β―β€‹(vβˆ’u)⟩=|βˆ‡Β―β€‹u|2β€‹βˆ‡Β―β€‹uβ‹…βˆ‡Β―β€‹(vβˆ’u).\left\langle\langle\bar{\nabla}P^{\bot}\bar{\nabla}u,\bar{\nabla}P^{\bot}P\rangle,\bar{\nabla}(v-u)\right\rangle=|\bar{\nabla}u|^{2}\bar{\nabla}u\cdot\bar{\nabla}(v-u).

For term IV, we use again Pi​jβŠ₯=ui​uj,P+PβŠ₯=IdP^{\bot}_{ij}=u^{i}u^{j},P+P^{\bot}=\text{Id} and also uβ‹…βˆ‡Β―β€‹u=0u\cdot\bar{\nabla}u=0 on 𝐒n\mathbf{S}^{n} to get

βˆ«β„³βŸ¨βŸ¨βˆ‡Β―β€‹PβŠ₯β€‹βˆ‡Β―β€‹u,βˆ‡Β―β€‹PβŠ₯β€‹βˆ‡Β―β€‹P⟩,vβˆ’uβŸ©β€‹π‘‘vgΒ―=βˆ«β„³βˆ‡Β―β€‹Pi​jβŠ₯β€‹βˆ‡Β―β€‹ujβ€‹βˆ‡Β―β€‹Pi​kβŠ₯β€‹βˆ‡Β―β€‹Pk​s​(vβˆ’u)s​𝑑vgΒ―\displaystyle\int_{\mathcal{M}}\left\langle\langle\bar{\nabla}P^{\bot}\bar{\nabla}u,\bar{\nabla}P^{\bot}\bar{\nabla}P\rangle,v-u\right\rangle dv_{\bar{g}}=\int_{\mathcal{M}}\bar{\nabla}P^{\bot}_{ij}\bar{\nabla}u^{j}\bar{\nabla}P^{\bot}_{ik}\bar{\nabla}P_{ks}(v-u)^{s}dv_{\bar{g}}
=\displaystyle= βˆ’βˆ«β„³|βˆ‡Β―β€‹u|4​uβ‹…(vβˆ’u)​𝑑vgΒ―β‰₯βˆ’2β€‹βˆ«β„³|βˆ‡Β―β€‹u|4​|(vβˆ’u)βŠ₯|​𝑑vgΒ―\displaystyle-\int_{\mathcal{M}}|\bar{\nabla}u|^{4}u\cdot(v-u)dv_{\bar{g}}\geq-2\int_{\mathcal{M}}|\bar{\nabla}u|^{4}|(v-u)^{\bot}|dv_{\bar{g}}
β‰₯\displaystyle\geq βˆ’Cβ€‹βˆ«β„³|vβˆ’u|2​|βˆ‡Β―β€‹u|4​𝑑vgΒ―.\displaystyle-C\int_{\mathcal{M}}|v-u|^{2}|\bar{\nabla}u|^{4}dv_{\bar{g}}\,.

Then by (4.13) and (4) we have

(4.24) IVβ‰₯βˆ’C​ϡ01/4β€‹βˆ«β„³|Δ¯​(vβˆ’u)|2​𝑑vgΒ―.\textbf{IV}\geq-C\epsilon_{0}^{1/4}\int_{\mathcal{M}}|\bar{\Delta}(v-u)|^{2}dv_{\bar{g}}\,.

Now (4.3) follows directly by combining the estimates above. ∎

Lemma 4.4.

There exists Ο΅0>0\epsilon_{0}>0 depending only on β„³\mathcal{M} such that if u,vu,v are as in Theorem 1.2, then we have

βˆ«β„³|τ¯​(v)|2​𝑑vgΒ―βˆ’βˆ«β„³|τ¯​(u)|2​𝑑vgΒ―βˆ’βˆ«β„³|τ¯​(v)βˆ’Ο„Β―β€‹(u)|2​𝑑vgΒ―\displaystyle\int_{\mathcal{M}}|\bar{\tau}(v)|^{2}dv_{\bar{g}}-\int_{\mathcal{M}}|\bar{\tau}(u)|^{2}dv_{\bar{g}}-\int_{\mathcal{M}}|\bar{\tau}(v)-\bar{\tau}(u)|^{2}dv_{\bar{g}}
(4.25) β‰₯\displaystyle\geq βˆ’C​ϡ01/4β€‹βˆ«β„³|Δ¯​(vβˆ’u)|2​𝑑vgΒ―.\displaystyle-C{\epsilon_{0}}^{1/4}\int_{\mathcal{M}}|\bar{\Delta}(v-u)|^{2}dv_{\bar{g}}\,.
Proof.

It follows from Lemma 4.3 and (4.3) that

ψ=\displaystyle\psi= βˆ«β„³|τ¯​(v)|2​𝑑vgΒ―βˆ’βˆ«β„³|τ¯​(u)|2​𝑑vgΒ―βˆ’βˆ«β„³|τ¯​(v)βˆ’Ο„Β―β€‹(u)|2​𝑑vgΒ―\displaystyle\int_{\mathcal{M}}|\bar{\tau}(v)|^{2}dv_{\bar{g}}-\int_{\mathcal{M}}|\bar{\tau}(u)|^{2}dv_{\bar{g}}-\int_{\mathcal{M}}|\bar{\tau}(v)-\bar{\tau}(u)|^{2}dv_{\bar{g}}
=\displaystyle= βˆ«β„³|Δ¯​v|2​𝑑vgΒ―βˆ’βˆ«β„³|Δ¯​u|2​𝑑vgΒ―βˆ’βˆ«β„³|Δ¯​(vβˆ’u)|2​𝑑vgΒ―\displaystyle\int_{\mathcal{M}}|\bar{\Delta}v|^{2}dv_{\bar{g}}-\int_{\mathcal{M}}|\bar{\Delta}u|^{2}dv_{\bar{g}}-\int_{\mathcal{M}}|\bar{\Delta}(v-u)|^{2}dv_{\bar{g}}
βˆ’βˆ«β„³|βˆ‡Β―β€‹v|4βˆ’|βˆ‡Β―β€‹u|4​d​vgΒ―+βˆ«β„³|v​|βˆ‡Β―β€‹v|2+u​|βˆ‡Β―β€‹u|2|2​𝑑vgΒ―\displaystyle-\int_{\mathcal{M}}|\bar{\nabla}v|^{4}-|\bar{\nabla}u|^{4}dv_{\bar{g}}+\int_{\mathcal{M}}\left|v|\bar{\nabla}v|^{2}+u|\bar{\nabla}u|^{2}\right|^{2}dv_{\bar{g}}
+2β€‹βˆ«β„³|βˆ‡Β―β€‹u|2​u​Δ¯​v+|βˆ‡Β―β€‹v|2​v​Δ¯​u​d​vgΒ―\displaystyle+2\int_{\mathcal{M}}|\bar{\nabla}u|^{2}u\bar{\Delta}v+|\bar{\nabla}v|^{2}v\bar{\Delta}u\,dv_{\bar{g}}
β‰₯\displaystyle\geq βˆ’C​ϡ01/4β€‹βˆ«β„³|Δ¯​(vβˆ’u)|2​𝑑vgΒ―+4β€‹βˆ«β„³|βˆ‡Β―β€‹u|2β€‹βˆ‡Β―β€‹uβ€‹βˆ‡Β―β€‹(vβˆ’u)​𝑑vgΒ―\displaystyle-C{\epsilon_{0}}^{1/4}\int_{\mathcal{M}}|\bar{\Delta}(v-u)|^{2}dv_{\bar{g}}+4\int_{\mathcal{M}}|\bar{\nabla}u|^{2}\bar{\nabla}u\bar{\nabla}(v-u)dv_{\bar{g}}
βˆ’βˆ«β„³|βˆ‡Β―β€‹v|4βˆ’|βˆ‡Β―β€‹u|4​d​vgΒ―+βˆ«β„³|v​|βˆ‡Β―β€‹v|2+u​|βˆ‡Β―β€‹u|2|2​𝑑vgΒ―\displaystyle-\int_{\mathcal{M}}|\bar{\nabla}v|^{4}-|\bar{\nabla}u|^{4}dv_{\bar{g}}+\int_{\mathcal{M}}\left|v|\bar{\nabla}v|^{2}+u|\bar{\nabla}u|^{2}\right|^{2}dv_{\bar{g}}
+2β€‹βˆ«β„³|βˆ‡Β―β€‹u|2​u​Δ¯​v+|βˆ‡Β―β€‹v|2​v​Δ¯​u​d​vgΒ―.\displaystyle+2\int_{\mathcal{M}}|\bar{\nabla}u|^{2}u\bar{\Delta}v+|\bar{\nabla}v|^{2}v\bar{\Delta}u\,dv_{\bar{g}}.

Therefore, using u|βˆ‚β„³=v|βˆ‚β„³u|_{\partial\mathcal{M}}=v|_{\partial\mathcal{M}} and βˆ‚Ξ½u|βˆ‚β„³=βˆ‚Ξ½v|βˆ‚β„³\partial_{\nu}u|_{\partial\mathcal{M}}=\partial_{\nu}v|_{\partial\mathcal{M}}, we have

ψβ‰₯\displaystyle\psi\geq βˆ’C​ϡ01/4β€‹βˆ«β„³|Δ¯​(vβˆ’u)|2​𝑑vgΒ―βˆ’2β€‹βˆ«β„³βˆ‡Β―β€‹|βˆ‡Β―β€‹u|2​uβ€‹βˆ‡Β―β€‹v​𝑑vgΒ―βˆ’2β€‹βˆ«β„³|βˆ‡Β―β€‹u|2​u​Δ¯​v​𝑑vgΒ―\displaystyle-C{\epsilon_{0}}^{1/4}\int_{\mathcal{M}}|\bar{\Delta}(v-u)|^{2}dv_{\bar{g}}-2\int_{\mathcal{M}}\bar{\nabla}|\bar{\nabla}u|^{2}u\,\bar{\nabla}vdv_{\bar{g}}-2\int_{\mathcal{M}}|\bar{\nabla}u|^{2}u\bar{\Delta}v\,dv_{\bar{g}}
βˆ’2β€‹βˆ«β„³βˆ‡Β―β€‹|βˆ‡Β―β€‹u|2​vβ€‹βˆ‡Β―β€‹u​𝑑vgΒ―βˆ’2β€‹βˆ«β„³|βˆ‡Β―β€‹u|2​v​Δ¯​u​𝑑vgΒ―βˆ’4β€‹βˆ«β„³|βˆ‡Β―β€‹u|4​𝑑vgΒ―\displaystyle-2\int_{\mathcal{M}}\bar{\nabla}|\bar{\nabla}u|^{2}v\bar{\nabla}u\,dv_{\bar{g}}-2\int_{\mathcal{M}}|\bar{\nabla}u|^{2}v\bar{\Delta}u\,dv_{\bar{g}}-4\int_{\mathcal{M}}|\bar{\nabla}u|^{4}dv_{\bar{g}}
βˆ’βˆ«β„³(|βˆ‡Β―β€‹v|4βˆ’|βˆ‡Β―β€‹u|4)​𝑑vgΒ―+βˆ«β„³|v​|βˆ‡Β―β€‹v|2+u​|βˆ‡Β―β€‹u|2|2​𝑑vgΒ―\displaystyle-\int_{\mathcal{M}}(|\bar{\nabla}v|^{4}-|\bar{\nabla}u|^{4})dv_{\bar{g}}+\int_{\mathcal{M}}\left|v|\bar{\nabla}v|^{2}+u|\bar{\nabla}u|^{2}\right|^{2}dv_{\bar{g}}
+2β€‹βˆ«β„³|βˆ‡Β―β€‹u|2​u​Δ¯​v+|βˆ‡Β―β€‹v|2​v​Δ¯​u​d​vgΒ―\displaystyle+2\int_{\mathcal{M}}|\bar{\nabla}u|^{2}u\bar{\Delta}v+|\bar{\nabla}v|^{2}v\bar{\Delta}u\,dv_{\bar{g}}
=\displaystyle= βˆ’C​ϡ01/4β€‹βˆ«β„³|Δ¯​(vβˆ’u)|2​𝑑vgΒ―+βˆ«β„³βˆ‡Β―β€‹|βˆ‡Β―β€‹u|2β€‹βˆ‡Β―β€‹|vβˆ’u|2​𝑑vgΒ―\displaystyle-C{\epsilon_{0}}^{1/4}\int_{\mathcal{M}}|\bar{\Delta}(v-u)|^{2}dv_{\bar{g}}+\int_{\mathcal{M}}\bar{\nabla}|\bar{\nabla}u|^{2}\bar{\nabla}|v-u|^{2}dv_{\bar{g}}
+2β€‹βˆ«β„³v​Δ¯​u​(|βˆ‡Β―β€‹v|2βˆ’|βˆ‡Β―β€‹u|2)​𝑑vgΒ―+2β€‹βˆ«β„³|βˆ‡Β―β€‹u|2​u​v​(|βˆ‡Β―β€‹v|2βˆ’|βˆ‡Β―β€‹u|2)​𝑑vgΒ―\displaystyle+2\int_{\mathcal{M}}v\bar{\Delta}u(|\bar{\nabla}v|^{2}-|\bar{\nabla}u|^{2})dv_{\bar{g}}+2\int_{\mathcal{M}}|\bar{\nabla}u|^{2}uv(|\bar{\nabla}v|^{2}-|\bar{\nabla}u|^{2})dv_{\bar{g}}
βˆ’βˆ«β„³|vβˆ’u|2​|βˆ‡Β―β€‹u|4​𝑑vgΒ―,\displaystyle-\int_{\mathcal{M}}|v-u|^{2}|\bar{\nabla}u|^{4}dv_{\bar{g}}\,,

where we have used |u|2=|v|2=1|u|^{2}=|v|^{2}=1 so that 1βˆ’u​v=12​|vβˆ’u|21-uv=\frac{1}{2}|v-u|^{2} and uβ€‹βˆ‡Β―β€‹v+vβ€‹βˆ‡Β―β€‹u=βˆ’12β€‹βˆ‡Β―β€‹|vβˆ’u|2u\bar{\nabla}v+v\bar{\nabla}u=-\frac{1}{2}\bar{\nabla}|v-u|^{2}. Thus, we have

ψ\displaystyle\psi β‰₯βˆ’C​ϡ01/4β€‹βˆ«β„³|Δ¯​(vβˆ’u)|2​𝑑vgΒ―+2β€‹βˆ«β„³(Δ¯​u+u​|βˆ‡Β―β€‹u|2)​v​(|βˆ‡Β―β€‹v|2βˆ’|βˆ‡Β―β€‹u|2)​𝑑vgΒ―\displaystyle\geq-C{\epsilon_{0}}^{1/4}\int_{\mathcal{M}}|\bar{\Delta}(v-u)|^{2}dv_{\bar{g}}+2\int_{\mathcal{M}}(\bar{\Delta}u+u|\bar{\nabla}u|^{2})v(|\bar{\nabla}v|^{2}-|\bar{\nabla}u|^{2})dv_{\bar{g}}
=βˆ’C​ϡ01/4β€‹βˆ«β„³|Δ¯​(vβˆ’u)|2​𝑑vgΒ―+2β€‹βˆ«β„³Ο„Β―β€‹(u)β‹…(vβˆ’u)β€‹βŸ¨βˆ‡Β―β€‹(v+u),βˆ‡Β―β€‹(vβˆ’u)βŸ©β€‹π‘‘vgΒ―\displaystyle=-C{\epsilon_{0}}^{1/4}\int_{\mathcal{M}}|\bar{\Delta}(v-u)|^{2}dv_{\bar{g}}+2\int_{\mathcal{M}}\bar{\tau}(u)\cdot(v-u)\langle\bar{\nabla}(v+u),\bar{\nabla}(v-u)\rangle\;dv_{\bar{g}}
β‰₯βˆ’C​ϡ01/4β€‹βˆ«β„³|Δ¯​(vβˆ’u)|2​𝑑vgΒ―\displaystyle\geq-C{\epsilon_{0}}^{1/4}\int_{\mathcal{M}}|\bar{\Delta}(v-u)|^{2}dv_{\bar{g}}
βˆ’2​(βˆ«β„³|τ¯​(u)|2​|vβˆ’u|2​𝑑vgΒ―)12​(βˆ«β„³|βˆ‡Β―β€‹(v+u)|4​𝑑vgΒ―)14​(βˆ«β„³|βˆ‡Β―β€‹(vβˆ’u)|4​𝑑vgΒ―)14\displaystyle\quad-2\left(\int_{\mathcal{M}}|\bar{\tau}(u)|^{2}|v-u|^{2}dv_{\bar{g}}\right)^{\frac{1}{2}}\left(\int_{\mathcal{M}}|\bar{\nabla}(v+u)|^{4}dv_{\bar{g}}\right)^{\frac{1}{4}}\left(\int_{\mathcal{M}}|\bar{\nabla}(v-u)|^{4}dv_{\bar{g}}\right)^{\frac{1}{4}}
β‰₯βˆ’C​ϡ01/4β€‹βˆ«β„³|Δ¯​(vβˆ’u)|2​𝑑vgΒ―,\displaystyle\geq-C{\epsilon_{0}}^{1/4}\int_{\mathcal{M}}|\bar{\Delta}(v-u)|^{2}\;dv_{\bar{g}}\,,

where we used (4.12), (4.18), (4.19), Hardy inequality (Theorem 1.5), (4.10) and (4.11). ∎

Proof of Theorem 1.2.

From (4), we have

(4.26) βˆ«β„³|Δ​vβˆ’Ξ”β€‹u|2​𝑑vg≀Cβ€‹βˆ«β„³|Δ¯​vβˆ’Ξ”Β―β€‹u|2​𝑑vgΒ―.\int_{\mathcal{M}}|\Delta v-\Delta u|^{2}dv_{g}\leq C\int_{\mathcal{M}}|\bar{\Delta}v-\bar{\Delta}u|^{2}dv_{\bar{g}}\,.

Combining (4.6) and (4.4) we get

βˆ«β„³|τ¯​(u)|2​𝑑vgΒ―βˆ’βˆ«β„³|τ¯​(v)|2​𝑑vgΒ―+βˆ«β„³|τ¯​(v)βˆ’Ο„Β―β€‹(u)|2​𝑑vgΒ―\displaystyle\int_{\mathcal{M}}|\bar{\tau}(u)|^{2}dv_{\bar{g}}-\int_{\mathcal{M}}|\bar{\tau}(v)|^{2}dv_{\bar{g}}+\int_{\mathcal{M}}|\bar{\tau}(v)-\bar{\tau}(u)|^{2}dv_{\bar{g}}
(4.27) ≀\displaystyle\leq C​ϡ01/4β€‹βˆ«β„³|τ¯​(v)βˆ’Ο„Β―β€‹(u)|2​𝑑vgΒ―.\displaystyle\,C\epsilon_{0}^{1/4}\int_{\mathcal{M}}|\bar{\tau}(v)-\bar{\tau}(u)|^{2}dv_{\bar{g}}\,.

Now choosing Ο΅0\epsilon_{0} sufficiently small we get (using (4.26) and (4))

βˆ«β„³|Δ​vβˆ’Ξ”β€‹u|2​𝑑vg≀Cβ€‹βˆ«β„³|Δ¯​vβˆ’Ξ”Β―β€‹u|2​𝑑vgΒ―\displaystyle\int_{\mathcal{M}}|\Delta v-\Delta u|^{2}dv_{g}\leq C\int_{\mathcal{M}}|\bar{\Delta}v-\bar{\Delta}u|^{2}dv_{\bar{g}}
≀\displaystyle\leq 4​Cβ€‹βˆ«β„³|τ¯​(v)βˆ’Ο„Β―β€‹(u)|2​𝑑vg¯≀8​C​(βˆ«β„³|τ¯​(v)|2​𝑑vgΒ―βˆ’βˆ«β„³|τ¯​(u)|2​𝑑vgΒ―)\displaystyle 4C\int_{\mathcal{M}}|\bar{\tau}(v)-\bar{\tau}(u)|^{2}dv_{\bar{g}}\leq 8C\left(\int_{\mathcal{M}}|\bar{\tau}(v)|^{2}dv_{\bar{g}}-\int_{\mathcal{M}}|\bar{\tau}(u)|^{2}dv_{\bar{g}}\right)
=\displaystyle= 8​Cβ€‹βˆ‘i=1,β‹―,N(∫Ωi|τ¯​(v)|2​𝑑vgΒ―βˆ’βˆ«Ξ©i|τ¯​(u)|2​𝑑vgΒ―)=8​Cβ€‹βˆ‘i=1,β‹―,N(ℰ​(v,Ξ©i)βˆ’β„°β€‹(u,Ξ©i))\displaystyle 8C\sum_{i=1,\cdots,N}\left(\int_{\Omega_{i}}|\bar{\tau}(v)|^{2}dv_{\bar{g}}-\int_{\Omega_{i}}|\bar{\tau}(u)|^{2}dv_{\bar{g}}\right)=8C\sum_{i=1,\cdots,N}\left(\mathcal{E}(v,\Omega_{i})-\mathcal{E}(u,\Omega_{i})\right)
=\displaystyle= 8​C​(ℰ​(v,β„³)βˆ’β„°β€‹(u,β„³)).\displaystyle 8C\left(\mathcal{E}(v,\mathcal{M})-\mathcal{E}(u,\mathcal{M})\right)\,.

This completes the proof of Theorem 1.2. ∎

5. Conflict of interest and Data availability

No conflict of interest exits in the submission of this manuscript, and manuscript is approved by all authors for publication. Data sharing not applicable to this article as no datasets were generated or analyzed in this study.

Appendix A Conformal invariance of ℰ​(u,β„³)\mathcal{E}(u,\mathcal{M})

In this appendix we give a quick check of the conformal invariance of ℰ​(u,β„³)\mathcal{E}(u,\mathcal{M}) in four dimensions which does not seem to be in the literature. Let β„³\mathcal{M} be a smooth Riemannian 4-manifold with or without boundary and 𝒩\mathcal{N} be another smooth Riemannian manifold. Given u∈C2​(β„³,𝒩)u\in C^{2}(\mathcal{M},\mathcal{N}), we denote by uβˆ—β€‹T​𝒩u^{*}T\mathcal{N} the pull-back on (β„³,g)(\mathcal{M},g) of the tangent bundle of (𝒩,h)β†ͺ𝐑K(\mathcal{N},h)\hookrightarrow\mathbf{R}^{K}. Then the tension field τ​(u)∈uβˆ—β€‹T​𝒩\tau(u)\in u^{*}T\mathcal{N} is defined by

(A.1) τ​(u)=βˆ‘Ξ±βˆ‡~eα​d​u​(eΞ±),\tau(u)=\sum_{\alpha}{\tilde{\nabla}}_{e_{\alpha}}du(e_{\alpha}),

where {eΞ±}\{e_{\alpha}\} is an orthonormal frame of T​ℳT\mathcal{M} and βˆ‡~\tilde{\nabla} is the metric connection on Tβˆ—β€‹β„³βŠ—uβˆ—β€‹T​𝒩T^{*}\mathcal{M}\otimes u^{*}T\mathcal{N}. Fix local coordinates {xΞ±}\{x^{\alpha}\} and {yi}\{y^{i}\} of β„³\mathcal{M} and 𝒩\mathcal{N} respectively, we have

(A.2) Ο„i​(u)=gΞ±β€‹Ξ²β€‹βˆ‚2uiβˆ‚xΞ±β€‹βˆ‚xΞ²βˆ’gΞ±β€‹Ξ²β€‹Ξ“Ξ±β€‹Ξ²Ξ³β€‹βˆ‚uiβˆ‚xΞ³+gα​β​Γ¯j​kiβ€‹βˆ‚ujβˆ‚xΞ±β€‹βˆ‚ukβˆ‚xΞ²,\tau^{i}(u)=g^{\alpha\beta}\frac{\partial^{2}u^{i}}{\partial x^{\alpha}\partial x^{\beta}}-g^{\alpha\beta}\Gamma^{\gamma}_{\alpha\beta}\frac{\partial u^{i}}{\partial x^{\gamma}}+g^{\alpha\beta}\bar{\Gamma}^{i}_{jk}\frac{\partial u^{j}}{\partial x^{\alpha}}\frac{\partial u^{k}}{\partial x^{\beta}},

where Ξ“\Gamma and Γ¯\bar{\Gamma} are the Christoffel symbols on β„³\mathcal{M} and 𝒩\mathcal{N} respectively. Define

Ai:=gΞ±β€‹Ξ²β€‹βˆ‚2uiβˆ‚xΞ±β€‹βˆ‚xΞ²+gα​β​Γ¯j​kiβ€‹βˆ‚ujβˆ‚xΞ±β€‹βˆ‚ukβˆ‚xΞ².A^{i}:=g^{\alpha\beta}\frac{\partial^{2}u^{i}}{\partial x^{\alpha}\partial x^{\beta}}+g^{\alpha\beta}\bar{\Gamma}^{i}_{jk}\frac{\partial u^{j}}{\partial x^{\alpha}}\frac{\partial u^{k}}{\partial x^{\beta}}.

Then

(A.3) Ο„i​(u)=Aiβˆ’gΞ±β€‹Ξ²β€‹Ξ“Ξ±β€‹Ξ²Ξ³β€‹βˆ‚uiβˆ‚xΞ³=Aiβˆ’gΞ±β€‹Ξ²β€‹βŸ¨βˆ‡XΞ±XΞ²,d​ui⟩,\begin{split}\tau^{i}(u)&=A^{i}-g^{\alpha\beta}\Gamma^{\gamma}_{\alpha\beta}\frac{\partial u^{i}}{\partial x^{\gamma}}=A^{i}-g^{\alpha\beta}\langle\nabla_{X_{\alpha}}X_{\beta},du^{i}\rangle,\end{split}

where βˆ‡=βˆ‡g\nabla=\nabla_{g} is the connection on β„³\mathcal{M} and XΞ±:=βˆ‚βˆ‚xΞ±X_{\alpha}:=\frac{\partial}{\partial x^{\alpha}}. Now under the conformal change gΒ―=e2​ϕ​g\bar{g}=e^{2\phi}g (with Ο•βˆˆC0βˆžβ€‹(β„³,𝐑)\phi\in C^{\infty}_{0}(\mathcal{M},\mathbf{R}) if βˆ‚β„³β‰ βˆ…\partial\mathcal{M}\neq\emptyset), we have

(A.4) AΒ―i=eβˆ’2​ϕ​Ai\bar{A}^{i}=e^{-2\phi}A^{i}

and

(A.5) gΒ―Ξ±β€‹Ξ²β€‹βŸ¨(βˆ‡Β―gΒ―)Xα​XΞ²,d​ui⟩=eβˆ’2​ϕ​gΞ±β€‹Ξ²β€‹βŸ¨βˆ‡XΞ±XΞ²,d​uiβŸ©βˆ’2​eβˆ’2β€‹Ο•β€‹βŸ¨βˆ‡Ο•,d​ui⟩,\bar{g}^{\alpha\beta}\langle(\bar{\nabla}_{\bar{g}})_{X_{\alpha}}X_{\beta},du^{i}\rangle=e^{-2\phi}g^{\alpha\beta}\langle\nabla_{X_{\alpha}}X_{\beta},du^{i}\rangle-2e^{-2\phi}\langle\nabla\phi,du^{i}\rangle\,,

where we have used

(A.6) (βˆ‡Β―gΒ―)X​Y=βˆ‡XY+X​(Ο•)​Y+Y​(Ο•)​Xβˆ’g​(X,Y)β€‹βˆ‡Ο•.(\bar{\nabla}_{\bar{g}})_{X}Y=\nabla_{X}Y+X(\phi)Y+Y(\phi)X-g(X,Y)\nabla\phi.

Therefore, combing (A.4) and (A.5) together, we get

(A.7) τ¯i​(u)=eβˆ’2​ϕ​τi​(u)+2​eβˆ’2β€‹Ο•β€‹βŸ¨βˆ‡Ο•,d​ui⟩\bar{\tau}^{i}(u)=e^{-2\phi}\tau^{i}(u)+2e^{-2\phi}\langle\nabla\phi,du^{i}\rangle

and

(A.8) |τ¯​(u)|2βˆ’eβˆ’4​ϕ​|τ​(u)|2=4​eβˆ’4​ϕ​hi​j​(u)​τj​(u)β€‹βŸ¨βˆ‡Ο•,d​ui⟩+4​eβˆ’4​ϕ​|βŸ¨βˆ‡Ο•,d​u⟩|2.|\bar{\tau}(u)|^{2}-e^{-4\phi}|\tau(u)|^{2}=4e^{-4\phi}h_{ij}(u)\tau^{j}(u)\langle\nabla\phi,du^{i}\rangle+4e^{-4\phi}|\langle\nabla\phi,du\rangle|^{2}.

Recall the following formulas for the conformal change of Ricci tensor and scalar curvature:

(A.9) RicΒ―=Ricβˆ’2​(Hess​(Ο•)βˆ’βˆ‡Ο•βŠ—βˆ‡Ο•)βˆ’(Δ​ϕ+2​|βˆ‡Ο•|2)​g\overline{\rm Ric}={\rm Ric}-2({\rm Hess}(\phi)-\nabla\phi\otimes\nabla\phi)-(\Delta\phi+2|\nabla\phi|^{2})g

and

(A.10) ScΒ―=eβˆ’2​ϕ​(Scβˆ’6β€‹Ξ”β€‹Ο•βˆ’6​|βˆ‡Ο•|2),\overline{\rm{Sc}}=e^{-2\phi}({\rm{Sc}}-6\Delta\phi-6|\nabla\phi|^{2}),

where Hess​(Ο•){\rm Hess}(\phi) denotes the Hessian of Ο•\phi. Consequently, we obtain

(A.11) 23​Sc¯​|d​u|gΒ―2βˆ’23​eβˆ’4​ϕ​Sc​|d​u|g2\displaystyle\frac{2}{3}\overline{\rm{Sc}}|du|_{\bar{g}}^{2}-\frac{2}{3}e^{-4\phi}{\rm{Sc}}|du|^{2}_{g} =23​eβˆ’4​ϕ​(βˆ’6β€‹Ξ”β€‹Ο•βˆ’6​|βˆ‡Ο•|2)​|d​u|g2\displaystyle=\frac{2}{3}e^{-4\phi}(-6\Delta\phi-6|\nabla\phi|^{2})|du|^{2}_{g}
=βˆ’4​eβˆ’4​ϕ​(Δ​ϕ+|βˆ‡Ο•|2)​|d​u|g2\displaystyle=-4e^{-4\phi}(\Delta\phi+|\nabla\phi|^{2})|du|^{2}_{g}

and

2​Ric¯​(d​u,d​u)βˆ’2​eβˆ’4​ϕ​Ric​(d​u,d​u)\displaystyle 2\overline{\rm Ric}(du,du)-2e^{-4\phi}{\rm Ric}(du,du)
=\displaystyle= 2​R¯α​β​g¯α​γ​gΒ―Ξ²β€‹Οƒβ€‹βŸ¨βˆ‚uβˆ‚xΞ³,βˆ‚uβˆ‚xΟƒβŸ©βˆ’2​eβˆ’4​ϕ​Ric​(d​u,d​u)\displaystyle 2\bar{R}_{\alpha\beta}\bar{g}^{\alpha\gamma}\bar{g}^{\beta\sigma}\left\langle\frac{\partial u}{\partial x_{\gamma}},\frac{\partial u}{\partial x_{\sigma}}\right\rangle-2e^{-4\phi}{\rm Ric}(du,du)
=\displaystyle= 2​eβˆ’4​ϕ​gα​γ​gβ​σ​((βˆ’Ξ”β€‹Ο•βˆ’2​|βˆ‡Ο•|2)​gΞ±β€‹Ξ²βˆ’2​(βˆ‡Ξ²Ο•Ξ±βˆ’Ο•Ξ±β€‹Ο•Ξ²))β€‹βŸ¨uΞ³,uΟƒβŸ©\displaystyle 2e^{-4\phi}g^{\alpha\gamma}g^{\beta\sigma}\bigg{(}(-\Delta\phi-2|\nabla\phi|^{2})g_{\alpha\beta}-2(\nabla_{\beta}\phi_{\alpha}-\phi_{\alpha}\phi_{\beta})\bigg{)}\langle u_{\gamma},u_{\sigma}\rangle
(A.12) =\displaystyle= βˆ’4​eβˆ’4​ϕ​|βˆ‡Ο•|2​|d​u|g2+4​eβˆ’4​ϕ​|βŸ¨βˆ‡Ο•,d​u⟩|2βˆ’2​eβˆ’4​ϕ​Δ​ϕ​|d​u|g2\displaystyle-4e^{-4\phi}|\nabla\phi|^{2}|du|_{g}^{2}+4e^{-4\phi}|\langle\nabla\phi,du\rangle|^{2}-2e^{-4\phi}\Delta\phi|du|_{g}^{2}
βˆ’4​eβˆ’4β€‹Ο•β€‹βˆ‘Ξ±,Ξ²βˆ‡Ξ±β€‹Ξ²2Ο•β€‹βŸ¨βˆ‡Ξ±u,βˆ‡Ξ²u⟩,\displaystyle-4e^{-4\phi}\sum_{\alpha,\beta}\nabla^{2}_{\alpha\beta}\phi\left\langle\nabla_{\alpha}u,\nabla_{\beta}u\right\rangle\,,

where Einstein summation convention was used and we used different subscripts to distinguish different metrics on the bundle Tβˆ—β€‹β„³βŠ—uβˆ—β€‹T​𝒩T^{*}\mathcal{M}\otimes u^{*}T\mathcal{N}. Combining these we have

βˆ«β„³[(​A.8​)+(​A.11​)βˆ’(​A​)]​𝑑vgΒ―\displaystyle\int_{\mathcal{M}}\left[\eqref{tau}+\eqref{s}-\eqref{ric}\right]dv_{\bar{g}}
=\displaystyle= βˆ‘Ξ±,Ξ²βˆ«β„³2​eβˆ’4​ϕ​(2​hi​j​(u)​τj​(u)β€‹βŸ¨βˆ‡Ο•,d​uiβŸ©βˆ’Ξ”β€‹Ο•β€‹|d​u|g2+2β€‹βˆ‡Ξ±β€‹Ξ²2Ο•β€‹βŸ¨βˆ‡Ξ±u,βˆ‡Ξ²u⟩)​𝑑vgΒ―\displaystyle\sum_{\alpha,\beta}\int_{\mathcal{M}}2e^{-4\phi}\left(2h_{ij}(u)\tau^{j}(u)\langle\nabla\phi,du^{i}\rangle-\Delta\phi|du|_{g}^{2}+2\nabla^{2}_{\alpha\beta}\phi\langle\nabla_{\alpha}u,\nabla_{\beta}u\rangle\right)dv_{\bar{g}}
=\displaystyle= βˆ‘Ξ±,Ξ²βˆ«β„³4β€‹βˆ‡Ξ±Ο•β€‹βŸ¨Ξ”β€‹u,βˆ‡Ξ±uβŸ©βˆ’2​Δ​ϕ​|d​u|g2+4β€‹βˆ‡Ξ±β€‹Ξ²2Ο•β€‹βŸ¨βˆ‡Ξ±u,βˆ‡Ξ²uβŸ©β€‹d​vg\displaystyle{\sum_{\alpha,\beta}\int_{\mathcal{M}}4\nabla_{\alpha}\phi\langle\Delta u,\nabla_{\alpha}{u}\rangle-2\Delta\phi|du|_{g}^{2}+4\nabla^{2}_{\alpha\beta}\phi\langle\nabla_{\alpha}u,\nabla_{\beta}u\rangle dv_{g}}
=\displaystyle= βˆ‘Ξ±,Ξ²βˆ«β„³βˆ’2​Δ​ϕ​|d​u|2βˆ’4β€‹βˆ‡Ξ²Ο•β€‹βŸ¨βˆ‡Ξ±u,βˆ‡Ξ±β€‹Ξ²2uβŸ©β€‹d​vg\displaystyle\sum_{\alpha,\beta}\int_{\mathcal{M}}-2\Delta\phi|du|^{2}-4\nabla_{\beta}\phi\langle\nabla_{\alpha}u,\nabla_{\alpha\beta}^{2}u\rangle dv_{g}
=\displaystyle= βˆ‘Ξ±,Ξ²βˆ«β„³2β€‹βˆ‡Ξ²Ο•β€‹βˆ‡Ξ²βŸ¨βˆ‡Ξ±u,βˆ‡Ξ±uβŸ©βˆ’4β€‹βˆ‡Ξ²Ο•β€‹βŸ¨βˆ‡Ξ±u,βˆ‡Ξ±β€‹Ξ²2uβŸ©β€‹d​vg=0.\displaystyle\sum_{\alpha,\beta}\int_{\mathcal{M}}2\nabla_{\beta}{\phi}\nabla_{\beta}\langle\nabla_{\alpha}u,\nabla_{\alpha}u\rangle-4\nabla_{\beta}\phi\langle\nabla_{\alpha}u,\nabla^{2}_{\alpha\beta}u\rangle dv_{g}=0.

Hence, the energy functional ℰ​(u,β„³)\mathcal{E}(u,\mathcal{M}) is conformally invariant in four dimensions. Now using the notations in (4.1), on each Ξ©i,i=1,β‹―,N\Omega_{i},i=1,\cdots,N we have

g=e2​ϕi​gΒ―,g=e^{2\phi_{i}}\bar{g}\,,

where gΒ―\bar{g} is the standard Euclidean metric. By the above conformal change of ℰ​(β‹…,β„³)\mathcal{E}(\cdot,\mathcal{M}), for any w∈C2​(β„³,𝒩)w\in C^{2}(\mathcal{M},\mathcal{N}) we get

ℰ​(w,(β„³,g))\displaystyle\mathcal{E}(w,(\mathcal{M},g))
=\displaystyle= βˆ‘iℰ​(w,(Ξ©i,gΒ―))+βˆ‘i,Ξ±,β∫Ωi4β€‹βˆ‡Β―Ξ±β€‹Ο•iβ€‹βŸ¨Ξ”Β―β€‹w,βˆ‡Β―Ξ±β€‹wβŸ©βˆ’2​Δ¯​ϕi​|βˆ‡Β―β€‹w|2+4β€‹βˆ‡Β―Ξ±β€‹Ξ²2​ϕiβ€‹βŸ¨βˆ‡Β―Ξ±β€‹w,βˆ‡Β―Ξ²β€‹wβŸ©β€‹d​vgΒ―.\displaystyle\sum_{i}\mathcal{E}(w,(\Omega_{i},\bar{g}))+\sum_{i,\alpha,\beta}\int_{\Omega_{i}}4\bar{\nabla}_{\alpha}\phi_{i}\langle\bar{\Delta}w,\bar{\nabla}_{\alpha}w\rangle-2\bar{\Delta}\phi_{i}|\bar{\nabla}w|^{2}+4\bar{\nabla}^{2}_{\alpha\beta}\phi_{i}\langle\bar{\nabla}_{\alpha}w,\bar{\nabla}_{\beta}w\rangle dv_{\bar{g}}.

Thus, for any variation w​(t)w(t) of ww such that dd​t|t=0​w​(t)=Pβ€‹Ο•βˆˆTw​𝒩\left.\frac{d}{dt}\right|_{t=0}w(t)=P\phi\in T_{w}\mathcal{N} where Ο•βˆˆC0βˆžβ€‹(β„³,𝐑K)\phi\in C^{\infty}_{0}(\mathcal{M},\mathbf{R}^{K}), the first variation formula for ℰ​(w,(β„³,g))\mathcal{E}(w,(\mathcal{M},g)) is (cf. Appendix B)

(A.13) dd​t|t=0​ℰ​(w​(t),(β„³,g))\displaystyle\left.\frac{d}{dt}\right|_{t=0}{\mathcal{E}}(w(t),(\mathcal{M},g))
=\displaystyle= 2βˆ‘i∫Ωieβˆ’4​ϕi⟨P(Δ¯2u)βˆ’P(A(βˆ‡Β―u,βˆ‡Β―u)DuA(βˆ‡Β―u,βˆ‡Β―u))\displaystyle 2\sum_{i}\int_{\Omega_{i}}e^{-4\phi_{i}}\big{\langle}P(\bar{\Delta}^{2}u)-P(A(\bar{\nabla}u,\bar{\nabla}u){D}_{u}A(\bar{\nabla}u,\bar{\nabla}u))
+2div(A(βˆ‡Β―u,βˆ‡Β―u)A(βˆ‡Β―u,P))βˆ’2A(βˆ‡Β―u,βˆ‡Β―u)A(βˆ‡Β―u,βˆ‡Β―P),Ο•βŸ©gdvg\displaystyle+2{\rm div}(A(\bar{\nabla}u,\bar{\nabla}u)A(\bar{\nabla}u,P))-2A(\bar{\nabla}u,\bar{\nabla}u)A(\bar{\nabla}u,\bar{\nabla}P),\phi\big{\rangle}_{g}dv_{g}
(A.14) +βˆ‘i,Ξ±,β∫Ωi[4βˆ‡Β―Ξ±Ο•iβŸ¨Ξ”Β―(PΟ•),βˆ‡Β―Ξ±w⟩+4βˆ‡Β―Ξ±Ο•iβŸ¨Ξ”Β―w,βˆ‡Β―Ξ±(PΟ•)⟩\displaystyle+\sum_{i,\alpha,\beta}\int_{\Omega_{i}}\big{[}4\bar{\nabla}_{\alpha}\phi_{i}\langle\bar{\Delta}(P\phi),\bar{\nabla}_{\alpha}w\rangle+4\bar{\nabla}_{\alpha}\phi_{i}\langle\bar{\Delta}w,\bar{\nabla}_{\alpha}(P\phi)\rangle
(A.15) βˆ’4Δ¯ϕiβŸ¨βˆ‡Β―w,βˆ‡(PΟ•)⟩+8βˆ‡Β―Ξ±β€‹Ξ²2Ο•iβŸ¨βˆ‡Β―Ξ±(PΟ•),βˆ‡Β―Ξ²w⟩]dvgΒ―.\displaystyle-4\bar{\Delta}\phi_{i}\langle\bar{\nabla}w,\nabla(P\phi)\rangle+8\bar{\nabla}^{2}_{\alpha\beta}\phi_{i}\langle\bar{\nabla}_{\alpha}(P\phi),\bar{\nabla}_{\beta}w\rangle\big{]}dv_{\bar{g}}\,.

In particular, for any fixed j=1,β‹―,Nj=1,\cdots,N and any Ο•βˆˆC0βˆžβ€‹(Ξ©j,𝐑K)\phi\in C^{\infty}_{0}(\Omega_{j},\mathbf{R}^{K}) we have

dd​t|t=0​ℰ​(w​(t),(β„³,g))\displaystyle\left.\frac{d}{dt}\right|_{t=0}{\mathcal{E}}(w(t),(\mathcal{M},g))
(A.16) =\displaystyle= 2∫Ωjeβˆ’4​ϕj⟨P(Δ¯2u)βˆ’P(A(βˆ‡Β―u,βˆ‡Β―u)DuA(βˆ‡Β―u,βˆ‡Β―u))\displaystyle 2\int_{\Omega_{j}}e^{-4\phi_{j}}\big{\langle}P(\bar{\Delta}^{2}u)-P(A(\bar{\nabla}u,\bar{\nabla}u){D}_{u}A(\bar{\nabla}u,\bar{\nabla}u))
+2div(A(βˆ‡Β―u,βˆ‡Β―u)A(βˆ‡Β―u,P))βˆ’2A(βˆ‡Β―u,βˆ‡Β―u)A(βˆ‡Β―u,βˆ‡Β―P),Ο•βŸ©gdvg,\displaystyle+2{\rm div}(A(\bar{\nabla}u,\bar{\nabla}u)A(\bar{\nabla}u,P))-2A(\bar{\nabla}u,\bar{\nabla}u)A(\bar{\nabla}u,\bar{\nabla}P),\phi\big{\rangle}_{g}dv_{g}\,,

noting that since Ο•βˆˆC0βˆžβ€‹(Ξ©j,𝐑K)\phi\in C^{\infty}_{0}(\Omega_{j},\mathbf{R}^{K}), the terms in (A.14) and (A.15) cancel out to zero using integration by parts over Ξ©j\Omega_{j}. Therefore we have

Proposition A.1.

If uu is a conformal-harmonic map on a locally conformally flat 44-manifold (β„³,g)(\mathcal{M},g), then uu is locally an intrinsic biharmonic map on β„³\mathcal{M} (with respect to the flat connection) up to a conformal change of gg.

Appendix B Conformal-harmonic map equation

For the sake of completeness, in this appendix we include a derivation of the conformal-harmonic map equation (1), i.e., the Euler-Lagrangian equation for ℰ​(u,β„³)\mathcal{E}(u,\mathcal{M}). Consider a variation u​(t)u(t) of uu such that dd​t|t=0​u​(t)=Pβ€‹Ο•βˆˆTu​𝒩\left.\frac{d}{dt}\right|_{t=0}u(t)=P\phi\in T_{u}\mathcal{N} where Ο•βˆˆC0βˆžβ€‹(β„³,𝐑K)\phi\in C^{\infty}_{0}(\mathcal{M},\mathbf{R}^{K}). Then

dd​t|t=0​ℰ​(u​(t),β„³)\displaystyle\left.\frac{d}{dt}\right|_{t=0}\mathcal{E}(u(t),\mathcal{M})
=\displaystyle= βˆ«β„³dd​t|t=0​|τ​(u​(t))|2+23​Scℳ​dd​t|t=0​|d​u​(t)|2βˆ’2​dd​t|t=0​Ricℳ​(d​u​(t),d​u​(t))\displaystyle\int_{\mathcal{M}}\frac{d}{dt}\bigg{|}_{t=0}|\tau(u(t))|^{2}+\frac{2}{3}{\rm Sc}^{\mathcal{M}}\frac{d}{dt}\bigg{|}_{t=0}|du(t)|^{2}-2\frac{d}{dt}\bigg{|}_{t=0}{\rm Ric}^{\mathcal{M}}(du(t),du(t))
(B.1) :=\displaystyle:= I+II+III.\displaystyle\,{\textbf{I}}+{\textbf{II}}+{\textbf{III}}.

We compute the three terms in (B) as follow. Note that the first term I is the first variation of the intrinsic bienergy βˆ«β„³|τ​(u)|2\int_{\mathcal{M}}|\tau(u)|^{2} and therefore yields exactly the intrinsic biharmonic map equation.

I=\displaystyle{\textbf{I}}= dd​t|t=0β€‹βˆ«β„³|Δ​u​(t)|2βˆ’|A​(u​(t))​(βˆ‡u​(t),βˆ‡u​(t))|2\displaystyle\frac{d}{dt}\bigg{|}_{t=0}\int_{\mathcal{M}}\left|\Delta u(t)|^{2}-|A(u(t))(\nabla u(t),\nabla u(t))\right|^{2}
=\displaystyle= 2β€‹βˆ«β„³βŸ¨Ξ”β€‹u,Δ​(P​ϕ)βŸ©βˆ’A​(βˆ‡u,βˆ‡u)​(Du​A​(βˆ‡u,βˆ‡u)​P​ϕ+2​A​(βˆ‡u,βˆ‡(P​ϕ)))\displaystyle 2\int_{\mathcal{M}}\langle\Delta u,\Delta(P\phi)\rangle-A(\nabla u,\nabla u)(D_{u}A(\nabla u,\nabla u)P\phi+2A(\nabla u,\nabla(P\phi)))
=\displaystyle= 2β€‹βˆ«β„³βŸ¨Ξ”2​u,Pβ€‹Ο•βŸ©βˆ’βŸ¨A​(βˆ‡u,βˆ‡u)​Du​A​(βˆ‡u,βˆ‡u),Pβ€‹Ο•βŸ©\displaystyle 2\int_{\mathcal{M}}\langle\Delta^{2}u,P\phi\rangle-\langle A(\nabla u,\nabla u)D_{u}A(\nabla u,\nabla u),P\phi\rangle
+2β€‹βŸ¨βˆ‡(A​(βˆ‡u,βˆ‡u)​A​(βˆ‡u,β‹…)),Pβ€‹Ο•βŸ©\displaystyle+2\langle\nabla(A(\nabla u,\nabla u)A(\nabla u,\cdot)),P\phi\rangle
(B.2) =\displaystyle= 2βˆ«β„³βŸ¨P(Ξ”2u)βˆ’P(A(βˆ‡u,βˆ‡u)DuA(βˆ‡u,βˆ‡u))\displaystyle 2\int_{\mathcal{M}}\langle P(\Delta^{2}u)-P(A(\nabla u,\nabla u)D_{u}A(\nabla u,\nabla u))
+2div(A(βˆ‡u,βˆ‡u)A(βˆ‡u,P))βˆ’2A(βˆ‡u,βˆ‡u)A(βˆ‡u,βˆ‡P),Ο•βŸ©.\displaystyle+2{\rm div}(A(\nabla u,\nabla u)A(\nabla u,P))-2A(\nabla u,\nabla u)A(\nabla u,\nabla P),\phi\rangle.

Now let’s look at terms II and III which give the additional lower order terms to the intrinsic biharmonic map equation that make the conformal-harmonic map equation (1) conformally invariant.

II =23β€‹βˆ«β„³Scℳ​dd​t|t=0​|d​u​(t)|2=43β€‹βˆ«β„³βŸ¨Scβ„³β€‹βˆ‡u,βˆ‡(P​ϕ)⟩\displaystyle=\frac{2}{3}\int_{\mathcal{M}}{\rm Sc}^{\mathcal{M}}\frac{d}{dt}\bigg{|}_{t=0}|du(t)|^{2}=\frac{4}{3}\int_{\mathcal{M}}\langle{\rm Sc}^{\mathcal{M}}\nabla u,\nabla{(P\phi)}\rangle
=43β€‹βˆ«β„³βŸ¨Scβ„³β€‹βˆ‡eΞ±u,βˆ‡eΞ±(P​ϕ)⟩=βˆ’43β€‹βˆ«β„³βŸ¨βˆ‡eΞ±(Scβ„³β€‹βˆ‡eΞ±u),Pβ€‹Ο•βŸ©\displaystyle=\frac{4}{3}\int_{\mathcal{M}}\langle{\rm Sc}^{\mathcal{M}}\nabla_{e_{\alpha}}u,\nabla_{e_{\alpha}}(P\phi)\rangle=-\frac{4}{3}\int_{\mathcal{M}}\langle\nabla_{e_{\alpha}}({\rm Sc}^{\mathcal{M}}\nabla_{e_{\alpha}}u),P\phi\rangle
=βˆ’43β€‹βˆ«β„³βŸ¨Scℳ​Δ​u+βˆ‡Scβ„³β€‹βˆ‡u,Pβ€‹Ο•βŸ©\displaystyle=-\frac{4}{3}\int_{\mathcal{M}}\langle{\rm Sc}^{\mathcal{M}}\Delta u+\nabla{\rm Sc}^{\mathcal{M}}\nabla u,P\phi\rangle
(B.3) =βˆ’43β€‹βˆ«β„³βŸ¨Scℳ​(Δ​u+A​(u)​(βˆ‡u,βˆ‡u))+βˆ‡Scβ„³β€‹βˆ‡u,Ο•βŸ©.\displaystyle=-\frac{4}{3}\int_{\mathcal{M}}\langle{\rm Sc}^{\mathcal{M}}(\Delta u+A(u)(\nabla{u},\nabla{u}))+\nabla{\rm Sc}^{\mathcal{M}}\nabla u,\phi\rangle.
III =βˆ’2β€‹βˆ«β„³dd​t|t=0​Ricℳ​(d​u​(t),d​u​(t))\displaystyle=-2\int_{\mathcal{M}}\frac{d}{dt}\bigg{|}_{t=0}{\rm Ric}^{\mathcal{M}}(du(t),du(t))
=βˆ’4β€‹βˆ«β„³Ricℳ​(d​u,d​(P​ϕ))\displaystyle=-4\int_{\mathcal{M}}{\rm Ric}^{\mathcal{M}}(du,d(P\phi))
=βˆ’4β€‹βˆ«β„³βŸ¨Ricℳ​(d​u,β‹…),d​(P​ϕ)⟩\displaystyle=-4\int_{\mathcal{M}}\langle{{\rm Ric}^{\mathcal{M}}(du,\cdot),d(P\phi)}\rangle
=4βˆ«β„³βŸ¨βˆ‡eΞ²(Ricβ„³)Ξ±β€‹Ξ²βˆ‡eΞ±u+(Ricβ„³)Ξ±β€‹Ξ²βˆ‡Ξ±β€‹Ξ²2u,PΟ•βŸ©\displaystyle=4\int_{\mathcal{M}}\langle\nabla_{e_{\beta}}({\rm Ric}^{\mathcal{M}})^{\alpha\beta}\nabla_{e_{\alpha}}u+({\rm Ric}^{\mathcal{M}})^{\alpha\beta}\nabla^{2}_{\alpha\beta}{u},P\phi\rangle
(B.4) =4βˆ«β„³βŸ¨βˆ‡Ξ²(Ricβ„³)Ξ±β€‹Ξ²βˆ‡Ξ±u+(Ricβ„³)α​βP(βˆ‡Ξ±β€‹Ξ²2u),Ο•βŸ©,\displaystyle=4\int_{\mathcal{M}}\langle\nabla_{\beta}({\rm Ric}^{\mathcal{M}})^{\alpha\beta}\nabla_{\alpha}u+({\rm Ric}^{\mathcal{M}})^{\alpha\beta}P(\nabla^{2}_{\alpha\beta}{u}),\phi\rangle,

where we used the subscripts Ξ±,Ξ²\alpha,\beta to denote eΞ±,eΞ²e_{\alpha},e_{\beta} for short.

Combining these together, we get

dd​t|t=0​ℰ​(u​(t),β„³)=\displaystyle\frac{d}{dt}\bigg{|}_{t=0}{\mathcal{E}}(u(t),\mathcal{M})= 2βˆ«β„³βŸ¨P(Ξ”2u)βˆ’P(A(βˆ‡u,βˆ‡u)DuA(βˆ‡u,βˆ‡u))\displaystyle 2\int_{\mathcal{M}}\big{\langle}P(\Delta^{2}u)-P(A(\nabla u,\nabla u){D}_{u}A(\nabla u,\nabla u))
+2​d​i​v​(A​(βˆ‡u,βˆ‡u)​A​(βˆ‡u,P))βˆ’2​A​(βˆ‡u,βˆ‡u)​A​(βˆ‡u,βˆ‡P)\displaystyle+2{\rm div}(A(\nabla u,\nabla u)A(\nabla u,P))-2A(\nabla u,\nabla u)A(\nabla u,\nabla P)
(B.5) βˆ’23​Scℳ​(Δ​u+A​(u)​(βˆ‡u,βˆ‡u))βˆ’23β€‹βˆ‡Scβ„³β€‹βˆ‡u\displaystyle-\frac{2}{3}{\rm Sc}^{\mathcal{M}}(\Delta u+A(u)(\nabla{u},\nabla{u}))-\frac{2}{3}\nabla{\rm Sc}^{\mathcal{M}}\nabla u
+2βˆ‡Ξ²(Ricβ„³)Ξ±β€‹Ξ²βˆ‡Ξ±u+2(Ricβ„³)α​βP(βˆ‡Ξ±β€‹Ξ²2u),Ο•βŸ©.\displaystyle+2\nabla_{\beta}({\rm Ric}^{\mathcal{M}})^{\alpha\beta}\nabla_{\alpha}u+2({\rm Ric}^{\mathcal{M}})^{\alpha\beta}P(\nabla^{2}_{\alpha\beta}{u}),\phi\big{\rangle}.

Thus, the critical point uu of β„°\mathcal{E} satisfies the fourth order PDE:

P​(Ξ”2​u)=\displaystyle P(\Delta^{2}u)= P​(A​(βˆ‡u,βˆ‡u)​Du​A​(βˆ‡u,βˆ‡u))βˆ’2​d​i​v​(A​(βˆ‡u,βˆ‡u)​A​(βˆ‡u,P))\displaystyle P(A(\nabla u,\nabla u){D}_{u}A(\nabla u,\nabla u))-2{\rm div}(A(\nabla u,\nabla u)A(\nabla u,P))
(B.6) +2​A​(βˆ‡u,βˆ‡u)​A​(βˆ‡u,βˆ‡P)+23​Scℳ​(Δ​u+A​(u)​(βˆ‡u,βˆ‡u))\displaystyle+2A(\nabla u,\nabla u)A(\nabla u,\nabla P)+\frac{2}{3}{\rm Sc}^{\mathcal{M}}(\Delta u+A(u)(\nabla{u},\nabla{u}))
+23βˆ‡Scβ„³βˆ‡uβˆ’2βˆ‡Ξ²(Ricβ„³)Ξ±β€‹Ξ²βˆ‡Ξ±uβˆ’2(Ricβ„³)α​βP(βˆ‡Ξ±β€‹Ξ²2u).\displaystyle+\frac{2}{3}\nabla{\rm Sc}^{\mathcal{M}}\nabla u-2\nabla_{\beta}({\rm Ric}^{\mathcal{M}})^{\alpha\beta}\nabla_{\alpha}u-2({\rm Ric}^{\mathcal{M}})^{\alpha\beta}P(\nabla^{2}_{\alpha\beta}{u}).

Note that

PβŠ₯​(Ξ”2​u)\displaystyle P^{\bot}(\Delta^{2}u) =div​(PβŠ₯β€‹βˆ‡Ξ”β€‹u)βˆ’βˆ‡PβŠ₯β€‹βˆ‡Ξ”β€‹u\displaystyle=\text{div}(P^{\bot}\nabla\Delta u)-\nabla P^{\bot}\nabla\Delta u
=βˆ’Ξ”β€‹A​(βˆ‡u,βˆ‡u)βˆ’Ξ”β€‹PβŠ₯​Δ​uβˆ’2β€‹βˆ‡PβŠ₯β€‹βˆ‡Ξ”β€‹u\displaystyle=-\Delta A(\nabla u,\nabla u)-\Delta P^{\bot}\Delta u-2\nabla P^{\bot}\nabla\Delta u
(B.7) =βˆ’Ξ”β€‹A​(βˆ‡u,βˆ‡u)+Δ​P​Δ​u+2β€‹βˆ‡Pβ€‹βˆ‡Ξ”β€‹u\displaystyle=-\Delta A(\nabla u,\nabla u)+\Delta P\Delta u+2\nabla P\nabla\Delta u
=βˆ’Ξ”β€‹(A​(βˆ‡u,βˆ‡u))βˆ’Ξ”β€‹P​Δ​u+2​div​(βˆ‡P​Δ​u),\displaystyle=-\Delta(A(\nabla u,\nabla u))-\Delta P\Delta u+2\text{div}(\nabla P\Delta u)\,,

and

Ξ”2​u\displaystyle\Delta^{2}u =P​(Ξ”2​u)+PβŠ₯​(Ξ”2​u)\displaystyle=P(\Delta^{2}u)+P^{\bot}(\Delta^{2}u)
=P​(Ξ”2​u)βˆ’Ξ”β€‹(A​(βˆ‡u,βˆ‡u))βˆ’Ξ”β€‹P​Δ​u+2​div​(βˆ‡P​Δ​u).\displaystyle=P(\Delta^{2}u)-\Delta(A(\nabla u,\nabla u))-\Delta P\Delta u+2\text{div}(\nabla P\Delta u)\,.

Therefore, (B) can be rewritten as

Ξ”2​u=\displaystyle\Delta^{2}u= βˆ’Ξ”β€‹(A​(βˆ‡u,βˆ‡u))βˆ’Ξ”β€‹P​Δ​u+2​d​i​v​(βˆ‡P​Δ​u)\displaystyle-\Delta(A(\nabla u,\nabla u))-\Delta P\Delta u+2{\rm div}(\nabla P\Delta u)
+P​(A​(βˆ‡u,βˆ‡u)​Du​A​(βˆ‡u,βˆ‡u))βˆ’2​d​i​v​(A​(βˆ‡u,βˆ‡u)​A​(βˆ‡u,P))\displaystyle+P(A(\nabla u,\nabla u){D}_{u}A(\nabla u,\nabla u))-2{\rm div}(A(\nabla u,\nabla u)A(\nabla u,P))
(B.8) +2​A​(βˆ‡u,βˆ‡u)​A​(βˆ‡u,βˆ‡P)+23​Scℳ​(Δ​u+A​(u)​(βˆ‡u,βˆ‡u))\displaystyle+2A(\nabla u,\nabla u)A(\nabla u,\nabla P)+\frac{2}{3}{\rm Sc}^{\mathcal{M}}(\Delta u+A(u)(\nabla{u},\nabla{u}))
+23β€‹βˆ‡Scβ„³β€‹βˆ‡uβˆ’2β€‹βˆ‡Ricℳ​(βˆ‡u,β‹…)βˆ’2​R​i​cℳ​(P​(βˆ‡2u),β‹…)\displaystyle+\frac{2}{3}\nabla{\rm Sc}^{\mathcal{M}}\nabla u-2\nabla\text{Ric}^{\mathcal{M}}(\nabla u,\cdot)-2{\rm Ric}^{\mathcal{M}}(P(\nabla^{2}u),\cdot)

or equivalently (c.f. [32, equation (1.2)], [31, equation (9)])

Ξ”2​u=\displaystyle\Delta^{2}u= βˆ’Ξ”β€‹(βˆ‡PβŠ₯β€‹βˆ‡u)βˆ’div​(βˆ‡PβŠ₯​Δ​u)+2β€‹βˆ‡PβŠ₯β€‹βˆ‡(βˆ‡PβŠ₯β€‹βˆ‡u)\displaystyle-\Delta(\nabla P^{\bot}\nabla u)-{\rm div}(\nabla P^{\bot}\Delta u)+2\nabla P^{\bot}\nabla(\nabla P^{\bot}\nabla u)
+2β€‹βˆ‡PβŠ₯β€‹βˆ‡PβŠ₯​Δ​uβˆ’(βˆ‡P​PβŠ₯βˆ’PβŠ₯β€‹βˆ‡P)β€‹βˆ‡Ξ”β€‹u\displaystyle+2\nabla P^{\bot}\nabla P^{\bot}\Delta u-(\nabla PP^{\bot}-P^{\bot}\nabla P)\nabla\Delta u
(B.9) +Pβ€‹βŸ¨βˆ‡PβŠ₯β€‹βˆ‡u,Du​(Du​PβŠ₯)β€‹βˆ‡uβ€‹βˆ‡uβŸ©βˆ’2​d​i​vβ€‹βŸ¨βˆ‡PβŠ₯β€‹βˆ‡u,βˆ‡PβŠ₯​P⟩\displaystyle+P\langle\nabla P^{\bot}\nabla u,{D}_{u}({D}_{u}P^{\bot})\nabla u\nabla u\rangle-2{\rm div}\langle\nabla P^{\bot}\nabla u,\nabla P^{\bot}P\rangle
+2β€‹βŸ¨βˆ‡PβŠ₯β€‹βˆ‡u,βˆ‡PβŠ₯β€‹βˆ‡P⟩+23​Scℳ​(Δ​u+βˆ‡PβŸ‚β€‹βˆ‡u)\displaystyle+2\langle\nabla P^{\bot}\nabla u,\nabla P^{\bot}\nabla P\rangle+\frac{2}{3}{\rm Sc}^{\mathcal{M}}(\Delta u+\nabla P^{\perp}\nabla u)
+23β€‹βˆ‡Scβ„³β€‹βˆ‡uβˆ’2β€‹βˆ‡Ricℳ​(βˆ‡u,β‹…)βˆ’2​R​i​cℳ​(P​(βˆ‡2u),β‹…),\displaystyle+\frac{2}{3}\nabla{\rm Sc}^{\mathcal{M}}\nabla u-2\nabla\text{Ric}^{\mathcal{M}}(\nabla u,\cdot)-2{\rm Ric}^{\mathcal{M}}(P(\nabla^{2}u),\cdot)\,,

where

βˆ‡Ricβ„³(βˆ‡u,β‹…):=βˆ‡Ξ²(Ricβ„³)Ξ±β€‹Ξ²βˆ‡Ξ±u\nabla\text{Ric}^{\mathcal{M}}(\nabla u,\cdot):=\nabla_{\beta}({\rm Ric}^{\mathcal{M}})^{\alpha\beta}\nabla_{\alpha}u

and

Ricℳ​(P​(βˆ‡2u),β‹…):=(Ricβ„³)α​β​P​(βˆ‡Ξ±β€‹Ξ²2u).{\rm Ric}^{\mathcal{M}}(P(\nabla^{2}u),\cdot):=({\rm Ric}^{\mathcal{M}})^{\alpha\beta}P(\nabla^{2}_{\alpha\beta}{u})\,.

References

  • [1] Wanjun Ai and Hao Yin, Neck analysis of extrinsic polyharmonic maps, Ann. Global Anal. Geom. 52 (2017), no.Β 2, 129–156. MR 3690012
  • [2] Vincent BΓ©rard, Un analogue conforme des applications harmoniques, C. R. Math. Acad. Sci. Paris 346 (2008), no.Β 17-18, 985–988. MR 2449641
  • [3] Olivier Biquard and Farid Madani, A construction of conformal-harmonic maps, Comptes Rendus Mathematique 350 (2012), no.Β 21, 967–970.
  • [4] G.Β Carron, InΓ©galitΓ©s de Hardy sur les variΓ©tΓ©s riemanniennes non-compactes, J. Math. Pures Appl. (9) 76 (1997), no.Β 10, 883–891. MR 1489943
  • [5] S.Β A. Chang, L.Β Wang, and P.Β C. Yang, A regularity theory of biharmonic maps, Comm. Pure Appl. Math. 52 (1999), no.Β 9, 1113–1137. MR 1692148
  • [6] Sun-YungΒ A. Chang and PaulΒ C. Yang, On a fourth order curvature invariant, Spectral problems in geometry and arithmetic (Iowa City, IA, 1997), Contemp. Math., vol. 237, Amer. Math. Soc., Providence, RI, 1999, pp.Β 9–28. MR 1710786
  • [7] Bennett Chow, Sun-Chin Chu, David Glickenstein, Christine Guenther, James Isenberg, Tom Ivey, Dan Knopf, Peng Lu, Feng Luo, and Lei Ni, The Ricci flow: techniques and applications. Part II, Mathematical Surveys and Monographs, vol. 144, American Mathematical Society, Providence, RI, 2008, Analytic aspects. MR 2365237
  • [8] T.Β H. Colding and W.Β P. Minicozzi, Width and finite extinction time of Ricci flow, Geom. Topol. 12 (2008), no.Β 5, 2537–2586. MR 2460871
  • [9] Lorenzo D’Ambrosio and Serena Dipierro, Hardy inequalities on Riemannian manifolds and applications, Ann. Inst. H. PoincarΓ© C Anal. Non LinΓ©aire 31 (2014), no.Β 3, 449–475. MR 3208450
  • [10] FrΓ©dΓ©ricΒ Louis deΒ Longueville and Andreas Gastel, Conservation laws for even order systems of polyharmonic map type, Calc. Var. Partial Differential Equations 60 (2021), no.Β 4, Paper No. 138, 18. MR 4279397
  • [11] Frank Duzaar and Ernst Kuwert, Minimization of conformally invariant energies in homotopy classes, Calc. Var. Partial Differential Equations 6 (1998), no.Β 4, 285–313. MR 1624288
  • [12] D.Β E. Edmunds and J.Β RΓ‘kosnΓ­ k, On a higher-order Hardy inequality, Math. Bohem. 124 (1999), no.Β 2-3, 113–121. MR 1780685
  • [13] James Eells, Jr. and J.Β H. Sampson, Harmonic mappings of Riemannian manifolds, Amer. J. Math. 86 (1964), 109–160. MR 164306
  • [14] A.Β Gastel, The extrinsic polyharmonic map heat flow in the critical dimension, Adv. Geom. 6 (2006), no.Β 4, 501–521. MR 2267035
  • [15] Andreas Gastel and AndreasΒ J. Nerf, Minimizing sequences for conformally invariant integrals of higher order, Calc. Var. Partial Differential Equations 47 (2013), no.Β 3-4, 499–521. MR 3070553
  • [16] Andreas Gastel and Christoph Scheven, Regularity of polyharmonic maps in the critical dimension, Comm. Anal. Geom. 17 (2009), no.Β 2, 185–226. MR 2520907
  • [17] C.Β Robin Graham, Ralph Jenne, LionelΒ J. Mason, and George A.Β J. Sparling, Conformally invariant powers of the Laplacian. I. Existence, J. London Math. Soc. (2) 46 (1992), no.Β 3, 557–565. MR 1190438
  • [18] Weiyong He, Ruiqi Jiang, and Longzhi Lin, Existence of polyharmonic maps in critical dimensions, Preprint (2019).
  • [19] F.Β HΓ©lein, Harmonic maps, conservation laws and moving frames, second ed., Cambridge Tracts in Mathematics, vol. 150, Cambridge University Press, Cambridge, 2002, Translated from the 1996 French original, With a foreword by James Eells. MR 1913803
  • [20] J.Β Hineman, T.Β Huang, and C.Β Wang, Regularity and uniqueness of a class of biharmonic map heat flows, Calc. Var. Partial Differential Equations 50 (2014), no.Β 3-4, 491–524. MR 3216822
  • [21] T.Β Huang, L.Β Liu, Y.Β Luo, and C.Β Wang, Heat flow of extrinsic biharmonic maps from a four dimensional manifold with boundary, J. Elliptic Parabol. Equ. 2 (2016), no.Β 1-2, 1–26. MR 3645932
  • [22] G.Β Jiang, 22-harmonic isometric immersions between Riemannian manifolds, Chinese Ann. Math. Ser. A 7 (1986), no.Β 2, 130–144, An English summary appears in Chinese Ann. Math. Ser. B 7 (1986), no. 2, 255.
  • [23] Juha Kinnunen and Olli Martio, Hardy’s inequalities for Sobolev functions, Math. Res. Lett. 4 (1997), no.Β 4, 489–500. MR 1470421
  • [24] Ismail Kombe and Murad Γ–zaydin, Improved Hardy and Rellich inequalities on Riemannian manifolds, Trans. Amer. Math. Soc. 361 (2009), no.Β 12, 6191–6203. MR 2538592
  • [25] Y.Β Ku, Interior and boundary regularity of intrinsic biharmonic maps to spheres, Pacific J. Math. 234 (2008), no.Β 1, 43–67. MR 2375314
  • [26] T.Β Lamm, Heat flow for extrinsic biharmonic maps with small initial energy, Ann. Global Anal. Geom. 26 (2004), no.Β 4, 369–384. MR 2103406
  • [27] by same author, Biharmonic map heat flow into manifolds of nonpositive curvature, Calc. Var. Partial Differential Equations 22 (2005), no.Β 4, 421–445. MR 2124627
  • [28] T.Β Lamm and L.Β Lin, Estimates for the energy density of critical points of a class of conformally invariant variational problems, Adv. Calc. Var. 6 (2013), no.Β 4, 391–413. MR 3199733
  • [29] T.Β Lamm and T.Β RiviΓ¨re, Conservation laws for fourth order systems in four dimensions, Comm. Partial Differential Equations 33 (2008), no.Β 1-3, 245–262. MR 2398228
  • [30] Tobias Lamm and Changyou Wang, Boundary regularity for polyharmonic maps in the critical dimension, Adv. Calc. Var. 2 (2009), no.Β 1, 1–16. MR 2494504
  • [31] P.Β Laurain and T.Β RiviΓ¨re, Energy quantization for biharmonic maps, Adv. Calc. Var. 6 (2013), no.Β 2, 191–216. MR 3043576
  • [32] Paul Laurain and Longzhi Lin, Energy convexity of intrinsic bi-harmonic maps and applications I: Spherical target, J. Reine Angew. Math. 772 (2021), 53–81. MR 4227593
  • [33] Paul Laurain and Romain Petrides, Existence of min-max free boundary disks realizing the width of a manifold, Adv. Math. 352 (2019), 326–371. MR 3961741
  • [34] Longzhi Lin, AoΒ Sun, and Xin Zhou, Min-max minimal disks with free boundary in Riemannian manifolds, Geom. Topol. 24 (2020), no.Β 1, 471–532. MR 4080488
  • [35] Lei Liu and Hao Yin, Neck analysis for biharmonic maps, Math. Z. 283 (2016), no.Β 3-4, 807–834. MR 3519983
  • [36] È. Mitidieri, A simple approach to Hardy inequalities, Mat. Zametki 67 (2000), no.Β 4, 563–572. MR 1769903
  • [37] R.Β Moser, The blowup behavior of the biharmonic map heat flow in four dimensions, IMRP Int. Math. Res. Pap. (2005), no.Β 7, 351–402.
  • [38] Roger Moser, A variational problem pertaining to biharmonic maps, Comm. Partial Differential Equations 33 (2008), no.Β 7-9, 1654–1689. MR 2450176
  • [39] StephenΒ M. Paneitz, A quartic conformally covariant differential operator for arbitrary pseudo-Riemannian manifolds (summary), SIGMA Symmetry Integrability Geom. Methods Appl. 4 (2008), Paper 036, 3. MR 2393291
  • [40] Christoph Scheven, Dimension reduction for the singular set of biharmonic maps, Adv. Calc. Var. 1 (2008), no.Β 1, 53–91. MR 2402212
  • [41] Michael Struwe, On the evolution of harmonic mappings of Riemannian surfaces, Comment. Math. Helv. 60 (1985), no.Β 4, 558–581. MR 826871
  • [42] by same author, Partial regularity for biharmonic maps, revisited, Calc. Var. Partial Differential Equations 33 (2008), no.Β 2, 249–262. MR 2413109
  • [43] PaweΕ‚Strzelecki, On biharmonic maps and their generalizations, Calc. Var. Partial Differential Equations 18 (2003), no.Β 4, 401–432. MR 2020368
  • [44] C.Β Wang, Stationary biharmonic maps from ℝm\mathbb{R}^{m} into a Riemannian manifold, Comm. Pure Appl. Math. 57 (2004), no.Β 4, 419–444. MR 2026177
  • [45] Changyou Wang, Biharmonic maps from ℝ4\mathbb{R}^{4} into a Riemannian manifold, Math. Z. 247 (2004), no.Β 1, 65–87. MR 2054520
  • [46] by same author, Heat flow of biharmonic maps in dimensions four and its application, Pure Appl. Math. Q. 3 (2007), no.Β 2, Special Issue: In honor of Leon Simon. Part 1, 595–613. MR 2340056