This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Uniform position alignment estimate of spherical flocking model with inter-particle bonding forces

Sun-Ho Choi Department of Applied Mathematics and the Institute of Natural Sciences, Kyung Hee University, Yongin, 17104, Republic of Korea [email protected] Dohyun Kwon Department of Mathematics, University of Wisconsin-Madison, 480 Lincoln Dr., Madison, WI 53706, USA [email protected]  and  Hyowon Seo Department of Applied Mathematics and the Institute of Natural Sciences, Kyung Hee University, Yongin, 17104, Republic of Korea [email protected]
Abstract.

We present a sufficient condition of the complete position flocking theorem for the Cucker-Smale type model on the unit sphere with an inter-particle bonding force. For this second order dynamical system derived in [Choi, S.-H., Kwon, D. and Seo, H.: Cucker-Smale type flocking models on a sphere. arXiv preprint arXiv:2010.10693, 2020] by using the rotation operator in three dimensional sphere, we obtain an exponential decay estimate for the diameter of agents’ positions as well as time-asymptotic flocking for a class of initial data. The sufficient condition for the initial data depends only on the communication rate and inter-particle bonding parameter but not the number of agents. The lack of momentum conservation and the curved space domain make it difficult to apply the standard methodology used in the original Cucker-Smale model. To overcome this and obtain a uniform position alignment estimate, we use an energy dissipation property of this system and transform the Cucker-Smale type flocking model into an inhomogeneous system of differential equations of which solution contains the position and velocity diameters. The coefficients of the transformed system are controlled by the communication rate and a uniform upper bound of velocities obtained by the energy dissipation.

1. Introduction

Many species in nature such as birds, fish, and small germs form cluster to survive. Researchers have conducted various studies to understand this clustering phenomenon for the past several decades [3, 18, 37, 38]. The flexility for real world applications is one of the major reasons why this phenomenon attracts attention from the many researchers. For example, the effective control of a large number of unmanned drones by imitating nature is one of popular topics in the engineering community [5, 7, 11]. For the development of a surveillance system, a flocking algorithm is used to cover large areas with limited resources and to track targets [33]. This flocking phenomenon also has been widely used in various fields and has been studied intensively in the last decade. In particular, the Cucker-Smale (C-S) model is one of important models that sparked various types of mathematical researches in this field.

Cucker and Smale [12] introduced a system of ordinary differential equations (ODEs) given by

x˙i=vi,v˙i=j=1Nψij(vjvi),\displaystyle\dot{x}_{i}=v_{i},\qquad\dot{v}_{i}=\sum_{j=1}^{N}\psi_{ij}(v_{j}-v_{i}),

where xix_{i} and viv_{i} are the position and the velocity of the iith agent for 1iN{1\leq i\leq N}, respectively. Moreover, ψij\psi_{ij} is the communication rate between iith and jjth agents. We notice that the C-S model contains the acceleration term described by weighted internal relaxation forces.

In this paper, we focus on the complete position alignment of the corresponding C-S type flocking model on a sphere when it contains an inter-particle bonding force. We present a new framework to obtain the complete position flocking under a sufficient condition of initial data. We emphasize that our condition for the complete position flocking is independent of the number of agents. In particular, we prove that this second order dynamical system has a uniform exponential decay rate for the diameter of agents’ positions.

From the nature of the model on sphere, the avoidance of antipodal points is necessary to guarantee the formation of a group as in Definition 1.2. However, due to the curved geometry, it is hard to control the position diameter of ensemble {(xi,vi)}i=1N\{(x_{i},v_{i})\}_{i=1}^{N}, even assuming sufficiently fast velocity alignment. Thus, motivated by the flat space case studied in [28], we have added a modified inter-particle bonding force to the flocking model on sphere to control the position diameter in our previous paper [9]. Due to the geometric property of sphere, a direct application of the bonding force term in 3\mathbb{R}^{3} to the model on a sphere may disrupt the motion on the sphere. Instead, we employ a coupling force based on the Lohe operator in [8, 23] and derive the following flocking model [9] on a sphere with inter-particle bonding forces:

x˙i\displaystyle\dot{x}_{i} =vi,\displaystyle=v_{i}, (1.1a)
v˙i\displaystyle\dot{v}_{i} =vi2xi2xi+k=1NψikN(Rxkxi(vk)vi)+k=1NσN(xkxi,xkxi),\displaystyle=-\frac{\|v_{i}\|^{2}}{\|x_{i}\|^{2}}x_{i}+\sum_{k=1}^{N}\frac{\psi_{ik}}{N}(R_{x_{k}\rightarrow x_{i}}(v_{k})-v_{i})+\sum_{k=1}^{N}\frac{\sigma}{N}(x_{k}-\langle x_{i},x_{k}\rangle x_{i}), (1.1b)

where ψij\psi_{ij} is the communication rate between iith and jjth agents and RR_{\cdot\rightarrow\cdot} is a rotation operator given by

Rxkxi(vj)=R(xk,xi)vjR_{x_{k}\rightarrow x_{i}}(v_{j})=R(x_{k},x_{i})\cdot v_{j}

and for xkxix_{k}\neq x_{i},

R(xk,xi):=xk,xiI+xixkTxkxiT+(1xk,xi)(xk×xi|xk×xi|)(xk×xi|xk×xi|)T.\displaystyle\begin{aligned} R(x_{k},x_{i}):=\langle x_{k},x_{i}\rangle I+x_{i}x_{k}^{T}-x_{k}x_{i}^{T}+(1-\langle x_{k},x_{i}\rangle)\left(\frac{x_{k}\times x_{i}}{|x_{k}\times x_{i}|}\right)\left(\frac{x_{k}\times x_{i}}{|x_{k}\times x_{i}|}\right)^{T}.\end{aligned} (1.2)

Here, xkx_{k}, xix_{i} and vjv_{j} are three dimensional column vectors. We will discuss the properties of the rotational operator in detail in the next section.

The third term in the right hand side of (1.1b) is one of the cooperative control laws and σ>0\sigma>0 is the inter-particle bonding force rate. We note that (1.1b) only contains the attractive force. In general, the cooperative control law consists of the sum of attractive and repulsive forces. See [10]. The research on the cooperative control law of multi-agent systems such as (1.1) is steadily increasing [26, 30] in the engineering field after the development of wireless communication technology. The flocking, agreement, formation and collision avoidance are their main subjects [21, 25, 27, 33]. For example, in [13], the opinions of committee are regarded as points and the conditions for convergence are provided. The authors in [31] proposed a controller that yields the angular position synchronization of robot systems. Recently, for practical reasons, the research has been conducted in several restricted cases such as system without velocity information [1, 31], limited visibility robots [4, 16] and objects on a sphere [19, 21]. In these studies, consensus algorithms was used to allow the individuals in the system to behave as one group. The corresponding natural rendezvous concept is given by

Definition 1.1.

[21] Let {(xi,vi)}i=1N\{(x_{i},v_{i})\}_{i=1}^{N} be the solution to (1.1). The ensemble {(xi,vi)}i=1N\{(x_{i},v_{i})\}_{i=1}^{N} has an asymptotic rendezvous, if

limtmaxi,jxi(t)xj(t)=0.\lim_{t\to\infty}\max_{i,j}\|x_{i}(t)-x_{j}(t)\|=0.

By using the rotation operator R{R_{\cdot\rightarrow\cdot}}, we can also define the flocking on a sphere.

Definition 1.2.

[9] A dynamical system on a sphere has time-asymptotic flocking if its solution {(xi,vi)}i=1N\{(x_{i},v_{i})\}_{i=1}^{N} satisfies the following conditions:

  • (velocity alignment) the relative velocity of any two agents goes to zero as time goes to \infty:

    limtmax1i,jNxi(t)+xj(t)Rxjxivj(t)vi(t)=0.\displaystyle\lim_{t\rightarrow\infty}\max_{1\leq i,j\leq N}\|x_{i}(t)+x_{j}(t)\|\|{R_{x_{j}\rightarrow x_{i}}}v_{j}(t)-v_{i}(t)\|=0.
  • (antipodal points avoidance) any two agents are not located at the antipodal points for all t0t\geq 0:

    lim inft0min1i,jNxi(t)+xj(t)>0.\liminf_{t\geq 0}\min_{1\leq i,j\leq N}\|x_{i}(t)+x_{j}(t)\|>0.

In [9], we obtain that the flocking model has the velocity alignment property for any σ0\sigma\geq 0. The model has the time-asymptotic flocking for a given σ>0\sigma>0 with the initial data satisfying a sufficient condition depending on ψ\psi, σ\sigma, and NN. See Theorem 2.5 in Section 2. The purpose of this paper is to remove the dependence of NN and obtain an exponential decay rate. The following energy functional, motivated by [28], plays a crucial role in the proof of the main theorem in this paper as well as [9].

Definition 1.3.

For a solution {(xi,vi)}1iN{\{(x_{i},v_{i})\}_{{1\leq i\leq N}}} to (1.1), the energy functional (t)=(x(t),v(t)){\mathcal{E}}(t)={\mathcal{E}}(x(t),v(t)) is defined by

:=K+C,K(t):=1Nk=1Nvk(t)2,C(t):=σ2N2k,l=1Nxk(t)xl(t)2.\displaystyle{\mathcal{E}}:={\mathcal{E}}_{K}+{\mathcal{E}}_{C},\quad{\mathcal{E}}_{K}(t):=\frac{1}{N}\sum_{k=1}^{N}\|v_{k}(t)\|^{2},\quad{\mathcal{E}}_{C}(t):=\frac{\sigma}{2N^{2}}\sum_{k,l=1}^{N}\|x_{k}(t)-x_{l}(t)\|^{2}. (1.3)

We note that in [9], to obtain the antipodal avoidance or the velocity alignment, the main difficulty comes from the last term of the operator Rz1z2{R_{z_{1}\rightarrow z_{2}}} given in (1.2):

(1z1,z2)(z1×z2|z1×z2|)(z1×z2|z1×z2|)T.\displaystyle(1-\langle z_{1},z_{2}\rangle)\left(\frac{z_{1}\times z_{2}}{|z_{1}\times z_{2}|}\right)\left(\frac{z_{1}\times z_{2}}{|z_{1}\times z_{2}|}\right)^{T}. (1.4)

Due to this term, dR/dtdR/dt can be singular when xi(t)=xj(t)x_{i}(t)=-x_{j}(t) for some t>0t>0. This antipodal configuration corresponds to xi=x_{i}=\infty in the original C-S case. Even assuming an exponentially fast flocking, we cannot control the position diameter due to geometric constraints. In [9], to avoid this singularity and obtain the flocking theorem for the inter-particle bonding force, we first construct energy inequality:

(t)+i,j=1N0tψijN2Rxj(s)xi(s)(vj(s))vi(s)2𝑑s(0) for all t[0,).\displaystyle{\mathcal{E}}(t)+{\sum_{i,j=1}^{N}}\int_{0}^{t}\frac{\psi_{ij}}{N^{2}}\|R_{x_{j}(s)\rightarrow x_{i}(s)}(v_{j}(s))-v_{i}(s)\|^{2}ds\leq{\mathcal{E}}(0)\quad\hbox{ for all }t\in{[0,\infty)}.

This energy inequality yields a uniform positive lower bound of xi+xj\|x_{i}+x_{j}\| under a sufficient condition of initial data depending on the number of agents NN. For more details, see [9]. From this bound, we showed uniform Lipschitzness of viv_{i} as well as Rxjxivj{R_{x_{j}\rightarrow x_{i}}}v_{j} and we concluded that the asymptotic flocking occurs by Barbalat’s lemma.

However, with reference to the flat space case, it is a natural expectation that asymptotic exponential rendezvous will happen and the sufficient condition of initial data is independent of the number of agents NN. To obtain the uniform position alignment for the spherical model in (1.1), we crucially use the boundedness of the energy {\mathcal{E}} and the modulus conservation property of RR. Unlike the flocking result in [9], in the complete position alignment point of view, xixkTx_{i}x_{k}^{T} and xkxiT-x_{k}x_{i}^{T} terms in the rotation operator R{R_{\cdot\rightarrow\cdot}} causes the main difficulty, but the modulus conservation property of R{R_{\cdot\rightarrow\cdot}} via (1.4) enables us to prove our main result.

Throughout this paper, we assume that the communication rate ψij\psi_{ij} satisfies

  • (1)(\mathcal{H}1)

    ψij=ψ(xixj)\psi_{ij}=\psi(\|x_{i}-x_{j}\|),

  • (2)(\mathcal{H}2)

    ψ\psi is a nonnegative strictly decreasing function with ψ(2)=0\psi(2)=0,

  • (3)(\mathcal{H}3)

    ψ\psi is C1C^{1} function on [0,2][0,2].

With this assumptions on ψ\psi, we obtain the following complete position flocking result.

Theorem 1.

Assume that ψij\psi_{ij} satisfies (1)(\mathcal{H}1)-(3)(\mathcal{H}3) and the initial data satisfy that

max1kNvk(0)<𝒱0,(0)<0,\displaystyle\max_{1\leq k\leq N}\|v_{k}(0)\|<\mathcal{V}^{0},\quad{\mathcal{E}}(0)<{\mathcal{E}}^{0},
max1i,jNxi(0)xj(0)<𝒟x0,max1i,jNvi(0)vj(0)<𝒟v0.\displaystyle\max_{1\leq i,j\leq N}\|x_{i}(0)-x_{j}(0)\|<\mathcal{D}_{x}^{0},\quad\max_{1\leq i,j\leq N}\|v_{i}(0)-v_{j}(0)\|<\mathcal{D}_{v}^{0}. (1.5)

Then the solution to (1.1) has time-asymptotic flocking on a unit sphere and exponential rendezvous

max1i,jNxi(t)xj(t)max1i,jNxi(0)xj(0)eδt,\max_{1\leq i,j\leq N}\|x_{i}(t)-x_{j}(t)\|\leq\max_{1\leq i,j\leq N}\|x_{i}(0)-x_{j}(0)\|e^{-\delta t},

where δ\delta, 𝒱0\mathcal{V}^{0}, 0{\mathcal{E}}^{0}, 𝒟x0\mathcal{D}_{x}^{0}, and 𝒟v0\mathcal{D}_{v}^{0} are positive constants depending on ψ\psi and σ\sigma only.

Remark 1.1.

  1. (1)

    The global-in-time existence and uniqueness of the solution to (1.1) is proved in [9].

  2. (2)

    In [10], we obtain that there is 0>0{\mathcal{E}}^{0}>0 such that if

    (0)<0,\displaystyle{\mathcal{E}}(0)<{\mathcal{E}}^{0}, (1.6)

    then the ensemble {(xi,vi)}i=1N\{(x_{i},v_{i})\}_{i=1}^{N} has an asymptotic rendezvous. Combining this result and Theorem 1, we can remove the condition in (1.5) and obtain the exponential convergence result. The condition in (1.6) is essential since the ensemble satisfying 1Ni=1Nxi(0)=0\frac{1}{N}\sum_{i=1}^{N}x_{i}(0)=0 and vi(0)=0v_{i}(0)=0 has not an asymptotic rendezvous.

  3. (3)

    From the numerical simulations in Section 5, we can observe that the convergence rate in Theorem 1 is almost optimal. See Figure 2.

The rest of this paper is organized as follows. In Section 2, we review the definition of the flocking on the sphere and provide the derivation of the C-S type model with the inter-particle bonding forces and the properties of rotation operator Rxjxi{R_{x_{j}\rightarrow x_{i}}}. In Section 3, we provide a reduction from (1.1) to an inhomogeneous system of differential equations. In Section 4, we present the proof of the asymptotic convergence result in Theorem 1 for the system with the inter-particle bonding forces. In Section 5, we use numerical simulations to confirm that our analytic results are almost optimal. Finally, Section 6 is devoted to the summary of our main results.

Notation: After normalization, we consider that the domain is a unit sphere 𝒟{\mathcal{D}} defined by

𝒟:={(a,b,c)3:a2+b2+c2=1}\displaystyle\mathcal{D}:=\{(a,b,c)\in\mathbb{R}^{3}:a^{2}+b^{2}+c^{2}=1\}

and we set

x:=(x1,,xN)𝒟N,v:=(v1,,vN)3N.x:=(x_{1},\ldots,x_{N})\in{\mathcal{D}}^{N},\quad v:=(v_{1},\ldots,v_{N})\in\mathbb{R}^{3N}.

For a given z1,z23z_{1},z_{2}\in\mathbb{R}^{3}, we use z1,z2\langle z_{1},z_{2}\rangle to denote the standard inner product in 3\mathbb{R}^{3} and the standard symbol

z1=z12=z1,z1\|z_{1}\|=\|z_{1}\|_{2}=\sqrt{\langle z_{1},z_{1}\rangle}

to denote the 2\ell_{2}-norm.

2. Flocking model with Lagrange multiplier and inter-particle bonding forces

In this section, we review the definition of the flocking on the sphere in general geometrical setting and the results for the rotation operator Rxjxi{R_{x_{j}\rightarrow x_{i}}} and the energy functional {\mathcal{E}} from [9]. The properties of the rotation operator and the energy functional are essential ingredient for the proof of our main theorem.

2.1. Relative velocity on a sphere

Unlike the flat space 3\mathbb{R}^{3}, in a general manifold, if two agents have different positions, the corresponding velocities are belonged to different tangent spaces, respectively. Therefore, to give the meaning that velocities in different tangent spaces are aligned, it is necessary to define a kind of transformation between two different tangent spaces. Thus, we define the following velocity difference DvD_{v} between viv_{i} and vjv_{j} at xix_{i} in the most geometrically canonical way:

Rxjxi(vj(t))vi(t).{R_{x_{j}\rightarrow x_{i}}}(v_{j}(t))-v_{i}(t).

We note that defining relative velocity is a topic that has received a lot of attention in general manifold theory. In particular, it was covered in depth in general relativity [6, 24, 32, 36]. The basic idea is largely similar, it is a parallel transport along geodesics on a manifold to compare sizes in a tangent space at one position of the manifold [6, 35]. From this general observation, a parallel transport on a sphere is characterized by a rotation matrix given in (1.2).

The central idea of a relative velocity is to consider the geodesic for two given points, which is the shortest path between two points. Then, we transport a vector field in a tangent space at one point to the tangent space at another point along the geodesic. Let MM be a nn-dimensional manifold. Note that if =n{\mathcal{M}}={{\mathbb{R}}^{n}}, then Txn=nT_{x}{{\mathbb{R}}^{n}}={{\mathbb{R}}^{n}} under the natural identification. For xx\in{\mathcal{M}}, the tangent space TxT_{x}{\mathcal{M}} of {\mathcal{M}} at xx is defined as the set of all tangent vectors of {\mathcal{M}} at xx. We say that a vector field VV along a curve γ:[a,b]\gamma:[a,b]\to{\mathcal{M}} is said to be parallel along γ\gamma if DtV=0D_{t}V=0 in [a,b][a,b]. Here, DtVD_{t}V is the covariant derivative along γ\gamma obtained by the normal projection of dVγ(t)/dtdV_{\gamma(t)}/dt onto the tangential plane of 𝒟{\mathcal{D}} at γ(t)\gamma(t). Note that geodesics in d{\mathbb{R}}^{d} are straight lines and a constant vector is parallel along a straight line. See [14, 20, 34] for the general reference. We recall the existence and uniqueness of the parallel transport along a curve from [20].

Lemma 2.1.

[20, Theorem 4.11] Given a curve γ:[0,t1]\gamma:[0,t_{1}]\rightarrow{\mathcal{M}} and a vector W0Tγ(0)W_{0}\in T_{\gamma(0)}{\mathcal{M}}, there exists a unique parallel vector field VV along γ\gamma such that Vγ(0)=W0V_{\gamma(0)}=W_{0}.

Note that a geodesic between two points z1z_{1} and z2z_{2} on a sphere is a part of a great circle containing z1z_{1} and z2z_{2}. Also, it is uniquely determined unless z1=z2z_{1}=-z_{2}. It is well-known that the parallel transport of a vector W0W_{0} along a great circle is given by RW0RW_{0} for some rotation matrix RR. See Chapter 4.4 in [14]. We prove the following proposition for the sake of completeness.

Proposition 2.2.

Let γ:[0,t1]𝒟\gamma:[0,t_{1}]\rightarrow{\mathcal{D}} be a geodesic on a sphere and W0Tγ(0)𝒟W_{0}\in T_{\gamma(0)}{\mathcal{D}}. If

γ(0)+γ(t)0\displaystyle\gamma(0)+\gamma(t)\neq 0 (2.1)

for all t[0,t1]t\in[0,t_{1}], then a vector field defined by

Vγ(t):=Rγ(0)γ(t)W0\displaystyle V_{\gamma(t)}:=R_{\gamma(0)\rightarrow\gamma(t)}W_{0} (2.2)

is parallel along γ\gamma, where RR is the rotation operator given in (1.2).

Proof.

By the symmetry of a sphere and the condition in (2.1), it is enough to consider a geodesic γ:[0,θ1]𝒟\gamma:[0,\theta_{1}]\rightarrow{\mathcal{D}} from e1e_{1} to z1z_{1} for some θ1(0,π)\theta_{1}\in(0,\pi) given by

γ(t)=(cos(t),sin(t),0),\displaystyle\gamma(t)=(\cos(t),\sin(t),0),

where e1:=(1,0,0)e_{1}:=(1,0,0), e2:=(0,1,0)e_{2}:=(0,1,0), e3:=(0,0,1)e_{3}:=(0,0,1), and z1:=(cos(θ1),sin(θ1),0)z_{1}:=(\cos(\theta_{1}),\sin(\theta_{1}),0).

We show that Rγ(0)γ(t)eiR_{\gamma(0)\rightarrow\gamma(t)}e_{i} is parallel along γ\gamma for all t[0,θ1]t\in[0,\theta_{1}] and i{2,3}i\in\{2,3\}. By the direct computation, it holds that

Rxjxi=[cos(αiαj)sin(αiαj)0sin(αiαj)cos(αiαj)0001].\displaystyle{R_{x_{j}\rightarrow x_{i}}}=\begin{bmatrix}\cos(\alpha_{i}-\alpha_{j})&-\sin(\alpha_{i}-\alpha_{j})&0\\ \sin(\alpha_{i}-\alpha_{j})&\cos(\alpha_{i}-\alpha_{j})&0\\ 0&0&1\end{bmatrix}. (2.3)

From (2.1), we can use (2.3) to obtain

Rγ(0)γ(t)e2=(sin(t),cos(t),0) and Rγ(0)γ(t)e3=e3.\displaystyle R_{\gamma(0)\rightarrow\gamma(t)}e_{2}=(-\sin(t),\cos(t),0)\quad\hbox{ and }\quad R_{\gamma(0)\rightarrow\gamma(t)}e_{3}=e_{3}.

Thus, it follows that

dRγ(0)γ(t)e2dt=γ(t) and dRγ(0)γ(t)e3dt=0.\displaystyle\frac{dR_{\gamma(0)\rightarrow\gamma(t)}e_{2}}{dt}=-\gamma(t)\quad\hbox{ and }\quad\frac{dR_{\gamma(0)\rightarrow\gamma(t)}e_{3}}{dt}=0.

As the covariant derivatives are tangential components of above equations, DtRγ(0)γ(t)eiD_{t}R_{\gamma(0)\rightarrow\gamma(t)}e_{i} is zero for all t[0,θ1]t\in[0,\theta_{1}] and i{2,3}i\in\{2,3\}. Note that {e2,e3}\{e_{2},e_{3}\} is a basis of Te1𝒟T_{e_{1}}{\mathcal{D}}. Therefore, W0W_{0} can be written as a linear combination of e2e_{2} and e3e_{3} and we conclude that a vector field given in (2.2) is parallel along γ\gamma. ∎

We emphasize that the rotation operator R{R_{\cdot\rightarrow\cdot}} is an isometry as well as a bijection between two tangent spaces. We also present properties of the operator R{R_{\cdot\rightarrow\cdot}} for use in the next sections.

Lemma 2.3.

For z1,z2𝒟z_{1},z_{2}\in{\mathcal{D}} such that z1z2z_{1}\neq z_{2} , z1z2z_{1}\neq-z_{2} and Rz1z2{R_{z_{1}\rightarrow z_{2}}} given in (1.2), it holds that

Rz1z2(z1)=z2,Rz1z2(z2)=2z1,z2z2z1, and Rz1z2(z1×z2)=z1×z2.\displaystyle R_{z_{1}\rightarrow z_{2}}(z_{1})=z_{2},\quad R_{z_{1}\rightarrow z_{2}}(z_{2})=2\langle z_{1},z_{2}\rangle z_{2}-z_{1},~{}\hbox{ and }~{}R_{z_{1}\rightarrow z_{2}}(z_{1}\times z_{2})=z_{1}\times z_{2}. (2.4)

Furthermore, we have

Rz1z2T=Rz2z1.\displaystyle R_{z_{1}\rightarrow z_{2}}^{T}=R_{z_{2}\rightarrow z_{1}}. (2.5)

In particular, Rz1z2{R_{z_{1}\rightarrow z_{2}}} is an orthogonal matrix, that is

Rz1z2TRz1z2=I.\displaystyle{R_{z_{1}\rightarrow z_{2}}^{T}}{R_{z_{1}\rightarrow z_{2}}}=I. (2.6)
Proof.

For the proof of this lemma, see Lemma 2.4 in [9]. ∎

Proposition 2.4.

Rz1z2|Tz1𝒟R_{z_{1}\rightarrow z_{2}}|_{T_{z_{1}}{\mathcal{D}}} is a bijection and an isometry from Tz1𝒟T_{z_{1}}{\mathcal{D}} to Tz2𝒟T_{z_{2}}{\mathcal{D}}.

Proof.

From (2.4) and (2.5) in Lemma 2.3, it holds that for any v3v\in{\mathbb{R}}^{3},

Rz1z2(v),z2=vTRz1z2Tz2=vTRz2z1z2=vTz1=v,z1.\displaystyle\langle{R_{z_{1}\rightarrow z_{2}}}(v),z_{2}\rangle=v^{T}{R_{z_{1}\rightarrow z_{2}}^{T}}z_{2}=v^{T}{R_{z_{2}\rightarrow z_{1}}}z_{2}=v^{T}z_{1}=\langle v,z_{1}\rangle. (2.7)

As 𝒟{\mathcal{D}} is a unit sphere, we have

v,z1=0 for any vector vTz1𝒟.\displaystyle\langle v,z_{1}\rangle=0\quad\hbox{ for any vector }v\in T_{z_{1}}{\mathcal{D}}. (2.8)

From (2.7) and (2.8), we conclude that Rz1z2(v),z2=0\langle{R_{z_{1}\rightarrow z_{2}}}(v),z_{2}\rangle=0 for any vector vTz1𝒟v\in T_{z_{1}}{\mathcal{D}} and thus

Rz1z2(v)Tz2𝒟.{R_{z_{1}\rightarrow z_{2}}}(v)\in T_{z_{2}}{\mathcal{D}}.

Furthermore, as Rz1z2{R_{z_{1}\rightarrow z_{2}}} is an orthogonal matrix from Lemma 2.3, it is invertible. By (2.5) and (2.6) in Lemma 2.3, it holds that for any v3v\in{\mathbb{R}}^{3},

Rz1z21(v),z1=v,z2.\displaystyle\langle{R_{z_{1}\rightarrow z_{2}}^{-1}}(v),z_{1}\rangle=\langle v,z_{2}\rangle.

From (2.7), Rz1z21(v)Tz1𝒟{R_{z_{1}\rightarrow z_{2}}^{-1}}(v)\in T_{z_{1}}{\mathcal{D}} for any vector vTz2𝒟v\in T_{z_{2}}{\mathcal{D}} and we conclude that Rz1z2{R_{z_{1}\rightarrow z_{2}}} is a bijection.

Lastly, as Rz1z2{R_{z_{1}\rightarrow z_{2}}} is an orthogonal matrix from Lemma 2.3, it is an isometry. ∎

2.2. Lagrange multiplier and energy dissipation on a sphere

The C-S type flocking model on a sphere in (1.1) has the following property of the velocity alignment:

limtmax1i,jNxi+xjRxjxi(vj(t))vi(t)=0.\displaystyle\lim_{t\rightarrow\infty}\max_{1\leq i,j\leq N}\|x_{i}+x_{j}\|\|{R_{x_{j}\rightarrow x_{i}}}(v_{j}(t))-v_{i}(t)\|=0.

Here, xi+xj\|x_{i}+x_{j}\| term in the above flocking limit naturally appear from the geometric structure of the sphere. See [9] for the detailed argument. Notice that if we assume that there is a constant Cl>0C_{l}>0 such that xi+xjCl\|x_{i}+x_{j}\|\geq C_{l} for any t>0t>0 and i,ji,j\in\mathbb{N}, then the above limit is equivalent to

limtmax1i,jNRxjxi(vj(t))vi(t)=0\displaystyle\lim_{t\rightarrow\infty}\max_{1\leq i,j\leq N}\|{R_{x_{j}\rightarrow x_{i}}}(v_{j}(t))-v_{i}(t)\|=0

as the form of the velocity alignment in the flat space.

If the bonding force rate σ\sigma is large enough comparing the differences of agents’ velocities and positions, then the following flocking result with position alignment holds.

Theorem 2.5.

[9] Assume that ψij\psi_{ij} satisfies (1)(\mathcal{H}1)-(3)(\mathcal{H}3). If 2σ>N2(0)2\sigma>N^{2}{\mathcal{E}}(0), then the solution to (1.1) has time-asymptotic flocking on a unit sphere. Here, (0){\mathcal{E}}(0) is the initial energy of the system given in (1.3).

We revisit the idea for deriving the flocking model introduced in [9]. Then, the centripetal force term of the flocking model will be explained using the Lagrange Multiplier, and the inter-particle bonding force term corresponding to the sphere will be defined. For the consistency of initial data on the unit sphere, we consider following initial conditions:

vi(0),xi(0)=0 and xi(0)=1,for all1iN.\displaystyle\langle v_{i}(0),x_{i}(0)\rangle=0\quad\hbox{ and }\quad\|x_{i}(0)\|=1,\quad\mbox{for all}~{}1\leq i\leq N. (2.9)

The augmented C-S model in the Euclidean space (See [28]), the following term is added as inter-particle bonding forces:

σNk=1N(xkxi).\displaystyle\frac{\sigma}{N}\sum_{k=1}^{N}(x_{k}-x_{i}).

Here, σ>0\sigma>0 is the rate of the inter-particle bonding force. However, this term will prevent that the agent is located in the sphere. Thus, we adapt a modified inter-particle bonding force in [9]. We notice that the modified inter-particle bonding forces will be the form of Lohe operator in [23]. In summary, we consider the following model with the Lagrange multiplier λixi\lambda_{i}x_{i} for the controllability of position difference.

x˙i\displaystyle\dot{x}_{i} =vi,\displaystyle=v_{i}, (2.10a)
v˙i\displaystyle\dot{v}_{i} =λixi+k=1NψikN(Rxkxi(vk)vi)+σNk=1N(xkxi),\displaystyle=\lambda_{i}x_{i}+\sum_{k=1}^{N}\frac{\psi_{ik}}{N}(R_{x_{k}\rightarrow x_{i}}(v_{k})-v_{i})+\frac{\sigma}{N}\sum_{k=1}^{N}(x_{k}-x_{i}), (2.10b)

where RxkxiR_{x_{k}\rightarrow x_{i}} is an operator from Txj𝒟T_{x_{j}}{\mathcal{D}} to Txi𝒟T_{x_{i}}{\mathcal{D}}.

Based on the idea of [9, Proposition 2.2], we choose {λi}1iN\{\lambda_{i}\}_{{1\leq i\leq N}} for the flocking model with the inter-particle bonding force as follows:

λi=vi2xi2σNk=1Nxkxi,xixi,xi.\displaystyle\lambda_{i}=-\frac{\|v_{i}\|^{2}}{\|x_{i}\|^{2}}-\frac{\sigma}{N}\sum_{k=1}^{N}\frac{\langle x_{k}-x_{i},x_{i}\rangle}{\langle x_{i},x_{i}\rangle}. (2.11)

Then if initial data satisfy (2.9), then we will show that all agents are located in the unit sphere for all time. We first show that xix_{i} is on the unit sphere and viv_{i} is in the tangent space of 𝒟{\mathcal{D}} at xix_{i} for all 1iN{1\leq i\leq N}.

Proposition 2.6.

For {λi}1iN\{\lambda_{i}\}_{{1\leq i\leq N}} given in (2.11) and t[0,)t\in{[0,\infty)}, the solution to (2.10a)-(2.10b) subject to (2.9) satisfies that

vi(t),xi(t)=0,xi(t)=1,for all1iN.\displaystyle\langle v_{i}(t),x_{i}(t)\rangle=0,\quad\|x_{i}(t)\|=1,\quad\mbox{for all}~{}1\leq i\leq N. (2.12)
Proof.

We claim that

ddtvi,xi=0.\displaystyle\frac{d}{dt}\langle v_{i},x_{i}\rangle=0. (2.13)

From (2.10a)-(2.10b), it follows that

ddtvi,xi\displaystyle\frac{d}{dt}\langle v_{i},x_{i}\rangle =v˙i,xi+vi2\displaystyle=\langle\dot{v}_{i},x_{i}\rangle+\|v_{i}\|^{2}
=λixi2+k=1NψikNRxkxivkvi,xi+σNk=1Nxkxi,xi+vi2.\displaystyle=\lambda_{i}\|x_{i}\|^{2}+\sum_{k=1}^{N}\frac{\psi_{ik}}{N}\langle R_{x_{k}\rightarrow x_{i}}v_{k}-v_{i},x_{i}\rangle+\frac{\sigma}{N}\sum_{k=1}^{N}\langle x_{k}-x_{i},x_{i}\rangle+\|v_{i}\|^{2}.

As RxkxivkTxi𝒟R_{x_{k}\rightarrow x_{i}}v_{k}\in T_{x_{i}}{\mathcal{D}} and λi\lambda_{i} is given in (2.11),

ddtvi,xi=(k=1NψikN)vi,xi,\displaystyle\frac{d}{dt}\langle v_{i},x_{i}\rangle=-\bigg{(}\sum_{k=1}^{N}\frac{\psi_{ik}}{N}\bigg{)}\langle v_{i},x_{i}\rangle,

and for all t[0,)t\in{[0,\infty)},

vi(t),xi(t)=vi(0),xi(0)exp(0t1Nk=1Nψik(s)Nds)=0.\displaystyle\langle v_{i}(t),x_{i}(t)\rangle=\langle v_{i}(0),x_{i}(0)\rangle\exp\bigg{(}\int_{0}^{t}\frac{1}{N}\sum_{k=1}^{N}\frac{\psi_{ik}(s)}{N}ds\bigg{)}=0.

On the other hand, by (2.13), we have

ddtxi2=2vi,xi=0\displaystyle\frac{d}{dt}\|x_{i}\|^{2}=2\langle v_{i},x_{i}\rangle=0

and thus we conclude (2.12). ∎

Lastly, recall the following energy dissipation property. As mentioned before, this dissipation plays an important role in the proof of the flocking in [9]. We also crucially use this property when we prove the complete position flocking behavior.

Proposition 2.7.

[9] Let {(xi,vi)}1iN{\{(x_{i},v_{i})\}_{{1\leq i\leq N}}} be the solution to (1.1) with (1)(\mathcal{H}1)-(3)(\mathcal{H}3). Then, the following holds for all t[0,)t\in{[0,\infty)},

ddt=i,j=1NψijN2Rxjxi(vj)vi2,\displaystyle\frac{d{\mathcal{E}}}{dt}=-{\sum_{i,j=1}^{N}}\frac{\psi_{ij}}{N^{2}}\|R_{x_{j}\rightarrow x_{i}}(v_{j})-v_{i}\|^{2}, (2.14)

where {\mathcal{E}} is the energy function of {(xi,vi)}1iN{\{(x_{i},v_{i})\}_{{1\leq i\leq N}}} defined in (1.3). As a consequence, we have

(t)+i,j=1N0tψijN2Rxj(s)xi(s)(vj(s))vi(s)2𝑑s(0) for all t[0,).\displaystyle{\mathcal{E}}(t)+{\sum_{i,j=1}^{N}}\int_{0}^{t}\frac{\psi_{ij}}{N^{2}}\|R_{x_{j}(s)\rightarrow x_{i}(s)}(v_{j}(s))-v_{i}(s)\|^{2}ds\leq{\mathcal{E}}(0)\quad\hbox{ for all }t\in{[0,\infty)}. (2.15)

3. Reduction to a linearized system of equations with a negative definite coefficient matrix

In this section, we derive a linearized system of equations from the C-S type flocking model in (1.1). As mentioned before, the main obstacle in proving our main result comes from the lack of a conserved quantity. Compared to the original C-S model, the flocking model on sphere has no momentum conservation. Therefore, we cannot use the standard methodology using in the C-S model. On the other hand, the linearized system (3.7) with a negative definite coefficient matrix gives new sharp estimates on the diameters of positions and velocities. This leads the complete position flocking result in Section 4. Additionally, we notice that our uniform estimates does not depend on the number of agents NN. In order to obtain a uniform analysis regardless of NN, we need a global upper bound of physical quantities below, not the upper bound of their average as in [9].

For given i,j{1,,N}i,j\in\{1,\ldots,N\} and {(xi,vi)}1iN{\{(x_{i},v_{i})\}_{{1\leq i\leq N}}}, consider the vector-valued functional Xij(t)X^{ij}(t) given by

Xij(t):=(X1ij(t),X2ij(t),X3ij(t))T,\displaystyle X^{ij}(t):=(X^{ij}_{1}(t),X^{ij}_{2}(t),X^{ij}_{3}(t))^{T}, (3.1)

where

X1ij(t):=xi(t)xj(t)2,X2ij(t):=vi(t)vj(t),xi(t)xj(t),\displaystyle X^{ij}_{1}(t):=\|x_{i}(t)-x_{j}(t)\|^{2},\qquad X^{ij}_{2}(t):=\langle v_{i}(t)-v_{j}(t),x_{i}(t)-x_{j}(t)\rangle, (3.2)

and

X3ij(t):=vi(t)vj(t)2.\displaystyle X^{ij}_{3}(t):=\|v_{i}(t)-v_{j}(t)\|^{2}. (3.3)

In Proposition 3.1, we prove that XijX^{ij} satisfies the system of linear differential equations in (3.7), which has the following inhomogeneous terms,

Fij(t):=(F1ij(t),F2ij(t),F3ij(t))T,\displaystyle F^{ij}(t):=(F^{ij}_{1}(t),F^{ij}_{2}(t),F^{ij}_{3}(t))^{T}, (3.4)

where F1ijF^{ij}_{1}, F2ijF^{ij}_{2}, and F3ijF^{ij}_{3} are defined by

F1ij(t):=0,F2ij(t):=vi2+vj22xixj2+ψ0Nk=1NRxkxi(vk)Rxkxj(vk),xixj+k=1N(ψikNψiiN)Rxkxi(vk)vi,xixjk=1N(ψjkNψjjN)Rxkxj(vk)vj,xixj+σ4Nk=1Nxkxi2xixj2+σ4Nk=1Nxkxj2xixj2,\displaystyle\begin{aligned} F^{ij}_{1}(t):=&0,\\ F^{ij}_{2}(t):=&-\frac{\|v_{i}\|^{2}+\|v_{j}\|^{2}}{2}\|x_{i}-x_{j}\|^{2}+\frac{\psi_{0}}{N}\sum_{k=1}^{N}\langle R_{x_{k}\rightarrow x_{i}}(v_{k})-R_{x_{k}\rightarrow x_{j}}(v_{k}),x_{i}-x_{j}\rangle\\ &+\sum_{k=1}^{N}\left(\frac{\psi_{ik}}{N}-\frac{\psi_{ii}}{N}\right)\langle R_{x_{k}\rightarrow x_{i}}(v_{k})-v_{i},x_{i}-x_{j}\rangle\\ &-\sum_{k=1}^{N}\left(\frac{\psi_{jk}}{N}-\frac{\psi_{jj}}{N}\right)\langle R_{x_{k}\rightarrow x_{j}}(v_{k})-v_{j},x_{i}-x_{j}\rangle\\ &+\frac{\sigma}{4N}\sum_{k=1}^{N}\|x_{k}-x_{i}\|^{2}\|x_{i}-x_{j}\|^{2}+\frac{\sigma}{4N}\sum_{k=1}^{N}\|x_{k}-x_{j}\|^{2}\|x_{i}-x_{j}\|^{2},\end{aligned} (3.5)

and

F3ij(t):=2vi2xi+vj2xj,vivj+2k=1Nψ0NRxkxi(vk)Rxkxj(vk),vivj+2k=1N(ψikNψiiN)Rxkxi(vk)vi,vivj2k=1N(ψjkNψjjN)Rxkxj(vk)vj,vivj+2σNk=1N(xi,xk1)xi,vj+2σNk=1N(xj,xk1)xj,vi.\displaystyle\begin{aligned} F^{ij}_{3}(t):=&2\langle-\|v_{i}\|^{2}x_{i}+\|v_{j}\|^{2}x_{j},v_{i}-v_{j}\rangle\\ &+2\sum_{k=1}^{N}\frac{\psi_{0}}{N}\left\langle R_{x_{k}\rightarrow x_{i}}(v_{k})-R_{x_{k}\rightarrow x_{j}}(v_{k}),v_{i}-v_{j}\right\rangle\\ &+2\sum_{k=1}^{N}\left(\frac{\psi_{ik}}{N}-\frac{\psi_{ii}}{N}\right)\left\langle R_{x_{k}\rightarrow x_{i}}(v_{k})-v_{i},v_{i}-v_{j}\right\rangle\\ &-2\sum_{k=1}^{N}\left(\frac{\psi_{jk}}{N}-\frac{\psi_{jj}}{N}\right)\left\langle R_{x_{k}\rightarrow x_{j}}(v_{k})-v_{j},v_{i}-v_{j}\right\rangle\\ &+\frac{2\sigma}{N}\sum_{k=1}^{N}(\langle x_{i},x_{k}\rangle-1)\langle x_{i},v_{j}\rangle+\frac{2\sigma}{N}\sum_{k=1}^{N}(\langle x_{j},x_{k}\rangle-1)\langle x_{j},v_{i}\rangle.\end{aligned} (3.6)
Proposition 3.1.

Let {(xi,vi)}1iN{\{(x_{i},v_{i})\}_{{1\leq i\leq N}}} be the solution to (1.1). For any i,j{1,,N}i,j\in\{1,\ldots,N\}, the vector-valued functional XijX^{ij} defined in (3.1)-(3.3) satisfies (3.5)(3.2)

ddtXij(t)=AXij+Fij,\displaystyle\frac{d}{dt}X^{ij}(t)=AX^{ij}+F^{ij}, (3.7)

where FijF^{ij} is the functional defined in (3.4)-(3.6) and for positive constants σ\sigma and ψ0:=ψ(0)\psi_{0}:=\psi(0), the coefficient matrix AA is given by

A=(020σψ0102σ2ψ0).\displaystyle A=\left(\begin{matrix}0&2&0\\ -\sigma&-\psi_{0}&1\\ 0&-2\sigma&-2\psi_{0}\end{matrix}\right).
Remark 3.2.

We will verify that the leading coefficients of the linearized system is the sum of a negative definite matrix and controllable quantities by the energy in (1.3).

Proof of Proposition 3.1.

From direct calculation, it follows that

ddtX1ij=ddtxixj2=2vivj,xixj=2X2ij,\displaystyle\frac{d}{dt}X^{ij}_{1}=\frac{d}{dt}\|x_{i}-x_{j}\|^{2}=2\langle v_{i}-v_{j},x_{i}-x_{j}\rangle=2X^{ij}_{2}, (3.8)

and

ddtX2ij\displaystyle\frac{d}{dt}X^{ij}_{2} =ddtvivj,xixj=vivj,vivj+v˙iv˙j,xixj=X3ij+v˙iv˙j,xixj.\displaystyle=\frac{d}{dt}\langle v_{i}-v_{j},x_{i}-x_{j}\rangle=\langle v_{i}-v_{j},v_{i}-v_{j}\rangle+\langle\dot{v}_{i}-\dot{v}_{j},x_{i}-x_{j}\rangle=X^{ij}_{3}+\langle\dot{v}_{i}-\dot{v}_{j},x_{i}-x_{j}\rangle.

By (1.1b), we obtain that

v˙iv˙j,xixj\displaystyle\langle\dot{v}_{i}-\dot{v}_{j},x_{i}-x_{j}\rangle =vi2xi+vj2xj,xixj\displaystyle=\langle-\|v_{i}\|^{2}x_{i}+\|v_{j}\|^{2}x_{j},x_{i}-x_{j}\rangle
+k=1NψikN(Rxkxi(vk)vi)k=1NψjkN(Rxkxj(vk)vj),xixj\displaystyle\quad+\left\langle\sum_{k=1}^{N}\frac{\psi_{ik}}{N}(R_{x_{k}\rightarrow x_{i}}(v_{k})-v_{i})-\sum_{k=1}^{N}\frac{\psi_{jk}}{N}(R_{x_{k}\rightarrow x_{j}}(v_{k})-v_{j}),x_{i}-x_{j}\right\rangle
+σNk=1N(xkxi,xkxi)σNk=1N(xkxj,xkxj),xixj\displaystyle\quad+\left\langle\frac{\sigma}{N}\sum_{k=1}^{N}(x_{k}-\langle x_{i},x_{k}\rangle x_{i})-\frac{\sigma}{N}\sum_{k=1}^{N}(x_{k}-\langle x_{j},x_{k}\rangle x_{j}),x_{i}-x_{j}\right\rangle
:=K1ij+K2ij+K3ij.\displaystyle:=K^{ij}_{1}+K^{ij}_{2}+K^{ij}_{3}.

For K1ijK^{ij}_{1}, we use the conservation property of xi\|x_{i}\|.

K1ij=vi2+vi2xi,xjvj2+vj2xi,xj=vi2+vj22xixj2\displaystyle K^{ij}_{1}=-\|v_{i}\|^{2}+\|v_{i}\|^{2}\langle x_{i},x_{j}\rangle-\|v_{j}\|^{2}+\|v_{j}\|^{2}\langle x_{i},x_{j}\rangle=-\frac{\|v_{i}\|^{2}+\|v_{j}\|^{2}}{2}\|x_{i}-x_{j}\|^{2}

Note that ψ0=ψii\psi_{0}=\psi_{ii} for all i{1,,N}i\in\{1,\ldots,N\}. For K2ijK^{ij}_{2}, we have

K2ij\displaystyle K^{ij}_{2} =k=1NψikN(Rxkxi(vk)vi)k=1NψjkN(Rxkxj(vk)vj),xixj\displaystyle=\left\langle\sum_{k=1}^{N}\frac{\psi_{ik}}{N}(R_{x_{k}\rightarrow x_{i}}(v_{k})-v_{i})-\sum_{k=1}^{N}\frac{\psi_{jk}}{N}(R_{x_{k}\rightarrow x_{j}}(v_{k})-v_{j}),x_{i}-x_{j}\right\rangle
=k=1Nψ0N(Rxkxi(vk)vi)k=1Nψ0N(Rxkxj(vk)vj),xixj\displaystyle=\left\langle\sum_{k=1}^{N}\frac{\psi_{0}}{N}(R_{x_{k}\rightarrow x_{i}}(v_{k})-v_{i})-\sum_{k=1}^{N}\frac{\psi_{0}}{N}(R_{x_{k}\rightarrow x_{j}}(v_{k})-v_{j}),x_{i}-x_{j}\right\rangle
+k=1N(ψikNψiiN)(Rxkxi(vk)vi),xixj\displaystyle\quad+\left\langle\sum_{k=1}^{N}\left(\frac{\psi_{ik}}{N}-\frac{\psi_{ii}}{N}\right)(R_{x_{k}\rightarrow x_{i}}(v_{k})-v_{i}),x_{i}-x_{j}\right\rangle
k=1N(ψjkNψjjN)(Rxkxj(vk)vj),xixj\displaystyle\quad-\left\langle\sum_{k=1}^{N}\left(\frac{\psi_{jk}}{N}-\frac{\psi_{jj}}{N}\right)(R_{x_{k}\rightarrow x_{j}}(v_{k})-v_{j}),x_{i}-x_{j}\right\rangle
=ψ0vivj,xixj+ψ0Nk=1NRxkxi(vk)Rxkxj(vk),xixj\displaystyle=-\psi_{0}\langle v_{i}-v_{j},x_{i}-x_{j}\rangle+\frac{\psi_{0}}{N}\sum_{k=1}^{N}\langle R_{x_{k}\rightarrow x_{i}}(v_{k})-R_{x_{k}\rightarrow x_{j}}(v_{k}),x_{i}-x_{j}\rangle
+k=1N(ψikNψiiN)Rxkxi(vk)vi,xixj\displaystyle\quad+\sum_{k=1}^{N}\left(\frac{\psi_{ik}}{N}-\frac{\psi_{ii}}{N}\right)\langle R_{x_{k}\rightarrow x_{i}}(v_{k})-v_{i},x_{i}-x_{j}\rangle
k=1N(ψjkNψjjN)Rxkxj(vk)vj,xixj.\displaystyle\quad-\sum_{k=1}^{N}\left(\frac{\psi_{jk}}{N}-\frac{\psi_{jj}}{N}\right)\langle R_{x_{k}\rightarrow x_{j}}(v_{k})-v_{j},x_{i}-x_{j}\rangle.

Therefore, we have

K2ij\displaystyle K^{ij}_{2} =ψ0X2ij+ψ0Nk=1NRxkxi(vk)Rxkxj(vk),xixj\displaystyle=-\psi_{0}X^{ij}_{2}+\frac{\psi_{0}}{N}\sum_{k=1}^{N}\langle R_{x_{k}\rightarrow x_{i}}(v_{k})-R_{x_{k}\rightarrow x_{j}}(v_{k}),x_{i}-x_{j}\rangle
+k=1N(ψikNψiiN)Rxkxi(vk)vi,xixj\displaystyle\quad+\sum_{k=1}^{N}\left(\frac{\psi_{ik}}{N}-\frac{\psi_{ii}}{N}\right)\langle R_{x_{k}\rightarrow x_{i}}(v_{k})-v_{i},x_{i}-x_{j}\rangle
k=1N(ψjkNψjjN)Rxkxj(vk)vj,xixj.\displaystyle\quad-\sum_{k=1}^{N}\left(\frac{\psi_{jk}}{N}-\frac{\psi_{jj}}{N}\right)\langle R_{x_{k}\rightarrow x_{j}}(v_{k})-v_{j},x_{i}-x_{j}\rangle.

For K3K_{3}, we use direct calculation to obtain

K3ij\displaystyle K^{ij}_{3} =σNk=1Nxi,xkxi+xj,xkxj,xixj\displaystyle=\frac{\sigma}{N}\sum_{k=1}^{N}\langle-\langle x_{i},x_{k}\rangle x_{i}+\langle x_{j},x_{k}\rangle x_{j},x_{i}-x_{j}\rangle
=σNk=1N(xi,xk+xi,xkxi,xj+xj,xkxj,xixj,xk)\displaystyle=\frac{\sigma}{N}\sum_{k=1}^{N}\Big{(}-\langle x_{i},x_{k}\rangle+\langle x_{i},x_{k}\rangle\langle x_{i},x_{j}\rangle+\langle x_{j},x_{k}\rangle\langle x_{j},x_{i}\rangle-\langle x_{j},x_{k}\rangle\Big{)}
=σNk=1Nxi,xk+xj,xk2xixj2\displaystyle=-\frac{\sigma}{N}\sum_{k=1}^{N}\frac{\langle x_{i},x_{k}\rangle+\langle x_{j},x_{k}\rangle}{2}\|x_{i}-x_{j}\|^{2}
=σxixj2σNk=1Nxi,xk+xj,xk22xixj2.\displaystyle=-\sigma\|x_{i}-x_{j}\|^{2}-\frac{\sigma}{N}\sum_{k=1}^{N}\frac{\langle x_{i},x_{k}\rangle+\langle x_{j},x_{k}\rangle-2}{2}\|x_{i}-x_{j}\|^{2}.

This implies that

K3ij=σX1ij+σ4Nk=1Nxkxi2xixj2+σ4Nk=1Nxkxj2xixj2.\displaystyle K^{ij}_{3}=-\sigma X^{ij}_{1}+\frac{\sigma}{4N}\sum_{k=1}^{N}\|x_{k}-x_{i}\|^{2}\|x_{i}-x_{j}\|^{2}+\frac{\sigma}{4N}\sum_{k=1}^{N}\|x_{k}-x_{j}\|^{2}\|x_{i}-x_{j}\|^{2}.

Therefore,

ddtX2ij\displaystyle\frac{d}{dt}X^{ij}_{2} =X3ij+K1ij+K2ij+K3ij\displaystyle=X^{ij}_{3}+K^{ij}_{1}+K^{ij}_{2}+K^{ij}_{3}
=X3ijvi2+vj22xixj2\displaystyle=X^{ij}_{3}-\frac{\|v_{i}\|^{2}+\|v_{j}\|^{2}}{2}\|x_{i}-x_{j}\|^{2}
ψ0X2ij+ψ0Nk=1NRxkxi(vk)Rxkxj(vk),xixj\displaystyle\quad-\psi_{0}X^{ij}_{2}+\frac{\psi_{0}}{N}\sum_{k=1}^{N}\langle R_{x_{k}\rightarrow x_{i}}(v_{k})-R_{x_{k}\rightarrow x_{j}}(v_{k}),x_{i}-x_{j}\rangle
+k=1N(ψikNψiiN)Rxkxi(vk)vi,xixj\displaystyle\quad+\sum_{k=1}^{N}\left(\frac{\psi_{ik}}{N}-\frac{\psi_{ii}}{N}\right)\langle R_{x_{k}\rightarrow x_{i}}(v_{k})-v_{i},x_{i}-x_{j}\rangle
k=1N(ψjkNψjjN)Rxkxj(vk)vj,xixj\displaystyle\quad-\sum_{k=1}^{N}\left(\frac{\psi_{jk}}{N}-\frac{\psi_{jj}}{N}\right)\langle R_{x_{k}\rightarrow x_{j}}(v_{k})-v_{j},x_{i}-x_{j}\rangle
σX1ij+σ4Nk=1Nxkxi2xixj2+σ4Nk=1Nxkxj2xixj2.\displaystyle\quad-\sigma X^{ij}_{1}+\frac{\sigma}{4N}\sum_{k=1}^{N}\|x_{k}-x_{i}\|^{2}\|x_{i}-x_{j}\|^{2}+\frac{\sigma}{4N}\sum_{k=1}^{N}\|x_{k}-x_{j}\|^{2}\|x_{i}-x_{j}\|^{2}.

Thus, we obtain the following differential equation for X2X_{2}.

ddtX2ij=X3ijψ0X2ijσX1ij+F2ij.\displaystyle\frac{d}{dt}X^{ij}_{2}=X^{ij}_{3}-\psi_{0}X^{ij}_{2}-\sigma X^{ij}_{1}+F^{ij}_{2}. (3.9)

We next consider X3ijX^{ij}_{3} case. By the definition of X3ijX^{ij}_{3},

12ddtX3ij=v˙iv˙j,vivj.\displaystyle\frac{1}{2}\frac{d}{dt}X^{ij}_{3}=\langle\dot{v}_{i}-\dot{v}_{j},v_{i}-v_{j}\rangle.

By (1.1b), we have

v˙iv˙j,vivj\displaystyle\langle\dot{v}_{i}-\dot{v}_{j},v_{i}-v_{j}\rangle =vi2xi+vj2xj,vivj\displaystyle=\langle-\|v_{i}\|^{2}x_{i}+\|v_{j}\|^{2}x_{j},v_{i}-v_{j}\rangle
+k=1NψikN(Rxkxi(vk)vi)k=1NψjkN(Rxkxj(vk)vj),vivj\displaystyle\quad+\left\langle\sum_{k=1}^{N}\frac{\psi_{ik}}{N}(R_{x_{k}\rightarrow x_{i}}(v_{k})-v_{i})-\sum_{k=1}^{N}\frac{\psi_{jk}}{N}(R_{x_{k}\rightarrow x_{j}}(v_{k})-v_{j}),v_{i}-v_{j}\right\rangle
+σNk=1N(xkxi,xkxi)σk=1N(xkxj,xkxj),vivj\displaystyle\quad+\left\langle\frac{\sigma}{N}\sum_{k=1}^{N}(x_{k}-\langle x_{i},x_{k}\rangle x_{i})-\sigma\sum_{k=1}^{N}(x_{k}-\langle x_{j},x_{k}\rangle x_{j}),v_{i}-v_{j}\right\rangle
:=L1ij+L2ij+L3ij.\displaystyle:=L^{ij}_{1}+L^{ij}_{2}+L^{ij}_{3}.

Similar to X2ijX^{ij}_{2} case, we consider L1ijL^{ij}_{1}, L2ijL^{ij}_{2}, and L3ijL^{ij}_{3} separately and use

ψ0=ψii for alli{1,,N}.\psi_{0}=\psi_{ii}\quad\mbox{ for all}\quad i\in\{1,\ldots,N\}.

For L2ijL^{ij}_{2},

L2ij\displaystyle L^{ij}_{2} =ψ0vivj,vivj+k=1Nψ0N(Rxkxi(vk)Rxkxj(vk)),vivj\displaystyle=-\psi_{0}\langle v_{i}-v_{j},v_{i}-v_{j}\rangle+\left\langle\sum_{k=1}^{N}\frac{\psi_{0}}{N}(R_{x_{k}\rightarrow x_{i}}(v_{k})-R_{x_{k}\rightarrow x_{j}}(v_{k})),v_{i}-v_{j}\right\rangle
+k=1N(ψikNψiiN)(Rxkxi(vk)vi)k=1N(ψjkNψjjN)(Rxkxj(vk)vj),vivj.\displaystyle\quad+\left\langle\sum_{k=1}^{N}\left(\frac{\psi_{ik}}{N}-\frac{\psi_{ii}}{N}\right)(R_{x_{k}\rightarrow x_{i}}(v_{k})-v_{i})-\sum_{k=1}^{N}\left(\frac{\psi_{jk}}{N}-\frac{\psi_{jj}}{N}\right)(R_{x_{k}\rightarrow x_{j}}(v_{k})-v_{j}),v_{i}-v_{j}\right\rangle.

Therefore, we have

L2ij\displaystyle L^{ij}_{2} =ψ0X3ij+k=1Nψ0NRxkxi(vk)Rxkxj(vk),vivj\displaystyle=-\psi_{0}X^{ij}_{3}+\sum_{k=1}^{N}\frac{\psi_{0}}{N}\left\langle R_{x_{k}\rightarrow x_{i}}(v_{k})-R_{x_{k}\rightarrow x_{j}}(v_{k}),v_{i}-v_{j}\right\rangle
+k=1N(ψikNψiiN)Rxkxi(vk)vi,vivj\displaystyle\quad+\sum_{k=1}^{N}\left(\frac{\psi_{ik}}{N}-\frac{\psi_{ii}}{N}\right)\left\langle R_{x_{k}\rightarrow x_{i}}(v_{k})-v_{i},v_{i}-v_{j}\right\rangle
k=1N(ψjkNψjjN)Rxkxj(vk)vj,vivj.\displaystyle\quad-\sum_{k=1}^{N}\left(\frac{\psi_{jk}}{N}-\frac{\psi_{jj}}{N}\right)\left\langle R_{x_{k}\rightarrow x_{j}}(v_{k})-v_{j},v_{i}-v_{j}\right\rangle.

For L3ijL^{ij}_{3}, we have

L3ij\displaystyle L^{ij}_{3} =σNk=1Nxi,xkxi+xj,xkxj,vivj\displaystyle=\frac{\sigma}{N}\sum_{k=1}^{N}\langle-\langle x_{i},x_{k}\rangle x_{i}+\langle x_{j},x_{k}\rangle x_{j},v_{i}-v_{j}\rangle
=σNk=1N(xi,xkxi,vj+xj,xkxj,vi)\displaystyle=\frac{\sigma}{N}\sum_{k=1}^{N}(\langle x_{i},x_{k}\rangle\langle x_{i},v_{j}\rangle+\langle x_{j},x_{k}\rangle\langle x_{j},v_{i}\rangle)
=σxixj,vivj+σNk=1N((xi,xk1)xi,vj+(xj,xk1)xj,vi)\displaystyle=-\sigma\langle x_{i}-x_{j},v_{i}-v_{j}\rangle+\frac{\sigma}{N}\sum_{k=1}^{N}\Big{(}(\langle x_{i},x_{k}\rangle-1)\langle x_{i},v_{j}\rangle+(\langle x_{j},x_{k}\rangle-1)\langle x_{j},v_{i}\rangle\Big{)}
=σX2ij+σNk=1N((xi,xk1)xi,vj+(xj,xk1)xj,vi)\displaystyle=-\sigma X^{ij}_{2}+\frac{\sigma}{N}\sum_{k=1}^{N}\Big{(}(\langle x_{i},x_{k}\rangle-1)\langle x_{i},v_{j}\rangle+(\langle x_{j},x_{k}\rangle-1)\langle x_{j},v_{i}\rangle\Big{)}

Thus, we have

12ddtX3ij\displaystyle\frac{1}{2}\frac{d}{dt}X^{ij}_{3} =L1ij+L2ij+L3ij\displaystyle=L^{ij}_{1}+L^{ij}_{2}+L^{ij}_{3}
=vi2xi+vj2xj,vivjψ0X3ij+k=1Nψ0NRxkxi(vk)Rxkxj(vk),vivj\displaystyle=\langle-\|v_{i}\|^{2}x_{i}+\|v_{j}\|^{2}x_{j},v_{i}-v_{j}\rangle-\psi_{0}X^{ij}_{3}+\sum_{k=1}^{N}\frac{\psi_{0}}{N}\left\langle R_{x_{k}\rightarrow x_{i}}(v_{k})-R_{x_{k}\rightarrow x_{j}}(v_{k}),v_{i}-v_{j}\right\rangle
+k=1N(ψikNψiiN)Rxkxi(vk)vi,vivj\displaystyle\quad+\sum_{k=1}^{N}\left(\frac{\psi_{ik}}{N}-\frac{\psi_{ii}}{N}\right)\left\langle R_{x_{k}\rightarrow x_{i}}(v_{k})-v_{i},v_{i}-v_{j}\right\rangle
k=1N(ψjkNψjjN)Rxkxj(vk)vj,vivj\displaystyle\quad-\sum_{k=1}^{N}\left(\frac{\psi_{jk}}{N}-\frac{\psi_{jj}}{N}\right)\left\langle R_{x_{k}\rightarrow x_{j}}(v_{k})-v_{j},v_{i}-v_{j}\right\rangle
σX2ij+σNk=1N((xi,xk1)xi,vj+(xj,xk1)xj,vi),\displaystyle\quad-\sigma X^{ij}_{2}+\frac{\sigma}{N}\sum_{k=1}^{N}\Big{(}(\langle x_{i},x_{k}\rangle-1)\langle x_{i},v_{j}\rangle+(\langle x_{j},x_{k}\rangle-1)\langle x_{j},v_{i}\rangle\Big{)},

i.e.,

ddtX3ij\displaystyle\frac{d}{dt}X^{ij}_{3} =2ψ0X3ij2σX2ij+F3ij.\displaystyle=-2\psi_{0}X^{ij}_{3}-2\sigma X^{ij}_{2}+F^{ij}_{3}. (3.10)

By (3.8), (3.9), and (3.10), we obtain the differential equation in (3.7). ∎

4. Uniform estimates for positions and velocities: the proof of the main theorem

In this section, we complete the proof of our main theorem: the complete position alignment of the solution to (1.1) when the differences of agents’ initial positions and velocities and the initial maximal velocity of all agents are sufficiently small. For simplicity, we define the following Lyapunov functionals.

𝒟x(t)=max1i,jNxi(t)xj(t),𝒟v(t)=max1i,jNvi(t)vj(t).\mathcal{D}_{x}(t)=\max_{1\leq i,j\leq N}\|x_{i}(t)-x_{j}(t)\|,\qquad\mathcal{D}_{v}(t)=\max_{1\leq i,j\leq N}\|v_{i}(t)-v_{j}(t)\|.

Based on the linearized system derived in Section 3, we obtain exponential decay rates for position and velocity diameters 𝒟x(t)\mathcal{D}_{x}(t), 𝒟v(t)\mathcal{D}_{v}(t) via estimating the inhomogeneous term FijF^{ij} defined in (3.4). The inhomogeneous term FijF^{ij} is bounded by clXij+chXijXijc_{l}X^{ij}+c_{h}\|X^{ij}\|X^{ij}. The higher order term chXijXijc_{h}\|X^{ij}\|X^{ij} will be controlled by small initial data assumption and the coefficient clc_{l} of the lower order term is bounded by ψ𝒱\|\psi\|\mathcal{V}, where 𝒱(t)\mathcal{V}(t) is the maximal velocity defined by

𝒱(t)=max1kNvk(t).\mathcal{V}(t)=\max_{1\leq k\leq N}\|v_{k}(t)\|.

As mentioned before, the energy functional {\mathcal{E}} is decreasing. This dissipation property in Proposition 2.7 leads to a uniform boundedness of the maximum velocity 𝒱\mathcal{V}. Since the coefficient matrix AA in Proposition 3.1 is negative definite, combining the above properties, we can obtain the complete position flocking result.

Lemma 4.1.

Let {(xi,vi)}1iN{\{(x_{i},v_{i})\}_{{1\leq i\leq N}}} be the solution to (1.1). Assume that there is a constant ψm>0\psi_{m}>0 such that for any i,j{1,,N}i,j\in\{1,\ldots,N\}, ψij(s)ψm\psi_{ij}(s)\geq\psi_{m} on 0st0\leq s\leq t. Then

𝒱2(t)\displaystyle\mathcal{V}^{2}(t) eψm2t𝒱2(0)+(1eψm2t)(2sup0stK(s)+4σ2ψm2sup0st𝒟x2(s)).\displaystyle\leq e^{-\frac{\psi_{m}}{2}t}\mathcal{V}^{2}(0)+(1-e^{-\frac{\psi_{m}}{2}t})\bigg{(}2\sup_{0\leq s\leq t}{\mathcal{E}}_{K}(s)+\frac{4\sigma^{2}}{\psi_{m}^{2}}\sup_{0\leq s\leq t}\mathcal{D}_{x}^{2}(s)\bigg{)}.
Remark 4.2.

Without the bonding force σ=0\sigma=0, it is not hard to verify that the maximal velocity 𝒱\mathcal{V} decreases in time. However, this property is not expected in our model due to the bonding force term σ>0\sigma>0. Instead, we use the modulus preservation property of the rotation operator RR as in Proposition 2.4 to get the uniform estimate for the maximal velocity.

Proof of Lemma 4.1.

For a fixed t>0t>0, we can take an index iti_{t} such that

vit(t)=max1kNvk(t).\|v_{i_{t}}(t)\|=\max_{1\leq k\leq N}\|v_{k}(t)\|.

Then, by (2.10b), we have

ddtvit2\displaystyle\frac{d}{dt}\|v_{i_{t}}\|^{2} =2k=1NψitkN(Rxkxitvk,vitvit2)+2σNk=1Nxk,vit\displaystyle=2\sum_{k=1}^{N}\frac{\psi_{i_{t}k}}{N}(\langle R_{x_{k}\rightarrow x_{i_{t}}}v_{k},v_{i_{t}}\rangle-\|v_{i_{t}}\|^{2})+\frac{2\sigma}{N}\sum_{k=1}^{N}\langle x_{k},v_{i_{t}}\rangle
=2k=1NψitkN(Rxkxitvk,vitvit2)+2σNk=1Nxkxit,vit\displaystyle=2\sum_{k=1}^{N}\frac{\psi_{i_{t}k}}{N}(\langle R_{x_{k}\rightarrow x_{i_{t}}}v_{k},v_{i_{t}}\rangle-\|v_{i_{t}}\|^{2})+\frac{2\sigma}{N}\sum_{k=1}^{N}\langle x_{k}-x_{i_{t}},v_{i_{t}}\rangle
2k=1NψitkN(Rxkxitvkvitvit2)+2σNk=1Nxkxit,vit.\displaystyle\leq 2\sum_{k=1}^{N}\frac{\psi_{i_{t}k}}{N}(\|R_{x_{k}\rightarrow x_{i_{t}}}v_{k}\|\|v_{i_{t}}\|-\|v_{i_{t}}\|^{2})+\frac{2\sigma}{N}\sum_{k=1}^{N}\langle x_{k}-x_{i_{t}},v_{i_{t}}\rangle.

We use the modulus conservation property in Proposition 2.4 to obtain

ddtvit2\displaystyle\frac{d}{dt}\|v_{i_{t}}\|^{2} 2k=1NψitkN(vkvitvit2)+2σNk=1Nxkxit,vit.\displaystyle\leq 2\sum_{k=1}^{N}\frac{\psi_{i_{t}k}}{N}(\|v_{k}\|\|v_{i_{t}}\|-\|v_{i_{t}}\|^{2})+\frac{2\sigma}{N}\sum_{k=1}^{N}\langle x_{k}-x_{i_{t}},v_{i_{t}}\rangle.

Note that vkvitvit20\|v_{k}\|\|v_{i_{t}}\|-\|v_{i_{t}}\|^{2}\leq 0. By the assumption of ψm\psi_{m} and the index iti_{t}, we have

ddtvit2\displaystyle\frac{d}{dt}\|v_{i_{t}}\|^{2} 2k=1NψmN(vkvitvit2)+2σNk=1Nxkxit,vit.\displaystyle\leq 2\sum_{k=1}^{N}\frac{\psi_{m}}{N}(\|v_{k}\|\|v_{i_{t}}\|-\|v_{i_{t}}\|^{2})+\frac{2\sigma}{N}\sum_{k=1}^{N}\langle x_{k}-x_{i_{t}},v_{i_{t}}\rangle.

Young’s inequality implies that

ddtvit2\displaystyle\frac{d}{dt}\|v_{i_{t}}\|^{2} k=1NψmN(vk2vit2)+σNk=1N(xkxit2η+ηvit2),\displaystyle\leq\sum_{k=1}^{N}\frac{\psi_{m}}{N}\bigg{(}\|v_{k}\|^{2}-\|v_{i_{t}}\|^{2}\bigg{)}+\frac{\sigma}{N}\sum_{k=1}^{N}\bigg{(}\frac{\|x_{k}-x_{i_{t}}\|^{2}}{\eta}+\eta\|v_{i_{t}}\|^{2}\bigg{)},

for any η>0\eta>0. Thus, we have

ddtvit2ψmK(ψmση)vit2+σNk=1Nxkxit2η.\displaystyle\frac{d}{dt}\|v_{i_{t}}\|^{2}\leq\psi_{m}{\mathcal{E}}_{K}-(\psi_{m}-\sigma\eta)\|v_{i_{t}}\|^{2}+\frac{\sigma}{N}\sum_{k=1}^{N}\frac{\|x_{k}-x_{i_{t}}\|^{2}}{\eta}.

Let η=ψm/2σ\eta=\psi_{m}/2\sigma. Then

ddtvit2\displaystyle\frac{d}{dt}\|v_{i_{t}}\|^{2} ψmKψm2vit2+2σ2ψmmax1i,jNxitxj2.\displaystyle\leq\psi_{m}{\mathcal{E}}_{K}-\frac{\psi_{m}}{2}\|v_{i_{t}}\|^{2}+\frac{2\sigma^{2}}{\psi_{m}}\max_{1\leq i,j\leq N}\|x_{i_{t}}-x_{j}\|^{2}.

Therefore, we have

vit(t)2\displaystyle\|v_{i_{t}}(t)\|^{2} eψm2tvit(0)2+eψm2t0teψm2s(ψmK(s)+2σ2ψmmax1i,jNxisxj2(s))𝑑s.\displaystyle\leq e^{-\frac{\psi_{m}}{2}t}\|v_{i_{t}}(0)\|^{2}+e^{-\frac{\psi_{m}}{2}t}\int_{0}^{t}e^{\frac{\psi_{m}}{2}s}\bigg{(}\psi_{m}{\mathcal{E}}_{K}(s)+\frac{2\sigma^{2}}{\psi_{m}}\max_{1\leq i,j\leq N}\|x_{i_{s}}-x_{j}\|^{2}(s)\bigg{)}ds.

This implies that

vit(t)2\displaystyle\|v_{i_{t}}(t)\|^{2} eψm2tvit(0)2+(1eψm2t)(2sup0stK(s)+4σ2ψm2sup0stmax1i,jNxisxj2(s)).\displaystyle\leq e^{-\frac{\psi_{m}}{2}t}\|v_{i_{t}}(0)\|^{2}+(1-e^{-\frac{\psi_{m}}{2}t})\bigg{(}2\sup_{0\leq s\leq t}{\mathcal{E}}_{K}(s)+\frac{4\sigma^{2}}{\psi_{m}^{2}}\sup_{0\leq s\leq t}\max_{1\leq i,j\leq N}\|x_{i_{s}}-x_{j}\|^{2}(s)\bigg{)}.

Next, we provide an estimate for inhomogeneous term FijF^{ij} via 𝒟x\mathcal{D}_{x}, 𝒟v\mathcal{D}_{v} and 𝒱\mathcal{V}.

Lemma 4.3.

Let {(xi,vi)}1iN{\{(x_{i},v_{i})\}_{{1\leq i\leq N}}} be the solution to (1.1). We assume that ψij\psi_{ij} satisfies (1)(\mathcal{H}1)-(3)(\mathcal{H}3). Then the following estimates hold.

|F2ij(t)|\displaystyle|F^{ij}_{2}(t)| (𝒱(t)+6ψ𝒞1)𝒱(t)𝒟x2(t)+ψ0𝒱(t)𝒟x3(t)+σ2𝒟x4(t),\displaystyle\leq(\mathcal{V}(t)+6\|\psi\|_{\mathcal{C}^{1}})\mathcal{V}(t)\mathcal{D}_{x}^{2}(t)+\psi_{0}\mathcal{V}(t)\mathcal{D}_{x}^{3}(t)+\frac{\sigma}{2}\mathcal{D}_{x}^{4}(t),

and

|F3ij(t)|(3𝒱(t)+6ψ𝒞1+2σ)𝒱(t)𝒟x2(t)+(3𝒱(t)+7ψ𝒞1)𝒱(t)𝒟v2(t)+ψ0𝒱(t)𝒟x4(t),\displaystyle|F^{ij}_{3}(t)|\leq(3\mathcal{V}(t)+6\|\psi\|_{\mathcal{C}^{1}}+2\sigma)\mathcal{V}(t)\mathcal{D}_{x}^{2}(t)+(3\mathcal{V}(t)+7\|\psi\|_{\mathcal{C}^{1}})\mathcal{V}(t)\mathcal{D}_{v}^{2}(t)+\psi_{0}\mathcal{V}(t)\mathcal{D}_{x}^{4}(t),

where ψ0=ψ(0)\psi_{0}=\psi(0) and

ψ𝒞1=supx[0,2](|ψ(x)|+|ψ(x)|).\|\psi\|_{\mathcal{C}^{1}}=\sup_{x\in[0,2]}(|\psi(x)|+|\psi^{\prime}(x)|).
Proof.

For simplicity, we define

F21ij:=\displaystyle F^{ij}_{21}:= vi2+vj22xixj2,\displaystyle-\frac{\|v_{i}\|^{2}+\|v_{j}\|^{2}}{2}\|x_{i}-x_{j}\|^{2},
F22ij:=\displaystyle F^{ij}_{22}:= ψ0Nk=1NRxkxi(vk)Rxkxj(vk),xixj,\displaystyle\frac{\psi_{0}}{N}\sum_{k=1}^{N}\langle R_{x_{k}\rightarrow x_{i}}(v_{k})-R_{x_{k}\rightarrow x_{j}}(v_{k}),x_{i}-x_{j}\rangle,
F23ij:=\displaystyle F^{ij}_{23}:= k=1N(ψikNψiiN)Rxkxi(vk)vi,xixj,\displaystyle\sum_{k=1}^{N}\left(\frac{\psi_{ik}}{N}-\frac{\psi_{ii}}{N}\right)\langle R_{x_{k}\rightarrow x_{i}}(v_{k})-v_{i},x_{i}-x_{j}\rangle,
F24ij:=\displaystyle F^{ij}_{24}:= k=1N(ψjkNψjjN)Rxkxj(vk)vj,xixj,\displaystyle\sum_{k=1}^{N}\left(\frac{\psi_{jk}}{N}-\frac{\psi_{jj}}{N}\right)\langle R_{x_{k}\rightarrow x_{j}}(v_{k})-v_{j},x_{i}-x_{j}\rangle,
F25ij:=\displaystyle F^{ij}_{25}:= σ4Nk=1Nxkxi2xixj2,\displaystyle\frac{\sigma}{4N}\sum_{k=1}^{N}\|x_{k}-x_{i}\|^{2}\|x_{i}-x_{j}\|^{2},
F26ij:=\displaystyle F^{ij}_{26}:= σ4Nk=1Nxkxj2xixj2.\displaystyle\frac{\sigma}{4N}\sum_{k=1}^{N}\|x_{k}-x_{j}\|^{2}\|x_{i}-x_{j}\|^{2}.

Then

F2ij(t)=F21ij(t)+F22ij(t)+F23ij(t)+F24ij(t)+F25ij(t)+F26ij(t).\displaystyle F^{ij}_{2}(t)=F^{ij}_{21}(t)+F^{ij}_{22}(t)+F^{ij}_{23}(t)+F^{ij}_{24}(t)+F^{ij}_{25}(t)+F^{ij}_{26}(t).

Clearly, we have

|F21ij|𝒱2xixj2.\displaystyle|F^{ij}_{21}|\leq\mathcal{V}^{2}\|x_{i}-x_{j}\|^{2}.

Note that

|F22ij|\displaystyle|F^{ij}_{22}| ψ0Nk=1NRxkxi(vk)Rxkxj(vk)xixj.\displaystyle\leq\frac{\psi_{0}}{N}\sum_{k=1}^{N}\|R_{x_{k}\rightarrow x_{i}}(v_{k})-R_{x_{k}\rightarrow x_{j}}(v_{k})\|\|x_{i}-x_{j}\|. (4.1)

By the definition of the rotation operator RR and xi=1\|x_{i}\|=1 for any i{1,,N}i\in\{1,\ldots,N\} and t0t\geq 0, we have

Rxkxi(vk)Rxkxj(vk)\displaystyle\|R_{x_{k}\rightarrow x_{i}}(v_{k})-R_{x_{k}\rightarrow x_{j}}(v_{k})\| xk,xixjvk+xixj,vkxk\displaystyle\leq\|\langle x_{k},x_{i}-x_{j}\rangle v_{k}\|+\|\langle x_{i}-x_{j},v_{k}\rangle x_{k}\|
+(1xk,xi)(xk×xi|xk×xi|)(xk×xi,vk|xk×xi|)\displaystyle\quad+\left\|(1-\langle x_{k},x_{i}\rangle)\left(\frac{x_{k}\times x_{i}}{|x_{k}\times x_{i}|}\right)\left(\frac{\langle x_{k}\times x_{i},v_{k}\rangle}{|x_{k}\times x_{i}|}\right)\right\|
+(1xk,xj)(xk×xj|xk×xj|)(xk×xj,vk|xk×xj|)\displaystyle\quad+\left\|(1-\langle x_{k},x_{j}\rangle)\left(\frac{x_{k}\times x_{j}}{|x_{k}\times x_{j}|}\right)\left(\frac{\langle x_{k}\times x_{j},v_{k}\rangle}{|x_{k}\times x_{j}|}\right)\right\|
2𝒱xixj+𝒱2xixk2+𝒱2xjxk2.\displaystyle\leq 2\mathcal{V}\|x_{i}-x_{j}\|+\frac{\mathcal{V}}{2}\|x_{i}-x_{k}\|^{2}+\frac{\mathcal{V}}{2}\|x_{j}-x_{k}\|^{2}.

This and (4.1) yield that

|F22ij|\displaystyle|F^{ij}_{22}| 2ψ0𝒱xixj2+ψ0𝒱2Nk=1Nxixjxixk2+ψ0𝒱2Nk=1Nxixjxjxk2.\displaystyle\leq 2\psi_{0}\mathcal{V}\|x_{i}-x_{j}\|^{2}+\frac{\psi_{0}\mathcal{V}}{2N}\sum_{k=1}^{N}\|x_{i}-x_{j}\|\|x_{i}-x_{k}\|^{2}+\frac{\psi_{0}\mathcal{V}}{2N}\sum_{k=1}^{N}\|x_{i}-x_{j}\|\|x_{j}-x_{k}\|^{2}.

Note that |ψikψii|=|ψ(xixk)ψ(0)|ψ𝒞1xixk|\psi_{ik}-\psi_{ii}|=|\psi(\|x_{i}-x_{k}\|)-\psi(0)|\leq\|\psi\|_{\mathcal{C}^{1}}\|x_{i}-x_{k}\|. By the modulus conservation property of the rotation operator RR and this estimate,

|F23ij|\displaystyle|F^{ij}_{23}| k=1Nψ𝒞1N(Rxkxi(vk)+vi)xixkxixj\displaystyle\leq\sum_{k=1}^{N}\frac{\|\psi\|_{\mathcal{C}^{1}}}{N}\big{(}\|R_{x_{k}\rightarrow x_{i}}(v_{k})\|+\|v_{i}\|\big{)}\|x_{i}-x_{k}\|\|x_{i}-x_{j}\|
2ψ𝒞1N𝒱k=1Nxixkxixj.\displaystyle\leq\frac{2\|\psi\|_{\mathcal{C}^{1}}}{N}\mathcal{V}\sum_{k=1}^{N}\|x_{i}-x_{k}\|\|x_{i}-x_{j}\|.

Similarly,

|F24ij|\displaystyle|F^{ij}_{24}| 2ψ𝒞1N𝒱k=1Nxjxkxixj.\displaystyle\leq\frac{2\|\psi\|_{\mathcal{C}^{1}}}{N}\mathcal{V}\sum_{k=1}^{N}\|x_{j}-x_{k}\|\|x_{i}-x_{j}\|.

Therefore,

|F2ij(t)|\displaystyle|F^{ij}_{2}(t)| (𝒱(t)+6ψ𝒞1)𝒱(t)𝒟x2(t)+ψ0𝒱(t)𝒟x3(t)+σ2𝒟x4(t).\displaystyle\leq(\mathcal{V}(t)+6\|\psi\|_{\mathcal{C}^{1}})\mathcal{V}(t)\mathcal{D}_{x}^{2}(t)+\psi_{0}\mathcal{V}(t)\mathcal{D}_{x}^{3}(t)+\frac{\sigma}{2}\mathcal{D}_{x}^{4}(t).

Similarly, we define

F31ij=\displaystyle F^{ij}_{31}= 2vi2xi+vj2xj,vivj,\displaystyle 2\langle-\|v_{i}\|^{2}x_{i}+\|v_{j}\|^{2}x_{j},v_{i}-v_{j}\rangle,
F32ij=\displaystyle F^{ij}_{32}= 2k=1Nψ0NRxkxi(vk)Rxkxj(vk),vivj,\displaystyle 2\sum_{k=1}^{N}\frac{\psi_{0}}{N}\left\langle R_{x_{k}\rightarrow x_{i}}(v_{k})-R_{x_{k}\rightarrow x_{j}}(v_{k}),v_{i}-v_{j}\right\rangle,
F33ij=\displaystyle F^{ij}_{33}= 2k=1N(ψikNψiiN)Rxkxi(vk)vi,vivj,\displaystyle 2\sum_{k=1}^{N}\left(\frac{\psi_{ik}}{N}-\frac{\psi_{ii}}{N}\right)\left\langle R_{x_{k}\rightarrow x_{i}}(v_{k})-v_{i},v_{i}-v_{j}\right\rangle,
F34ij=\displaystyle F^{ij}_{34}= 2k=1N(ψjkNψjjN)Rxkxj(vk)vj,vivj,\displaystyle-2\sum_{k=1}^{N}\left(\frac{\psi_{jk}}{N}-\frac{\psi_{jj}}{N}\right)\left\langle R_{x_{k}\rightarrow x_{j}}(v_{k})-v_{j},v_{i}-v_{j}\right\rangle,
F35ij=\displaystyle F^{ij}_{35}= 2σNk=1N(xi,xk1)xi,vj,\displaystyle\frac{2\sigma}{N}\sum_{k=1}^{N}(\langle x_{i},x_{k}\rangle-1)\langle x_{i},v_{j}\rangle,
F36ij=\displaystyle F^{ij}_{36}= 2σNk=1N(xj,xk1)xj,vi.\displaystyle\frac{2\sigma}{N}\sum_{k=1}^{N}(\langle x_{j},x_{k}\rangle-1)\langle x_{j},v_{i}\rangle.

Then,

F3ij(t)=F31ij+F32ij+F33ij+F34ij+F35ij+F36ij.\displaystyle F^{ij}_{3}(t)=F^{ij}_{31}+F^{ij}_{32}+F^{ij}_{33}+F^{ij}_{34}+F^{ij}_{35}+F^{ij}_{36}.

We next provide upper bounds for each of the terms sequentially.

F31ij\displaystyle F^{ij}_{31} =2vi2xi,vj+2vj2xj,vi\displaystyle=2\|v_{i}\|^{2}\langle x_{i},v_{j}\rangle+2\|v_{j}\|^{2}\langle x_{j},v_{i}\rangle
=2(vi2vj2)xi,vj+2vj2(xi,vj+xj,vi)\displaystyle=2(\|v_{i}\|^{2}-\|v_{j}\|^{2})\langle x_{i},v_{j}\rangle+2\|v_{j}\|^{2}(\langle x_{i},v_{j}\rangle+\langle x_{j},v_{i}\rangle)
=2(vi2vj2)xixj,vj2vj2xixj,vivj.\displaystyle=2(\|v_{i}\|^{2}-\|v_{j}\|^{2})\langle x_{i}-x_{j},v_{j}\rangle-2\|v_{j}\|^{2}\langle x_{i}-x_{j},v_{i}-v_{j}\rangle.

Therefore, we have

|F31ij|\displaystyle|F^{ij}_{31}| 2vivj(vi+vj)xixjvj+2vj2xixjvivj\displaystyle\leq 2\|v_{i}-v_{j}\|(\|v_{i}\|+\|v_{j}\|)\|x_{i}-x_{j}\|\|v_{j}\|+2\|v_{j}\|^{2}\|x_{i}-x_{j}\|\|v_{i}-v_{j}\|
6𝒱2xixjvivj.\displaystyle\leq 6\mathcal{V}^{2}\|x_{i}-x_{j}\|\|v_{i}-v_{j}\|.

Similar to F2ijF^{ij}_{2}, we can obtain

|F32ij|\displaystyle|F^{ij}_{32}| 4ψ0𝒱xixjvivj\displaystyle\leq 4\psi_{0}\mathcal{V}\|x_{i}-x_{j}\|\|v_{i}-v_{j}\|
+ψ0𝒱Nk=1Nxixk2vivj+ψ0𝒱Nk=1Nxjxk2vivj,\displaystyle\quad+\frac{\psi_{0}\mathcal{V}}{N}\sum_{k=1}^{N}\|x_{i}-x_{k}\|^{2}\|v_{i}-v_{j}\|+\frac{\psi_{0}\mathcal{V}}{N}\sum_{k=1}^{N}\|x_{j}-x_{k}\|^{2}\|v_{i}-v_{j}\|,
|F33ij|\displaystyle|F^{ij}_{33}| 4ψ𝒞1𝒱Nk=1Nxixkvivj,\displaystyle\leq\frac{4\|\psi\|_{\mathcal{C}^{1}}\mathcal{V}}{N}\sum_{k=1}^{N}\|x_{i}-x_{k}\|\|v_{i}-v_{j}\|,
|F34ij|\displaystyle|F^{ij}_{34}| 4ψ𝒞1𝒱Nk=1Nxjxkvivj.\displaystyle\leq\frac{4\|\psi\|_{\mathcal{C}^{1}}\mathcal{V}}{N}\sum_{k=1}^{N}\|x_{j}-x_{k}\|\|v_{i}-v_{j}\|.

For F35ijF^{ij}_{35} and F36ijF^{ij}_{36},

|F35ij|σ𝒱Nk=1Nxixk2,|F36ij|σ𝒱Nk=1Nxjxk2.\displaystyle|F^{ij}_{35}|\leq\frac{\sigma\mathcal{V}}{N}\sum_{k=1}^{N}\|x_{i}-x_{k}\|^{2},\qquad|F^{ij}_{36}|\leq\frac{\sigma\mathcal{V}}{N}\sum_{k=1}^{N}\|x_{j}-x_{k}\|^{2}.

Therefore,

|F3ij(t)|(3𝒱(t)+6ψ𝒞1+2σ)𝒱(t)𝒟x2(t)+(3𝒱(t)+7ψ𝒞1)𝒱(t)𝒟v2(t)+ψ0𝒱(t)𝒟x4(t).\displaystyle|F^{ij}_{3}(t)|\leq(3\mathcal{V}(t)+6\|\psi\|_{\mathcal{C}^{1}}+2\sigma)\mathcal{V}(t)\mathcal{D}_{x}^{2}(t)+(3\mathcal{V}(t)+7\|\psi\|_{\mathcal{C}^{1}})\mathcal{V}(t)\mathcal{D}_{v}^{2}(t)+\psi_{0}\mathcal{V}(t)\mathcal{D}_{x}^{4}(t).

As a consequence of Proposition 2.7, Proposition 3.1, Lemma 4.1, and Lemma 4.3, we prove our main theorem as follows:

Proof of Theorem 1..

By Proposition 3.1, XijX^{ij} satisfies

ddtXij(t)=AXij+Fij,\displaystyle\frac{d}{dt}X^{ij}(t)=AX^{ij}+F^{ij}, (4.2)

where the coefficient matrix AA is given by

A=(020σψ0102σ2ψ0).\displaystyle A=\left(\begin{matrix}0&2&0\\ -\sigma&-\psi_{0}&1\\ 0&-2\sigma&-2\psi_{0}\end{matrix}\right).

Note that the eigenvalues of AA is

{ψ0,ψ0ψ024σ,ψ0+ψ024σ}.\left\{-\psi_{0},~{}-\psi_{0}-\sqrt{\psi_{0}^{2}-4\sigma},~{}-\psi_{0}+\sqrt{\psi_{0}^{2}-4\sigma}\right\}.

Thus, if ψ024σ\psi_{0}^{2}\leq 4\sigma, then the maximum real part of the eigenvalues of A(t)A(t) is ψ0-\psi_{0}. If ψ02>4σ\psi_{0}^{2}>4\sigma, then the maximum real part of the eigenvalues of A(t)A(t) is ψ0+ψ024σ-\psi_{0}+\sqrt{\psi_{0}^{2}-4\sigma} and satisfies

ψ0+ψ024σ\displaystyle-\psi_{0}+\sqrt{\psi_{0}^{2}-4\sigma} =4σψ0+ψ024σ\displaystyle=-\frac{4\sigma}{\psi_{0}+\sqrt{\psi_{0}^{2}-4\sigma}}
2σψ0.\displaystyle\leq-\frac{2\sigma}{\psi_{0}}.

We denote the maximum real part of the eigenvalues of AA by

μ<0.-\mu<0.

Therefore, by (4.2),

12ddtXij(t)2\displaystyle\frac{1}{2}\frac{d}{dt}\|X^{ij}(t)\|^{2} =Xij(t),AXij(t)+Xij(t),Fij(t)\displaystyle=\langle X^{ij}(t),AX^{ij}(t)\rangle+\langle X^{ij}(t),F^{ij}(t)\rangle
μXij(t)2+Xij(t)Fij(t).\displaystyle\leq-\mu\|X^{ij}(t)\|^{2}+\|X^{ij}(t)\|~{}\|F^{ij}(t)\|.

Thus, we have

ddtXij(t)\displaystyle\frac{d}{dt}\|X^{ij}(t)\| μXij(t)+Fij(t).\displaystyle\leq-\mu\|X^{ij}(t)\|+\|F^{ij}(t)\|.

By Lemma 4.3,

Fij(t)C𝒱(t)+𝒱2(t)4𝒟x2(t)+C𝒱(t)+𝒱2(t)4𝒟v2(t)+σ2𝒟x4(t),\displaystyle\|F^{ij}(t)\|\leq C\frac{\mathcal{V}(t)+\mathcal{V}^{2}(t)}{4}\mathcal{D}_{x}^{2}(t)+C\frac{\mathcal{V}(t)+\mathcal{V}^{2}(t)}{4}\mathcal{D}_{v}^{2}(t)+\frac{\sigma}{2}\mathcal{D}_{x}^{4}(t),

where C=C(ψ,σ)C=C(\psi,\sigma) is a constant depending on ψ\psi and σ\sigma.

Therefore, we have

ddtXij(t)\displaystyle\frac{d}{dt}\|X^{ij}(t)\| μXij(t)+C𝒱(t)+𝒱2(t)4𝒟x2(t)+C𝒱(t)+𝒱2(t)4𝒟v2(t)+σ2𝒟x4(t).\displaystyle\leq-\mu\|X^{ij}(t)\|+C\frac{\mathcal{V}(t)+\mathcal{V}^{2}(t)}{4}\mathcal{D}_{x}^{2}(t)+C\frac{\mathcal{V}(t)+\mathcal{V}^{2}(t)}{4}\mathcal{D}_{v}^{2}(t)+\frac{\sigma}{2}\mathcal{D}_{x}^{4}(t).

Let

X(t)=max1i,jNXij(t).X(t)=\max_{1\leq i,j\leq N}\|X^{ij}(t)\|.

Clearly, we have

𝒟x2(t),𝒟v2(t)X(t).\displaystyle\mathcal{D}_{x}^{2}(t),~{}\mathcal{D}_{v}^{2}(t)\leq X(t).

Then

ddtX(t)\displaystyle\frac{d}{dt}X(t) μX(t)+C𝒱(t)+𝒱2(t)2X(t)+σ2X2(t).\displaystyle\leq-\mu X(t)+C\frac{\mathcal{V}(t)+\mathcal{V}^{2}(t)}{2}X(t)+\frac{\sigma}{2}X^{2}(t). (4.3)

We let

𝒱0:={μ4Cifμ4C<1,μ4Cifμ4C1,0:={μ264C2ifμ4C<1,μ16Cifμ4C1,\displaystyle\mathcal{V}_{0}:=\left\{\begin{array}[]{ll}\displaystyle\frac{\mu}{4C}&\mbox{if}\quad\displaystyle\frac{\mu}{4C}<1,\\ \displaystyle\sqrt{\frac{\mu}{4C}}&\mbox{if}\quad\displaystyle\frac{\mu}{4C}\geq 1,\end{array}\right.\qquad{\mathcal{E}}_{0}:=\left\{\begin{array}[]{ll}\displaystyle\frac{\mu^{2}}{64C^{2}}&\mbox{if}\quad\displaystyle\frac{\mu}{4C}<1,\\ \displaystyle\frac{\mu}{16C}&\mbox{if}\quad\displaystyle\frac{\mu}{4C}\geq 1,\end{array}\right.

and ψm=ψ(XM)\psi_{m}=\psi(\sqrt{X_{M}}), where XM>0X_{M}>0 is a constant satisfying

{XM=μ128Cσψ(XM)ifμ4C<1,XM=μ32Cσψ(XM)ifμ4C1.\displaystyle\left\{\begin{array}[]{ll}\displaystyle\sqrt{X_{M}}=\frac{\mu}{\sqrt{128}C\sigma}\psi(\sqrt{X_{M}})&\mbox{if}\quad\displaystyle\frac{\mu}{4C}<1,\\ \displaystyle\sqrt{X_{M}}=\frac{\sqrt{\mu}}{\sqrt{32C}\sigma}\psi(\sqrt{X_{M}})&\mbox{if}\quad\displaystyle\frac{\mu}{4C}\geq 1.\end{array}\right. (4.6)

We assume that

𝒱(0)<𝒱0,(0)<0,X(0)<min{μ2σ,XM}.\displaystyle\mathcal{V}(0)<\mathcal{V}_{0},\quad{\mathcal{E}}(0)<{\mathcal{E}}_{0},\quad X(0)<\min\left\{\frac{\mu}{2\sigma},X_{M}\right\}. (4.7)

By the initial data assumption, there is ϵ>0\epsilon>0 such that for t[0,ϵ)t\in[0,\epsilon),

𝒱(t)<𝒱0,X(t)<min{μ2σ,XM}.\displaystyle\mathcal{V}(t)<\mathcal{V}_{0},\quad X(t)<\min\left\{\frac{\mu}{2\sigma},X_{M}\right\}.

Assume that there is T>0T>0 such that

𝒱(t)<𝒱0,X(t)<min{μ2σ,XM}for any t[0,T),\displaystyle\mathcal{V}(t)<\mathcal{V}_{0},\quad X(t)<\min\left\{\frac{\mu}{2\sigma},X_{M}\right\}\quad\mbox{for any $t\in[0,T)$}, (4.8)

but

𝒱(T)=𝒱0,orX(T)=min{μ2σ,XM}.\displaystyle\mathcal{V}(T)=\mathcal{V}_{0},\quad\mbox{or}\quad X(T)=\min\left\{\frac{\mu}{2\sigma},X_{M}\right\}. (4.9)

Then by (4.3), for t[0,T)t\in[0,T),

ddtX(t)\displaystyle\frac{d}{dt}X(t) μ2X(t),\displaystyle\leq-\frac{\mu}{2}X(t),

i.e., for t[0,T)t\in[0,T),

X(t)<X(0).X(t)<X(0).

This implies that

X(T)=limtTX(t)X(0)<min{μ2σ,XM}.X(T)=\lim_{t\to T^{-}}X(t)\leq X(0)<\min\left\{\frac{\mu}{2\sigma},X_{M}\right\}.

Note that for any i,j{1,,N}i,j\in\{1,\ldots,N\}, ψij(s)=ψ(xi(s)xj(s))ψ(XM)=ψm\psi_{ij}(s)=\psi(\|x_{i}(s)-x_{j}(s)\|)\geq\psi(\sqrt{X_{M}})=\psi_{m} on 0sT0\leq s\leq T and by Proposition 2.7, for any t0t\geq 0,

K(t)(t)(0).\displaystyle{\mathcal{E}}_{K}(t)\leq{\mathcal{E}}(t)\leq{\mathcal{E}}(0).

Here, K(t){\mathcal{E}}_{K}(t) is given in (1.3). Therefore, by Lemma 4.1 and the above,

𝒱2(t)eψm2t𝒱2(0)+(1eψm2t)(2sup0stK(s)+4σ2ψm2sup0st𝒟x2(s))eψm2t𝒱2(0)+(1eψm2t)(2(0)+4σ2ψm2sup0stX(s)).\displaystyle\begin{aligned} \mathcal{V}^{2}(t)&\leq e^{-\frac{\psi_{m}}{2}t}\mathcal{V}^{2}(0)+(1-e^{-\frac{\psi_{m}}{2}t})\bigg{(}2\sup_{0\leq s\leq t}{\mathcal{E}}_{K}(s)+\frac{4\sigma^{2}}{\psi_{m}^{2}}\sup_{0\leq s\leq t}\mathcal{D}_{x}^{2}(s)\bigg{)}\\ &\leq e^{-\frac{\psi_{m}}{2}t}\mathcal{V}^{2}(0)+(1-e^{-\frac{\psi_{m}}{2}t})\bigg{(}2{\mathcal{E}}(0)+\frac{4\sigma^{2}}{\psi_{m}^{2}}\sup_{0\leq s\leq t}X(s)\bigg{)}.\end{aligned} (4.10)

By (4.10), for t[0,T)t\in[0,T),

𝒱2(t)\displaystyle\mathcal{V}^{2}(t) eψm2t𝒱2(0)+(1eψm2t)(2(0)+4σ2ψm2X(0))\displaystyle\leq e^{-\frac{\psi_{m}}{2}t}\mathcal{V}^{2}(0)+(1-e^{-\frac{\psi_{m}}{2}t})\bigg{(}2{\mathcal{E}}(0)+\frac{4\sigma^{2}}{\psi_{m}^{2}}X(0)\bigg{)}

and

𝒱2(T)=limtT𝒱2(t)max{𝒱2(0),2(0)+4σ2ψm2X(0)}<{μ216C2ifμ4C<1,μ4Cifμ4C1.\mathcal{V}^{2}(T)=\lim_{t\to T^{-}}\mathcal{V}^{2}(t)\leq\max\left\{\mathcal{V}^{2}(0),~{}2{\mathcal{E}}(0)+\frac{4\sigma^{2}}{\psi_{m}^{2}}X(0)\right\}<\left\{\begin{array}[]{ll}\displaystyle\frac{\mu^{2}}{16C^{2}}&\mbox{if}\quad\displaystyle\frac{\mu}{4C}<1,\\ \displaystyle\frac{\mu}{4C}&\mbox{if}\quad\displaystyle\frac{\mu}{4C}\geq 1.\end{array}\right.

Here, we used the equality in (4.6).

Therefore, there is no T>0T>0 satisfying (4.8) and (4.9), i.e., for any t0t\geq 0, the followings hold.

𝒱(t)<𝒱0,X(t)<min{μ2σ,XM}.\displaystyle\mathcal{V}(t)<\mathcal{V}_{0},\quad X(t)<\min\left\{\frac{\mu}{2\sigma},X_{M}\right\}.

Therefore, by (4.3),

ddtX(t)\displaystyle\frac{d}{dt}X(t) μ2X(t),for any t[0,T).\displaystyle\leq-\frac{\mu}{2}X(t),\quad\mbox{for any $t\in[0,T)$}.

By Gronwall’s lemma, we obtain the desired result. ∎

5. Numerical simulations

In this section, we conduct some numerical simulations of 66-agents system of (1.1) to confirm our mathematical results in Theorem 1 and to check the exponential convergence rate

δ=μ2.\delta=\frac{\mu}{2}.

We use the fourth order Runge-Kutta method and MATLAB programming for the simulations.

Refer to caption

(a) t=0t=0

Refer to caption

(b) t=1t=1

Refer to caption

(c) t=5t=5

Refer to caption

(d) t=15t=15

Refer to caption

(e) t=30t=30

Refer to caption

(f) t=80t=80

Figure 1. Time evolution of solution of (1.1) under the admissible initial data condition

Let

ψ(x)=3(exp(2x)1)andσ=1.\psi(x)=3(\exp(2-x)-1)\quad\text{and}\quad\sigma=1.

Then we can easily check that ψ\psi satisfies the condition in (1)(\mathcal{H}1)-(3)(\mathcal{H}3). The initial configuration is randomly chosen satisfying conditions in Theorem 1 such that

x1(0)=(0.3903,0.4756,0.7883),\displaystyle x_{1}(0)=(-0.3903,-0.4756,\phantom{-}0.7883), x2(0)=(0.5800,0.7067,0.4052),\displaystyle x_{2}(0)=(-0.5800,-0.7067,\phantom{-}0.4052),
x3(0)=(0.6746,0.2998,0.6746),\displaystyle x_{3}(0)=(-0.6746,-0.2998,\phantom{-}0.6746), x4(0)=(0.4472,0.0000,0.8944),\displaystyle x_{4}(0)=(-0.4472,\phantom{-}0.0000,\phantom{-}0.8944),
x5(0)=(0.1249,0.2084,0.9700),\displaystyle x_{5}(0)=(-0.1249,\phantom{-}0.2084,\phantom{-}0.9700), x6(0)=(0.6236,0.6236,0.4714),\displaystyle x_{6}(0)=(-0.6236,\phantom{-}0.6236,\phantom{-}0.4714),

and

v1(0)=(0.4707,0.1259,0.1571),\displaystyle v_{1}(0)=(-0.4707,\phantom{-}0.1259,-0.1571), v2(0)=(0.0986,0.4355,0.6185),\displaystyle v_{2}(0)=(-0.0986,\phantom{-}0.4355,\phantom{-}0.6185),
v3(0)=(0.1892,0.1666,0.2631),\displaystyle v_{3}(0)=(\phantom{-}0.1892,\phantom{-}0.1666,\phantom{-}0.2631), v4(0)=(0.4605,0.5046,0.2302),\displaystyle v_{4}(0)=(\phantom{-}0.4605,\phantom{-}0.5046,\phantom{-}0.2302),
v5(0)=(0.4914,0.7722,0.2292),\displaystyle v_{5}(0)=(-0.4914,\phantom{-}0.7722,-0.2292), v6(0)=(0.0148,0.1342,0.1971).\displaystyle v_{6}(0)=(-0.0148,\phantom{-}0.1342,-0.1971).

The time evolution of the solution to (1.1) under the above setting is given in Figure 1. To visually represent the solution, we here use red points for the agent’s positions {xi(t)}i=1N\{x_{i}(t)\}_{i=1}^{N} at t=t0t=t_{0} and the blue lines for the trajectory of agents on the time interval [t03,3][t_{0}-3,3]. Here the white points in Figure 1(b) and (c) mean the agent’s positions on the opposite side of the visible side. Eventually, we can observe the phenomenon in Figure 1 that all the agents gather to one point and they converge into a trajectory orbiting a great circle at a constant speed.

In Figure 2, we display the maximal spatial diameter maxi,jxi(t)xj(t)\max_{i,j}\|x_{i}(t)-x_{j}(t)\| of the solution and we can check that it decays exponentially as we proved in Theorem 1. Additionally, if we increase the inter-particle bonding force such as σ=5\sigma=5, then the above initial data does not satisfy the admissible condition, i.e.,

X(0)>min{μ2σ,XM}.X(0)>\min\left\{\frac{\mu}{2\sigma},X_{M}\right\}.
Refer to caption

(a) maxi,jxi(t)xj(t)\max_{i,j}\|x_{i}(t)-x_{j}(t)\|

Refer to caption

(b) Semi-log graph of (a)

Figure 2. Maximum position diameter for the solution satisfying (4.7)
Refer to caption

(a) maxi,jxi(t)xj(t)\max_{i,j}\|x_{i}(t)-x_{j}(t)\|

Refer to caption

(b) Semi-log graph of (a)

Figure 3. Maximum position diameter for the solution not satisfying (4.7).

Then, we can see that the sufficient exponential decay rate does not appear. See Figure 3.

6. conclusion and discussion

In this paper, we studied the interactions of the inter-particle bonding forces and flocking operator on a sphere. We show that the model has the complete position flocking for an admissible initial condition depending on ψ\psi, σ\sigma. We note that the initial data condition does not depend on the number of particles NN. As the flat space case, we obtain that the ensemble converges to one point particle with one velocity when a flocking model has the inter-particle bonding forces. We crucially use the energy dissipation property in Proposition 2.7 because our model has no momentum conservation. From the energy dissipation leads to uniform upper bound of velocities. We simultaneously use the Lyapunov functional method and a reduction to a linearized system of differential equations to obtain the asymptotic position alignment result.

Acknowledgments

S.-H. Choi is partially supported by NRF of Korea (no. 2017R1E1A1A03070692) and Korea Electric Power Corporation(Grant number: R18XA02).

References

  • [1] Abdessameud, A., and Tayebi, A. (2010). On consensus algorithms for double-integrator dynamics without velocity measurements and with input constraints. Systems & Control Letters, 59(12), 812-821.
  • [2] Abdessameud, A., and Tayebi, A. (2013). On consensus algorithms design for double integrator dynamics. Automatica, 49(1), 253-260.
  • [3] Adler J. (1966). Chemotaxis in bacteria. Science.
  • [4] Ando, H., Oasa, Y., Suzuki, I., and Yamashita, M. (1999). Distributed memoryless point convergence algorithm for mobile robots with limited visibility. IEEE Transactions on Robotics and Automation, 15(5), 818-828.
  • [5] Bahloul, N. E.H. , Boudjit, S., A., M. and Boubiche, D.E. (2018). A flocking-based on demand routing protocol for unmanned aerial vehicles. Journal of Computer Science and Technology, 33, 263-276.
  • [6] Carroll, S.M.: Lecture notes on general relativity. arXiv preprint gr-qc/9712019, 1997.
  • [7] Chandler, P. R., Pachter, M., Rasmussen, S. (2001). UAV cooperative control. In Proceedings of the 2001 American Control Conference (Cat. No. 01CH37148), 50-55.
  • [8] Chi, D., Choi, S.-H. and Ha, S.-Y. (2014). Emergent behaviors of a holonomic particle system on a sphere. Journal of Mathematical Physics, 55(5), 052703.
  • [9] Choi, S.-H., Kwon, D. and Seo, H. (2020). Cucker-Smale type flocking models on a sphere. arXiv preprint arXiv:2010.10693. https://arxiv.org/abs/2010.10693
  • [10] Choi, S.-H., Kwon, D. and Seo, H.: Flocking formation and stabilizer of boosted cooperative control on a sphere, preprint.
  • [11] Cimino, M. G. C. A. , Lazzeri, A. and Vaglini, G. (2015). Combining stigmergic and flocking behaviors to coordinate swarms of drones performing target search. 2015 6th International Conference on Information, Intelligence, Systems and Applications.
  • [12] Cucker, F. and Smale, S. (2009). Emergent Behavior in Flocks. IEEE Transactions on Automatic Control, 52(5), 852–862.
  • [13] DeGroot, M. H. (1974). Reaching a consensus. Journal of the American Statistical Association, 69(345), 118-121.
  • [14] do Carmo, M.P. (2016). Differential Geometry of Curves and Surfaces. Revised and Updated Second Edition. Courier Dover Publications.
  • [15] Eich-Soellner, E. and Führer, C. (1998). Numerical methods in multibody dynamics, vol 45. Springer.
  • [16] Flocchini, P., Prencipe, G., Santoro, N., and Widmayer, P. (2005). Gathering of asynchronous robots with limited visibility. Theoretical Computer Science, 337(1-3), 147-168.
  • [17] Hairer, E. (2011). Solving differential equations on manifolds. Lecture Notes, Universite de Geneve, Geneva, Switzerland.
  • [18] Kuramoto, Y. (1975). International symposium on mathematical problems in theoretical physics. Lecture notes in Physics.
  • [19] Lageman, C., and Sun, Z. (2016). Consensus on spheres: Convergence analysis and perturbation theory. In 2016 IEEE 55th Conference on Decision and Control (CDC), 19-24.
  • [20] Lee, J. M. (2006). Riemannian Manifolds. An Introduction to Curvature. Springer Science & Business Media.
  • [21] Li, W. and Spong, M. W. (2013). Unified cooperative control of multiple agents on a sphere for different spherical patterns. IEEE Transactions on Automatic Control, 59(5), 1283-1289.
  • [22] Lin, Z., Francis, B., and Maggiore, M. (2007). State agreement for continuous-time coupled nonlinear systems. SIAM Journal on Control and Optimization, 46(1), 288-307.
  • [23] Lohe, M.A. (2009). Non-abelian kuramoto models and synchronization. Journal of Physics A: Mathematical and Theoretical, 42, 395101.
  • [24] McGlinn, W. D. (2003). Introduction to Relativity. JHU Press.
  • [25] Miao, Y. Q., Khamis, A. and Kamel, M. S. (2010). Applying anti-flocking model in mobile surveillance systems. In 2010 International Conference on Autonomous and Intelligent Systems, AIS 2010, 1-6.
  • [26] Murray, R. M. (2007). Recent research in cooperative control of multivehicle systems. Journal of Dynamic Systems, Measurement, and Control, 129(5), 571-583.
  • [27] Olfati-Saber, R. (2006). Flocking for multi-agent dynamic systems: Algorithms and theory. IEEE Transactions on automatic control, 51(3), 401-420.
  • [28] Park, J., Kim, H. J., and Ha, S.-Y. (2010). Cucker-Smale flocking with inter-particle bonding forces. IEEE Transactions on Automatic Control, 55(11), 2617-2623.
  • [29] Ren, W., Beard, R. W., and Atkins, E. M. (2005). A survey of consensus problems in multi-agent coordination. In Proceedings of the 2005, American Control Conference, 1859-1864.
  • [30] Ren, W. and Beard, R. W. (2008). Distributed consensus in multi-vehicle cooperative control. Vol. 27. Springer London.
  • [31] Rodriguez-Angeles, A., and Nijmeijer, H. (2004). Mutual synchronization of robots via estimated state feedback: a cooperative approach. IEEE Transactions on control systems technology, 12(4), 542-554.
  • [32] Schutz, B. F. (1985). A First Course in General Relativity. Cambridge University Press.
  • [33] Semnani, S. H. and Basir, O. A. (2014). Semi-flocking algorithm for motion control of mobile sensors in large-scale surveillance systems. IEEE transactions on cybernetics, 45(1), 129-137.
  • [34] Spivak, M. (1970). A comprehensive introduction to differential geometry. Vol. I. Publish or Perish, Inc., Wilmington, Del., second edition.
  • [35] Spivak, M. (1970). A comprehensive introduction to differential geometry. Vol. II. Publish or Perish, Inc., Wilmington, Del., second edition.
  • [36] Talman, R. (2008). Geometric Mechanics. John Wiley & Sons.
  • [37] Toner, J. and Tu, Y. (1998). Flocks, herds, and schools: A quantitative theory of flocking. Physical review E, 58, 4828.
  • [38] Winfree, A. T. (1967). Biological rhythms and the behavior of populations of coupled oscillators. Journal of theoretical biology, 16(1), 15-42.