This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

uniform measure attractors of McKean-Vlasov stochastic reaction-diffusion equations on unbounded thin domain

Tianhao Zeng School of Mathematics
Southwest Jiaotong University, Chengdu 610031, China
[email protected]
Ran Li School of Mathematics
Southwest Jiaotong University, Chengdu 610031, China
[email protected]
 and  Dingshi Li School of Mathematics
Southwest Jiaotong University, Chengdu 610031, China
[email protected]
Abstract.

This article addresses the issue of uniform measure attractors for non-autonomous McKean-Vlasov stochastic reaction-diffusion equations defined on unbounded thin domains. Initially, the concept of uniform measure attractors is recalled, and thereafter, the existence and uniqueness of such attractors are demonstrated. Uniform tail estimates are employed to establish the asymptotic compactness of the processes, thereby overcoming the non-compactness issue inherent in the usual Sobolev embedding on unbounded thin domains. Finally, we demonstrate that the upper semi-continuity of uniform measure attractors defined on (n+1)(n+1)-dimensional unbounded thin domains collapsing into the space n\mathbb{R}^{n}.

Key words and phrases:
McKean-Vlasov equation, uniform measure attractor, complete solution, unbounded thin domain.
This work was supported by NSFC (12371178 and 11971394) and Natural Science Foundation of Sichuan province under grant (2023NSFSC1342). All correspondences should be addressed to Li Ran.
2020 Mathematics Subject Classification:
Primary: 35B41, 37L30, 37L55; Secondary: 35B40.

1. introduction

In this paper, our objective is to investigate the limiting behaviour of uniform measure attractors for the following non-autonomous, almost periodic stochastic reaction-diffusion equation driven by nonlinear noise defined on 𝒪ε\mathcal{O}_{\varepsilon}.

(1.1) {du^ε(t)Δu^ε(t)dt+λu^ε(t)dt+f(x,u^ε(t,x),u^ε(t))dt=g(t,x)dt+k=1(σk(x)+κ(x)ϖk(u^ε(t,x),u^ε(t)))dWk(t),x𝒪ε,t>τ,u^ενε=0,x𝒪ε,\left\{\begin{array}[]{l}d\hat{u}^{\varepsilon}(t)-\Delta\hat{u}^{\varepsilon}(t)dt+\lambda\hat{u}^{\varepsilon}(t)dt+f\left(x,\hat{u}^{\varepsilon}(t,x),\mathcal{L}_{\hat{u}^{\varepsilon}(t)}\right)dt=g(t,x^{*})dt\\ \quad+\sum\limits_{k=1}^{\infty}\left(\sigma_{k}(x)+\kappa(x^{*})\varpi_{k}\left(\hat{u}^{\varepsilon}(t,x),\mathcal{L}_{\hat{u}^{\varepsilon}(t)}\right)\right)dW_{k}(t),\quad x\in\mathcal{O}_{\varepsilon},\ t>\tau,\\ \frac{\partial\hat{u}^{\varepsilon}}{\partial\nu_{\varepsilon}}=0,\quad x\in\partial\mathcal{O}_{\varepsilon},\end{array}\right.

with initial data

(1.2) u^ε(τ,x)=ξ^ε(x),x𝒪ε,\hat{u}^{\varepsilon}(\tau,x)=\hat{\xi}^{\varepsilon}(x),\quad x\in\mathcal{O}_{\varepsilon},

where λ>0\lambda>0 denotes a positive constant, u^ε(t)\mathcal{L}_{\hat{u}^{\varepsilon}(t)} represents the probability distribution of u^ε(t)\hat{u}^{\varepsilon}(t), ff is a nonlinear function possessing an arbitrary growth rate, and gg signifies an almost-periodic external term in tt. Furthermore, νε\nu_{\varepsilon} denotes the unit outward normal vector to the boundary 𝒪ε\partial\mathcal{O}_{\varepsilon}, κL2(n)L(n)\kappa\in L^{2}(\mathbb{R}^{n})\cap L^{\infty}(\mathbb{R}^{n}), σk\sigma_{k} is defined on 𝒪~\widetilde{{\mathcal{O}}}, ϖk\varpi_{k} is a nonlinear diffusion term, and (Wk)k(W_{k})_{k\in\mathbb{N}} is a sequence of independent two-sided real-valued standard Wiener processes on a complete filtered probability space (Ω,,{t}t,P)(\Omega,\mathcal{F},\{\mathcal{F}_{t}\}_{t\in\mathbb{R}},P) which satisfies the usual condition.

The unbounded thin domain, denoted as 𝒪ε\mathcal{O}_{\varepsilon}, is rigorously defined as

𝒪ε={x=(x,xn+1)x=(x1,,xn)n and 0<xn+1<ερ(x)},\mathcal{O}_{\varepsilon}=\left\{x=\left(x^{*},x_{n+1}\right)\mid x^{*}=\left(x_{1},\ldots,x_{n}\right)\in\mathbb{R}^{n}\text{ and }0<x_{n+1}<\varepsilon\rho\left(x^{*}\right)\right\},

where ρC2(n,(0,+))\rho\in C^{2}\left(\mathbb{R}^{n},(0,+\infty)\right), and 0<ε10<\varepsilon\leq 1. Consequently, there exist constants ρ1\rho_{1} and ρ2\rho_{2} such that

(1.3) ρ1ρ(x)ρ2,xn.\rho_{1}\leq\rho\left(x^{*}\right)\leq\rho_{2},\quad\forall x^{*}\in\mathbb{R}^{n}.

Let 𝒪=n×(0,1)\mathcal{O}=\mathbb{R}^{n}\times(0,1) and 𝒪~=n×[0,ρ2]\widetilde{\mathcal{O}}=\mathbb{R}^{n}\times\left[0,\rho_{2}\right], where 𝒪~=n×[0,ρ2]\widetilde{\mathcal{O}}=\mathbb{R}^{n}\times\left[0,\rho_{2}\right] contains 𝒪ε\mathcal{O}_{\varepsilon} for 0<ε10<\varepsilon\leq 1.

It is noteworthy that the unbounded thin domain 𝒪ε\mathcal{O}_{\varepsilon} undergoes a collapse, converging to the space n\mathbb{R}^{n} as ε0\varepsilon\rightarrow 0. We will investigate the existence and uniqueness and the limit of uniform measure attractors of (1.1)-(1.2) as ε0\varepsilon\rightarrow 0.

For ε=0\varepsilon=0, the limit equation of (1.1) reduces to the follow system defined on n\mathbb{R}^{n}

du0(t)1ρ\displaystyle\mathrm{d}u^{0}(t)-\frac{1}{\rho} i=1n(ρuyi0)yidt+λu0(t)dt+f((y,0),u0,u0(t))dt=g(t,(y))dt\displaystyle\sum_{i=1}^{n}\left(\rho u_{y_{i}}^{0}\right)_{y_{i}}\mathrm{~{}d}t+\lambda u^{0}(t)dt+f\left(\left(y^{*},0\right),u^{0},\mathcal{L}_{u^{0}(t)}\right)dt=g\left(t,(y^{*})\right)\mathrm{d}t
(1.4) +k=1(σk(y,0)+κ(y)ϖk(u0(t),u0(t)))dWk(t),t>τ,\displaystyle+\sum_{k=1}^{\infty}\left(\sigma_{k}\left(y^{*},0\right)+\kappa\left(y^{*}\right)\varpi_{k}\left(u^{0}(t),\mathcal{L}_{u^{0}(t)}\right)\right)\mathrm{d}W_{k}(t),\quad t>\tau,

with initial condition

(1.5) u0(τ,y)=ξ0(y),u^{0}\left(\tau,y^{*}\right)=\xi^{0}\left(y^{*}\right),

where y=(y1,,yn)ny^{*}=(y_{1},\cdots,y_{n})\in\mathbb{R}^{n}.

The McKean-Vlasov stochastic differential equations (MVSDEs) were initially examined in the seminal works of M. McKean [33] and V. Vlasov [45]. These equations frequently emerge from the realm of interacting particle systems, as evidenced in the extensive literature[3, 12, 13]. It is the distinctive quality of these differential equations that they depend not only on the states of the solutions, but also on the distributions of the solutions. Consequently, the Markov operators pertinent to MVSDEs cease to constitute semigroups are no longer semigroups (as illustrated in [47]), thereby rendering the methodologies devised for addressing stochastic equations independent of distributions inapplicable to MVSDEs in a straightforward manner.

At present, a considerable number of academic publications are dedicated to the examination of solutions to MVSDEs. For instance, the existence of solutions to MVSDEs has been examined in previous research [2, 14, 21]. Additionally, the existence and ergodicity of invariant measures for finite-dimensional MVSDEs have been investigated in other studies [4, 22, 48]. In a recent publication, Shi et al. [42] innovatively utilized the theory of pullback measure attractors to demonstrate the existence of invariant measures and periodic measures for infinite-dimensional MVSDEs.

For non-autonomous random dynamical systems, there are typically two kinds of pathwise pullback random attractor which have drawn much attention in last years: cocycle attractors introduced in [46] and uniform random attractors introduced in [10]. For further details, please refer to the following sources:[11, 19, 20, 24, 25].

It bears noting that the notion of a measure attractor for autonomous dynamical systems in measure spaces was initially posited by Schmalfuß\ss in [38]. For further details concerning the existence of measure attractors for autonomous stochastic equations, the reader is directed to the references [34, 35, 39]. A recent investigation by Li and Wang [31] explored the limiting dynamical behaviour of pullback measure attractors in a system of semilinear parabolic stochastic equations with deterministic non-autonomous forcing in bounded thin domains. Notably, this investigation did not assume any particular constraints on the external forces involved, including translation-bounded. Subsequently, Li et al. initially explored uniform measure attractors in the context of stochastic Navier-Stokes equations, as outlined in their work cited in [28]. In this paragraph, however, it is worth noting that in all of the articles mentioned above, the stochastic equations do not depend on the distributions of the solutions.

The dynamics of deterministic partial differential equations (PDEs) on thin domains were initially investigated by Hale and Raugel [15, 16, 17]. Subsequently, a considerable number of models have extended these initial findings, as demonstrated by the following references [1, 23, 36, 37]. Recently, several results have been published concerning stochastic dynamical systems on thin domains. For example, see the references [27, 29, 32] for studies of random attractors on bounded thin domains and the references [40, 41] for studies of random attractors on unbounded thin domains.

In order to illustrate the principal conclusions of this paper and for the sake of convenience, we shall use equations (3.21), which are the equivalent of equations (1.1)-(1.2). we introduce the notation 𝒫(L2(𝒪))\mathcal{P}\left(L^{2}\left(\mathcal{O}\right)\right) to represent the space of probability measures on (L2(𝒪),(L2(𝒪))\left(L^{2}\left(\mathcal{O}\right),\mathcal{B}\left(L^{2}\left(\mathcal{O}\right)\right)\right., where (L2(𝒪))\mathcal{B}\left(L^{2}\left(\mathcal{O}\right)\right) denotes the Borel σ\sigma-algebra associated with L2(𝒪)L^{2}\left(\mathcal{O}\right). Notably, the weak topology of 𝒫(L2(𝒪))\mathcal{P}\left(L^{2}\left(\mathcal{O}\right)\right) is metrizable, and the corresponding metric is denoted by d𝒫(L2(𝒪))d_{\mathcal{P}\left(L^{2}\left(\mathcal{O}\right)\right)}. Set

𝒫4(L2(𝒪))={μ𝒫(L2(𝒪)):L2(𝒪)ξL2(𝒪)4dμ(ξ)<}.\mathcal{P}_{4}\left(L^{2}\left(\mathcal{O}\right)\right)=\left\{\mu\in\mathcal{P}\left(L^{2}\left(\mathcal{O}\right)\right):\int_{L^{2}\left(\mathcal{O}\right)}\|\xi\|_{L^{2}\left(\mathcal{O}\right)}^{4}d\mu(\xi)<\infty\right\}.

Then (𝒫4(L2(𝒪)),d𝒫(L2(𝒪)))\left(\mathcal{P}_{4}\left(L^{2}\left(\mathcal{O}\right)\right),d_{\mathcal{P}\left(L^{2}\left(\mathcal{O}\right)\right)}\right) is a metric space. Given r>0r>0, denote by

B𝒫4(L2(𝒪))(r)={μ𝒫4(L2(𝒪)):L2(𝒪)ξL2(𝒪)4dμ(ξ)r4}.B_{\mathcal{P}_{4}\left(L^{2}\left(\mathcal{O}\right)\right)}(r)=\left\{\mu\in\mathcal{P}_{4}\left(L^{2}\left(\mathcal{O}\right)\right):\int_{L^{2}\left(\mathcal{O}\right)}\|\xi\|_{L^{2}\left(\mathcal{O}\right)}^{4}d\mu(\xi)\leq r^{4}\right\}.

Given τt\tau\leq t and μ𝒫4(L2(𝒪))\mu\in\mathcal{P}_{4}\left(L^{2}\left(\mathcal{O}\right)\right), let Pg,ε(t,τ)μP_{*}^{g,\varepsilon}(t,\tau)\mu be the law of the solution of (3.21) with initial law μ\mu at initial time τ\tau. If ϕ:L2(𝒪)\phi:L^{2}\left(\mathcal{O}\right)\rightarrow\mathbb{R} is a bounded Borel function, then we write

Pg,ε(τ,t)ϕ(ξε)=𝔼(ϕ(uε(t,τ,ξε))),ξεL2(𝒪),P^{g,\varepsilon}(\tau,t)\phi\left(\xi^{\varepsilon}\right)=\mathbb{E}\left(\phi\left(u^{\varepsilon}\left(t,\tau,\xi^{\varepsilon}\right)\right)\right),\quad\forall\xi^{\varepsilon}\in L^{2}\left(\mathcal{O}\right),

where uε(t,τ,ξε)u^{\varepsilon}\left(t,\tau,\xi^{\varepsilon}\right) is the solution of (3.21) with initial value ξε\xi^{\varepsilon} at initial time τ\tau. Note that for the McKean-Vlasov stochastic equations like (3.21), Pg,ε(t,τ)P_{*}^{g,\varepsilon}(t,\tau) is not the dual of Pg,ε(τ,t)P^{g,\varepsilon}(\tau,t) (see [47]) in the sense that

(1.6) L2(𝒪)Pg,ε(t,τ)ϕ(ξ)dμ(ξ)L2(𝒪)ϕ(ξ)dPg,ε(ξ),\displaystyle\int_{L^{2}\left(\mathcal{O}\right)}P^{g,\varepsilon}(t,\tau)\phi(\xi)d\mu(\xi)\neq\int_{L^{2}\left(\mathcal{O}\right)}\phi(\xi)dP^{g,\varepsilon}_{*}(\xi),

where μ𝒫4(L2(𝒪))\mu\in\mathcal{P}_{4}\left(L^{2}\left(\mathcal{O}\right)\right) and ϕ:L2(𝒪)\phi:L^{2}\left(\mathcal{O}\right)\rightarrow\mathbb{R} is a bounded Borel function.

To prove the existence of uniform measure attractors for (3.21), we first need to show {Pg,ε(t,τ)}τt\left\{P^{g,\varepsilon}_{*}(t,\tau)\right\}_{\tau\leq t} is a jointly continuous process, i.e., it is continuous in 𝒫4(L2(𝒪))×(g0)\mathcal{P}_{4}(L^{2}(\mathcal{O}))\times\mathcal{H}(g_{0}). In general, if a stochastic equation does not depend on distributions of the solutions, then the continuity of {Pg,ε(t,τ)}τt\left\{P^{g,\varepsilon}_{*}(t,\tau)\right\}_{\tau\leq t} on (𝒫4(L2(𝒪)),d𝒫(L2(𝒪)))\left(\mathcal{P}_{4}\left(L^{2}\left(\mathcal{O}\right)\right),d_{\mathcal{P}\left(L^{2}\left(\mathcal{O}\right)\right)}\right) follows from the Feller property of {Pg,ε(t,τ)}τt\left\{P^{g,\varepsilon}(t,\tau)\right\}_{\tau\leq t} and the duality relation between Pg,ε(t,τ)P^{g,\varepsilon}_{*}(t,\tau) and Pg,ε(t,τ)P^{g,\varepsilon}(t,\tau). However, this method does not apply to the McKean-Vlasov stochastic reaction-diffusion equation (1.1)-(1.2), because Pg,ε(t,τ)P^{g,\varepsilon}_{*}(t,\tau) is no longer the dual of Pg,ε(t,τ)P^{g,\varepsilon}(t,\tau) as demonstrated by (1.6). To surmount this impediment, we leverage the regularity properties inherent in 𝒫4(L2(𝒪))\mathcal{P}_{4}(L^{2}(\mathcal{O})) and invoke the Vitali theorem to establish the continuity of 𝒫g,ε(t,τ)\mathcal{P}^{g,\varepsilon}_{*}(t,\tau) within the restricted domain(B𝒫4(L2(𝒪)),d𝒫(L2(𝒪)))×(g0)(B_{\mathcal{P}_{4}(L^{2}(\mathcal{O}))},d_{\mathcal{P}(L^{2}(\mathcal{O}))})\times\mathcal{H}(g_{0}) rather than endeavoring to prove it across the entire space (𝒫4(L2(𝒪)),d𝒫(L2(𝒪)))×(g0)(\mathcal{P}_{4}(L^{2}(\mathcal{O})),d_{\mathcal{P}(L^{2}(\mathcal{O}))})\times\mathcal{H}(g_{0}).

The first goal of this paper is to prove the existence and uniqueness of uniform measure attractors for the almost periodic external term in McKean-Vlasov stochastic equation (1.1)-(1.2) which is dependent on the laws of solutions. To this end, the estimates of the solutions must be uniform with respect to all translations of the external term involved in the system.

The secondary objective of this paper is to investigate the limiting behavior of the uniform measure attractors associated with the system of (1.1)-(1.2) as ε0\varepsilon\rightarrow 0. Specifically, we aim to understand how these attractors, originating from (n+1)(n+1)-dimensional unbounded thin domains, undergo a collapse into the space n\mathbb{R}^{n}.

The following sections of the paper are organised as follows: In Section 22, we recall the theory of uniform measure attractors for processes defined on the space of probability measures. In Section 33, we reformulate the problem and the transformation from the varying thin domain to the fixed domain, denoted by 𝒪\mathcal{O}. Section 44 is devoted to the uniform estimates and the tail estimates of the solutions. In Section 55, we show the existence and uniqueness of almost periodic measures of (1.1)-(1.2). In the last section, we prove the upper semi-continuity of uniform measure attractors of (1.1)-(1.2) as ε0\varepsilon\rightarrow 0.

2. Uniform measure attractors

This section reviews the theory of uniform measure attractors for processes in the space of probability measures. Since this space is metrizable, the processes can be seen as in a metric space.

In what follows, we will denote the separable Banach space with norm X\|\cdot\|_{X} by XX. Let us define the space of bounded continuous functions on XX as Cb(X)C_{b}(X) equipped with the norm

φ=supxX|φ(x)|.\|\varphi\|_{\infty}=\sup_{x\in X}|\varphi(x)|.

Let Lb(X)L_{b}(X) denote the space of bounded Lipschitz functions on XX which consists of all functions φCb(X)\varphi\in C_{b}(X) such that

Lip(φ):=supx1,x2X,x1x2|φ(x1)φ(x2)|x1x2X<.\mathrm{Lip}(\varphi):=\sup_{x_{1},x_{2}\in X,x_{1}\neq x_{2}}\frac{|\varphi(x_{1})-\varphi(x_{2})|}{\|x_{1}-x_{2}\|_{X}}<\infty.

The space Lb(X)L_{b}(X) is equipped with the norm

φLb=φ+Lip(φ).\|\varphi\|_{L_{b}}=\|\varphi\|_{\infty}+\mathrm{Lip}(\varphi).

Denote by 𝒫(X)\mathcal{P}(X) be the set of probability measures on (X,(X))\left(X,\mathcal{B}(X)\right), where (X)\mathcal{B}(X) is the Borel σ\sigma-algebra of XX. Given φCb(X)\varphi\in C_{b}(X) and μ𝒫(X)\mu\in\mathcal{P}(X), we write

(φ,μ)=Xφ(x)μ(dx).(\varphi,\mu)=\int_{X}\varphi(x)\mu(dx).

Define a metric on 𝒫(X)\mathcal{P}(X) by

d𝒫(X)(μ1,μ2)=supφLb(X)φL1|(φ,μ1)(φ,μ2)|,μ1,μ2𝒫(X).d_{\mathcal{P}(X)}(\mu_{1},\mu_{2})=\sup_{\begin{subarray}{c}\varphi\in L_{b}(X)\\ \|\varphi\|_{L}\leq 1\end{subarray}}|(\varphi,\mu_{1})-(\varphi,\mu_{2})|,\quad\forall\mu_{1},\mu_{2}\in\mathcal{P}(X).

Then (𝒫(X),d𝒫(X))(\mathcal{P}(X),d_{\mathcal{P}(X)}) is a polish space. Moreover, a sequence {μn}n=1𝒫(X)\{\mu_{n}\}^{\infty}_{n=1}\subset\mathcal{P}(X) convergence to μ\mu in (𝒫(X),d𝒫(X))(\mathcal{P}(X),d_{\mathcal{P}(X)}) if and only if {μn}n=1\{\mu_{n}\}^{\infty}_{n=1} convergence to μ\mu weakly.

Given p1p\geq 1, denote by (𝒫p(X),𝕎p)\left(\mathcal{P}_{p}(X),\mathbb{W}_{p}\right) as defined by

𝒫p(X)={μ𝒫(X):XxXpμ(dx)<},\mathcal{P}_{p}(X)=\left\{\mu\in\mathcal{P}(X):\int_{X}\|x\|_{X}^{p}\mu(dx)<\infty\right\},

and

𝕎p(μ,ν)=infπΠ(μ,ν)(X×XxypX(dx,dy))1p,\mathbb{W}_{p}(\mu,\nu)=\inf_{\pi\in\Pi(\mu,\nu)}\left(\int_{X\times X}\|x-y\|^{p}_{X}(dx,dy)\right)^{\frac{1}{p}},

where Π(μ,ν)\Pi(\mu,\nu) is the set of all coupling of μ\mu and ν\nu. The metric 𝕎p\mathbb{W}_{p} is called the Wasserstein distance.

Given r>0r>0, denote by

B𝒫p(X)(r)={μ𝒫p(X):(XxXpμ(dx))1pr}.B_{\mathcal{P}_{p}(X)}(r)=\left\{\mu\in\mathcal{P}_{p}(X):\left(\int_{X}\|x\|_{X}^{p}\mu(dx)\right)^{\frac{1}{p}}\leq r\right\}.

A subset S𝒫p(X)S\subset\mathcal{P}_{p}(X) is bounded if there is r>0r>0 such that SB𝒫p(X)(r)S\subset B_{\mathcal{P}_{p}(X)}(r). If SS is bounded in 𝒫p(X)\mathcal{P}_{p}(X), then we set

S𝒫p(X)=supμS(XxpXμ(dx))1p.\|S\|_{\mathcal{P}_{p}(X)}=\sup_{\mu\in S}\left(\int_{X}\|x\|^{p}_{X}\mu(dx)\right)^{\frac{1}{p}}.

Note that (𝒫p(X),𝕎p)(\mathcal{P}_{p}(X),\mathbb{W}_{p}) is a polish space, but (𝒫p(X),d𝒫(X))(\mathcal{P}_{p}(X),d_{\mathcal{P}(X)}) is not complete. Since for every r>0r>0, B𝒫p(X)(r)B_{\mathcal{P}_{p}(X)}(r) is a closed subset of 𝒫(X)\mathcal{P}(X) with respect to the metric d𝒫(X)d_{\mathcal{P}(X)}, we know that the space (B𝒫p(X)(r),d𝒫(X))(B_{\mathcal{P}_{p}(X)}(r),d_{\mathcal{P}(X)}) is complete for every r>0r>0.

Recall that the Hausdorff semi-metric between subsets of 𝒫p(X)\mathcal{P}_{p}(X) is given by

d𝒫(X)(Y,Z)=supyYinfzZd𝒫(X)(y,z),Y,Z𝒫p(X),Y,Z.d_{\mathcal{P}(X)}(Y,Z)=\sup_{y\in Y}\inf_{z\in Z}d_{\mathcal{P}(X)}(y,z),\quad Y,Z\subseteq\mathcal{P}_{p}(X),\quad Y,Z\neq\emptyset.

We assume that g0(t)g_{0}(t) is an almost periodic function in tt\in\mathbb{R} with values in XX. Denote by Cb(,X)C_{b}(\mathbb{R},X) the space of bounded continuous functions on \mathbb{R} with the norm gCb(,X)=suptg(t)X\|g\|_{C_{b}(\mathbb{R},X)}=\sup\limits_{t\in\mathbb{R}}\|g(t)\|_{X} for gCb(,X)g\in C_{b}(\mathbb{R},X). Since an almost periodic function is bounded and uniformly continuous on \mathbb{R} (see, e.g., [26]), it follows that g0Cb(,X){g}_{0}\in C_{b}(\mathbb{R},X). Further, by Bochners criterion in [26], whenever g0:X{g}_{0}:\mathbb{R}\rightarrow X is almost periodic, the set of all translations {g0(+h):h}\left\{g_{0}(\cdot+h):h\in\mathbb{R}\right\} is precompact in Cb(,X)C_{b}(\mathbb{R},X). Let (g0)\mathcal{H}\left({g}_{0}\right) be the closure of this set in Cb(,X)C_{b}(\mathbb{R},X). Then, for any g(g0),gg\in\mathcal{H}\left({g}_{0}\right),g is almost periodic and (g)=(g0)\mathcal{H}(g)=\mathcal{H}\left({g}_{0}\right). For each hh\in\mathbb{R}, denote by T(h)T(h) the translation on (g0)\mathcal{H}\left({g}_{0}\right) with T(h)g=g(+h)T(h)g=g(\cdot+h) for all g(g0)g\in\mathcal{H}({g}_{0}). It is evident that {T(h)}h\{T(h)\}_{h\in\mathbb{R}} is a continuous translation group on (g0)\mathcal{H}({g}_{0}) that leaves (g0)\mathcal{H}({g}_{0}) invariant:

T(h)(g0)=(g0),for all h.T(h)\mathcal{H}({g}_{0})=\mathcal{H}({g}_{0}),\quad\text{for all }h\in\mathbb{R}.
Definition 2.1.

A family Ug={Ug(t,τ):tτ,τ}U^{g}=\left\{U^{g}(t,\tau):t\geq\tau,\tau\in\mathbb{R}\right\} of mappings from 𝒫p(X)\mathcal{P}_{p}(X) to 𝒫p(X)\mathcal{P}_{p}(X) is called a process on 𝒫p(X)\mathcal{P}_{p}(X) with time symbol g(g0)g\in\mathcal{H}\left({g}_{0}\right), if for all τ\tau\in\mathbb{R} and tsτt\geq s\geq\tau, the following conditions are satisfied:

(a) Ug(τ,τ)=I𝒫p(X)U^{g}(\tau,\tau)=I_{\mathcal{P}_{p}(X)}, where I𝒫p(X)I_{\mathcal{P}_{p}(X)} is the identity operator on 𝒫p(X)\mathcal{P}_{p}(X);

(b) Ug(t,τ)=Ug(t,s)Ug(s,τ).U^{g}(t,\tau)=U^{g}(t,s)\circ U^{g}(s,\tau).\\ The family of process {Ug(t,τ)}g(g0)\left\{U^{g}(t,\tau)\right\}_{g\in\mathcal{H}\left(g_{0}\right)} are called jointly continuous if it is continuous in both 𝒫p(X)\mathcal{P}_{p}(X) and (g0)\mathcal{H}\left(g_{0}\right).

It is assumed that the following translation identity holds for the processes {Ug(t,τ)}g(g0)\left\{U^{g}(t,\tau)\right\}_{g\in\mathcal{H}\left(g_{0}\right)} and the translation group {T(h)}h\{T(h)\}_{h\in\mathbb{R}} :

(2.1) Ug(t+h,τ+h)=UT(h)g(t,τ), for all h,tτ and τ.U^{g}(t+h,\tau+h)=U^{T(h)g}(t,\tau),\quad\text{ for all }h\in\mathbb{R},\ t\geq\tau\text{ and }\tau\in\mathbb{R}.
Definition 2.2.

A closed set B𝒫p(X)B\subset\mathcal{P}_{p}(X) is called a uniform absorbing set of the family of processes {Ug(t,τ)}g(g0)\left\{U^{g}(t,\tau)\right\}_{g\in\mathcal{H}\left(g_{0}\right)} with respect to g(g0)g\in\mathcal{H}\left(g_{0}\right) if for any bounded D𝒫p(X)D\subset\mathcal{P}_{p}(X), there exists T=T(D,g0)>0T=T\left(D,g_{0}\right)>0 such that

Ug(t,0)DB, for all g(g0) and tT.U^{g}(t,0)D\subseteq B,\quad\text{ for all }g\in\mathcal{H}\left(g_{0}\right)\text{ and }t\geq T.
Definition 2.3.

The family of processes {Ug(t,τ)}g(g0)\left\{U^{g}(t,\tau)\right\}_{g\in\mathcal{H}\left(g_{0}\right)} is said to be uniformly asymptotically compact in 𝒫p(X)\mathcal{P}_{p}(X) with respect to g(g0)g\in\mathcal{H}\left(g_{0}\right) if {Ugn(tn,0)μn}n=1\left\{U^{g_{n}}\left(t_{n},0\right)\mu_{n}\right\}_{n=1}^{\infty} has a convergent subsequence in 𝒫p(X)\mathcal{P}_{p}(X) whenever tn+t_{n}\rightarrow+\infty and (μn,gn)\left(\mu_{n},g_{n}\right) is bounded in 𝒫p(X)×(g0)\mathcal{P}_{p}(X)\times\mathcal{H}\left(g_{0}\right).

Definition 2.4.

A set 𝒜\mathcal{A} of 𝒫p(X)\mathcal{P}_{p}(X) is called a uniform measure attractor of the family of processes {Ug(t,τ)}g(g0)\left\{U^{g}(t,\tau)\right\}_{g\in\mathcal{H}\left(g_{0}\right)} with respect to g(g0)g\in\mathcal{H}\left(g_{0}\right) if the following conditions are satisfied,

(i) 𝒜\mathcal{A} is compact in 𝒫p(X)\mathcal{P}_{p}(X);

(ii)𝒜\mathcal{A} is uniformly quasi-invariant, that is, for every τ\tau\in\mathbb{R} and tτt\geq\tau,

𝒜g(g0)Ug(t,τ)𝒜;\mathcal{A}\subseteq\bigcup_{g\in\mathcal{H}(g_{0})}U^{g}(t,\tau)\mathcal{A};

(iii) 𝒜\mathcal{A} attracts every bounded set in 𝒫p(X)\mathcal{P}_{p}(X) uniformly with respect to g(g0)g\in\mathcal{H}\left(g_{0}\right), that is, for any bounded D𝒫p(X)D\subset\mathcal{P}_{p}(X)

limtsupg(g0)d(Ug(t,τ)D,𝒜)=0, for all τ;\lim_{t\rightarrow\infty}\sup_{g\in\mathcal{H}\left(g_{0}\right)}d\left(U^{g}(t,\tau)D,\mathcal{A}\right)=0,\quad\text{ for all }\tau\in\mathbb{R};

(iv) 𝒜\mathcal{A} is minimal among all compact subsets of 𝒫p(X)\mathcal{P}_{p}(X) satisfying property (iii); that is, if 𝒞\mathcal{C} is any compact subset of 𝒫p(X)\mathcal{P}_{p}(X) satisfying property (iii), then 𝒜𝒞\mathcal{A}\subseteq\mathcal{C}.

Definition 2.5.

Given g(g0)g\in\mathcal{H}\left(g_{0}\right), a mapping χ:𝒫p(X)\chi:\mathbb{R}\rightarrow\mathcal{P}_{p}(X) is called a complete solution of Ug(t,τ)U^{g}(t,\tau) if for every t+t\in\mathbb{R}^{+}and τ\tau\in\mathbb{R}, the following holds:

Ug(t,τ)χ(τ)=χ(t).U^{g}(t,\tau)\chi(\tau)=\chi(t).

The kernel of the process Ug(t,τ)U^{g}(t,\tau) is the collection 𝒦g\mathcal{K}_{g} of all its bounded complete solutions. The kernel section of the process Ug(t,τ)U^{g}(t,\tau) at time ss\in\mathbb{R} is the set

𝒦g(s)={ξ(s):ξ()𝒦g}.\mathcal{K}_{g}(s)=\left\{\xi(s):\xi(\cdot)\in\mathcal{K}_{g}\right\}.

If the family of processes {Ug(t,τ)}g(g0)\left\{U^{g}(t,\tau)\right\}_{g\in\mathcal{H}\left(g_{0}\right)} has a uniform measure attractor, then it must be unique. To prove the existence of such a uniform measure attractor, it is convenient to transfer the family of processes to a semigroup of nonlinear operators, and then use the semigroup theory to investigate the uniform measure attractor of the processes. As in [5], we define a nonlinear semigroup {S(t)}t0\{S(t)\}_{t\geq 0} acting on the extended phase space 𝒫p(X)×(g0)\mathcal{P}_{p}(X)\times\mathcal{H}\left(g_{0}\right) by the following formula, for every t0,μ𝒫p(X)t\geq 0,\mu\in\mathcal{P}_{p}(X) and g(g0)g\in\mathcal{H}\left(g_{0}\right),

S(t)(μ,g)=(Ug(t,0)μ,T(t)g).S(t)(\mu,g)=\left(U^{g}(t,0)\mu,T(t)g\right).

By the translation identity and Definition 2.1 of the process, it is clear that {S(t)}t0\{S(t)\}_{t\geq 0} satisfies the semigroup identities: for any ts0t\geq s\geq 0,

S(0)=I𝒫p(X)×(g0),S(t)S(s)=S(t+s).S(0)=\mathrm{I}_{\mathcal{P}_{\mathrm{p}}(\mathrm{X})\times\mathcal{H}\left({g}_{0}\right)},\quad S(t)S(s)=S(t+s).

We know from [5] that if {S(t)}t0\{S(t)\}_{t\geq 0} has a global attractor in the extended phase space 𝒫p(X)×(g0)\mathcal{P}_{p}(X)\times\mathcal{H}\left(g_{0})\right. then the family of the processes {Ug(t,τ)}g(g0)\left\{U^{g}(t,\tau)\right\}_{g\in\mathcal{H}\left(g_{0}\right)} possesses a uniform measure attractor in the phase space 𝒫p(X)\mathcal{P}_{p}(X), which is actually the projection onto 𝒫p(X)\mathcal{P}_{p}(X) of the global attractor of {S(t)}t0\{S(t)\}_{t\geq 0}.

In consequence of the uniform attractors theory set forth in [5], we have the following theorem for the family of processes {Ug(t,τ)}g(g0)\left\{U^{g}(t,\tau)\right\}_{g\in\mathcal{H}\left(g_{0}\right)}. We also refer the reader to [6, 18, 43, 44] for the attractors theory of semigroups.

Theorem 2.1.

If the semigroup S(t)S(t) is continuous, point dissipative and asymptotically compact, then it has a global attractor 𝒜S\mathcal{A}_{S} in 𝒫p(X)×(g0)\mathcal{P}_{p}(X)\times\mathcal{H}\left(g_{0}\right). Further, if 𝒜\mathcal{A} is the projection of 𝒜S\mathcal{A}_{S} onto 𝒫p(X)\mathcal{P}_{p}(X), then 𝒜\mathcal{A} is the uniform measure attractor for the family of processes {Ug(t,τ)}g(g0)\left\{U^{g}(t,\tau)\right\}_{g\in\mathcal{H}\left(g_{0}\right)}. In addition,

𝒜=g(g0)𝒦g(0).\mathcal{A}=\underset{g\in\mathcal{H}\left(g_{0}\right)}{\cup}\mathcal{K}_{g}(0).

In accordance with the aforementioned notation from reference [28], the following criterion is established for the existence and uniqueness of uniform measure attractors.

Theorem 2.2.

If the family of processes {Ug(t,τ)}g(g0)\left\{U^{g}(t,\tau)\right\}_{g\in\mathcal{H}\left(g_{0}\right)} is jointly continuous and uniformly asymptotically compact and has a uniform absorbing set BB, then it has a uniform measure attractor 𝒜\mathcal{A}. In addition,

𝒜=g(g0)𝒦g(0).\mathcal{A}=\underset{g\in\mathcal{H}\left(g_{0}\right)}{\cup}\mathcal{K}_{g}(0).

3. Existence and uniqueness of solutions

In this section, we consider the following equation

(3.1) {du^ε(t)Δu^ε(t)dt+λu^ε(t)dt+f(x,u^ε(t),u^ε(t))dt=g(t,x)dt+k=1(σk(x)+κ(x)ϖk(u^ε(t),u^ε(t)))dWk(t),x𝒪ε,t>τu^ενε=0,x𝒪ε,\left\{\begin{array}[]{l}d\hat{u}^{\varepsilon}(t)-\Delta\hat{u}^{\varepsilon}(t)dt+\lambda\hat{u}^{\varepsilon}(t)dt+f\left(x,\hat{u}^{\varepsilon}(t),\mathcal{L}_{\hat{u}^{\varepsilon}(t)}\right)dt=g(t,x^{*})dt\\ \quad+\sum\limits_{k=1}^{\infty}\left(\sigma_{k}(x)+\kappa(x^{*})\varpi_{k}\left(\hat{u}^{\varepsilon}(t),\mathcal{L}_{\hat{u}^{\varepsilon}(t)}\right)\right)dW_{k}(t),\quad x\in\mathcal{O}_{\varepsilon},\ t>\tau\\ \frac{\partial\hat{u}^{\varepsilon}}{\partial\nu_{\varepsilon}}=0,\quad x\in\partial\mathcal{O}_{\varepsilon},\end{array}\right.

with initial data

(3.2) u^ε(τ,x)=ξ^ε(x),x𝒪ε.\hat{u}^{\varepsilon}(\tau,x)=\hat{\xi}^{\varepsilon}(x),\quad x\in\mathcal{O}_{\varepsilon}.

Throughout this paper, we use δ0\delta_{0} for the Dirac probability measure at 0, and we assume f:𝒪~××𝒫2(L2(𝒪))f:\widetilde{\mathcal{O}}\times\mathbb{R}\times\mathcal{P}_{2}(L^{2}(\mathcal{O}))\rightarrow\mathbb{R} is continuous and differentiable with respect to the first and second arguments, which further satisfies the conditions:

(𝐀𝟏)\mathbf{(A1)}. for all x𝒪~x\in\widetilde{\mathcal{O}}, u,u1,u2u,u_{1},u_{2}\in\mathbb{R} and μ,μ1,μ2𝒫2(L2(𝒪))\mu,\mu_{1},\mu_{2}\in\mathcal{P}_{2}(L^{2}(\mathcal{O})),

(3.3) f(x,0,δ0)=0,\displaystyle f(x,0,\delta_{0})=0,
(3.4) f(x,u,μ)uα1|u|pϕ1(x)(1+|u|2)ψ1(x)μ(2),\displaystyle f(x,u,\mu)u\geq\alpha_{1}|u|^{p}-\phi_{1}(x^{*})(1+|u|^{2})-\psi_{1}(x^{*})\mu(\|\cdot\|^{2}),
|f(x,u1,μ1)f(x,u2,μ2)|\displaystyle|f(x,u_{1},\mu_{1})-f(x,u_{2},\mu_{2})| α2(ϕ2(x)+|u1|p2+|u2|p2)|u1u2|\displaystyle\leq\alpha_{2}(\phi_{2}(x^{*})+|u_{1}|^{p-2}+|u_{2}|^{p-2})|u_{1}-u_{2}|
(3.5) +ϕ3(x)𝕎2(μ1,μ2),\displaystyle+\phi_{3}(x^{*})\mathbb{W}_{2}(\mu_{1},\mu_{2}),
(3.6) fu(x,u,μ)ϕ4(x),\displaystyle\frac{\partial f}{\partial u}(x,u,\mu)\geq-\phi_{4}(x^{*}),
(3.7) |fx(x,u,μ)|ϕ5(x)(1+|u|+μ(2)),\displaystyle|\frac{\partial f}{\partial x}(x,u,\mu)|\leq\phi_{5}(x^{*})\left(1+|u|+\sqrt{\mu(\|\cdot\|^{2})}\right),

where p2p\geq 2, α1,α2>0\alpha_{1},\alpha_{2}>0, ψ1L1(n)L(n)\psi_{1}\in L^{1}(\mathbb{R}^{n})\cap L^{\infty}(\mathbb{R}^{n}) and ϕiL()L1(n)\phi_{i}\in L^{\infty}(\mathbb{R})\cap L^{1}(\mathbb{R}^{n}) for i=1,2,3,4,5i=1,2,3,4,5.

It follows from (3.3) and (3) that for all u,x𝒪~u\in\mathbb{R},x\in\widetilde{\mathcal{O}} and μ𝒫2(L2(𝒪))\mu\in\mathcal{P}_{2}(L^{2}(\mathcal{O})),

(3.8) |f(x,u,μ)|α3|u|p1+ϕ6(x)(1+μ(2)),\displaystyle|f(x,u,\mu)|\leq\alpha_{3}|u|^{p-1}+\phi_{6}(x^{*})(1+\sqrt{\mu(\|\cdot\|^{2})}),

for some α3>0\alpha_{3}>0 and ϕ6L()L1(n)\phi_{6}\in L^{\infty}(\mathbb{R})\cap L^{1}(\mathbb{R}^{n}).

Here, for the diffusion term {σk}k=1\{\sigma_{k}\}_{k=1}^{\infty} and {ϖk}k=1\{\varpi_{k}\}^{\infty}_{k=1}, we assume the following conditions.

(𝐀𝟐)\mathbf{(A2)} The function σ={σk}k=1\sigma=\{\sigma_{k}\}_{k=1}^{\infty} satisfies for all x=(x,xn+1)𝒪~x=(x^{*},x_{n+1})\in\widetilde{\mathcal{O}}

(3.9) |σk(x)|σ1,k(x),|\sigma_{k}(x)|\leq\sigma_{1,k}(x^{*}),

and

(3.10) |σk(x)|<σ2,k(x),|\nabla\sigma_{k}(x)|<\sigma_{2,k}(x^{*}),

where σ1={σ1,k}k=1,σ2={σ2,k}k=1L2(n,l2)\sigma_{1}=\{\sigma_{1,k}\}^{\infty}_{k=1},\sigma_{2}=\{\sigma_{2,k}\}^{\infty}_{k=1}\in L^{2}(\mathbb{R}^{n},l^{2}) with k=1(σ1,k2L2(n)+σ2,k2L2(n))<+\\ \sum\limits^{\infty}_{k=1}\left(\|\sigma_{1,k}\|^{2}_{L^{2}(\mathbb{R}^{n})}+\|\sigma_{2,k}\|^{2}_{L^{2}(\mathbb{R}^{n})}\right)<+\infty.

(𝐀𝟑)\mathbf{(A3)} For each kk\in\mathbb{N}, ϖk:×𝒫2(L2(𝒪))\varpi_{k}:\mathbb{R}\times\mathcal{P}_{2}(L^{2}(\mathcal{O}))\rightarrow\mathbb{R} is continuous such that for all uu\in\mathbb{R} and μ𝒫2(L2(𝒪))\mu\in\mathcal{P}_{2}(L^{2}(\mathcal{O})),

(3.11) |ϖk(u,μ)|βk(1+μ(2))+γk|u|,\displaystyle|\varpi_{k}(u,\mu)|\leq\beta_{k}\left(1+\sqrt{\mu(\|\cdot\|^{2})}\right)+\gamma_{k}|u|,

where β={βk}k=1\beta=\{\beta_{k}\}^{\infty}_{k=1} and γ={γk}k=1\gamma=\{\gamma_{k}\}^{\infty}_{k=1} are nonnegative sequences with k=1(β2k+γ2k)<\sum^{\infty}_{k=1}(\beta^{2}_{k}+\gamma^{2}_{k})<\infty. Furthermore, we assume σk(u,μ)\sigma_{k}(u,\mu) is differentiable in uu and Lipschitz continuous in both uu and μ\mu uniformly for tt\in\mathbb{R} in the sense that for all u1,u2u_{1},u_{2}\in\mathbb{R} and μ1,μ2𝒫2(L2(𝒪))\mu_{1},\mu_{2}\in\mathcal{P}_{2}(L^{2}(\mathcal{O})),

(3.12) |ϖk(u1,μ1)ϖk(u2,μ2)|Lϖ,k(|u1u2|+𝕎2(μ1,μ2)),\displaystyle|\varpi_{k}(u_{1},\mu_{1})-\varpi_{k}(u_{2},\mu_{2})|\leq L_{\varpi,k}\left(|u_{1}-u_{2}|+\mathbb{W}_{2}(\mu_{1},\mu_{2})\right),

where Lϖ={Lϖ,k}k=1L_{\varpi}=\{L_{\varpi,k}\}^{\infty}_{k=1} is a sequence of nonnegative numbers such that k=1L2ϖ,k<\sum^{\infty}_{k=1}L^{2}_{\varpi,k}<\infty.

It follows from (3.12) that for all uu\in\mathbb{R} and μ𝒫2(L2(𝒪))\mu\in\mathcal{P}_{2}(L^{2}(\mathcal{O})),

(3.13) |ϖku(u,μ)|Lϖ,k.\displaystyle|\frac{\partial\varpi_{k}}{\partial u}(u,\mu)|\leq L_{\varpi,k}.

Now, we transfer problem (3.1)-(3.2) into the fixed domain 𝒪\mathcal{O}. To that end, define Tε(x,xn+1)=(x,xn+1ερ(x))T_{\varepsilon}(x^{*},x_{n+1})=(x^{*},\frac{x_{n+1}}{\varepsilon\rho(x^{*})}) for x=(x,xn+1)𝒪εx=(x^{*},x_{n+1})\in\mathcal{O}_{\varepsilon}. Let y=(y,yn+1)=Tε(x,xn+1)y=(y^{*},y_{n+1})=T_{\varepsilon}(x^{*},x_{n+1}). Then we have

x=y,xn+1=ερ(y)yn+1,x^{*}=y^{*},\quad x_{n+1}=\varepsilon\rho\left(y^{*}\right)y_{n+1},

and

Δxu^(x)=1ρdivy(Pεu(y)),\Delta_{x}\hat{u}(x)=\frac{1}{\rho}\operatorname{div}_{y}\left(P_{\varepsilon}u(y)\right),

where we denote by u(y)=u^(x)u(y)=\hat{u}(x), Δx\Delta_{x} is the Laplace operator in x𝒪εx\in\mathcal{O}_{\varepsilon}, divy\operatorname{div}_{y} is the divergence operator in y𝒪y\in\mathcal{O}, and PεP_{\varepsilon} is the operator given by

Pεu(y)=(ρuy1ρy1yn+1uyn+1ρuynρynyn+1uyn+1i=1nyn+1ρyiuyi+1ε2ρ(1+i=1n(εyn+1ρyi)2)uyn+1).P_{\varepsilon}u(y)=\left(\begin{array}[]{c}\rho u_{y_{1}}-\rho_{y_{1}}y_{n+1}u_{y_{n+1}}\\ \vdots\\ \rho u_{y_{n}}-\rho_{y_{n}}y_{n+1}u_{y_{n+1}}\\ -\sum\limits_{i=1}^{n}y_{n+1}\rho_{y_{i}}u_{y_{i}}+\frac{1}{\varepsilon^{2}\rho}\left(1+\sum\limits_{i=1}^{n}\left(\varepsilon y_{n+1}\rho_{y_{i}}\right)^{2}\right)u_{y_{n+1}}\end{array}\right).

We often write f(x,u,μ)f(x,u,\mu) and σk(x)\sigma_{k}(x) as f(x,xn+1,u,μ)f\left(x^{*},x_{n+1},u,\mu\right) and σk(x,xn+1)\sigma_{k}\left(x^{*},x_{n+1}\right) for x=(x,xn+1)x=\left(x^{*},x_{n+1}\right), respectively. For y=(y,yn+1)𝒪y=\left(y^{*},y_{n+1}\right)\in\mathcal{O} and t,st,s\in\mathbb{R}, let us define σε={σk,ε}k=1\sigma_{\varepsilon}=\{\sigma_{k,\varepsilon}\}^{\infty}_{k=1} and fεf_{\varepsilon} as follows:

fε(y,yn+1,u,μ)=f(y,ερ(y)yn+1,u,μ),f0(y,u,μ)=f(y,0,u,μ),\begin{array}[]{rll}f_{\varepsilon}\left(y^{*},y_{n+1},u,\mu\right)=f\left(y^{*},\varepsilon\rho\left(y^{*}\right)y_{n+1},u,\mu\right),&&f_{0}\left(y^{*},u,\mu\right)=f\left(y^{*},0,u,\mu\right),\end{array}

and

σk,ε(y,yn+1)=σk(y,ερ(y)yn+1),σk,0(y)=σk(y,0).\sigma_{k,\varepsilon}\left(y^{*},y_{n+1}\right)=\sigma_{k}\left(y^{*},\varepsilon\rho\left(y^{*}\right)y_{n+1}\right),\quad\sigma_{k,0}\left(y^{*}\right)=\sigma_{k}\left(y^{*},0\right).

Denote by l2l^{2} the space of square summable sequences of real numbers. For every uεL2(𝒪)u^{\varepsilon}\in L^{2}(\mathcal{O}), με𝒫2(L2(𝒪))\mu^{\varepsilon}\in\mathcal{P}_{2}(L^{2}(\mathcal{O})), we define a map ϖε(uε,με):l2L2(𝒪)\varpi_{\varepsilon}(u^{\varepsilon},\mu^{\varepsilon}):l^{2}\rightarrow L^{2}(\mathcal{O}) by

(3.14) ϖε(uε,με)(η)(y)=k=1(σk,ε(y)+κ(y)ϖk(uε(t),με))ηk,η={η}k=1l2,y𝒪.\displaystyle\varpi_{\varepsilon}(u^{\varepsilon},\mu^{\varepsilon})(\eta)(y)=\sum^{\infty}_{k=1}(\sigma_{k,\varepsilon}(y)+\kappa(y^{*})\varpi_{k}(u^{\varepsilon}(t),\mu^{\varepsilon}))\eta_{k},\quad\forall\eta=\{\eta\}_{k=1}^{\infty}\in l^{2},\ y\in\mathcal{O}.

Similarly, For every u0L2(n)u^{0}\in L^{2}(\mathbb{R}^{n}), μ0𝒫2(L2(n))\mu^{0}\in\mathcal{P}_{2}(L^{2}(\mathbb{R}^{n})), we define ϖ0(u0,μ0):l2L2(n)\varpi_{0}(u^{0},\mu^{0}):l^{2}\rightarrow L^{2}(\mathbb{R}^{n}) by

ϖ0(u0,μ0)(η)(y)\displaystyle\varpi_{0}(u^{0},\mu^{0})(\eta)(y^{*})
(3.15) =k=1(σk,0(y)+κ(y)ϖk(u0(t),u0(t)))ηk,η={η}k=1l2,yn.\displaystyle=\sum\limits_{k=1}^{\infty}\left(\sigma_{k,0}(y^{*})+\kappa(y^{*})\varpi_{k}\left(u^{0}(t),\mathcal{L}_{u^{0}(t)}\right)\right)\eta_{k},\quad\forall\eta=\{\eta\}_{k=1}^{\infty}\in l^{2},\ y^{*}\in\mathbb{R}^{n}.

Then problem (3.1)-(3.2) is equivalent to the following systems for y=(y,yn+1)𝒪y=(y^{*},y_{n+1})\in\mathcal{O},

(3.16) {duε(t)(1ρdivyPεuε(t)λuε(t))dt+fε(y,uε(t),uε(t))dt=g(t,y)dt+k=1(σk,ε(y)+κ(y)ϖk(uε(t),uε(t)))dWk(t),t>τ,Pεuεν=0,y𝒪,\left\{\begin{array}[]{l}du^{\varepsilon}(t)-\left(\frac{1}{\rho}\mathrm{div_{y}}P_{\varepsilon}u^{\varepsilon}(t)-\lambda u^{\varepsilon}(t)\right)dt+f_{\varepsilon}\left(y,u^{\varepsilon}(t),\mathcal{L}_{u^{\varepsilon}(t)}\right)dt=g(t,y^{*})dt\\ \quad+\sum\limits_{k=1}^{\infty}\left(\sigma_{k,\varepsilon}(y)+\kappa(y^{*})\varpi_{k}\left(u^{\varepsilon}(t),\mathcal{L}_{u^{\varepsilon}(t)}\right)\right)dW_{k}(t),\quad\ t>\tau,\\ P^{\varepsilon}u^{\varepsilon}\cdot\nu=0,\quad y\in\partial\mathcal{O},\end{array}\right.

with initial condition

(3.17) uε(τ,y)=ξε(y)=ξ^ε(T1ε(y)),\displaystyle u^{\varepsilon}(\tau,y)=\xi^{\varepsilon}(y)=\hat{\xi}^{\varepsilon}(T^{-1}_{\varepsilon}(y)),

where ν\nu is the unit outward normal vector to 𝒪\partial\mathcal{O}.

Then, we define an inner product (,)Hρ(𝒪)(\cdot,\cdot)_{H_{\rho}(\mathcal{O})} on L2(𝒪)L^{2}(\mathcal{O})

(u,v)Hρ(𝒪)=𝒪ρuvdy,for all u,vL2(𝒪)(u,v)_{H_{\rho}(\mathcal{O})}=\int_{\mathcal{O}}\rho uvdy,\quad\text{for all }u,v\in L^{2}(\mathcal{O})

and denote by L2(𝒪)L^{2}(\mathcal{O}) equipped with this inner product.

For a given value of 0<ε10<\varepsilon\leq 1, define aε(,):H1(𝒪)×H1(𝒪)a_{\varepsilon}(\cdot,\cdot):H^{1}(\mathcal{O})\times H^{1}(\mathcal{O})\rightarrow\mathbb{R} by

aε(u,v)=(Jyu,Jyv)Hρ(𝒪) for u,vH1(𝒪),a_{\varepsilon}(u,v)=\left(J^{*}\nabla_{y}u,J^{*}\nabla_{y}v\right)_{H_{\rho}(\mathcal{O})}\quad\text{ for }u,v\in H^{1}(\mathcal{O}),

where

Jyu(y)=(uy1ρy1ρyn+1uyn+1,,uynρynρyn+1uyn+1,1ερuyn+1).J^{*}\nabla_{y}u(y)=\left(u_{y_{1}}-\frac{\rho_{y_{1}}}{\rho}y_{n+1}u_{y_{n+1}},\ldots,u_{y_{n}}-\frac{\rho_{y_{n}}}{\rho}y_{n+1}u_{y_{n+1}},\frac{1}{\varepsilon\rho}u_{y_{n+1}}\right).

Define Hε1(𝒪)H_{\varepsilon}^{1}(\mathcal{O}) to be the space H1(𝒪)H^{1}(\mathcal{O}) endowed with the norm

(3.18) uHε1(𝒪)=(uH1(𝒪)2+1ε2uyn+1L2(𝒪)2)12.\|u\|_{H_{\varepsilon}^{1}(\mathcal{O})}=\left(\|u\|_{H^{1}(\mathcal{O})}^{2}+\frac{1}{\varepsilon^{2}}\left\|u_{y_{n+1}}\right\|_{L^{2}(\mathcal{O})}^{2}\right)^{\frac{1}{2}}.

It can be shown that there exist positive constants η1\eta_{1}, η2\eta_{2} and ε0\varepsilon_{0} such that for all 0<ε<ε00<\varepsilon<\varepsilon_{0} and uH1(𝒪)u\in H^{1}(\mathcal{O}),

(3.19) η1uHε1(𝒪)2aε(u,u)+uL2(𝒪)2η2uHε1(𝒪)2.\displaystyle\eta_{1}\|u\|_{H_{\varepsilon}^{1}(\mathcal{O})}^{2}\leq a_{\varepsilon}(u,u)+\|u\|_{L^{2}(\mathcal{O})}^{2}\leq\eta_{2}\|u\|_{H_{\varepsilon}^{1}(\mathcal{O})}^{2}.

Let AεA_{\varepsilon} be an unbounded operator given by

Aεu=1ρdivy(Pεu),uD(Aε)={uH2(𝒪),Pεuν=0on𝒪}.A_{\varepsilon}u=-\frac{1}{\rho}\mathrm{div_{y}}(P_{\varepsilon}u),\quad u\in D(A_{\varepsilon})=\{u\in H^{2}(\mathcal{O}),P_{\varepsilon}u\cdot\nu=0\ \text{on}\ \partial\mathcal{O}\}.

Then we have

(3.20) aε(u,v)=(Aεu,v)Hρ(𝒪),uD(Aε),vH1(𝒪).\displaystyle a_{\varepsilon}(u,v)=\left(A_{\varepsilon}u,v\right)_{H_{\rho}(\mathcal{O})},\quad\forall u\in D(A_{\varepsilon}),\ \forall v\in H^{1}(\mathcal{O}).

In terms of AεA_{\varepsilon}, problem (3.16)-(3.17) is equivalent to

(3.21) {duε(t)+(Aεuε(t)+λuε(t))dt+fε(y,uε(t),uε(t))dt=g(t,y)dt+ϖε(uε(t),uε(t))dW,t>τ,uε(τ)=ξε.\left\{\begin{array}[]{l}du^{\varepsilon}(t)+\left(A_{\varepsilon}u^{\varepsilon}(t)+\lambda u^{\varepsilon}(t)\right)dt+f_{\varepsilon}\left(y,u^{\varepsilon}(t),\mathcal{L}_{u^{\varepsilon}(t)}\right)dt=g(t,y^{*})dt\\ \quad+\varpi_{\varepsilon}\left(u^{\varepsilon}(t),\mathcal{L}_{u^{\varepsilon}(t)}\right)dW,\quad\ t>\tau,\\ u^{\varepsilon}(\tau)=\xi^{\varepsilon}.\end{array}\right.

To reformulate system (1)-(1.5), similarly, we give an inner product (,)Hρ(n)(\cdot,\cdot)_{H_{\rho}(\mathbb{R}^{n})} on L2(n)L^{2}(\mathbb{R}^{n})

(u,v)Hρ(n)=nρuvdy,for all u,vL2(n),(u,v)_{H_{\rho}(\mathbb{R}^{n})}=\int_{\mathbb{R}^{n}}\rho uvdy^{*},\quad\text{for all }u,v\in L^{2}(\mathbb{R}^{n}),

and denote (L2(n),(,)Hρ(n))\left(L^{2}(\mathbb{R}^{n}),(\cdot,\cdot)_{H_{\rho}(\mathbb{R}^{n})}\right) by Hρ(n)H_{\rho}(\mathbb{R}^{n}).

Let A0A_{0} be the operator on Hρ(n)H_{\rho}(\mathbb{R}^{n}) with domain D(A0)=H2(n)D(A_{0})=H^{2}(\mathbb{R}^{n}) as given by

A0u=1ρni=1(ρuyi)yi,uD(A0).A_{0}u=-\frac{1}{\rho}\sum^{n}_{i=1}(\rho u_{y_{i}})_{y_{i}},\quad u\in D(A_{0}).

Note that

a0(u,v)=(A0u,v)Hρ(n),uD(A0),vH1(n).a_{0}(u,v)=(A_{0}u,v)_{H_{\rho}(\mathbb{R}^{n})},\quad\forall u\in D(A_{0}),\ \forall v\in H^{1}(\mathbb{R}^{n}).

In terms of A0A_{0}, system (1)-(1.5) is equivalent to

(3.22) {du0(t)+(A0u0(t)+λu0(t))dt+f0(y,u0(t),u0(t))dt=g(t,y)dt+ϖ0(u0(t),u0(t))dW(t),t>τ,u0(τ)=ξ0.\left\{\begin{array}[]{l}du^{0}(t)+\left(A_{0}u^{0}(t)+\lambda u^{0}(t)\right)dt+f_{0}\left(y^{*},u^{0}(t),\mathcal{L}_{u^{0}(t)}\right)dt=g(t,y^{*})dt\\ \quad+\varpi_{0}\left(u^{0}(t),\mathcal{L}_{u^{0}(t)}\right)dW(t),\quad\ t>\tau,\\ u^{0}(\tau)=\xi^{0}.\end{array}\right.

Under conditions (A1)\mathbf{(}A1)-(A3)\mathbf{(}A3), due to the argument presented in [9], we establish that for any ξεL2(Ω,τ,L2(𝒪))\xi^{\varepsilon}\in L^{2}(\Omega,\mathcal{F}_{\tau},L^{2}(\mathcal{O})), g(g0)g\in\mathcal{H}(g_{0}), system (3.21) has a unique solution uε(t,τ,ξε)u^{\varepsilon}(t,\tau,\xi^{\varepsilon}) defined on [τ,)[\tau,\infty). In particular, uε(t,τ,ξε),tτu^{\varepsilon}(t,\tau,\xi^{\varepsilon}),t\geq\tau, is a continuous L2(𝒪)L^{2}(\mathcal{O})-valued t\mathcal{F}_{t}-adapted stochastic process such that for every T>0T>0,

uε\displaystyle u^{\varepsilon}\in L2(Ω,𝒞([τ,τ+T],L2(𝒪)))L2(Ω,L2((τ,τ+T;H1(𝒪)))\displaystyle L^{2}(\Omega,\mathcal{C}([\tau,\tau+T],L^{2}(\mathcal{O})))\cap L^{2}(\Omega,L^{2}((\tau,\tau+T;H^{1}(\mathcal{O})))
(3.23) Lp(Ω,Lp(τ,τ+T;Lp(𝒪))),\displaystyle\cap L^{p}(\Omega,L^{p}(\tau,\tau+T;L^{p}(\mathcal{O}))),

and for all tτt\geq\tau, \mathbb{P}-almost surely,

uε(t)+t0Aεuε(s)ds+t0λuε(s)ds+t0fε(,uε(s),uε(s))ds\displaystyle u^{\varepsilon}(t)+\int^{t}_{0}A_{\varepsilon}u^{\varepsilon}(s)ds+\int^{t}_{0}\lambda u^{\varepsilon}(s)ds+\int^{t}_{0}f_{\varepsilon}\left(\cdot,u^{\varepsilon}(s),\mathcal{L}_{u^{\varepsilon}(s)}\right)ds
(3.24) =ξε+t0g(s,)ds+t0ϖε(uε(s),uε(s))dW(s),\displaystyle=\xi^{\varepsilon}+\int^{t}_{0}g(s,\cdot)ds+\int^{t}_{0}\varpi_{\varepsilon}\left(u^{\varepsilon}(s),\mathcal{L}_{u^{\varepsilon}(s)}\right)dW(s),

in (H1(𝒪)Lp(𝒪))\left(H^{1}(\mathcal{O})\cap L^{p}(\mathcal{O})\right)^{*}.

Analogously, for any ξ0L2(Ω,τ,L2(n))\xi^{0}\in L^{2}(\Omega,\mathcal{F}_{\tau},L^{2}(\mathbb{R}^{n})), (3.22) possesses a unique solution u0(t,τ,ξ0)u^{0}(t,\tau,\xi^{0}) that is a continuous L2(n)L^{2}(\mathbb{R}^{n})-valued stochastic process, adapted to the filtration τ\mathcal{F}_{\tau}, and satisfies

u0\displaystyle u^{0}\in L2(Ω,𝒞([τ,τ+T],L2(n)))L2(Ω,L2((τ,τ+T;H1(n)))\displaystyle L^{2}(\Omega,\mathcal{C}([\tau,\tau+T],L^{2}(\mathbb{R}^{n})))\cap L^{2}(\Omega,L^{2}((\tau,\tau+T;H^{1}(\mathbb{R}^{n})))
(3.25) Lp(Ω,Lp(τ,τ+T;Lp(n))),\displaystyle\cap L^{p}(\Omega,L^{p}(\tau,\tau+T;L^{p}(\mathbb{R}^{n}))),

for every T>0T>0.

Let L2(l2,Hρ(𝒪))L_{2}(l^{2},H_{\rho}(\mathcal{O})) be the space of Hilbert-Schmidt operators from l2l^{2} to Hρ(𝒪)H_{\rho}(\mathcal{O}) with norm L2(l2,Hρ(𝒪))\|\cdot\|_{L^{2}(l^{2},H_{\rho}(\mathcal{O}))}. Then by (3.9) and (3.11) we infer that the operator ϖ(u,μ)\varpi(u,\mu) belongs to L2(l2,Hρ(𝒪))L_{2}(l^{2},H_{\rho}(\mathcal{O})) with norm:

ϖε(u,μ)2L2(l2,Hρ(𝒪))=k=1𝒪ρ|σk,ε(y)+κ(y)ϖk(u(y),μ)|2dy\displaystyle\|\varpi_{\varepsilon}(u,\mu)\|^{2}_{L_{2}(l^{2},H_{\rho}(\mathcal{O}))}=\sum^{\infty}_{k=1}\int_{\mathcal{O}}\rho|\sigma_{k,\varepsilon}(y)+\kappa(y^{*})\varpi_{k}(u(y),\mu)|^{2}dy
(3.26) 2ρ2σ12L2(n,l2)+8ρκ2β2l2(1+μ(2))+4κ2L(n)γ2l2u2Hρ(𝒪).\displaystyle\leq 2\rho_{2}\|\sigma_{1}\|^{2}_{L^{2}(\mathbb{R}^{n},l^{2})}+8\rho\|\kappa\|^{2}\|\beta\|^{2}_{l^{2}}(1+\mu(\|\cdot\|^{2}))+4\|\kappa\|^{2}_{L^{\infty}(\mathbb{R}^{n})}\|\gamma\|^{2}_{l^{2}}\|u\|^{2}_{H_{\rho}(\mathcal{O})}.

Moreover, by (3.12) we see that for all u1,u2u_{1},u_{2}\in\mathbb{R} and μ1,μ2𝒫2(L2(𝒪))\mu_{1},\mu_{2}\in\mathcal{P}_{2}(L^{2}(\mathcal{O})),

ϖ(u1,μ1)ϖ(u2,μ2)2L2(l2,Hρ(𝒪)))\displaystyle\|\varpi(u_{1},\mu_{1})-\varpi(u_{2},\mu_{2})\|^{2}_{L_{2}(l^{2},H_{\rho}(\mathcal{O})))}
=ρk=1𝒪|κ(x)|2|ϖk(u1(x),μ1)ϖk(u2,μ2)|2dx\displaystyle=\rho\sum^{\infty}_{k=1}\int_{\mathcal{O}}|\kappa(x^{*})|^{2}|\varpi_{k}(u_{1}(x),\mu_{1})-\varpi_{k}(u_{2},\mu_{2})|^{2}dx
(3.27) 2ρLϖ2l2(κ2L(n)u1u22+κ2L2(n)𝕎22(μ1,μ2)).\displaystyle\leq 2\rho\|L_{\varpi}\|^{2}_{l^{2}}\left(\|\kappa\|^{2}_{L^{\infty}(\mathbb{R}^{n})}\|u_{1}-u_{2}\|^{2}+\|\kappa\|^{2}_{L^{2}(\mathbb{R}^{n})}\mathbb{W}^{2}_{2}(\mu_{1},\mu_{2})\right).

In the sequel, we also assume that the coefficient λ\lambda is sufficiently large, such that

(3.28) λ>12κ2β2l2+6κ2L(n)γ2l2+ϕ1L(n)+ψ1L1(n).\displaystyle\lambda>12\|\kappa\|^{2}\|\beta\|^{2}_{l^{2}}+6\|\kappa\|^{2}_{L^{\infty}(\mathbb{R}^{n})}\|\gamma\|^{2}_{l^{2}}+\|\phi_{1}\|_{L^{\infty}(\mathbb{R}^{n})}+\|\psi_{1}\|_{L^{1}(\mathbb{R}^{n})}.

It can be deduced from (3.28) that there exists a sufficiently small number η(0,1)\eta\in(0,1) such that

(3.29) 2λ3η>24κ2β2l2+12κ2L(n)γ2l2+2ϕ1L(n)+2ψ1L1(n).\displaystyle 2\lambda-3\eta>24\|\kappa\|^{2}\|\beta\|^{2}_{l^{2}}+12\|\kappa\|^{2}_{L^{\infty}(\mathbb{R}^{n})}\|\gamma\|^{2}_{l^{2}}+2\|\phi_{1}\|_{L^{\infty}(\mathbb{R}^{n})}+2\|\psi_{1}\|_{L^{1}(\mathbb{R}^{n})}.

4. Priori moment estimates of solutions

In this section, we present uniform estimates concerning the solution uε(t)u^{\varepsilon}(t), which are crucial for demonstrating the existence and uniqueness of uniform measure attractors.

Lemma 4.1.

Under (A1)\mathbf{(}A1)-(A3)\mathbf{(}A3) and (3.28) hold, then for every R>0R>0, there exists T=T(R)>0T=T(R)>0, independent of ε\varepsilon, such that for any τ\tau\in\mathbb{R}, tτTt-\tau\geq T, and 0<ε<ε00<\varepsilon<\varepsilon_{0}, the solution uεu^{\varepsilon} of (3.21) satisfies

𝔼(uε(t,τ,ξε)2Hρ(𝒪))M1,\mathbb{E}(\|u^{\varepsilon}(t,\tau,\xi^{\varepsilon})\|^{2}_{H_{\rho}(\mathcal{O})})\leq M_{1},

and

(4.1) tτeη(sτ)𝔼(uε(s,τ,ξε)2H1ε(𝒪)+uε(s,τ,ξε)pLp(𝒪))ds<M1,\displaystyle\int^{t}_{\tau}e^{\eta(s-\tau)}\mathbb{E}\left(\|u^{\varepsilon}(s,\tau,\xi^{\varepsilon})\|^{2}_{H^{1}_{\varepsilon}(\mathcal{O})}+\|u^{\varepsilon}(s,\tau,\xi^{\varepsilon})\|^{p}_{L^{p}(\mathcal{O})}\right)ds<M_{1},

where 𝔼(ξε2Hρ(𝒪))R\mathbb{E}(\|\xi^{\varepsilon}\|^{2}_{H_{\rho}(\mathcal{O})})\leq R, and M1M_{1} is constant depending on η,g0\eta,g_{0}. In particular, M1M_{1} is independent ξε,τ,g(g0)\xi^{\varepsilon},\tau,g\in\mathcal{H}(g_{0}) and ε\varepsilon.

Proof..

By (3.21) and Ito’s formula, we have for tτt\geq\tau,

(4.2) eηtuε(t)2Hρ(𝒪)+2tτeηsaε(uε(s),uε(s))ds+(2λη)tτeηsuε(s)2Hρ(𝒪)ds+2tτeηs(fε(,uε(s),uε(s)),uε(s))Hρ(𝒪)ds=eητξε2Hρ(𝒪)+2tτeηs(g(s,),uε(s))Hρ(𝒪)ds+tτeηsϖε(uε(s),uε(s))2L2(l2,Hρ)ds+2tτeηs(ϖε(uε(s),uε(s)),uε(s))Hρ(𝒪)dW(s),\displaystyle\begin{split}&e^{\eta t}\|u^{\varepsilon}(t)\|^{2}_{H_{\rho}(\mathcal{O})}+2\int^{t}_{\tau}e^{\eta s}a_{\varepsilon}\left(u^{\varepsilon}(s),u^{\varepsilon}(s)\right)ds+(2\lambda-\eta)\int^{t}_{\tau}e^{\eta s}\|u^{\varepsilon}(s)\|^{2}_{H_{\rho}(\mathcal{O})}ds\\ &+2\int^{t}_{\tau}e^{\eta s}\big{(}f_{\varepsilon}(\cdot,u^{\varepsilon}(s),\mathcal{L}_{u^{\varepsilon}(s)}),u^{\varepsilon}(s)\big{)}_{H_{\rho}(\mathcal{O})}ds\\ &=e^{\eta\tau}\|\xi^{\varepsilon}\|^{2}_{H_{\rho}(\mathcal{O})}+2\int^{t}_{\tau}e^{\eta s}(g(s,\cdot),u^{\varepsilon}(s))_{H_{\rho}(\mathcal{O})}ds\\ &+\int^{t}_{\tau}e^{\eta s}\|\varpi_{\varepsilon}(u^{\varepsilon}(s),\mathcal{L}_{u^{\varepsilon}(s)})\|^{2}_{L_{2}(l^{2},H_{\rho})}ds\\ &+2\int^{t}_{\tau}e^{\eta s}\left(\varpi_{\varepsilon}(u^{\varepsilon}(s),\mathcal{L}_{u^{\varepsilon}(s)}),u^{\varepsilon}(s)\right)_{H_{\rho}(\mathcal{O})}dW(s),\end{split}

\mathbb{P}-almost surely. For each mNm\in N, define a stopping time τm\tau_{m} as follows:

τm=inf{tτ:uε(t)Hρ(𝒪)>m}.\tau_{m}=\inf\{t\geq\tau:\|u^{\varepsilon}(t)\|_{H_{\rho}(\mathcal{O})}>m\}.

As is customary, we denote inf=+\inf=+\infty. Utilizing (4.2) we can derive the following for all tτt\geq\tau,

(4.3) 𝔼(eη(tτm)uε(tτm)2Hρ(𝒪)+2tτmτeηsaε(uε(s),uε(s))ds)=𝔼(eητξε2Hρ(𝒪))+(η2λ)𝔼(tτmτeηsuε(s)2Hρ(𝒪)ds)2𝔼(tτmτ𝒪eηsρfε(y,uε(s,y),uε(s))uε(s,y)dyds)+2𝔼(tτmτeηs(g(s,),uε(s))Hρ(𝒪)ds)+𝔼(tτmτeηsϖε(uε(s),uε(s))2L2(l2,Hρ(𝒪))ds).\displaystyle\begin{split}&\mathbb{E}\left(e^{\eta(t\wedge\tau_{m})}\|u^{\varepsilon}(t\wedge\tau_{m})\|^{2}_{H_{\rho}(\mathcal{O})}+2\int^{t\wedge\tau_{m}}_{\tau}e^{\eta s}a_{\varepsilon}(u^{\varepsilon}(s),u^{\varepsilon}(s))ds\right)\\ &=\mathbb{E}\left(e^{\eta\tau}\|\xi^{\varepsilon}\|^{2}_{H_{\rho}(\mathcal{O})}\right)+(\eta-2\lambda)\mathbb{E}\left(\int^{t\wedge\tau_{m}}_{\tau}e^{\eta s}\|u^{\varepsilon}(s)\|^{2}_{H_{\rho}(\mathcal{O})}ds\right)\\ &-2\mathbb{E}\left(\int^{t\wedge\tau_{m}}_{\tau}\int_{\mathcal{O}}e^{\eta s}\rho f_{\varepsilon}(y,u^{\varepsilon}(s,y),\mathcal{L}_{u^{\varepsilon}(s)})u^{\varepsilon}(s,y)dyds\right)\\ &+2\mathbb{E}\left(\int^{t\wedge\tau_{m}}_{\tau}e^{\eta s}(g(s,\cdot),u^{\varepsilon}(s))_{H_{\rho}(\mathcal{O})}ds\right)\\ &+\mathbb{E}\left(\int^{t\wedge\tau_{m}}_{\tau}e^{\eta s}\|\varpi_{\varepsilon}(u^{\varepsilon}(s),\mathcal{L}_{u^{\varepsilon}(s)})\|^{2}_{L_{2}(l^{2},H_{\rho}(\mathcal{O}))}ds\right).\end{split}

Next, we derive the uniform estimates for the terms on right-hand of (4.3). With regard to the third term on the right-hand side of (4.3) by (3.4), we obtain

(4.4) 2𝔼(tτmτ𝒪eηsρfε(y,uε(s,y),uε(s))uε(s,y)dyds)2α1𝔼(tτmτeηsρ1uε(s)pLp(𝒪)ds)+2𝔼(tτmτeηsϕ1L(n)uε(s)2Hρ(𝒪)ds)+2𝔼(tτmτeηs(ϕ1L1(n)+ψ1L1(n)𝔼(uε(s)2Hρ(𝒪)))ds)2α1𝔼(tτmτeηsρ1uε(s)pLp(𝒪)ds)+2𝔼(tτeηsϕ1L(n)uε(s)2Hρ(𝒪)ds)+2𝔼(tτeηs(ϕ1L1(n)+ψ1L1(n)𝔼(uε(s)2Hρ(𝒪)))ds)2α1𝔼(tτmτeηsρ1uε(s)pLp(𝒪)ds)+2tτeηsϕ1L1(n)ds+2tτeηs(ϕ1L(n)+ψ1L1(n))𝔼(uε(s)2Hρ(𝒪))ds.\displaystyle\begin{split}&-2\mathbb{E}\left(\int^{t\wedge\tau_{m}}_{\tau}\int_{\mathcal{O}}e^{\eta s}\rho f_{\varepsilon}(y,u^{\varepsilon}(s,y),\mathcal{L}_{u^{\varepsilon}(s)})u^{\varepsilon}(s,y)dyds\right)\\ &\leq-2\alpha_{1}\mathbb{E}\left(\int^{t\wedge\tau_{m}}_{\tau}e^{\eta s}\rho_{1}\|u^{\varepsilon}(s)\|^{p}_{L^{p}(\mathcal{O})}ds\right)\\ &+2\mathbb{E}\left(\int^{t\wedge\tau_{m}}_{\tau}e^{\eta s}\|\phi_{1}\|_{L^{\infty}(\mathbb{R}^{n})}\|u^{\varepsilon}(s)\|^{2}_{H_{\rho}(\mathcal{O})}ds\right)\\ &+2\mathbb{E}\left(\int^{t\wedge\tau_{m}}_{\tau}e^{\eta s}\left(\|\phi_{1}\|_{L^{1}(\mathbb{R}^{n})}+\|\psi_{1}\|_{L^{1}(\mathbb{R}^{n})}\mathbb{E}\left(\|u^{\varepsilon}(s)\|^{2}_{H_{\rho}(\mathcal{O})}\right)\right)ds\right)\\ &\leq-2\alpha_{1}\mathbb{E}\left(\int^{t\wedge\tau_{m}}_{\tau}e^{\eta s}\rho_{1}\|u^{\varepsilon}(s)\|^{p}_{L^{p}(\mathcal{O})}ds\right)+2\mathbb{E}\left(\int^{t}_{\tau}e^{\eta s}\|\phi_{1}\|_{L^{\infty}(\mathbb{R}^{n})}\|u^{\varepsilon}(s)\|^{2}_{H_{\rho}(\mathcal{O})}ds\right)\\ &+2\mathbb{E}\left(\int^{t}_{\tau}e^{\eta s}\left(\|\phi_{1}\|_{L^{1}(\mathbb{R}^{n})}+\|\psi_{1}\|_{L^{1}(\mathbb{R}^{n})}\mathbb{E}\left(\|u^{\varepsilon}(s)\|^{2}_{H_{\rho}(\mathcal{O})}\right)\right)ds\right)\\ &\leq-2\alpha_{1}\mathbb{E}\left(\int^{t\wedge\tau_{m}}_{\tau}e^{\eta s}\rho_{1}\|u^{\varepsilon}(s)\|^{p}_{L^{p}(\mathcal{O})}ds\right)+2\int^{t}_{\tau}e^{\eta s}\|\phi_{1}\|_{L^{1}(\mathbb{R}^{n})}ds\\ &+2\int^{t}_{\tau}e^{\eta s}(\|\phi_{1}\|_{L^{\infty}(\mathbb{R}^{n})}+\|\psi_{1}\|_{L^{1}(\mathbb{R}^{n})})\mathbb{E}\left(\|u^{\varepsilon}(s)\|^{2}_{H_{\rho}(\mathcal{O})}\right)ds.\end{split}

With regard to the fourth term on the right-hand side of (4.3), we get

(4.5) 2𝔼(tτmτeηs(g(s,),uε(s))Hρ(𝒪)ds)tτmτηeηs𝔼(uε(s)2Hρ(𝒪))ds+1ηtτmτρ2eηsg(s)2L2(n)dstτηeηs𝔼(uε(s)2Hρ(𝒪))ds+1ηtτρ2eηsg(s)2L2(n)ds.\displaystyle\begin{split}&2\mathbb{E}\left(\int^{t\wedge\tau_{m}}_{\tau}e^{\eta s}(g(s,\cdot),u^{\varepsilon}(s))_{H_{\rho}(\mathcal{O})}ds\right)\\ &\leq\int^{t\wedge\tau_{m}}_{\tau}\eta e^{\eta s}\mathbb{E}\left(\|u^{\varepsilon}(s)\|^{2}_{H_{\rho}(\mathcal{O})}\right)ds+\frac{1}{\eta}\int^{t\wedge\tau_{m}}_{\tau}\rho_{2}e^{\eta s}\|g(s)\|^{2}_{L^{2}(\mathbb{R}^{n})}ds\\ &\leq\int^{t}_{\tau}\eta e^{\eta s}\mathbb{E}\left(\|u^{\varepsilon}(s)\|^{2}_{H_{\rho}(\mathcal{O})}\right)ds+\frac{1}{\eta}\int^{t}_{\tau}\rho_{2}e^{\eta s}\|g(s)\|^{2}_{L^{2}(\mathbb{R}^{n})}ds.\end{split}

For the last term of (4.3), by (3) we have

(4.6) 𝔼(tτmτeηsϖε(uε(s),uε(s))2L2(l2,Hρ(𝒪))ds)2𝔼(tτmτρ2eηsσ12L2(n,l2))ds)+8ρκ2β2l2𝔼(tτmτeηs(1+𝔼(uε(s)2Hρ(𝒪)))ds)+4κ2L(n)γ2l2𝔼(tτmτeηsuε(s)2Hρ(𝒪)ds)2𝔼(tτρ2eηsσ12L2(n,l2))ds)+8ρκ2β2l2𝔼(tτeηs(1+𝔼(uε(s)2Hρ(𝒪)))ds)+4κ2L(n)γ2l2𝔼(tτeηsuε(s)2Hρ(𝒪)ds)21ηρ2eηtσ12L2(n,l2)+8κ2β2l21ηeηt+(8κ2β2l2+4κ2L(n)γ2l2)tτeηs𝔼(uε(s)2Hρ(𝒪))ds.\displaystyle\begin{split}&\mathbb{E}\left(\int^{t\wedge\tau_{m}}_{\tau}e^{\eta s}\|\varpi_{\varepsilon}(u^{\varepsilon}(s),\mathcal{L}_{u^{\varepsilon}(s)})\|^{2}_{L_{2}(l^{2},H_{\rho}(\mathcal{O}))}ds\right)\\ &\leq 2\mathbb{E}\left(\int^{t\wedge\tau_{m}}_{\tau}\rho_{2}e^{\eta s}\|\sigma_{1}\|^{2}_{L_{2}(\mathbb{R}^{n},l^{2})})ds\right)\\ &+8\rho\|\kappa\|^{2}\|\beta\|^{2}_{l^{2}}\mathbb{E}\left(\int^{t\wedge\tau_{m}}_{\tau}e^{\eta s}(1+\mathbb{E}(\|u^{\varepsilon}(s)\|^{2}_{H_{\rho}(\mathcal{O})}))ds\right)\\ &+4\|\kappa\|^{2}_{L^{\infty}(\mathbb{R}^{n})}\|\gamma\|^{2}_{l^{2}}\mathbb{E}\left(\int^{t\wedge\tau_{m}}_{\tau}e^{\eta s}\|u^{\varepsilon}(s)\|^{2}_{H_{\rho}(\mathcal{O})}ds\right)\\ &\leq 2\mathbb{E}\left(\int^{t}_{\tau}\rho_{2}e^{\eta s}\|\sigma_{1}\|^{2}_{L_{2}(\mathbb{R}^{n},l^{2})})ds\right)\\ &+8\rho\|\kappa\|^{2}\|\beta\|^{2}_{l^{2}}\mathbb{E}\left(\int^{t}_{\tau}e^{\eta s}(1+\mathbb{E}(\|u^{\varepsilon}(s)\|^{2}_{H_{\rho}(\mathcal{O})}))ds\right)\\ &+4\|\kappa\|^{2}_{L^{\infty}(\mathbb{R}^{n})}\|\gamma\|^{2}_{l^{2}}\mathbb{E}\left(\int^{t}_{\tau}e^{\eta s}\|u^{\varepsilon}(s)\|^{2}_{H_{\rho}(\mathcal{O})}ds\right)\\ &\leq 2\frac{1}{\eta}\rho_{2}e^{\eta t}\|\sigma_{1}\|^{2}_{L^{2}(\mathbb{R}^{n},l^{2})}+8\|\kappa\|^{2}\|\beta\|^{2}_{l^{2}}\frac{1}{\eta}e^{\eta t}\\ &+(8\|\kappa\|^{2}\|\beta\|^{2}_{l^{2}}+4\|\kappa\|^{2}_{L^{\infty}(\mathbb{R}^{n})}\|\gamma\|^{2}_{l^{2}})\int^{t}_{\tau}e^{\eta s}\mathbb{E}\left(\|u^{\varepsilon}(s)\|^{2}_{H_{\rho}(\mathcal{O})}\right)ds.\end{split}

From (4.3)-(4.6), it can be deduced that for all tτt\geq\tau,

(4.7) 𝔼(eη(tτm)uε(tτm)2Hρ(𝒪)+2tτmτeηsaε(uε(s),uε(s))ds)+𝔼((2λη)tτmτeηsuε(s)2Hρ(𝒪)ds+2α1ρ1tτmτeηsuε(s)pLp(𝒪)ds)𝔼(eητξε2Hρ(𝒪))+2tτeηs(ϕ1L(n)+ψ1L1(n))𝔼(uε(s)2Hρ(𝒪))ds+1ηtτρ2eηsg(s)2L2(n)ds+21ηρ2eηtσ12L2(n,l2)+8κ2β2l21ηeηt+21ηϕ1L1(n)eηt+(2η+8κ2β2l2+4κ2L(n)γ2l2)tτeηs𝔼(uε(s)2Hρ(𝒪))ds.\displaystyle\begin{split}&\mathbb{E}\left(e^{\eta(t\wedge\tau_{m})}\|u^{\varepsilon}(t\wedge\tau_{m})\|^{2}_{H_{\rho}(\mathcal{O})}+2\int^{t\wedge\tau_{m}}_{\tau}e^{\eta s}a_{\varepsilon}(u^{\varepsilon}(s),u^{\varepsilon}(s))ds\right)\\ &+\mathbb{E}\left((2\lambda-\eta)\int^{t\wedge\tau_{m}}_{\tau}e^{\eta s}\|u^{\varepsilon}(s)\|^{2}_{H_{\rho}(\mathcal{O})}ds+2\alpha_{1}\rho_{1}\int^{t\wedge\tau_{m}}_{\tau}e^{\eta s}\|u^{\varepsilon}(s)\|^{p}_{L^{p}(\mathcal{O})}ds\right)\\ &\leq\mathbb{E}\left(e^{\eta\tau}\|\xi^{\varepsilon}\|^{2}_{H_{\rho}(\mathcal{O})}\right)\\ &+2\int^{t}_{\tau}e^{\eta s}(\|\phi_{1}\|_{L^{\infty}(\mathbb{R}^{n})}+\|\psi_{1}\|_{L^{1}(\mathbb{R}^{n})})\mathbb{E}\left(\|u^{\varepsilon}(s)\|^{2}_{H_{\rho}(\mathcal{O})}\right)ds\\ &+\frac{1}{\eta}\int^{t}_{\tau}\rho_{2}e^{\eta s}\|g(s)\|^{2}_{L^{2}(\mathbb{R}^{n})}ds+2\frac{1}{\eta}\rho_{2}e^{\eta t}\|\sigma_{1}\|^{2}_{L^{2}(\mathbb{R}^{n},l^{2})}\\ &+8\|\kappa\|^{2}\|\beta\|^{2}_{l^{2}}\frac{1}{\eta}e^{\eta t}+2\frac{1}{\eta}\|\phi_{1}\|_{L^{1}(\mathbb{R}^{n})}e^{\eta t}\\ &+(2\eta+8\|\kappa\|^{2}\|\beta\|^{2}_{l^{2}}+4\|\kappa\|^{2}_{L^{\infty}(\mathbb{R}^{n})}\|\gamma\|^{2}_{l^{2}})\int^{t}_{\tau}e^{\eta s}\mathbb{E}\left(\|u^{\varepsilon}(s)\|^{2}_{H_{\rho}(\mathcal{O})}\right)ds.\end{split}

Taking the limit of (4.7) as mm\rightarrow\infty, by Fatou’s lemma we obtain for all tτt\geq\tau,

(4.8) 𝔼(eηtuε(t)2Hρ(𝒪)+2tτeηsaε(uε(s),uε(s))ds)+𝔼(ηtτeηsuε(s)2Hρ(𝒪)ds+2α1ρ1tτeηsuε(s)pLp(𝒪)ds)𝔼(eητξε2Hρ(𝒪))+2tτeηs(ϕ1L(n)+ψ1L1(n))𝔼(uε(s)2Hρ(𝒪))ds+1ηtτρ2eηsg(s)2L2(n)ds+21ηρ2eηtσ12L2(n,l2)+8κ2β2l21ηeηt+21ηϕ1L1(n)eηt+(2η2λ+8κ2β2l2+4κ2L(n)γ2l2)tτeηs𝔼(uε(s)2Hρ(𝒪))ds.\displaystyle\begin{split}&\mathbb{E}\left(e^{\eta t}\|u^{\varepsilon}(t)\|^{2}_{H_{\rho}(\mathcal{O})}+2\int^{t}_{\tau}e^{\eta s}a_{\varepsilon}(u^{\varepsilon}(s),u^{\varepsilon}(s))ds\right)\\ &+\mathbb{E}\left(\eta\int^{t}_{\tau}e^{\eta s}\|u^{\varepsilon}(s)\|^{2}_{H_{\rho}(\mathcal{O})}ds+2\alpha_{1}\rho_{1}\int^{t}_{\tau}e^{\eta s}\|u^{\varepsilon}(s)\|^{p}_{L^{p}(\mathcal{O})}ds\right)\\ &\leq\mathbb{E}\left(e^{\eta\tau}\|\xi^{\varepsilon}\|^{2}_{H_{\rho}(\mathcal{O})}\right)\\ &+2\int^{t}_{\tau}e^{\eta s}(\|\phi_{1}\|_{L^{\infty}(\mathbb{R}^{n})}+\|\psi_{1}\|_{L^{1}(\mathbb{R}^{n})})\mathbb{E}\left(\|u^{\varepsilon}(s)\|^{2}_{H_{\rho}(\mathcal{O})}\right)ds\\ &+\frac{1}{\eta}\int^{t}_{\tau}\rho_{2}e^{\eta s}\|g(s)\|^{2}_{L^{2}(\mathbb{R}^{n})}ds+2\frac{1}{\eta}\rho_{2}e^{\eta t}\|\sigma_{1}\|^{2}_{L^{2}(\mathbb{R}^{n},l^{2})}\\ &+8\|\kappa\|^{2}\|\beta\|^{2}_{l^{2}}\frac{1}{\eta}e^{\eta t}+2\frac{1}{\eta}\|\phi_{1}\|_{L^{1}(\mathbb{R}^{n})}e^{\eta t}\\ &+(2\eta-2\lambda+8\|\kappa\|^{2}\|\beta\|^{2}_{l^{2}}+4\|\kappa\|^{2}_{L^{\infty}(\mathbb{R}^{n})}\|\gamma\|^{2}_{l^{2}})\int^{t}_{\tau}e^{\eta s}\mathbb{E}\left(\|u^{\varepsilon}(s)\|^{2}_{H_{\rho}(\mathcal{O})}\right)ds.\end{split}

By (3.29) and (4.8) we get for all tτt\geq\tau,

(4.9) 𝔼(uε(t)2Hρ(𝒪))+2tτeη(st)𝔼(aε(uε(s),uε(s)))ds+𝔼(ηtτeη(st)uε(s)2Hρ(𝒪)ds+2α1ρ1tτeη(st)uε(s)pLp(𝒪))dseη(tτ)𝔼(ξε2Hρ(𝒪))+21ηϕ1L1(n)+1ηρ2g02Cb(,L2(n)+21ηρ2σ12L2(n,l2)+8κ2β2l21η=eη(tτ)𝔼(ξε2Hρ(𝒪))+C,\displaystyle\begin{split}&\mathbb{E}\left(\|u^{\varepsilon}(t)\|^{2}_{H_{\rho}(\mathcal{O})}\right)+2\int^{t}_{\tau}e^{\eta(s-t)}\mathbb{E}\left(a_{\varepsilon}(u^{\varepsilon}(s),u^{\varepsilon}(s))\right)ds\\ &+\mathbb{E}\left(\eta\int^{t}_{\tau}e^{\eta(s-t)}\|u^{\varepsilon}(s)\|^{2}_{H_{\rho}(\mathcal{O})}ds+2\alpha_{1}\rho_{1}\int^{t}_{\tau}e^{\eta(s-t)}\|u^{\varepsilon}(s)\|^{p}_{L^{p}(\mathcal{O})}\right)ds\\ &\leq e^{-\eta(t-\tau)}\mathbb{E}\left(\|\xi^{\varepsilon}\|^{2}_{H_{\rho}(\mathcal{O})}\right)+2\frac{1}{\eta}\|\phi_{1}\|_{L^{1}(\mathbb{R}^{n})}+\frac{1}{\eta}\rho_{2}\|g_{0}\|^{2}_{C_{b}(\mathbb{R},L^{2}(\mathbb{R}^{n})}\\ &+2\frac{1}{\eta}\rho_{2}\|\sigma_{1}\|^{2}_{L^{2}(\mathbb{R}^{n},l^{2})}+8\|\kappa\|^{2}\|\beta\|^{2}_{l^{2}}\frac{1}{\eta}\\ &=e^{-\eta(t-\tau)}\mathbb{E}\left(\|\xi^{\varepsilon}\|^{2}_{H_{\rho}(\mathcal{O})}\right)+C,\end{split}

where C=21ηϕ1L1(n)+1ηρ2g02Cb(,L2(n)+21ηρ2σ12L2(n,l2)+8κ2β2l21ηC=2\frac{1}{\eta}\|\phi_{1}\|_{L^{1}(\mathbb{R}^{n})}+\frac{1}{\eta}\rho_{2}\|g_{0}\|^{2}_{C_{b}(\mathbb{R},L^{2}(\mathbb{R}^{n})}+2\frac{1}{\eta}\rho_{2}\|\sigma_{1}\|^{2}_{L^{2}(\mathbb{R}^{n},l^{2})}+8\|\kappa\|^{2}\|\beta\|^{2}_{l^{2}}\frac{1}{\eta}.

Since 𝔼(ξε2Hρ(𝒪))R\mathbb{E}\left(\|\xi^{\varepsilon}\|^{2}_{H_{\rho}(\mathcal{O})}\right)\leq R, we have

eη(tτ)𝔼(ξε2Hρ(𝒪))eη(tτ)R0,astτ,e^{-\eta(t-\tau)}\mathbb{E}\left(\|\xi^{\varepsilon}\|^{2}_{H_{\rho}(\mathcal{O})}\right)\leq e^{-\eta(t-\tau)}R\rightarrow 0,\ \text{as}\quad t-\tau\rightarrow\infty,

and hence there exists T=T(R)>0T=T(R)>0 such that for all tτ>Tt-\tau>T,

eη(tτ)𝔼(ξε2Hρ(𝒪))C,e^{-\eta(t-\tau)}\mathbb{E}\left(\|\xi^{\varepsilon}\|^{2}_{H_{\rho}(\mathcal{O})}\right)\leq C,

Which along with (4.9) concludes the proof. ∎

By Lemma 4.1, we have following uniform estimates.

Corollary 4.1.

Assume that (A1)\mathbf{(}A1)-(A3)\mathbf{(}A3) and (3.28) hold, then for every R>0R>0, there exists T=T(R)>1T=T(R)>1, independent of ε\varepsilon, such that for any τ\tau\in\mathbb{R}, tτTt-\tau\geq T, and 0<ε<ε00<\varepsilon<\varepsilon_{0}, the solution uεu^{\varepsilon} satisfies

tt1𝔼(aε(uε(s),uε(s)))dsM2,\int^{t}_{t-1}\mathbb{E}\left(a_{\varepsilon}\left(u^{\varepsilon}(s),u^{\varepsilon}(s)\right)\right)ds\leq M_{2},

where 𝔼(ξε2Hρ(𝒪))R\mathbb{E}(\|\xi^{\varepsilon}\|^{2}_{H_{\rho}(\mathcal{O})})\leq R, and M2M_{2} is constant depends on η,g0\eta,g_{0}. In particular, M2M_{2} is independent ξε,τ,g(g0)\xi^{\varepsilon},\tau,g\in\mathcal{H}(g_{0}) and ε\varepsilon.

Lemma 4.2.

Assume that (A1)\mathbf{(}A1)-(A3)\mathbf{(}A3) and (3.28) hold, then for every R>0R>0, there exists T=T(R)>1T=T(R)>1, independent of ε\varepsilon, such that for any τ\tau\in\mathbb{R}, t[τ,τ+T]t\in[\tau,\tau+T], and 0<ε<ε00<\varepsilon<\varepsilon_{0}, the solution uεu^{\varepsilon} satisfies

tτ𝔼(uε(s,τ,ξε)2H1ε(𝒪))dsM3,\int^{t}_{\tau}\mathbb{E}\left(\|u^{\varepsilon}(s,\tau,\xi^{\varepsilon})\|^{2}_{H^{1}_{\varepsilon}(\mathcal{O})}\right)ds\leq M_{3},

where 𝔼(ξε2Hρ(𝒪))R\mathbb{E}(\|\xi^{\varepsilon}\|^{2}_{H_{\rho}(\mathcal{O})})\leq R, and M3M_{3} is constant depends on η,g0\eta,g_{0}. In particular, M3M_{3} is independent ξε,τ,g(g0)\xi^{\varepsilon},\tau,g\in\mathcal{H}(g_{0}) and ε\varepsilon.

Proof..

By (4.1) and t[τ,τ+T]t\in[\tau,\tau+T], the desired inequality follows. ∎

The following lemma is concerned with the uniform estimates of solutions of (3.22) which is similar to Lemma 4.2.

Lemma 4.3.

Assume that (A1)\mathbf{(}A1)-(A3)\mathbf{(}A3) and (3.28) hold, then for every R>0R>0, there exists T=T(R)>1T=T(R)>1, such that for any τ\tau\in\mathbb{R}, t[τ,τ+T]t\in[\tau,\tau+T], the solution u0u^{0} satisfies

tτ𝔼(u0(s,τ,ξ0)2H1ε(n))dsM4,\int^{t}_{\tau}\mathbb{E}\left(\|u^{0}(s,\tau,\xi^{0})\|^{2}_{H^{1}_{\varepsilon}(\mathbb{R}^{n})}\right)ds\leq M_{4},

where 𝔼(ξ02Hρ(n))R\mathbb{E}(\|\xi^{0}\|^{2}_{H_{\rho}(\mathbb{R}^{n})})\leq R, and M4M_{4} is constant depends on η,g0\eta,g_{0}. In particular, M4M_{4} is independent ξ0,τ,g(g0)\xi^{0},\tau,g\in\mathcal{H}(g_{0}) and ε\varepsilon.

The following inequality from [27] is useful for deriving the uniform estimates of solution in L2(Ω,H1ε(𝒪))L^{2}(\Omega,H^{1}_{\varepsilon}(\mathcal{O})).

Lemma 4.4.

If (3.6)-(3.7) hold, then for uD(Aε)u\in D(A_{\varepsilon}),

(fε(,u,u(t)),Aεu)Hρ(𝒪)\displaystyle(f_{\varepsilon}(\cdot,u,\mathcal{L}_{u(t)}),A_{\varepsilon}u)_{H_{\rho}(\mathcal{O})}
M5(aε(u,u)+ϕ52L2(n)(1+u(t)2Hρ(𝒪)+𝔼(u(t)2Hρ(𝒪))),\displaystyle\leq M_{5}\left(a_{\varepsilon}(u,u)+\|\phi_{5}\|^{2}_{L^{2}(\mathbb{R}^{n})}(1+\|u(t)\|^{2}_{H_{\rho}(\mathcal{O})}+\mathbb{E}(\|u(t)\|^{2}_{H_{\rho}(\mathcal{O})})\right),

where M5M_{5} is a positive constant independent of ε\varepsilon.

Next, we establish the uniform estimates of solutions of (3.21) in L2(Ω,H1ε(𝒪))L^{2}(\Omega,H^{1}_{\varepsilon}(\mathcal{O})).

Lemma 4.5.

Suppose (A1)\mathbf{(}A1)-(A3)\mathbf{(}A3) and (3.28) hold, then for every R>0R>0, there exists T=T(R)>1T=T(R)>1, independent of ε\varepsilon, such that for any τ\tau\in\mathbb{R}, tτTt-\tau\geq T, and 0<ε<ε00<\varepsilon<\varepsilon_{0}, the solution uεu^{\varepsilon} satisfies

(4.10) 𝔼(uε(t,τ,ξε)2H1ε(𝒪))M6,\displaystyle\mathbb{E}(\|u^{\varepsilon}(t,\tau,\xi^{\varepsilon})\|^{2}_{H^{1}_{\varepsilon}(\mathcal{O})})\leq M_{6},

where 𝔼(ξε2Hρ(𝒪))R\mathbb{E}(\|\xi^{\varepsilon}\|^{2}_{H_{\rho}(\mathcal{O})})\leq R, and M6M_{6} is constant depends on λ,g0\lambda,g_{0}. In particular, M6M_{6} is independent is independent ξ0,τ,g(g0)\xi^{0},\tau,g\in\mathcal{H}(g_{0}) and ε\varepsilon.

Proof..

From (3.21) and Ito’s formula that for τ\tau\in\mathbb{R}, tτ>Tt-\tau>T and ς(t1,t)\varsigma\in(t-1,t),

(4.11) aε(uε(t,τ,ξε),uε(t,τ,ξε))+2ςtAεuε(s,τ,ξε)2Hρ(𝒪)ds+2λtςaε(uε(t,τ,ξε),uε(t,τ,ξε))ds=aε(uε(ς,τ,ξε),uε(ς,τ,ξε))2tς(fε(,uε(s,τ,ξε),uε(s))),Aεuε(s,τ,ξε))Hρ(𝒪)ds+2tς(g(s,),Aεuε(s,τ,ξε))Hρ(𝒪)ds+k=1tςaε(σk,ε+κϖk(uε(s,τ,ξε),uε(s)),σk,ε+κϖk(uε(s,τ,ξε),uε(s)))ds+2tς(ϖε(uε(s,τ,ξε),uε(s)),Aεuε(s,τ,ξε))Hρ(𝒪)dW(s).\displaystyle\begin{split}&a_{\varepsilon}(u^{\varepsilon}(t,\tau,\xi^{\varepsilon}),u^{\varepsilon}(t,\tau,\xi^{\varepsilon}))\\ &+2\int_{\varsigma}^{t}\|A_{\varepsilon}u^{\varepsilon}(s,\tau,\xi^{\varepsilon})\|^{2}_{H_{\rho}(\mathcal{O})}ds+2\lambda\int^{t}_{\varsigma}a_{\varepsilon}(u^{\varepsilon}(t,\tau,\xi^{\varepsilon}),u^{\varepsilon}(t,\tau,\xi^{\varepsilon}))ds\\ &=a_{\varepsilon}(u^{\varepsilon}(\varsigma,\tau,\xi^{\varepsilon}),u^{\varepsilon}(\varsigma,\tau,\xi^{\varepsilon}))-2\int^{t}_{\varsigma}(f_{\varepsilon}(\cdot,u^{\varepsilon}(s,\tau,\xi^{\varepsilon}),\mathcal{L}_{u^{\varepsilon}(s)})),A_{\varepsilon}u^{\varepsilon}(s,\tau,\xi^{\varepsilon}))_{H_{\rho}(\mathcal{O})}ds\\ &+2\int^{t}_{\varsigma}(g(s,\cdot),A_{\varepsilon}u^{\varepsilon}(s,\tau,\xi^{\varepsilon}))_{H_{\rho}(\mathcal{O})}ds\\ &+\sum^{\infty}_{k=1}\int^{t}_{\varsigma}a_{\varepsilon}\left(\sigma_{k,\varepsilon}+\kappa\varpi_{k}(u^{\varepsilon}(s,\tau,\xi^{\varepsilon}),\mathcal{L}_{u^{\varepsilon}(s)}),\sigma_{k,\varepsilon}+\kappa\varpi_{k}(u^{\varepsilon}(s,\tau,\xi^{\varepsilon}),\mathcal{L}_{u^{\varepsilon}(s)})\right)ds\\ &+2\int^{t}_{\varsigma}\left(\varpi_{\varepsilon}(u^{\varepsilon}(s,\tau,\xi^{\varepsilon}),\mathcal{L}_{u^{\varepsilon}(s)}),A_{\varepsilon}u^{\varepsilon}(s,\tau,\xi^{\varepsilon})\right)_{H_{\rho}(\mathcal{O})}dW(s).\end{split}

By Lemma 4.4 we know

2tς(fε(,uε(s,τ,ξε),uε(s)),Aεuε(s,τ,ξε))Hρ(𝒪)ds\displaystyle 2\int^{t}_{\varsigma}(f_{\varepsilon}(\cdot,u^{\varepsilon}(s,\tau,\xi^{\varepsilon}),\mathcal{L}_{u^{\varepsilon}(s)}),A_{\varepsilon}u^{\varepsilon}(s,\tau,\xi^{\varepsilon}))_{H_{\rho}(\mathcal{O})}ds
2M5tςaε(uε(s,τ,ξε),uε(s,τ,ξε))ds\displaystyle\leq 2M_{5}\int^{t}_{\varsigma}a_{\varepsilon}(u^{\varepsilon}(s,\tau,\xi^{\varepsilon}),u^{\varepsilon}(s,\tau,\xi^{\varepsilon}))ds
(4.12) +2M5ϕ52L2(n)tς1+uε(s)2Hρ(𝒪)+𝔼(uε(s)2Hρ(𝒪))ds.\displaystyle+2M_{5}\|\phi_{5}\|^{2}_{L^{2}(\mathbb{R}^{n})}\int^{t}_{\varsigma}1+\|u^{\varepsilon}(s)\|^{2}_{H_{\rho}(\mathcal{O})}+\mathbb{E}(\|u^{\varepsilon}(s)\|^{2}_{H_{\rho}(\mathcal{O})})ds.

For the third term on the right-hand side of (4.11) we have

2tς(g(s,),Aεuε(s,τ,ξε))Hρ(𝒪)ds\displaystyle 2\int^{t}_{\varsigma}(g(s,\cdot),A_{\varepsilon}u^{\varepsilon}(s,\tau,\xi^{\varepsilon}))_{H_{\rho}(\mathcal{O})}ds
(4.13) tςAεuε(s,τ,ξε)2Hρ(𝒪)ds+ρ2tςg(s)2L2(n)ds.\displaystyle\leq\int^{t}_{\varsigma}\|A_{\varepsilon}u^{\varepsilon}(s,\tau,\xi^{\varepsilon})\|^{2}_{H_{\rho}(\mathcal{O})}ds+\rho_{2}\int^{t}_{\varsigma}\|g(s)\|^{2}_{L^{2}(\mathbb{R}^{n})}ds.

For the fourth term on the right-hand side of (4.11), by (3.13) we obtain

k=1tςaε(σk,ε+κϖk(uε(s,τ,ξε),uε(s)),σk,ε+κϖk(uε(s,τ,ξε),uε(s)))ds\displaystyle\sum^{\infty}_{k=1}\int^{t}_{\varsigma}a_{\varepsilon}\left(\sigma_{k,\varepsilon}+\kappa\varpi_{k}(u^{\varepsilon}(s,\tau,\xi^{\varepsilon}),\mathcal{L}_{u^{\varepsilon}(s)}),\sigma_{k,\varepsilon}+\kappa\varpi_{k}(u^{\varepsilon}(s,\tau,\xi^{\varepsilon}),\mathcal{L}_{u^{\varepsilon}(s)})\right)ds
2k=1tςaε(σk,ε,σk,ε)+aε(κϖk(uε(s,τ,ξε),uε(s)),κϖk(uε(s,τ,ξε),uε(s)))ds\displaystyle\leq 2\sum^{\infty}_{k=1}\int^{t}_{\varsigma}a_{\varepsilon}\left(\sigma_{k,\varepsilon},\sigma_{k,\varepsilon}\right)+a_{\varepsilon}\left(\kappa\varpi_{k}(u^{\varepsilon}(s,\tau,\xi^{\varepsilon}),\mathcal{L}_{u^{\varepsilon}(s)}),\kappa\varpi_{k}(u^{\varepsilon}(s,\tau,\xi^{\varepsilon}),\mathcal{L}_{u^{\varepsilon}(s)})\right)ds
(4.14) 2ρ2σ22L2(n,l2)(tς)+2κ2L(n)k=1Lϖ,k2tςaε(uε(s),uε(s))ds.\displaystyle\leq 2\rho_{2}\|\sigma_{2}\|^{2}_{L^{2}(\mathbb{R}^{n},l^{2})}(t-\varsigma)+2\|\kappa\|^{2}_{L^{\infty}(\mathbb{R}^{n})}\sum^{\infty}_{k=1}L_{\varpi,k}^{2}\int^{t}_{\varsigma}a_{\varepsilon}(u^{\varepsilon}(s),u^{\varepsilon}(s))ds.

By (4.11)-(4.5) we obtain

(4.15) 𝔼(aε(uε(t,τ,ξε),uε(t,τ,ξε)))𝔼(aε(uε(ς),uε(ς)))+c1tς𝔼(aε(uε(s),uε(s)))ds+2M5ϕ52L2(n)(tς)+4M5ϕ52L2(n)tς𝔼(uε(s)2Hρ(𝒪))ds+ρ2tςg(s)2L2(n)ds+2ρ2σ22L2(n,l2)(tς).\displaystyle\begin{split}&\mathbb{E}\left(a_{\varepsilon}(u^{\varepsilon}(t,\tau,\xi^{\varepsilon}),u^{\varepsilon}(t,\tau,\xi^{\varepsilon}))\right)\\ &\leq\mathbb{E}\left(a_{\varepsilon}(u^{\varepsilon}(\varsigma),u^{\varepsilon}(\varsigma))\right)+c_{1}\int^{t}_{\varsigma}\mathbb{E}(a_{\varepsilon}(u^{\varepsilon}(s),u^{\varepsilon}(s)))ds\\ &+2M_{5}\|\phi_{5}\|^{2}_{L^{2}(\mathbb{R}^{n})}(t-\varsigma)+4M_{5}\|\phi_{5}\|^{2}_{L^{2}(\mathbb{R}^{n})}\int^{t}_{\varsigma}\mathbb{E}(\|u^{\varepsilon}(s)\|^{2}_{H_{\rho}(\mathcal{O})})ds\\ &+\rho_{2}\int^{t}_{\varsigma}\|g(s)\|^{2}_{L^{2}(\mathbb{R}^{n})}ds+2\rho_{2}\|\sigma_{2}\|^{2}_{L^{2}(\mathbb{R}^{n},l^{2})}(t-\varsigma).\end{split}

where c1=2M5+2κ2L(n)k=1Lϖ,k2c_{1}=2M_{5}+2\|\kappa\|^{2}_{L^{\infty}(\mathbb{R}^{n})}\sum\limits^{\infty}_{k=1}L_{\varpi,k}^{2}. Integrating the inequality with respect to ς\varsigma over (t1,t)(t-1,t), we find

(4.16) 𝔼(aε(uε(t),uε(t)))(c1+1)tt1𝔼(aε(uε(s),uε(s)))ds+2M5ϕ52L2(n)+4M5ϕ52L2(n)tt1𝔼(u(s)2Hρ(𝒪))ds+ρ2tt1g(s)2L2(n)ds+2ρ2σ22L2(n,l2)(c1+1)tt1𝔼(aε(uε(s),uε(s)))ds+2M5ϕ52L2(n)+4M5ϕ52L2(n)tt1𝔼(u(s)2Hρ(𝒪))ds+ρ2g02Cb(,L2(n))+2ρ2σ22L2(n,l2),\displaystyle\begin{split}&\mathbb{E}(a_{\varepsilon}(u^{\varepsilon}(t),u^{\varepsilon}(t)))\leq(c_{1}+1)\int^{t}_{t-1}\mathbb{E}(a_{\varepsilon}(u^{\varepsilon}(s),u^{\varepsilon}(s)))ds\\ &+2M_{5}\|\phi_{5}\|^{2}_{L^{2}(\mathbb{R}^{n})}+4M_{5}\|\phi_{5}\|^{2}_{L^{2}(\mathbb{R}^{n})}\int^{t}_{t-1}\mathbb{E}(\|u(s)\|^{2}_{H_{\rho}(\mathcal{O})})ds\\ &+\rho_{2}\int^{t}_{t-1}\|g(s)\|^{2}_{L^{2}(\mathbb{R}^{n})}ds+2\rho_{2}\|\sigma_{2}\|^{2}_{L^{2}(\mathbb{R}^{n},l^{2})}\\ &\leq(c_{1}+1)\int^{t}_{t-1}\mathbb{E}(a_{\varepsilon}(u^{\varepsilon}(s),u^{\varepsilon}(s)))ds+2M_{5}\|\phi_{5}\|^{2}_{L^{2}(\mathbb{R}^{n})}\\ &+4M_{5}\|\phi_{5}\|^{2}_{L^{2}(\mathbb{R}^{n})}\int^{t}_{t-1}\mathbb{E}(\|u(s)\|^{2}_{H_{\rho}(\mathcal{O})})ds\\ &+\rho_{2}\|g_{0}\|^{2}_{C_{b}(\mathbb{R},L^{2}(\mathbb{R}^{n}))}+2\rho_{2}\|\sigma_{2}\|^{2}_{L^{2}(\mathbb{R}^{n},l^{2})},\end{split}

which in conjunction with Lemmas 4.1 and 4.1, completes the proof. ∎

Lemma 4.6.

Assume that (A1)\mathbf{(}A1)-(A3)\mathbf{(}A3) and (3.28) hold, then for any δ>0\delta>0, τ\tau\in\mathbb{R} and R>0R>0, there exists a positive integer N=N(δ)N=N(\delta) and T=T(δ,R)>0T=T(\delta,R)>0, independent of ε\varepsilon, such that the solution uεu^{\varepsilon} of system (3.21) satisfies, for all tτTt-\tau\geq T, nNn\geq N and 0<ε<ε00<\varepsilon<\varepsilon_{0},

𝔼(|y|2n10|uε(t,τ,ξε)(y,yn+1)|2dyn+1dy)δ.\mathbb{E}\left(\int_{|y^{*}|\geq\sqrt{2}n}\int^{1}_{0}|u^{\varepsilon}(t,\tau,\xi^{\varepsilon})(y^{*},y_{n+1})|^{2}d_{y_{n+1}}dy^{*}\right)\leq\delta.

when 𝔼(ξε2Hρ(𝒪))R\mathbb{E}(\|\xi^{\varepsilon}\|^{2}_{H_{\rho}(\mathcal{O})})\leq R.

Proof..

Let θ\theta be a cut-off smooth function such that for any s+s\in\mathbb{R}^{+}, Let θ\theta be a function satisfying 0θ(s)10\leq\theta(s)\leq 1 for s0s\geq 0 and

(4.17) θ(s)=0for 0s1;θ(s)=1 for s2.\displaystyle\theta(s)=0\quad\text{for $0\leq s\leq 1$};\qquad\text{$\theta(s)=1$\quad for $s\geq 2$}.

Let M=sups+|θ(s)|,nM=\sup\limits_{s\in\mathbb{R}^{+}}|\theta^{\prime}(s)|,n be a fixed integer and θn=θ(|y|2n2)\theta_{n}=\theta(\frac{|y^{*}|^{2}}{n^{2}}). By (3.21) we get

(4.18) dθnuε(t)+(θnAεuε(t)+λθnuε)dt+θnfε(,uε(t),uε(t))dt=θng(t,)dt+θnϖε(uε(t),uε(t))dW(t),t>τ.\displaystyle\begin{split}&d\theta_{n}u^{\varepsilon}(t)+\left(\theta_{n}A_{\varepsilon}u^{\varepsilon}(t)+\lambda\theta_{n}u^{\varepsilon}\right)dt+\theta_{n}f_{\varepsilon}\left(\cdot,u^{\varepsilon}(t),\mathcal{L}_{u^{\varepsilon}(t)}\right)dt=\theta_{n}g(t,\cdot)dt\\ &\quad+\theta_{n}\varpi_{\varepsilon}\left(u^{\varepsilon}(t),\mathcal{L}_{u^{\varepsilon}(t)}\right)dW(t),\quad\ t>\tau.\\ \end{split}

By (4.18) and Ito’s formula, we have

(4.19) eηtθnuε(t)2Hρ(𝒪)+2tτeηsaε(uε,θ2nuε(s))ds+(2λη)tτeηsθnuε(s)2ds+2tτneηsρθ2nfε(y,uε(s,y),uε(s))uε(s,y)dyds=eητθnξε2Hρ(𝒪)+2tτ(g(s,),θn2u(s))Hρ(𝒪)ds+tτeηsθnϖε(uε(s),uε(s))2L2(l2,Hρ(𝒪))ds+2tτeηs(θn2uε(s),ϖε(uε(s),uε(s)))Hρ(𝒪)dW(s),\displaystyle\begin{split}&e^{\eta t}\|\theta_{n}u^{\varepsilon}(t)\|^{2}_{H_{\rho}(\mathcal{O})}+2\int^{t}_{\tau}e^{\eta s}a_{\varepsilon}(u^{\varepsilon},\theta^{2}_{n}u^{\varepsilon}(s))ds+(2\lambda-\eta)\int^{t}_{\tau}e^{\eta s}\|\theta_{n}u^{\varepsilon}(s)\|^{2}ds\\ &+2\int^{t}_{\tau}\int_{\mathbb{R}^{n}}e^{\eta s}\rho\theta^{2}_{n}f_{\varepsilon}(y,u^{\varepsilon}(s,y),\mathcal{L}_{u^{\varepsilon}(s)})u^{\varepsilon}(s,y)dyds\\ &=e^{\eta\tau}\|\theta_{n}\xi^{\varepsilon}\|^{2}_{H_{\rho}(\mathcal{O})}+2\int^{t}_{\tau}(g(s,\cdot),\theta_{n}^{2}u(s))_{H_{\rho}(\mathcal{O})}ds\\ &+\int^{t}_{\tau}e^{\eta s}\|\theta_{n}\varpi_{\varepsilon}(u^{\varepsilon}(s),\mathcal{L}_{u^{\varepsilon}(s)})\|^{2}_{L_{2}(l^{2},H_{\rho}(\mathcal{O}))}ds\\ &\quad+2\int^{t}_{\tau}e^{\eta s}(\theta_{n}^{2}u^{\varepsilon}(s),\varpi_{\varepsilon}(u^{\varepsilon}(s),\mathcal{L}_{u^{\varepsilon}(s)}))_{H_{\rho}(\mathcal{O})}dW(s),\end{split}

\mathbb{P}-almost surely. Given mm\in\mathbb{N}, denote by

τm=inf{tτ:uε(t)Hρ(𝒪)>m}.\tau_{m}=\inf\{t\geq\tau:\|u^{\varepsilon}(t)\|_{H_{\rho}(\mathcal{O})}>m\}.

By (4.19) we have for all tτt\geq\tau,

(4.20) 𝔼(eη(tτm)θnuε(tτm)2Hρ(𝒪)+2tτmτeηsaε(θ2nuε(s),uε(s))ds)=𝔼(eητθnξε2Hρ(𝒪))+(η2λ)𝔼(tτmτeηsθnuε(s)2Hρ(𝒪)ds)2𝔼(tτmτ𝒪eηsρθ2nfε(y,uε(s,y),uε(s))uε(s,y)dyds)+2𝔼(tτmτ(θng(s,),θnuε(s))Hρ(𝒪)ds)+𝔼(tτmτeηsθnϖε(uε(s),uε(s))2L2(l2,Hρ(𝒪))ds).\displaystyle\begin{split}&\mathbb{E}\left(e^{\eta(t\wedge\tau_{m})}\|\theta_{n}u^{\varepsilon}(t\wedge\tau_{m})\|^{2}_{H_{\rho}(\mathcal{O})}+2\int^{t\wedge\tau_{m}}_{\tau}e^{\eta s}a_{\varepsilon}(\theta^{2}_{n}u^{\varepsilon}(s),u^{\varepsilon}(s))ds\right)\\ &=\mathbb{E}\left(e^{\eta\tau}\|\theta_{n}\xi^{\varepsilon}\|^{2}_{H_{\rho}(\mathcal{O})}\right)+(\eta-2\lambda)\mathbb{E}\left(\int^{t\wedge\tau_{m}}_{\tau}e^{\eta s}\|\theta_{n}u^{\varepsilon}(s)\|^{2}_{H_{\rho}(\mathcal{O})}ds\right)\\ &-2\mathbb{E}\left(\int^{t\wedge\tau_{m}}_{\tau}\int_{\mathcal{O}}e^{\eta s}\rho\theta^{2}_{n}f_{\varepsilon}(y,u^{\varepsilon}(s,y),\mathcal{L}_{u^{\varepsilon}(s)})u^{\varepsilon}(s,y)dyds\right)\\ &\quad+2\mathbb{E}\left(\int^{t\wedge\tau_{m}}_{\tau}\left(\theta_{n}g(s,\cdot),\theta_{n}u^{\varepsilon}(s)\right)_{H_{\rho}(\mathcal{O})}ds\right)\\ &\quad+\mathbb{E}\left(\int^{t\wedge\tau_{m}}_{\tau}e^{\eta s}\|\theta_{n}\varpi_{\varepsilon}(u^{\varepsilon}(s),\mathcal{L}_{u^{\varepsilon}(s)})\|^{2}_{L_{2}(l^{2},H_{\rho}(\mathcal{O}))}ds\right).\end{split}

Note that

(4.21) 2𝔼(tτmτeηsaε(θ2nuε(s),uε(s))ds)\displaystyle-2\mathbb{E}\left(\int^{t\wedge\tau_{m}}_{\tau}e^{\eta s}a_{\varepsilon}(\theta^{2}_{n}u^{\varepsilon}(s),u^{\varepsilon}(s))ds\right)
=2𝔼(tτmτeηs𝒪ρJyuε(s,y)Jy(θ2(|y|2n2)uε(s,y))dy)\displaystyle=-2\mathbb{E}\left(\int^{t\wedge\tau_{m}}_{\tau}e^{\eta s}\int_{\mathcal{O}}\rho J^{*}\nabla_{y}u^{\varepsilon}(s,y)\cdot J^{*}\nabla_{y}\left(\theta^{2}\left(\frac{\left|y^{*}\right|^{2}}{n^{2}}\right)u^{\varepsilon}(s,y)\right)\mathrm{d}y\right)
=2𝔼(tτmτeηs𝒪ρθ2(|y|2n2)|Jyuε(s,y)|2dyds)\displaystyle=-2\mathbb{E}\left(\int^{t\wedge\tau_{m}}_{\tau}e^{\eta s}\int_{\mathcal{O}}\rho\theta^{2}\left(\frac{\left|y^{*}\right|^{2}}{n^{2}}\right)\left|J^{*}\nabla_{y}u^{\varepsilon}(s,y)\right|^{2}\mathrm{~{}d}yds\right)
2𝔼(tτmτeηs𝒪ρuε(s,y)Jyuε(s,y)Jy(θ2(|y|2n2))dyds)\displaystyle-2\mathbb{E}\left(\int^{t\wedge\tau_{m}}_{\tau}e^{\eta s}\int_{\mathcal{O}}\rho u^{\varepsilon}(s,y)\cdot J^{*}\nabla_{y}u^{\varepsilon}(s,y)\cdot J^{*}\nabla_{y}\left(\theta^{2}\left(\frac{\left|y^{*}\right|^{2}}{n^{2}}\right)\right)\mathrm{d}yds\right)
2𝔼(tτmτeηs𝒪|ρ||uε(s,y)||Jyuε(s,y)||Jy(θ2(|y|2n2))|dyds)\displaystyle\leq 2\mathbb{E}\left(\int^{t\wedge\tau_{m}}_{\tau}e^{\eta s}\int_{\mathcal{O}}|\rho|\left|u^{\varepsilon}(s,y)\right|\left|J^{*}\nabla_{y}u^{\varepsilon}(s,y)\right|\cdot\left|J^{*}\nabla_{y}\left(\theta^{2}\left(\frac{\left|y^{*}\right|^{2}}{n^{2}}\right)\right)\right|\mathrm{d}yds\right)
c2n𝔼(tτmτeηs𝒪|ρ||uε(s,y)||Jyuε|dyds)\displaystyle\leq\frac{c_{2}}{n}\mathbb{E}\left(\int^{t\wedge\tau_{m}}_{\tau}e^{\eta s}\int_{\mathcal{O}}|\rho|\left|u^{\varepsilon}(s,y)\right|\left|J^{*}\nabla_{y}u^{\varepsilon}\right|dyds\right)
c3n𝔼(tτmτeηs(uε(s)Hρ(𝒪)2+Jyuε(s)Hρ(𝒪)2)ds)\displaystyle\leq\frac{c_{3}}{n}\mathbb{E}\left(\int^{t\wedge\tau_{m}}_{\tau}e^{\eta s}\left(\left\|u^{\varepsilon}(s)\right\|_{H_{\rho}(\mathcal{O})}^{2}+\left\|J^{*}\nabla_{y}u^{\varepsilon}(s)\right\|_{H_{\rho}(\mathcal{O})}^{2}\right)ds\right)
c3n𝔼(tτmτeηs(uε(s)Hρ(𝒪)2+aε(uε(s),uε(s)))ds)\displaystyle\leq\frac{c_{3}}{n}\mathbb{E}\left(\int^{t\wedge\tau_{m}}_{\tau}e^{\eta s}\left(\left\|u^{\varepsilon}(s)\right\|_{H_{\rho}(\mathcal{O})}^{2}+a_{\varepsilon}\left(u^{\varepsilon}(s),u^{\varepsilon}(s)\right)\right)ds\right)
c4n𝔼(tτmτeηsuε(s)Hε1(𝒪)2ds)\displaystyle\leq\frac{c_{4}}{n}\mathbb{E}\left(\int^{t\wedge\tau_{m}}_{\tau}e^{\eta s}\left\|u^{\varepsilon}(s)\right\|_{H_{\varepsilon}^{1}(\mathcal{O})}^{2}ds\right)
c4ntτeηs𝔼(uε(s)Hε1(𝒪)2)ds,\displaystyle\leq\frac{c_{4}}{n}\int^{t}_{\tau}e^{\eta s}\mathbb{E}\left(\left\|u^{\varepsilon}(s)\right\|_{H_{\varepsilon}^{1}(\mathcal{O})}^{2}\right)ds,

where c2,c3,c4c_{2},c_{3},c_{4} are positive constants independent of nn.

For the third term on the right-hand side of (4.20), by (3.4) have

2𝔼(tτmτ𝒪eηsρθ2nfε(y,uε(s,y),uε(s))uε(s,y)dyds)\displaystyle-2\mathbb{E}\left(\int^{t\wedge\tau_{m}}_{\tau}\int_{\mathcal{O}}e^{\eta s}\rho\theta^{2}_{n}f_{\varepsilon}(y,u^{\varepsilon}(s,y),\mathcal{L}_{u^{\varepsilon}(s)})u^{\varepsilon}(s,y)dyds\right)
2α1𝔼(tτmτρeηs𝒪θ2n|uε(s,y)|pdyds)\displaystyle\leq-2\alpha_{1}\mathbb{E}\left(\int^{t\wedge\tau_{m}}_{\tau}\rho e^{\eta s}\int_{\mathcal{O}}\theta^{2}_{n}|u^{\varepsilon}(s,y)|^{p}dyds\right)
+2𝔼(tτmτeηsϕ1L(n)θnuε(s)2Hρ(𝒪)ds)\displaystyle+2\mathbb{E}\left(\int^{t\wedge\tau_{m}}_{\tau}e^{\eta s}\|\phi_{1}\|_{L^{\infty}(\mathbb{R}^{n})}\|\theta_{n}u^{\varepsilon}(s)\|^{2}_{H_{\rho}(\mathcal{O})}ds\right)
+2𝔼(tτmτρeηs𝒪θ2n|ϕ1(y)|dyds)\displaystyle+2\mathbb{E}\left(\int^{t\wedge\tau_{m}}_{\tau}\rho e^{\eta s}\int_{\mathcal{O}}\theta^{2}_{n}|\phi_{1}(y^{*})|dyds\right)
+2𝔼(tτmτeηs𝔼(uε(s)2Hρ(𝒪))𝒪θn2ψ1(y)dyds)\displaystyle+2\mathbb{E}\left(\int^{t\wedge\tau_{m}}_{\tau}e^{\eta s}\mathbb{E}(\|u^{\varepsilon}(s)\|^{2}_{H_{\rho}(\mathcal{O})})\int_{\mathcal{O}}\theta_{n}^{2}\psi_{1}(y^{*})dyds\right)
2α1𝔼(tτmτρeηs𝒪θ2n|uε(s,y)|pdyds)\displaystyle\leq-2\alpha_{1}\mathbb{E}\left(\int^{t\wedge\tau_{m}}_{\tau}\rho e^{\eta s}\int_{\mathcal{O}}\theta^{2}_{n}|u^{\varepsilon}(s,y)|^{p}dyds\right)
+2tτeηsϕ1L(n)𝔼(θnuε(s)2Hρ(𝒪))ds\displaystyle+2\int^{t}_{\tau}e^{\eta s}\|\phi_{1}\|_{L^{\infty}(\mathbb{R}^{n})}\mathbb{E}\left(\|\theta_{n}u^{\varepsilon}(s)\|^{2}_{H_{\rho}(\mathcal{O})}\right)ds
(4.22) +2tτ𝒪ρeηsθ2n|ϕ1(y)|dyds+2tτeηs𝔼(uε(s)2Hρ(𝒪))ds𝒪θn2ψ1(y)dy.\displaystyle+2\int^{t}_{\tau}\int_{\mathcal{O}}\rho e^{\eta s}\theta^{2}_{n}|\phi_{1}(y^{*})|dyds+2\int^{t}_{\tau}e^{\eta s}\mathbb{E}(\|u^{\varepsilon}(s)\|^{2}_{H_{\rho}(\mathcal{O})})ds\int_{\mathcal{O}}\theta_{n}^{2}\psi_{1}(y^{*})dy.

For the fourth term on the right-hand side of (4.20), by Young’s inequality we have

(4.23) 2𝔼(tτmτ(θng(s,),θnuε(s))Hρ(𝒪)ds)𝔼(tτmτηeηsθnuε(s)2Hρ(𝒪)ds)+1η𝔼(tτmτeηsρθng(s)2L2(n)ds)tτηeηs𝔼(θnuε(s)2Hρ(𝒪))ds+1ηtτeηsρθng(s)2L2(n)ds.\displaystyle\begin{split}&2\mathbb{E}\left(\int^{t\wedge\tau_{m}}_{\tau}\left(\theta_{n}g(s,\cdot),\theta_{n}u^{\varepsilon}(s)\right)_{H_{\rho}(\mathcal{O})}ds\right)\\ &\leq\mathbb{E}\left(\int^{t\wedge\tau_{m}}_{\tau}\eta e^{\eta s}\|\theta_{n}u^{\varepsilon}(s)\|^{2}_{H_{\rho}(\mathcal{O})}ds\right)+\frac{1}{\eta}\mathbb{E}\left(\int^{t\wedge\tau_{m}}_{\tau}e^{\eta s}\rho\|\theta_{n}g(s)\|^{2}_{L^{2}(\mathbb{R}^{n})}ds\right)\\ &\leq\int^{t}_{\tau}\eta e^{\eta s}\mathbb{E}\left(\|\theta_{n}u^{\varepsilon}(s)\|^{2}_{H_{\rho}(\mathcal{O})}\right)ds+\frac{1}{\eta}\int^{t}_{\tau}e^{\eta s}\rho\|\theta_{n}g(s)\|^{2}_{L^{2}(\mathbb{R}^{n})}ds.\end{split}

For the last term on the right-hand side of (4.20), according to (3) we have

(4.24) 𝔼(tτmτeηsθnϖε(uε(s),uε(s))2L2(l2,Hρ(𝒪))ds)2𝔼(tτmτeηsρθnσ12L2(n,l2)ds)+8θnκ2L2(n)β2l2𝔼(tτmτeηs(1+𝔼(uε(s)2Hρ(𝒪)))ds)+4κ2L(n)γ2l2𝔼(tτmτeηsθnuε(s)2Hρ(𝒪)ds)2tτeηsρθnσ12L2(n,l2)ds+8θnκ2L2(n)β2l21ηeηt+8θnκ2L2(n)β2l2tτeηs𝔼(uε(s)2Hρ(𝒪))ds+4κ2L(n)γ2l2tτeηs𝔼(θnuε(s)2Hρ(𝒪))ds.\displaystyle\begin{split}&\mathbb{E}\left(\int^{t\wedge\tau_{m}}_{\tau}e^{\eta s}\|\theta_{n}\varpi_{\varepsilon}(u^{\varepsilon}(s),\mathcal{L}_{u^{\varepsilon}(s)})\|^{2}_{L_{2}(l^{2},H_{\rho}(\mathcal{O}))}ds\right)\\ &\leq 2\mathbb{E}\left(\int^{t\wedge\tau_{m}}_{\tau}e^{\eta s}\rho\|\theta_{n}\sigma_{1}\|^{2}_{L^{2}(\mathbb{R}^{n},l^{2})}ds\right)\\ &+8\|\theta_{n}\kappa\|^{2}_{L^{2}(\mathbb{R}^{n})}\|\beta\|^{2}_{l^{2}}\mathbb{E}\left(\int^{t\wedge\tau_{m}}_{\tau}e^{\eta s}(1+\mathbb{E}(\|u^{\varepsilon}(s)\|^{2}_{H_{\rho}(\mathcal{O})}))ds\right)\\ &+4\|\kappa\|^{2}_{L^{\infty}(\mathbb{R}^{n})}\|\gamma\|^{2}_{l^{2}}\mathbb{E}\left(\int^{t\wedge\tau_{m}}_{\tau}e^{\eta s}\|\theta_{n}u^{\varepsilon}(s)\|^{2}_{H_{\rho}(\mathcal{O})}ds\right)\\ &\leq 2\int^{t}_{\tau}e^{\eta s}\rho\|\theta_{n}\sigma_{1}\|^{2}_{L^{2}(\mathbb{R}^{n},l^{2})}ds+8\|\theta_{n}\kappa\|^{2}_{L^{2}(\mathbb{R}^{n})}\|\beta\|^{2}_{l^{2}}\frac{1}{\eta}e^{\eta t}\\ &+8\|\theta_{n}\kappa\|^{2}_{L^{2}(\mathbb{R}^{n})}\|\beta\|^{2}_{l^{2}}\int^{t}_{\tau}e^{\eta s}\mathbb{E}(\|u^{\varepsilon}(s)\|^{2}_{H_{\rho}(\mathcal{O})})ds\\ &+4\|\kappa\|^{2}_{L^{\infty}(\mathbb{R}^{n})}\|\gamma\|^{2}_{l^{2}}\int^{t}_{\tau}e^{\eta s}\mathbb{E}\left(\|\theta_{n}u^{\varepsilon}(s)\|^{2}_{H_{\rho}(\mathcal{O})}\right)ds.\end{split}

It follows from (4.20)-(4.24) that for all tτt\geq\tau,

(4.25) 𝔼(eη(tτm)θnuε(tτm)2Hρ(𝒪)+(2λη)tτmτeηsθnuε(s)2Hρ(𝒪)ds)𝔼(eητθnξε2Hρ(𝒪))+2tτρeηsθ2nϕ1L1(n)dyds+c4ntτmτeηs𝔼(uεHε1(𝒪)2)ds+2tτeηsρθnσ12L2(n,l2)ds+1ηtτeηsρθng(s)2L2(n)ds+8θnκ2L2(n)β2l21ηeηt+tτeηs(η+4κ2L(n)γ2l2+2ϕ1L(n))𝔼(θnuε(s)2Hρ(𝒪))ds+tτeηs(8θnκ2L2(n)β2l2+2θn2ψ1L1(n))𝔼(uε(s)2Hρ(𝒪))ds.\displaystyle\begin{split}&\mathbb{E}\left(e^{\eta(t\wedge\tau_{m})}\|\theta_{n}u^{\varepsilon}(t\wedge\tau_{m})\|^{2}_{H_{\rho}(\mathcal{O})}+(2\lambda-\eta)\int^{t\wedge\tau_{m}}_{\tau}e^{\eta s}\|\theta_{n}u^{\varepsilon}(s)\|^{2}_{H_{\rho}(\mathcal{O})}ds\right)\\ &\leq\mathbb{E}\left(e^{\eta\tau}\|\theta_{n}\xi^{\varepsilon}\|^{2}_{H_{\rho}(\mathcal{O})}\right)+2\int^{t}_{\tau}\rho e^{\eta s}\|\theta^{2}_{n}\phi_{1}\|_{L^{1}(\mathbb{R}^{n})}dyds\\ &+\frac{c_{4}}{n}\int^{t\wedge\tau_{m}}_{\tau}e^{\eta s}\mathbb{E}\left(\left\|u^{\varepsilon}\right\|_{H_{\varepsilon}^{1}(\mathcal{O})}^{2}\right)ds+2\int^{t}_{\tau}e^{\eta s}\rho\|\theta_{n}\sigma_{1}\|^{2}_{L^{2}(\mathbb{R}^{n},l^{2})}ds\\ &+\frac{1}{\eta}\int^{t}_{\tau}e^{\eta s}\rho\|\theta_{n}g(s)\|^{2}_{L^{2}(\mathbb{R}^{n})}ds+8\|\theta_{n}\kappa\|^{2}_{L^{2}(\mathbb{R}^{n})}\|\beta\|^{2}_{l^{2}}\frac{1}{\eta}e^{\eta t}\\ &+\int^{t}_{\tau}e^{\eta s}(\eta+4\|\kappa\|^{2}_{L^{\infty}(\mathbb{R}^{n})}\|\gamma\|^{2}_{l^{2}}+2\|\phi_{1}\|_{L^{\infty}(\mathbb{R}^{n})})\mathbb{E}\left(\|\theta_{n}u^{\varepsilon}(s)\|^{2}_{H_{\rho}(\mathcal{O})}\right)ds\\ &+\int^{t}_{\tau}e^{\eta s}(8\|\theta_{n}\kappa\|^{2}_{L^{2}(\mathbb{R}^{n})}\|\beta\|^{2}_{l^{2}}+2\|\theta_{n}^{2}\psi_{1}\|_{L^{1}(\mathbb{R}^{n})})\mathbb{E}(\|u^{\varepsilon}(s)\|^{2}_{H_{\rho}(\mathcal{O})})ds.\end{split}

Taking the limit of (4.25) as mm\rightarrow\infty, by Fatou’s Lemma we obtain for all tτt\geq\tau,

(4.26) 𝔼(eηtθnuε(t)2Hρ(𝒪)+(2λη)tτeηsθnuε(s)2Hρ(𝒪)ds)𝔼(eητθnξε2Hρ(𝒪))+2tτρeηsθ2nϕ1L1(n)dyds+c4ntτeηs𝔼(uεHε1(𝒪)2)ds+2tτeηsρθnσ12L2(n,l2)ds+1ηtτeηsρθng(s)2L2(n)ds+8θnκ2L2(n)β2l21ηeηt+tτeηs(η+4κ2L(n)γ2l2+2ϕ1L(n))𝔼(θnuε(s)2Hρ(𝒪))ds+tτeηs(8θnκ2L2(n)β2l2+2θn2ψ1L1(n))𝔼(uε(s)2Hρ(𝒪))ds.\displaystyle\begin{split}&\mathbb{E}\left(e^{\eta t}\|\theta_{n}u^{\varepsilon}(t)\|^{2}_{H_{\rho}(\mathcal{O})}+(2\lambda-\eta)\int^{t}_{\tau}e^{\eta s}\|\theta_{n}u^{\varepsilon}(s)\|^{2}_{H_{\rho}(\mathcal{O})}ds\right)\\ &\leq\mathbb{E}\left(e^{\eta\tau}\|\theta_{n}\xi^{\varepsilon}\|^{2}_{H_{\rho}(\mathcal{O})}\right)+2\int^{t}_{\tau}\rho e^{\eta s}\|\theta^{2}_{n}\phi_{1}\|_{L^{1}(\mathbb{R}^{n})}dyds\\ &+\frac{c_{4}}{n}\int^{t}_{\tau}e^{\eta s}\mathbb{E}\left(\left\|u^{\varepsilon}\right\|_{H_{\varepsilon}^{1}(\mathcal{O})}^{2}\right)ds+2\int^{t}_{\tau}e^{\eta s}\rho\|\theta_{n}\sigma_{1}\|^{2}_{L^{2}(\mathbb{R}^{n},l^{2})}ds\\ &+\frac{1}{\eta}\int^{t}_{\tau}e^{\eta s}\rho\|\theta_{n}g(s)\|^{2}_{L^{2}(\mathbb{R}^{n})}ds+8\|\theta_{n}\kappa\|^{2}_{L^{2}(\mathbb{R}^{n})}\|\beta\|^{2}_{l^{2}}\frac{1}{\eta}e^{\eta t}\\ &+\int^{t}_{\tau}e^{\eta s}(\eta+4\|\kappa\|^{2}_{L^{\infty}(\mathbb{R}^{n})}\|\gamma\|^{2}_{l^{2}}+2\|\phi_{1}\|_{L^{\infty}(\mathbb{R}^{n})})\mathbb{E}\left(\|\theta_{n}u^{\varepsilon}(s)\|^{2}_{H_{\rho}(\mathcal{O})}\right)ds\\ &+\int^{t}_{\tau}e^{\eta s}(8\|\theta_{n}\kappa\|^{2}_{L^{2}(\mathbb{R}^{n})}\|\beta\|^{2}_{l^{2}}+2\|\theta_{n}^{2}\psi_{1}\|_{L^{1}(\mathbb{R}^{n})})\mathbb{E}(\|u^{\varepsilon}(s)\|^{2}_{H_{\rho}(\mathcal{O})})ds.\end{split}

By (4.26) and (3.29) we get for all tτt\geq\tau,

(4.27) 𝔼(θnuε(t)2Hρ(𝒪))eη(tτ)𝔼(θnξε2Hρ(𝒪))+2ρ21ηθ2nϕ1L1(n)+c4ntτeη(st)𝔼(uεHε1(𝒪)2)ds+2ρ21ηθnσ12L2(n,l2)+1ηρ2θng02Cb(,L2(n))+8θnκ2L2(n)β2l21η+(8θnκ2L2(n)β2l2+2θn2ψ1L1(n))tτeη(ts)𝔼(uε(s)2Hρ(𝒪))ds.\displaystyle\begin{split}&\mathbb{E}\left(\|\theta_{n}u^{\varepsilon}(t)\|^{2}_{H_{\rho}(\mathcal{O})}\right)\\ &\leq e^{-\eta(t-\tau)}\mathbb{E}\left(\|\theta_{n}\xi^{\varepsilon}\|^{2}_{H_{\rho}(\mathcal{O})}\right)+2\rho_{2}\frac{1}{\eta}\|\theta^{2}_{n}\phi_{1}\|_{L^{1}(\mathbb{R}^{n})}\\ &+\frac{c_{4}}{n}\int^{t}_{\tau}e^{\eta(s-t)}\mathbb{E}\left(\left\|u^{\varepsilon}\right\|_{H_{\varepsilon}^{1}(\mathcal{O})}^{2}\right)ds+2\rho_{2}\frac{1}{\eta}\|\theta_{n}\sigma_{1}\|^{2}_{L^{2}(\mathbb{R}^{n},l^{2})}\\ &+\frac{1}{\eta}\rho_{2}\|\theta_{n}g_{0}\|^{2}_{C_{b}(\mathbb{R},L^{2}(\mathbb{R}^{n}))}+8\|\theta_{n}\kappa\|^{2}_{L^{2}(\mathbb{R}^{n})}\|\beta\|^{2}_{l^{2}}\frac{1}{\eta}\\ &+(8\|\theta_{n}\kappa\|^{2}_{L^{2}(\mathbb{R}^{n})}\|\beta\|^{2}_{l^{2}}+2\|\theta_{n}^{2}\psi_{1}\|_{L^{1}(\mathbb{R}^{n})})\int^{t}_{\tau}e^{-\eta(t-s)}\mathbb{E}(\|u^{\varepsilon}(s)\|^{2}_{H_{\rho}(\mathcal{O})})ds.\end{split}

By (4.27) and Lemma 4.1 we find that there for exists c5>0c_{5}>0 and T1(R)1T_{1}(R)\geq 1 such that for all tτT1t-\tau\geq T_{1}

(4.28) 𝔼(θnuε(t)2Hρ(𝒪))eη(tτ)𝔼(ξε2Hρ(𝒪))+2ρ21ηθ2nϕ1L1(n)+1η2ρ2θng02Cb(,L2(n)+2ρ21ηθnσε2L2(𝒪,l2))+c4c5n+8θnκ2L2(n)β2l21η+(8θnκ2L2(n)β2l2+2θn2ψ1L1(n))c5.\displaystyle\begin{split}&\mathbb{E}\left(\|\theta_{n}u^{\varepsilon}(t)\|^{2}_{H_{\rho}(\mathcal{O})}\right)\\ &\leq e^{-\eta(t-\tau)}\mathbb{E}\left(\|\xi^{\varepsilon}\|^{2}_{H_{\rho}(\mathcal{O})}\right)+2\rho_{2}\frac{1}{\eta}\|\theta^{2}_{n}\phi_{1}\|_{L^{1}(\mathbb{R}^{n})}\\ &+\frac{1}{\eta^{2}}\rho_{2}\|\theta_{n}g_{0}\|^{2}_{C_{b}(\mathbb{R},L^{2}(\mathbb{R}^{n})}+2\rho_{2}\frac{1}{\eta}\|\theta_{n}\sigma_{\varepsilon}\|^{2}_{L^{2}(\mathcal{O},l^{2}))}\\ &+\frac{c_{4}c_{5}}{n}+8\|\theta_{n}\kappa\|^{2}_{L^{2}(\mathbb{R}^{n})}\|\beta\|^{2}_{l^{2}}\frac{1}{\eta}\\ &+(8\|\theta_{n}\kappa\|^{2}_{L^{2}(\mathbb{R}^{n})}\|\beta\|^{2}_{l^{2}}+2\|\theta_{n}^{2}\psi_{1}\|_{L^{1}(\mathbb{R}^{n})})c_{5}.\end{split}

Since 𝔼(ξε2Hρ(𝒪))R\mathbb{E}(\|\xi^{\varepsilon}\|^{2}_{H_{\rho}(\mathcal{O})})\leq R, we have

limteη(τt)𝔼(ξε2Hρ(𝒪))limteη(τt)R=0,\lim_{t\rightarrow\infty}e^{\eta(\tau-t)}\mathbb{E}\left(\|\xi^{\varepsilon}\|^{2}_{H_{\rho}(\mathcal{O})}\right)\leq\lim_{t\rightarrow\infty}e^{\eta(\tau-t)}R=0,

and hence for every δ>0\delta>0, there exists T2=T2(R,δ)T1T_{2}=T_{2}(R,\delta)\geq T_{1} such that for all tτT2t-\tau\geq T_{2}

eη(τt)𝔼(ξε2Hρ(𝒪))<13δ.e^{\eta(\tau-t)}\mathbb{E}\left(\|\xi^{\varepsilon}\|^{2}_{H_{\rho}(\mathcal{O})}\right)<\frac{1}{3\delta}.

By (3.9), ϕ1L1(n)\phi_{1}\in L^{1}(\mathbb{R}^{n}), and g0(g0)g_{0}\in\mathcal{H}(g_{0}), we find that for every δ>0\delta>0, there exists N1=N1(δ)N_{1}=N_{1}(\delta)\in\mathbb{N} such that for all nN1n\geq N_{1},

(4.29) 2ρ21ηθ2nϕ1L1(n)+2ρ21ηθnσ12L2(n,l2))+1η2ρ2θng02Cb(,L2(n))2ρ21η|y|n|ϕ1(y)|dy+2ρ21η|y|nk=1|σ1,k(y)|2dy+1η2ρ2|y|nsupt|g0(,y)|2dy19δ+19δ+19δ=13δ.\displaystyle\begin{split}&2\rho_{2}\frac{1}{\eta}\|\theta^{2}_{n}\phi_{1}\|_{L^{1}(\mathbb{R}^{n})}+2\rho_{2}\frac{1}{\eta}\|\theta_{n}\sigma_{1}\|^{2}_{L^{2}(\mathbb{R}^{n},l^{2}))}+\frac{1}{\eta^{2}}\rho_{2}\|\theta_{n}g_{0}\|^{2}_{C_{b}(\mathbb{R},L^{2}(\mathbb{R}^{n}))}\\ &\leq 2\rho_{2}\frac{1}{\eta}\|\int_{|y^{*}|\geq n}|\phi_{1}(y^{*})|dy+2\rho_{2}\frac{1}{\eta}\int_{|y^{*}|\geq n}\sum^{\infty}_{k=1}|\sigma_{1,k}(y^{*})|^{2}dy^{*}\\ &+\frac{1}{\eta^{2}}\rho_{2}\int_{|y^{*}|\geq n}\sup_{t\in\mathbb{R}}|g_{0}(\cdot,y^{*})|^{2}dy\\ &\leq\frac{1}{9\delta}+\frac{1}{9\delta}+\frac{1}{9\delta}=\frac{1}{3\delta}.\end{split}

Note that κL2(n)\kappa\in L^{2}(\mathbb{R}^{n}) and ψ1L1(n)\psi_{1}\in L^{1}(\mathbb{R}^{n}). Thus, there exists N2=N2(δ)N1N_{2}=N_{2}(\delta)\geq N_{1} such that for all nN2n\geq N_{2},

(4.30) c4c5n+8θnκ2L2(n)β2l21η+(8θnκ2L2(n)β2l2+2θn2ψ1L1(n))c5c4c5n+8β2l21η|y|n|κ(y)|2dy+(8β2l2|y|n|κ(y)|2dy2+|y|n|ψ(y)|dy)c519δ+19δ+19δ=13δ.\displaystyle\begin{split}&\frac{c_{4}c_{5}}{n}+8\|\theta_{n}\kappa\|^{2}_{L^{2}(\mathbb{R}^{n})}\|\beta\|^{2}_{l^{2}}\frac{1}{\eta}+(8\|\theta_{n}\kappa\|^{2}_{L^{2}(\mathbb{R}^{n})}\|\beta\|^{2}_{l^{2}}+2\|\theta_{n}^{2}\psi_{1}\|_{L^{1}(\mathbb{R}^{n})})c_{5}\\ &\leq\frac{c_{4}c_{5}}{n}+8\|\beta\|^{2}_{l^{2}}\frac{1}{\eta}\int_{|y^{*}|\geq n}|\kappa(y^{*})|^{2}dy^{*}\\ &+\left(8\|\beta\|^{2}_{l^{2}}\int_{|y^{*}|\geq n}|\kappa(y^{*})|^{2}dy^{*}2+\int_{|y^{*}|\geq n}|\psi(y^{*})|dy^{*}\right)c_{5}\\ &\leq\frac{1}{9\delta}+\frac{1}{9\delta}+\frac{1}{9\delta}=\frac{1}{3\delta}.\end{split}

It follows from (4.28)-(4.30) that for all tτT2t-\tau\geq T_{2} and nN2n\geq N_{2},

𝔼(|y|2n10|uε(t,τ,ξε)(y,yn+1)|2dyn+1dy)1ρ1𝔼(θnuε(t)2Hρ(𝒪))δρ1.\mathbb{E}\left(\int_{|y^{*}|\geq\sqrt{2}n}\int^{1}_{0}|u^{\varepsilon}(t,\tau,\xi^{\varepsilon})(y^{*},y_{n+1})|^{2}d_{y_{n+1}}dy^{*}\right)\leq\frac{1}{\rho_{1}}\mathbb{E}\left(\|\theta_{n}u^{\varepsilon}(t)\|^{2}_{H_{\rho}(\mathcal{O})}\right)\leq\frac{\delta}{\rho_{1}}.

This completes the proof. ∎

Next, we derive the uniform estimates of solutions of (3.21) in L4(Ω,,Hρ(𝒪))L^{4}(\Omega,\mathcal{F},H_{\rho}(\mathcal{O})).

Lemma 4.7.

Under (A1)\mathbf{(}A1)-(A3)\mathbf{(}A3) and (3.28) hold, then for every R>0R>0, there exists T=T(R)>0T=T(R)>0, independent of ε\varepsilon, such that for any τ\tau\in\mathbb{R}, tτTt-\tau\geq T, and 0<ε<ε00<\varepsilon<\varepsilon_{0}, the solution uεu^{\varepsilon} of (3.21) satisfies

𝔼(uε(t,τ,ξε)4Hρ(𝒪))M7,\mathbb{E}(\|u^{\varepsilon}(t,\tau,\xi^{\varepsilon})\|^{4}_{H_{\rho}(\mathcal{O})})\leq M_{7},

where 𝔼(ξε4Hρ(𝒪))R\mathbb{E}(\|\xi^{\varepsilon}\|^{4}_{H_{\rho}(\mathcal{O})})\leq R, and M7M_{7} is constant depending on λ,g0\lambda,g_{0}. In particular, M7M_{7} is independent ξε,τ,g(g0)\xi^{\varepsilon},\tau,g\in\mathcal{H}(g_{0}) and ε\varepsilon.

Proof..

By (4.2) and Ito’s formula, we get for all tτt\geq\tau

(4.31) e2ηtuε(t)4Hρ(𝒪)+4tτe2ηsuε(s)2Hρ(𝒪)aε(uε(s),uε(s))ds+2(2λη)tτe2ηsuε(s)4Hρ(𝒪)ds+4tτe2ηsuε(s)2Hρ(𝒪)𝒪ρfε(y,uε(s,y),uε(s))uε(s,y)dyds=e2ητξε4Hρ(𝒪)+2tτe2ηsuε(s)2Hρ(𝒪)ϖε(uε(s),uε(s))2L2(l2,Hρ(𝒪))ds+4tτe2ηsuε(s)2Hρ(𝒪)(g(s,),uε(s))Hρ(𝒪)ds+4tτe2ηsρ2uε,(s)ϖε(uε(s),uε(s))2L2(l2,)ds+4tτe2ηsuε(s)2Hρ(𝒪)(ϖε(uε(s),uε(s)),uε(s))Hρ(𝒪)dW(s),\displaystyle\begin{split}&e^{2\eta t}\|u^{\varepsilon}(t)\|^{4}_{H_{\rho}(\mathcal{O})}+4\int^{t}_{\tau}e^{2\eta s}\|u^{\varepsilon}(s)\|^{2}_{H_{\rho}(\mathcal{O})}a_{\varepsilon}\left(u^{\varepsilon}(s),u^{\varepsilon}(s)\right)ds\\ &\quad+2(2\lambda-\eta)\int^{t}_{\tau}e^{2\eta s}\|u^{\varepsilon}(s)\|^{4}_{H_{\rho}(\mathcal{O})}ds\\ &+4\int^{t}_{\tau}e^{2\eta s}\|u^{\varepsilon}(s)\|^{2}_{H_{\rho}(\mathcal{O})}\int_{\mathcal{O}}\rho f_{\varepsilon}(y,u^{\varepsilon}(s,y),\mathcal{L}_{u^{\varepsilon}(s)})u^{\varepsilon}(s,y)dyds\\ &=e^{2\eta\tau}\|\xi^{\varepsilon}\|^{4}_{H_{\rho}(\mathcal{O})}+2\int^{t}_{\tau}e^{2\eta s}\|u^{\varepsilon}(s)\|^{2}_{H_{\rho}(\mathcal{O})}\|\varpi_{\varepsilon}(u^{\varepsilon}(s),\mathcal{L}_{u^{\varepsilon}(s)})\|^{2}_{L_{2}(l^{2},H_{\rho}(\mathcal{O}))}ds\\ &+4\int^{t}_{\tau}e^{2\eta s}\|u^{\varepsilon}(s)\|^{2}_{H_{\rho}(\mathcal{O})}(g(s,\cdot),u^{\varepsilon}(s))_{H_{\rho}(\mathcal{O})}ds\\ &+4\int^{t}_{\tau}e^{2\eta s}\rho^{2}\|u^{\varepsilon,*}(s)\varpi_{\varepsilon}(u^{\varepsilon}(s),\mathcal{L}_{u^{\varepsilon}(s)})\|^{2}_{L_{2}(l^{2},\mathbb{R})}ds\\ &+4\int^{t}_{\tau}e^{2\eta s}\|u^{\varepsilon}(s)\|^{2}_{H_{\rho}(\mathcal{O})}\left(\varpi_{\varepsilon}(u^{\varepsilon}(s),\mathcal{L}_{u^{\varepsilon}(s)}),u^{\varepsilon}(s)\right)_{H_{\rho}(\mathcal{O})}dW(s),\end{split}

\mathbb{P}-almost surely, where uε,(s)u^{\varepsilon,*}(s) is the element in L2,(𝒪)L^{2,*}(\mathcal{O}) identified by Riesz representation theorem. Let τm=inf{tτ:uε(t)Hρ(𝒪)>m}\tau_{m}=\inf\{t\geq\tau:\|u^{\varepsilon}(t)\|_{H_{\rho}(\mathcal{O})}>m\}. By (4.31) we have for all tτt\geq\tau,

(4.32) e2η(tτm)uε(tτm)4Hρ(𝒪)+4tτmτe2ηsuε(s)2Hρ(𝒪)aε(uε(s),uε(s))ds+2(2λη)tτmτe2ηsuε(s)4Hρ(𝒪)ds+4tτmτe2ηsuε(s)2Hρ(𝒪)𝒪ρfε(y,uε(s,y),uε(s))uε(s,y)dyds=e2ητξε4Hρ(𝒪)+2tτmτe2ηsuε(s)2Hρ(𝒪)ϖε(uε(s),uε(s))2L2(l2,Hρ(𝒪))ds+4tτmτe2ηsuε(s)2Hρ(𝒪)(g(s,),uε(s))Hρ(𝒪)ds+4tτmτe2ηsρ2uε,(s)ϖε(uε(s),uε(s))2L2(l2,)ds+4tτmτe2ηsuε(s)2Hρ(𝒪)(ϖε(uε(s),uε(s)),uε(s))Hρ(𝒪)dW(s).\displaystyle\begin{split}&e^{2\eta(t\wedge\tau_{m})}\|u^{\varepsilon}(t\wedge\tau_{m})\|^{4}_{H_{\rho}(\mathcal{O})}+4\int^{t\wedge\tau_{m}}_{\tau}e^{2\eta s}\|u^{\varepsilon}(s)\|^{2}_{H_{\rho}(\mathcal{O})}a_{\varepsilon}\left(u^{\varepsilon}(s),u^{\varepsilon}(s)\right)ds\\ &\quad+2(2\lambda-\eta)\int^{t\wedge\tau_{m}}_{\tau}e^{2\eta s}\|u^{\varepsilon}(s)\|^{4}_{H_{\rho}(\mathcal{O})}ds\\ &+4\int^{t\wedge\tau_{m}}_{\tau}e^{2\eta s}\|u^{\varepsilon}(s)\|^{2}_{H_{\rho}(\mathcal{O})}\int_{\mathcal{O}}\rho f_{\varepsilon}(y,u^{\varepsilon}(s,y),\mathcal{L}_{u^{\varepsilon}(s)})u^{\varepsilon}(s,y)dyds\\ &=e^{2\eta\tau}\|\xi^{\varepsilon}\|^{4}_{H_{\rho}(\mathcal{O})}+2\int^{t\wedge\tau_{m}}_{\tau}e^{2\eta s}\|u^{\varepsilon}(s)\|^{2}_{H_{\rho}(\mathcal{O})}\|\varpi_{\varepsilon}(u^{\varepsilon}(s),\mathcal{L}_{u^{\varepsilon}(s)})\|^{2}_{L_{2}(l^{2},H_{\rho}(\mathcal{O}))}ds\\ &+4\int^{t\wedge\tau_{m}}_{\tau}e^{2\eta s}\|u^{\varepsilon}(s)\|^{2}_{H_{\rho}(\mathcal{O})}(g(s,\cdot),u^{\varepsilon}(s))_{H_{\rho}(\mathcal{O})}ds\\ &+4\int^{t\wedge\tau_{m}}_{\tau}e^{2\eta s}\rho^{2}\|u^{\varepsilon,*}(s)\varpi_{\varepsilon}(u^{\varepsilon}(s),\mathcal{L}_{u^{\varepsilon}(s)})\|^{2}_{L_{2}(l^{2},\mathbb{R})}ds\\ &+4\int^{t\wedge\tau_{m}}_{\tau}e^{2\eta s}\|u^{\varepsilon}(s)\|^{2}_{H_{\rho}(\mathcal{O})}\left(\varpi_{\varepsilon}(u^{\varepsilon}(s),\mathcal{L}_{u^{\varepsilon}(s)}),u^{\varepsilon}(s)\right)_{H_{\rho}(\mathcal{O})}dW(s).\end{split}

Taking the expectation of (4.32) we get, for all tτt\geq\tau,

(4.33) 𝔼(e2η(tτm)uε(tτm)4Hρ(𝒪))+2(2λη)𝔼(tτmτe2ηsuε(s)4Hρ(𝒪)ds)e2ητξε4Hρ(𝒪)4𝔼(tτmτe2ηsuε(s)2Hρ(𝒪)𝒪ρfε(y,uε(s,y),uε(s))uε(s,y)dyds)+4𝔼(tτmτe2ηsuε(s)2Hρ(𝒪)(g(s,),uε(s))Hρ(𝒪)ds)+6𝔼(tτmτe2ηsuε(s)2Hρ(𝒪)ϖε(uε(s),uε(s))2L2(l2,Hρ(𝒪))ds).\displaystyle\begin{split}&\mathbb{E}\left(e^{2\eta(t\wedge\tau_{m})}\|u^{\varepsilon}(t\wedge\tau_{m})\|^{4}_{H_{\rho}(\mathcal{O})}\right)+2(2\lambda-\eta)\mathbb{E}\left(\int^{t\wedge\tau_{m}}_{\tau}e^{2\eta s}\|u^{\varepsilon}(s)\|^{4}_{H_{\rho}(\mathcal{O})}ds\right)\\ &\leq e^{2\eta\tau}\|\xi^{\varepsilon}\|^{4}_{H_{\rho}(\mathcal{O})}\\ &-4\mathbb{E}\left(\int^{t\wedge\tau_{m}}_{\tau}e^{2\eta s}\|u^{\varepsilon}(s)\|^{2}_{H_{\rho}(\mathcal{O})}\int_{\mathcal{O}}\rho f_{\varepsilon}(y,u^{\varepsilon}(s,y),\mathcal{L}_{u^{\varepsilon}(s)})u^{\varepsilon}(s,y)dyds\right)\\ &+4\mathbb{E}\left(\int^{t\wedge\tau_{m}}_{\tau}e^{2\eta s}\|u^{\varepsilon}(s)\|^{2}_{H_{\rho}(\mathcal{O})}(g(s,\cdot),u^{\varepsilon}(s))_{H_{\rho}(\mathcal{O})}ds\right)\\ &+6\mathbb{E}\left(\int^{t\wedge\tau_{m}}_{\tau}e^{2\eta s}\|u^{\varepsilon}(s)\|^{2}_{H_{\rho}(\mathcal{O})}\|\varpi_{\varepsilon}(u^{\varepsilon}(s),\mathcal{L}_{u^{\varepsilon}(s)})\|^{2}_{L_{2}(l^{2},H_{\rho}(\mathcal{O}))}ds\right).\end{split}

For the second term on the right-hand side of (4.33), by (3.4), we have

(4.34) 4𝔼(tτmτe2ηsuε(s)2Hρ(𝒪)𝒪ρfε(y,uε(s,y),uε(s))uε(s,y)dyds)4α1𝔼(tτmτρe2ηsuε(s)2Hρ(𝒪)uε(s)pLp(𝒪)ds)+4𝔼(tτmτe2ηsϕ1L(n)uε(s)4Hρ(𝒪)ds)+4𝔼(tτmτe2ηsuε(s)2Hρ(𝒪)(ρϕ1L1(n)+ψ1L1(n)𝔼(uε(s)2Hρ(𝒪))ds)4tτe2ηsϕ1L(n)𝔼(uε(s)4Hρ(𝒪))ds+4tτe2ηsρϕ1L1(n)𝔼(uε(s)2Hρ(𝒪))ds+4tτe2ηsψ1L1(n)𝔼(uε(s)2Hρ(𝒪))2dstτe2ηs(4ϕ1L(n)+4ψ1L1(n)+13η)𝔼(uε(s)4Hρ(𝒪))ds+121ηρ2tτe2ηsϕ12L1(n)ds.\displaystyle\begin{split}&-4\mathbb{E}\left(\int^{t\wedge\tau_{m}}_{\tau}e^{2\eta s}\|u^{\varepsilon}(s)\|^{2}_{H_{\rho}(\mathcal{O})}\int_{\mathcal{O}}\rho f_{\varepsilon}(y,u^{\varepsilon}(s,y),\mathcal{L}_{u^{\varepsilon}(s)})u^{\varepsilon}(s,y)dyds\right)\\ &\leq-4\alpha_{1}\mathbb{E}\left(\int^{t\wedge\tau_{m}}_{\tau}\rho e^{2\eta s}\|u^{\varepsilon}(s)\|^{2}_{H_{\rho}(\mathcal{O})}\|u^{\varepsilon}(s)\|^{p}_{L^{p}(\mathcal{O})}ds\right)\\ &+4\mathbb{E}\left(\int^{t\wedge\tau_{m}}_{\tau}e^{2\eta s}\|\phi_{1}\|_{L^{\infty}(\mathbb{R}^{n})}\|u^{\varepsilon}(s)\|^{4}_{H_{\rho}(\mathcal{O})}ds\right)\\ &+4\mathbb{E}\left(\int^{t\wedge\tau_{m}}_{\tau}e^{2\eta s}\|u^{\varepsilon}(s)\|^{2}_{H_{\rho}(\mathcal{O})}(\rho\|\phi_{1}\|_{L^{1}(\mathbb{R}^{n})}+\|\psi_{1}\|_{L^{1}(\mathbb{R}^{n})}\mathbb{E}\left(\|u^{\varepsilon}(s)\|^{2}_{H_{\rho}(\mathcal{O})}\right)ds\right)\\ &\leq 4\int^{t}_{\tau}e^{2\eta s}\|\phi_{1}\|_{L^{\infty}(\mathbb{R}^{n})}\mathbb{E}\left(\|u^{\varepsilon}(s)\|^{4}_{H_{\rho}(\mathcal{O})}\right)ds\\ &+4\int^{t}_{\tau}e^{2\eta s}\rho\|\phi_{1}\|_{L^{1}(\mathbb{R}^{n})}\mathbb{E}\left(\|u^{\varepsilon}(s)\|^{2}_{H_{\rho}(\mathcal{O})}\right)ds\\ &+4\int^{t}_{\tau}e^{2\eta s}\|\psi_{1}\|_{L^{1}(\mathbb{R}^{n})}\mathbb{E}\left(\|u^{\varepsilon}(s)\|^{2}_{H_{\rho}(\mathcal{O})}\right)^{2}ds\\ &\leq\int^{t}_{\tau}e^{2\eta s}\left(4\|\phi_{1}\|_{L^{\infty}(\mathbb{R}^{n})}+4\|\psi_{1}\|_{L^{1}(\mathbb{R}^{n})}+\frac{1}{3}\eta\right)\mathbb{E}\left(\|u^{\varepsilon}(s)\|^{4}_{H_{\rho}(\mathcal{O})}\right)ds\\ &+12\frac{1}{\eta}\rho^{2}\int^{t}_{\tau}e^{2\eta s}\|\phi_{1}\|^{2}_{L^{1}(\mathbb{R}^{n})}ds.\end{split}

For the third term on the right-hand side of (4.33), we get

(4.35) 4𝔼(tτmτe2ηsuε(s)2Hρ(𝒪)(g(s,),uε(s))Hρ(𝒪)ds)2η𝔼(tτmτe2ηsuε(s)4Hρ(𝒪)ds)+278η3ρtτmτe2ηsg(s)2L2(n)ds2ηtτe2ηs𝔼(uε(s)4Hρ(𝒪))ds+278η3ρtτe2ηsg(s)2L2(n)ds.\displaystyle\begin{split}&4\mathbb{E}\left(\int^{t\wedge\tau_{m}}_{\tau}e^{2\eta s}\|u^{\varepsilon}(s)\|^{2}_{H_{\rho}(\mathcal{O})}(g(s,\cdot),u^{\varepsilon}(s))_{H_{\rho}(\mathcal{O})}ds\right)\\ &\leq 2\eta\mathbb{E}\left(\int^{t\wedge\tau_{m}}_{\tau}e^{2\eta s}\|u^{\varepsilon}(s)\|^{4}_{H_{\rho}(\mathcal{O})}ds\right)+\frac{27}{8\eta^{3}}\rho\int^{t\wedge\tau_{m}}_{\tau}e^{2\eta s}\|g(s)\|^{2}_{L^{2}(\mathbb{R}^{n})}ds\\ &\leq 2\eta\int^{t}_{\tau}e^{2\eta s}\mathbb{E}\left(\|u^{\varepsilon}(s)\|^{4}_{H_{\rho}(\mathcal{O})}\right)ds+\frac{27}{8\eta^{3}}\rho\int^{t}_{\tau}e^{2\eta s}\|g(s)\|^{2}_{L^{2}(\mathbb{R}^{n})}ds.\\ \end{split}

For the last term on the right-hand side of (4.33), by (3) we get

(4.36) 6𝔼(tτmτe2ηsuε(s)2Hρ(𝒪)ϖε(uε(s),uε(s))2L2(l2,Hρ(𝒪))ds)12ρ2𝔼(tτmτe2ηsuε(s)2Hρ(𝒪)σ12L2(n,l2)ds)+48ρ2κ2L2(n)β2l2𝔼(tτmτe2ηsuε(s)2Hρ(𝒪)ds)+48κ2L2(n)β2l2𝔼(tτmτe2ηsuε(s)2Hρ(𝒪)𝔼(uε(s)2Hρ(𝒪))ds)+24κ2L(n)γ2l2𝔼(tτmτe2ηsuε(s)4Hρ(𝒪)ds)13ηtτe2ηs𝔼(uε(s)4Hρ(𝒪))ds+108ρ221ηtτe2ηsσ14L2(n,l2)ds+48ρ2κ2L2(n)β2l2tτe2ηs𝔼(uε(s)2Hρ(𝒪))ds+48κ2L2(n)β2l2tτe2ηs𝔼(uε(s)4Hρ(𝒪))ds+24κ2L(n)γ2l2tτe2ηs𝔼(uε(s)4Hρ(𝒪))ds(12η+48κ2L2(n)β2l2+24κ2L(n)γ2l2)tτe2ηs𝔼(uε(s)4Hρ(𝒪))ds+108ρ221ηtτe2ηsσ14L2(n,l2)ds+1728η2ρ22κ4L2(n)β4l2e2ηt.\displaystyle\begin{split}&6\mathbb{E}\left(\int^{t\wedge\tau_{m}}_{\tau}e^{2\eta s}\|u^{\varepsilon}(s)\|^{2}_{H_{\rho}(\mathcal{O})}\|\varpi_{\varepsilon}(u^{\varepsilon}(s),\mathcal{L}_{u^{\varepsilon}(s)})\|^{2}_{L^{2}(l^{2},H_{\rho}(\mathcal{O}))}ds\right)\\ &\leq 12\rho_{2}\mathbb{E}\left(\int^{t\wedge\tau_{m}}_{\tau}e^{2\eta s}\|u^{\varepsilon}(s)\|^{2}_{H_{\rho}(\mathcal{O})}\|\sigma_{1}\|^{2}_{L^{2}(\mathbb{R}^{n},l^{2})}ds\right)\\ &+48\rho_{2}\|\kappa\|^{2}_{L^{2}(\mathbb{R}^{n})}\|\beta\|^{2}_{l^{2}}\mathbb{E}\left(\int^{t\wedge\tau_{m}}_{\tau}e^{2\eta s}\|u^{\varepsilon}(s)\|^{2}_{H_{\rho}(\mathcal{O})}ds\right)\\ &+48\|\kappa\|^{2}_{L^{2}(\mathbb{R}^{n})}\|\beta\|^{2}_{l^{2}}\mathbb{E}\left(\int^{t\wedge\tau_{m}}_{\tau}e^{2\eta s}\|u^{\varepsilon}(s)\|^{2}_{H_{\rho}(\mathcal{O})}\mathbb{E}(\|u^{\varepsilon}(s)\|^{2}_{H_{\rho}(\mathcal{O})})ds\right)\\ &+24\|\kappa\|^{2}_{L^{\infty}(\mathbb{R}^{n})}\|\gamma\|^{2}_{l^{2}}\mathbb{E}\left(\int^{t\wedge\tau_{m}}_{\tau}e^{2\eta s}\|u^{\varepsilon}(s)\|^{4}_{H_{\rho}(\mathcal{O})}ds\right)\\ &\leq\frac{1}{3}\eta\int^{t}_{\tau}e^{2\eta s}\mathbb{E}\left(\|u^{\varepsilon}(s)\|^{4}_{H_{\rho}(\mathcal{O})}\right)ds+108\rho_{2}^{2}\frac{1}{\eta}\int^{t}_{\tau}e^{2\eta s}\|\sigma_{1}\|^{4}_{L^{2}(\mathbb{R}^{n},l^{2})}ds\\ &+48\rho_{2}\|\kappa\|^{2}_{L^{2}(\mathbb{R}^{n})}\|\beta\|^{2}_{l^{2}}\int^{t}_{\tau}e^{2\eta s}\mathbb{E}\left(\|u^{\varepsilon}(s)\|^{2}_{H_{\rho}(\mathcal{O})}\right)ds\\ &+48\|\kappa\|^{2}_{L^{2}(\mathbb{R}^{n})}\|\beta\|^{2}_{l^{2}}\int^{t}_{\tau}e^{2\eta s}\mathbb{E}\left(\|u^{\varepsilon}(s)\|^{4}_{H_{\rho}(\mathcal{O})}\right)ds\\ &+24\|\kappa\|^{2}_{L^{\infty}(\mathbb{R}^{n})}\|\gamma\|^{2}_{l^{2}}\int^{t}_{\tau}e^{2\eta s}\mathbb{E}\left(\|u^{\varepsilon}(s)\|^{4}_{H_{\rho}(\mathcal{O})}\right)ds\\ &\leq(\frac{1}{2}\eta+48\|\kappa\|^{2}_{L^{2}(\mathbb{R}^{n})}\|\beta\|^{2}_{l^{2}}+24\|\kappa\|^{2}_{L^{\infty}(\mathbb{R}^{n})}\|\gamma\|^{2}_{l^{2}})\int^{t}_{\tau}e^{2\eta s}\mathbb{E}\left(\|u^{\varepsilon}(s)\|^{4}_{H_{\rho}(\mathcal{O})}\right)ds\\ &+108\rho_{2}^{2}\frac{1}{\eta}\int^{t}_{\tau}e^{2\eta s}\|\sigma_{1}\|^{4}_{L^{2}(\mathbb{R}^{n},l^{2})}ds+1728\eta^{-2}\rho^{2}_{2}\|\kappa\|^{4}_{L^{2}(\mathbb{R}^{n})}\|\beta\|^{4}_{l^{2}}e^{2\eta t}.\end{split}

It follows from (4.33)-(4.36) that for all tτt\geq\tau,

(4.37) 𝔼(e2η(tτm)uε(tτm)4Hρ(𝒪))+2(2λη)𝔼(tτmτe2ηsuε(s)4Hρ(𝒪)ds)e2ητξε4Hρ(𝒪)+121ηρ2tτe2ηsϕ12L1(n)ds+108ρ221ηtτe2ηsσ14L2(n,l2)ds+1728η2ρ22κ4L2(n)β4l2e2ηt+tτe2ηs(4ϕ1L(n)+4ψ1L1(n)+13η)𝔼(uε(s)4Hρ(𝒪))ds+(12η+48κ2L2(n)β2l2+24κ2L(n)γ2l2)tτe2ηs𝔼(uε(s)4Hρ(𝒪))ds+2ηtτe2ηs𝔼(uε(s)4Hρ(𝒪))ds+278η3ρtτe2ηsg(s)2L2(n)ds.\displaystyle\begin{split}&\mathbb{E}\left(e^{2\eta(t\wedge\tau_{m})}\|u^{\varepsilon}(t\wedge\tau_{m})\|^{4}_{H_{\rho}(\mathcal{O})}\right)+2(2\lambda-\eta)\mathbb{E}\left(\int^{t\wedge\tau_{m}}_{\tau}e^{2\eta s}\|u^{\varepsilon}(s)\|^{4}_{H_{\rho}(\mathcal{O})}ds\right)\\ &\leq e^{2\eta\tau}\|\xi^{\varepsilon}\|^{4}_{H_{\rho}(\mathcal{O})}+12\frac{1}{\eta}\rho^{2}\int^{t}_{\tau}e^{2\eta s}\|\phi_{1}\|^{2}_{L^{1}(\mathbb{R}^{n})}ds\\ &+108\rho_{2}^{2}\frac{1}{\eta}\int^{t}_{\tau}e^{2\eta s}\|\sigma_{1}\|^{4}_{L^{2}(\mathbb{R}^{n},l^{2})}ds+1728\eta^{-2}\rho^{2}_{2}\|\kappa\|^{4}_{L^{2}(\mathbb{R}^{n})}\|\beta\|^{4}_{l^{2}}e^{2\eta t}\\ &+\int^{t}_{\tau}e^{2\eta s}\left(4\|\phi_{1}\|_{L^{\infty}(\mathbb{R}^{n})}+4\|\psi_{1}\|_{L^{1}(\mathbb{R}^{n})}+\frac{1}{3}\eta\right)\mathbb{E}\left(\|u^{\varepsilon}(s)\|^{4}_{H_{\rho}(\mathcal{O})}\right)ds\\ &+(\frac{1}{2}\eta+48\|\kappa\|^{2}_{L^{2}(\mathbb{R}^{n})}\|\beta\|^{2}_{l^{2}}+24\|\kappa\|^{2}_{L^{\infty}(\mathbb{R}^{n})}\|\gamma\|^{2}_{l^{2}})\int^{t}_{\tau}e^{2\eta s}\mathbb{E}\left(\|u^{\varepsilon}(s)\|^{4}_{H_{\rho}(\mathcal{O})}\right)ds\\ &+2\eta\int^{t}_{\tau}e^{2\eta s}\mathbb{E}\left(\|u^{\varepsilon}(s)\|^{4}_{H_{\rho}(\mathcal{O})}\right)ds+\frac{27}{8\eta^{3}}\rho\int^{t}_{\tau}e^{2\eta s}\|g(s)\|^{2}_{L^{2}(\mathbb{R}^{n})}ds.\end{split}

Taking the limit of (4.37) as mm\rightarrow\infty, by Fatou’s lemma we obtain for all tτt\geq\tau,

(4.38) 𝔼(e2ηtuε(t)4Hρ(𝒪))+2(2λη)𝔼(tτe2ηsuε(s)4Hρ(𝒪)ds)e2ητξε4Hρ(𝒪)+121ηρ2tτe2ηsϕ12L1(n)ds+108ρ221ηtτe2ηsσ14L2(n,l2)ds+1728η2ρ22κ4L2(n)β4l2e2ηt+tτe2ηs(4ϕ1L(n)+4ψ1L1(n)+13η)𝔼(uε(s)4Hρ(𝒪))ds+(12η+48κ2L2(n)β2l2+24κ2L(n)γ2l2)tτmτe2ηs𝔼(uε(s)4Hρ(𝒪))ds+2ηtτe2ηs𝔼(uε(s)4Hρ(𝒪))ds+278η3ρtτe2ηsg(s)2L2(n)ds.\displaystyle\begin{split}&\mathbb{E}\left(e^{2\eta t}\|u^{\varepsilon}(t)\|^{4}_{H_{\rho}(\mathcal{O})}\right)+2(2\lambda-\eta)\mathbb{E}\left(\int^{t}_{\tau}e^{2\eta s}\|u^{\varepsilon}(s)\|^{4}_{H_{\rho}(\mathcal{O})}ds\right)\\ &\leq e^{2\eta\tau}\|\xi^{\varepsilon}\|^{4}_{H_{\rho}(\mathcal{O})}+12\frac{1}{\eta}\rho^{2}\int^{t}_{\tau}e^{2\eta s}\|\phi_{1}\|^{2}_{L^{1}(\mathbb{R}^{n})}ds\\ &+108\rho_{2}^{2}\frac{1}{\eta}\int^{t}_{\tau}e^{2\eta s}\|\sigma_{1}\|^{4}_{L_{2}(\mathbb{R}^{n},l^{2})}ds+1728\eta^{-2}\rho^{2}_{2}\|\kappa\|^{4}_{L^{2}(\mathbb{R}^{n})}\|\beta\|^{4}_{l^{2}}e^{2\eta t}\\ &+\int^{t}_{\tau}e^{2\eta s}\left(4\|\phi_{1}\|_{L^{\infty}(\mathbb{R}^{n})}+4\|\psi_{1}\|_{L^{1}(\mathbb{R}^{n})}+\frac{1}{3}\eta\right)\mathbb{E}\left(\|u^{\varepsilon}(s)\|^{4}_{H_{\rho}(\mathcal{O})}\right)ds\\ &+(\frac{1}{2}\eta+48\|\kappa\|^{2}_{L^{2}(\mathbb{R}^{n})}\|\beta\|^{2}_{l^{2}}+24\|\kappa\|^{2}_{L^{\infty}(\mathbb{R}^{n})}\|\gamma\|^{2}_{l^{2}})\int^{t\wedge\tau_{m}}_{\tau}e^{2\eta s}\mathbb{E}\left(\|u^{\varepsilon}(s)\|^{4}_{H_{\rho}(\mathcal{O})}\right)ds\\ &+2\eta\int^{t}_{\tau}e^{2\eta s}\mathbb{E}\left(\|u^{\varepsilon}(s)\|^{4}_{H_{\rho}(\mathcal{O})}\right)ds+\frac{27}{8\eta^{3}}\rho\int^{t}_{\tau}e^{2\eta s}\|g(s)\|^{2}_{L^{2}(\mathbb{R}^{n})}ds.\end{split}

By (3.29) and (4.38) we get for all tτt\geq\tau,

(4.39) 𝔼(uε(t)4Hρ(𝒪))e2η(τt)ξε4Hρ(𝒪)+121ηρ2tτe2η(st)ϕ12L1(n)ds+108ρ221ηtτe2η(st)σ14L2(n,l2)ds+1728η2ρ22κ4L2(n)β4l2+278η3ρtτe2η(st)g(s)2L2(n)dse2η(τt)ξε4Hρ(𝒪)+61η2ρ2ϕ12L1(n)+54ρ221η2σ14L2(n,l2)+1728η2ρ22κ4L2(n)β4l2+2716η4ρg02Cb(,L2(n)).\displaystyle\begin{split}&\mathbb{E}\left(\|u^{\varepsilon}(t)\|^{4}_{H_{\rho}(\mathcal{O})}\right)\\ &\leq e^{2\eta(\tau-t)}\|\xi^{\varepsilon}\|^{4}_{H_{\rho}(\mathcal{O})}+12\frac{1}{\eta}\rho^{2}\int^{t}_{\tau}e^{2\eta(s-t)}\|\phi_{1}\|^{2}_{L^{1}(\mathbb{R}^{n})}ds\\ &+108\rho_{2}^{2}\frac{1}{\eta}\int^{t}_{\tau}e^{2\eta(s-t)}\|\sigma_{1}\|^{4}_{L^{2}(\mathbb{R}^{n},l^{2})}ds+1728\eta^{-2}\rho^{2}_{2}\|\kappa\|^{4}_{L^{2}(\mathbb{R}^{n})}\|\beta\|^{4}_{l^{2}}\\ &+\frac{27}{8\eta^{3}}\rho\int^{t}_{\tau}e^{2\eta(s-t)}\|g(s)\|^{2}_{L^{2}(\mathbb{R}^{n})}ds\\ &\leq e^{2\eta(\tau-t)}\|\xi^{\varepsilon}\|^{4}_{H_{\rho}(\mathcal{O})}+6\frac{1}{\eta^{2}}\rho^{2}\|\phi_{1}\|^{2}_{L^{1}(\mathbb{R}^{n})}+54\rho_{2}^{2}\frac{1}{\eta^{2}}\|\sigma_{1}\|^{4}_{L^{2}(\mathbb{R}^{n},l^{2})}\\ &+1728\eta^{-2}\rho^{2}_{2}\|\kappa\|^{4}_{L^{2}(\mathbb{R}^{n})}\|\beta\|^{4}_{l^{2}}+\frac{27}{16\eta^{4}}\rho\|g_{0}\|^{2}_{C^{b}(\mathbb{R},L^{2}(\mathbb{R}^{n}))}.\end{split}

Since 𝔼(ξε4Hρ(𝒪))R\mathbb{E}(\|\xi^{\varepsilon}\|^{4}_{H_{\rho}(\mathcal{O})})\leq R, we have

limte2η(τt)ξε4Hρ(𝒪)limte2η(τt)R=0,\lim\limits_{t\rightarrow\infty}e^{2\eta(\tau-t)}\|\xi^{\varepsilon}\|^{4}_{H_{\rho}(\mathcal{O})}\leq\lim\limits_{t\rightarrow\infty}e^{2\eta(\tau-t)}R=0,

and hence there exists T=T(R)T=T(R) implies that for all tτ>Tt-\tau>T,

e2η(τt)ξε4Hρ(𝒪)1,e^{2\eta(\tau-t)}\|\xi^{\varepsilon}\|^{4}_{H_{\rho}(\mathcal{O})}\leq 1,

which along with (4.39) implies that for all tτ>Tt-\tau>T.

(4.40) 𝔼(uε(t)4Hρ(𝒪))1+61η2ρ2ϕ12L1(n)+54ρ221η2σ14L2(n,l2)+1728η2ρ22κ4L2(n)β4l2+2716η4ρg02Cb(,L2(n)),\displaystyle\begin{split}&\mathbb{E}\left(\|u^{\varepsilon}(t)\|^{4}_{H_{\rho}(\mathcal{O})}\right)\leq 1+6\frac{1}{\eta^{2}}\rho^{2}\|\phi_{1}\|^{2}_{L^{1}(\mathbb{R}^{n})}\\ &+54\rho_{2}^{2}\frac{1}{\eta^{2}}\|\sigma_{1}\|^{4}_{L^{2}(\mathbb{R}^{n},l^{2})}+1728\eta^{-2}\rho^{2}_{2}\|\kappa\|^{4}_{L^{2}(\mathbb{R}^{n})}\|\beta\|^{4}_{l^{2}}\\ &+\frac{27}{16\eta^{4}}\rho\|g_{0}\|^{2}_{C^{b}(\mathbb{R},L^{2}(\mathbb{R}^{n}))},\end{split}

which completes the proof. ∎

5. Existence of Uniform Measure Attractors

In the section, we prove the existence and uniqueness of uniform measure attractor of (3.21) in 𝒫4(L2(𝒪))\mathcal{P}_{4}(L^{2}(\mathcal{O})). Firstly, we define a process in 𝒫4(L2(𝒪))\mathcal{P}_{4}(L^{2}(\mathcal{O})).

Given trt\geq r, for every μ𝒫4(L2(𝒪))\mu\in\mathcal{P}_{4}(L^{2}(\mathcal{O})), define Pg,ε:𝒫4(L2(𝒪))𝒫4(L2(𝒪))P^{g,\varepsilon}_{*}:\mathcal{P}_{4}(L^{2}(\mathcal{O}))\rightarrow\mathcal{P}_{4}(L^{2}(\mathcal{O})) by

(5.1) Pg,ε(t,τ)μ=ug,ε(t,τ,ξε),\displaystyle P_{*}^{g,\varepsilon}(t,\tau)\mu=\mathcal{L}_{u^{g,\varepsilon}(t,\tau,\xi^{\varepsilon})},

where ug,ε(t,τ,ξε)u^{g,\varepsilon}(t,\tau,\xi^{\varepsilon}) is the solution of (3.21) with ξεL4(Ω,τ,L2(𝒪))\xi^{\varepsilon}\in L^{4}(\Omega,\mathcal{F}_{\tau},L^{2}(\mathcal{O})) such that ξε=μ\mathcal{L}_{\xi^{\varepsilon}}=\mu. In terms of (5.1), for every t+t\in\mathbb{R}^{+} and τ\tau\in\mathbb{R}, define Ug,ε(t,τ):𝒫4(L2(𝒪))𝒫4(L2(𝒪))U^{g,\varepsilon}(t,\tau):\mathcal{P}_{4}(L^{2}(\mathcal{O}))\rightarrow\mathcal{P}_{4}(L^{2}(\mathcal{O})) by, for every μ𝒫4(L2(𝒪))\mu\in\mathcal{P}_{4}(L^{2}(\mathcal{O})),

(5.2) Ug,ε(τ+t,τ)μ=Pg,ε(τ+t,τ)μ.\displaystyle U^{g,\varepsilon}(\tau+t,\tau)\mu=P_{*}^{g,\varepsilon}(\tau+t,\tau)\mu.

By the uniqueness of solutions for (3.21), the operator Ug,ε(t,τ)U^{g,\varepsilon}(t,\tau) satisfies the multiplicative properties:

Ug,ε(t,τ)=Ug,ε(t,s)Ug,ε(s,τ).U^{g,\varepsilon}(t,\tau)=U^{g,\varepsilon}(t,s)U^{g,\varepsilon}(s,\tau).

for all tsτ,t\geq s\geq\tau, τ.\tau\in\mathbb{R}.

Ug,ε(τ,τ)=I,τ,U^{g,\varepsilon}(\tau,\tau)=I,\quad\tau\in\mathbb{R},

where II is the identity operator. Furthermore, the following translation identity holds by a similar argument to that of Lemma 4.1 in [30]

Ug,ε(t+h,τ+h)=UT(h)g,ε(t,τ),U^{g,\varepsilon}(t+h,\tau+h)=U^{T(h)g,\varepsilon}(t,\tau),

for all hh\in\mathbb{R}, tτ,t\geq\tau, τ\tau\in\mathbb{R}.

In a manner analogous to the preceding, we may likewise define a process designated as Ug,0U^{g,0} in accordance with (3.22).

Next, we establish the continuity of Ug,ε(t,τ)U^{g,\varepsilon}(t,\tau) with respect to the topology of 𝒫4(L2(𝒪))×(g0)\mathcal{P}_{4}(L^{2}(\mathcal{O}))\times\mathcal{H}(g_{0}).

Lemma 5.1.

Suppose (A1)\mathbf{(}A1)-(A3)\mathbf{(}A3) hold. Let ξε,ξεnL4(Ω,τ,L2(𝒪))\xi^{\varepsilon},\xi^{\varepsilon}_{n}\in L^{4}(\Omega,\mathcal{F}_{\tau},L^{2}(\mathcal{O})) such that 𝔼(ξε4)R\mathbb{E}\left(\|\xi^{\varepsilon}\|^{4}\right)\leq R and 𝔼(ξεn4)R\mathbb{E}\left(\|\xi^{\varepsilon}_{n}\|^{4}\right)\leq R for some R>0R>0. If ξεnξε\mathcal{L}_{\xi^{\varepsilon}_{n}}\rightarrow\mathcal{L}_{\xi^{\varepsilon}} weakly and gngg_{n}\rightarrow g in (g0)\mathcal{H}(g_{0}), then for every τ\tau\in\mathbb{R}, tτt\geq\tau and 0<ε<ε00<\varepsilon<\varepsilon_{0}, ugn,ε(t,τ,ξεn)ug,ε(t,τ,ξε)\mathcal{L}_{u^{g_{n},\varepsilon}(t,\tau,\xi^{\varepsilon}_{n})}\rightarrow\mathcal{L}_{u^{g,\varepsilon}(t,\tau,\xi^{\varepsilon})} weakly.

Proof..

Since ξεnξε\mathcal{L}_{\xi^{\varepsilon}_{n}}\rightarrow\mathcal{L}_{\xi^{\varepsilon}} weakly, by the Skorokhov theorem, there exist a probability space (Ω~,~,~)(\widetilde{\Omega},\widetilde{\mathcal{F}},\widetilde{\mathbb{P}}) and random variables ξε~\widetilde{\xi^{\varepsilon}} and ξεn~\widetilde{\xi^{\varepsilon}_{n}} defined in (Ω~,~,~)(\widetilde{\Omega},\widetilde{\mathcal{F}},\widetilde{\mathbb{P}}) such that the distributions of ξε~\widetilde{\xi^{\varepsilon}} and ξεn~\widetilde{\xi^{\varepsilon}_{n}} coincide with that of ξε\xi^{\varepsilon} and ξεn\xi^{\varepsilon}_{n}, respectively. Furthermore, ξε~nξε~\widetilde{\xi^{\varepsilon}}_{n}\rightarrow\widetilde{\xi^{\varepsilon}} ~\widetilde{\mathbb{P}}-almost surely. Note that ξε~\widetilde{\xi^{\varepsilon}}, ξεn~\widetilde{\xi^{\varepsilon}_{n}} and WW can be considered as random variables defined in the product space (Ω×Ω~,×𝔽~,×~)(\Omega\times\widetilde{\Omega},\mathcal{F}\times\widetilde{\mathbb{F}},\mathbb{P}\times\widetilde{\mathbb{P}}). So we may consider the solutions of the stochastic equation in the product space with initial data ξε~\widetilde{\xi^{\varepsilon}} and ξεn~\widetilde{\xi^{\varepsilon}_{n}}, instead of the solutions in (Ω,,)(\Omega,\mathcal{F},\mathbb{P}) with initial data ξε\xi^{\varepsilon} and ξεn\xi^{\varepsilon}_{n}. However, for simplicity, we will not distinguish the new random variables from the original ones, and just consider the solutions of the equation in the original space. Since ξεn~ξε~\widetilde{\xi^{\varepsilon}_{n}}\rightarrow\widetilde{\xi^{\varepsilon}} (×~)(\mathbb{P}\times\widetilde{\mathbb{P}})-almost surely, without loss of generality, we simply assume that ξεnξε\xi^{\varepsilon}_{n}\rightarrow\xi^{\varepsilon} \mathbb{P}-almost surely.

Let ugn,εn(t,τ)=ugn,ε(t,τ,ξεn)u^{g_{n},\varepsilon}_{n}(t,\tau)=u^{g_{n},\varepsilon}\left(t,\tau,\xi^{\varepsilon}_{n}\right), ug,ε(t,τ)=ug,ε(t,τ,ξε)u^{g,\varepsilon}(t,\tau)=u^{g,\varepsilon}\left(t,\tau,\xi^{\varepsilon}\right) and vnε(t,τ)=ugn,ε(t,τ,ξεn)ug,ε(t,τ,ξε)\\ v_{n}^{\varepsilon}(t,\tau)=u^{g_{n},\varepsilon}\left(t,\tau,\xi^{\varepsilon}_{n}\right)-u^{g,\varepsilon}\left(t,\tau,\xi^{\varepsilon}\right). Then by (3.21) we have, for all tτt\geq\tau,

dvεn(t)Aεvεn(t)dt+λvεn(t)dt+(fε(y,ugn,εn(t),ugn,εn(t))fε(y,ug,ε(t),ug,ε(t)))dt=(gn(t,y)g(t,y))dt+(ϖε(ugn,εn(t),ugn,εn(t))ϖε(ug,ε(t),ug,ε(t)))dW(t).\begin{gathered}dv^{\varepsilon}_{n}(t)-A_{\varepsilon}v^{\varepsilon}_{n}(t)dt+\lambda v^{\varepsilon}_{n}(t)dt+\left(f_{\varepsilon}\left(y,u^{g_{n},\varepsilon}_{n}(t),\mathcal{L}_{u^{g_{n},\varepsilon}_{n}(t)}\right)-f_{\varepsilon}\left(y,u^{g,\varepsilon}(t),\mathcal{L}_{u^{g,\varepsilon}(t)}\right)\right)dt\\ =\left(g_{n}\left(t,y^{*}\right)-g\left(t,y^{*}\right)\right)dt+\left(\varpi_{\varepsilon}\left(u^{g_{n},\varepsilon}_{n}(t),\mathcal{L}_{u^{g_{n},\varepsilon}_{n}(t)}\right)-\varpi_{\varepsilon}\left(u^{g,\varepsilon}(t),\mathcal{L}_{u^{g,\varepsilon}(t)}\right)\right)dW(t).\end{gathered}

By Ito’s formula we have for all tτt\geq\tau,

(5.3) vεn(t)2Hρ(𝒪)+2τtaε(vεn(s),vεn(s))ds+2λτtvεn(s)2Hρ(𝒪)ds+2τt𝒪ρ(fε(y,ugn,εn(s),ugn,εn(s))fε(y,ug,ε(s),ug,ε(s)))vεn(s)dyds=ξεnξε2Hρ(𝒪)+2tτ(gn(s,)g(s,),vnε(s))Hρ(𝒪)ds+tτϖε(ugn,εn(s),ugn,εn(s))ϖε(ug,ε(s),ug,ε(s))2L2(l2,Hρ(𝒪))ds+2tτ(vεn(s),ϖε(ugn,εn(s),ugn,εn(s))ϖε(ug,ε(s),ug,ε(s)))dW.\displaystyle\begin{split}&\left\|v^{\varepsilon}_{n}(t)\right\|^{2}_{H_{\rho}(\mathcal{O})}+2\int_{\tau}^{t}a_{\varepsilon}(v^{\varepsilon}_{n}(s),v^{\varepsilon}_{n}(s))ds+2\lambda\int_{\tau}^{t}\left\|v^{\varepsilon}_{n}(s)\right\|^{2}_{H_{\rho}(\mathcal{O})}ds\\ &+2\int_{\tau}^{t}\int_{\mathcal{O}}\rho\left(f_{\varepsilon}\left(y,u^{g_{n},\varepsilon}_{n}(s),\mathcal{L}_{u^{g_{n},\varepsilon}_{n}(s)}\right)-f_{\varepsilon}\left(y,u^{g,\varepsilon}(s),\mathcal{L}_{u^{g,\varepsilon}(s)}\right)\right)v^{\varepsilon}_{n}(s)dyds\\ &=\|\xi^{\varepsilon}_{n}-\xi^{\varepsilon}\|^{2}_{H_{\rho}(\mathcal{O})}+2\int^{t}_{\tau}\left(g_{n}\left(s,\cdot\right)-g\left(s,\cdot\right),v_{n}^{\varepsilon}(s)\right)_{H_{\rho}(\mathcal{O})}ds\\ &+\int^{t}_{\tau}\|\varpi_{\varepsilon}\left(u^{g_{n},\varepsilon}_{n}(s),\mathcal{L}_{u^{g_{n},\varepsilon}_{n}(s)}\right)-\varpi_{\varepsilon}\left(u^{g,\varepsilon}(s),\mathcal{L}_{u^{g,\varepsilon}(s)}\right)\|^{2}_{L_{2}(l^{2},H_{\rho}(\mathcal{O}))}ds\\ &+2\int^{t}_{\tau}\left(v^{\varepsilon}_{n}(s),\varpi_{\varepsilon}\left(u^{g_{n},\varepsilon}_{n}(s),\mathcal{L}_{u^{g_{n},\varepsilon}_{n}(s)}\right)-\varpi_{\varepsilon}\left(u^{g,\varepsilon}(s),\mathcal{L}_{u^{g,\varepsilon}(s)}\right)\right)dW.\end{split}

By (3) and (3.6) we have

(5.4) 2τt𝒪ρ(fε(y,ugn,εn(s),ugn,εn(s))fε(y,ug,ε(t),ug,ε(t)))vεn(s)dyds=2τt𝒪ρ(fε(y,ugn,εn(s),ugn,εn(s))fε(y,ug,ε(s),ugn,εn(s)))vεndyds2τt𝒪ρ(fε(y,ug,ε(s),ugn,εn(s))fε(y,ug,ε(t),ug,ε(t)))vεn(s)dydsτt((2ϕ4L(n)+ϕ3L(n))vεn(s)Hρ(𝒪)2+𝔼(vεn(s)Hρ(𝒪)2)ϕ3L1(n))ds.\displaystyle\begin{split}&-2\int_{\tau}^{t}\int_{\mathcal{O}}\rho\left(f_{\varepsilon}\left(y,u^{g_{n},\varepsilon}_{n}(s),\mathcal{L}_{u^{g_{n},\varepsilon}_{n}(s)}\right)-f_{\varepsilon}\left(y,u^{g,\varepsilon}(t),\mathcal{L}_{u^{g,\varepsilon}(t)}\right)\right)v^{\varepsilon}_{n}(s)dyds\\ &=-2\int_{\tau}^{t}\int_{\mathcal{O}}\rho\left(f_{\varepsilon}\left(y,u^{g_{n},\varepsilon}_{n}(s),\mathcal{L}_{u^{g_{n},\varepsilon}_{n}(s)}\right)-f_{\varepsilon}\left(y,u^{g,\varepsilon}(s),\mathcal{L}_{u^{g_{n},\varepsilon}_{n}(s)}\right)\right)v^{\varepsilon}_{n}dyds\\ &-2\int_{\tau}^{t}\int_{\mathcal{O}}\rho\left(f_{\varepsilon}\left(y,u^{g,\varepsilon}(s),\mathcal{L}_{u^{g_{n},\varepsilon}_{n}(s)}\right)-f_{\varepsilon}\left(y,u^{g,\varepsilon}(t),\mathcal{L}_{u^{g,\varepsilon}(t)}\right)\right)v^{\varepsilon}_{n}(s)dyds\\ &\leq\int_{\tau}^{t}\left((2\|\phi_{4}\|_{L^{\infty}(\mathbb{R}^{n})}+\|\phi_{3}\|_{L^{\infty}(\mathbb{R}^{n})})\|v^{\varepsilon}_{n}(s)\|_{H_{\rho}(\mathcal{O})}^{2}+\mathbb{E}(\|v^{\varepsilon}_{n}(s)\|_{H_{\rho}(\mathcal{O})}^{2})\|\phi_{3}\|_{L^{1}(\mathbb{R}^{n})}\right)ds.\end{split}

By Young inequality, we have

(5.5) 2tτ(gn(s,)g(s,),vnε(s))Hρ(𝒪)dstτgng2Cb(,L2(n)+vnε(s)2Hρ(𝒪)dsgng2Cb(,L2(n)(tτ)+tτvnε(s)2Hρ(𝒪)ds.\displaystyle\begin{split}&2\int^{t}_{\tau}\left(g_{n}\left(s,\cdot\right)-g\left(s,\cdot\right),v_{n}^{\varepsilon}(s)\right)_{H_{\rho}(\mathcal{O})}ds\\ &\leq\int^{t}_{\tau}\|g_{n}-g\|^{2}_{C_{b}(\mathbb{R},L^{2}(\mathbb{R}^{n})}+\|v_{n}^{\varepsilon}(s)\|^{2}_{H_{\rho}(\mathcal{O})}ds\\ &\leq\|g_{n}-g\|^{2}_{C_{b}(\mathbb{R},L^{2}(\mathbb{R}^{n})}(t-\tau)+\int^{t}_{\tau}\|v_{n}^{\varepsilon}(s)\|^{2}_{H_{\rho}(\mathcal{O})}ds.\end{split}

By (3) we have

(5.6) tτϖε(ugn,εn(s),ugn,εn(s))ϖε(ug,ε(s),ug,ε(s))2L2(l2,Hρ(𝒪))ds2Lϖ2l2tτ(κ2L(n)vnε(s)2Hρ(𝒪)+κ2L2(n)vnε(s)2Hρ(𝒪))ds.\displaystyle\begin{split}&\int^{t}_{\tau}\|\varpi_{\varepsilon}\left(u^{g_{n},\varepsilon}_{n}(s),\mathcal{L}_{u^{g_{n},\varepsilon}_{n}(s)}\right)-\varpi_{\varepsilon}\left(u^{g,\varepsilon}(s),\mathcal{L}_{u^{g,\varepsilon}(s)}\right)\|^{2}_{L^{2}(l^{2},H_{\rho}(\mathcal{O}))}ds\\ &\leq 2\|L_{\varpi}\|^{2}_{l^{2}}\int^{t}_{\tau}\left(\|\kappa\|^{2}_{L^{\infty}(\mathbb{R}^{n})}\|v_{n}^{\varepsilon}(s)\|^{2}_{H_{\rho}(\mathcal{O})}+\|\kappa\|^{2}_{L^{2}(\mathbb{R}^{n})}\mathbb{\|}v_{n}^{\varepsilon}(s)\|^{2}_{H_{\rho}(\mathcal{O})}\right)ds.\end{split}

By (5.3)-(5.6), we find that for every T>0T>0, such that for all t[τ,τ+T]t\in[\tau,\tau+T],

(5.7) 𝔼(vεn(t)2Hρ(𝒪))𝔼(ξεnξε2Hρ(𝒪))+gn(s)g(s)2Cb(,L2(n)T+(1+2ϕ4L(n)+ϕ3L(n)+ϕ3L1(n))τt𝔼(vεn(s)Hρ(𝒪)2)ds+2Lϖ2l2(κ2L(n)+κ2L2(n))tτ𝔼(vnε(s)2Hρ(𝒪))ds.\displaystyle\begin{split}&\mathbb{E}\left(\|v^{\varepsilon}_{n}(t)\|^{2}_{H_{\rho}(\mathcal{O})}\right)\leq\mathbb{E}\left(\|\xi^{\varepsilon}_{n}-\xi^{\varepsilon}\|^{2}_{H_{\rho}(\mathcal{O})}\right)+\|g_{n}(s)-g(s)\|^{2}_{C_{b}(\mathbb{R},L^{2}(\mathbb{R}^{n})}T\\ &+(1+2\|\phi_{4}\|_{L^{\infty}(\mathbb{R}^{n})}+\|\phi_{3}\|_{L^{\infty}(\mathbb{R}^{n})}+\|\phi_{3}\|_{L^{1}(\mathbb{R}^{n})})\int_{\tau}^{t}\mathbb{E}\left(\|v^{\varepsilon}_{n}(s)\|_{H_{\rho}(\mathcal{O})}^{2}\right)ds\\ &+2\|L_{\varpi}\|^{2}_{l^{2}}(\|\kappa\|^{2}_{L^{\infty}(\mathbb{R}^{n})}+\|\kappa\|^{2}_{L^{2}(\mathbb{R}^{n})})\int^{t}_{\tau}\mathbb{E}\left(\|v_{n}^{\varepsilon}(s)\|^{2}_{H_{\rho}(\mathcal{O})}\right)ds.\end{split}

By (5.7) and Gronwall’s lemma, we obtain, for all t[τ,τ+T]t\in[\tau,\tau+T],

(5.8) 𝔼(vεn(t)2Hρ(𝒪))(𝔼(ξεnξε2Hρ(𝒪))+gng2Cb(,L2(n))T)ec1(tτ),\displaystyle\begin{split}&\mathbb{E}\left(\|v^{\varepsilon}_{n}(t)\|^{2}_{H_{\rho}(\mathcal{O})}\right)\leq\left(\mathbb{E}\left(\|\xi^{\varepsilon}_{n}-\xi^{\varepsilon}\|^{2}_{H_{\rho}(\mathcal{O})}\right)+\|g_{n}-g\|^{2}_{C_{b}(\mathbb{R},L^{2}(\mathbb{R}^{n}))}T\right)e^{c_{1}(t-\tau)},\end{split}

where c1>0c_{1}>0 is a constant independent of n,τn,\tau and tt. Since 𝔼(ξεn4Hρ(𝒪))R\mathbb{E}(\|\xi^{\varepsilon}_{n}\|^{4}_{H_{\rho}(\mathcal{O})})\leq R, we see that the sequence {ξεn}n=1\{\xi^{\varepsilon}_{n}\}^{\infty}_{n=1} is uniformly integrable in L2(Ω,L2(𝒪))L^{2}(\Omega,L^{2}(\mathcal{O})). Then using the assumption that ξεnξε\xi^{\varepsilon}_{n}\rightarrow\xi^{\varepsilon} \mathbb{P}-almost surely, we obtain from Vitali’s theorem that ξεnξε\xi^{\varepsilon}_{n}\rightarrow\xi^{\varepsilon} in L2(Ω,L2(𝒪))L^{2}(\Omega,L^{2}(\mathcal{O})) and gngg_{n}\rightarrow g in (g0)\mathcal{H}(g_{0}), which along with (5.8) shows that ugn,ε(t,τ,ξεn)ug,ε(t,τ,ξε)u^{g_{n},\varepsilon}\left(t,\tau,\xi^{\varepsilon}_{n}\right)\rightarrow u^{g,\varepsilon}\left(t,\tau,\xi^{\varepsilon}\right) in L2(Ω,L2(𝒪))L^{2}(\Omega,L^{2}(\mathcal{O})) and hence also in distribution. ∎

By Lemma 5.1, we find that the process Ug,εU^{g,\varepsilon} given by (5.2) is continuous over bounded of 𝒫4(L2(𝒪))×(g0)\mathcal{P}_{4}(L^{2}(\mathcal{O}))\times\mathcal{H}(g_{0}).

Lemma 5.2.

Suppose (A1)\mathbf{(}A1)-(A3)\mathbf{(}A3) and (3.28) hold. Denoted by

(5.9) K=B𝒫4(L2(𝒪))(G141),K=B_{\mathcal{P}_{4}(L^{2}(\mathcal{O}))}(G^{\frac{1}{4}}_{1}),

where

(5.10) G1=M7ρ1,\displaystyle G_{1}=\frac{M_{7}}{\rho_{1}},

M7>0M_{7}>0 is the same constants as in Lemma 4.7. Then KK is a closed uniform absorbing set of the family of {Ug,ε}g(g0)\{U^{g,\varepsilon}\}_{g\in\mathcal{H}(g_{0})}.

Proof..

First, note that KK is a closed subset of 𝒫4(L2(𝒪))\mathcal{P}_{4}(L^{2}(\mathcal{O})). Subsequently, by (5.9) and Lemma 4.7, we see that then for every R>0R>0, there exists T=T(R)>0T=T(R)>0 such that {Ug,ε(t,0)}g(g0)\{U^{g,\varepsilon}(t,0)\}_{g\in\mathcal{H}(g_{0})} satisfies

Ug,ε(t,0)B𝒫4(L2(𝒪))(R)K,for allg(g0)andtT.U^{g,\varepsilon}(t,0)B_{\mathcal{P}_{4}(L^{2}(\mathcal{O}))}(R)\subseteq K,\ \text{for all}\ g\in\mathcal{H}(g_{0})\ \text{and}\ t\geq T.

We now present the uniformly asymptotically compact of the family of process {Ug,ε}g(g0)\{U^{g,\varepsilon}\}_{g\in\mathcal{H}(g_{0})} with respect to g(g0)g\in\mathcal{H}(g_{0}).

Lemma 5.3.

Suppose (A1)\mathbf{(}A1)-(A3)\mathbf{(}A3) and (3.28) hold. Then the family of processes {Ug,ε(t,0)}g(g0)\\ \{U^{g,\varepsilon}(t,0)\}_{g\in\mathcal{H}(g_{0})} is uniformly asymptotically compact in 𝒫4(L2(𝒪))\mathcal{P}_{4}(L^{2}(\mathcal{O})); that is, {Ugn,ε(tn,0)μn}\\ \{U^{g_{n},\varepsilon}(t_{n},0)\mu_{n}\} has a convergent subsequence in 𝒫4(L2(𝒪))\mathcal{P}_{4}(L^{2}(\mathcal{O})) whenever tn+t_{n}\rightarrow+\infty and (μn,gn)(\mu_{n},g_{n}) is bounded in 𝒫4(L2(𝒪))×(g0)\mathcal{P}_{4}(L^{2}(\mathcal{O}))\times\mathcal{H}(g_{0}).

Proof..

Given vnL4(Ω,0,L2(𝒪))v_{n}\in L^{4}(\Omega,\mathcal{F}_{0},L^{2}(\mathcal{O})) with distribution μn\mu_{n}, i.e. vn=μn\mathcal{L}_{v_{n}}=\mu_{n}, we consider the solution ugn,ε(t,0,vn)u^{g_{n},\varepsilon}(t,0,v_{n}) of equation (3.21) with initial data vnv_{n} at initial time 0. To complete the proof, by Prohorov theorem, it is to prove that the sequence {(ugn,ε(tn,0,vn)}\{\mathcal{L}_{(u^{g_{n},\varepsilon}(t_{n},0,v_{n})}\} is tight in L2(𝒪)L^{2}(\mathcal{O}).

Let θ\theta be a cut-off smooth function given by (4.17), θm=θ(|y|2m2)\theta_{m}=\theta(\frac{|y^{*}|^{2}}{m^{2}}) for every mm\in\mathbb{N} and yny^{*}\in\mathbb{R}^{n}. Then the solution ug,εu^{g,\varepsilon} can be decomposed as:

ugn,ε(tn,0,vn)=θmugn,ε(tn,0,vn)+(1θm)ugn,ε(tn,0,vn).u^{g_{n},\varepsilon}(t_{n},0,v_{n})=\theta_{m}u^{g_{n},\varepsilon}(t_{n},0,v_{n})+(1-\theta_{m})u^{g_{n},\varepsilon}(t_{n},0,v_{n}).

Note that there exists c1=c1(θ)>0c_{1}=c_{1}(\theta)>0 such that

sups+|θ(s)|c1,\sup_{s\in\mathbb{R}^{+}}|\theta^{\prime}(s)|\leq c_{1},

and hence for all m,nm,n\in\mathbb{N},

(5.11) (1θm)ugn,ε(tn,0,vn)2H1ε(𝒪)c2ugn,ε(tn,0,vn)2H1ε(𝒪),\displaystyle\|(1-\theta_{m})u^{g_{n},\varepsilon}(t_{n},0,v_{n})\|^{2}_{H^{1}_{\varepsilon}(\mathcal{O})}\leq c_{2}\|u^{g_{n},\varepsilon}(t_{n},0,v_{n})\|^{2}_{H^{1}_{\varepsilon}(\mathcal{O})},

where c2=1+c12c_{2}=1+c_{1}^{2}.

By Lemma 4.5, we know that for every 0<ε<ε00<\varepsilon<\varepsilon_{0}, there exists N1N_{1}\in\mathbb{N}, independent of ε\varepsilon, and c3=c3(ε,g0)c_{3}=c_{3}(\varepsilon,g_{0}) such that for all nN1n\geq N_{1},

(5.12) 𝔼(ugn,ε(tn,0,vn)2H1ε(𝒪))c3.\displaystyle\mathbb{E}(\|u^{g_{n},\varepsilon}(t_{n},0,v_{n})\|^{2}_{H^{1}_{\varepsilon}(\mathcal{O})})\leq c_{3}.

By (5.11) and (5.12), we have for all mm\in\mathbb{N} and nN1n\geq N_{1},

(5.13) 𝔼((1θm)ugn,ε(tn,0,vn)2H1ε(𝒪))c2c3.\displaystyle\mathbb{E}\left(\|(1-\theta_{m})u^{g_{n},\varepsilon}(t_{n},0,v_{n})\|^{2}_{H^{1}_{\varepsilon}(\mathcal{O})}\right)\leq c_{2}c_{3}.

By (5.13) and Chebyshev’s inequality, we get for all mm\in\mathbb{N} and nN1n\geq N_{1},

(5.14) ((1θm)ugn,ε(tn,0,vn)2H1ε(𝒪)R1)c2c3R210asR1.\displaystyle\mathbb{P}(\|(1-\theta_{m})u^{g_{n},\varepsilon}(t_{n},0,v_{n})\|^{2}_{H^{1}_{\varepsilon}(\mathcal{O})}\geq R_{1})\leq\frac{c_{2}c_{3}}{R^{2}_{1}}\rightarrow 0\ \text{as}\ R_{1}\rightarrow\infty.

Therefore, for every δ>0\delta>0, there exists R2=R2(δ)>0R_{2}=R_{2}(\delta)>0 such that for all mm\in\mathbb{N} and nN1n\geq N_{1},

(5.15) ((1θm)ugn,ε(tn,0,vn)2H1ε(𝒪)>R2)<δ.\displaystyle\mathbb{P}(\|(1-\theta_{m})u^{g_{n},\varepsilon}(t_{n},0,v_{n})\|^{2}_{H^{1}_{\varepsilon}(\mathcal{O})}>R_{2})<\delta.

Let

Zδ={ugn,εH1ε(𝒪):ugn,εH1ε(𝒪)R2(δ);ugn,ε(y)=0for a.e.|y|>2m}.Z_{\delta}=\{u^{g_{n},\varepsilon}\in H^{1}_{\varepsilon}(\mathcal{O}):\|u^{g_{n},\varepsilon}\|_{H^{1}_{\varepsilon}(\mathcal{O})}\leq R_{2}(\delta);\quad u^{g_{n},\varepsilon}(y)=0\ \text{for a.e.}\ |y^{*}|>\sqrt{2}m\}.

Then ZδZ_{\delta} is a compact subset of L2(𝒪)L^{2}(\mathcal{O}). By (5.15) we have for all mm\in\mathbb{N} and nN1n\geq N_{1},

(5.16) ({(1θm)ugn,ε(tn,0,vn)Zδ})>1δ.\displaystyle\mathbb{P}(\{(1-\theta_{m})u^{g_{n},\varepsilon}(t_{n},0,v_{n})\in Z_{\delta}\})>1-\delta.

Since δ>0\delta>0 is arbitrary, by (5.16) we find that for every mm\in\mathbb{N},

(5.17) {(1θm)ugn,ε(tn,0,vn)}n=1 is tight inL2(𝒪),\displaystyle\{\mathcal{L}_{(1-\theta_{m})u^{g_{n},\varepsilon}(t_{n},0,v_{n})}\}^{\infty}_{n=1}\text{ is tight in}\ L^{2}(\mathcal{O}),

where (1θm)ugn,ε(tn,0,vn)\mathcal{L}_{(1-\theta_{m})u^{g_{n},\varepsilon}(t_{n},0,v_{n})} is the distribution of (1θm)ugn,ε(tn,0,vn)(1-\theta_{m})u^{g_{n},\varepsilon}(t_{n},0,v_{n}) in L2(𝒪)L^{2}(\mathcal{O}).

Next, we demonstrate that the sequence {ugn,ε(tn,0,vn))}\{\mathcal{L}_{u^{g_{n},\varepsilon}(t_{n},0,v_{n}))}\} is tight in L2(𝒪)L^{2}(\mathcal{O}) by utilizing uniform tail-estimates. Indeed, by invoking Lemma 4.6, we deduce that for every δ1>0\delta_{1}>0, there exists N2=N2(δ)N_{2}=N_{2}(\delta)\in\mathbb{N} and m0=m0(δ)m_{0}=m_{0}(\delta)\in\mathbb{N} such that for all nN2n\geq N_{2},

(5.18) 𝔼(|y|m010|ugn,ε(tn,0,vn)(y,yn+1)|2dyn+1dy))19δ12.\displaystyle\mathbb{E}\left(\int_{|y^{*}|\geq m_{0}}\int^{1}_{0}|u^{g_{n},\varepsilon}(t_{n},0,v_{n})(y^{*},y_{n+1})|^{2}d{y_{n+1}}dy^{*})\right)\leq\frac{1}{9}\delta_{1}^{2}.

By (5.18) we get, for all nN2n\geq N_{2},

(5.19) 𝔼(θm0ugn,ε(tn,0,vn)2)<19δ21.\displaystyle\mathbb{E}\left(\|\theta_{m_{0}}u^{g_{n},\varepsilon}(t_{n},0,v_{n})\|^{2}\right)<\frac{1}{9}\delta^{2}_{1}.

By (5.19), we see that {(1θm0)ugn,ε(tn,0,vn)}n=N2 is tight inL2(𝒪)\{\mathcal{L}_{(1-\theta_{m_{0}})u^{g_{n},\varepsilon}(t_{n},0,v_{n})}\}^{\infty}_{n=N_{2}}\text{ is tight in}\ L^{2}(\mathcal{O}), and hence there exists n1,,nlN2n_{1},\cdots,n_{l}\geq N_{2} such that

(5.20) {(1θm0)ugn,ε(tn,0,vn)}n=N2lj=1B((1θm0)ugn,ε(tnj,0,vnj),13δ1)),\displaystyle\{\mathcal{L}_{(1-\theta_{m_{0}})u^{g_{n},\varepsilon}(t_{n},0,v_{n})}\}^{\infty}_{n=N_{2}}\subset\bigcup\limits^{l}_{j=1}B\left(\mathcal{L}_{(1-\theta_{m_{0}})u^{g_{n},\varepsilon}(t_{n_{j}},0,v_{n_{j}})},\frac{1}{3}\delta_{1})\right),

where B((1θm0)ugn,ε(tnj,0,vnj),13δ1)B\left(\mathcal{L}_{(1-\theta_{m_{0}})u^{g_{n},\varepsilon}(t_{n_{j}},0,v_{n_{j}})},\frac{1}{3}\delta_{1}\right) is the 13δ1\frac{1}{3}\delta_{1}-neighborhood of (1θm0)ugn,ε(tnj,0,vnj)\\ \mathcal{L}_{(1-\theta_{m_{0}})u^{g_{n},\varepsilon}(t_{n_{j}},0,v_{n_{j}})} in the space 𝒫4(L2(𝒪),d𝒫(L2(𝒪)))\mathcal{P}_{4}(L^{2}(\mathcal{O}),d_{\mathcal{P}(L^{2}(\mathcal{O}))}). We claim:

(5.21) {ugn,ε(tn,0,vn)}n=N2lj=1B(ugn,ε(tnj,0,vnj),δ1).\displaystyle\{\mathcal{L}_{u^{g_{n},\varepsilon}(t_{n},0,v_{n})}\}^{\infty}_{n=N_{2}}\subset\bigcup\limits^{l}_{j=1}B\left(\mathcal{L}_{u^{g_{n},\varepsilon}(t_{n_{j}},0,v_{n_{j}})},\delta_{1}\right).

Given nN2n\geq N_{2} by (5.20) we know that there exist j{1,,l}j\in\{1,\cdots,l\} such that

(5.22) (1θm0)ugn,ε(tn,0,vn)B((1θm0)ugn,ε(tnj,0,vnj),13δ1).\displaystyle\mathcal{L}_{(1-\theta_{m_{0}})u^{g_{n},\varepsilon}(t_{n},0,v_{n})}\in B\left(\mathcal{L}_{(1-\theta_{m_{0}})u^{g_{n},\varepsilon}(t_{n_{j}},0,v_{n_{j}})},\frac{1}{3}\delta_{1}\right).

By (5.19) and (5.22) we have

(5.23) d𝒫(L2(𝒪))(ugn,ε(tn,0,vn),ugn,ε(tnj,0,vnj))=supφLb(X)φL1|L2(𝒪)φd(ugn,ε(tn,0,vn)L2(𝒪)φd(ugn,ε(tnj,0,vnj)|supφLb(X)φL1|𝔼(φ(ugn,ε(tn,0,vn)))𝔼(φ(ugn,ε(tnj,0,vnj)))|supφLb(X)φL1|𝔼(φ(ugn,ε(tn,0,vn)))𝔼(φ(1θm0)(ugn,ε(tn,0,vn)))|+supφLb(X)φL1|𝔼(φ(1θm0)(ugn,ε(tn,0,vn)))𝔼(φ(1θm0)(ugn,ε(tnj,0,vnj)))|+supφLb(X)φL1|𝔼(φ(1θm0)(ugn,ε(tnj,0,vnj)))𝔼(φ(ugn,ε(tnj,0,vnj)))|𝔼(θm0ugn,ε(tn,0,vn))+𝔼(θm0(ugn,ε(tnj,0,vnj))+d𝒫(L2(𝒪))(((1θm0)ugn,ε(tn,0,vn),((1θm0)ugn,ε(tnj,0,vnj))13δ1+13δ1+13δ1=δ1,\displaystyle\begin{split}&d_{\mathcal{P}(L^{2}(\mathcal{O}))}\left(\mathcal{L}_{u^{g_{n},\varepsilon}(t_{n},0,v_{n})},\mathcal{L}_{u^{g_{n},\varepsilon}(t_{n_{j}},0,v_{n_{j}})}\right)\\ &=\sup_{\begin{subarray}{c}\varphi\in L_{b}(X)\\ \|\varphi\|_{L}\leq 1\end{subarray}}\left|\int_{L^{2}(\mathcal{O})}\varphi d\mathcal{L}(u^{g_{n},\varepsilon}(t_{n},0,v_{n})-\int_{L^{2}(\mathcal{O})}\varphi d\mathcal{L}(u^{g_{n},\varepsilon}(t_{n_{j}},0,v_{n_{j}})\right|\\ &\leq\sup_{\begin{subarray}{c}\varphi\in L_{b}(X)\\ \|\varphi\|_{L}\leq 1\end{subarray}}\left|\mathbb{E}(\varphi(u^{g_{n},\varepsilon}(t_{n},0,v_{n})))-\mathbb{E}(\varphi(u^{g_{n},\varepsilon}(t_{n_{j}},0,v_{n_{j}})))\right|\\ &\leq\sup_{\begin{subarray}{c}\varphi\in L_{b}(X)\\ \|\varphi\|_{L}\leq 1\end{subarray}}\left|\mathbb{E}(\varphi(u^{g_{n},\varepsilon}(t_{n},0,v_{n})))-\mathbb{E}(\varphi(1-\theta_{m_{0}})(u^{g_{n},\varepsilon}(t_{n},0,v_{n})))\right|\\ &+\sup_{\begin{subarray}{c}\varphi\in L_{b}(X)\\ \|\varphi\|_{L}\leq 1\end{subarray}}\left|\mathbb{E}(\varphi(1-\theta_{m_{0}})(u^{g_{n},\varepsilon}(t_{n},0,v_{n})))-\mathbb{E}(\varphi(1-\theta_{m_{0}})(u^{g_{n},\varepsilon}(t_{n_{j}},0,v_{n_{j}})))\right|\\ &+\sup_{\begin{subarray}{c}\varphi\in L_{b}(X)\\ \|\varphi\|_{L}\leq 1\end{subarray}}\left|\mathbb{E}(\varphi(1-\theta_{m_{0}})(u^{g_{n},\varepsilon}(t_{n_{j}},0,v_{n_{j}})))-\mathbb{E}(\varphi(u^{g_{n},\varepsilon}(t_{n_{j}},0,v_{n_{j}})))\right|\\ &\leq\mathbb{E}(\|\theta_{m_{0}}u^{g_{n},\varepsilon}(t_{n},0,v_{n})\|)+\mathbb{E}(\|\theta_{m_{0}}(u^{g_{n},\varepsilon}(t_{n_{j}},0,v_{n_{j}})\|)\\ &+d_{\mathcal{P}(L^{2}(\mathcal{O}))}\left(\mathcal{L}((1-\theta_{m_{0}})u^{g_{n},\varepsilon}(t_{n},0,v_{n}),\mathcal{L}((1-\theta_{m_{0}})u^{g_{n},\varepsilon}(t_{n_{j}},0,v_{n_{j}})\right)\\ &\leq\frac{1}{3}\delta_{1}+\frac{1}{3}\delta_{1}+\frac{1}{3}\delta_{1}=\delta_{1},\end{split}

which leads to the conclusion stated in (5.21). Since δ1>0\delta_{1}>0 is arbitrary, we infer from (5.21) that the sequence ugn,ε(tn,0,vn)\mathcal{L}_{u^{g_{n},\varepsilon}(t_{n},0,v_{n})} is tight in L2(𝒪)L^{2}(\mathcal{O}). Consequently, there exists ν𝒫(L2(𝒪))\nu\in\mathcal{P}(L^{2}(\mathcal{O})) such that, possibly along a subsequence,

(5.24) ugn,ε(tn,0,vn)νweakly.\displaystyle\mathcal{L}_{u^{g_{n},\varepsilon}(t_{n},0,v_{n})}\rightarrow\nu\ \text{weakly}.

It remains to show ν𝒫4(L2(𝒪))\nu\in\mathcal{P}_{4}(L^{2}(\mathcal{O})). Let KK be the closed uniform absorbing set of {Ug,ε}g(g0)\{U^{g,\varepsilon}\}_{g\in\mathcal{H}(g_{0})} given by (5.9). Then there exists N3N_{3}\in\mathbb{N} such that for all nN3n\geq N_{3}

(5.25) ugn,ε(tn,0,vn)K.\displaystyle\mathcal{L}_{u^{g_{n},\varepsilon}(t_{n},0,v_{n})}\in K.

Since KK is closed with respect to the weak topology of 𝒫4(L2(𝒪))\mathcal{P}_{4}(L^{2}(\mathcal{O})), by (5.24)-(5.25) we obtain νK\nu\in K and thus ν𝒫4(L2(𝒪))\nu\in\mathcal{P}_{4}(L^{2}(\mathcal{O})). This completes the proof. ∎

Theorem 5.1.

Suppose (A1)\mathbf{(}A1)-(A3)\mathbf{(}A3) and (3.28) hold. Then the family of processes {Ug,ε(t,τ)}g(g0)\\ \{U^{g,\varepsilon}(t,\tau)\}_{g\in\mathcal{H}(g_{0})} associated with (3.21) has a unique uniform measure attractor 𝒜ε\mathcal{A}_{\varepsilon} in 𝒫4(L2(𝒪))\mathcal{P}_{4}(L^{2}(\mathcal{O})), which is given by

𝒜ε=g(g0)𝒦g,ε(0).\mathcal{A}_{\varepsilon}=\underset{g\in\mathcal{H}\left(g_{0}\right)}{\cup}\mathcal{K}_{g,\varepsilon}(0).
Proof..

According to Lemma 5.1, the family of processes {Ug,ε(t,τ)}g(g0)\{U^{g,\varepsilon}(t,\tau)\}_{g\in\mathcal{H}(g_{0})} possesses joint continuity over bounded of 𝒫4(L2(𝒪))\mathcal{P}_{4}(L^{2}(\mathcal{O})) and (g0)\mathcal{H}(g_{0}). Leveraging Lemmas 5.1, 5.2 and 5.3, Theorem 2.2 subsequently yields the existence and uniqueness of the uniform measure attractors for the aforementioned family of processes {Ug,ε(t,τ)}g(g0)\{U^{g,\varepsilon}(t,\tau)\}_{g\in\mathcal{H}(g_{0})}. ∎

The next result is concerned with existence and uniqueness of uniform measure attractors for {Ug,0(t,τ)}g(g0)\{U^{g,0}(t,\tau)\}_{g\in\mathcal{H}(g_{0})} associated with problem (3.22) which is analogous to Theorem 5.1.

Theorem 5.2.

Suppose (A1)\mathbf{(}A1)-(A3)\mathbf{(}A3) and (3.28) hold. Then the family of processes {Ug,0(t,τ)}g(g0)\\ \{U^{g,0}(t,\tau)\}_{g\in\mathcal{H}(g_{0})} associated with (3.22) has a unique uniform measure attractor 𝒜0\mathcal{A}_{0} in 𝒫4(L2(n))\mathcal{P}_{4}(L^{2}(\mathbb{R}^{n})) which is given by

𝒜0=g(g0)𝒦g,0(0).\mathcal{A}_{0}=\underset{g\in\mathcal{H}\left(g_{0}\right)}{\cup}\mathcal{K}_{g,0}(0).

6. Upper semicontinuity of uniform measure attractors

In this section, we prove the upper semicontinuity of uniform measure attractors for the non-autonomous stochastic reaction-diffusion equations when the (n+1)(n+1)-dimensional thin domains collapse to an nn-dimensional domain. To that end, we need the average operator :L2(𝒪)\mathcal{M}:L^{2}(\mathcal{O})\rightarrow L2(n)L^{2}(\mathbb{R}^{n}) as given by: for every φL2(𝒪)\varphi\in L^{2}(\mathcal{O}),

φ(y)=01φ(y,yn+1)dyn+1,yn.\mathcal{M}\varphi\left(y^{*}\right)=\int_{0}^{1}\varphi\left(y^{*},y_{n+1}\right)dy_{n+1},\quad y^{*}\in\mathbb{R}^{n}.

Let :L2(n)L2(𝒪)\mathcal{I}:L^{2}(\mathbb{R}^{n})\rightarrow L^{2}(\mathcal{O}) be the operator given by: for every φL2(n)\varphi\in L^{2}(\mathbb{R}^{n}),

φ(y)=φ(y),y=(y,yn+1)𝒪.\mathcal{I}\varphi(y)=\varphi\left(y^{*}\right),\quad\forall y=\left(y^{*},y_{n+1}\right)\in\mathcal{O}.

The following property of the operator \mathcal{M} from [15] will be used in the sequel.

Lemma 6.1.

If uH1(𝒪)u\in H^{1}(\mathcal{O}), then uH1(n)\mathcal{M}u\in H^{1}(\mathbb{R}^{n}) and

uuHρ(𝒪)e1εuHε1(𝒪),\|u-\mathcal{M}u\|_{H_{\rho}(\mathcal{O})}\leq e_{1}\varepsilon\|u\|_{H_{\varepsilon}^{1}(\mathcal{O})},

where e1>0e_{1}>0 is a constant independent of ε\varepsilon and uu.

To that end, we assume that all the functions fε,ϖkf_{\varepsilon},\varpi_{k} in (3.16) satisfy the conditions (A1)\mathbf{(}A1)-(A3)\mathbf{(}A3). Furthermore, we assume that all ε(0.1)\varepsilon\in(0.1), t,st,s\in\mathbb{R}, yny^{*}\in\mathbb{R}^{n} and μ𝒫2(L2(𝒪))\mu\in\mathcal{P}_{2}(L^{2}(\mathcal{O})),

(6.1) |fε(y,s,μ)f0(y,s,μ)|εκ1,for alls,\displaystyle|f_{\varepsilon}(y,s,\mu)-f_{0}(y^{*},s,\mu)|\leq\varepsilon\kappa_{1},\quad\text{for all}\ s\in\mathbb{R},
(6.2) σk,εσk,0L2(𝒪)ϱkε,\displaystyle\|\sigma_{k,\varepsilon}-\sigma_{k,0}\|_{L^{2}(\mathcal{O})}\leq\varrho_{k}\varepsilon,

where κ1>0,\kappa_{1}>0, and ϱk,k\varrho_{k},k\in\mathbb{N}, with k=1ξk2<\sum\limits^{\infty}_{k=1}\xi_{k}^{2}<\infty.

We now write the process associated with (3.21) as Ug,εU^{g,\varepsilon} and use Ug,0U^{g,0} for the process associated with (3.22). The uniform measure attractors of Ug,εU^{g,\varepsilon} and Ug,0U^{g,0} are denoted by 𝒜ε\mathcal{A}_{\varepsilon} and 𝒜0\mathcal{A}_{0}, respectively.

Lemma 6.2.

Suppose (A1)\mathbf{(}A1)-(A3)\mathbf{(}A3), (3.28) and (6.1)-(6.2) hold. For every τ\tau\in\mathbb{R}, T>0T>0 and R>0R>0, and g(g0)g\in\mathcal{H}(g_{0}), we have

limε0sup𝔼(ξε2H1ε(𝒪))Rsupτtτ+T𝔼(ug,ε(t,τ,ξε)ug,0(t,τ,ξε)2)=0.\lim_{\varepsilon\rightarrow 0}\sup_{\mathbb{E}(\|\xi^{\varepsilon}\|^{2}_{H^{1}_{\varepsilon}(\mathcal{O})})\leq R}\sup_{\tau\leq t\leq\tau+T}\mathbb{E}\left(\|u^{g,\varepsilon}(t,\tau,\xi^{\varepsilon})-u^{g,0}(t,\tau,\mathcal{M}\xi^{\varepsilon})\|^{2}\right)=0.
Proof..

Let uε(t)=ug,ε(t,τ,ξε)u^{\varepsilon}(t)=u^{g,\varepsilon}\left(t,\tau,\xi^{\varepsilon}\right), u0(t)=ug,0(t,τ,ξε)u^{0}(t)=u^{g,0}\left(t,\tau,\mathcal{M}\xi^{\varepsilon}\right) and vε(t)=uε(t)u0(t)v^{\varepsilon}(t)=u^{\varepsilon}(t)-u^{0}(t). By (3.24) and (3.25), we have, for all t>τt>\tau,

dvε(t)+(Aεuε(t)A0u0(t))dt+λvε(t)dt+(fε(y,uε(t),uε)f0(y,u0(t),uε))dt\displaystyle dv^{\varepsilon}(t)+\left(A_{\varepsilon}u^{\varepsilon}(t)-A_{0}u^{0}(t)\right)dt+\lambda v^{\varepsilon}(t)dt+\left(f_{\varepsilon}\left(y,u^{\varepsilon}(t),\mathcal{L}_{u^{\varepsilon}}\right)-f_{0}\left(y^{*},u^{0}(t),\mathcal{L}_{u^{\varepsilon}}\right)\right)dt
=k=1((σk,ε(y)σk,0(y))+(ϖk(uε(t),(uε(t)))ϖk(u0(t).(u0(t))))dWk(t).\displaystyle=\sum_{k=1}^{\infty}\left(\left(\sigma_{k,\varepsilon}(y)-\sigma_{k,0}\left(y^{*}\right)\right)+\left(\varpi_{k}\left(u^{\varepsilon}(t),\mathcal{L}({u^{\varepsilon}(t)})\right)-\varpi_{k}\left(u^{0}(t).\mathcal{L}({u^{0}(t)}\right)\right)\right)dW_{k}(t).

By Ito’s formula, we obtain for tτt\geq\tau,

(6.3) vε(t)Hρ(𝒪)2=ξεξεHρ(𝒪)22τt(Aεuε(s)A0u0(s),vε(s))Hρ(𝒪)ds2λtτvε(s)ρ(𝒪)ds2tτ(fε(,uε(s),uε(s))f0(,u0(s),uε(s)),vε)Hρ(𝒪)ds+k=1τtσk,εσk,0+κϖk(uε(s),uε(s))κϖk(u0(s),u0(s))Hρ(𝒪)2ds+2k=1τt(σk,εσk,0,vε(s))Hρ(𝒪)dWk(s)+2k=1τt(κϖk(uε(s),uε(s))κϖk(u0(s),u0(s)),vε(s))Hρ(𝒪)dWk(s).\displaystyle\begin{split}&\left\|v^{\varepsilon}(t)\right\|_{H_{\rho}(\mathcal{O})}^{2}\\ &=\left\|\xi^{\varepsilon}-\mathcal{M}\xi^{\varepsilon}\right\|_{H_{\rho}(\mathcal{O})}^{2}-2\int_{\tau}^{t}\left(A_{\varepsilon}u^{\varepsilon}(s)-A_{0}u^{0}(s),v^{\varepsilon}(s)\right)_{H_{\rho}(\mathcal{O})}ds\\ &-2\lambda\int^{t}_{\tau}\|v^{\varepsilon}(s)\|_{\mathcal{H}_{\rho}(\mathcal{O})}ds-2\int^{t}_{\tau}\left(f_{\varepsilon}\left(\cdot,u^{\varepsilon}(s),\mathcal{L}_{u^{\varepsilon}(s)}\right)-f_{0}\left(\cdot,u^{0}(s),\mathcal{L}_{u^{\varepsilon}(s)}\right),v^{\varepsilon}\right)_{H_{\rho}(\mathcal{O})}ds\\ &+\sum_{k=1}^{\infty}\int_{\tau}^{t}\left\|\sigma_{k,\varepsilon}-\sigma_{k,0}+\kappa\varpi_{k}\left(u^{\varepsilon}(s),\mathcal{L}_{u^{\varepsilon}(s)}\right)-\kappa\varpi_{k}\left(u^{0}(s),\mathcal{L}_{u^{0}(s)}\right)\right\|_{H_{\rho}(\mathcal{O})}^{2}ds\\ &+2\sum_{k=1}^{\infty}\int_{\tau}^{t}\left(\sigma_{k,\varepsilon}-\sigma_{k,0},v^{\varepsilon}(s)\right)_{H_{\rho}(\mathcal{O})}dW_{k}(s)\\ &+2\sum_{k=1}^{\infty}\int_{\tau}^{t}\left(\kappa\varpi_{k}\left(u^{\varepsilon}(s),\mathcal{L}_{u^{\varepsilon}(s)}\right)-\kappa\varpi_{k}\left(u^{0}(s),\mathcal{L}_{u^{0}(s)}\right),v^{\varepsilon}(s)\right)_{H_{\rho}(\mathcal{O})}dW_{k}(s).\end{split}

For the second term on the right-hand of (6.3), we have

(6.4) 2τt(Aεuε(s)A0u0(s),vε(s))Hρ(𝒪)ds=2τt(Aεuε(s),vε(s))Hρ(𝒪)ds+2τt(A0u0(s),vε(s))Hρ(𝒪)ds=2τt(Aεuε(s),vε(s))Hρ(𝒪)ds+2ni=1τt(u0yi(s),vεyi(s))Hρ(𝒪)=2τtaε(uε(s),vε(s))ds+2τtaε(u0(s),vε(s))ds+2ni=1tτ(ρyiρu0yi(s),yn+1(uεyn+1(s)u0yn+1(s)))Hρ(𝒪)ds=2tτaε(vε(s),vε(s))ds+2ni=1tτ(ρyiρu0yi(s),yn+1(uεyn+1(s)u0yn+1(s)))Hρ(𝒪)ds.\displaystyle\begin{split}&-2\int_{\tau}^{t}\left(A_{\varepsilon}u^{\varepsilon}(s)-A_{0}u^{0}(s),v^{\varepsilon}(s)\right)_{H_{\rho}(\mathcal{O})}ds\\ &=-2\int_{\tau}^{t}\left(A_{\varepsilon}u^{\varepsilon}(s),v^{\varepsilon}(s)\right)_{H_{\rho}(\mathcal{O})}ds+2\int_{\tau}^{t}\left(A_{0}u^{0}(s),v^{\varepsilon}(s)\right)_{H_{\rho}(\mathcal{O})}ds\\ &=-2\int_{\tau}^{t}\left(A_{\varepsilon}u^{\varepsilon}(s),v^{\varepsilon}(s)\right)_{H_{\rho}(\mathcal{O})}ds+2\sum^{n}_{i=1}\int_{\tau}^{t}\left(u^{0}_{y_{i}}(s),v^{\varepsilon}_{y_{i}}(s)\right)_{H_{\rho}(\mathcal{O})}\\ &=-2\int_{\tau}^{t}a_{\varepsilon}\left(u^{\varepsilon}(s),v^{\varepsilon}(s)\right)ds+2\int_{\tau}^{t}a_{\varepsilon}\left(u^{0}(s),v^{\varepsilon}(s)\right)ds\\ &+2\sum^{n}_{i=1}\int^{t}_{\tau}(\frac{\rho_{y_{i}}}{\rho}u^{0}_{y_{i}}(s),y_{n+1}(u^{\varepsilon}_{y_{n+1}}(s)-u^{0}_{y_{n+1}}(s)))_{H_{\rho}(\mathcal{O})}ds\\ &=-2\int^{t}_{\tau}a_{\varepsilon}\left(v^{\varepsilon}(s),v^{\varepsilon}(s)\right)ds\\ &+2\sum^{n}_{i=1}\int^{t}_{\tau}(\frac{\rho_{y_{i}}}{\rho}u^{0}_{y_{i}}(s),y_{n+1}(u^{\varepsilon}_{y_{n+1}}(s)-u^{0}_{y_{n+1}}(s)))_{H_{\rho}(\mathcal{O})}ds.\end{split}

For the fourth term on the right-hand of (6.3), by (3)-(3.6) and (6.1) we have

(6.5) 2tτ𝒪ρ(fε(y,uε(s),uε(s))f0(y,u0(s),u0(s))vε(s,y))dyds=2tτ𝒪ρ(f(y,εg(y)yn+1,uε(s,y),uε(s))f(y,εg(y)yn+1,u0(s,y),uε(s)))vε(s,y)dyds2tτ𝒪ρ(f(y,εg(y)yn+1,u0(s,y),uε(s))f(y,εg(y)yn+1,u0(s,y),u0(s)))vε(s,y)dyds2tτ𝒪ρf(y,εg(y)yn+1,u0(s,y),u0(s)))f(y,0,u0(s,y),u0(s)))vε(s,y)dyds2tτ𝒪ρϕ4(y)|vε(s,y)|2dyds+2tτ𝒪ρϕ3(y)|vε(s,y)|𝔼(vε(s)2)dyds+ε(κ12(tτ)+tτvε(s)2Hρ(𝒪)ds)2tτϕ4L(n)vε(s)2Hρ(𝒪)ds+tτ(ϕ3L(n)vε(s)2Hρ(𝒪)+ϕ3L1(n)𝔼(vε(s)2Hρ(𝒪)))ds+ε(κ12(tτ)+tτvε(s)2Hρ(𝒪)ds).\displaystyle\begin{split}&-2\int^{t}_{\tau}\int_{\mathcal{O}}\rho\left(f_{\varepsilon}\left(y,u^{\varepsilon}(s),\mathcal{L}_{u^{\varepsilon}(s)}\right)-f_{0}\left(y^{*},u^{0}(s),\mathcal{L}_{u^{0}(s)}\right)v^{\varepsilon}(s,y)\right)dyds\\ &=-2\int^{t}_{\tau}\int_{\mathcal{O}}\rho(f(y^{*},\varepsilon g(y^{*})y_{n+1},u^{\varepsilon}(s,y),\mathcal{L}_{u^{\varepsilon}(s)})-f(y^{*},\varepsilon g(y^{*})y_{n+1},u^{0}(s,y),\mathcal{L}_{u^{\varepsilon}(s)}))v^{\varepsilon}(s,y)dyds\\ &-2\int^{t}_{\tau}\int_{\mathcal{O}}\rho(f(y^{*},\varepsilon g(y^{*})y_{n+1},u^{0}(s,y),\mathcal{L}_{u^{\varepsilon}(s)})-f(y^{*},\varepsilon g(y^{*})y_{n+1},u^{0}(s,y),\mathcal{L}_{u^{0}(s)}))v^{\varepsilon}(s,y)dyds\\ &-2\int^{t}_{\tau}\int_{\mathcal{O}}\rho f(y^{*},\varepsilon g(y^{*})y_{n+1},u^{0}(s,y),\mathcal{L}_{u^{0}(s)}))-f(y^{*},0,u^{0}(s,y),\mathcal{L}_{u^{0}(s)}))v^{\varepsilon}(s,y)dyds\\ &\leq 2\int^{t}_{\tau}\int_{\mathcal{O}}\rho\phi_{4}(y^{*})|v^{\varepsilon}(s,y)|^{2}dyds+2\int^{t}_{\tau}\int_{\mathcal{O}}\rho\phi_{3}(y^{*})|v^{\varepsilon}(s,y)|\sqrt{\mathbb{E}(\|v^{\varepsilon}(s)\|^{2})}dyds\\ &+\varepsilon\left(\kappa_{1}^{2}(t-\tau)+\int^{t}_{\tau}\|v^{\varepsilon}(s)\|^{2}_{H_{\rho}(\mathcal{O})}ds\right)\\ &\leq 2\int^{t}_{\tau}\|\phi_{4}\|_{L^{\infty}(\mathbb{R}^{n})}\|v^{\varepsilon}(s)\|^{2}_{H_{\rho}(\mathcal{O})}ds\\ &+\int^{t}_{\tau}(\|\phi_{3}\|_{L^{\infty}(\mathbb{R}^{n})}\|v^{\varepsilon}(s)\|^{2}_{H_{\rho}(\mathcal{O})}+\|\phi_{3}\|_{L^{1}(\mathbb{R}^{n})}\mathbb{E}(\|v^{\varepsilon}(s)\|^{2}_{H_{\rho}(\mathcal{O})}))ds\\ &+\varepsilon\left(\kappa_{1}^{2}(t-\tau)+\int^{t}_{\tau}\|v^{\varepsilon}(s)\|^{2}_{H_{\rho}(\mathcal{O})}ds\right).\end{split}

By (6.2), we have

(6.6) k=1tτσk,εσk,02Hρ(𝒪)dtc1ε2(tτ).\displaystyle\sum^{\infty}_{k=1}\int^{t}_{\tau}\|\sigma_{k,\varepsilon}-\sigma_{k,0}\|^{2}_{H_{\rho}(\mathcal{O})}dt\leq c_{1}\varepsilon^{2}(t-\tau).

It follows from (3.12) we have

κ(ϖk(uε(s),uε(s))ϖk(u0(s),u0(s)))Hρ(𝒪)2\displaystyle\|\kappa\left(\varpi_{k}\left(u^{\varepsilon}(s),\mathcal{L}_{u^{\varepsilon}(s)}\right)-\varpi_{k}\left(u^{0}(s),\mathcal{L}_{u^{0}(s)}\right)\right)\|_{H_{\rho}(\mathcal{O})}^{2}
(6.7) 2Lϖ2l2tτ(κ2L(n)vε(s)2Hρ(𝒪)+κL2(n)𝔼(vε(s)2Hρ(𝒪)))ds.\displaystyle\leq 2\|L_{\varpi}\|^{2}_{l^{2}}\int^{t}_{\tau}\left(\|\kappa\|^{2}_{L^{\infty}(\mathbb{R}^{n})}\|v^{\varepsilon}(s)\|^{2}_{H_{\rho}(\mathcal{O})}+\|\kappa\|_{L^{2}(\mathbb{R}^{n})}\mathbb{E}(\|v^{\varepsilon}(s)\|^{2}_{H_{\rho}(\mathcal{O})})\right)ds.

Nexy, by (3.18), we obtain

(6.8) 2ni=1tτ(ρyiρu0yi(s),yn+1(uεyn+1(s)u0yn+1(s))))Hρ(𝒪)ds2ni=1tτ(ρyiu0yi(s),yn+1(uεyn+1(s)u0yn+1(s)))L2(𝒪)dsc2εtτ(u0(s)2H1(n)uε(s)u0(s)H1ε(𝒪))dsc3εtτu0(s)2H1(n)+uε(s)2H1ε(𝒪)ds.\displaystyle\begin{split}&2\sum^{n}_{i=1}\int^{t}_{\tau}(\frac{\rho_{y_{i}}}{\rho}u^{0}_{y_{i}}(s),y_{n+1}(u^{\varepsilon}_{y_{n+1}}(s)-u^{0}_{y_{n+1}}(s))))_{H_{\rho}(\mathcal{O})}ds\\ &\leq 2\sum^{n}_{i=1}\int^{t}_{\tau}(\rho_{y_{i}}u^{0}_{y_{i}}(s),y_{n+1}(u^{\varepsilon}_{y_{n+1}}(s)-u^{0}_{y_{n+1}}(s)))_{L^{2}(\mathcal{O})}ds\\ &\leq c_{2}\varepsilon\int^{t}_{\tau}\left(\|u^{0}(s)\|^{2}_{H^{1}(\mathbb{R}^{n})}\|u^{\varepsilon}(s)-u^{0}(s)\|_{H^{1}_{\varepsilon}(\mathcal{O})}\right)ds\\ &\leq c_{3}\varepsilon\int^{t}_{\tau}\|u^{0}(s)\|^{2}_{H^{1}(\mathbb{R}^{n})}+\|u^{\varepsilon}(s)\|^{2}_{H^{1}_{\varepsilon}(\mathcal{O})}ds.\end{split}

Taking the expectation of (6.3) and using (6.4)-(6.8), we obtain for all tτt\geq\tau and ε(0,ε0)\varepsilon\in(0,\varepsilon_{0}),

(6.9) 𝔼(vε(t)Hρ(𝒪)2)𝔼(ξεξεHρ(𝒪)2)+c3εtτ𝔼(u0(s)2H1(n)+uε(s)2H1ε(𝒪))ds+c4tτ𝔼(vε(s)2Hρ(𝒪))ds+εκ12(tτ)+c1ε2(tτ).\displaystyle\begin{split}&\mathbb{E}\left(\left\|v^{\varepsilon}(t)\right\|_{H_{\rho}(\mathcal{O})}^{2}\right)\leq\mathbb{E}\left(\left\|\xi^{\varepsilon}-\mathcal{M}\xi^{\varepsilon}\right\|_{H_{\rho}(\mathcal{O})}^{2}\right)\\ &+c_{3}\varepsilon\int^{t}_{\tau}\mathbb{E}\left(\|u^{0}(s)\|^{2}_{H^{1}(\mathbb{R}^{n})}+\|u^{\varepsilon}(s)\|^{2}_{H^{1}_{\varepsilon}(\mathcal{O})}\right)ds\\ &+c_{4}\int^{t}_{\tau}\mathbb{E}\left(\|v^{\varepsilon}(s)\|^{2}_{H_{\rho}(\mathcal{O})}\right)ds+\varepsilon\kappa_{1}^{2}(t-\tau)+c_{1}\varepsilon^{2}(t-\tau).\end{split}

By (6.9), Lemma 4.2 and Lemma 4.3 we find that for every T>0T>0, there exists c5=c5(T,R)>0c_{5}=c_{5}(T,R)>0 such that for all τTτ+T\tau\leq T\leq\tau+T, ε(0,ε0)\varepsilon\in(0,\varepsilon_{0}) and ξεL2(Ω,τ,L2(𝒪))\xi^{\varepsilon}\in L^{2}(\Omega,\mathcal{F}_{\tau},L^{2}(\mathcal{O})) with 𝔼(ξε2H1ε(𝒪))R\mathbb{E}(\|\xi^{\varepsilon}\|^{2}_{H^{1}_{\varepsilon}(\mathcal{O})})\leq R,

(6.10) 𝔼(vε(t)Hρ(𝒪)2)𝔼(ξεξεHρ(𝒪)2)+c4tτ𝔼(vε(s)2Hρ(𝒪))ds+εκ12T+c5ε+c1ε2T.\displaystyle\begin{split}&\mathbb{E}\left(\left\|v^{\varepsilon}(t)\right\|_{H_{\rho}(\mathcal{O})}^{2}\right)\leq\mathbb{E}\left(\left\|\xi^{\varepsilon}-\mathcal{M}\xi^{\varepsilon}\right\|_{H_{\rho}(\mathcal{O})}^{2}\right)\\ &+c_{4}\int^{t}_{\tau}\mathbb{E}\left(\|v^{\varepsilon}(s)\|^{2}_{H_{\rho}(\mathcal{O})}\right)ds+\varepsilon\kappa_{1}^{2}T+c_{5}\varepsilon+c_{1}\varepsilon^{2}T.\end{split}

Then by Gronwall’s inequality and Lemma 6.1, we infer that for all τtτ+T\tau\leq t\leq\tau+T, ε(0,ε0)\varepsilon\in(0,\varepsilon_{0}) and ξεL2(Ω,τ,L2(𝒪))\xi^{\varepsilon}\in L^{2}(\Omega,\mathcal{F}_{\tau},L^{2}(\mathcal{O})) with 𝔼(ξε2H1ε(𝒪))R\mathbb{E}(\|\xi^{\varepsilon}\|^{2}_{H^{1}_{\varepsilon}(\mathcal{O})})\leq R,

(6.11) 𝔼(vε(t)Hρ(𝒪)2)(𝔼(ξεξεHρ(𝒪)2)+εκ12T+c5ε+c1ε2T)ec4(tτ)(c6𝔼(ξεH1ε(𝒪)2)+εκ12T+c5ε+c1ε2T)ec4T(c6Rε+εκ12T+c5ε+c1ε2T)ec4T.\displaystyle\begin{split}&\mathbb{E}\left(\left\|v^{\varepsilon}(t)\right\|_{H_{\rho}(\mathcal{O})}^{2}\right)\leq\left(\mathbb{E}\left(\left\|\xi^{\varepsilon}-\mathcal{M}\xi^{\varepsilon}\right\|_{H_{\rho}(\mathcal{O})}^{2}\right)+\varepsilon\kappa_{1}^{2}T+c_{5}\varepsilon+c_{1}\varepsilon^{2}T\right)e^{c_{4}(t-\tau)}\\ &\leq\left(c_{6}\mathbb{E}\left(\left\|\xi^{\varepsilon}\right\|_{H^{1}_{\varepsilon}(\mathcal{O})}^{2}\right)+\varepsilon\kappa_{1}^{2}T+c_{5}\varepsilon+c_{1}\varepsilon^{2}T\right)e^{c_{4}T}\\ &\leq\left(c_{6}R\varepsilon+\varepsilon\kappa_{1}^{2}T+c_{5}\varepsilon+c_{1}\varepsilon^{2}T\right)e^{c_{4}T}.\end{split}

It follows from (6.11) that

(6.12) limε0sup𝔼(ξε2H1ε(𝒪))Rsupτtτ+T𝔼(ug,ε(t,τ,ξε)ug,0(t,τ,ξε)2L2(𝒪))=0.\displaystyle\lim_{\varepsilon\rightarrow 0}\sup_{\mathbb{E}(\|\xi^{\varepsilon}\|^{2}_{H^{1}_{\varepsilon}(\mathcal{O})})\leq R}\sup_{\tau\leq t\leq\tau+T}\mathbb{E}\left(\|u^{g,\varepsilon}(t,\tau,\xi^{\varepsilon})-u^{g,0}(t,\tau,\mathcal{M}\xi^{\varepsilon})\|^{2}_{L^{2}(\mathcal{O})}\right)=0.

Corollary 6.1.

Suppose (A1)\mathbf{(}A1)-(A3)\mathbf{(}A3), (3.28) and (6.1)-(6.2) hold. For every τ\tau\in\mathbb{R}, tτt\geq\tau and R>0R>0, and g(g0)g\in\mathcal{H}(g_{0}), we have

limε0supμεB1ε(R)d𝒫(L2(𝒪))(Ug,ε(t,τ)με,(Ug,0(t,τ)(με1))1)=0,\lim_{\varepsilon\rightarrow 0}\sup_{\mu^{\varepsilon}\in B^{1}_{\varepsilon}(R)}d_{\mathcal{P}(L^{2}(\mathcal{O}))}\left(U^{g,\varepsilon}(t,\tau)\mu^{\varepsilon},\left(U^{g,0}(t,\tau)(\mu^{\varepsilon}\circ\mathcal{M}^{-1})\right)\circ\mathcal{I}^{-1}\right)=0,

where B1ε(R)={μ𝒫2(L2(𝒪)):H1ε(𝒪)ξ2H1ε(𝒪)μ(dξ)R}B^{1}_{\varepsilon}(R)=\{\mu\in\mathcal{P}_{2}(L^{2}(\mathcal{O})):\int_{{H^{1}_{\varepsilon}(\mathcal{O})}}\|\xi\|^{2}_{{H^{1}_{\varepsilon}(\mathcal{O})}}\mu(d\xi)\leq R\}.

Proof..

Note that for all tτt\geq\tau we have

(6.13) sup𝔼(ξε2H1ε(𝒪))RsupφLb(L2(𝒪))φL1|𝔼(φ(ug,ε(t,τ,ξε)))E(φ(ug,0(t,τ,ξε)))|sup𝔼(ξε2H1ε(𝒪))RsupφLb(L2(𝒪))φL1𝔼(|φ(ug,ε(t,τ,ξε))φ(ug,0(t,τ,ξε))|)sup𝔼(ξε2H1ε(𝒪))R𝔼((ug,ε(t,τ,ξε))(ug,0(t,τ,ξε))L2(𝒪))(sup𝔼(ξε2H1ε(𝒪))R𝔼((ug,ε(t,τ,ξε))(ug,0(t,τ,ξε))2L2(𝒪)))12,\displaystyle\begin{split}&\sup_{\mathbb{E}(\|\xi^{\varepsilon}\|^{2}_{H^{1}_{\varepsilon}(\mathcal{O})})\leq R}\sup_{\begin{subarray}{c}\varphi\in L_{b}(L^{2}(\mathcal{O}))\\ \|\varphi\|_{L}\leq 1\end{subarray}}|\mathbb{E}\left(\varphi(u^{g,\varepsilon}(t,\tau,\xi^{\varepsilon}))\right)-E\left(\varphi(u^{g,0}(t,\tau,\mathcal{M}\xi^{\varepsilon}))\right)|\\ &\leq\sup_{\mathbb{E}(\|\xi^{\varepsilon}\|^{2}_{H^{1}_{\varepsilon}(\mathcal{O})})\leq R}\sup_{\begin{subarray}{c}\varphi\in L_{b}(L^{2}(\mathcal{O}))\\ \|\varphi\|_{L}\leq 1\end{subarray}}\mathbb{E}\left(|\varphi(u^{g,\varepsilon}(t,\tau,\xi^{\varepsilon}))-\varphi(u^{g,0}(t,\tau,\mathcal{M}\xi^{\varepsilon}))|\right)\\ &\leq\sup_{\mathbb{E}(\|\xi^{\varepsilon}\|^{2}_{H^{1}_{\varepsilon}(\mathcal{O})})\leq R}\mathbb{E}\left(\|(u^{g,\varepsilon}(t,\tau,\xi^{\varepsilon}))-(u^{g,0}(t,\tau,\mathcal{M}\xi^{\varepsilon}))\|_{L^{2}(\mathcal{O})}\right)\\ &\leq\left(\sup_{\mathbb{E}(\|\xi^{\varepsilon}\|^{2}_{H^{1}_{\varepsilon}(\mathcal{O})})\leq R}\mathbb{E}\left(\|(u^{g,\varepsilon}(t,\tau,\xi^{\varepsilon}))-(u^{g,0}(t,\tau,\mathcal{M}\xi^{\varepsilon}))\|^{2}_{L^{2}(\mathcal{O})}\right)\right)^{\frac{1}{2}},\end{split}

which along with (6.12) implies that for all tτt\geq\tau,

(6.14) limε0sup𝔼(ξε2H1ε(𝒪))RsupφLb(L2(𝒪))φL1|𝔼(φ(ug,ε(t,τ,ξε)))E(φ(ug,0(t,τ,ξε)))|=0.\displaystyle\lim_{\varepsilon\rightarrow 0}\sup_{\mathbb{E}(\|\xi^{\varepsilon}\|^{2}_{H^{1}_{\varepsilon}(\mathcal{O})})\leq R}\sup_{\begin{subarray}{c}\varphi\in L_{b}(L^{2}(\mathcal{O}))\\ \|\varphi\|_{L}\leq 1\end{subarray}}|\mathbb{E}\left(\varphi(u^{g,\varepsilon}(t,\tau,\xi^{\varepsilon}))\right)-E\left(\varphi(u^{g,0}(t,\tau,\mathcal{M}\xi^{\varepsilon}))\right)|=0.

This completes the proof. ∎

Next, we discuss the the upper semicontinuity of uniform measure attractors of (3.21).

Theorem 6.1.

Assume that (A1)\mathbf{(}A1)-(A3)\mathbf{(}A3) and (6.1)-(6.2) hold. Then the uniform measure attractors AεA_{\varepsilon} are upper semicontinuous at ε=0\varepsilon=0,

(6.15) limε0d𝒫(L2(𝒪))(𝒜ε,𝒜01)=0.\displaystyle\lim\limits_{\varepsilon\rightarrow 0}d_{\mathcal{P}(L^{2}(\mathcal{O}))}\left(\mathcal{A}_{\varepsilon},\mathcal{A}_{0}\circ\mathcal{I}^{-1}\right)=0.
Proof..

By Lemma 4.5 we find that

(6.16) H1ε(𝒪)ξ2H1ε(𝒪)μ(dξ)K1for all 0<ε<ε0andμ𝒜ε,\displaystyle\int_{H^{1}_{\varepsilon}(\mathcal{O})}\|\xi\|^{2}_{H^{1}_{\varepsilon}(\mathcal{O})}\mu(d\xi)\leq K_{1}\quad\text{for all}\ 0<\varepsilon<\varepsilon_{0}\ \text{and}\ \mu\in\mathcal{A}_{\varepsilon},

where K1>0K_{1}>0 is independent of ε,g\varepsilon,g. Let KK be the uniform absorbing set of Ug,εU^{g,\varepsilon} as given by (5.9), and denote by K0={μ1:μK}K_{0}=\{\mu\circ\mathcal{M}^{-1}:\mu\in K\}. Since 𝒜0\mathcal{A}_{0} is the uniform measure attractor of {Ug,0}g(g0)\{U^{g,0}\}_{g\in\mathcal{H}(g_{0})} in 𝒫4(L2(n))\mathcal{P}_{4}(L^{2}(\mathbb{R}^{n})), given η>0\eta>0, we infer that there exists T=T(η)1T=T(\eta)\geq 1 such that for any tτ>Tt-\tau>T and g(g0)g\in\mathcal{H}(g_{0}),

(6.17) d𝒫2(L2(n))(Ug,0(t,τ)K0,𝒜0)<12η.\displaystyle d_{\mathcal{P}_{2}(L^{2}(\mathbb{R}^{n}))}(U^{g,0}(t,\tau)K_{0},\mathcal{A}_{0})<\frac{1}{2}\eta.

On the other hand, by (6.16) and Corollary 6.1 we have

(6.18) limε0supνε𝒜εd𝒫(L2(𝒪))(Ug,ε(t,τ)νε,(Ug,0(t,τ)(νε1))1)=0.\displaystyle\lim_{\varepsilon\rightarrow 0}\sup_{\nu_{\varepsilon}\in\mathcal{A}_{\varepsilon}}d_{\mathcal{P}\left(L^{2}(\mathcal{O})\right)}\left(U^{g,\varepsilon}(t,\tau)\nu_{\varepsilon},\ \left(U^{g,0}(t,\tau)\left(\nu_{\varepsilon}\circ\mathcal{M}^{-1}\right)\right)\circ\mathcal{I}^{-1}\right)=0.

and hence there exists ε1(0,ε0)\varepsilon_{1}\in(0,\varepsilon_{0}) such that for all 0<ε<ε10<\varepsilon<\varepsilon_{1},

(6.19) supνε𝒜εd𝒫2(L2(𝒪))(Ug,ε(t,τ)νε,(Ug,0(t,τ)(νε1))1)<12η.\displaystyle\sup_{\nu_{\varepsilon}\in\mathcal{A}_{\varepsilon}}d_{\mathcal{P}_{2}\left(L^{2}(\mathcal{O})\right)}\left(U^{g,\varepsilon}(t,\tau)\nu_{\varepsilon},\ \left(U^{g,0}(t,\tau)\left(\nu_{\varepsilon}\circ\mathcal{M}^{-1}\right)\right)\circ\mathcal{I}^{-1}\right)<\frac{1}{2}\eta.

Given νε𝒜ε\nu_{\varepsilon}\in\mathcal{A}_{\varepsilon}, since 𝒜εK\mathcal{A}_{\varepsilon}\in K, we know νε1K0\nu_{\varepsilon}\circ\mathcal{M}^{-1}\in K_{0}, and thus by (6.17) we have

(6.20) supνε𝒜εd𝒫(L2(n))(Ug,0(t,τ)(νε1),𝒜0)<12η.\displaystyle\sup_{\nu_{\varepsilon}\in\mathcal{A}_{\varepsilon}}d_{\mathcal{P}(L^{2}(\mathbb{R}^{n}))}(U^{g,0}(t,\tau)\left(\nu_{\varepsilon}\circ\mathcal{M}^{-1}\right),\mathcal{A}_{0})<\frac{1}{2}\eta.

which shows that

(6.21) supνε𝒜εd𝒫(L2(𝒪))((Ug,0(t,τ)(νε1))1,𝒜01)<12η.\displaystyle\sup_{\nu_{\varepsilon}\in\mathcal{A}_{\varepsilon}}d_{\mathcal{P}(L^{2}(\mathcal{O}))}\left(\left(U^{g,0}(t,\tau)(\nu_{\varepsilon}\circ\mathcal{M}^{-1}\right)\right)\circ\mathcal{I}^{-1},\mathcal{A}_{0}\circ\mathcal{I}^{-1})<\frac{1}{2}\eta.

By (6.19) and (6.21) we have, for all 0<ε<ε10<\varepsilon<\varepsilon_{1},

(6.22) supνε𝒜εd𝒫(L2(𝒪))(Ug,ε(t,τ)νε,𝒜01)<η.\displaystyle\sup_{\nu_{\varepsilon}\in\mathcal{A}_{\varepsilon}}d_{\mathcal{P}(L^{2}(\mathcal{O}))}(U^{g,\varepsilon}(t,\tau)\nu_{\varepsilon},\mathcal{A}_{0}\circ\mathcal{I}^{-1})<\eta.

By the uniformly quasi-invariance of AεA_{\varepsilon}, we see that for any με𝒜ε\mu_{\varepsilon}\in\mathcal{A}_{\varepsilon}, there exists νε𝒜ε\nu_{\varepsilon}\in\mathcal{A}_{\varepsilon} and g(g0)g\in\mathcal{H}(g_{0}) such that

(6.23) με=Ug,ε(t,τ)νε.\displaystyle\mu_{\varepsilon}=U^{g,\varepsilon}(t,\tau)\nu_{\varepsilon}.

By (6.22) and (6.23) we obtain, for all 0<ε<ε10<\varepsilon<\varepsilon_{1},

supμε𝒜εd𝒫(L2(𝒪))(με,𝒜01)<η,\sup_{\mu_{\varepsilon}\in\mathcal{A}_{\varepsilon}}d_{\mathcal{P}(L^{2}(\mathcal{O}))}(\mu_{\varepsilon},\mathcal{A}_{0}\circ\mathcal{I}^{-1})<\eta,

which indicates that for all 0<ε<ε10<\varepsilon<\varepsilon_{1},

d𝒫(L2(𝒪))(𝒜ε,𝒜01)<η,d_{\mathcal{P}(L^{2}(\mathcal{O}))}(\mathcal{A}_{\varepsilon},\mathcal{A}_{0}\circ\mathcal{I}^{-1})<\eta,

as desired. ∎

References

  • [1] J.M. Arrieta, A.N. Carvalho and A. German, Dynamics in dumbbell domains I. Continuity of the set of equilibria, J. Differ. Equ. 231, (2006), 551–597.
  • [2] N.U. Ahmed and X. Ding, A semilinear Mckean-Vlasov stochastic in Hilbert space, Stoch. Proc. Appl., 60 (1995), 65–85.
  • [3] J. Bao and X. Huang, Approximations of McKean-Vlasov stochastic differential equations with irregular coefficients. J. Theoret. Probab., 35 (2022) 1187–1215.
  • [4] J. Bao, M. Scheutzow and C. Yuan, Existence of invariant probability measures for functional McKean-Vlasov SDEs, Electron. J. Probab., 27 (2022), 1–14.
  • [5] V. Chepyzhov and M. Vishik, Attractors of nonautonomous dynamical-systems and their dimension, J. Math. Pure. Appl., 73 (1994), 279–333.
  • [6] V. Chepyzhov and M. Vishik, Non-autonomous 22D Navier-Stokes system with a simple global attractor and some averaging problems, Esaim Contr Optim Ca., 8 (2002), 467–487.
  • [7] T. Caraballo, J. A. Langa and J. C. Robinson, Upper semicontinuity of attractors for small random perturbations of dynamical systems, Comm. Partial. Differential. Equations., 23 (1998), 1557–1581.
  • [8] Z. Chen and B. Wang, Existence, exponential mixing and convergence of periodic measures of fractional stochastic delay reaction-diffusion equations on n\mathbb{R}^{n}. J. Differ. Equ., 336 (2022), 505–564.
  • [9] Z. Chen and B. Wang, Well-posedness and large deviations of fractional McKean-Vlasov stochastic reaction-diffusion equations on unbounded domains, (2024), arXiv:2406.10694.
  • [10] H. Cui and J. A. Langa, Uniform attractors for non-autonomous random dynamical systems, J. Differ. Equ., 263 (2017), 1225–1268.
  • [11] H. Crauel and P. E. Kloeden, Nonautonomous and random attractors,Jahresber. Deutsch. Math., 117 (2015), 173–206.
  • [12] D. Dawson and J. Vaillancourt, Stochastic Mckean-Vlasov equations, Nonlinear Differ. Equat. Appl., 2 (1995), 199–229.
  • [13] N. Fournier and A. Guillin, On the rate of convergence in Wasserstein distance of the empirical measure, Probab. Theory Related Fields., 162 (2015), 707–738.
  • [14] X. Fan, X. Huang, Y. Suo and C. Yuan, Distribution dependent SDEs driven by fractional Brownian motions, Stoch. Process. Appl., 151 (2022), 23–67.
  • [15] J.K. Hale and G. Raugel, A damped hyperbolic equation on thin domains, Trans. Am. Math. Soc., 329 (1992), 185–219.
  • [16] J.K. Hale and G. Raugel, Reaction-diffusion equation on thin domains, J. Math. Pures Appl., 71 (1992), 33–95.
  • [17] J.K. Hale and G. Raugel, A reaction-diffusion equation on a thin LL-shaped domain, Proc. R. Soc. Edinb. A. 125 (1995), 283–327.
  • [18] J. K. Hale, Asymptotic behavior of dissipative systems, Am. Math. Soc., 1988.
  • [19] X. Han, B. Usman and P. E. Kloeden, Long term behavior of a random Hopfield neural lattice model, Comm. Pure Appl. Anal., 18, (2019) 809–824.
  • [20] X. Han and P. E. Kloeden, Dynamics of a random hopfield neural lattice model with adaptive synapses and delayed hebbian learning, Ukr Math J., 75, (2024) 1883–1899.
  • [21] W. Hammersley, S. David and L. Szpruch, Weak existence and uniqueness for McKean-Vlasov SDEs with common noise, Ann. Probab., 49 (2021), 527–555.
  • [22] X. Huang and F. Wang, Regularities and exponential ergodicity in entropy for SDEs driven by distribution dependent noise, Bernoulli., 30 (2024), 3303–3323.
  • [23] R. Johnson, M. Kamenskii and P. Nistri, Existence of periodic solutions of an autonomous damped wave equation in thin domains, J. Dyn. Differ. Equ., 10 (1998), 409–424.
  • [24] Y. Li, T. Caraballo and F. Wang, Cardinality and IOD-type continuity of pullback attractors for random nonlocal equations on unbounded domains, Math. Ann., 2024.
  • [25] X. Li, Uniform random attractors for 2D2D non-autonomous stochastic Navier-Stokes equations. J. Differ. Equ., 276 (2021), 1–42.
  • [26] B. M. Levitan and V. Zhikov, Almost periodic functions and differential equations, Cambridge University Press Archive, 1983.
  • [27] D. Li, B. Wang and X. Wang, Limiting behavior of non-autonomous stochastic reaction-diffusion equations on thin domains, J. Differ. Equ., 26 (2017), 1575–1602.
  • [28] D. Li, R. Li and T. Zeng, Uniform measure attractors for non-autonomous stochastic evolution systems, (2024), submitted.
  • [29] D. Li, K. Lu, B. Wang and X. Wang, Limiting behavior of dynamics for stochastic reaction-diffusion equations with additive noise on thin domains, Discrete. Contin. Dyn. Syst. Ser. A., 38 (2018), 187–208.
  • [30] D. Li, B. Wang, and X. Wang, Periodic measures of stochastic delay lattice systems, J. Differ. Equ. 272 (2021), 74–104.
  • [31] D. Li and B. Wang, Pullback measure attractors for non-autonomous stochastic reaction diffusion equations on thin domains, J. Differ. Equ., 397 (2024), 232–261.
  • [32] D. Li, K. Lu, B. Wang and X. Wang, Limiting dynamics for non-autonomous stochastic retarded reaction-diffusion equations on thin domains, Discrete. Contin. Dyn. Syst. Ser. A., 39 (2019), 3717–3747.
  • [33] H. P. Mckean, A class of markov processes associated with nonlinear parabolic equations, Proc. Natl. Acad. Sci., 56 (1967), 1907–1911.
  • [34] C. Marek and N.J. Cutland, Measure attractors for stochastic Navier-Stokes equations, Electron. J. Probab., 8 (1998), 1–15.
  • [35] H. Morimoto, Attractors of probability measures for semilinear stochastic evolution equations, Stoch. Anal. Appl., 10 (1992), 205–212.
  • [36] M. Prizzi and K. Rybakowski, Inertial manifolds on squeezed domains, J. Dyn. Differ. Equ., 15 (2003), 1–48.
  • [37] M. Prizzi and K.P. Rybakowski, The effect of domain squeezing upon the dynamics of reaction-diffusion equations, J. Differ. Equ., 173 (2001), 271–320.
  • [38] B. Schmalfuß\ss, Long-time behaviour of the stochastic Navier-Stokes equation, Math. Nachr. 152 (1991), 7–20.
  • [39] B. Schmalfuß\ss, Qualitative properties for the stochastic Navier-Stokes equation, Nonlinear Anal: Theory Methods Appl. 28 (1997), 1545–1563.
  • [40] L. Shi, R. Wang, K. Lu and B. Wang, Asymptotic behavior of stochastic Fitzhugh-Nagumo systems on unbounded thin domains. J. Differ. Equ. 267 (2019), 4373–4409.
  • [41] L. Shi, D. Li, X. Li and X. Wang, Dynamics of stochastic FitzHugh-Nagumo systems with additive noise on unbounded thin domains. Stoch. Dyn. 20 (2020) 2050018.
  • [42] L. Shi, J. Shen, K. Lu and B. Wang, Invariant measures, periodic measures and pullback measure attractors of McKean-Vlasov stochastic reaction-diffusion equations on unbounded domains. (2024), arXiv:2409.17548v1.
  • [43] R. Temam, Infinite-dimensional dynamical systems in mechanics and physics, Springer, 2012.
  • [44] G. R. Sell and Y. You, Dynamics of evolutionary equations, Springer, 2002.
  • [45] A. A. Vlasov, The vibrational properties of an electron gas, Ssov. Phys., 10 (1968), 721–733.
  • [46] B. Wang, Sufficient and necessary criteria for existence of pullback attractors for non-compact random dynamical systems, J. Differ. Equ., 253 (2012), 1544–1583.
  • [47] F. Wang, Distribution dependent SDEs for Landau type equations, Stoch. Process. Appl., 128 (2018), 595–621.
  • [48] S. Zhang, Existence and non-uniqueness of stationary distributions for distribution dependent SDEs, Electron. J. Probab., 28 (2023), 1–34.