This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Uniform fluctuation and wandering bounds in first passage percolation

Kenneth S. Alexander Department of Mathematics
University of Southern California
Los Angeles, CA 90089-2532 USA
[email protected]
Abstract.

We consider first passage percolation on certain isotropic random graphs in d\mathbb{R}^{d}. We assume exponential concentration of passage times T(x,y)T(x,y), on some scale σr\sigma_{r} whenever |yx||y-x| is of order rr, with σr\sigma_{r} “growning like rχr^{\chi}” for some 0<χ<10<\chi<1. Heuristically this means transverse wandering of geodesics should be at most of order Δr=(rσr)1/2\Delta_{r}=(r\sigma_{r})^{1/2}. We show that in fact uniform versions of exponential concentration and wandering bounds hold: except with probability exponentially small in tt, there are no x,yx,y in a natural cylinder of length rr and radius KΔrK\Delta_{r} for which either (i) |T(x,y)ET(x,y)|tσr|T(x,y)-ET(x,y)|\geq t\sigma_{r}, or (ii) the geodesic from xx to yy wanders more than distance tΔr\sqrt{t}\Delta_{r} from the cylinder axis. We also establish that for the time constant μ=limnET(0,ne1)/n\mu=\lim_{n}ET(0,ne_{1})/n, the “nonrandom error” |μ|x|ET(0,x)||\mu|x|-ET(0,x)| is at most a constant multiple of σ(|x|)\sigma(|x|).

Key words and phrases:
first passage percolation, geodesic, exponential concentration
2010 Mathematics Subject Classification:
60K35 Primary 82B43 Secondary

1. Introduction.

In i.i.d. first passage percolation (FPP) on a graph 𝔾=(𝕍,𝔼)\mathbb{G}=(\mathbb{V},\mathbb{E}), i.i.d. (edge) passage times te{\color[rgb]{1,0,0}t_{e}} are attached to the edges e𝔼e\in\mathbb{E}, and for a path Γ\Gamma in 𝔾\mathbb{G}, the (path) passage time T(Γ){\color[rgb]{1,0,0}T(\Gamma)} is the sum of the times tet_{e} over eΓe\in\Gamma. For x,y𝕍x,y\in\mathbb{V}, the passage time from xx to yy is

(1.1) T(x,y)=inf{T(Γ):Γ is a path from x to y in 𝔾}.{\color[rgb]{1,0,0}T(x,y)}=\inf\{T(\Gamma):\Gamma\text{ is a path from $x$ to $y$ in $\mathbb{G}$}\}.

The geodesic from xx to yy is the path, denoted Γxy{\color[rgb]{1,0,0}\Gamma_{xy}}, which minimizes the path passage time; when tet_{e} is a continuous random variable (as we always assume), a unique geodesic exists a.s. [17].

There are two exponents of primary interest in the study of FPP. First, the fluctuations (i.e. standard deviation) of passage times T(x,y)T(x,y) for |yx||y-x| of scale rr in d\mathbb{Z}^{d} are believed to be of order rχr^{\chi} for some χ=χd<1/2{\color[rgb]{1,0,0}\chi}=\chi_{d}<1/2, with χ2=1/3\chi_{2}=1/3. Second, the typical transverse wandering of a geodesic, meaning the maximum distance from any point on Γxy\Gamma_{xy} to the straight line (denoted Πxy\Pi_{xy}) from xx to yy, is believed to be of order rξr^{\xi} for some ξ=ξd{\color[rgb]{1,0,0}\xi}=\xi_{d}. For |yx||y-x| of order rr, if Γxy\Gamma_{xy} contains a vertex zz at distance of order rξr^{\xi} from Πxy\Pi_{xy} (not too near xx or yy), then the associated extra distance |zx|+|yz||yx||z-x|+|y-z|-|y-x| traveled by the geodesic in order to pass through zz is of order r2ξ1r^{2\xi-1}. For such wandering to have non-negligible probability, the passage time fluctuations rχr^{\chi} should be at least as large as the extra distance; heuristically this leads to the relation χ=2ξ1\chi=2\xi-1. There are various ways to formally define the exponents χ,ξ\chi,\xi; these must allow for the fact that the true scales of fluctuations and wandering are not known to be pure powers of rr. Chatterjee [9] gave a rigorous version of the relationship χ=2ξ1\chi=2\xi-1, under the assumption that multiple possible definitions of each exponent actually agree.

Looking more finely than just at the level of exponents, the heuristic for χ=2ξ1\chi=2\xi-1 says that if the fluctuation scale is σr{\color[rgb]{1,0,0}\sigma_{r}} for |yx||y-x| of order rr, then the scale of transverse wandering should be

Δr=Δ(r)=(rσr)1/2.{\color[rgb]{1,0,0}\Delta_{r}}=\Delta(r)=(r\sigma_{r})^{1/2}.

In [2] and (for d=2d=2) in [14] it was shown that under natural assumptions, the transverse wandering with high probability does not exceed (rσrlogr)1/2(r\sigma_{r}\log r)^{1/2}. One of our main results here is an upper bound on wandering: under somewhat weaker assumptions, for all d2d\geq 2, the probability of wandering greater than sΔrs\Delta_{r} decays as ecs2e^{-cs^{2}} or faster, for sr/Δrs\leq r/\Delta_{r}. Previously such a result has only been known for integrable cases of last passage percolation (LPP) in d=2d=2, from [8] (with ecse^{-cs} in place of ecs2e^{-cs^{2}}) and [7]. The bound is optimal in the sense of being on the scale Δr\Delta_{r}, though the second power of ss in the exponent may not be optimal, as suggested by LPP results in d=2d=2 in [15].

In fact we have this bound uniformly over many geodesics simultaneously, in the following sense: Consider a cylinder of length rr and radius KΔrK\Delta_{r}, and let ϵ>0\epsilon>0 and s>2Ks>2K. Then under the assumptions we will make, the probability that there exists any geodesic Γxy\Gamma_{xy}, with x,yx,y in the cylinder and |yx|ϵr|y-x|\geq\epsilon r, which wanders farther than sΔrs\Delta_{r} from the cylinder axis decays as ecs2e^{-cs^{2}} or faster, for sr/Δrs\leq r/\Delta_{r}. The scale Δr\Delta_{r} here is optimal, though the decay ecs2e^{-cs^{2}} may not be, based on LPP results for d=2d=2 in [15].

By comparison, in [2] it was shown roughly that if there is exponential concentration on some scale σr\sigma_{r} which “grows like a power of rr,” uniformly for passage times over distance rr, then the probability of a transverse fluctuation of size t(logr)1/2Δrt(\log r)^{1/2}\Delta_{r} for a single geodesic Γxy\Gamma_{xy} is bounded by C1eC2t2logtC_{1}e^{-C_{2}t^{2}\log t} for all t>0t>0. This tells us nothing, though, about transverse fluctuations of size tΔrt\Delta_{r} with 1t(logr)1/21\ll t\ll(\log r)^{1/2}, which should also be subject to exponential concentration, as in our present result.

It should be emphasized that in our transverse wandering (and other) results, σr\sigma_{r} is not necessarily the actual scale of the standard deviation—it need only be an upper bound in the sense that exponential concentration holds for passage times T(x,y)T(x,y) on scale σ(|yx|)\sigma(|y-x|). Then the corresponding value Δr\Delta_{r} is the scale that appears in the upper bound for transverse wandering.

Our uniform wandering bound will be a byproduct of another uniform–bound result for passage times; to describe it we first discuss exponential bounds. For the lattice d\mathbb{Z}^{d}, Kesten [18] proved that, assuming

(1.2) Eeλte<for some λ>0,      and P(te=0)<pc(d)Ee^{\lambda t_{e}}<\infty\ \text{for some $\lambda>0$, \hskip 14.22636ptand }\quad P(t_{e}=0)<p_{c}(\mathbb{Z}^{d})

(where pc(d)p_{c}(\mathbb{Z}^{d}) is the bond percolation threshold for d\mathbb{Z}^{d}), there is exponential concentration of T(x,y)T(x,y) on scale r1/2r^{1/2} for |xy|r|x-y|\leq r:

P(|T(x,y)ET(x,y)|tr1/2)C3eC4tfor all tC5r.P(|T(x,y)-ET(x,y)|\geq tr^{1/2})\leq C_{3}e^{-C_{4}t}\quad\text{for all }t\leq C_{5}r.

Talagrand [26] improved this: assuming just an exponential moment for tet_{e},

P(|T(x,y)ET(x,y)|tr1/2)C6eC7min(t2,tr1/2)for all t>0.P(|T(x,y)-ET(x,y)|\geq tr^{1/2})\leq C_{6}e^{-C_{7}\min(t^{2},tr^{1/2})}\quad\text{for all }t>0.

Damron, Hanson, and Sosoe [11] improved the bound to a subgaussian scale: under (1.2),

P(|T(x,y)ET(x,y)|t(rlogr)1/2)C8eC9tfor all t>0.P\left(|T(x,y)-ET(x,y)|\geq t\left(\frac{r}{\log r}\right)^{1/2}\right)\leq C_{8}e^{-C_{9}t}\quad\text{for all }t>0.

None of these bounds are near–optimal, though—an optimal bound would be on the scale of the standard deviation of T(x,y)T(x,y). What we will prove here is roughly as follows. Suppose passage times satisfy exponential concentration on a scale σ()\sigma(\cdot), uniformly:

(1.3) P(|T(x,y)ET(x,y)|tσ(|yx|))C10eC11tfor all x,y,P\Big{(}|T(x,y)-ET(x,y)|\geq t\sigma(|y-x|)\Big{)}\leq C_{10}e^{-C_{11}t}\quad\text{for all }x,y,

for some σ(r)\sigma(r) which “grows like rχr^{\chi}” for some χ(0,1)\chi\in(0,1), in a sense we will make precise. Then for Gr(K){\color[rgb]{1,0,0}G_{r}(K)} a cylinder of length rr and radius KΔrK\Delta_{r} for some fixed KK, we have concentration on the same scale, uniformly over x,yGr(K)x,y\in G_{r}(K):

(1.4) P(|T(x,y)ET(x,y)|tσr for some x,yGK(r) with |yx|ϵr)C12eC13tP\Big{(}\big{|}T(x,y)-ET(x,y)\big{|}\geq t\sigma_{r}\text{ for some $x,y\in G_{K}(r)$ with }|y-x|\geq\epsilon r\Big{)}\leq C_{12}e^{-C_{13}t}

for all rr large and tcK2t\geq cK^{2}. This has previously been proved for integrable models of LPP in d=2d=2 ([8], [6]), but even the non-integrable part of the proof there does not carry over to FPP—see Remark 1.8.

For d3d\geq 3 there is no generally-agreed-upon value of χ\chi in the physics literature. Heuristics and simulations suggest that χ\chi should decrease with dimension; simulations in [25] for a model believed to be in the same (KPZ) universality class as FPP show a decrease from χ=.33\chi=.33 to χ=.054\chi=.054 as dd increases from 2 to 7. Some have predicted the existence of a finite upper critical dimension, possibly as low as 3.5, above which χ=0\chi=0 ([13],[20]); others predict that χ\chi is positive for all dd ([3],[24]), with simulations in [19] showing χ>0\chi>0 all the way to d=12d=12, decaying approximately as 1/(d+1)1/(d+1). Our results here require χ>0\chi>0 so they only have content below the upper critical dimension, should it be finite.

In the preceding and throughout the paper, c1,c2,{\color[rgb]{1,0,0}c_{1},c_{2},\dots} and C1,C2,{\color[rgb]{1,0,0}C_{1},C_{2},\dots}, and ϵ0,ϵ1,{\color[rgb]{1,0,0}\epsilon_{0},\epsilon_{1},\dots} represent unspecified constants which depend only on the graph 𝔾\mathbb{G} (or its distribution, if it is random) and the distribution of the passage times tet_{e} (or speeds ηe\eta_{e}, to be given below.) We use CiC_{i} for constants which occur outside of proofs and may be referenced later; any given CiC_{i} has the same value at all occurrences. We use cic_{i} for those which do not recur and are only needed inside one proof. For the cic_{i}’s we restart the numbering with c0c_{0} in each proof, and the values are different in different proofs.

As is standard, since passage times T(x,y)T(x,y) are subadditive, assumptions much weaker than (1.2) guarantee the a.s. existence (positive and finite for x0x\neq 0) of the limit

(1.5) g(x)=limnT(0,nx)n=limnET(0,nx)n=infnET(0,nx)na.s. and in L1{\color[rgb]{1,0,0}g(x)}=\lim_{n}\frac{T(0,nx)}{n}=\lim_{n}\frac{ET(0,nx)}{n}=\inf_{n}\frac{ET(0,nx)}{n}\quad\text{a.s.~{}and in }L^{1}

for xdx\in\mathbb{Z}^{d}; gg extends to xx with rational coordinates by considering only nn with nxdnx\in\mathbb{Z}^{d}, and then to a norm on d\mathbb{R}^{d} by uniform continuity. We write 𝔅g\mathfrak{B}_{g} for the unit ball of this norm. To obtain the optimal uniform results for wandering and (1.4) for fluctuations, we need to understand both parts of the discrepancy

(1.6) T(0,x)g(x)=(T(0,x)ET(0,x))+(ET(0,x)g(x)).T(0,x)-g(x)=\Big{(}T(0,x)-ET(0,x)\Big{)}+\Big{(}ET(0,x)-g(x)\Big{)}.

Here in the parentheses on the right are the random part and nonrandom part of the discrepancy. In [1] it was shown that under (1.2),

(1.7) g(x)ET(0,x)g(x)+C14|x|1/2log|x| for all |x|>1.g(x)\leq ET(0,x)\leq g(x)+C_{14}|x|^{1/2}\log|x|\quad\text{ for all }|x|>1.

In [27] the error term was improved to C14(|x|log|x|)1/2C_{14}(|x|\log|x|)^{1/2}, and in [14] to cη|x|1/2(log|x|)ηc_{\eta}|x|^{1/2}(\log|x|)^{\eta} for all η>0\eta>0. For the Euclidean first passage percolation of [16], the analog of (1.7) was proved in [12] with an error term of C14Ψ(|x|)log(k)|x|C_{14}\Psi(|x|)\log^{(k)}|x| for arbitrary k1k\geq 1, where Ψ(|x|)\Psi(|x|) is a scale on which an exponential bound is known (analogous to σ(|x|)\sigma(|x|) in (1.3)) and log(k)|x|\log^{(k)}|x| is the kk–times–iterated logarithm. Here we will obtain an essentially optimal bound for the nonrandom part: if σ()\sigma(\cdot) satisfies certain regularly and (1.3) holds, then a log factor as in the earlier bounds is unnecessary in our context: we have

(1.8) 0ET(0,x)g(x)C15σ(|x|).0\leq ET(0,x)-g(x)\leq C_{15}\sigma(|x|).

There is a strong interdependence among this result, our uniform wandering bounds, and (1.4), as discussed in Remark 1.7.

Analogs of (1.8), of (1.4), and of of our uniform wandering result, with optimal scale σ(|x|)=var(T(0,x))1/2|x|1/3\sigma(|x|)=\text{var}(T(0,x))^{1/2}\asymp|x|^{1/3}, are known for certain integrable models of directed last passage percolation (LPP). We note that an exponential bound like (1.3), but with centering at the analog of g(x)g(x) instead of at ET(0,x)ET(0,x), shows that (i) (1.8) must hold, and (ii) an exponential bound like (1.3) must also hold with centering at g(yx)g(y-x). Such a recentered bound appears in [8] (extracted from [4]) and in [21] for LPP on 2\mathbb{Z}^{2} with exponential passage times, in [22], [23] for LPP based on a Poisson process in the unit square, and in [10] for LPP on 2\mathbb{Z}^{2} with geometric passage times. An analog of our transverse wandering bound for LPP on 2\mathbb{Z}^{2} with exponential passage times appears in [7]. All of these require integral probability methods, which are not available for FPP.

Rather than work on the lattice d\mathbb{Z}^{d}, we will consider isotropic models, built on a random graph 𝔾=(𝕍,𝔼){\color[rgb]{1,0,0}\mathbb{G}=(\mathbb{V},\mathbb{E})} embedded in d\mathbb{R}^{d}. The dilation of such an embedded graph is the least CC such that, for every x,y𝕍x,y\in\mathbb{V} there is a path from xx to yy in 𝔾\mathbb{G} for which the total (Euclidean) length of the edges is at most C|yx|C|y-x|. We say that such a graph has bounded dilation if there exists CC such that with probability one the dilation of 𝔾\mathbb{G} is at most CC. For AdA\subset\mathbb{R}^{d}, the restriction of 𝔾\mathbb{G} to AA is the graph with vertex set 𝕍A={x𝕍:x,y𝔼{\color[rgb]{1,0,0}\mathbb{V}_{A}}=\{x\in\mathbb{V}:\langle x,y\rangle\in\mathbb{E} for some y𝕍A}y\in\mathbb{V}\cap A\} and edge set 𝔼A={x,y𝔼:xA}{\color[rgb]{1,0,0}\mathbb{E}_{A}}=\{\langle x,y\rangle\in\mathbb{E}:x\in A\}.

We require that the graph 𝔾\mathbb{G} satisfy the assumptions A1 below, which are somewhat stringent and include bounded dilation, but we will construct an example that works. (We see no need to make the graph as general as possible; we simply need one to know we can work with one that has certain desirable properties.) That example is built roughly as follows. We first construct a point process 𝕍\mathbb{V} to serve as vertices, with 𝕍\mathbb{V} satisfying those parts of A1 which involve only the vertices. To make a graph from 𝕍\mathbb{V} we use the Voronoi diagram, which divides d\mathbb{R}^{d} into closed polyhedrons {Qx:x𝕍}\{{\color[rgb]{1,0,0}Q_{x}}:x\in\mathbb{V}\} (called Voronoi cells), the interior of the polygon QxQ_{x} consisting of those points which are strictly closer to xx than to any other point of 𝕍\mathbb{V}. We refer to xx as the center point of QxQ_{x}, and define φ\varphi by φ(y)=x{\color[rgb]{1,0,0}\varphi(y)}=x for yQxy\in Q_{x}. To produce the Delaunay graph (or Delaunay triangulation in d=2d=2) one places an edge between each pair x,y𝕍x,y\in\mathbb{V} for which QxQ_{x} and QyQ_{y} have a face of positive (d1)(d-1)–volume in common. For d=2d=2, it is known that the dilation of the Delaunay graph of any locally finite subset of 2\mathbb{R}^{2} is at most 1.998 [28], ensuring A1 is fully satisfied, but such bounded dilation for d3d\geq 3 is not known. We therefore modify the Delaunay graph by adding certain non-nearest-neighbor edges of uniformly bounded length, by a deterministic local rule, and show that bounded dilation then holds. Here and in what follows, by the length of an edge e=x,ye=\langle x,y\rangle we mean the Euclidean distance |yx||y-x|, which we denote |e||e|.

Our FPP proofs for isotropic random graphs should adapt to d\mathbb{Z}^{d}, but (we expect) only by assuming two unproven properties of FPP on d\mathbb{Z}^{d}: first, uniform curvature of 𝔅g\partial\mathfrak{B}_{g}, and second, a kind of smoothness of the mean as the direction changes:

sup{|ET(0,x)ET(0,y)|:max(|g(x)r|,|g(y)r|)C16,|yx|C17Δr}=O(σr)as r.\sup\Big{\{}|ET(0,x)-ET(0,y)|:\max(|g(x)-r|,|g(y)-r|)\leq C_{16},|y-x|\leq C_{17}\Delta_{r}\Big{\}}=O(\sigma_{r})\quad\text{as }r\to\infty.

Results in [1] show that for lattice FPP, the left side is O(σrlogr)O(\sigma_{r}\log r). This is (implicitly) improved to O(σr(logr)1/2)O(\sigma_{r}(\log r)^{1/2}) in [27] and to O(σr(logr)κ)O(\sigma_{r}(\log r)^{\kappa}) for all κ>0\kappa>0, in [14].

Here then are the assumptions 𝔾=(𝕍,𝔼)\mathbb{G}=(\mathbb{V},\mathbb{E}) must satisfy.

A1. Acceptability of random graphs.

  • (i)

    𝔾=(𝕍,𝔼)\mathbb{G}=(\mathbb{V},\mathbb{E}) is isotropic, stationary, and ergodic;

  • (ii)

    Bounded hole size: every open ball in d\mathbb{R}^{d} of radius 1 contains at least one vertex of 𝕍\mathbb{V};

  • (iii)

    Finite range of dependence: there exists β\beta such that if A,BA,B are Lebesgue–measurable subsets of d\mathbb{R}^{d} separated by distance d(A,B)βd(A,B)\geq\beta, then the restrictions of 𝔾\mathbb{G} to AA and to BB are independent;

  • (iv)

    Bounded dilation: the dilation of 𝔾=(𝕍,𝔼)\mathbb{G}=(\mathbb{V},\mathbb{E}) is bounded a.s. (and hence equal to some nonrandom C18C_{18} a.s., by (i));

  • (v)

    Exponential bound for the local density: given r0>0r_{0}>0 there exist C19,C20C_{19},C_{20} such that for all r>r0r>r_{0} and a1a\geq 1, P(|𝕍Br(0)|ard)C19eC20aP(|\mathbb{V}\cap B_{r}(0)|\geq ar^{d})\leq C_{19}e^{-C_{20}a};

We say a random graph with these properties is acceptable. We will show that acceptable random graphs exist. By rescaling, we may replace radius 1 in (ii) by any other positive value. Condition (v) can be weakened from exponential to stretched exponential; we use exponential to simplify the exposition.

Conditionally on 𝔾\mathbb{G} we define a collection of i.i.d. nonnegative continuous random variables η={ηe,e𝔼}\eta=\{{\color[rgb]{1,0,0}\eta_{e}},e\in\mathbb{E}\}. Formally the pair ω=(𝕍,η){\color[rgb]{1,0,0}\omega}=(\mathbb{V},\eta) is defined on a probability space (Ω,,P){\color[rgb]{1,0,0}(\Omega,\mathcal{F},P)}, with 𝔾\mathbb{G} determined by 𝕍\mathbb{V}.

In contrast to the usual FPP on a true lattice, here we view ηe\eta_{e} not as a time but as a speed. We thus define the passage time of a bond ee to be ηe|e|\eta_{e}|e|, and proceed “as usual”: for x,y𝕍x,y\in\mathbb{V}, a path Γ\Gamma from xx to yy is a finite sequence of alternating vertices and edges of 𝔾\mathbb{G}, of the form Γ=(x=x0,x0,x1,x1,,xn1,xn1,xn,xn=y)\Gamma=(x=x_{0},\langle x_{0},x_{1}\rangle,x_{1},\dots,x_{n-1},\langle x_{n-1},x_{n}\rangle,x_{n}=y). We may designate a path by specifying only the vertices. The (path) passage time of Γ\Gamma is

T(Γ):=eΓηe|e|,{\color[rgb]{1,0,0}T(\Gamma)}:=\sum_{e\in\Gamma}\eta_{e}|e|,

and the passage time from xx to yy is

(1.9) T(x,y):=inf{T(Γ):Γ is a path from x to y in 𝔾}.{\color[rgb]{1,0,0}T(x,y)}:=\inf\{T(\Gamma):\Gamma\text{ is a path from $x$ to $y$ in }\mathbb{G}\}.

More generally, for x,ydx,y\in\mathbb{R}^{d} we define

T(x,y):=T(φ(x),φ(y)).T(x,y):=T(\varphi(x),\varphi(y)).

For technical convenience we do not require that paths be self-avoiding, but for the moment this is irrelevant because geodesics are always self-avoiding. For general x,yx,y not necessarily in 𝕍\mathbb{V}, we take “a geodesic from xx to yy” to mean a geodesic from the center point φ(x)\varphi(x) to φ(y)\varphi(y). Let ζ(λ)=Eeληe{\color[rgb]{1,0,0}\zeta(\lambda)}=Ee^{\lambda\eta_{e}}. We assume the following.

A2. ηe\eta_{e} properties.

  • (i)

    ηe\eta_{e} is a continuous random variable.

  • (ii)

    There exists λ>0\lambda>0 such that ζ(λ)<\zeta(\lambda)<\infty.

Here (i) guarantees that there is at most one geodesic from xx to yy a.s., for each x,yx,y.

We do not assume that σ(r)\sigma(r) in (1.3) is a power of rr, but we do require that it “grows like rχr^{\chi}” for some 0<χ<10<\chi<1 in a sense similar to [2], as follows. We call a nonnegative function {σ(r)=σr,r>0}\{\sigma(r)=\sigma_{r},r>0\} powerlike (with exponent χ\chi) if there exist 0<χ1<χ<χ20<{\color[rgb]{1,0,0}\chi_{1}}<\chi<{\color[rgb]{1,0,0}\chi_{2}} and constants CiC_{i} such that

(1.10) limrlogσrlogr=χ and for all srC21,C22(sr)χ1σsσrC23(sr)χ2.\lim_{r\to\infty}\frac{\log\sigma_{r}}{\log r}=\chi\quad\text{ and for all }s\geq r\geq C_{21},\quad C_{22}\left(\frac{s}{r}\right)^{\chi_{1}}\leq\frac{\sigma_{s}}{\sigma_{r}}\leq C_{23}\left(\frac{s}{r}\right)^{\chi_{2}}.

If (1.10) holds with χ2<1\chi_{2}<1 we say σ()\sigma(\cdot) is sublinearly powerlike.

The requirement that σ()\sigma(\cdot) be sublinearly powerlike is perhaps not as stringent as it first appears, due to Lemma 1.2 below. It implies that if one is only interested in fluctuations at the level of exponents χ,ξ\chi,\xi, and one knows uniform the exponential tightness (1.3) but not necessarily the powerlike property for σ()\sigma(\cdot), then there is a sublinearly powerlike function with the same χ\chi for which (1.3) holds.

Remark 1.1.

If σ()\sigma(\cdot) is powerlike, then so is the increasing function σ^(r)=supsrσ(s){\color[rgb]{1,0,0}\hat{\sigma}(r)}=\sup_{s\leq r}\sigma(s); by further increasing σ^\hat{\sigma} (though by at most a constant factor) we may make it strictly increasing and continuous while preserving the powerlike property. Therefore we may and do without loss of generality always assume σ()\sigma(\cdot) is strictly increasing and continuous. The inverse function Δ1\Delta^{-1} is well-defined, and for ξ=(1+χ)/2(12,1)\xi=(1+\chi)/2\in(\frac{1}{2},1) we have Δ(r)rξ\Delta(r)\asymp r^{\xi} and Δ1(a)a1/ξ\Delta^{-1}(a)\asymp a^{1/\xi} in the sense that

limrlogΔ(r)logr=ξ,limalogΔ1(a)loga=1ξ.\lim_{r\to\infty}\frac{\log\Delta(r)}{\log r}=\xi,\qquad\lim_{a\to\infty}\frac{\log\Delta^{-1}(a)}{\log a}=\frac{1}{\xi}.

The following is proved in section 8.

Lemma 1.2.

Let ρ:(1,)(0,){\color[rgb]{1,0,0}\rho}:(1,\infty)\to(0,\infty) satisfy

limrlogρrlogr=χ(0,).\lim_{r\to\infty}\frac{\log\rho_{r}}{\log r}=\chi\in(0,\infty).

Then there exist ρ~ρ{\color[rgb]{1,0,0}\tilde{\rho}}\geq\rho which is sublinearly powerlike with the same exponent χ\chi, and given ϵ>0\epsilon>0 we may take ρ~\tilde{\rho} to satisfy (1.10) with |χiχ|<ϵ,i=1,2|\chi_{i}-\chi|<\epsilon,\ i=1,2.

For general x,ydx,y\in\mathbb{R}^{d} not necessarily in 𝕍\mathbb{V}, we write Γxy\Gamma_{xy} for Γφ(x),φ(y)\Gamma_{\varphi(x),\varphi(y)}. In general we view Γxy\Gamma_{xy} as an undirected path, but at times we will refer to, for example, the first point of Γxy\Gamma_{xy} with some property. Hence when appropriate, and clear from the context, we view Γxy\Gamma_{xy} as a path from φ(x)\varphi(x) to φ(y)\varphi(y).

Our final standard assumption is the following.

A3. Uniform exponential tightness.
For some σ()\sigma(\cdot) which is sublinearly powerlike with exponent χ(0,1)\chi\in(0,1),

(1.11) P(|T(x,y)ET(x,y)|tσ(|yx|))C24eC25tfor all x,yd.P\Big{(}|T(x,y)-ET(x,y)|\geq t\sigma(|y-x|)\Big{)}\leq C_{24}e^{-C_{25}t}\quad\text{for all }x,y\in\mathbb{R}^{d}.

The isotropic property assumed for 𝕍\mathbb{V} in A1 means that g(x)=μ|x|g(x)=\mu|x| for all xx, where μ=g(e1){\color[rgb]{1,0,0}\mu}=g(e_{1}), and ET(0,x)ET(0,x) depends only on |x||x|, so we define

h(r)=ET(0,re1).{\color[rgb]{1,0,0}h(r)}=ET(0,re_{1}).

Let 𝔅d1{\color[rgb]{1,0,0}\mathfrak{B}_{d-1}} be the Euclidean unit ball of d1\mathbb{R}^{d-1} and define the cylinders

Gr(K)=[0,r]×KΔr𝔅d1.{\color[rgb]{1,0,0}G_{r}(K)}=[0,r]\times K\Delta_{r}\mathfrak{B}_{d-1}.

Here is our first main result.

Theorem 1.3.

Suppose 𝔾=(𝕍,𝔼)\mathbb{G}=(\mathbb{V},\mathbb{E}) and {ηe,e𝔼}\{\eta_{e},e\in\mathbb{E}\} satisfy A1, A2, and A3. Then given ϵ>0\epsilon>0 there exist constants Ci=Ci(ϵ)C_{i}=C_{i}(\epsilon) such that for all r1,K1,tC26K2r\geq 1,K\geq 1,t\geq C_{26}K^{2},

(1.12) P(|T(x,y)ET(x,y)|tσr for some x,yGr(K) with |yx|ϵr)C27eC28t,\displaystyle P\Big{(}\Big{|}T(x,y)-ET(x,y)\Big{|}\geq t\sigma_{r}\text{ for some $x,y\in G_{r}(K)$ with }|y-x|\geq\epsilon r\Big{)}\leq C_{27}e^{-C_{28}t},

and

(1.13) P(T(x,y)h(|(yx)1|)tσr for some x,yGr(K))C29eC30t.P\Big{(}T(x,y)\leq h(|(y-x)_{1}|)-t\sigma_{r}\text{ for some }x,y\in G_{r}(K)\Big{)}\leq C_{29}e^{-C_{30}t}.

Equation (1.13) is weaker than (1.12) in the sense that h(|(yx)1|)h(|(y-x)_{1}|) is (up to a constant) smaller than ET(x,y)ET(x,y) (see Lemma 3.6), but stronger in that it isn’t limited to |yx|ϵr|y-x|\geq\epsilon r.

We can split (1.12) into upward and downward deviations:

T(x,y)ET(x,y)+tσrandT(x,y)ET(x,y)tσr.T(x,y)\geq ET(x,y)+t\sigma_{r}\quad\text{and}\quad T(x,y)\leq ET(x,y)-t\sigma_{r}.

Then the downward–deviations part of (1.12) is a consequence of (1.13) and Proposition 3.3 below, because

x,yGr(K),|yx|ϵr||yx||(yx)1||C31K2σrx,y\in G_{r}(K),|y-x|\geq\epsilon r\implies\Big{|}|y-x|-|(y-x)_{1}|\Big{|}\leq C_{31}K^{2}\sigma_{r}

for some C31(ϵ)C_{31}(\epsilon). In general, if we think of xx to yy as an increment a path might make within Gr(K)G_{r}(K) in going from the one end to the other in the e1e_{1} direction, then (yx)1(y-x)_{1} measures progress made by that increment in the e1e_{1} direction, so it is a natural normalization of T(x,y)T(x,y) in the context of such paths. It is also sufficient for application to the next two theorems.

Remark 1.4.

For (1.12) in Theorem 1.3 we can replace the conditions K1,tC26K2K\geq 1,t\geq C_{26}K^{2} with KC32,tϵK2K\geq C_{32},t\geq\epsilon K^{2}. This is because there exists mm such that Gr(K)G_{r}(K) is contained in C32ϵmC_{32}\epsilon^{-m} “thin cylinders” (not necessarily oriented parallel to e1e_{1}) of length between ϵr\epsilon r and rr and radius KϵΔr=ϵ/C26KΔrK_{\epsilon}\Delta_{r}=\sqrt{\epsilon/C_{26}}K\Delta_{r} such that every pair x,yx,y as in (1.12) is contained in one of these cylinders. Here C32C_{32} does not depend on KK or rr. We can apply the theorem to each thin cylinder, since tC26Kϵ2t\geq C_{26}K_{\epsilon}^{2}, then sum over the thin cylinders.

We will use Theorem 1.3 together with a coarse-graining scheme in establishing the following.

Theorem 1.5.

Suppose 𝔾=(𝕍,𝔼)\mathbb{G}=(\mathbb{V},\mathbb{E}) and {ηe,e𝔼}\{\eta_{e},e\in\mathbb{E}\} satisfy A1, A2, and A3. There exists C33C_{33} such that

(1.14) μ|x|h(|x|)μ|x|+C33σ(|x|)for all xd.\mu|x|\leq h(|x|)\leq\mu|x|+C_{33}\sigma(|x|)\quad\text{for all }x\in\mathbb{R}^{d}.

As we have noted, for |yx||y-x| of order rr, if Γxy\Gamma_{xy} contains a vertex zz at distance of order Δr\gg\Delta_{r} from Πxy\Pi_{xy} (not too near xx or yy), then the associated extra distance g(zx)+g(yz)g(yx)g(z-x)+g(y-z)-g(y-x) traveled by the geodesic is of order Δr2/r=σr\gg\Delta_{r}^{2}/r=\sigma_{r}, and by Theorem 1.5 the same is true for hh in place of gg. Since the corresponding passage times satisfy T(x,z)+T(z,y)T(x,y)=0T(x,z)+T(z,y)-T(x,y)=0, this means that either

T(x,y)ET(x,y)σr,T(x,z)ET(x,z)σr,orT(z,y)ET(z,y)σr.T(x,y)-ET(x,y)\gg\sigma_{r},\quad T(x,z)-ET(x,z)\ll-\sigma_{r},\quad\text{or}\quad T(z,y)-ET(z,y)\ll-\sigma_{r}.

The assumption (1.11) says the first of these is unlikely, and Theorems 1.3 and 1.5 can be used to show it is unlikely that there exists a zz for which the second or third occurs. (Not without complications, though, as we cannot assume zGrz\in G_{r}.) This is the idea behind the following. For r,s>0r,s>0 define intervals enlarging [0,r][0,r]:

(1.15) r,s={[s2σrlogr,r+s2σrlogr]if s(C34logr)1/2;[s2σr,r+s2σr]if (C34logr)1/2<sr/Δr;[sΔr,r+sΔr]if s>r/Δr,{\color[rgb]{1,0,0}\mathcal{I}_{r,s}}=\begin{cases}[-s^{2}\sigma_{r}\log r,r+s^{2}\sigma_{r}\log r]&\text{if }s\leq(C_{34}\log r)^{1/2};\\ [-s^{2}\sigma_{r},r+s^{2}\sigma_{r}]&\text{if }(C_{34}\log r)^{1/2}<s\leq r/\Delta_{r};\\ [-s\Delta_{r},r+s\Delta_{r}]&\text{if }s>r/\Delta_{r},\end{cases}

where C34C_{34} “sufficiently large” will be specified later, and

Gr,s=r,s×sΔr𝔅d1.{\color[rgb]{1,0,0}G_{r,s}}=\mathcal{I}_{r,s}\times s\Delta_{r}\mathfrak{B}_{d-1}.

For s>Ks>K we have Gr(K)Gr,sG_{r}(K)\subset G_{r,s}; in this case we may view Gr,sG_{r,s} as being the cylinder Gr(K)G_{r}(K) fattened transversally to width sΔrs\Delta_{r}, and lengthened by an amount which varies with the size of ss relative to rr, chosen to be “enough to make wandering of geodesics out the cylinder end at least as unlikely as out the sides.”

For xdx\in\mathbb{R}^{d} we write x{\color[rgb]{1,0,0}x^{*}} for (x2,,xd)(x_{2},\dots,x_{d}) so x=(x1,x)x=(x_{1},x^{*}).

Theorem 1.6.

Suppose 𝔾=(𝕍,𝔼)\mathbb{G}=(\mathbb{V},\mathbb{E}) and {ηe,e𝔼}\{\eta_{e},e\in\mathbb{E}\} satisfy A1, A2, and A3. There exist CiC_{i} such that for all KC35K\geq C_{35},

P(Γxy\displaystyle P\Big{(}\Gamma_{xy} Gr,s for some x,yGr(K) with |(yx)|(yx)1)\displaystyle\not\subset G_{r,s}\text{ for some $x,y\in G_{r}(K)$ with }|(y-x)^{*}|\leq(y-x)_{1}\Big{)}
(1.16) {C36eC37s2for all C38Ksr/Δr,C36eC37sΔr/σ(sΔr)for all s>r/Δr.\displaystyle\leq\begin{cases}C_{36}e^{-C_{37}s^{2}}&\text{for all }C_{38}K\leq s\leq r/\Delta_{r},\\ C_{36}e^{-C_{37}s\Delta_{r}/\sigma(s\Delta_{r})}&\text{for all }s>r/\Delta_{r}.\end{cases}

We include the condition |(yx)|(yx)1|(y-x)^{*}|\leq(y-x)_{1} because we are primarily interested in transverse fluctuations of geodesics out the side of Gr,sG_{r,s}, so we wish to avoid yxy-x oriented in a too–transverse direction.

Remark 1.7.

The strategy for proving Theorems 1.31.6 is as follows:

  • (1)

    prove Theorem 1.3 for downward deviations—this is the most difficult part;

  • (2)

    use Theorem 1.3 for downward deviations to prove Theorem 1.6 restricted to a fixed (x,y)(x,y);

  • (3)

    use Theorem 1.3 for downward deviations and the restricted Theorem 1.6 to prove Theorem 1.5;

  • (4)

    use Theorem 1.5 to prove Theorem 1.3 for upward deviations;

  • (5)

    use the full Theorem 1.3 to prove the unrestricted Theorem 1.6.

Remark 1.8.

In [8] and [6], an alternate strategy was used to prove LPP analogs (in integrable cases) of Theorems 1.3 and 1.6 in d=2d=2. Theorem 1.5 was already known for that context—see the comments following (1.8). Essentially the strategy for the Theorem 1.3 analog in [8] is this, when translated to FPP: first the easier upward–deviations half of Theorem 1.3 is proved. For downward deviations, consider the points 0 and 3re13re_{1}, and a cylinder 𝒢r\mathcal{G}_{r} of radius Δr\Delta_{r} with axis from re1re_{1} to 2re12re_{1}. Suppose there are (random) vertices u,v𝒢ru,v\in\mathcal{G}_{r} with u1<v1u_{1}<v_{1} for which the passage time is fast: T(u,v)h(|vu|)3tσrT(u,v)\leq h(|v-u|)-3t\sigma_{r} for some large tt. From the upward–deviations half of Theorem 1.3, with high probability we have also T(x,u)h(|ux|)+tσrT(x,u)\leq h(|u-x|)+t\sigma_{r} and T(v,y)h(|yv|)+tσrT(v,y)\leq h(|y-v|)+t\sigma_{r}. From this, using that σr\sigma_{r} is proportional to r1/3r^{1/3} and h(r)=μr+O(σr)h(r)=\mu r+O(\sigma_{r}), assuming tt is large enough,

(1.17) T(x,y)h(|ux|)+h(|vu|)+h(|yv|)tσrh(|yx|)t2σr.T(x,y)\leq h(|u-x|)+h(|v-u|)+h(|y-v|)-t\sigma_{r}\leq h(|y-x|)-\frac{t}{2}\sigma_{r}.

This has probability exponentially small in tt, by (1.11), hence so does the probability of such u,vu,v existing. This strategy does not work for FPP, however, as it requires one to already know Theorem 1.5 to obtain the second inequality in (1.17).

2. Existence of acceptable random graphs

We construct a random graph 𝔾=(𝕍,𝔼)\mathbb{G}=(\mathbb{V},\mathbb{E}) satisfying A1. We begin by constructing the point process 𝕍\mathbb{V} of vertices. We start with a “space–time” Poisson process 𝕍0{\color[rgb]{1,0,0}\mathbb{V}_{0}} (which we view as a random countable set) of density 1 with respect to Lebesgue measure in d×(0,)\mathbb{R}^{d}\times(0,\infty). We say a point vdv\in\mathbb{R}^{d} appears at time tt in 𝕍0\mathbb{V}_{0} if (v,t)𝕍0(v,t)\in\mathbb{V}_{0}, and we say AdA\subset\mathbb{R}^{d} is empty at time tt- if no point in AA appears in 𝕍0\mathbb{V}_{0} during (0,t)(0,t). We then define

𝕍={vd:\displaystyle{\color[rgb]{1,0,0}\mathbb{V}}=\Big{\{}v\in\mathbb{R}^{d}: for some t>0t>0 and xdx\in\mathbb{R}^{d} with vB1(x)v\in B_{1}(x), vv appears at time tt in 𝕍0\mathbb{V}_{0} and
B1(x) is empty at time t}.\displaystyle\qquad\text{$B_{1}(x)$ is empty at time $t-$}\Big{\}}.

In other words, we keep in 𝕍\mathbb{V} the d\mathbb{R}^{d} coordinate vv of a point of 𝕍0\mathbb{V}_{0} if vv is the first point to appear in some ball of radius 11. Then almost surely, for each v𝕍v\in\mathbb{V} there is a unique point (v,tv)𝕍0(v,t_{v}^{*})\in\mathbb{V}_{0}, and we view tvt_{v}^{*} as the time at which vv appeared in 𝕍0\mathbb{V}_{0}. With probability one, every unit ball in d\mathbb{R}^{d} contains a point of 𝕍\mathbb{V}. We call 𝕍\mathbb{V} the available–space point process.

For the set 𝕍\mathbb{V} recall that {Qv,v𝕍}\{Q_{v},v\in\mathbb{V}\} denotes the corresponding Voronoi cells. More generally we write QxQ_{x} for the Voronoi cell containing any xx (with some arbitrary convention if xx is on the boundary of multiple cells), and φ(x)\varphi(x) for the unique point of 𝕍\mathbb{V} in QxQ_{x}. When convenient we view e=x,ye=\langle x,y\rangle as the line segment joining xx and yy. Let Br(x){\color[rgb]{1,0,0}B_{r}(x)} denote the open Euclidean ball of radius rr about xx. For d=2d=2, the Delaunay graph of 𝕍\mathbb{V} is our graph 𝔾\mathbb{G}. For d3d\geq 3 we fix 0<δ𝔾<10<{\color[rgb]{1,0,0}\delta_{\mathbb{G}}}<1 and use

𝔼={x,y:d(Qx,Qy)δ𝔾}.{\color[rgb]{1,0,0}\mathbb{E}}=\{\langle x,y\rangle:d(Q_{x},Q_{y})\leq\delta_{\mathbb{G}}\}.

We call 𝔾=(𝕍,𝔼)\mathbb{G}=(\mathbb{V},\mathbb{E}) the augmented Delaunay graph of 𝕍\mathbb{V}. The edges in 𝔼\mathbb{E} which are not in the Delaunay graph are called augmentation edges. We write xyx\sim y to denote that x,yx,y are adjacent vertices in 𝔾\mathbb{G}, and xDelyx\sim_{\rm Del}y to denote adjacency in the Delaunay graph of 𝕍\mathbb{V}. If yDelzy\sim_{\rm Del}z, then for all uQyQz,B|yz|/2(u)𝕍=u\in Q_{y}\cap Q_{z},B_{|y-z|/2}(u)\cap\mathbb{V}=\emptyset. Hence by A1(ii),

(2.1) |zy|<2 whenever yDelz.|z-y|<2\text{ whenever $y\sim_{\rm Del}z$}.

Similarly if zQyz\in Q_{y} then B|zy|(z)B_{|z-y|}(z) contains no point of 𝕍\mathbb{V}, so |zy|<1|z-y|<1; thus

(2.2) QyB1(y).Q_{y}\subset B_{1}(y).
Remark 2.1.

The purpose of augmentation is roughly the following. Consider the line segment Πxy\Pi_{xy} between x,y𝕍x,y\in\mathbb{V}. It passes through a sequence of Voronoi cells Qx=Qx0,Qx1,,Qxm=QyQ_{x}=Q_{x_{0}},Q_{x_{1}},\dots,Q_{x_{m}}=Q_{y}, and there is a corresponding path x=x0x1xm=yx=x_{0}\to x_{1}\to\cdots\to x_{m}=y in the Delaunay graph. If too many of the cells QxjQ_{x_{j}} are “thin,” then the Delaunay path length j=1m|xjxj1|\sum_{j=1}^{m}|x_{j}-x_{j-1}| may be much greater than |yx||y-x|, making it difficult to bound the dilation. The augmentation effectively allows paths in 𝔾\mathbb{G} that skip over such problematic sequences of cells, at least for a small distance, enabling us to prove bounded dilation while preserving other properties of the Delaunay triangulation. We can reduce the occurrence of augmentation to involve an arbitrarily small proportion of vertices by using a small enough δ>0\delta>0. We will not give details here.

For AdA\subset\mathbb{R}^{d} and r>0r>0 let Ar={x:d(x,A)<r}{\color[rgb]{1,0,0}A^{r}}=\{x:d(x,A)<r\}.

Proposition 2.2.

The augmented Delaunay graph of the available–space point process satisfies A1.

Proof.

A1(i) for 𝕍\mathbb{V} follows from the same properties for 𝕍0\mathbb{V}_{0}; since 𝔾\mathbb{G} is constructed from 𝕍\mathbb{V} via isotropic and translation-invariant local rules, A1(i) also holds for 𝔾\mathbb{G}. A1(ii) follows from the fact that the first point of 𝕍0\mathbb{V}_{0} to appear in any radius-1 ball is always a point of 𝕍\mathbb{V}.

To prove A1(iii), observe first that by (2.1), given x𝕍x\in\mathbb{V} the cell QxQ_{x} and all Delaunay edges x,y\langle x,y\rangle are determined by 𝕍B2(x)\mathbb{V}\cap B_{2}(x). Therefore the collection of Voronoi cells intersecting B3(x)B_{3}(x) is determined by 𝕍B5(x)\mathbb{V}\cap B_{5}(x), and hence so are all augmentation edges x,y\langle x,y\rangle. 𝕍B5(x)\mathbb{V}\cap B_{5}(x), in turn, is determined by 𝕍0(B7(x)×(0,))\mathbb{V}_{0}\cap(B_{7}(x)\times(0,\infty)), so for AdA\subset\mathbb{R}^{d}, the restriction (𝕍A,𝔼A)(\mathbb{V}_{A},\mathbb{E}_{A}) is determined by 𝕍0(A7×(0,))\mathbb{V}_{0}\cap(A^{7}\times(0,\infty)). Since 𝕍0\mathbb{V}_{0} is independent in disjoint regions, A1(iii) follows with β=14\beta=14.

Turning to A1(v), let q=1/(1+3d)q=1/(1+\lfloor 3\sqrt{d}\rfloor) and r>r0>0r>r_{0}>0, and let r1=r01r_{1}=r_{0}\wedge 1. For xqr1dx\in qr_{1}\mathbb{Z}^{d} let Jx{\color[rgb]{1,0,0}J_{x}} denote the cube i=1d[xi,xi+qr1)\prod_{i=1}^{d}[x_{i},x_{i}+qr_{1}) and 𝒥x={Jy:yqr1d,|yx|=2qr1}{\color[rgb]{1,0,0}\mathcal{J}_{x}}=\{J_{y}:y\in qr_{1}\mathbb{Z}^{d},|y-x|_{\infty}=2qr_{1}\}. This means the 5d3d5^{d}-3^{d} cubes in 𝒥x\mathcal{J}_{x} form a shell around JxJ_{x}, with a smaller shell of cubes in between, and the diameter of 𝒥x\mathcal{J}_{x} is less than 2r12r_{1}. Then any radius-11 ball intersecting JxJ_{x} must contain a cube in 𝒥x\mathcal{J}_{x}. Letting t(Jx)=max{tv:v𝕍Jx}{\color[rgb]{1,0,0}t^{*}(J_{x})}=\max\{t_{v}^{*}:v\in\mathbb{V}\cap J_{x}\} it follows that at time t(Jx)t^{*}(J_{x}), for some Jy𝒥xJ_{y}\in\mathcal{J}_{x}, at least |𝕍Jx||\mathbb{V}\cap J_{x}| points of 𝕍0\mathbb{V}_{0} have appeared in JxJ_{x} but none in JyJ_{y}. Letting NxyN_{xy} be the number of points of 𝕍0\mathbb{V}_{0} appearing in JxJ_{x} before the first point of 𝕍0\mathbb{V}_{0} appears in JyJ_{y}, this says that Nx:=maxJy𝒥xNxy|𝕍Jx|{\color[rgb]{1,0,0}N_{x}}:=\max_{J_{y}\in\mathcal{J}_{x}}N_{xy}\geq|\mathbb{V}\cap J_{x}|. Since |𝒥x|5d|\mathcal{J}_{x}|\leq 5^{d} it follows that

(2.3) P(|𝕍Jx|n)\displaystyle P(|\mathbb{V}\cap J_{x}|\geq n) P(Nxn)Jy𝒥xP(Nxyn)5d2n,\displaystyle\leq P(N_{x}\geq n)\leq\sum_{J_{y}\in\mathcal{J}_{x}}P(N_{xy}\geq n)\leq 5^{d}2^{-n},

and hence for λ<log2\lambda<\log 2,

(2.4) EeλNx5d1eλ2.Ee^{\lambda N_{x}}\leq\frac{5^{d}}{1-\frac{e^{\lambda}}{2}}.

Let 0={Jx:Jx[r,r)d}{\color[rgb]{1,0,0}\mathcal{I}_{0}}=\{J_{x}:J_{x}\cap[-r,r)^{d}\neq\emptyset\}, so |0|(2(1+rqr1))d|\mathcal{I}_{0}|\leq(2(1+\frac{r}{qr_{1}}))^{d} and Br(0)Jx0JxB_{r}(0)\subset\cup_{J_{x}\in\mathcal{I}_{0}}\,J_{x}. Now 0\mathcal{I}_{0} is a lattice of cubes, and we divide it into 5d5^{d} sublattices, each consisting of a cube JxJ_{x} together with all its translates by vectors in 5qr1d5qr_{1}\mathbb{Z}^{d} which intersect [r,r)d[-r,r)^{d}. We label these sublattices of cubes as 0,1,,0,5d{\color[rgb]{1,0,0}\mathcal{I}_{0,1},\dots,\mathcal{I}_{0,5^{d}}}, and the cardinality satisfies

(2.5) |0,j|(2(1+r5qr1))d|\mathcal{I}_{0,j}|\leq\left(2\left(1+\frac{r}{5qr_{1}}\right)\right)^{d}

for each jj. We denote the corresponding union of cubes as I0,j=Jx0,jJx{\color[rgb]{1,0,0}I_{0,j}}=\cup_{J_{x}\in\mathcal{I}_{0,j}}J_{x}. The spacing of the cubes in 0,j\mathcal{I}_{0,j} means that that the shells {𝒥x:Jx0,j}\{\mathcal{J}_{x}:J_{x}\in\mathcal{I}_{0,j}\} are disjoint, so the variables {Nx:Jx0,j}\{N_{x}:J_{x}\in\mathcal{I}_{0,j}\} are i.i.d.

For a1a\geq 1, taking λ=1/5\lambda=1/5 in (2.4) we obtain EeλNx35dEe^{\lambda N_{x}}\leq 3\cdot 5^{d} and hence using (2.5), provided aa is large (depending on r1r_{1}),

P(|𝕍Br(0)|ard)\displaystyle P(|\mathbb{V}\cap B_{r}(0)|\geq ar^{d}) j=15dP(|𝕍I0,j|ard5d)\displaystyle\leq\sum_{j=1}^{5^{d}}P\left(|\mathbb{V}\cap I_{0,j}|\geq\frac{ar^{d}}{5^{d}}\right)
j=15dP(Jx0,jNxard5d)\displaystyle\leq\sum_{j=1}^{5^{d}}P\left(\sum_{J_{x}\in\mathcal{I}_{0,j}}N_{x}\geq\frac{ar^{d}}{5^{d}}\right)
5d(35d)|0,j|eard/5d+1\displaystyle\leq 5^{d}\left(3\cdot 5^{d}\right)^{|\mathcal{I}_{0,j}|}e^{-ar^{d}/5^{d+1}}
(2.6) eard/25d+1,\displaystyle\leq e^{-ar^{d}/2\cdot 5^{d+1}},

proving A1(v).

Finally we consider A1(iv). Let x,y𝕍x,y\in\mathbb{V}. As in Remark 2.1, Πxy\Pi_{xy} passes through a sequence of Voronoi cells Qx=Qx0,Qx1,,Qxm=QyQ_{x}=Q_{x_{0}},Q_{x_{1}},\dots,Q_{x_{m}}=Q_{y}, and there is a corresponding path x=x0x1xm=yx=x_{0}\to x_{1}\to\cdots\to x_{m}=y in the Delaunay graph. (There is probability 0 that Πxy\Pi_{xy} intersects some QuQ_{u} in just a single point, so we will ignore this possibility, meaning that “passes through” here is unambiguous.) For j<mj<m let aja_{j} be the first point of QxjQ_{x_{j}} in Πxy\Pi_{xy} and let am=ya_{m}=y, so by convexity of cells, QxjΠxy=[aj,aj+1]Q_{x_{j}}\cap\Pi_{xy}=[a_{j},a_{j+1}] for all 0j<m0\leq j<m. We select indices 0=j(0)<j(1)<<j()=m0=j(0)<j(1)<\cdots<j(\ell)=m iteratively, taking j(k+1)j(k+1) as the least index j>j(k)j>j(k) for which either |aj+1aj(k)+1|>δ𝔾|a_{j+1}-a_{j(k)+1}|>\delta_{\mathbb{G}} or j=mj=m. Then xj(k),xj(k+1)\langle x_{j(k)},x_{j(k+1)}\rangle is always a Delaunay or augmentation edge, so we consider the path x=xj(0)xj(1)xj()=yx=x_{j(0)}\to x_{j(1)}\to\cdots\to x_{j(\ell)}=y in 𝔾\mathbb{G}; in particular we want to bound |xj(k+1)xj(k)||x_{j(k+1)}-x_{j(k)}| relative to |aj(k+1)+1aj(k)+1||a_{j(k+1)+1}-a_{j(k)+1}| for 0k20\leq k\leq\ell-2.

For k1k\leq\ell-1 we have using (2.2)

|xj(k+1)xj(k)||xj(k+1)aj(k+1)|+|aj(k+1)aj(k)+1|+|aj(k)+1xj(k)|2+δ𝔾|x_{j(k+1)}-x_{j(k)}|\leq|x_{j(k+1)}-a_{j(k+1)}|+|a_{j(k+1)}-a_{j(k)+1}|+|a_{j(k)+1}-x_{j(k)}|\leq 2+\delta_{\mathbb{G}}

so for k2k\leq\ell-2,

|aj(k+1)+1aj(k)+1|>δ𝔾δ𝔾2+δ𝔾|xj(k+1)xj(k)|.|a_{j(k+1)+1}-a_{j(k)+1}|>\delta_{\mathbb{G}}\geq\frac{\delta_{\mathbb{G}}}{2+\delta_{\mathbb{G}}}|x_{j(k+1)}-x_{j(k)}|.

Therefore if 2\ell\geq 2,

(2.7) k=02|xj(k+1)xj(k)|2+δ𝔾δ𝔾k=02|aj(k+1)+1aj(k)+1|=2+δ𝔾δ𝔾|aj(1)1a1|2+δ𝔾δ𝔾|yx|.\sum_{k=0}^{\ell-2}|x_{j(k+1)}-x_{j(k)}|\leq\frac{2+\delta_{\mathbb{G}}}{\delta_{\mathbb{G}}}\sum_{k=0}^{\ell-2}|a_{j(k+1)+1}-a_{j(k)+1}|=\frac{2+\delta_{\mathbb{G}}}{\delta_{\mathbb{G}}}|a_{j(\ell-1)-1}-a_{1}|\leq\frac{2+\delta_{\mathbb{G}}}{\delta_{\mathbb{G}}}|y-x|.

Having 2\ell\geq 2 also ensures |yx||aj(1)aj(0)|>δ𝔾|y-x|\geq|a_{j(1)}-a_{j(0)}|>\delta_{\mathbb{G}} so

|xj()xj(1)|=|yxj(1)||yaj(1)+1|+|aj(1)+1xj(1)||yx|+11+δ𝔾δ𝔾|yx||x_{j(\ell)}-x_{j(\ell-1)}|=|y-x_{j(\ell-1)}|\leq|y-a_{j(\ell-1)+1}|+|a_{j(\ell-1)+1}-x_{j(\ell-1)}|\leq|y-x|+1\leq\frac{1+\delta_{\mathbb{G}}}{\delta_{\mathbb{G}}}|y-x|

which with (2.7) yields

(2.8) k=01|xj(k+1)xj(k)|3+2δ𝔾δ𝔾|yx|.\sum_{k=0}^{\ell-1}|x_{j(k+1)}-x_{j(k)}|\leq\frac{3+2\delta_{\mathbb{G}}}{\delta_{\mathbb{G}}}|y-x|.

On the other hand, if =1\ell=1 then

k=01|xj(k+1)xj(k)|=|yx|\sum_{k=0}^{\ell-1}|x_{j(k+1)}-x_{j(k)}|=|y-x|

so (2.8) still holds. This proves bounded dilation. ∎

3. Straightness of geodesics and and regularity of means

For q>0q>0 and xdx\in\mathbb{R}^{d}, let

(3.1) ψq(x)= the point of qd closest to x (with ties broken arbitrarily),Fy=ψq1(y),yqd,{\color[rgb]{1,0,0}\psi_{q}(x)}=\text{ the point of $q\mathbb{Z}^{d}$ closest to $x$ (with ties broken arbitrarily)},\quad{\color[rgb]{1,0,0}F_{y}}=\psi_{q}^{-1}(y),y\in q\mathbb{Z}^{d},

the latter being a cube (ignoring the boundary.) More generally for udu\in\mathbb{R}^{d} we define FuF_{u} to be the cube FyF_{y} containing uu, with some arbitrary rule for cube–boundary points.

The bound (1.3) applies to deterministic x,yx,y; we cannot for example take x,y𝕍x,y\in\mathbb{V}. Instead for random x,yx,y we can apply (1.3) to nearby points of qdq\mathbb{Z}^{d} for some qq, and use the following. It is the only place the assumption A2(iv) of bounded dilation is used.

Lemma 3.1.

Suppose 𝔾=(𝕍,𝔼)\mathbb{G}=(\mathbb{V},\mathbb{E}) and {ηe,e𝔼}\{\eta_{e},e\in\mathbb{E}\} satisfy A1, A2, and A3. There exist constants CiC_{i} as follows.

(i) Let r2r\geq 2 and tC39logrt\geq C_{39}\log r. Then

P(there exist x,yBr(0)𝕍 with T(x,y)tr)C40eC41t.P(\text{there exist $x,y\in B_{r}(0)\cap\mathbb{V}$ with }T(x,y)\geq tr)\leq C_{40}e^{-C_{41}t}.

(ii) For all x,ydx,y\in\mathbb{R}^{d},

ET(x,y)C42(|yx|1).ET(x,y)\leq C_{42}(|y-x|\vee 1).
Proof.

To prove (i) we condition on 𝕍\mathbb{V}. Given x,yBr(0)𝕍x,y\in B_{r}(0)\cap\mathbb{V}, by A1(iv) there exists a path x=x0,x1,..,xm=yx=x_{0},x_{1},..,x_{m}=y in 𝔾\mathbb{G} with

j=1m|xjxj1|C18|yx|2C18r.\sum_{j=1}^{m}|x_{j}-x_{j-1}|\leq C_{18}|y-x|\leq 2C_{18}r.

Writing ηj\eta_{j} for ηxj1xj\eta_{\langle x_{j-1}x_{j}\rangle}, for λ>0\lambda>0 we have

P(T(x,y)t|yx||𝕍)\displaystyle P\Big{(}T(x,y)\geq t|y-x|\,\Big{|}\,\mathbb{V}\Big{)} P(j=1m|xjxj1|ηjt|yx||𝕍)\displaystyle\leq P\left(\sum_{j=1}^{m}|x_{j}-x_{j-1}|\eta_{j}\geq t|y-x|\,\Bigg{|}\,\mathbb{V}\right)
eλt|yx|j=1mζ(λ|xjxj1|)\displaystyle\leq e^{-\lambda t|y-x|}\prod_{j=1}^{m}\zeta\big{(}\lambda|x_{j}-x_{j-1}|\big{)}
(3.2) eλt|yx|ζ(C18λ|yx|),\displaystyle\leq e^{-\lambda t|y-x|}\zeta\big{(}C_{18}\lambda|y-x|\big{)},

so using A2(ii) it follows that for some cic_{i},

(3.3) P(T(x,y)t|yx||𝕍)eIη(t/C18)c0ec1t,P\Big{(}T(x,y)\geq t|y-x|\,\Big{|}\,\mathbb{V}\Big{)}\leq e^{-I_{\eta}(t/C_{18})}\leq c_{0}e^{-c_{1}t},

where Iη(t)=supγ>0(γtlogζ(γ)){\color[rgb]{1,0,0}I_{\eta}(t)}=\sup_{\gamma>0}(\gamma t-\log\zeta(\gamma)) is the large-deviations rate function of the variables ηe\eta_{e}. From this, using A1(v),

P(there exist x,yBr(0)𝕍 with T(x,y)tr)\displaystyle P(\text{there exist $x,y\in B_{r}(0)\cap\mathbb{V}$ with }T(x,y)\geq tr) n=2P(|Br(0)𝕍|=n)(n2)c1ec1t/2\displaystyle\leq\sum_{n=2}^{\infty}P(|B_{r}(0)\cap\mathbb{V}|=n){n\choose 2}c_{1}e^{-c_{1}t/2}
c1E|Br(0)𝕍|2ec1t/2\displaystyle\leq c_{1}E|B_{r}(0)\cap\mathbb{V}|^{2}e^{-c_{1}t/2}
c2r4ec2t/2\displaystyle\leq c_{2}r^{4}e^{-c_{2}t/2}
(3.4) c2ec3t,\displaystyle\leq c_{2}e^{-c_{3}t},

proving (i).

To prove (ii) we apply (3.3) to φ(x)\varphi(x) and φ(y)\varphi(y), and use the fact that |φ(x)x|1|\varphi(x)-x|\leq 1 for all xx. ∎

Building on Lemma 3.1 we obtain the following.

Lemma 3.2.

Suppose 𝔾=(𝕍,𝔼)\mathbb{G}=(\mathbb{V},\mathbb{E}) and {ηe,e𝔼}\{\eta_{e},e\in\mathbb{E}\} satisfy A1, A2, and A3. There exist constants CiC_{i} as follows. For all r2,u,vdr\geq 2,u,v\in\mathbb{R}^{d} and t>0t>0 with σ(|uv|)r\sigma(|u-v|)\geq r and tσ(|uv|)C43rlogrt\sigma(|u-v|)\geq C_{43}r\log r,

P(\displaystyle P\Big{(} there exist xBr(u)𝕍,yBr(v)𝕍 with |T(x,y)ET(u,v)|tσ(|uv|))\displaystyle\text{there exist $x\in B_{r}(u)\cap\mathbb{V},y\in B_{r}(v)\cap\mathbb{V}$ with }|T(x,y)-ET(u,v)|\geq t\sigma(|u-v|)\Big{)}
(3.5) C44eC45t.\displaystyle\qquad\leq C_{44}e^{-C_{45}t}.
Proof.

Using Lemma 3.1(i) and (1.3) we have

P(\displaystyle P\Big{(} there exist xBr(u)𝕍,yBr(v)𝕍 with |T(x,y)ET(u,v)|tσ(|uv|))\displaystyle\text{there exist $x\in B_{r}(u)\cap\mathbb{V},y\in B_{r}(v)\cap\mathbb{V}$ with }|T(x,y)-ET(u,v)|\geq t\sigma(|u-v|)\Big{)}
P(there exists xBr(u)𝕍 with T(x,u)tσ(|uv|)/3)\displaystyle\quad\leq P\Big{(}\text{there exists $x\in B_{r}(u)\cap\mathbb{V}$ with }T(x,u)\geq t\sigma(|u-v|)/3\Big{)}
+P(there exists yBr(v)𝕍 with T(y,v)tσ(|uv|)/3)\displaystyle\quad\qquad+P\Big{(}\text{there exists $y\in B_{r}(v)\cap\mathbb{V}$ with }T(y,v)\geq t\sigma(|u-v|)/3\Big{)}
+P(|T(u,v)ET(u,v)|tσ(|uv|)/3)\displaystyle\quad\qquad+P\Big{(}|T(u,v)-ET(u,v)|\geq t\sigma(|u-v|)/3\Big{)}
2C40eC41tσ(|uv|)/3r+C24eC25t/3\displaystyle\quad\leq 2C_{40}e^{-C_{41}t\sigma(|u-v|)/3r}+C_{24}e^{-C_{25}t/3}
(3.6) c0ec1t.\displaystyle\quad\leq c_{0}e^{-c_{1}t}.

We write

xy1ykyin Γxy{\color[rgb]{1,0,0}x\to y_{1}\to\cdots\to y_{k}\to y}\quad\text{in }\Gamma_{xy}

to denote that the vertices yi𝕍y_{i}\in\mathbb{V} appear in the order y1,,yky_{1},\dots,y_{k} in traversing Γxy\Gamma_{xy} from xx to yy. For aa preceding bb in Γxy\Gamma_{xy} we write Γxy[a,b]{\color[rgb]{1,0,0}\Gamma_{xy}[a,b]} for the segment of Γxy\Gamma_{xy} from aa to bb. (Here we do not require a,b𝕍a,b\in\mathbb{V}.) For vv in a geodesic Γxy\Gamma_{xy} and 0<s<|vx|0<s<|v-x|, let uu be the first vertex in Γxy𝕍\Gamma_{xy}\cap\mathbb{V} before vv satisfying ΓuvBs(v)\Gamma_{uv}\subset B_{s}(v). We then call Γuv\Gamma_{uv} the trailing s-segment of vv in Γxy\Gamma_{xy}. Note that by (2.1), s|uv|s2s\geq|u-v|\geq s-2. Define the hyperplanes, slabs, and halfspaces

Hs={(x1,x)d:x1=s},H[r,s]={(x1,x)d:rx1s},{\color[rgb]{1,0,0}H_{s}}=\{(x_{1},x^{*})\in\mathbb{R}^{d}:x_{1}=s\},\quad{\color[rgb]{1,0,0}H_{[r,s]}}=\{(x_{1},x^{*})\in\mathbb{R}^{d}:r\leq x_{1}\leq s\},
Hs+={(x1,x)d:x1s},Hs={(x1,x)d:x1s}.{\color[rgb]{1,0,0}H_{s}^{+}}=\{(x_{1},x^{*})\in\mathbb{R}^{d}:x_{1}\geq s\},\quad{\color[rgb]{1,0,0}H_{s}^{-}}=\{(x_{1},x^{*})\in\mathbb{R}^{d}:x_{1}\leq s\}.

We turn next to a weaker version of Theorem 1.5 similar to (1.7); we will need it on the way to the proof of Theorem 1.5. The proof of (1.7) in [1] does not carry over immediately to the present situation, as it uses translation invariance of the lattice. But we can use radial symmetry here to give a distinctly shorter proof than that of (1.7) in [1].

Recall h(r)μrh(r)-\mu r is nonnegative by subadditivity of hh. For technical convenience we assume β>4\beta>4 in A1(ii).

Proposition 3.3.

Suppose 𝔾=(𝕍,𝔼)\mathbb{G}=(\mathbb{V},\mathbb{E}) and {ηe,e𝔼}\{\eta_{e},e\in\mathbb{E}\} satisfy A1, A2, and A3. There exists C46C_{46} such that for all r2r\geq 2,

(3.7) μrh(r)μr+C46σrlogr.\mu r\leq h(r)\leq\mu r+C_{46}\sigma_{r}\log r.
Proof.

It is sufficient to prove the bound for all sufficiently large rr, so we will tacitly assume rr is large, as needed.

We consider the geodesic Γ0,nre1\Gamma_{0,nre_{1}} for a fixed large nn. Let β\beta be as in A1(iii). For 0jn10\leq j\leq n-1 let vj{\color[rgb]{1,0,0}v_{j}} be the first vertex vv in Γ0,nre1𝕍\Gamma_{0,nre_{1}}\cap\mathbb{V} with the property that the trailing (r2β)(r-2\beta)-segment of vv in Γ0,nre1\Gamma_{0,nre_{1}} is contained in Hjr+H_{jr}^{+}, and let uj{\color[rgb]{1,0,0}u_{j}} be the starting point of this trailing segment. From (2.1) it is easy to see that we must have jr(uj)1jr+2jr\leq(u_{j})_{1}\leq jr+2. It follows that Γ0,nre1[uj,vj]Br2β(vj)Hjr+H(j+1)r2β+2\Gamma_{0,nre_{1}}[u_{j},v_{j}]\subset B_{r-2\beta}(v_{j})\cap H_{jr}^{+}\cap H_{(j+1)r-2\beta+2}^{-}; we denote this last region by Wvj{\color[rgb]{1,0,0}W_{v_{j}}}. Note that any two sets WvjW_{v_{j}} are separated by distance at least 2β22\beta-2.

We need to control the entropy of the collection of pairs {(uj,vj):0j<n}\{(u_{j},v_{j}):0\leq j<n\}. To do this, we enlarge this collection in such a way that we can put a natural tree structure on it. To that end, let vn{\color[rgb]{1,0,0}v_{n}} be the first vertex in Γ0,nre1𝕍\Gamma_{0,nre_{1}}\cap\mathbb{V}, if one exists, which is at distance at least rr from 0j<nWvj\cup_{0\leq j<n}W_{v_{j}}. Then let un𝕍{\color[rgb]{1,0,0}u_{n}}\in\mathbb{V} be such that Γ0,nre1[un,vn]\Gamma_{0,nre_{1}}[u_{n},v_{n}] is the trailing (r2β)(r-2\beta)-segment of vnv_{n} in Γ0,nre1\Gamma_{0,nre_{1}}, and let Wvn=Br2β(vn)W_{v_{n}}=B_{r-2\beta}(v_{n}), which contains Γ0,nre1[un,vn]\Gamma_{0,nre_{1}}[u_{n},v_{n}]. We repeat this to obtain (un+1,vn+1),,(uN,vN)(u_{n+1},v_{n+1}),\dots,(u_{N},v_{N}), stopping when no vN+1v_{N+1} exists. Note this preserves the property of separation by distance at least 2β22\beta-2. Also, each new vjv_{j} is within distance 2r2β+22r-2\beta+2 of some already-existing viv_{i}.

We define the discrete approximations u^j=ψ1/d(uj),v^j=ψ1/d(vj){\color[rgb]{1,0,0}\hat{u}_{j}}=\psi_{1/\sqrt{d}}(u_{j}),{\color[rgb]{1,0,0}\hat{v}_{j}}=\psi_{1/\sqrt{d}}(v_{j}), and then let

W^j={Br2β+1(v^j)Hjr1+H(j+1)r2β+3if 0j<n,Br2β+1(v^j)if njN.{\color[rgb]{1,0,0}\hat{W}_{j}}=\begin{cases}B_{r-2\beta+1}(\hat{v}_{j})\cap H_{jr-1}^{+}\cap H_{(j+1)r-2\beta+3}^{-}&\text{if }0\leq j<n,\\ B_{r-2\beta+1}(\hat{v}_{j})&\text{if }n\leq j\leq N.\end{cases}

which contains WvjW_{v_{j}}; the sets W^j,0jN\hat{W}_{j},0\leq j\leq N are separated from each other by distance at least 2β62\beta-6. We call {(u^j,v^j):0j<n}\{(\hat{u}_{j},\hat{v}_{j}):0\leq j<n\} primary pairs, and {(u^j,v^j):njN}\{(\hat{u}_{j},\hat{v}_{j}):n\leq j\leq N\} secondary pairs. Since r2β|ujvj|r2β2r-2\beta\geq|u_{j}-v_{j}|\geq r-2\beta-2, we have

(3.8) r>r2β+2|u^jv^j|r2β4>r3β.r>r-2\beta+2\geq|\hat{u}_{j}-\hat{v}_{j}|\geq r-2\beta-4>r-3\beta.

We now make a graph with vertices {(u^j,v^j):0jN}\{(\hat{u}_{j},\hat{v}_{j}):0\leq j\leq N\} by placing an edge between the ith and jth pairs if |v^jv^i|4r|\hat{v}_{j}-\hat{v}_{i}|\leq 4r. The construction ensures that the resulting graph is connected, and it is easy to see that the disjointness of the sets W^j\hat{W}_{j} means the number of neighbors of any pair is bounded by some c0c_{0}. We label (u0,v0)(u_{0},v_{0}) as the root, and by some arbitrary algorithm, we take a spanning tree of the graph, which we denote 𝒯(Γ0,nre1){\color[rgb]{1,0,0}\mathcal{T}(\Gamma_{0,nre_{1}})}. For counting purposes, we view two such trees as the same if they have the same pairs {(u^j,v^j):0jN}\{(\hat{u}_{j},\hat{v}_{j}):0\leq j\leq N\}, and the same set of primary pairs. We define parents and offspring in this rooted tree in the usual way: for a given pair (u^j,v^j)(\hat{u}_{j},\hat{v}_{j}), its parent is the first pair after (u^j,v^j)(\hat{u}_{j},\hat{v}_{j}) in the unique path from (u^j,v^j)(\hat{u}_{j},\hat{v}_{j}) to the root, and its offspring are those pairs having (u^j,v^j)(\hat{u}_{j},\hat{v}_{j}) as parent.

The tree 𝒯(Γ0,nre1)\mathcal{T}(\Gamma_{0,nre_{1}}) determines what we will call an abstract tree, in which all that is specified is the number of offspring of the root, then the number of offspring of each of these offspring, etc. The number of possible abstract trees here with N+1N+1 vertices is at most c0Nc_{0}^{N}, and, provided rr is large, for each such abstract tree the number of corresponding actual trees 𝒯(Γ0,nre1)\mathcal{T}(\Gamma_{0,nre_{1}}) is at most ((8r)d)2N+2((8r)^{d})^{2N+2}, so the number of trees 𝒯(Γ0,nre1)\mathcal{T}(\Gamma_{0,nre_{1}}) consisting of N+1N+1 pairs is at most (c1r)2d(N+1)(c_{1}r)^{2d(N+1)}.

We now consider all possible trees 𝒯0\mathcal{T}_{0}, with vertices {(u^j,v^j):0jN}\{(\hat{u}_{j},\hat{v}_{j}):0\leq j\leq N\}, and with {(u^j,v^j):0j<n}\{(\hat{u}_{j},\hat{v}_{j}):0\leq j<n\} primary. Let v(𝒯0)v(\mathcal{T}_{0}) denote the number of vertices in the tree 𝒯0\mathcal{T}_{0}. We have

P(T(0,nre1)n(μr\displaystyle P\Big{(}T(0,nre_{1})\leq n(\mu r +1))=Nn𝒯0:v(𝒯0)=NP(T(0,nre1)n(μr+1),𝒯(Γ0,nre1)=𝒯0)\displaystyle+1)\Big{)}=\sum_{N\geq n}\,\sum_{\mathcal{T}_{0}:v(\mathcal{T}_{0})=N}P\Big{(}T(0,nre_{1})\leq n(\mu r+1),\mathcal{T}(\Gamma_{0,nre_{1}})=\mathcal{T}_{0}\Big{)}
(3.9) Nn(c1r)2d(N+1)max𝒯0:v(𝒯0)=NP(T(0,nre1)n(μr+1),𝒯(Γ0,nre1)=𝒯0)\displaystyle\leq\sum_{N\geq n}(c_{1}r)^{2d(N+1)}\max_{\mathcal{T}_{0}:v(\mathcal{T}_{0})=N}P\Big{(}T(0,nre_{1})\leq n(\mu r+1),\mathcal{T}(\Gamma_{0,nre_{1}})=\mathcal{T}_{0}\Big{)}

We proceed by contradiction: we want to show that for some C46C_{46}, if h(r)>μr+C46σrlogrh(r)>\mu r+C_{46}\sigma_{r}\log r then the right side of (3) approaches 0 as nn\to\infty, which means lim supnT(0,nre1)/nμr+1\limsup_{n}T(0,nre_{1})/n\geq\mu r+1 a.s. , contradicting the definition of μ\mu.

Thus suppose

(3.10) h(r)>μr+2C46σrlogr,h(r)>\mu r+2C_{46}\sigma_{r}\log r,

with C46C_{46} to be specified, and fix 𝒯0\mathcal{T}_{0} with vertices {(u^j,v^j):0jN}\{(\hat{u}_{j},\hat{v}_{j}):0\leq j\leq N\} with NnN\geq n. For u,v𝕍W^ju,v\in\mathbb{V}\cap\hat{W}_{j} let

TW^j(u,v)=inf{T(Γ):Γ is a path from u to v in 𝔾,ΓW^j},{\color[rgb]{1,0,0}T_{\hat{W}_{j}}(u,v)}=\inf\{T(\Gamma):\Gamma\text{ is a path from $u$ to $v$ in }\mathbb{G},\Gamma\subset\hat{W}_{j}\},

taking the value \infty when there is no such path. TW^j(u,v)T_{\hat{W}_{j}}(u,v) is determined by the configuration in

W^j1={u2:d(u,W^j)<1}.{\color[rgb]{1,0,0}\hat{W}_{j}^{1}}=\{u\in\mathbb{R}^{2}:d(u,\hat{W}_{j})<1\}.

There must exist uj,vjW^j𝕍u_{j},v_{j}\in\hat{W}_{j}\cap\mathbb{V} satisfying |uju^j|1,|vjv^j|1,Γuj,vjΓ0,nre1W^j|u_{j}-\hat{u}_{j}|\leq 1,|v_{j}-\hat{v}_{j}|\leq 1,\Gamma_{u_{j},v_{j}}\subset\Gamma_{0,nre_{1}}\cap\hat{W}_{j} and

j=0NTW^j(uj,vj)T(0,nre1).\sum_{j=0}^{N}T_{\hat{W}_{j}}(u_{j},v_{j})\leq T(0,nre_{1}).

It follows that, letting

T^j=inf{TW^j(uj,vj):uj,vj𝕍,|uju^j|1,|vjv^j|1},{\color[rgb]{1,0,0}\hat{T}_{j}}=\inf\{T_{\hat{W}_{j}}(u_{j},v_{j}):u_{j},v_{j}\in\mathbb{V},|u_{j}-\hat{u}_{j}|\leq 1,|v_{j}-\hat{v}_{j}|\leq 1\},

the T^j\hat{T}_{j}’s are independent (since the sets W^j1\hat{W}_{j}^{1} are separated from each other by distance more than 2β8>β2\beta-8>\beta) and satisfy

(3.11) j=0NT^jT(0,nre1).\sum_{j=0}^{N}\hat{T}_{j}\leq T(0,nre_{1}).

Each T^j\hat{T}_{j} is stochastically larger than

Tj=inf{T(uj,vj):uj,vj𝕍,|uju^j|1,|vjv^j|1}{\color[rgb]{1,0,0}T_{j}}=\inf\{T(u_{j},v_{j}):u_{j},v_{j}\in\mathbb{V},|u_{j}-\hat{u}_{j}|\leq 1,|v_{j}-\hat{v}_{j}|\leq 1\}

From (1.10) and (3.8) we have for some c2c_{2} that σ(|u^jv^j|)c2σr.\sigma(|\hat{u}_{j}-\hat{v}_{j}|)\leq c_{2}\sigma_{r}. From (3.8), (3.10), and subadditivity we also have

ET(u^j,v^j)h(r)h(r|u^jv^j|)h(r)c3μr+2C46σrlogrc3μr+C46σrlogr.ET(\hat{u}_{j},\hat{v}_{j})\geq h(r)-h(r-|\hat{u}_{j}-\hat{v}_{j}|)\geq h(r)-c_{3}\geq\mu r+2C_{46}\sigma_{r}\log r-c_{3}\geq\mu r+C_{46}\sigma_{r}\log r.

Hence from Lemma 3.2 we obtain that provided rr is large, for all t1t\geq 1,

P(Tjμr+C46σrlogrtσr)\displaystyle P\Big{(}T_{j}\leq\mu r+C_{46}\sigma_{r}\log r-t\sigma_{r}\Big{)} P(TjET(u^j,v^j)tσr)\displaystyle\leq P\Big{(}T_{j}\leq ET(\hat{u}_{j},\hat{v}_{j})-t\sigma_{r}\Big{)}
P(TjET(u^j,v^j)c21tσ(|u^jv^j|))\displaystyle\leq P\Big{(}T_{j}\leq ET(\hat{u}_{j},\hat{v}_{j})-c_{2}^{-1}t\sigma(|\hat{u}_{j}-\hat{v}_{j}|)\Big{)}
(3.12) C44eC45t/c2.\displaystyle\leq C_{44}e^{-C_{45}t/c_{2}}.

By increasing C44C_{44} we may make this valid for all t>0t>0. We then have for λ=C45/2c2σr{\color[rgb]{1,0,0}\lambda}=C_{45}/2c_{2}\sigma_{r} and M=μr+C46σrlogr{\color[rgb]{1,0,0}M}=\mu r+C_{46}\sigma_{r}\log r,

EeλT^j\displaystyle Ee^{-\lambda\hat{T}_{j}} EeλTj\displaystyle\leq Ee^{-\lambda T_{j}}
=0P(Tjx)λeλx𝑑x\displaystyle=\int_{0}^{\infty}P(T_{j}\leq x)\lambda e^{-\lambda x}\ dx
=eλMM/σrP(TjMtσr)λσreλσrt𝑑t\displaystyle=e^{-\lambda M}\int_{-\infty}^{M/\sigma_{r}}P(T_{j}\leq M-t\sigma_{r})\lambda\sigma_{r}e^{\lambda\sigma_{r}t}\ dt
eλM[0λσreλσrt𝑑t+0M/σrC44eC45t/c2λσreλσrt𝑑t]\displaystyle\leq e^{-\lambda M}\left[\int_{-\infty}^{0}\lambda\sigma_{r}e^{\lambda\sigma_{r}t}\ dt+\int_{0}^{M/\sigma_{r}}C_{44}e^{-C_{45}t/c_{2}}\lambda\sigma_{r}e^{\lambda\sigma_{r}t}\ dt\right]
(3.13) (1+C44)eλM.\displaystyle\leq(1+C_{44})e^{-\lambda M}.

Recalling (3) and (3.11) we then have

P(T(0,nre1)n(μr+1),𝒯(Γ0,nre1)=𝒯0)\displaystyle P\Big{(}T(0,nre_{1})\leq n(\mu r+1),\mathcal{T}(\Gamma_{0,nre_{1}})=\mathcal{T}_{0}\Big{)} P(j=0NT^jn(μr+1))\displaystyle\leq P\left(\sum_{j=0}^{N}\hat{T}_{j}\leq n(\mu r+1)\right)
(3.14) eλ(μr+1)n(1+C44)N+1eλM(N+1),\displaystyle\leq e^{\lambda(\mu r+1)n}(1+C_{44})^{N+1}e^{-\lambda M(N+1)},

so by (3), provided rr (and hence λM\lambda M) and C46C_{46} (in (3.10)) are large,

P(T(0,nre1)n(μr+1))\displaystyle P\Big{(}T(0,nre_{1})\leq n(\mu r+1)\Big{)} Nn(c1r)2d(N+1)eλ(μr+1)n(1+C44)N+1eλM(N+1)\displaystyle\leq\sum_{N\geq n}(c_{1}r)^{2d(N+1)}e^{\lambda(\mu r+1)n}(1+C_{44})^{N+1}e^{-\lambda M(N+1)}
2(c1r)2d(n+1)eλ(μr+1)n(1+C44)n+1eλM(n+1)\displaystyle\leq 2(c_{1}r)^{2d(n+1)}e^{\lambda(\mu r+1)n}(1+C_{44})^{n+1}e^{-\lambda M(n+1)}
(3.15) enlogr.\displaystyle\leq e^{-n\log r}.

As we have noted, since this approaches 0 as nn\to\infty, it contradicts the fact that T(0,nre1)/nμrT(0,nre_{1})/n\to\mu r a.s. Thus (3.10) must be false. ∎

We need to use a result from [2] to the effect that “geodesics are very straight.” It is proved there for FPP on a lattice, but the proof goes through essentially unchanged for the present context. The heuristics are as follows: suppose the geodesic Γ0,re1\Gamma_{0,re_{1}} passes through a vertex u=(u1,u)u=(u_{1},u^{*}) at distance ss from Π0,re1\Pi_{0,re_{1}}; by symmetry we may suppose uHr/2u\in H_{r/2}^{-}. The geodesic then travels a corresponding extra distance g(u)+g(re1u)g(re1)g(u)+g(re_{1}-u)-g(re_{1}). If the angle between uu and re1re_{1} is small, this extra distance is of order |u|2/u1|u^{*}|^{2}/u_{1}, and from (1.11), the cost of this (meaning log of the probability) is of order |u|2/u1σ(u1)|u^{*}|^{2}/u_{1}\sigma(u_{1}). If instead the angle between uu and re1re_{1} is not small, the extra distance is of order |u||u| and the cost is of order |u|/σ(|u|)|u|/\sigma(|u|). We can combine these into a single statement by saying the cost for general uu should be whichever of these two costs is smaller, at least for uH[0,r]u\in H_{[0,r]}.

The exact formulation of the straightness result contains extra log factors relative to the preceding heuristic, due to the need to bound the probability for all uu simultaneously. It is as follows, using the constants Ci,χiC_{i},\chi_{i} of (1.10). Define σ(s)\sigma^{*}(s) and Φ(s)\Phi(s) by

Φ(s)=sC23σ(s)log(2+s)=sχ2C23suptst1χ2σtlog(2+t).{\color[rgb]{1,0,0}\Phi(s)}=\frac{s}{C_{23}{\color[rgb]{1,0,0}\sigma^{*}(s)}\log(2+s)}=\frac{s^{\chi_{2}}}{C_{23}}\sup_{t\leq s}\frac{t^{1-\chi_{2}}}{\sigma_{t}\log(2+t)}.

Here factoring out a power of ss on the right, and the use of the sup, ensure that Φ\Phi is strictly increasing. Note that by (1.10) we have

(3.16) C231σsσ(s)σs.C_{23}^{-1}\sigma_{s}\leq\sigma^{*}(s)\leq\sigma_{s}.

Then define

(3.17) Ξ(s)=(sσ(s)log(2+s))1/2,D(u)={min(|u|2Ξ(u1)2,Φ(max(|u1|,|u|)))if u10,Φ(max(|u1|,|u|))if u1<0.{\color[rgb]{1,0,0}\Xi(s)}=(s\sigma(s)\log(2+s))^{1/2},\quad{\color[rgb]{1,0,0}D(u)}=\begin{cases}\min\left(\frac{|u^{*}|^{2}}{\Xi(u_{1})^{2}},\Phi\left(\max\big{(}|u_{1}|,|u^{*}|\big{)}\right)\right)&\text{if }u_{1}\geq 0,\\ \Phi\left(\max\big{(}|u_{1}|,|u^{*}|\big{)}\right)&\text{if }u_{1}<0.\end{cases}

Note that by (1.10) and (3.16), for large ss,

(3.18) 1C23Φ(s)(Ξ(s)s)21Φ(s).\frac{1}{C_{23}\Phi(s)}\leq\left(\frac{\Xi(s)}{s}\right)^{2}\leq\frac{1}{\Phi(s)}.

The “min” in the definition of DD is in accordance with our heuristic: from [2], we have for large |u||u| that for C23C_{23} from (1.10),

(3.19) D(u)={Φ(max(|u1|,|u|))if |u|u1,|u|2Ξ(u1)2if |u|C231/2u1.D(u)=\begin{cases}\Phi\left(\max\big{(}|u_{1}|,|u^{*}|\big{)}\right)&\text{if }|u^{*}|\geq u_{1},\\ \frac{|u^{*}|^{2}}{\Xi(u_{1})^{2}}&\text{if }|u^{*}|\leq C_{23}^{-1/2}u_{1}.\end{cases}

Finally, define the symmetric version of DD:

(3.20) Dr(u)={D(u)if u1r2D(re1u)if u1>r2.{\color[rgb]{1,0,0}D_{r}(u)}=\begin{cases}D(u)&\text{if }u_{1}\leq\frac{r}{2}\\ D(re_{1}-u)&\text{if }u_{1}>\frac{r}{2}.\end{cases}

This makes the right half of the region {u:Dr(u)c}\{u:D_{r}(u)\leq c\} the mirror image of the left half; this region is a “tube” (narrower near the ends) surrounding the line from 0 to re1re_{1} bounded by the shell {u:|u|=c1/2Ξ(u1)}\{u:|u^{*}|=c^{1/2}\Xi(u_{1})\}, augmented by a cylinder of radius Φ1(c)\Phi^{-1}(c) and length 2Φ1(c)2\Phi^{-1}(c) around each endpoint, so we will call it a tube–and–cylinders region.

We will also consider tube–and–cylinders regions around general pairs u,vu,v in place of 0,re10,re_{1}. To that end, let Θuv:22{\color[rgb]{1,0,0}\Theta_{uv}}:\mathbb{R}^{2}\to\mathbb{R}^{2} be translation by u-u followed by some unitary transformation which takes vuv-u to the positive horizontal axis, so that Θuv(u)=0,Θuv(v)=|vu|e1\Theta_{uv}(u)=0,\Theta_{uv}(v)=|v-u|e_{1}. (The particular choice of unitary transformation does not matter.) Then Θuv1({w:D|vu|(w)c})\Theta_{uv}^{-1}(\{w:D_{|v-u|}(w)\leq c\}) is a tube–and–cylinders region containing Πuv\Pi_{uv}.

The proof of the acceptable–random–graphs version of the straightness bound is little changed from the lattice-FPP version in [2]; we can readily use Lemma 3.1(i) to change the result from “point–to–point” (say, 0 to re1re_{1}) to “ball–to–ball,” with a sup over xx and yy. We omit the details.

Proposition 3.4.

Suppose 𝔾=(𝕍,𝔼)\mathbb{G}=(\mathbb{V},\mathbb{E}) and {ηe,e𝔼}\{\eta_{e},e\in\mathbb{E}\} satisfy A1, A2, and A3. There exist constants CiC_{i} as follows. For all r,t>0r,t>0,

(3.21) P(supxB1(0)𝕍,yB1(re1)𝕍supuΓxyDr(u)t)C47eC48tlogt.P\left(\sup_{x\in B_{1}(0)\cap\mathbb{V},\ y\in B_{1}(re_{1})\cap\mathbb{V}}\ \sup_{u\in\Gamma_{xy}}D_{r}(u)\geq t\right)\leq C_{47}e^{-C_{48}t\log t}.

We next bound transverse increments of passage times from 0, that is, increments which are (approximately) along the boundary of a ball of large radius rr, over distances Δr\ll\Delta_{r}. The following lattice-FPP result from [2] carries over straightforwardly to the present context with the help of Lemma 3.1(i), and again we omit details. Recalling the cubes FuF_{u} of side qq define

T^(u,v)=min{T(y,z):yFu,zFv},u,vd.{\color[rgb]{1,0,0}\hat{T}(u,v)}=\min\{T(y,z):y\in F_{u},z\in F_{v}\},\quad u,v\in\mathbb{R}^{d}.
Proposition 3.5.

Suppose 𝔾=(𝕍,𝔼)\mathbb{G}=(\mathbb{V},\mathbb{E}) and {ηe,e𝔼}\{\eta_{e},e\in\mathbb{E}\} satisfy A1, A2, and A3. There exist constants CiC_{i} as follows. For all u,vqdu,v\in q\mathbb{Z}^{d} with

(3.22) |u|C49,|g(u)g(v)|C50,and3|uv|C51Δ(|u|),|u|\geq C_{49},\quad|g(u)-g(v)|\leq C_{50},\quad\text{and}\quad 3\leq|u-v|\leq C_{51}\Delta(|u|),

and all λC52\lambda\geq C_{52}, we have

(3.23) P(T^(v,0)T^(u,0)λσ(Δ1(|uv|))log|uv|)C53eC54λlog|uv|.P\Big{(}\hat{T}(v,0)-\hat{T}(u,0)\geq\lambda\sigma(\Delta^{-1}(|u-v|))\log|u-v|\Big{)}\leq C_{53}e^{-C_{54}\lambda\log|u-v|}.

We next prove a seemingly obvious fact: h(r)=ET(0,re1)h(r)=ET(0,re_{1}) is approximately increasing in rr.

Lemma 3.6.

Suppose 𝔾=(𝕍,𝔼)\mathbb{G}=(\mathbb{V},\mathbb{E}) and {ηe,e𝔼}\{\eta_{e},e\in\mathbb{E}\} satisfy A1, A2, and A3. Given 0<ϵ<10<\epsilon<1 there exist constants CiC_{i} as follows.

(i) Let q>(1+χ)/(1χ){\color[rgb]{1,0,0}q}>(1+\chi)/(1-\chi). Let r,s>0r,s>0 satisfying min(r,s)C55ϵq\min(r,s)\geq C_{55}\epsilon^{-q}. Then

(3.24) h(r+s)h(r)+(1ϵ)h(s).h(r+s)\geq h(r)+(1-\epsilon)h(s).

Here C55=C55(q)C_{55}=C_{55}(q).

(ii) For all r,s0r,s\geq 0,

(3.25) h(r+s)h(r)+(1ϵ)h(s)C56.h(r+s)\geq h(r)+(1-\epsilon)h(s)-C_{56}.
Remark 3.7.

Lemma 3.6(i) can be reformulated as follows: given γ>χ/ξ\gamma>\chi/\xi there exist Ci(γ)C_{i}(\gamma) such that

h(r+s)h(r)+h(s)C57sγfor all rsC58.h(r+s)\geq h(r)+h(s)-C_{57}s^{\gamma}\quad\text{for all }r\geq s\geq C_{58}.

Also, from Proposition 3.3 we have for some C59C_{59}

h(r+s)μ(r+s)h(r)+h(s)2C46σrlogrfor all rs2,h(r+s)\geq\mu(r+s)\geq h(r)+h(s)-2C_{46}\sigma_{r}\log r\quad\text{for all }r\geq s\geq 2,

but when sσrlogrs\leq\sigma_{r}\log r this does not yield (3.24).

Proof of Lemma 3.6..

We prove (i), then obtain (ii) as a straightforward consequence. The idea is to show that Γ0,(r+s)e1\Gamma_{0,(r+s)e_{1}} must with high probability approach (r+s)e1(r+s)e_{1} approximately horizontally, which forces T(0,(r+s)e1)T(0,re1)T(0,(r+s)e_{1})-T(0,re_{1}) to be near h(s)h(s) with high probability; a non-horizontal approach would force the sup in (3.21) to be large.

Suppose (3.24) holds under the added condition sr/4s\leq r/4. Then for s>r/4s>r/4 we can take nn with s/nr/4<s/(n1)s/n\leq r/4<s/(n-1) and see that the hypotheses are satisfied with s/ns/n in place of ss. (This may require increasing C55C_{55}, but without dependence on nn.) Applying (3.24) nn times then yields

h(r+s)=h(r+nsn)h(r)+n(1ϵ)h(sn)h(r)+(1ϵ)h(s).h(r+s)=h\left(r+n\frac{s}{n}\right)\geq h(r)+n(1-\epsilon)h\left(\frac{s}{n}\right)\geq h(r)+(1-\epsilon)h(s).

Therefore it is sufficient to prove the lemma for sr/4s\leq r/4. It is also sufficient to consider 0<ϵ<ϵ00<\epsilon<\epsilon_{0} for any fixed ϵ0=ϵ0(q)>0\epsilon_{0}=\epsilon_{0}(q)>0.

With c0c_{0} to be specified, define

(3.26) m=inf{u>0:σulogu>ϵμs16c0}r2,t=ϵΦ(m)1/2,{\color[rgb]{1,0,0}m}=\inf\left\{u>0:\sigma_{u}\log u>\frac{\epsilon\mu s}{16c_{0}}\right\}\wedge\frac{r}{2},\quad{\color[rgb]{1,0,0}t}=\epsilon\Phi(m)^{1/2},
S1={wd:r+smw1r+sm+2,Dr+s(w)t},{\color[rgb]{1,0,0}S_{1}}=\{w\in\mathbb{R}^{d}:r+s-m\leq w_{1}\leq r+s-m+2,D_{r+s}(w)\leq t\},
S2={wd:r+smw1r+sm+2,|w|ϵm}.{\color[rgb]{1,0,0}S_{2}}=\{w\in\mathbb{R}^{d}:r+s-m\leq w_{1}\leq r+s-m+2,|w^{*}|\leq\epsilon m\}.

Note that provided C55C_{55} (and hence ss and mm) is large, which we henceforth tacitly assume, and provided ϵ0\epsilon_{0} is small, we have Φ1(t)<m/2\Phi^{-1}(t)<m/2 and m2sm\geq 2s. Suppose wS1{\color[rgb]{1,0,0}w}\in S_{1}. We have |w1(r+s)|m2>Φ1(t)|w_{1}-(r+s)|\geq m-2>\Phi^{-1}(t) (meaning ww lies to the left of the cylinder around (r+s)e1(r+s)e_{1} in the tube-and-cylinders region {u:Dr+s(u)t}\{u:D_{r+s}(u)\leq t\}) and so by (3.18),

(3.27) |w|mt1/2Ξ(m)mtΦ(m)1/2=ϵ.\frac{|w^{*}|}{m}\leq\frac{t^{1/2}\Xi(m)}{m}\leq\frac{t}{\Phi(m)^{1/2}}=\epsilon.

Thus S1S2S_{1}\subset S_{2}. We let w^=(r+sm,w){\color[rgb]{1,0,0}\hat{w}}=(r+s-m,w^{*}), so |ww^|2|w-\hat{w}|\leq 2 for wS2w\in S_{2}. See Figure 1. Then for such ww, recalling m2sm\geq 2s, we have

|w^(r+s)e1||w^re1|=(m2+|w|2)1/2((ms)2+|w|2)1/2sm(m2+|w|2)1/2(1ϵ2)s,|\hat{w}-(r+s)e_{1}|-|\hat{w}-re_{1}|=(m^{2}+|w^{*}|^{2})^{1/2}-((m-s)^{2}+|w^{*}|^{2})^{1/2}\geq\frac{sm}{(m^{2}+|w^{*}|^{2})^{1/2}}\geq(1-\epsilon^{2})s,

so assuming C55C_{55} is large and ϵ0\epsilon_{0} is small,

(3.28) |w(r+s)e1||wre1|(1ϵ2)s2(1ϵ4)s.|w-(r+s)e_{1}|-|w-re_{1}|\geq(1-\epsilon^{2})s-2\geq\left(1-\frac{\epsilon}{4}\right)s.

Also for wS2w\in S_{2}, m/2msm2|wre1|2mm/2\leq m-s\leq m-2\leq|w-re_{1}|\leq 2m and hence by (1.10), σ(|wre1|)3C23σm2\sigma(|w-re_{1}|)\leq 3C_{23}\sigma_{m-2}. It follows that provided we choose c0c_{0} large enough in (3.26),

C46σ(|wre1|)log|wre1|4C23C46σm2log(m2)ϵ12μs.C_{46}\sigma(|w-re_{1}|)\log|w-re_{1}|\leq 4C_{23}C_{46}\sigma_{m-2}\log(m-2)\leq\frac{\epsilon}{12}\mu s.

With (3.28) and Proposition 3.3, this yields that provided C55C_{55} is large,

h(|w(r+s)e1|)h(|wre1|)\displaystyle h(|w-(r+s)e_{1}|)-h(|w-re_{1}|) μ|w(r+s)e1|μ|wre1|C46σ(|wre1|)log|wre1|\displaystyle\geq\mu|w-(r+s)e_{1}|-\mu|w-re_{1}|-C_{46}\sigma(|w-re_{1}|)\log|w-re_{1}|
(1ϵ3)μs\displaystyle\geq\left(1-\frac{\epsilon}{3}\right)\mu s
(3.29) (1ϵ2)h(s).\displaystyle\geq\left(1-\frac{\epsilon}{2}\right)h(s).
Refer to caption
Figure 1. Diagram for the proof of Lemma 3.6. S1S_{1} is shaded.

We need a lower bound for tt. Since q>q^=(1+χ)/(1χ)q>{\color[rgb]{1,0,0}\hat{q}}=(1+\chi)/(1-\chi), we can choose b>0{\color[rgb]{1,0,0}b}>0 small enough so (q1)(1b)2>(1+b)(q^1)(q-1)(1-b)^{2}>(1+b)(\hat{q}-1). Provided C55C_{55} is large enough (in the lemma statement, and depending on b,qb,q), since sC55ϵqs\geq C_{55}\epsilon^{-q} we have

(3.30) m(ϵs)(1b)/χ,Φ(m)m(1b)(1χ),t=ϵΦ(m)1/2c1ϵ1(1b)2(q1)(1χ)/2χc1ϵb.m\geq(\epsilon s)^{(1-b)/\chi},\quad\Phi(m)\geq m^{(1-b)(1-\chi)},\quad t=\epsilon\Phi(m)^{1/2}\geq c_{1}\epsilon^{1-(1-b)^{2}(q-1)(1-\chi)/2\chi}\geq c_{1}\epsilon^{-b}.

Observe that for every vertex wΓ0,(r+s)e1𝕍w\in\Gamma_{0,(r+s)e_{1}}\cap\mathbb{V} we have

(3.31) T(0,(r+s)e1)T(0,re1)=T(0,w)+T(w,(r+s)e1)T(0,re1)T(w,(r+s)e1)T(w,re1).T(0,(r+s)e_{1})-T(0,re_{1})=T(0,w)+T(w,(r+s)e_{1})-T(0,re_{1})\geq T(w,(r+s)e_{1})-T(w,re_{1}).

Let

T=min{T(w,(r+s)e1)T(w,re1):wS2V}{\color[rgb]{1,0,0}T^{*}}=\min\{T(w,(r+s)e_{1})-T(w,re_{1}):w\in S_{2}\cap V\}

and let W{\color[rgb]{1,0,0}W} be the first vertex in Γ0,(r+s)e1𝕍\Gamma_{0,(r+s)e_{1}}\cap\mathbb{V} satisfying r+smW1r+sm+2r+s-m\leq W_{1}\leq r+s-m+2. If WS2W\in S_{2} then by (3.31) and subadditivity we have

T(0,(r+s)e1)T(0,re1)T,|T(0,(r+s)e1)T(0,re1)|T(re1,(r+s)e1),T(0,(r+s)e_{1})-T(0,re_{1})\geq T^{*},\qquad|T(0,(r+s)e_{1})-T(0,re_{1})|\leq T(re_{1},(r+s)e_{1}),
|T|T(re1,(r+s)e1).|T^{*}|\leq T(re_{1},(r+s)e_{1}).

Hence

h(r+s)h(r)\displaystyle h(r+s)-h(r) =E[T(0,(r+s)e1)T(0,re1)]\displaystyle=E[T(0,(r+s)e_{1})-T(0,re_{1})]
E(T1{WS2})E(T(re1,(r+s)e1)1{WS2})\displaystyle\geq E(T^{*}1_{\{W\in S_{2}\}})-E(T(re_{1},(r+s)e_{1})1_{\{W\notin S_{2}\}})
(3.32) E(T)2E(T(re1,(r+s)e1)1{WS2}).\displaystyle\geq E(T^{*})-2E(T(re_{1},(r+s)e_{1})1_{\{W\notin S_{2}\}}).

It follows from (1.3) that for some c2c_{2}

E(T(re1,(r+s)e1)2)1/2c2s.E(T(re_{1},(r+s)e_{1})^{2})^{1/2}\leq c_{2}s.

Assuming ϵ0\epsilon_{0} is small, by Proposition 3.4 and (3.30) we have

(3.33) P(WS2)P(WS1)C47eC48tlogtC47ec3ϵb(ϵμ8c2)2.P(W\notin S_{2})\leq P(W\notin S_{1})\leq C_{47}e^{-C_{48}t\log t}\leq C_{47}e^{-c_{3}\epsilon^{-b}}\leq\left(\frac{\epsilon\mu}{8c_{2}}\right)^{2}.

Combining these yields

(3.34) E(T(re1,(r+s)e1)1{WS2})E(T(re1,(r+s)e1)2)1/2P(WS2)1/2ϵμs8.E(T(re_{1},(r+s)e_{1})1_{\{W\notin S_{2}\}})\leq E(T(re_{1},(r+s)e_{1})^{2})^{1/2}P(W\notin S_{2})^{1/2}\leq\frac{\epsilon\mu s}{8}.

To use (3) we also need a lower bound for E(T)E(T^{*}). For y>0y>0, using (3),

P\displaystyle P (T(1ϵ2)h(s)2yσmlogm)\displaystyle\left(T^{*}\leq\left(1-\frac{\epsilon}{2}\right)h(s)-2y\sigma_{m}\log m\right)
P(for some wS2𝕍,T(w,(r+s)e1)T(w,re1)\displaystyle\qquad\leq P\Bigg{(}\text{for some }w\in S_{2}\cap\mathbb{V},\ T(w,(r+s)e_{1})-T(w,re_{1})\leq
h(|w(r+s)e1|)h(|wre1|)2yσmlogm)\displaystyle\qquad\qquad\qquad\qquad h(|w-(r+s)e_{1}|)-h(|w-re_{1}|)-2y\sigma_{m}\log m\Bigg{)}
P(for some wS2𝕍,T(w,(r+s)e1)h(|w(r+s)e1|)yσmlogm)\displaystyle\qquad\leq P\Bigg{(}\text{for some }w\in S_{2}\cap\mathbb{V},\ T(w,(r+s)e_{1})-h(|w-(r+s)e_{1}|)\leq-y\sigma_{m}\log m\Bigg{)}
(3.35) +P(for some wS2𝕍,T(w,re1)h(|wre1|)yσmlogm).\displaystyle\qquad\qquad+P\Bigg{(}\text{for some }w\in S_{2}\cap\mathbb{V},\ T(w,re_{1})-h(|w-re_{1}|)\geq y\sigma_{m}\log m\Bigg{)}.

We consider the first probability on the right in (3); the second probability is similar. For wS2w\in S_{2} we have using (3.27) that

m2|w(r+s)e1|(1+ϵ2)m,m-2\leq|w-(r+s)e_{1}|\leq\left(1+\epsilon^{2}\right)m,

and then from (1.10),

σmσ(|w(r+s)e1|)C222.\frac{\sigma_{m}}{\sigma(|w-(r+s)e_{1}|)}\geq\frac{C_{22}}{2}.

From these and Lemma 3.2 (see C45C_{45} there) we obtain that if c0c_{0} is large enough, then for yc0y\geq c_{0},

P\displaystyle P (for some wS2𝕍,T(w,(r+s)e1)h(|w(r+s)e1|)yσmlogm)\displaystyle\Bigg{(}\text{for some }w\in S_{2}\cap\mathbb{V},\ T(w,(r+s)e_{1})-h(|w-(r+s)e_{1}|)\leq-y\sigma_{m}\log m\Bigg{)}
w^S2d1/2dP(for some wB1(w^)𝕍,\displaystyle\leq\sum_{\hat{w}\in S_{2}\cap d^{-1/2}\mathbb{Z}^{d}}P\Bigg{(}\text{for some }w\in B_{1}(\hat{w})\cap\mathbb{V},
T(w,(r+s)e1)h(|w^(r+s)e1|)h(|ww^|)yσmlogm)\displaystyle\hskip 99.58464ptT(w,(r+s)e_{1})-h(|\hat{w}-(r+s)e_{1}|)\leq h(|w-\hat{w}|)-y\sigma_{m}\log m\Bigg{)}
w^S2d1/2dP(for some wB1(w^)𝕍,T(w,(r+s)e1)h(|w^(r+s)e1|)y2σmlogm)\displaystyle\leq\sum_{\hat{w}\in S_{2}\cap d^{-1/2}\mathbb{Z}^{d}}P\Bigg{(}\text{for some }w\in B_{1}(\hat{w})\cap\mathbb{V},\ T(w,(r+s)e_{1})-h(|\hat{w}-(r+s)e_{1}|)\leq-\frac{y}{2}\sigma_{m}\log m\Bigg{)}
c4md1exp(C45C22y4logm)\displaystyle\leq c_{4}m^{d-1}\exp\left(-\frac{C_{45}C_{22}y}{4}\log m\right)
(3.36) 12ec5ylogm.\displaystyle\leq\frac{1}{2}e^{-c_{5}y\log m}.

The same bound holds for the second probability on the right in (3). With (3) and the definition of mm in (3.26) this shows that

ET(1ϵ2)h(s)4c0σmlogm(13ϵ4)h(s).ET^{*}\geq\left(1-\frac{\epsilon}{2}\right)h(s)-4c_{0}\sigma_{m}\log m\geq\left(1-\frac{3\epsilon}{4}\right)h(s).

Combining this with (3) and (3.34) yields (3.24).

We now prove (ii). From (i), there exists c6c_{6} such that h(r+s)h(r)+(1ϵ)h(s)h(r+s)\geq h(r)+(1-\epsilon)h(s) whenever r,sc6r,s\geq c_{6}; there then exists c7c_{7} such that h(s)c7h(s)\leq c_{7} whenever 0sc60\leq s\leq c_{6}. We therefore have

h(r+s){h(r)+(1ϵ)h(s)if r,sc6h(r)h(s)h(r)+(1ϵ)h(s)2c7if s<c60h(r)+(1ϵ)h(s)2c7if r<c6h(r+s)\geq\begin{cases}h(r)+(1-\epsilon)h(s)&\text{if }r,s\geq c_{6}\\ h(r)-h(s)\geq h(r)+(1-\epsilon)h(s)-2c_{7}&\text{if }s<c_{6}\\ 0\geq h(r)+(1-\epsilon)h(s)-2c_{7}&\text{if }r<c_{6}\end{cases}

which proves (3.25). ∎

4. Proof of Theorem 1.3—downward deviations

We use a multiscale argument which is related to chaining. But first we dispense with simpler cases that only require Lemma 3.2 and Proposition 3.4. The first such case is pairs x,yx,y which are close together. For technical convenience later, we prove the following also for geodesics with endpoints in the set Gr+G_{r}^{+}, satisfying Gr+Gr(K)G_{r}^{+}\supset G_{r}(K) for KK fixed and rr large, given by

(4.1) Gr+=[C60(logr)2/(1χ),r+C60(logr)2/(1χ)]×C60Δr(logr)𝔅d1,{\color[rgb]{1,0,0}G_{r}^{+}}=[-C_{60}(\log r)^{2/(1-\chi)},r+C_{60}(\log r)^{2/(1-\chi)}]\times C_{60}\Delta_{r}(\log r)\mathfrak{B}_{d-1},

with C60C_{60} to be specified.

Lemma 4.1.

Suppose 𝔾=(𝕍,𝔼)\mathbb{G}=(\mathbb{V},\mathbb{E}) and {ηe,e𝔼}\{\eta_{e},e\in\mathbb{E}\} satisfy A1, A2, and A3. There exist constants CiC_{i} for all r2,K1,r\geq 2,K\geq 1, and t>C61K2t>C_{61}K^{2},

P\displaystyle P (T(x,y)ET(x,y)tσr for some x,yGr(K)Gr+ with |yx|C62r(logr)1/χ1)\displaystyle\left(T(x,y)\leq ET(x,y)-t\sigma_{r}\text{ for some $x,y\in G_{r}(K)\cup G_{r}^{+}$ with $|y-x|\leq\frac{C_{62}r}{(\log r)^{1/\chi_{1}}}$}\right)
(4.2) C63eC64tlogr.\displaystyle\leq C_{63}e^{-C_{64}t\log r}.
Proof.

We may assume tt is large. We first discretize: by Lemma 3.1(ii), for xB1(x^),yB1(y^)x\in B_{1}(\hat{x}),y\in B_{1}(\hat{y}), we have |ET(x,y)ET(x^,y^)|2C42tσr/2|ET(x,y)-ET(\hat{x},\hat{y})|\leq 2C_{42}\leq t\sigma_{r}/2, so for c0>0c_{0}>0,

P\displaystyle P (T(x,y)ET(x,y)tσr for some x,yGr+ with |yx|c0r(logr)1/χ1)\displaystyle\left(T(x,y)\leq ET(x,y)-t\sigma_{r}\text{ for some $x,y\in G_{r}^{+}$ with $|y-x|\leq\frac{c_{0}r}{(\log r)^{1/\chi_{1}}}$}\right)
(4.3) x^,y^d1/2d(Gr(K)Gr+)|x^y^|2c0r/(logr)1/χ1P(T(x,y)ET(x^,y^)tσr2 for some xB1(x^),yB1(y^)).\displaystyle\leq\sum_{\begin{subarray}{c}\hat{x},\hat{y}\in d^{-1/2}\mathbb{Z}^{d}\cap(G_{r}(K)\cup G_{r}^{+})\\ |\hat{x}-\hat{y}|\leq 2c_{0}r/(\log r)^{1/\chi_{1}}\end{subarray}}P\left(T(x,y)\leq ET(\hat{x},\hat{y})-\frac{t\sigma_{r}}{2}\text{ for some $x\in B_{1}(\hat{x}),y\in B_{1}(\hat{y})$}\right).

From (1.10),

|x^y^|2c0r(logr)1/χ1σ(r)σ(|x^y^|)c1(2c0)1/χ1logr,|\hat{x}-\hat{y}|\leq\frac{2c_{0}r}{(\log r)^{1/\chi_{1}}}\implies\frac{\sigma(r)}{\sigma(|\hat{x}-\hat{y}|)}\geq\frac{c_{1}}{(2c_{0})^{1/\chi_{1}}}\log r,

so if we take c0c_{0} small enough then by Lemma 3.2,

x^,y^d1/2d(Gr(K)Gr+)|x^y^|c0r/2(logr)1/χ1P(T(x,y)ET(x^,y^)tσr2 for some xB1(x^),yB1(y^))\displaystyle\sum_{\begin{subarray}{c}\hat{x},\hat{y}\in d^{-1/2}\mathbb{Z}^{d}\cap(G_{r}(K)\cup G_{r}^{+})\\ |\hat{x}-\hat{y}|\leq c_{0}r/2(\log r)^{1/\chi_{1}}\end{subarray}}P\left(T(x,y)\leq ET(\hat{x},\hat{y})-\frac{t\sigma_{r}}{2}\text{ for some $x\in B_{1}(\hat{x}),y\in B_{1}(\hat{y})$}\right)
c2r(KΔrlogr)d1max{eC45tσr/2σ(|x^y^|):|x^y^|c0r/2(logr)1/χ1}\displaystyle\qquad\qquad\leq c_{2}r(K\Delta_{r}\log r)^{d-1}\max\left\{e^{-C_{45}t\sigma_{r}/2\sigma(|\hat{x}-\hat{y}|)}:|\hat{x}-\hat{y}|\leq c_{0}r/2(\log r)^{1/\chi_{1}}\right\}
(4.4) eC45tlogr,\displaystyle\qquad\qquad\leq e^{-C_{45}t\log r},

which with (4) proves (4.1). ∎

Lemma 4.1 means we need only consider x,yGr(K)x,y\in G_{r}(K) satisfying

(4.5) |yx|>C62r(logr)1/χ1.|y-x|>\frac{C_{62}r}{(\log r)^{1/\chi_{1}}}.

Writing αuv{\color[rgb]{1,0,0}\alpha_{uv}} for the angle between nonzero vectors u,vdu,v\in\mathbb{R}^{d}, this means that for large rr,

(4.6) αyx,e1βr:=c0Δr(logr)1/χ1rr(1χ)/4.\alpha_{y-x,e_{1}}\leq{\color[rgb]{1,0,0}\beta_{r}}:=c_{0}\frac{\Delta_{r}(\log r)^{1/\chi_{1}}}{r}\leq r^{-(1-\chi)/4}.

A second simple case is small rr. For fixed r0r_{0} and 1rr01\leq r\leq r_{0}, from Lemma 3.1 for all x,yGrx,y\in G_{r} we have ET(x,y)c1rET(x,y)\leq c_{1}r, so for tc2r0t\geq c_{2}r_{0} we have ET(x,y)tσrc1rtσr<0ET(x,y)-t\sigma_{r}\leq c_{1}r-t\sigma_{r}<0, and hence the probability in (1.13) is 0. Therefore there exist C29,C30C_{29},C_{30} such that (1.13) is valid for all 1rr01\leq r\leq r_{0} and t>0t>0.

A third simple case is tc3log(Kr)t\geq c_{3}\log(Kr), with c3c_{3} large enough. As in (4) and (4), for C45C_{45} from Lemma 3.2 we then have

P(T(x,y)ET(x,y)tσr for some x,yGr(K))\displaystyle P\left(T(x,y)\leq ET(x,y)-t\sigma_{r}\text{ for some $x,y\in G_{r}(K)$}\right) c4r(KΔr)d1maxu,vGr(K)eC45tσr/2σ(|uv|)\displaystyle\leq c_{4}r(K\Delta_{r})^{d-1}\max_{u,v\in G_{r}(K)}e^{-C_{45}t\sigma_{r}/2\sigma(|u-v|)}
c4r(KΔr)d1ec5t\displaystyle\leq c_{4}r(K\Delta_{r})^{d-1}e^{-c_{5}t}
(4.7) c6ec5t/2.\displaystyle\leq c_{6}e^{-c_{5}t/2}.

It follows that, for C26C_{26} from Theorem 1.3, we need only consider C26K2t<c3log(Kr)C_{26}K^{2}\leq t<c_{3}\log(Kr), and therefore also Kc7(logr)1/2K\leq c_{7}(\log r)^{1/2}, which means Gr(2K)Gr+G_{r}(2K)\subset G_{r}^{+}.

A fourth simple case is pairs x,yx,y for which Γxy\Gamma_{xy} goes well outside Gr(K)G_{r}(K), when rr is large and t<c3log(Kr)t<c_{3}\log(Kr). Assuming rr is large, C=2c3C=2c_{3}, from the third simple case, is the choice of interest in the following.

Lemma 4.2.

Suppose 𝔾=(𝕍,𝔼)\mathbb{G}=(\mathbb{V},\mathbb{E}) and {ηe,e𝔼}\{\eta_{e},e\in\mathbb{E}\} satisfy A1, A2, and A3. Then given C>0C>0 there exist constants Ci=Ci(C)C_{i}=C_{i}(C) such that for c7c_{7} as above, for all rC65,Kc7(logr)1/2,C66K2tClog(Kr)r\geq C_{65},K\leq c_{7}(\log r)^{1/2},C_{66}K^{2}\leq t\leq C\log(Kr) we have

P(ΓxyGr+ for some x,yGr(K) satisfying (4.5))C68eC69t.P\Big{(}\Gamma_{xy}\not\subset G_{r}^{+}\text{ for some $x,y\in G_{r}(K)$ satisfying \eqref{xyfar}}\Big{)}\leq C_{68}e^{-C_{69}t}.
Proof.

Note the assumptions guarantee Gr(K)Gr+G_{r}(K)\subset G_{r}^{+}. Let x^,y^d1/2dGr(K){\color[rgb]{1,0,0}\hat{x},\hat{y}}\in d^{-1/2}\mathbb{Z}^{d}\cap G_{r}(K) with x^1<y^1\hat{x}_{1}<\hat{y}_{1}, and let x,yGrx,y\in G_{r} satisfy (4.5), with |xx^|<1,|yy^|<1|x-\hat{x}|<1,|y-\hat{y}|<1. Recall the transformation Θx^y^\Theta_{\hat{x}\hat{y}} which takes Πx^y^\Pi_{\hat{x}\hat{y}} to Π0,|y^x^|e1\Pi_{0,|\hat{y}-\hat{x}|e_{1}}. Suppose wΓx^y^\Gr+{\color[rgb]{1,0,0}w}\in\Gamma_{\hat{x}\hat{y}}\backslash G_{r}^{+} and let w~=Θx^y^w{\color[rgb]{1,0,0}\tilde{w}}=\Theta_{\hat{x}\hat{y}}w; we may take ww with d(w,Gr+)2d(w,G_{r}^{+})\leq 2. We claim that, for DrD_{r} from (3.20), we have Dr(w~)C60logrD_{r}(\tilde{w})\geq C_{60}\log r, with C60C_{60} from the definition of Gr+G_{r}^{+}. We consider several cases.

Case 1. C60(logr)2/(1χ)w1r+C60(logr)2/(1χ)-C_{60}(\log r)^{2/(1-\chi)}\leq w_{1}\leq r+C_{60}(\log r)^{2/(1-\chi)}, that is, ww is to the side of Gr+G_{r}^{+}. See Figure 2. From symmetry we may assume C60(logr)2/(1χ)w1r/2-C_{60}(\log r)^{2/(1-\chi)}\leq w_{1}\leq r/2. Note that in the definition (3.17) of D(u)D(u), the case u10u_{1}\geq 0 is the relevant one here if and only if w~1[0,|y^x^|]\tilde{w}_{1}\in[0,|\hat{y}-\hat{x}|]. We have

(4.8) d(w~,Π0,|y^x^|e1)=d(w,Πx^y^)d(w,Gr(K))C602Δrlogr,|w|C60Δrlogr,d(\tilde{w},\Pi_{0,|\hat{y}-\hat{x}|e_{1}})=d(w,\Pi_{\hat{x}\hat{y}})\geq d(w,G_{r}(K))\geq\frac{C_{60}}{2}\Delta_{r}\log r,\qquad|w^{*}|\geq C_{60}\Delta_{r}\log r,

and w~1[0,|y^x^|]d(w~,Π0,|y^x^|e1)=|w~|\tilde{w}_{1}\in[0,|\hat{y}-\hat{x}|]\implies d(\tilde{w},\Pi_{0,|\hat{y}-\hat{x}|e_{1}})=|\tilde{w}^{*}|, so

w~1[0,|y^x^|2]|w~|2Ξ(w~1)2d(w~,Π0,|y^x^|e1)2Ξ(12|y^x^|)2C602Δr2(logr)24Ξ(r)2C6025logr.\tilde{w}_{1}\in\left[0,\frac{|\hat{y}-\hat{x}|}{2}\right]\implies\frac{|\tilde{w}^{*}|^{2}}{\Xi(\tilde{w}_{1})^{2}}\geq\frac{d(\tilde{w},\Pi_{0,|\hat{y}-\hat{x}|e_{1}})^{2}}{\Xi\left(\frac{1}{2}|\hat{y}-\hat{x}|\right)^{2}}\geq\frac{C_{60}^{2}\Delta_{r}^{2}(\log r)^{2}}{4\Xi(r)^{2}}\geq\frac{C_{60}^{2}}{5}\log r.

Also as in (4.8),

max(|w~1|,|w~|)12|w~|=12|wx^|12d(w,Πx^y^)C603Δrlogr\max(|\tilde{w}_{1}|,|\tilde{w}^{*}|)\geq\frac{1}{\sqrt{2}}|\tilde{w}|=\frac{1}{\sqrt{2}}|w-\hat{x}|\geq\frac{1}{\sqrt{2}}d(w,\Pi_{\hat{x}\hat{y}})\geq\frac{C_{60}}{3}\Delta_{r}\log r

so

Φ(max(|w~1|,|w~|))C60logr.\Phi\left(\max\big{(}|\tilde{w}_{1}|,|\tilde{w}^{*}|\big{)}\right)\geq C_{60}\log r.

Therefore under Case 1,

(4.9) <w~1|y^x^|2D|y^x^|(w~)C60logr,-\infty<\tilde{w}_{1}\leq\frac{|\hat{y}-\hat{x}|}{2}\implies D_{|\hat{y}-\hat{x}|}(\tilde{w})\geq C_{60}\log r,

and symmetrically the same holds for w~1>|y^x^|/2\tilde{w}_{1}>|\hat{y}-\hat{x}|/2.

Case 2. w1<C60(logr)2/(1χ)w_{1}<-C_{60}(\log r)^{2/(1-\chi)} with w~1>0\tilde{w}_{1}>0, or w1>r+C60(logr)2/(1χ)w_{1}>r+C_{60}(\log r)^{2/(1-\chi)} with w~1<|y^x^|\tilde{w}_{1}<|\hat{y}-\hat{x}|, that is, ww is past the end of Gr+G_{r}^{+} but w~\tilde{w} is to the side of Π0,|y^x^|e1\Pi_{0,|\hat{y}-\hat{x}|e_{1}}. See Figure 2. The two ends are symmetric so we need only consider w1<C60(logr)2/(1χ)w_{1}<-C_{60}(\log r)^{2/(1-\chi)} with w~1>0\tilde{w}_{1}>0. Let H(x^){\color[rgb]{1,0,0}H_{(\hat{x})}} be the hyperplane through x^\hat{x} perpendicular to y^x^\hat{y}-\hat{x}, and let w¯{\color[rgb]{1,0,0}\overline{w}} be the orthogonal projection of ww into H(x^)H_{(\hat{x})}, so |w¯x^|=|w~||\overline{w}-\hat{x}|=|\tilde{w}^{*}| and |ww¯|=|w~1||w-\overline{w}|=|\tilde{w}_{1}|. Since Kc7(logr)1/2K\leq c_{7}(\log r)^{1/2}, by (4.6) the angle αy^x^,e1\alpha_{\hat{y}-\hat{x},e_{1}} is small enough that we have w¯1<w1<0\overline{w}_{1}<w_{1}<0 and hence, for βr\beta_{r} from (4.6),

(4.10) C60(logr)2/(1χ)x^1w¯1|w¯x^|sinαy^x^,e1|w~|βr;C_{60}(\log r)^{2/(1-\chi)}\leq\hat{x}_{1}-\overline{w}_{1}\leq|\overline{w}-\hat{x}|\sin\alpha_{\hat{y}-\hat{x},e_{1}}\leq|\tilde{w}^{*}|\beta_{r};

therefore

Φ(max(|w~1|,|w~|))Φ(C60(logr)2/(1χ)βr)C60logr.\Phi\left(\max\big{(}|\tilde{w}_{1}|,|\tilde{w}^{*}|\big{)}\right)\geq\Phi\left(\frac{C_{60}(\log r)^{2/(1-\chi)}}{\beta_{r}}\right)\geq C_{60}\log r.

Further, similarly to (4.10), since the small angle αy^x^,e1\alpha_{\hat{y}-\hat{x},e_{1}} ensures 12w~1=12|ww¯|(ww¯)1\frac{1}{2}\tilde{w}_{1}=\frac{1}{2}|w-\overline{w}|\leq(w-\overline{w})_{1}, we have

(4.11) 12w~1(ww¯)1(x^w¯)1=|w¯x^|sinαy^x^,e1|w~|βr\frac{1}{2}\tilde{w}_{1}\leq(w-\overline{w})_{1}\leq(\hat{x}-\overline{w})_{1}=|\overline{w}-\hat{x}|\sin\alpha_{\hat{y}-\hat{x},e_{1}}\leq|\tilde{w}^{*}|\beta_{r}

and therefore using (1.10),

|w~|2Ξ(w~1)2|w~|2Ξ(2βr|w~|)2C22|w~|βrχ1σ(|w~|)log(2+|w~|)1βrχ1C60logr.\frac{|\tilde{w}^{*}|^{2}}{\Xi(\tilde{w}_{1})^{2}}\geq\frac{|\tilde{w}^{*}|^{2}}{\Xi(2\beta_{r}|\tilde{w}^{*}|)^{2}}\geq\frac{C_{22}|\tilde{w}^{*}|}{\beta_{r}^{\chi_{1}}\sigma(|\tilde{w}^{*}|)\log(2+|\tilde{w}^{*}|)}\geq\frac{1}{\beta_{r}^{\chi_{1}}}\geq C_{60}\log r.

This proves the right side of (4.9) under Case 2.

Refer to caption
Figure 2. Diagram for Case 1 (right) and Case 2 (left) in the proof of Lemma 4.2. On the left, if we translate and rotate the picture so that x^\hat{x} becomes 0 and y^x^\hat{y}-\hat{x} becomes horizontal, then ww becomes w~\tilde{w}. Case 3 is like Case 2 except that w~\tilde{w} is to the left of 0.

Case 3. w1<C60(logr)2/(1χ)w_{1}<-C_{60}(\log r)^{2/(1-\chi)} with w~10\tilde{w}_{1}\leq 0, or w1>r+C60(logr)2/(1χ)w_{1}>r+C_{60}(\log r)^{2/(1-\chi)} with w~1|y^x^|\tilde{w}_{1}\geq|\hat{y}-\hat{x}|, that is, ww is past the end of Gr+G_{r}^{+} and w~\tilde{w} is past the end of Π0,|y^x^|e1\Pi_{0,|\hat{y}-\hat{x}|e_{1}}. The two ends are again symmetric so we need only consider w1<C60(logr)2/(1χ)w_{1}<-C_{60}(\log r)^{2/(1-\chi)} with w~10\tilde{w}_{1}\leq 0. Then |w~|=|wx^|x^1w1C60(logr)2/(1χ)|\tilde{w}|=|w-\hat{x}|\geq\hat{x}_{1}-w_{1}\geq C_{60}(\log r)^{2/(1-\chi)} so

Dr(w~)=Φ(max(|w~1|,|w~|))Φ(|w~|2)C60logr.D_{r}(\tilde{w})=\Phi\left(\max\big{(}|\tilde{w}_{1}|,|\tilde{w}^{*}|\big{)}\right)\geq\Phi\left(\frac{|\tilde{w}|}{2}\right)\geq C_{60}\log r.

Thus is all cases we have Dr(w~)C60logrD_{r}(\tilde{w})\geq C_{60}\log r, so by Proposition 3.4,

P\displaystyle P (ΓxyGr+ for some x,yGr(K) satisfying (4.5))\displaystyle\Big{(}\Gamma_{xy}\not\subset G_{r}^{+}\text{ for some $x,y\in G_{r}(K)$ satisfying \eqref{xyfar}}\Big{)}
x^,y^d1/2dGr(K)P(ΓxyGr+ for some x,yGr(K) satisfying (4.5) with |xx^|<1,|yy^|<1)\displaystyle\leq\sum_{\hat{x},\hat{y}\in d^{-1/2}\mathbb{Z}^{d}\cap G_{r}(K)}P\Big{(}\Gamma_{xy}\not\subset G_{r}^{+}\text{ for some $x,y\in G_{r}(K)$ satisfying \eqref{xyfar} with }|x-\hat{x}|<1,|y-\hat{y}|<1\Big{)}
x^,y^d1/2dGr(K)P(supxB1(x^)𝕍,yB1(y^)𝕍supwΓxyD|y^x^|(Θx^y^w)C60logr)\displaystyle\leq\sum_{\hat{x},\hat{y}\in d^{-1/2}\mathbb{Z}^{d}\cap G_{r}(K)}P\left(\sup_{x\in B_{1}(\hat{x})\cap\mathbb{V},y\in B_{1}(\hat{y})\cap\mathbb{V}}\ \sup_{w\in\Gamma_{xy}}D_{|\hat{y}-\hat{x}|}(\Theta_{\hat{x}\hat{y}}w)\geq C_{60}\log r\right)
c0r(KΔr)d1eC47(loglogr)logr\displaystyle\leq c_{0}r(K\Delta_{r})^{d-1}e^{-C_{47}(\log\log r)\log r}
c1ec2t.\displaystyle\leq c_{1}e^{-c_{2}t}.

In summary, we may restrict to the following situation (still with x,yGr(K)x,y\in G_{r}(K)):

(4.12) rr0,Kc7(logr)1/2,c8tc3logr,|yx|>C62r(logr)1/χ1,ΓxyGr+,r\geq r_{0},\quad K\leq c_{7}(\log r)^{1/2},\quad c_{8}\leq t\leq c_{3}\log r,\quad|y-x|>\frac{C_{62}r}{(\log r)^{1/\chi_{1}}},\quad\Gamma_{xy}\subset G_{r}^{+},

with C62C_{62} from Lemma 4.1.

4.1. Step 1. Setting up the coarse-graining.

For purposes of coarse–graining and multiscale analysis of paths, we build grids inside Gr+G_{r}^{+} on various scales, using small parameters λ,δ,β\lambda,\delta,\beta satsfying

(4.13) 1λδχ1δ(1+χ1)/2β1\gg\lambda\gg\delta^{\chi_{1}}\gg\delta^{(1+\chi_{1})/2}\gg\beta

in the sense that the ratio of each term to the one following must be taken sufficiently large, in a manner to be specified. We choose these so 1/δ1/\delta and 1/β1/\beta are integers. There is also a fourth parameter ρ>1{\color[rgb]{1,0,0}\rho}>1, and we further require

(4.14) βλρδ(1+χ2)/21,ρβλδ(1χ1)/21,β2λ2δ1,β2χ1/(1+χ1)λδ31,ρ2λ1;\frac{\beta}{\lambda\rho\delta^{(1+\chi_{2})/2}}\ll 1,\quad\frac{\rho\beta}{\lambda\delta^{(1-\chi_{1})/2}}\ll 1,\quad\frac{\beta^{2}}{\lambda^{2}\delta}\ll 1,\quad\frac{\beta^{2\chi_{1}/(1+\chi_{1})}}{\lambda\delta^{3}}\ll 1,\quad\rho^{2}\lambda\gg 1;

all of (4.14) can be satisfied by taking β\beta small enough after choosing ρ,λ,δ\rho,\lambda,\delta. For j1j\geq 1, a jth–scale hyperplane is one of form Hkδjr,kH_{k\delta^{j}r},k\in\mathbb{Z}, and the jth–scale grid in Gr+G_{r}^{+} is

𝕃j=𝕃j(r)={uGr+:u1δjr,uK0βjΔrd1},\mathbb{L}_{j}={\color[rgb]{1,0,0}\mathbb{L}_{j}(r)}=\left\{u\in G_{r}^{+}:u_{1}\in\delta^{j}r\mathbb{Z},u^{*}\in{\color[rgb]{1,0,0}K_{0}}\beta^{j}\Delta_{r}\mathbb{Z}^{d-1}\right\},

where K0[1,2]K_{0}\in[1,2] is to be specified. Note that larger jj values correspond to smaller scales, and since 1/δ1/\delta is an integer, a jjth–scale hyperplane for some jj is also a kkth–scale hyperplane for k>jk>j. A hyperplane is maximally jth–scale if it is jjth–scale but not (j1)(j-1)th–scale.

The jjth–scale grid divides a jjth–scale hyperplane into cubes which we call jth–scale blocks. For concreteness we take these blocks to be products of left–open–right–closed intervals. Each point uu of the hyperplane then lies in a unique such block. For a point uu in a jjth–scale hyperplane, the jth–scale coarse–grain approximation of uu is the point Vj(u){\color[rgb]{1,0,0}V_{j}(u)} which is the unique corner point in the block containing uu. We abbreviate coarse–grain as CG. The definition ensures that two points with the same jjth–scale CG approximation also have the same kkth–scale CG approximation for all larger scales k<jk<j.

A transverse step in the jjth–scale grid is a step from some u𝕃ju\in\mathbb{L}_{j} to some v𝕃jv\in\mathbb{L}_{j} satisfying v1=u1,|vu|=K0βjΔrv_{1}=u_{1},|v^{*}-u^{*}|=K_{0}\beta^{j}\Delta_{r}; a longitudinal step is from uu to vv satisfying v1=u1+δjr,v=uv_{1}=u_{1}+\delta^{j}r,v^{*}=u^{*}. Define

1=1(j)=Δ(δjr)βjΔ(r),2=2(j)=ρj1(j),\ell_{1}={\color[rgb]{1,0,0}\ell_{1}(j)}=\frac{\Delta(\delta^{j}r)}{\beta^{j}\Delta(r)},\qquad\ell_{2}={\color[rgb]{1,0,0}\ell_{2}(j)}=\rho^{j}\ell_{1}(j),

so from (1.10),

(4.15) 1δ(1+χ2)j/2C23βj,δ(1+χ2)j/2ρjC23βj2δ(1+χ1)j/2ρjC22βj.\ell_{1}\geq\frac{\delta^{(1+\chi_{2})j/2}}{C_{23}\beta^{j}},\qquad\frac{\delta^{(1+\chi_{2})j/2}\rho^{j}}{C_{23}\beta^{j}}\leq\ell_{2}\leq\frac{\delta^{(1+\chi_{1})j/2}\rho^{j}}{C_{22}\beta^{j}}.

Here 1(j)\ell_{1}(j) is chosen so that the typical transverse fluctuation Δ(δjr)\Delta(\delta^{j}r) for a geodesic making one longitudinal step is 1(j)\ell_{1}(j) transverse steps.

On short enough length scales, coarse–graining is unnecessary because we can use Proposition 3.5 and Lemma 4.1. More precisely, we will need only consider jj1=j1(r)j\leq{\color[rgb]{1,0,0}j_{1}}=j_{1}(r) where j1j_{1} is the least jj for which

(4.16) (λδχ1)j1(logr)2,soj1(r)loglogr.\left(\frac{\lambda}{\delta^{\chi_{1}}}\right)^{j_{1}}\geq(\log r)^{2},\quad\text{so}\quad j_{1}(r)\asymp\log\log r.

Provided rr is large, this means the spacings δj1r\delta^{j_{1}}r and K0βj1ΔrK_{0}\beta^{j_{1}}\Delta_{r} of the j1j_{1}th–scale grid are large, and therefore we can choose q[4,5]q\in[4,5] so that δj1r\delta^{j_{1}}r is an integer multiple of qq, and then choose K0[1,2]K_{0}\in[1,2] such that K0βj1ΔrK_{0}\beta^{j_{1}}\Delta_{r} is an integer multiple of qq. Then (since 1/δ1/\delta and 1/β1/\beta are integers) for all jj1j\leq j_{1}, the jjth–scale grid in every jjth–scale hyperplane is contained in qdq\mathbb{Z}^{d}, which we call the basic grid.

We say an interval in \mathbb{R} has kkth–scale length if its length is between 10δk+1r10\delta^{k+1}r and 10δkr10\delta^{k}r.

Given x,yGr(K)x,y\in G_{r}(K) with x1<y1x_{1}<y_{1}, satisfying (4.12), we define a hyperplane collection xy\mathcal{H}_{xy}, which depends on the geodesic Γxy\Gamma_{xy}, constructed inductively as follows. All hyperplanes HsxyH_{s}\in\mathcal{H}_{xy} have s[x1,y1]s\in[x_{1},y_{1}], and we view the hyperplanes as ordered by their indices. Let j2(x,y){\color[rgb]{1,0,0}j_{2}(x,y)} be the least jj such that there are at least 4 jjth–scale hyperplanes between xx and yy. Subject always to the constraint s[x1,y1]s\in[x_{1},y_{1}], at scale j2j_{2} we put in xy\mathcal{H}_{xy} the j2j_{2}th scale hyperplanes HsH_{s} second closest to xx and to yy; we call these j2j_{2}–terminal hyperplanes. The gap between the j2j_{2}–terminal hyperplanes is at least 4δj2r4\delta^{j_{2}}r and at most 5δj21r5\delta^{j_{2}-1}r. In general, when we have chosen the jjth–scale hyperplanes in x,y\mathcal{H}_{x,y} for some jj2j\geq j_{2}, each gap between consecutive ones is called a jjth–scale interval, and the hyperplanes bounding it are the endpoint hyperplanes of the interval. For any interval II we also call {Hs:sI}\{H_{s}:s\in I\} an interval; which meaning should be clear from the context. A jjth–scale interval is short if it has jjth–scale length, and long otherwise. We then add (j+1)(j+1)th–scale hyperplanes to xy\mathcal{H}_{xy}, of 3 types.

  • (i)

    The first type consists of two hyperplanes, which are the (j+1)(j+1)th–scale hyperplanes second closest to xx and to yy, which we call (j+1)(j+1)–terminal hyperplanes. A (j+1)(j+1)–terminal hyperplane may also be a kkth–scale hyperplane on some larger scale k<j+1k<j+1, in which case we call it an incidental kth–scale hyperplane.

  • (ii)

    As a second type, for each non-incidental jjth–scale hyperplane HkδjrxyH_{k\delta^{j}r}\in\mathcal{H}_{xy} we put in xy\mathcal{H}_{xy} the closest (j+1)(j+1)th–scale hyperplanes on either side of HkδjrH_{k\delta^{j}r}, that is, H(kδjδj+1)rH_{(k\delta^{j}-\delta^{j+1})r} and H(kδj+δj+1)rH_{(k\delta^{j}+\delta^{j+1})r}, which we call sandwiching hyperplanes.

  • (iii)

    The third type is (j+1)(j+1)th–scale joining hyperplanes; we place between 1 and 4 of these in each long jjth–scale interval, depending on the behavior of Γxy\Gamma_{xy} in the interval in a manner to be specified below. Joining hyperplanes are always placed in the “extremal 10ths” of the long interval; more precisely, if the jjth–scale interval has kkth–scale length then they are placed at distance δr\delta^{\ell}r from one of the endpoints for some k+1jk+1\leq\ell\leq j, with at most 2 such hyperplanes at either end.

We use superscripts - and ++ for quantities associated with left–end and right–end joining hyperplanes, respectively. We continue adding hyperplanes through all scales from j2j_{2} to j1j_{1}; after adding j1j_{1}th–scale hyperplanes, xy\mathcal{H}_{xy} is complete and we stop.

Refer to caption
Figure 3. Diagram showing 3 scales of hyperplanes in xy\mathcal{H}_{xy}: jjth–scale (black), (j+1)(j+1)th–scale (medium gray), (j+2)(j+2)th–scale (light gray.) Points ui,1i6,u^{i},1\leq i\leq 6, are in the terminal hyperplanes; if these are all the scales (i.e. j1=j2+2j_{1}=j_{2}+2) then the path is an example of a possible final CG path ΓxyCG\Gamma_{xy}^{CG}, or a path Ωxy\Omega_{xy} in Section 7. The other hyperplanes are sandwiching ones. Joining hyperplanes are not shown.

A terminal jth–scale interval in [x1,y1][x_{1},y_{1}] is an interval between a terminal (j+1)(j+1)th–scale hyperplane and the terminal jjth–scale hyperplane closest to it; the length of such an interval is necessarily between δjr\delta^{j}r and 2δjr2\delta^{j}r, so it is short. In Figure 3, the interval between the hyperplanes containing u2u^{2} and u3u^{3} is a terminal jjth–scale interval.

At most 6 (j+1)(j+1)th–scale hyperplanes are added inside each jjth–scale interval, and only 1 if the interval is terminal. Therefore if xy\mathcal{H}_{xy} contains nn jjth–scale hyperplanes, then the number of (j+1)(j+1)th–scale hyperplanes is at most 7(n1)+57(n-1)+5. It follows that

(4.17) |{Hs:Hs is a jth–scale hyperplane in xy}|7j1.\Big{|}\left\{H_{s}:H_{s}\text{ is a $j$th--scale hyperplane in $\mathcal{H}_{xy}$}\right\}\Big{|}\leq 7^{j}-1.

In keeping with (iii) above, we will designate up to four random values μxy,1(I)<μxy,2(I)<μxy+,2(I)<μxy+,1(I)\mu_{xy}^{-,1}(I)<\mu_{xy}^{-,2}(I)<\mu_{xy}^{+,2}(I)<\mu_{xy}^{+,1}(I) in II for each long jjth–scale interval I=[a,b]I=[a,b], for each jj, depending on Γxy\Gamma_{xy}. These will satisfy

|I|\displaystyle|I|\in [δkr4δkr,δkr]μxy,1(I)=a+δ+1r,μxy,2(I)=a+δrfor some k<j,\displaystyle[\delta^{k}r-4\delta^{k}r,\delta^{k}r]\implies\mu_{xy}^{-,1}(I)=a+\delta^{\ell+1}r,\ \mu_{xy}^{-,2}(I)=a+\delta^{\ell}r\ \ \text{for some }k<\ell\leq j,
μxy+,1(I)=bδ+1r,μxy+,2(I)=bδrfor some k<j.\displaystyle\mu_{xy}^{+,1}(I)=b-\delta^{\ell^{\prime}+1}r,\ \mu_{xy}^{+,2}(I)=b-\delta^{\ell^{\prime}}r\ \ \text{for some }k<\ell^{\prime}\leq j.

We call the values μxy±,1(I)\mu_{xy}^{\pm,1}(I) outer joining points, and μxy±,2(I)\mu_{xy}^{\pm,2}(I) inner joining points; the inner ones will represent locations where a certain other path traversing II can be guided to coalesce with Γxy\Gamma_{xy}, and we call Hμxy±,ϵ(I)H_{\mu_{xy}^{\pm,\epsilon}(I)} the (potential) joining hyperplanes of the interval II. We say “potential” because not all are necessarily actually included in xy\mathcal{H}_{xy}; which are included, and with what values of ,\ell,\ell^{\prime}, depend on rules to be described.

Recall that ψq(u)\psi_{q}(u) denotes the closest point to uu in the basic grid, and Fy=ψq1(y),yqdF_{y}=\psi_{q}^{-1}(y),y\in q\mathbb{Z}^{d}. We need only consider the case in which x,yx,y each share a Voronoi cell with a basic grid point, that is,

(4.18) x=φ(x^),y=φ(y^)for some x^,y^qd;x=\varphi(\hat{x}),\quad y=\varphi(\hat{y})\quad\text{for some }{\color[rgb]{1,0,0}\hat{x},\hat{y}}\in q\mathbb{Z}^{d};

we readily obtain the general case from this via Lemma 3.1, since for every x0𝕍x_{0}\in\mathbb{V} the point x=φ(ψq(x0))x=\varphi(\psi_{q}(x_{0})) satisfies (4.18) and |x0x|qd|x_{0}-x|\leq q\sqrt{d}. Since q2q\geq 2, (4.18) ensures that ψq(x)=x^,ψq(y)=y^\psi_{q}(x)=\hat{x},\psi_{q}(y)=\hat{y}. For 0sr0\leq s\leq r and γ\gamma a path in 𝔾\mathbb{G} from B1(0)B_{1}(0) to B1(re1)B_{1}(re_{1}), for v,wv,w vertices in γ\gamma, write γ[v,w]{\color[rgb]{1,0,0}\gamma_{[v,w]}} for the segment of γ\gamma from vv to ww and let us(γ){\color[rgb]{1,0,0}u_{s}(\gamma)} denote the entry point of γ\gamma into Hs+H_{s}^{+}, that is, the first vertex of γ\gamma in Hs+H_{s}^{+}, necessarily next to HsH_{s} (in the sense that its Voronoi cell intersects HsH_{s}.) Our aim is to approximate a general geodesic Γxy\Gamma_{xy} (subject to (4.12)) by a CG one via certain marked (basic) grid points which we will designate, lying in hyperplanes HsxyH_{s}\in\mathcal{H}_{xy}. In the geodesic Γxy\Gamma_{xy}, the first and last marked grid points are x^=ψq(x)\hat{x}=\psi_{q}(x) and y^=ψq(y)\hat{y}=\psi_{q}(y) (see (4.18).) Initially, the ones in between are the discrete approximations ψq(us(γ))\psi_{q}(u_{s}(\gamma)) of the entry points us(γ)u_{s}(\gamma) corresponding to each of the hyperplanes HsxyH_{s}\in\mathcal{H}_{xy}. Here since q4q\geq 4 and d(us(γ),Hs)2d(u_{s}(\gamma),H_{s})\leq 2, we always have ψq(us(γ))Hs\psi_{q}(u_{s}(\gamma))\in H_{s}. Later we will remove some of these initial marked grid points, and replace others with their jjth–scale CG approximations for various jj. This means not every HsxyH_{s}\in\mathcal{H}_{xy} necessarily contains a marked grid point, in all our CG approximations. When a path Γ\Gamma has a marked grid point in some HsH_{s}, we denote that marked grid point as 𝔪s(Γ)\mathfrak{m}_{s}(\Gamma). For all our CG approximations, the first and last marked grid points are ψq(x)\psi_{q}(x) and ψq(y)\psi_{q}(y), and for some jj the ones in between each lie in the jjth–scale grid in some jjth–scale hyperplane HkδjrxyH_{k\delta^{j}r}\in\mathcal{H}_{xy}. If such a CG path has marked grid points v,wv,w in consecutive jjth–scale hyperplanes of xy\mathcal{H}_{xy}, we say γ\gamma makes a jth–scale transition from vv to ww. Such a transition involves one longitudinal step and some number mim_{i} of transverse steps in direction ii for each 2id2\leq i\leq d, going from vv to ww. We say a jjth–scale transition is normal if mi[2,2]m_{i}\in[-\ell_{2},\ell_{2}] for all 2id2\leq i\leq d, and sidestepping otherwise. Even on the smallest scale j1j_{1}, every jjth–scale transition with v,wGr+v,w\in G_{r}^{+} is nearly in the e1e_{1} direction, in that its angle satisfies (similarly to (4.6))

(4.19) αe1,wv4C60d1Δrlogrδj1rr(1χ2)/2,\alpha_{e_{1},w-v}\leq\frac{4C_{60}\sqrt{d-1}\Delta_{r}\log r}{\delta^{j_{1}}r}\leq r^{-(1-\chi_{2})/2},

provided rr is large, with C60C_{60} from the definition of Gr+G_{r}^{+}.

We refer to a path γ\gamma from xx to yy, together with its marked grid points, as a marked path; the path alone, without the marked grid points, is called the underlying path. We may write a marked path as ψq(x)=v0v1vmvm+1=ψq(y)\psi_{q}(x)=v^{0}\to v^{1}\to\cdots\to v^{m}\to v^{m+1}=\psi_{q}(y); here the viv^{i} are grid points. The pairs (vi1,vi)(v^{i-1},v^{i}) are called links of the path. If γ\gamma is the concatenation of the geodesics Γvi1,vi\Gamma_{v^{i-1},v^{i}}, we call it a marked piecewise–geodesic path; we abbreviate piecewise–geodesic as PG. (Recall that when v,w𝔾v,w\notin\mathbb{G}, Γvw\Gamma_{vw} denotes Γφ(v),φ(w)\Gamma_{\varphi(v),\varphi(w)}.) Unless otherwise specified, when we give a marked path by writing its marked points in this way, we assume the path is the (unique) marked PG path given by those marked points.

Recall that

T^(u,v)=min{T(y,z):yFu,zFv},{\color[rgb]{1,0,0}\hat{T}(u,v)}=\min\{T(y,z):y\in F_{u},z\in F_{v}\},

with Fu,FvF_{u},F_{v} being cubes of side q[4,5]q\in[4,5]. Suppose we have a marked PG path

ΓCG:v0v1vmvm+1,\Gamma^{CG}:v^{0}\to v^{1}\to\cdots\to v^{m}\to v^{m+1},

contained in Gr+G_{r}^{+}. We associate four quantities to this path:

ΥEuc(ΓCG)=ΥEuc(v0,,vm+1)=i=1m+1|vivi1|,{\color[rgb]{1,0,0}\Upsilon_{Euc}(\Gamma^{CG})}=\Upsilon_{Euc}(v^{0},\dots,v^{m+1})=\sum_{i=1}^{m+1}|v^{i}-v^{i-1}|,
Υh(ΓCG)=i=1m+1h(|vivi1|),ΥT^(ΓCG)=i=1m+1T^(vi1,vi),Ψ(ΓCG)=i=1m+1|(vivi1)|2|(vivi1)1|.{\color[rgb]{1,0,0}\Upsilon_{h}(\Gamma^{CG})}=\sum_{i=1}^{m+1}h\left(\left|v^{i}-v^{i-1}\right|\right),\quad{\color[rgb]{1,0,0}\Upsilon_{\hat{T}}(\Gamma^{CG})}=\sum_{i=1}^{m+1}\hat{T}(v^{i-1},v^{i}),\quad{\color[rgb]{1,0,0}\Psi(\Gamma^{CG})}=\sum_{i=1}^{m+1}\frac{|(v^{i}-v^{i-1})^{*}|^{2}}{|(v^{i}-v^{i-1})_{1}|}.

Using the standard fact that for some c91c_{9}\leq 1,

(4.20) 38|w|2|w1||w||w1||w|22|w1|whenever |w||w1|c9,\frac{3}{8}\frac{|w^{*}|^{2}}{|w_{1}|}\leq|w|-|w_{1}|\leq\frac{|w^{*}|^{2}}{2|w_{1}|}\quad\text{whenever }\frac{|w^{*}|}{|w_{1}|}\leq c_{9},

we see that provided rr is large and all viGr+v^{i}\in G_{r}^{+}, Ψ(ΓCG)\Psi(\Gamma^{CG}) represents added length in Ψ(ΓCG)\Psi(\Gamma^{CG}) relative to the lower bound |(vm+1v0)1||(v^{m+1}-v^{0})_{1}|, in that

(4.21) ΥEuc(ΓCG)i=1m+1|(vivi1)1|+38Ψ(ΓCG)=|(vm+1v0)1|+38Ψ(ΓCG).\Upsilon_{Euc}(\Gamma^{CG})\geq\sum_{i=1}^{m+1}|(v^{i}-v^{i-1})_{1}|+\frac{3}{8}\Psi(\Gamma^{CG})=|(v^{m+1}-v^{0})_{1}|+\frac{3}{8}\Psi(\Gamma^{CG}).

Informally we refer to ΥEuc(v0,,vm+1)|(vm+1v0)1|\Upsilon_{Euc}(v^{0},\dots,v^{m+1})-|(v^{m+1}-v^{0})_{1}| as the extra length of the path ΓCG\Gamma^{CG}. From (4.20), subadditivity of hh, and Lemma 3.6 we obtain, after reducing c9c_{9} if necessary,

(4.22) μ3|w|2|w1|c10h(|w|)h(|w1|)2μ3|w|2|w1|+c10whenever |w||w1|c9.\frac{\mu}{3}\frac{|w^{*}|^{2}}{|w_{1}|}-c_{10}\leq h(|w|)-h(|w_{1}|)\leq\frac{2\mu}{3}\frac{|w^{*}|^{2}}{|w_{1}|}+c_{10}\quad\text{whenever }\frac{|w^{*}|}{|w_{1}|}\leq c_{9}.

In our applications of (4.22), the last condition will always be satisfied due to (4.19). In general, provided rr is large and all viv^{i} lie in Gr+G_{r}^{+}, with (vivi1)1(v^{i}-v^{i-1})_{1} much larger than the width 2C60Δrlogr2C_{60}\Delta_{r}\log r of Gr+G_{r}^{+}, we have

(4.23) Υh(ΓCG)h((vm+1v0)1)i=1m+1[h(|vivi1|)h((vivi1)1)]μ3Ψ(ΓCG)(m+1)c10.\Upsilon_{h}(\Gamma^{CG})-h((v^{m+1}-v^{0})_{1})\geq\sum_{i=1}^{m+1}\Big{[}h\left(\left|v^{i}-v^{i-1}\right|\right)-h\left((v^{i}-v^{i-1})_{1}\right)\Big{]}\geq\frac{\mu}{3}\Psi(\Gamma^{CG})-(m+1)c_{10}.

We can now define the joining points μxy±,ϵ(I)\mu_{xy}^{\pm,\epsilon}(I) in a long jjth–scale interval I=[a,b]I=[a,b] of kkth–scale length, where j2k<jj11j_{2}\leq k<j\leq j_{1}-1. We begin with μxy,ϵ(I),ϵ=1,2\mu_{xy}^{-,\epsilon}(I),\epsilon=1,2, which lie in the left part of II. We first define modified values of tt which will appear in Lemmas 4.5 and 4.6:

(4.24) t(v)=13t+δμ18(|v|Δr)2andt(v,w)=13t+δμ18[(|v|Δr)2+(|w|Δr)2].{\color[rgb]{1,0,0}t^{*}(v)}=\frac{1}{3}t+\frac{\delta\mu}{18}\left(\frac{|v^{*}|}{\Delta_{r}}\right)^{2}\quad\text{and}\quad{\color[rgb]{1,0,0}t^{*}(v,w)}=\frac{1}{3}t+\frac{\delta\mu}{18}\left[\left(\frac{|v^{*}|}{\Delta_{r}}\right)^{2}+\left(\frac{|w^{*}|}{\Delta_{r}}\right)^{2}\right].

We consider a marked PG path with marked points in the (j+1)(j+1)th–scale grid: let

v0=𝔪a(Γxy)=Vj+1(ua(Γxy)),vfin=𝔪b(Γxy)=Vj+1(ub(Γxy)),{\color[rgb]{1,0,0}v^{0}}=\mathfrak{m}_{a}(\Gamma_{xy})=V_{j+1}(u_{a}(\Gamma_{xy})),\quad{\color[rgb]{1,0,0}v^{fin}}=\mathfrak{m}_{b}(\Gamma_{xy})=V_{j+1}(u_{b}(\Gamma_{xy})),

and for each k+1j+1k+1\leq\ell\leq j+1 let

v=𝔪a+δr(Γxy)=Vj+1(ua+δr(Γxy)),w=Πv0vfinHa+δr,{\color[rgb]{1,0,0}v^{\ell}}=\mathfrak{m}_{a+\delta^{\ell}r}(\Gamma_{xy})=V_{j+1}(u_{a+\delta^{\ell}r}(\Gamma_{xy})),\quad{\color[rgb]{1,0,0}w^{\ell}}=\Pi_{v^{0}v^{fin}}\cap H_{a+\delta^{\ell}r},

and let

(4.25) α()=|vw|2δr,κ()=|vw|2δrσ(δr).{\color[rgb]{1,0,0}\alpha(\ell)}=\frac{|v^{\ell}-w^{\ell}|^{2}}{\delta^{\ell}r},\quad{\color[rgb]{1,0,0}\kappa(\ell)}=\frac{|v^{\ell}-w^{\ell}|^{2}}{\delta^{\ell}r\sigma(\delta^{\ell}r)}.

We may view α()/2\alpha(\ell)/2 as an approximation of the “extra distance at scale δr\delta^{\ell}r,” that is, of |vv0|+|vfinv||vfinv0||v^{\ell}-v^{0}|+|v^{fin}-v^{\ell}|-|v^{fin}-v^{0}|; κ()/2\kappa(\ell)/2 is this extra distance normalized by the fluctuation size. For k+1<j+1k+1\leq\ell<j+1 let g+1=Πv0vHa+δ+1r{\color[rgb]{1,0,0}g^{\ell+1}}=\Pi_{v^{0}v^{\ell}}\cap H_{a+\delta^{\ell+1}r}, and let

(4.26) θ(+1)=|g+1w+1||v+1w+1|=δ|vw||v+1w+1|;{\color[rgb]{1,0,0}\theta(\ell+1)}=\frac{|g^{\ell+1}-w^{\ell+1}|}{|v^{\ell+1}-w^{\ell+1}|}=\delta\frac{|v^{\ell}-w^{\ell}|}{|v^{\ell+1}-w^{\ell+1}|};

see Figure 4. Then

(4.27) |v+1g+1|2δ+1r=(1θ(+1))2α(+1)\frac{|v^{\ell+1}-g^{\ell+1}|^{2}}{\delta^{\ell+1}r}=(1-\theta(\ell+1))^{2}\alpha(\ell+1)

so in view of (4.19), there is an “extra distance”

(4.28) ΥEuc(v0,v+1,v)|vv0|13|v+1g+1|2δ+1r=(1θ(+1))23α(+1).\Upsilon_{Euc}(v^{0},v^{\ell+1},v^{\ell})-|v^{\ell}-v^{0}|\geq\frac{1}{3}\frac{|v^{\ell+1}-g^{\ell+1}|^{2}}{\delta^{\ell+1}r}=\frac{(1-\theta(\ell+1))^{2}}{3}\alpha(\ell+1).

Suppose that for some [k+1,j]\ell\in[k+1,j] we have

(4.29) 2jκ(j+1)κ(+1),2κ(+1)κ(),2^{j-\ell}\kappa(j+1)\leq\kappa(\ell+1),\quad 2\kappa(\ell+1)\geq\kappa(\ell),

as happens if 2mκ(m)2^{m}\kappa(m) is maximized at m=m=\ell. From (1.10), the second inequality ensures that

(4.30) θ(+1)22δσ(δr)σ(δ+1r)14and2α(+1)σ(δ+1r)σ(δr)α()C231δχ2α(),\theta(\ell+1)^{2}\leq 2\delta\frac{\sigma(\delta^{\ell}r)}{\sigma(\delta^{\ell+1}r)}\leq\frac{1}{4}\quad\text{and}\quad 2\alpha(\ell+1)\geq\frac{\sigma(\delta^{\ell+1}r)}{\sigma(\delta^{\ell}r)}\alpha(\ell)\geq C_{23}^{-1}\delta^{\chi_{2}}\alpha(\ell),

and the first inequality in (4.29) tells us that

(4.31) α(+1)2jσ(δ+1r)σ(δj+1r)α(j+1)C22(2δχ1)jα(j+1).\alpha(\ell+1)\geq 2^{j-\ell}\frac{\sigma(\delta^{\ell+1}r)}{\sigma(\delta^{j+1}r)}\alpha(j+1)\geq C_{22}\left(\frac{2}{\delta^{\chi_{1}}}\right)^{j-\ell}\alpha(j+1).

It then follows from (4.28), (4.30), and (4.31) that the path from v0v^{0} to vv^{\ell} is bowed in the sense that

(4.32) ΥEuc(v0,v+1,v)|vv0|C2212(2δχ1)jα(j+1).\Upsilon_{Euc}(v^{0},v^{\ell+1},v^{\ell})-|v^{\ell}-v^{0}|\geq\frac{C_{22}}{12}\left(\frac{2}{\delta^{\chi_{1}}}\right)^{j-\ell}\alpha(j+1).
Refer to caption
Figure 4. The left end of a long jjth–scale interval in which L(I)=L^{-}(I)=\ell. Starting from the left, there is an endpoint hyperplane, then one of its sandwiching hyperplanes; the rightmost two are the joining hyperplanes, containing v+1v^{\ell+1} and vv^{\ell}. In the bowed case, v+1v^{\ell+1} (at distance δ+1r\delta^{\ell+1}r from HaH_{a}) is “sufficiently far” from w+1w^{\ell+1}, moreso than occurs on other length scales δir\delta^{i}r.

Motivated by this we let

(4.33) L(I)={jif max(α(j+1),δ1α(j))116μ(λ7)j+1t(v0)σr,argmax[k+1,j]2κ()1if max(α(j+1),δ1α(j))>116μ(λ7)j+1t(v0)σr and argmax[k+1,j]2κ()>k+1,k+1otherwise.{\color[rgb]{1,0,0}L^{-}(I)}=\begin{cases}j&\text{if }\max(\alpha(j+1),\delta^{-1}\alpha(j))\leq\frac{1}{16\mu}\left(\frac{\lambda}{7}\right)^{j+1}t^{*}(v^{0})\sigma_{r},\\ \arg\max_{\ell\in[k+1,j]}2^{\ell}\kappa(\ell)-1&\text{if $\max(\alpha(j+1),\delta^{-1}\alpha(j))>\frac{1}{16\mu}\left(\frac{\lambda}{7}\right)^{j+1}t^{*}(v^{0})\sigma_{r}$}\\ &\text{\hskip 17.07182ptand $\arg\max_{\ell\in[k+1,j]}2^{\ell}\kappa(\ell)>k+1$},\\ k+1&\text{otherwise.}\end{cases}

We refer to the 3 options in (4.33) as the forward, bowed, and totally unbowed cases, respectively. They may be interpreted as follows. In the forward case the initial steps v0v1v2v^{0}\to v^{1}\to v^{2} have little sidestepping, and we will see that this eliminates the need to exploit bowedness; this should be viewed as the “baseline” or “most likely” case. Otherwise we look for a scale δr\delta^{\ell}r, with k+1jk+1\leq\ell\leq j, on which Γxy\Gamma_{xy} is bowed as in (4.32), by seeking a scale (the arg max) satisfying (4.29). In the bowed case such a scale exists; see Figure 4. In the totally unbowed case there is no such scale, meaning 2κ()2^{\boldsymbol{\cdot}}\kappa(\cdot) is maximized for essentially the full length scale of the interval II. By (4.31) this forces the extra distance α(k+1)\alpha(k+1) to be very large. We define the inner and outer joining points as

μxy,2(I)=a+δL(I);μxy,1(I)=a+δL(I)+1.{\color[rgb]{1,0,0}\mu_{xy}^{-,2}(I)}=a+\delta^{L^{-}(I)};\quad{\color[rgb]{1,0,0}\mu_{xy}^{-,1}(I)}=a+\delta^{L^{-}(I)+1}.

We define μxy+,ϵ(I)\mu_{xy}^{+,\epsilon}(I) in a mirror image manner to μxy,ϵ(I)\mu_{xy}^{-,\epsilon}(I) in [a,b][a,b], going backwards from bb to aa instead of forward from aa to bb. That is, we use the points v^=𝔪bδr(Γxy){\color[rgb]{1,0,0}\hat{v}^{\ell}}=\mathfrak{m}_{b-\delta^{\ell}r}(\Gamma_{xy}) in place of the vv^{\ell}’s and t(vfin)t^{*}(v^{fin}) in place of t(v0)t^{*}(v^{0}); otherwise the definition is the same, and the analogs of (4.28), (4.30), and (4.31) are valid for the analog L+(I)L^{+}(I) of L(I)L^{-}(I).

We now describe the rules for which of the four (j+1)(j+1)th–scale joining hyperplanes HsH_{s} with s=μxy±,ϵ(I)s=\mu_{xy}^{\pm,\epsilon}(I), in a long jjth–scale interval II, are included in xy\mathcal{H}_{xy}. We note again that the endpoint and sandwiching hyperplanes at both ends of II are always included; in some instances the sandwiching hyperplanes coincide with outer joining hyperplanes, so these criteria never rule out the inclusion of such hyperplanes.

  • (i)

    If both ±\pm ends of II have the forward case, then we include the inner joining hyperplanes in xy\mathcal{H}_{xy}; these are at distance δjr\delta^{j}r from the interval ends. The outer ones coincide with the sandwiching hyperplanes at distance δj+1r\delta^{j+1}r from the interval ends, so they are included as well.

  • (ii)

    If both ±\pm ends have the bowed case, then we include both the inner and outer joining hyperplanes in xy\mathcal{H}_{xy}. We note that when either of L±(I)=jL^{\pm}(I)=j, the corresponding outer joining hyperplane coincides with the sandwiching hyperplane as in (i), so it is already in xy\mathcal{H}_{xy} on that basis.

  • (iii)

    If both ±\pm ends have the totally unbowed case, then we include only the inner joining hyperplanes.

  • (iv)

    If the two ends have different cases, we determine which end of the interval is dominant according to the criterion described next. We then include the joining hyperplane(s) only at the dominant end, 1 or 2 hyperplanes in accordance with (i)—(iii) above. We call this the mixed case.

To determine the dominant end of a long jjth–scale interval I=[a,b]I=[a,b], necessarily having kkth–scale length for some k<jk<j, in the mixed case, we first select those non–sandwiching hyperplanes which are candidates for inclusion in xy\mathcal{H}_{xy}, in accordance with (i)—(iii) above. (For example, if the path has the bowed case with L(I)jL^{-}(I)\neq j at the left end and the forward case at the right, we select the inner and outer joining hyperplanes on the left, and only the inner on the right.) For these candidate hyperplanes, along with the 4 endpoint and sandwiching hyperplanes in II, we consider the corresponding “tentative” marked PG path (part of Γxy\Gamma_{xy}) with a marked point in each of the hyperplanes: u0unu^{0}\to\cdots\to u^{n} with n=5n=5 or 6, where u0=Vj(𝔪(u0)1(Γxy))u^{0}=V_{j}(\mathfrak{m}_{(u^{0})_{1}}(\Gamma_{xy})) and ui=Vj+1(𝔪(ui)1(Γxy)),1in,u^{i}=V_{j+1}(\mathfrak{m}_{(u^{i})_{1}}(\Gamma_{xy})),1\leq i\leq n, are jjth and (j+1)(j+1)th–scale CG approximations. The inner joining hyperplanes contain u,u+1u^{\ell},u^{\ell+1}, with =\ell= 2 or 3; we call this \ell the central index; the gap from uu^{\ell} to u+1u^{\ell+1} is the longest in II, at least 8δk+1r8\delta^{k+1}r. Let wiw_{\perp}^{i} be the orthogonal projection of uiu^{i} into the line Πu0un\Pi_{u^{0}u^{n}}; see Figure 5. We use the fact that the excess length (u0,,un)=ΥEuc(u0,,un)|unu0|{\color[rgb]{1,0,0}\mathcal{E}(u^{0},\dots,u^{n})}=\Upsilon_{Euc}(u^{0},\dots,u^{n})-|u^{n}-u^{0}| can be approximately split into components associated with the two ends, as follows. When the central index is \ell we have

(u0,,un)\displaystyle\mathcal{E}(u^{0},\dots,u^{n}) =[ΥEuc(u0,,u)|wu0|]+[|u+1u||w+1w|]\displaystyle=\Big{[}\Upsilon_{Euc}(u^{0},\dots,u^{\ell})-|w_{\perp}^{\ell}-u^{0}|\Big{]}+\Big{[}|u^{\ell+1}-u^{\ell}|-|w_{\perp}^{\ell+1}-w_{\perp}^{\ell}|\Big{]}
(4.34) +[ΥEuc(u+1,,un)|w+1un|].\displaystyle\hskip 42.67912pt+\Big{[}\Upsilon_{Euc}(u^{\ell+1},\dots,u^{n})-|w_{\perp}^{\ell+1}-u^{n}|\Big{]}.

For the first difference on the right we have from (4.20)

ΥEuc(u0,,u)|wu0||uu0||wu0||uw|23δk+1r,\Upsilon_{Euc}(u^{0},\dots,u^{\ell})-|w_{\perp}^{\ell}-u^{0}|\geq|u^{\ell}-u^{0}|-|w_{\perp}^{\ell}-u^{0}|\geq\frac{|u^{\ell}-w_{\perp}^{\ell}|^{2}}{3\delta^{k+1}r},

and similarly for the third difference, while for the middle one,

|u+1u||w+1w|\displaystyle|u^{\ell+1}-u^{\ell}|-|w_{\perp}^{\ell+1}-w_{\perp}^{\ell}| (|uw|+|u+1w+1|)228δk+1r18(|uw|2δk+1r+|u+1w+1|2δk+1r)\displaystyle\leq\frac{(|u^{\ell}-w_{\perp}^{\ell}|+|u^{\ell+1}-w_{\perp}^{\ell+1}|)^{2}}{2\cdot 8\delta^{k+1}r}\leq\frac{1}{8}\left(\frac{|u^{\ell}-w_{\perp}^{\ell}|^{2}}{\delta^{k+1}r}+\frac{|u^{\ell+1}-w_{\perp}^{\ell+1}|^{2}}{\delta^{k+1}r}\right)

so the middle difference in (4.1) is only a small fraction of the whole:

(4.36) |u+1u||w+1w|19(u0,,un).|u^{\ell+1}-u^{\ell}|-|w_{\perp}^{\ell+1}-w_{\perp}^{\ell}|\leq\frac{1}{9}\mathcal{E}(u^{0},\dots,u^{n}).

We designate the left end of II as dominant if the first of the 3 differences on the right in (4.1) is larger than the third difference, and the right end in the reverse case. As given in (iv) above, we include in xy\mathcal{H}_{xy} only the candidate joining hyperplanes from the dominant end; the non-dominant end has its endpoint and sandwiching hyperplanes but no joining ones.

Refer to caption
Figure 5. The mixed case with the bowed case at the (dominant) left end of the interval, and the forward case at the right end, showing the candidate hyperplanes (the 3 middle ones) and tentative marked PG path. The central index is 3. Since the right end is not dominant, the outer joining hyperplane there, containing v4v^{4}, is not included in xy\mathcal{H}_{xy}. The full length of the interval is between 10δk+1r10\delta^{k+1}r and 10δkr10\delta^{k}r, and all hyperplanes lie in the leftmost or rightmost 1/10 of the interval.

We note that if (for illustration) the left end is dominant, then, after excluding the right-end joining hyperplanes, we are left with the marked PG path u0uun1unu^{0}\to\cdots\to u^{\ell}\to u^{n-1}\to u^{n}, for which the contribution of the right end to the extra length can be bounded: we have

(4.37) |unun1||unwn1|ΥEuc(u+1,,un)|w+1un|ΥEuc(u0,,u)|wu0||u^{n}-u^{n-1}|-|u^{n}-w_{\perp}^{n-1}|\leq\Upsilon_{Euc}(u^{\ell+1},\dots,u^{n})-|w_{\perp}^{\ell+1}-u^{n}|\leq\Upsilon_{Euc}(u^{0},\dots,u^{\ell})-|w_{\perp}^{\ell}-u^{0}|

where the last inequality follows from dominance of the left end, so similarly to (4.36),

(4.38) |un1wn1|23δj+1r|unun1||unwn1|12(u0,,u,un1,un).\frac{|u^{n-1}-w_{\perp}^{n-1}|^{2}}{3\delta^{j+1}r}\leq|u^{n}-u^{n-1}|-|u^{n}-w_{\perp}^{n-1}|\leq\frac{1}{2}\mathcal{E}(u^{0},\dots,u^{\ell},u^{n-1},u^{n}).

The same bound with |u1w1||u^{1}-w_{\perp}^{1}| in place of |un1wn1||u^{n-1}-w_{\perp}^{n-1}| holds symmetrically when the right end is dominant.

Remark 4.3.

In the bowed case at the left end of a jjth–scale interval I=[a,b]I=[a,b], with L(I)=L^{-}(I)=\ell, define

z0=v0,zm=Πv0vHa+δmr,mj+1,{\color[rgb]{1,0,0}z^{0}}=v^{0},\quad{\color[rgb]{1,0,0}z^{m}}=\Pi_{v^{0}v^{\ell}}\cap H_{a+\delta^{m}r},\quad\ell\leq m\leq j+1,

and symmetrically at the right end. See Figure 4; g+1g^{\ell+1} there is zj+1z^{j+1} here. We have from (4.31) and (4.33)

|v+1w+1|2δ+1rσ(δj+1r)σ(δ+1r)\displaystyle\frac{|v^{\ell+1}-w^{\ell+1}|^{2}}{\delta^{\ell+1}r}\frac{\sigma(\delta^{j+1}r)}{\sigma(\delta^{\ell+1}r)} max(2j|vj+1wj+1|2δj+1r,2j1σ(δj+1r)σ(δjr)|vjwj|2δjr)\displaystyle\geq\max\left(2^{j-\ell}\frac{|v^{j+1}-w^{j+1}|^{2}}{\delta^{j+1}r},2^{j-\ell-1}\frac{\sigma(\delta^{j+1}r)}{\sigma(\delta^{j}r)}\frac{|v^{j}-w^{j}|^{2}}{\delta^{j}r}\right)
2j1δ16μσ(δj+1r)σ(δjr)(λ7)j+1t(v0)σr\displaystyle\geq 2^{j-\ell-1}\frac{\delta}{16\mu}\frac{\sigma(\delta^{j+1}r)}{\sigma(\delta^{j}r)}\left(\frac{\lambda}{7}\right)^{j+1}t^{*}(v^{0})\sigma_{r}
(4.39) and|vw|2δr\displaystyle\text{and}\quad\frac{|v^{\ell}-w^{\ell}|^{2}}{\delta^{\ell}r} 2σ(δr)σ(δ+1r)|v+1w+1|2δ+1r,\displaystyle\leq\frac{2\sigma(\delta^{\ell}r)}{\sigma(\delta^{\ell+1}r)}\frac{|v^{\ell+1}-w^{\ell+1}|^{2}}{\delta^{\ell+1}r},

and as in (4.30) it follows from these that

(4.40) |v+1z+1|2δ+1r2jδ128μ(λ7)j+1σ(δ+1r)σ(δjr)t(v0)σr.\frac{|v^{\ell+1}-z^{\ell+1}|^{2}}{\delta^{\ell+1}r}\geq 2^{j-\ell}\frac{\delta}{128\mu}\left(\frac{\lambda}{7}\right)^{j+1}\frac{\sigma(\delta^{\ell+1}r)}{\sigma(\delta^{j}r)}t^{*}(v^{0})\sigma_{r}.

The advantage of (4.40) is that it depends only on (v0,v1,v2,v3)(v^{0},v^{1},v^{2},v^{3}) and not on vfinv^{fin}, whereas in (4.3) the points wiw^{i} do depend on vfinv^{fin}. What we have shown is that if there exists vfinGr+v^{fin}\in G_{r}^{+} with (vfinv0)1δr(v^{fin}-v^{0})_{1}\geq\delta^{\ell}r for which (4.3) holds, then (4.40) holds, not involving vfinv^{fin}. We further have wj+1zj+1=δj(w+1z+1)w^{j+1}-z^{j+1}=\delta^{j-\ell}(w^{\ell+1}-z^{\ell+1}), while by the first half of (4.30) we have |v+1w+1|2|v+1z+1||v^{\ell+1}-w^{\ell+1}|\leq 2|v^{\ell+1}-z^{\ell+1}| and |w+1z+1||v+1z+1||w^{\ell+1}-z^{\ell+1}|\leq|v^{\ell+1}-z^{\ell+1}|, so

|vj+1zj+1|2δj+1r\displaystyle\frac{|v^{j+1}-z^{j+1}|^{2}}{\delta^{j+1}r} 2|vj+1wj+1|2δj+1r+2|wj+1zj+1|2δj+1r\displaystyle\leq 2\frac{|v^{j+1}-w^{j+1}|^{2}}{\delta^{j+1}r}+2\frac{|w^{j+1}-z^{j+1}|^{2}}{\delta^{j+1}r}
=2|vj+1wj+1|2δj+1r+2δ2(j)|v+1z+1|2δj+1r\displaystyle=2\frac{|v^{j+1}-w^{j+1}|^{2}}{\delta^{j+1}r}+2\delta^{2(j-\ell)}\frac{|v^{\ell+1}-z^{\ell+1}|^{2}}{\delta^{j+1}r}
2(j3)σ(δj+1r)σ(δ+1r)|v+1z+1|2δ+1r+2δj|v+1z+1|2δ+1r\displaystyle\leq 2^{-(j-\ell-3)}\frac{\sigma(\delta^{j+1}r)}{\sigma(\delta^{\ell+1}r)}\frac{|v^{\ell+1}-z^{\ell+1}|^{2}}{\delta^{\ell+1}r}+2\delta^{j-\ell}\frac{|v^{\ell+1}-z^{\ell+1}|^{2}}{\delta^{\ell+1}r}
(4.41) 2(j4)σ(δj+1r)σ(δ+1r)|v+1z+1|2δ+1r.\displaystyle\leq 2^{-(j-\ell-4)}\frac{\sigma(\delta^{j+1}r)}{\sigma(\delta^{\ell+1}r)}\frac{|v^{\ell+1}-z^{\ell+1}|^{2}}{\delta^{\ell+1}r}.

Again the left and right expressions in (4.3) depend only on (v0,vj+1,v+1,v)(v^{0},v^{j+1},v^{\ell+1},v^{\ell}), not on vfinv^{fin}.

In (1.13) we may interpret tσrt\sigma_{r} as a reduction in the time allotted to go from xx to yy, relative to h(|(yx)1|)h(|(y-x)_{1}|). In place of the reduction tσrt\sigma_{r} relative to h(|(yx)1|)h(|(y-x)_{1}|), we can consider a modified reduction, call it R0R_{0}, which is relative to Υh(ΓCG)\Upsilon_{h}(\Gamma^{CG}):

h(|(yx)1|)tσr=Υh(ΓCG)R0.h(|(y-x)_{1}|)-t\sigma_{r}=\Upsilon_{h}(\Gamma^{CG})-{\color[rgb]{1,0,0}R_{0}}.

The modified reduction is larger: using (4.23) we see that

R0tσr+μ3Ψ(ΓCG).R_{0}\geq t\sigma_{r}+\frac{\mu}{3}\Psi(\Gamma^{CG}).

We will need to (roughly speaking) allocate pieces of R0R_{0} to the various transitions made by ΓCG\Gamma^{CG} and certain related paths. Motivated by this, we define the jth–scale allocation Aj0(v,w)A_{j}^{0}(v,w) of a transition vwv\to w to be

(4.42) Aj0(v,w)=λj(tσr7j+δμ|(wv)|2|(wv)1|).{\color[rgb]{1,0,0}A_{j}^{0}(v,w)}=\lambda^{j}\left(\frac{t\sigma_{r}}{7^{j}}+\delta\mu\frac{|(w-v)^{*}|^{2}}{|(w-v)_{1}|}\right).

In (4.42) the factor 7j7^{j} is used due to (4.17). For a marked PG path ΓCG\Gamma^{CG} as above, with m7j1m\leq 7^{j}-1 marks in the jjth–scale grid, we have from (4.21)

i=1m+1Aj0(vi1,vi)\displaystyle\sum_{i=1}^{m+1}A_{j}^{0}(v^{i-1},v^{i}) λj[tσr+δμΨ(ΓCG)]\displaystyle\leq\lambda^{j}\left[t\sigma_{r}+\delta\mu\Psi\left(\Gamma^{CG}\right)\right]
(4.43) λj[tσr+3δμ(ΥEuc(ΓCG)(vm+1v0)1)].\displaystyle\leq\lambda^{j}\left[t\sigma_{r}+3\delta\mu\Big{(}\Upsilon_{Euc}(\Gamma^{CG})-(v^{m+1}-v^{0})_{1}\Big{)}\right].

Also, since jj1=O(loglogr)j\leq j_{1}=O(\log\log r), all Aj0(v,w)A_{j}^{0}(v,w) are large provided rr is large and t1t\geq 1.

Remark 4.4.

We now present an outline of the strategy of the proof. Each geodesic Γxy\Gamma_{xy} can be viewed as a marked PG path with marks in the basic grid in each of the hyperplanes of xy\mathcal{H}_{xy}. The goal is to gradually coarsen this approximation on successively larger length scales until we obtain a final path ΓxyCG\Gamma_{xy}^{CG}. The number of possible final paths (outside of a collection of “bad” paths having negligible probability) is small enough so that a version of (1.13) can be proved for final paths.

To perform the coarsening we iterate a two-stage process, with the exception that the first iteration has only one stage. The first iteration is on the j1j_{1}th scale, the second on the larger (j11)(j_{1}-1)th scale, and so on. For the j1j_{1}th–scale iteration, we perform a set of operations on the original marked PG path (essentially Γxy\Gamma_{xy}) called shifting to the j1j_{1}th–scale grid, replacing each marked grid point (located in the basic grid) in each hyperplane in xy\mathcal{H}_{xy} with a nearby point in the j1j_{1}th–scale grid. Each further iteration has two stages. For the (j11)(j_{1}-1)th scale (second) iteration, in the first stage we shift those marked points lying in (j11)(j_{1}-1)th–scale hyperplanes in xy\mathcal{H}_{xy} to the (j11)(j_{1}-1)th–scale grid. In the second stage of the iteration, we remove from the marked PG path those marked points not lying in (j11)(j_{1}-1)th–scale hyperplanes, with exceptions for points in terminal hyperplanes. See Figure 6. In general, for the jjth–scale iteration (jj1j\leq j_{1}), at the start of the iteration all the marked points in non-terminal hyperplanes are (j+1)(j+1)th–scale grid points in (j+1)(j+1)th–scale hyperplanes; in the first stage we shift the ones in jjth–scale hyperplanes to the jjth–scale grid, and in the second stage we remove the ones not in jjth–scale hyperplanes, again with exceptions in terminal hyperplanes.

Refer to caption
Figure 6. Illustration of the two stages of the jjth–scale iteration. The black path is the current one at the start of the iteration. The points u,u,v,vu,u^{\prime},v,v^{\prime} lie in the endpoint hyperplanes of a long jjth–scale interval; the adjacent hyperplanes close on either side of these are the sandwiching ones, and the other three are joining hyperplanes. In the first stage, we shift to the jjth–scale grid in the endpoint hyperplanes, replacing u,vu,v in the marked PG path with u,vu^{\prime},v^{\prime}, updating to the dashed path. In the second stage, the marked points between the endpoint hyperplanes are removed, updating to the gray path with marked points u,vu^{\prime},v^{\prime}.

The difficulty is that as we alter the marked PG path, the length ΥEuc()\Upsilon_{Euc}(\cdot) and corresponding hh–sum Υh()μΥEuc()\Upsilon_{h}(\cdot)\approx\mu\Upsilon_{Euc}(\cdot) change, with marked–point deletions always reducing these sums, and we need to ensure that, with high probability, the corresponding sum of passage times ΥT^()\Upsilon_{\hat{T}}(\cdot) “tracks” these changes at least partly, to within a certain allocated error related to the above–mentioned Aj0v,w)A_{j}^{0}v,w). For shifting to a grid the tracking is not too difficult to achieve, as the allowed error turns out to be larger than the change in hh–sum being tracked. But for removal of marked points the tracking requires multiple different strategies, depending on the options in (4.33) for the marked grid point locations in the gap between each two successive jjth–scale hyperplanes in xy\mathcal{H}_{xy}. The particular tracking needed is that, with high probability to within the allocated errors, when marked points are removed from a gap, the decrease in total passage time ΥT^()\Upsilon_{\hat{T}}(\cdot) is at least a positive fraction δ\delta of the decrease in hh–sum. The primary difficulty in achieving this is that if the gap has a large length LL, then the relevant passage time fluctuation size σ(L)\sigma(L) may overwhelm both the reduction in hh–sum and the allocated errors; here the remedy involves the “joining hyperplanes.” We also make use of what we call intermediate paths, which (in most cases) have total passage time and hh–sum in between the values that exist before and after the marked–point removal, and are chosen so that they are relatively easy to compare to the pre–removal path.

In (1.13) the passage time reduction for the full path is tσrt\sigma_{r}, which a priori suggests that the total of the allocated errors associated to a path should not exceed this amount. There is no natural way to work with such a small total error yet achieve bounds uniformly over all Γxy\Gamma_{xy}. However, we will see that the tracking enables us to increase the total of the allocated errors by an amount proportional to the extra Euclidean length ΥEuc()\Upsilon_{Euc}(\cdot) of the original marked PG path relative to the “horizontal” distance (yx)1(y-x)_{1}, which gives the second term in parentheses in the formula (4.42). With this the necessary uniformity can be achieved, both for the tracking and for the fluctuation bounds on passage times of final paths ΓxyCG\Gamma_{xy}^{CG}.

4.2. Step 2. Performing the j1j_{1}th–scale (first) iteration of coarse–graining.

As described in Remark 4.4, for the j1j_{1}th–scale iteration we perform a sequence of operations on marked PG paths called shifting to the jth–scale grid, in the hyperplanes of xy\mathcal{H}_{xy}. The j1j_{1}th–scale iteration is different from those that follow, in that there is no second stage of removing marked points, and no need for the “tracking” of Remark 4.4. In general we will refer to the marked PG path existing before a shift or removal operation as the current (marked) path, and the modified one resulting from the operation as the updated (marked) path. The allocations Aj0(,)A_{j}^{0}(\cdot,\cdot) of (4.42) are used only for the j1j_{1}th–scale iteration; we will define other allocations later.

For the j1j_{1}th scale, every HsxyH_{s}\in\mathcal{H}_{xy} is a j1j_{1}th–scale hyperplane. Suppose xy={Hsi,1im}\mathcal{H}_{xy}=\{H_{s_{i}},1\leq i\leq m\} with x1<s1<<sm<y1x_{1}<{\color[rgb]{1,0,0}s_{1}<\cdots<s_{m}}<y_{1}. Let xi=𝔪si(Γxy)=ψq(usi(Γxy)), 1im{\color[rgb]{1,0,0}x^{i}}=\mathfrak{m}_{s_{i}}(\Gamma_{xy})=\psi_{q}(u_{s_{i}}(\Gamma_{xy})),\,1\leq i\leq m, and define x0,p0,xm+1pm+1x^{0},p^{0},x^{m+1}p^{m+1} by x0=p0=x^=ψq(x),xm+1=pm+1=y^=ψq(y){\color[rgb]{1,0,0}x^{0}=p^{0}}=\hat{x}=\psi_{q}(x),{\color[rgb]{1,0,0}x^{m+1}=p^{m+1}}=\hat{y}=\psi_{q}(y). At the start, the current path Γxyj1,0\Gamma_{xy}^{j_{1},0} is Γxy\Gamma_{xy} with marks at the grid points xix^{i}:

Γxyj1,0:x0x1xm+1.{\color[rgb]{1,0,0}\Gamma_{xy}^{j_{1},0}}:x^{0}\to x^{1}\to\cdots\to x^{m+1}.

Note that Γxyj1,0\Gamma_{xy}^{j_{1},0} is a marked path, but not necessarily a marked PG path, since Γxy\Gamma_{xy} need only pass near φ(xi)\varphi(x^{i}), not necessarily through it. By near we mean that both usi(Γxy)u_{s_{i}}(\Gamma_{xy}) and φ(xi)\varphi(x^{i}) lie in the same cube FxiF_{x^{i}} of the basic grid.

Recall that the blocks of 𝕃j1\mathbb{L}_{j_{1}} have side K0βj1ΔrK_{0}\beta^{j_{1}}\Delta_{r}. The first shift to the j1j_{1}th–scale grid happens in Hs1H_{s_{1}}, replacing x1x^{1} with p1=Vj1(x1){\color[rgb]{1,0,0}p^{1}}=V_{j_{1}}(x^{1}) to produce the updated marked path

Γxyj1,1:p0p1x2xm+1,{\color[rgb]{1,0,0}\Gamma_{xy}^{j_{1},1}}:p^{0}\to p^{1}\to x^{2}\to\cdots\to x^{m+1},

with the underlying path being the concatenation of the geodesics Γxp1,Γp1,us2(Γxy),Γus2(Γxy),y\Gamma_{xp_{1}},\Gamma_{p_{1},u_{s_{2}}(\Gamma_{xy})},\Gamma_{u_{s_{2}}(\Gamma_{xy}),y}. Next we repeat this in Hs2H_{s_{2}}, replacing x2x^{2} with p2=Vj1(x2)p^{2}=V_{j_{1}}(x^{2}). We continue this way performing shifts to the j1j_{1}th–scale grid in Hs3,,HsmH_{s_{3}},\dots,H_{s_{m}}, producing the updated path

Γxyj1,m:p0p1pmpm+1,{\color[rgb]{1,0,0}\Gamma_{xy}^{j_{1},m}}:p^{0}\to p^{1}\to\cdots\to p^{m}\to p^{m+1},

with the underlying path now (in view of (4.18)) being the marked PG path given by these points.

Let us analyze the effect of these shifts on Υh(ΓCG)\Upsilon_{h}(\Gamma^{CG}). Consider the iith shift, replacing xix^{i} with pip^{i}. From (4.6) and basic geometry we have

(4.44) |pipi1||xipi1|c11|(pixi)||(pipi1)|+|(pixi)|2(pipi1)1.|p^{i}-p^{i-1}|\geq|x^{i}-p^{i-1}|-c_{11}\frac{|(p^{i}-x^{i})^{*}||(p^{i}-p^{i-1})^{*}|+|(p^{i}-x^{i})^{*}|^{2}}{(p^{i}-p^{i-1})_{1}}.

Consider first the “sidestepping” case: |(pipi1)|2(j1)βj1Δr|(p^{i}-p^{i-1})^{*}|\geq\ell_{2}(j_{1})\beta^{j_{1}}\Delta_{r}. Since |(pixi)|d1K0βj1Δr|(p^{i}-x^{i})^{*}|\leq\sqrt{d-1}K_{0}\beta^{j_{1}}\Delta_{r}, we have from (4.14), (4.15), and (4.44) that provided rr is large, for 1im1\leq i\leq m,

|pipi1|\displaystyle|p^{i}-p^{i-1}| |xipi1|2c11K0d12(j1)|(pipi1)|2(pipi1)1\displaystyle\geq|x^{i}-p^{i-1}|-\frac{2c_{11}K_{0}\sqrt{d-1}}{\ell_{2}(j_{1})}\,\frac{|(p^{i}-p^{i-1})^{*}|^{2}}{(p^{i}-p^{i-1})_{1}}
|xipi1|2c11K0d1(βρδ(1+χ2)/2)j1|(pipi1)|2(pipi1)1\displaystyle\geq|x^{i}-p^{i-1}|-2c_{11}K_{0}\sqrt{d-1}\left(\frac{\beta}{\rho\delta^{(1+\chi_{2})/2}}\right)^{j_{1}}\frac{|(p^{i}-p^{i-1})^{*}|^{2}}{(p^{i}-p^{i-1})_{1}}
(4.45) |xipi1|132μAj10(pi1,pi).\displaystyle\geq|x^{i}-p^{i-1}|-\frac{1}{32\mu}A_{j_{1}}^{0}(p^{i-1},p^{i}).

Now consider the “normal” case: |(pipi1)|<2(j1)βj1Δr|(p^{i}-p^{i-1})^{*}|<\ell_{2}(j_{1})\beta^{j_{1}}\Delta_{r}. From (4.14), (4.15), and (4.44) we have

|pipi1|\displaystyle|p^{i}-p^{i-1}| |xipi1|2c11K02(j1)d1(βj1Δr)2δj1r\displaystyle\geq|x^{i}-p^{i-1}|-2c_{11}K_{0}\ell_{2}(j_{1})\sqrt{d-1}\frac{(\beta^{j_{1}}\Delta_{r})^{2}}{\delta^{j_{1}}r}
|xipi1|c12(ρβδ(1χ1)/2)j1σr\displaystyle\geq|x^{i}-p^{i-1}|-c_{12}\left(\frac{\rho\beta}{\delta^{(1-\chi_{1})/2}}\right)^{j_{1}}\sigma_{r}
(4.46) |xipi1|132μAj10(pi1,pi).\displaystyle\geq|x^{i}-p^{i-1}|-\frac{1}{32\mu}A_{j_{1}}^{0}(p^{i-1},p^{i}).

We can interchange the roles of pip^{i} and xix^{i} and/or replace pi1p^{i-1} with xi+1x^{i+1}, so it follows from (4.2) and (4.2) that

(4.47) ||pipi1||xipi1||132μ(Aj10(pi1,pi)+Aj10(pi1,xi))\Big{|}|p^{i}-p^{i-1}|-|x^{i}-p^{i-1}|\Big{|}\leq\frac{1}{32\mu}\Big{(}A_{j_{1}}^{0}(p^{i-1},p^{i})+A_{j_{1}}^{0}(p^{i-1},x^{i})\Big{)}

and

(4.48) ||pixi+1||xixi+1||132μ(Aj10(pi,xi+1),+Aj10(xi,xi+1))\Big{|}|p^{i}-x^{i+1}|-|x^{i}-x^{i+1}|\Big{|}\leq\frac{1}{32\mu}\Big{(}A_{j_{1}}^{0}(p^{i},x^{i+1}),+A_{j_{1}}^{0}(x^{i},x^{i+1})\Big{)}

and then also

(4.49) |h(|pipi1|)h(|xipi1|)|116(Aj10(pi1,pi)+Aj10(pi1,xi))\Big{|}h(|p^{i}-p^{i-1}|)-h(|x^{i}-p^{i-1}|)\Big{|}\leq\frac{1}{16}\Big{(}A_{j_{1}}^{0}(p^{i-1},p^{i})+A_{j_{1}}^{0}(p^{i-1},x^{i})\Big{)}

and

(4.50) |h(|pixi+1|)h(|xixi+1|)|116(Aj10(pi,xi+1)+Aj10(xi,xi+1)).\Big{|}h(|p^{i}-x^{i+1}|)-h(|x^{i}-x^{i+1}|)\Big{|}\leq\frac{1}{16}\Big{(}A_{j_{1}}^{0}(p^{i},x^{i+1})+A_{j_{1}}^{0}(x^{i},x^{i+1})\Big{)}.

We claim that

(4.51) Aj10(pi1,pi)(1+14λj1)Aj10(xi1,xi).A_{j_{1}}^{0}(p^{i-1},p^{i})\leq\left(1+\frac{1}{4}\lambda^{j_{1}}\right)A_{j_{1}}^{0}(x^{i-1},x^{i}).

It is enough to show

(4.52) |(pipi1)|2|(xixi1)|214δμλj1tσr7j1(xixi1)1+14λj1|(xixi1)|2.|(p^{i}-p^{i-1})^{*}|^{2}-|(x^{i}-x^{i-1})^{*}|^{2}\leq\frac{1}{4\delta\mu}\lambda^{j_{1}}\frac{t\sigma_{r}}{7^{j_{1}}}(x^{i}-x^{i-1})_{1}+\frac{1}{4}\lambda^{j_{1}}|(x^{i}-x^{i-1})^{*}|^{2}.

To that end, we have

|(pipi1)||(xixi1)|+|(xipi)|+|(pi1xi1)||(xixi1)|+2K0d1βj1Δr,|(p^{i}-p^{i-1})^{*}|\leq|(x^{i}-x^{i-1})^{*}|+|(x^{i}-p^{i})^{*}|+|(p^{i-1}-x^{i-1})^{*}|\leq|(x^{i}-x^{i-1})^{*}|+2K_{0}\sqrt{d-1}\beta^{j_{1}}\Delta_{r},

so

(4.53) |(pipi1)|2|(xixi1)|24K0d1βj1Δr|(xixi1)|+4K02(d1)β2j1rσr.|(p^{i}-p^{i-1})^{*}|^{2}-|(x^{i}-x^{i-1})^{*}|^{2}\leq 4K_{0}\sqrt{d-1}\beta^{j_{1}}\Delta_{r}|(x^{i}-x^{i-1})^{*}|+4K_{0}^{2}(d-1)\beta^{2j_{1}}r\sigma_{r}.

From (4.14), the last term satisfies

(4.54) 4K02(d1)β2j1rσr18(λδ7)j1trσr18(λ7)j1tσr(xixi1)1.4K_{0}^{2}(d-1)\beta^{2j_{1}}r\sigma_{r}\leq\frac{1}{8}\left(\frac{\lambda\delta}{7}\right)^{j_{1}}tr\sigma_{r}\leq\frac{1}{8}\left(\frac{\lambda}{7}\right)^{j_{1}}t\sigma_{r}(x^{i}-x^{i-1})_{1}.

If the iith transition has very small sidestep, that is,

(4.55) |(xixi1)|32K0d1(βλ)j1Δr,|(x^{i}-x^{i-1})^{*}|\leq 32K_{0}\sqrt{d-1}\left(\frac{\beta}{\lambda}\right)^{j_{1}}\Delta_{r},

then provided rr is large, since (xixi1)1δj1r(x^{i}-x^{i-1})_{1}\geq\delta^{j_{1}}r, using (4.14) the first term on the right in (4.53) satisfies

4K0d1βj1Δr\displaystyle 4K_{0}\sqrt{d-1}\beta^{j_{1}}\Delta_{r} |(xixi1)|128K02(d1)(β2λ)j1rσr\displaystyle|(x^{i}-x^{i-1})^{*}|\leq 128K_{0}^{2}(d-1)\left(\frac{\beta^{2}}{\lambda}\right)^{j_{1}}r\sigma_{r}
(4.56) 128K02(d1)(β2λδ)j1σr(xixi1)118δμ(λ7)j1tσr(xixi1)1.\displaystyle\leq 128K_{0}^{2}(d-1)\left(\frac{\beta^{2}}{\lambda\delta}\right)^{j_{1}}\sigma_{r}(x^{i}-x^{i-1})_{1}\leq\frac{1}{8\delta\mu}\left(\frac{\lambda}{7}\right)^{j_{1}}t\sigma_{r}(x^{i}-x^{i-1})_{1}.

If instead the iith transition has larger sidestep, meaning

(4.57) |(xixi1)|>32K0d1(βλ)j1Δr,|(x^{i}-x^{i-1})^{*}|>32K_{0}\sqrt{d-1}\left(\frac{\beta}{\lambda}\right)^{j_{1}}\Delta_{r},

then the first term on the right in (4.53) satisfies

(4.58) 4K0d1βj1Δr|(xixi1)|\displaystyle 4K_{0}\sqrt{d-1}\beta^{j_{1}}\Delta_{r}|(x^{i}-x^{i-1})^{*}| 18λj1|(xixi1)|2.\displaystyle\leq\frac{1}{8}\lambda^{j_{1}}|(x^{i}-x^{i-1})^{*}|^{2}.

Together, (4.53)—(4.58) prove (4.52), and thus also (4.51). This same proof shows that

(4.59) Aj10(pi1,pi),Aj10(pi1,xi),Aj10(xi1,xi) are all within a factor of 1+14λj143,A_{j_{1}}^{0}(p^{i-1},p^{i}),A_{j_{1}}^{0}(p^{i-1},x^{i}),A_{j_{1}}^{0}(x^{i-1},x^{i})\text{ are all within a factor of }1+\frac{1}{4}\lambda^{j_{1}}\leq\frac{4}{3},

and similarly for Aj10(xi,xi+1),Aj10(pi,xi+1),Aj10(pi,pi+1)A_{j_{1}}^{0}(x^{i},x^{i+1}),A_{j_{1}}^{0}(p^{i},x^{i+1}),A_{j_{1}}^{0}(p^{i},p^{i+1}).

From (4.1), (4.47), (4.48), and (4.59) we bound the total change in length from all shifts to the j1j_{1}th–scale grid:

(4.60) |ΥEuc(Γxyj1,m)ΥEuc(Γxyj1,0)|16μi=1m+1Aj10(pi1,pi)λj16μ[tσr+3δμ(ΥEuc(Γxyj1,m)(y^x^)1)]\left|\Upsilon_{Euc}(\Gamma_{xy}^{j_{1},m})-\Upsilon_{Euc}(\Gamma_{xy}^{j_{1},0})\right|\leq\frac{1}{6\mu}\sum_{i=1}^{m+1}A_{j_{1}}^{0}(p^{i-1},p^{i})\leq\frac{\lambda^{j_{1}}}{6\mu}\left[t\sigma_{r}+3\delta\mu\Big{(}\Upsilon_{Euc}(\Gamma_{xy}^{j_{1},m})-(\hat{y}-\hat{x})_{1}\Big{)}\right]

and similarly, using (4.49)–(4.50) instead of (4.47)–(4.48),

(4.61) |Υh(Γxyj1,m)Υh(Γxyj1,0)|λj13[tσr+3δμ(ΥEuc(Γxyj1,m)(y^x^)1)].\left|\Upsilon_{h}(\Gamma_{xy}^{j_{1},m})-\Upsilon_{h}(\Gamma_{xy}^{j_{1},0})\right|\leq\frac{\lambda^{j_{1}}}{3}\left[t\sigma_{r}+3\delta\mu\Big{(}\Upsilon_{Euc}(\Gamma_{xy}^{j_{1},m})-(\hat{y}-\hat{x})_{1}\Big{)}\right].

In view of (4.59), the derivation of (4.60) and (4.61) is also valid if we replace Aj10(pi1,pi)A_{j_{1}}^{0}(p^{i-1},p^{i}) with Aj10(xi1,xi)A_{j_{1}}^{0}(x^{i-1},x^{i}), which gives the alternate bound

(4.62) |Υh(Γxyj1,m)Υh(Γxyj1,0)|λj13[tσr+3δμ(ΥEuc(Γxyj1,0)(y^x^)1)].\left|\Upsilon_{h}(\Gamma_{xy}^{j_{1},m})-\Upsilon_{h}(\Gamma_{xy}^{j_{1},0})\right|\leq\frac{\lambda^{j_{1}}}{3}\left[t\sigma_{r}+3\delta\mu\Big{(}\Upsilon_{Euc}(\Gamma_{xy}^{j_{1},0})-(\hat{y}-\hat{x})_{1}\Big{)}\right].

For basic grid points u,vu,v define

M(u)=max{T(y,z):y,zFu}.{\color[rgb]{1,0,0}M(u)}=\max\{T(y,z):y,z\in F_{u}\}.

We have

(4.63) T(x,y)i=1m+1T^(xi1,xi)=ΥT^(Γxyj1,0)T(x,y)\geq\sum_{i=1}^{m+1}\hat{T}(x^{i-1},x^{i})=\Upsilon_{\hat{T}}(\Gamma_{xy}^{j_{1},0})

and a form of approximate subadditivity holds: for basic grid points u,v,wu,v,w,

(4.64) T^(u,v)T^(u,w)+T^(w,v)+M(w).\hat{T}(u,v)\leq\hat{T}(u,w)+\hat{T}(w,v)+M(w).

From Lemma 3.1 we have for sufficiently large ss that the event

J(0)(s):M(u)slogr for some uqdGr+{\color[rgb]{1,0,0}J^{(0)}(s)}:M(u)\geq s\log r\text{ for some }u\in q\mathbb{Z}^{d}\cap G_{r}^{+}

satisfies

(4.65) P(J(0)(s))c13|Gr+|ec14slogrc13ec15slogr.P\left(J^{(0)}(s)\right)\leq c_{13}|G_{r}^{+}|e^{-c_{14}s\log r}\leq c_{13}e^{-c_{15}s\log r}.

Before proceeding we stress that m,pim,p^{i}, and xix^{i} should always be viewed at functions of (x,y,ω)(x,y,\omega). From (4.1) we have

(4.66) i=1m+1Aj10(xi1,xi)λj1(tσr+3δμ[ΥEuc(Γxyj1,0)(y^x^)1]).\displaystyle\sum_{i=1}^{m+1}A_{j_{1}}^{0}(x^{i-1},x^{i})\leq\lambda^{j_{1}}\Big{(}t\sigma_{r}+3\delta\mu\left[\Upsilon_{Euc}(\Gamma_{xy}^{j_{1},0})-(\hat{y}-\hat{x})_{1}\right]\Big{)}.

Therefore

{\displaystyle\Big{\{} T(x,y)h((y^x^)1)tσr}\displaystyle T(x,y)\leq h((\hat{y}-\hat{x})_{1})-t\sigma_{r}\Big{\}}
{ΥT^(Γxyj1,0)h((y^x^)1)(12λj1)tσr+4δμλj1[ΥEuc(Γxyj1,m)(y^x^)1]\displaystyle\subset\Bigg{\{}\Upsilon_{\hat{T}}(\Gamma_{xy}^{j_{1},0})-h((\hat{y}-\hat{x})_{1})\leq-\left(1-2\lambda^{j_{1}}\right)t\sigma_{r}+4\delta\mu\lambda^{j_{1}}\left[\Upsilon_{Euc}(\Gamma_{xy}^{j_{1},m})-(\hat{y}-\hat{x})_{1}\right]
i=1m+1Aj10(xi1,xi)}\displaystyle\hskip 227.62204pt-\sum_{i=1}^{m+1}A_{j_{1}}^{0}(x^{i-1},x^{i})\Bigg{\}}
{ΥT^(Γxyj1,m)h((y^x^)1)(12λj1)tσr+4δμλj1[ΥEuc(Γxyj1,m)(y^x^)1]}\displaystyle\subset\Bigg{\{}\Upsilon_{\hat{T}}(\Gamma_{xy}^{j_{1},m})-h((\hat{y}-\hat{x})_{1})\leq-\left(1-2\lambda^{j_{1}}\right)t\sigma_{r}+4\delta\mu\lambda^{j_{1}}\left[\Upsilon_{Euc}(\Gamma_{xy}^{j_{1},m})-(\hat{y}-\hat{x})_{1}\right]\Bigg{\}}
(4.67) {ΥT^(Γxyj1,m)ΥT^(Γxyj1,0)>i=1m+1Aj10(xi1,xi)}.\displaystyle\qquad\quad\bigcup\left\{\Upsilon_{\hat{T}}(\Gamma_{xy}^{j_{1},m})-\Upsilon_{\hat{T}}(\Gamma_{xy}^{j_{1},0})>\sum_{i=1}^{m+1}A_{j_{1}}^{0}(x^{i-1},x^{i})\right\}.

The key inclusion here is the second one, as it takes us from an event involving the passage time of the original path Γxyj1,0\Gamma_{xy}^{j_{1},0} to an event involving the j1j_{1}th–scale CG approximation Γxyj1,m\Gamma_{xy}^{j_{1},m}, up to the “tracking error event” given in the last line. The name is only partly suitable here—bounding the last probability in (4.2) is related to the tracking of Remark 4.4, in that we are ensuring that changing the path from Γxyj1,0\Gamma_{xy}^{j_{1},0} to Γxyj1,m\Gamma_{xy}^{j_{1},m} doesn’t change ΥT^()\Upsilon_{\hat{T}}(\cdot) too much, but the change in hh-sum here is too small to require being tracked.

4.3. Step 3. Bounding the tracking–error event for the j1j_{1}th–scale–iteration.

Consider next the tracking–error event

Jxy(1):ΥT^(Γxyj1,m)ΥT^(Γxyj1,0)>i=1m+1Aj10(xi1,xi){\color[rgb]{1,0,0}J_{xy}^{(1)}}:\ \Upsilon_{\hat{T}}(\Gamma_{xy}^{j_{1},m})-\Upsilon_{\hat{T}}(\Gamma_{xy}^{j_{1},0})>\sum_{i=1}^{m+1}A_{j_{1}}^{0}(x^{i-1},x^{i})

from the right side of (4.2). Recalling Remark 4.4, this reflects the failure of the passage time to track well when the path changes from Γxyj1,0\Gamma_{xy}^{j_{1},0} to its j1j_{1}th–scale CG approximation Γxyj1,m\Gamma_{xy}^{j_{1},m}. We have

(4.68) ΥT^(Γxyj1,m)ΥT^(Γxyj1,0)\displaystyle\Upsilon_{\hat{T}}(\Gamma_{xy}^{j_{1},m})-\Upsilon_{\hat{T}}(\Gamma_{xy}^{j_{1},0}) i=1m[(T^(pi1,pi)T^(pi1,xi))+(T^(pi,xi+1)T^(xi,xi+1))]\displaystyle\leq\sum_{i=1}^{m}\left[\left(\hat{T}(p^{i-1},p^{i})-\hat{T}(p^{i-1},x^{i})\right)+\left(\hat{T}(p^{i},x^{i+1})-\hat{T}(x^{i},x^{i+1})\right)\right]

and therefore using (4.59),

Jxy(1)\displaystyle J_{xy}^{(1)} i=1m{T^(pi1,pi)T^(pi1,xi)38Aj10(pi1,xi)}\displaystyle\subset\bigcup_{i=1}^{m}\left\{\hat{T}(p^{i-1},p^{i})-\hat{T}(p^{i-1},x^{i})\geq\frac{3}{8}A_{j_{1}}^{0}(p^{i-1},x^{i})\right\}
(4.69) i=1m{T^(pi,xi+1)T^(xi,xi+1)38Aj10(xi,xi+1)}.\displaystyle\qquad\cup\bigcup_{i=1}^{m}\left\{\hat{T}(p^{i},x^{i+1})-\hat{T}(x^{i},x^{i+1})\geq\frac{3}{8}A_{j_{1}}^{0}(x^{i},x^{i+1})\right\}.

Let us consider any one of the events in the first union on the right in (4.3); we prepare to apply Proposition 3.5. We assume |pipi1||xipi1||p^{i}-p^{i-1}|\geq|x^{i}-p^{i-1}| as the opposite case is similar. Define ϵ\epsilon by

(1ϵ)|pipi1|=|xipi1|(1-{\color[rgb]{1,0,0}\epsilon})|p^{i}-p^{i-1}|=|x^{i}-p^{i-1}|

and let

p¯i=pi1+(1ϵ)(pipi1),p~i=ψq(φ(p¯i)).{\color[rgb]{1,0,0}\overline{p}^{i}}=p^{i-1}+(1-\epsilon)(p^{i}-p^{i-1}),\qquad{\color[rgb]{1,0,0}\tilde{p}^{i}}=\psi_{q}(\varphi(\overline{p}^{i})).

We observe that in (4.2) and (4.2), one can replace 1/32μ1/32\mu with any given positive constant, if rr is large enough. Consequently we have

(4.70) |p¯ipi1|=|xipi1|,|pip¯i|=ϵ|pipi1|=|pipi1||xipi1|132μAj10(xi1,pi).|\overline{p}^{i}-p^{i-1}|=|x^{i}-p^{i-1}|,\quad|p^{i}-\overline{p}^{i}|=\epsilon|p^{i}-p^{i-1}|=|p^{i}-p^{i-1}|-|x^{i}-p^{i-1}|\leq\frac{1}{32\mu}A_{j_{1}}^{0}(x^{i-1},p^{i}).

We split T^(pi1,pi)\hat{T}(p^{i-1},p^{i}) into two corresponding increments, using (4.64):

{T^(pi1,pi)T^(pi1,xi)38Aj10(pi1,xi)}\displaystyle\left\{\hat{T}(p^{i-1},p^{i})-\hat{T}(p^{i-1},x^{i})\geq\frac{3}{8}A_{j_{1}}^{0}(p^{i-1},x^{i})\right\}
(4.71) {T^(pi1,p~i)T^(pi1,xi)316Aj10(pi1,xi)}{T^(p~i,pi)+M(p~i)316Aj10(pi1,xi)}\displaystyle\quad\subset\left\{\hat{T}(p^{i-1},\tilde{p}^{i})-\hat{T}(p^{i-1},x^{i})\geq\frac{3}{16}A_{j_{1}}^{0}(p^{i-1},x^{i})\right\}\cup\left\{\hat{T}(\tilde{p}^{i},p^{i})+M(\tilde{p}^{i})\geq\frac{3}{16}A_{j_{1}}^{0}(p^{i-1},x^{i})\right\}

and define the corresponding unions

Jxy(1a)=i=1m{T^(pi1,p~i)T^(pi1,xi)316Aj10(pi1,xi)},{\color[rgb]{1,0,0}J_{xy}^{(1a)}}=\bigcup_{i=1}^{m}\left\{\hat{T}(p^{i-1},\tilde{p}^{i})-\hat{T}(p^{i-1},x^{i})\geq\frac{3}{16}A_{j_{1}}^{0}(p^{i-1},x^{i})\right\},
Jxy(1b)=i=1m{T^(p~i,pi)+M(p~i)316Aj10(pi1,xi)},{\color[rgb]{1,0,0}J_{xy}^{(1b)}}=\bigcup_{i=1}^{m}\left\{\hat{T}(\tilde{p}^{i},p^{i})+M(\tilde{p}^{i})\geq\frac{3}{16}A_{j_{1}}^{0}(p^{i-1},x^{i})\right\},

so that (4.3) says the first union in (4.3) is contained in Jxy(1a)Jxy(1b)J_{xy}^{(1a)}\cup J_{xy}^{(1b)}. Define the set of (x,y)(x,y) corresponding to (4.12)

Xr={(x,y)qd×qd:x,yGr(K),|yx|>C62r(logr)1/χ1,(4.18) holds},{\color[rgb]{1,0,0}X_{r}}=\left\{(x,y)\in q\mathbb{Z}^{d}\times q\mathbb{Z}^{d}:x,y\in G_{r}(K),|y-x|>\frac{C_{62}r}{(\log r)^{1/\chi_{1}}},\eqref{startend}\text{ holds}\right\},

with C62C_{62} from (4.12), and define the events

J(1a)=(x,y)XrJxy(1a),J(1b)=(x,y)XrJxy(1b),J(1c)={ΓxyGr+ for some (x,y)Xr}.{\color[rgb]{1,0,0}J^{(1a)}}=\cup_{(x,y)\in X_{r}}J_{xy}^{(1a)},\quad{\color[rgb]{1,0,0}J^{(1b)}}=\cup_{(x,y)\in X_{r}}J_{xy}^{(1b)},\quad{\color[rgb]{1,0,0}J^{(1c)}}=\Big{\{}\Gamma_{xy}\not\subset G_{r}^{+}\text{ for some }(x,y)\in X_{r}\Big{\}}.

For configurations ωJ(1c)\omega\notin J^{(1c)}, all pi1,pi,xi,p~ip^{i-1},p^{i},x^{i},\tilde{p}^{i} lie in Gr+G_{r}^{+}, so the number of possible tuples (pi1,pi,xi,p~i)(p^{i-1},p^{i},x^{i},\tilde{p}^{i}) arising from some (x,y)Xr(x,y)\in X_{r} is at most c16|Gr+|4c_{16}|G_{r}^{+}|^{4}. Define s,αs,\alpha by

Δs=2K0d1βj1Δr,α=3λj1tσr16σslog(2K0d1βj1Δr),\Delta_{s}=2K_{0}\sqrt{d-1}\beta^{j_{1}}\Delta_{r},\quad\alpha=\frac{3\lambda^{j_{1}}t\sigma_{r}}{16\sigma_{s}\log(2K_{0}\sqrt{d-1}\beta^{j_{1}}\Delta_{r})},

so that |p~ixi||p¯ixi|+|p~ip¯i|2|pixi|+qd1Δs|\tilde{p}^{i}-x^{i}|\leq|\overline{p}^{i}-x^{i}|+|\tilde{p}^{i}-\overline{p}^{i}|\leq 2|p^{i}-x^{i}|+q\sqrt{d-1}\leq\Delta_{s}. By (1.10),

rσrsσs=Δr2Δs2c17β2j1and henceσrσsc18β2χ1j1/(1+χ1).\frac{r\sigma_{r}}{s\sigma_{s}}=\frac{\Delta_{r}^{2}}{\Delta_{s}^{2}}\geq\frac{c_{17}}{\beta^{2j_{1}}}\quad\text{and hence}\quad\frac{\sigma_{r}}{\sigma_{s}}\geq\frac{c_{18}}{\beta^{2\chi_{1}j_{1}/(1+\chi_{1})}}.

From this, (4.14), and (4.16),

(4.72) αc19(λβ2χ1/(1+χ1))j1tlogrc20t(logr)2.\alpha\geq c_{19}\left(\frac{\lambda}{\beta^{2\chi_{1}/(1+\chi_{1})}}\right)^{j_{1}}\frac{t}{\log r}\geq c_{20}t(\log r)^{2}.

Now

316Aj10(pi1,xi)3λj1tσr16=ασslog(2K0d1βj1Δr)=ασslogΔs\frac{3}{16}A_{j_{1}}^{0}(p^{i-1},x^{i})\geq\frac{3\lambda^{j_{1}}t\sigma_{r}}{16}=\alpha\sigma_{s}\log(2K_{0}\sqrt{d-1}\beta^{j_{1}}\Delta_{r})=\alpha\sigma_{s}\log\Delta_{s}

so for ωJxy(1a)\omega\in J_{xy}^{(1a)} we have for some ii that

T^(pi1,p~i)T^(pi1,xi)ασslogΔsασ(slogΔs)ασ(Δ1(|p~ixi|)log|p~ixi|).\hat{T}(p^{i-1},\tilde{p}^{i})-\hat{T}(p^{i-1},x^{i})\geq\alpha\sigma_{s}\log\Delta_{s}\geq\alpha\sigma(s\log\Delta_{s})\geq\alpha\sigma\Big{(}\Delta^{-1}(|\tilde{p}^{i}-x^{i}|)\log|\tilde{p}^{i}-x^{i}|\Big{)}.

In view of (4.70) and (4.72) we then get from Proposition 3.5 and Lemma 4.2 that

(4.73) P(J(1a)J(1c))P(J(1a)\J(1c))+P(J(1c))c21|Gr+|4eC54α+C68eC69tec22t.P\left(J^{(1a)}\cup J^{(1c)}\right)\leq P\left(J^{(1a)}\backslash J^{(1c)}\right)+P\left(J^{(1c)}\right)\leq c_{21}|G_{r}^{+}|^{4}e^{-C_{54}\alpha}+C_{68}e^{-C_{69}t}\leq e^{-c_{22}t}.

Next, recalling (4.70), we observe that |p~ip¯i|qd1|\tilde{p}^{i}-\overline{p}^{i}|\leq q\sqrt{d-1} and provided rr is large,

|uv|132μAj10(xi1,pi)+qd1h(|uv|)116Aj10(xi1,pi),|u-v|\leq\frac{1}{32\mu}A_{j_{1}}^{0}(x^{i-1},p^{i})+q\sqrt{d-1}\implies h(|u-v|)\leq\frac{1}{16}A_{j_{1}}^{0}(x^{i-1},p^{i}),

so using (4.70) and the bound on tt in (4.12) we have from Lemmas 3.1 and 3.2 that

P(J(1b)\J(1c))\displaystyle P\left(J^{(1b)}\backslash J^{(1c)}\right) P(for some u,vqdGr+ and A(λ7)j1tσr we have h(|uv|)A16\displaystyle\leq P\bigg{(}\text{for some $u,v\in q\mathbb{Z}^{d}\cap G_{r}^{+}$ and $A\geq\left(\frac{\lambda}{7}\right)^{j_{1}}t\sigma_{r}$ we have $h(|u-v|)\leq\frac{A}{16}$}
and T^(u,v)A8)\displaystyle\hskip 56.9055pt\text{and }\hat{T}(u,v)\geq\frac{A}{8}\bigg{)}
+P(for some uqdGr+ we have M(u)116(λ7)j1tσr)\displaystyle\qquad+P\bigg{(}\text{for some $u\in q\mathbb{Z}^{d}\cap G_{r}^{+}$ we have }M(u)\geq\frac{1}{16}\left(\frac{\lambda}{7}\right)^{j_{1}}t\sigma_{r}\bigg{)}
c23|Gr+|2exp(c24[(λ7)j1tσr]1χ2)+c25|Gr+|exp(c26(λ7)j1tσr)\displaystyle\leq c_{23}|G_{r}^{+}|^{2}\exp\left(-c_{24}\left[\left(\frac{\lambda}{7}\right)^{j_{1}}t\sigma_{r}\right]^{1-\chi_{2}}\right)+c_{25}|G_{r}^{+}|\exp\left(-c_{26}\left(\frac{\lambda}{7}\right)^{j_{1}}t\sigma_{r}\right)
(4.74) c27ec28t.\displaystyle\leq c_{27}e^{-c_{28}t}.

From (4.3), (4.73), and (4.3) the first union in (4.3) combined over (x,y)(x,y), together with J(1c)J^{(1c)}, has probability bounded as

P(J(1a)J(1b)J(1c))ec22t+c27ec28t,P\left(J^{(1a)}\cup J^{(1b)}\cup J^{(1c)}\right)\leq e^{-c_{22}t}+c_{27}e^{-c_{28}t},

and the same bound applies to the second union in (4.3), while from (4.12) and (4.65), for large c29c_{29} we have

P(J(0)(c29))c30ec31t.P\left(J^{(0)}(c_{29})\right)\leq c_{30}e^{-c_{31}t}.

Hence from (4.2) we obtain

P\displaystyle P (T(x,y)h((yx)1)tσr for some (x,y)Xr)\displaystyle\Big{(}T(x,y)\leq h((y-x)_{1})-t\sigma_{r}\text{ for some }(x,y)\in X_{r}\Big{)}
P(ΥT^(Γxyj1,m)h((yx)1)(12λj1)tσr+4δμλj1(ΥEuc(Γxyj1,m)(yx)1)\displaystyle\quad\leq P\Bigg{(}\Upsilon_{\hat{T}}(\Gamma_{xy}^{j_{1},m})-h((y-x)_{1})\leq-\left(1-2\lambda^{j_{1}}\right)t\sigma_{r}+4\delta\mu\lambda^{j_{1}}\Big{(}\Upsilon_{Euc}(\Gamma_{xy}^{j_{1},m})-(y-x)_{1}\Big{)}
(4.75)  for some (x,y)Xr;ωJ(0)J(1c))+c32ec33t.\displaystyle\qquad\qquad\text{ for some }(x,y)\in X_{r};\ \omega\notin J^{(0)}\cup J^{(1c)}\Bigg{)}+c_{32}e^{-c_{33}t}.

This completes the j1j_{1}th–scale (first) iteration.

It should be noted that, due to (4.2), the terms with coefficients 2 and 4 in (4.3) represent a reduction taken from the original bound tσrt\sigma_{r} in (1.13), used to bound errors created in the j1j_{1}th–scale iteration.

4.4. Step 4. Further iterations of coarse–graining: preparation.

For the (j11)(j_{1}-1)th–scale and later iterations of coarse–graining we use allocations Aj1(Γxycur,ui)A_{j}^{1}(\Gamma_{xy}^{{\rm cur}},u^{i}) associated not to a particular transition, but to the shifting of the marked grid point uiu^{i} in some (j+1)(j+1)th–scale current marked PG path Γxycur\Gamma_{xy}^{{\rm cur}} to the jjth–scale grid. Specifically, in such a shift the marked grid point uiu^{i} in the (j+1)(j+1)th–scale grid is replaced by the jjth–scale CG approximation Vj(ui)V_{j}(u^{i}), and the other marked grid points are left unchanged. Consider an initial marked PG path when an iteration of shifts to the jjth–scale grid begins:

Γ0:u0u1un+1,\Gamma^{0}:u^{0}\to u^{1}\to\cdots\to u^{n+1},

with n7j+11n\leq 7^{j+1}-1. Suppose that for some I{1,,n}{\color[rgb]{1,0,0}I}\subset\{1,\dots,n\} not containing two consecutive integers, the marked grid points (ui,iI)(u^{i},i\in I) are the ones shifted, one at a time, in the iteration, updating the path from Γ0{\color[rgb]{1,0,0}\Gamma^{0}} via a sequence of intermediate paths Γ1,,Γ|I|1{\color[rgb]{1,0,0}\Gamma^{1},\dots,\Gamma^{|I|-1}} to a final Γ|I|{\color[rgb]{1,0,0}\Gamma^{|I|}}. Note that since II does not contain two consecutive integers, the shifts of different uiu^{i}’s do not “interact,” as shifting uiu^{i} only affects the path between φ(ui1)\varphi(u^{i-1}) and φ(ui+1)\varphi(u^{i+1}) and only affects uiu^{i} among the marks; we will refer to this aspect as noninteraction of shifts.

Recall t(,)t^{*}(\cdot,\cdot) from (4.24). The allocation we use most widely, in both stages of each iteration, is Aj1(,)A_{j}^{1}(\cdot,\cdot) which appears in the next lemma. Aj2(,)A_{j}^{2}(\cdot,\cdot) is a variant of Aj1(,)A_{j}^{1}(\cdot,\cdot)

Lemma 4.5.

Let j,K1j,K\geq 1. Consider a marked PG path

Γ:u0u1un+1\Gamma:u^{0}\to u^{1}\to\cdots\to u^{n+1}

in Gr+G_{r}^{+} with u0,un+1Gr(K),n7j1u^{0},u^{n+1}\in G_{r}(K),\,n\leq 7^{j}-1, and (u0)1<<(un+1)1(u^{0})_{1}<\cdots<(u^{n+1})_{1}, and let I{1,,n}I\subset\{1,\dots,n\}, not containing two consecutive integers. Define

Aj1(Γ,i)\displaystyle{\color[rgb]{1,0,0}A_{j}^{1}(\Gamma,i)} =λj[17jt(ui1,ui)σr+δμ9(|(uiui1)|2|(uiui1)1|+|(ui+1ui)|2|(ui+1ui)1|)],\displaystyle=\lambda^{j}\left[\frac{1}{7^{j}}t^{*}(u^{i-1},u^{i})\sigma_{r}+\frac{\delta\mu}{9}\left(\frac{|(u^{i}-u^{i-1})^{*}|^{2}}{|(u^{i}-u^{i-1})_{1}|}+\frac{|(u^{i+1}-u^{i})^{*}|^{2}}{|(u^{i+1}-u^{i})_{1}|}\right)\right],

and for v,w𝕃jv,w\in\mathbb{L}_{j} with v1<w1v_{1}<w_{1}, let

(4.76) Aj2(v,w)=14λj[17jt(v,w)σr+δμ9|(wv)|2|(wv)1|].{\color[rgb]{1,0,0}A_{j}^{2}(v,w)}=\frac{1}{4}\lambda^{j}\left[\frac{1}{7^{j}}t^{*}(v,w)\sigma_{r}+\frac{\delta\mu}{9}\frac{|(w-v)^{*}|^{2}}{|(w-v)_{1}|}\right].

Then provided t/K2t/K^{2} is sufficiently large,

(4.77) iIAj1(Γ,i)23λj[tσr+δμ(ΥEuc(Γ)(un+1u0)1)]\sum_{i\in I}A_{j}^{1}(\Gamma,i)\leq\frac{2}{3}\lambda^{j}\left[t\sigma_{r}+\delta\mu\Big{(}\Upsilon_{Euc}\left(\Gamma\right)-(u^{n+1}-u^{0})_{1}\Big{)}\right]

and

(4.78) i=1n+1Aj2(ui1,ui)14λj[tσr+δμ(ΥEuc(Γ)(un+1u0)1))].\sum_{i=1}^{n+1}A_{j}^{2}(u^{i-1},u^{i})\leq\frac{1}{4}\lambda^{j}\Big{[}t\sigma_{r}+\delta\mu\Big{(}\Upsilon_{Euc}\left(\Gamma\right)-(u^{n+1}-u^{0})_{1})\Big{)}\Big{]}.

The bound (4.77) would be trivial if we used tt instead of t(ui1,ui)t^{*}(u^{i-1},u^{i}) the definition of Aj1(Γ,i)A_{j}^{1}(\Gamma,i). The point of Lemma 4.5 is that when the transitions affected by the shifting start or end at points uiu^{i} which are at distance a large multiple of Δr\Delta_{r} from Gr(K)G_{r}(K), it increases the usable value of tt by a multiple of (|(ui)|/Δr)2(|(u^{i})^{*}|/\Delta_{r})^{2}, manifested in the definition of t(ui1,ui)t^{*}(u^{i-1},u^{i}). Here by “usable” we mean “not so big that (4.77) or (4.78) fails.”

Proof of Lemma 4.5..

If ukGr(2K)u^{k}\notin G_{r}(2K) for some kk then d(uk,Πu0un+1)|(uk)|/2d(u^{k},\Pi_{u^{0}u^{n+1}})\geq|(u^{k})^{*}|/2 so we have from (4.20)

(4.79) |un+1u0|+|(uk)|23r|u0uk|+|ukun+1|i=1n+1|uiui1|(un+1u0)1+i=1n+1|(uiui1)|22|(uiui1)1|,|u^{n+1}-u^{0}|+\frac{|(u^{k})^{*}|^{2}}{3r}\leq|u^{0}-u^{k}|+|u^{k}-u^{n+1}|\leq\sum_{i=1}^{n+1}|u^{i}-u^{i-1}|\leq(u^{n+1}-u^{0})_{1}+\sum_{i=1}^{n+1}\frac{|(u^{i}-u^{i-1})^{*}|^{2}}{2|(u^{i}-u^{i-1})_{1}|},

so

(4.80) δμ|(uk)|218ri=1n+1δμ12|(uiui1)|2|(uiui1)1|,\frac{\delta\mu|(u^{k})^{*}|^{2}}{18r}\leq\sum_{i=1}^{n+1}\frac{\delta\mu}{12}\frac{|(u^{i}-u^{i-1})^{*}|^{2}}{|(u^{i}-u^{i-1})_{1}|},

while if ukGr(2K)u^{k}\in G_{r}(2K), since t/K2t/K^{2} is large,

(4.81) δμ|(uk)|218r2δμK2σr9δtσr3,\frac{\delta\mu|(u^{k})^{*}|^{2}}{18r}\leq\frac{2\delta\mu K^{2}\sigma_{r}}{9}\leq\frac{\delta t\sigma_{r}}{3},

so using (4.17) and (4.20),

(4.82) k=0nδμ|(uk)|218r7jδtσr3+i=1n+1δμ12|(uiui1)|2|(uiui1)1|13[δtσr+δμ(ΥEuc(Γ)(un+1u0)1)].\sum_{k=0}^{n}\frac{\delta\mu|(u^{k})^{*}|^{2}}{18r7^{j}}\leq\frac{\delta t\sigma_{r}}{3}+\sum_{i=1}^{n+1}\frac{\delta\mu}{12}\frac{|(u^{i}-u^{i-1})^{*}|^{2}}{|(u^{i}-u^{i-1})_{1}|}\leq\frac{1}{3}\Big{[}\delta t\sigma_{r}+\delta\mu\Big{(}\Upsilon_{Euc}\left(\Gamma\right)-(u^{n+1}-u^{0})_{1}\Big{)}\Big{]}.

From (4.20) we also get

13iI(|(uiui1)|2|(uiui1)1|+|(ui+1ui)|2|(ui+1ui)1|)ΥEuc(Γ)(un+1u0)1\frac{1}{3}\sum_{i\in I}\left(\frac{|(u^{i}-u^{i-1})^{*}|^{2}}{|(u^{i}-u^{i-1})_{1}|}+\frac{|(u^{i+1}-u^{i})^{*}|^{2}}{|(u^{i+1}-u^{i})_{1}|}\right)\leq\Upsilon_{Euc}\left(\Gamma\right)-(u^{n+1}-u^{0})_{1}

which with (4.82) yields (4.77). The proof of (4.78) is similar, the only (inconsequential) difference being that when we sum the terms t(ui1,ui)t^{*}(u^{i-1},u^{i}) over all ini\leq n, most terms δμ|(uk)|2/18r7j\delta\mu|(u^{k})^{*}|^{2}/18r7^{j} get counted twice, for k=ik=i and k=i+1k=i+1, whereas each was counted at most once when we summed over iIi\in I in (4.77). ∎

Lemma 4.6.

There exist constants CiC_{i} such that, provided (4.14) holds and tt is sufficiently large, we have for all jj1j\leq j_{1}

P(|T^(\displaystyle P\Bigg{(}\big{|}\hat{T}( v,w)h(|wv|)|Aj2(v,w) for some v,wGr+𝕃j with δj+1r(wv)110δj1r)\displaystyle v,w)-h(|w-v|)\big{|}\geq A_{j}^{2}(v,w)\text{ for some $v,w\in G_{r}^{+}\cap\mathbb{L}_{j}$ with }\delta^{j+1}r\leq(w-v)_{1}\leq 10\delta^{j-1}r\Bigg{)}
(4.83) C70exp(C71(λ7δχ1)jt).\displaystyle\leq C_{70}\exp\left(-C_{71}\left(\frac{\lambda}{7\delta^{\chi_{1}}}\right)^{j}t\right).
Proof.

Let

ν0=ν0(r)=min{k:(2νt)1/2C60logr},{\color[rgb]{1,0,0}\nu_{0}}=\nu_{0}(r)=\min\{k:(2^{\nu}t)^{1/2}\geq C_{60}\log r\},
0=0(r,j+1)=min{:22(j+1)K0βj2C60logr}{\color[rgb]{1,0,0}\ell_{0}}=\ell_{0}(r,j+1)=\min\{\ell:2^{\ell}\ell_{2}(j+1)K_{0}\beta^{j}\geq 2C_{60}\log r\}

for C60C_{60} from the definition (4.1) of Gr+G_{r}^{+}. We decompose the pairs (v,w)(v,w) appearing in (4.6) into subclasses according to the size of |v||v^{*}| and the degree of sidestepping |(wv)||(w-v)^{*}|, as follows. Fix 1jj11\leq j\leq j_{1}. Let

Rr,jν,\displaystyle{\color[rgb]{1,0,0}R_{r,j}^{\nu,\ell}} ={(v,w)(Gr+𝕃j+1)2:δjr(wv)110δj1r,(2ν1t)1/2Δr<|v|(2νt)1/2Δr,\displaystyle=\Big{\{}(v,w)\in(G_{r}^{+}\cap\mathbb{L}_{j+1})^{2}:\delta^{j}r\leq(w-v)_{1}\leq 10\delta^{j-1}r,(2^{\nu-1}t)^{1/2}\Delta_{r}<|v^{*}|\leq(2^{\nu}t)^{1/2}\Delta_{r},
212(j+1)K0βjΔr<|(wv)|22(j+1)K0βjΔr},\displaystyle\hskip 28.45274pt2^{\ell-1}\ell_{2}(j+1)K_{0}\beta^{j}\Delta_{r}<|(w-v)^{*}|\leq 2^{\ell}\ell_{2}(j+1)K_{0}\beta^{j}\Delta_{r}\Big{\}},
for 1kν0,10(r,j+1),\displaystyle\hskip 42.67912pt\text{for }1\leq k\leq\nu_{0},1\leq\ell\leq\ell_{0}(r,j+1),
Rr,jν,0\displaystyle{\color[rgb]{1,0,0}R_{r,j}^{\nu,0}} ={(v,w)(Gr+𝕃j+1)2:δjr(wv)110δj1r,(2ν1t)1/2Δr<|v|(2νt)1/2Δr,\displaystyle=\Big{\{}(v,w)\in(G_{r}^{+}\cap\mathbb{L}_{j+1})^{2}:\delta^{j}r\leq(w-v)_{1}\leq 10\delta^{j-1}r,(2^{\nu-1}t)^{1/2}\Delta_{r}<|v^{*}|\leq(2^{\nu}t)^{1/2}\Delta_{r},
|(wv)|2(j+1)K0βjΔr},for 1kν0,\displaystyle\hskip 42.67912pt|(w-v)^{*}|\leq\ell_{2}(j+1)K_{0}\beta^{j}\Delta_{r}\Big{\}},\quad\text{for }1\leq k\leq\nu_{0},
Rr,j0,\displaystyle{\color[rgb]{1,0,0}R_{r,j}^{0,\ell}} ={(v,w)(Gr+𝕃j+1)2:δjr(wv)110δj1r,|v|t1/2Δr,\displaystyle=\Big{\{}(v,w)\in(G_{r}^{+}\cap\mathbb{L}_{j+1})^{2}:\delta^{j}r\leq(w-v)_{1}\leq 10\delta^{j-1}r,|v^{*}|\leq t^{1/2}\Delta_{r},
212(j+1)K0βjΔr<|(wv)|22(j+1)K0βjΔr},10(r,j+1),\displaystyle\hskip 28.45274pt2^{\ell-1}\ell_{2}(j+1)K_{0}\beta^{j}\Delta_{r}<|(w-v)^{*}|\leq 2^{\ell}\ell_{2}(j+1)K_{0}\beta^{j}\Delta_{r}\Big{\}},\quad 1\leq\ell\leq\ell_{0}(r,j+1),
Rr,j0,0\displaystyle{\color[rgb]{1,0,0}R_{r,j}^{0,0}} ={(v,w)(Gr+𝕃j+1)2:δjr(wv)110δj1r,|v|t1/2Δr,\displaystyle=\Big{\{}(v,w)\in(G_{r}^{+}\cap\mathbb{L}_{j+1})^{2}:\delta^{j}r\leq(w-v)_{1}\leq 10\delta^{j-1}r,|v^{*}|\leq t^{1/2}\Delta_{r},
|(wv)|2(j+1)K0βjΔr}.\displaystyle\hskip 42.67912pt|(w-v)^{*}|\leq\ell_{2}(j+1)K_{0}\beta^{j}\Delta_{r}\Big{\}}.

First, for 1νν0,10(r,j+1)1\leq\nu\leq\nu_{0},1\leq\ell\leq\ell_{0}(r,j+1) we have

Aj2(v,w)σ(10δj1r)\displaystyle\frac{A_{j}^{2}(v,w)}{\sigma(10\delta^{j-1}r)} 14λj[17jδμ362νtσrσ(10δj1r)+δμ(22(j+1)K0βjΔr)2360δj1rσ(10δj1r)]\displaystyle\geq\frac{1}{4}\lambda^{j}\left[\frac{1}{7^{j}}\frac{\delta\mu}{36}2^{\nu}t\frac{\sigma_{r}}{\sigma(10\delta^{j-1}r)}+\frac{\delta\mu(2^{\ell}\ell_{2}(j+1)K_{0}\beta^{j}\Delta_{r})^{2}}{360\delta^{j-1}r\sigma(10\delta^{j-1}r)}\right]
λj[c07j2νt1δχ1j+c122ρ2j],(v,w)Rr,jν,\displaystyle\geq\lambda^{j}\left[\frac{c_{0}}{7^{j}}2^{\nu}t\frac{1}{\delta^{\chi_{1}j}}+c_{1}2^{2\ell}\rho^{2j}\right],\quad(v,w)\in R_{r,j}^{\nu,\ell}

and from (4.15)

|Rr,jν,|c2δj((2νt)1/2βj)d1(22(j+1))d1c3(2νt)(d1)/22(d1)1δj(ρδ(1+χ1)/2β2)(d1)j.\left|R_{r,j}^{\nu,\ell}\right|\leq\frac{c_{2}}{\delta^{j}}\left(\frac{(2^{\nu}t)^{1/2}}{\beta^{j}}\right)^{d-1}\left(2^{\ell}\ell_{2}(j+1)\right)^{d-1}\leq c_{3}(2^{\nu}t)^{(d-1)/2}2^{(d-1)\ell}\frac{1}{\delta^{j}}\left(\frac{\rho\delta^{(1+\chi_{1})/2}}{\beta^{2}}\right)^{(d-1)j}.

Hence and Lemma 3.2, provided tt is large,

ν=1ν0\displaystyle\sum_{\nu=1}^{\nu_{0}} =10P(|T^(v,w)h(|wv|)|Aj2(v,w) for some (v,w)Rr,jν,)\displaystyle\sum_{\ell=1}^{\ell_{0}}P\Big{(}\big{|}\hat{T}(v,w)-h(|w-v|)\big{|}\geq A_{j}^{2}(v,w)\text{ for some }(v,w)\in R_{r,j}^{\nu,\ell}\Big{)}
c31δj(ρδ(1+χ1)/2β2)(d1)j\displaystyle\leq c_{3}\frac{1}{\delta^{j}}\left(\frac{\rho\delta^{(1+\chi_{1})/2}}{\beta^{2}}\right)^{(d-1)j}
ν=1ν0(2νt)(d1)/2=102(d1)C44exp(C45λj[c07j2νt1δχ1j+c122ρ2j])\displaystyle\hskip 28.45274pt\cdot\sum_{\nu=1}^{\nu_{0}}(2^{\nu}t)^{(d-1)/2}\sum_{\ell=1}^{\ell_{0}}2^{(d-1)\ell}C_{44}\exp\left(-C_{45}\lambda^{j}\left[\frac{c_{0}}{7^{j}}2^{\nu}t\frac{1}{\delta^{\chi_{1}j}}+c_{1}2^{2\ell}\rho^{2j}\right]\right)
c41δj(ρδ(1+χ1)/2β2)(d1)jν=1ν0(2νt)(d1)/2exp(c5(λ7δχ1)j2νt)\displaystyle\leq c_{4}\frac{1}{\delta^{j}}\left(\frac{\rho\delta^{(1+\chi_{1})/2}}{\beta^{2}}\right)^{(d-1)j}\sum_{\nu=1}^{\nu_{0}}(2^{\nu}t)^{(d-1)/2}\exp\left(-c_{5}\left(\frac{\lambda}{7\delta^{\chi_{1}}}\right)^{j}2^{\nu}t\right)
(4.84) c41δj(ρδ(1+χ1)/2β2)(d1)jexp(c5(λ7δχ1)jt).\displaystyle\leq c_{4}\frac{1}{\delta^{j}}\left(\frac{\rho\delta^{(1+\chi_{1})/2}}{\beta^{2}}\right)^{(d-1)j}\exp\left(-c_{5}\left(\frac{\lambda}{7\delta^{\chi_{1}}}\right)^{j}t\right).

Second, for 1νν0,=01\leq\nu\leq\nu_{0},\ell=0 we can drop the second term in brackets in (4.76):

Aj2(v,w)σ(10δj1r)\displaystyle\frac{A_{j}^{2}(v,w)}{\sigma(10\delta^{j-1}r)} 14(λ7)jδμ362νtσrσ(10δj1r)c6(λ7δχ1)j2νt,(v,w)Rr,jν,0\displaystyle\geq\frac{1}{4}\left(\frac{\lambda}{7}\right)^{j}\frac{\delta\mu}{36}2^{\nu}t\frac{\sigma_{r}}{\sigma(10\delta^{j-1}r)}\geq c_{6}\left(\frac{\lambda}{7\delta^{\chi_{1}}}\right)^{j}2^{\nu}t,\quad(v,w)\in R_{r,j}^{\nu,0}

and from (4.15)

|Rr,jν,0|c7δj((2νt)1/22(j+1)βj)d1c8(2νt)(d1)/21δj(ρδ(1+χ1)/2β2)(d1)j.\left|R_{r,j}^{\nu,0}\right|\leq\frac{c_{7}}{\delta^{j}}\left(\frac{(2^{\nu}t)^{1/2}\ell_{2}(j+1)}{\beta^{j}}\right)^{d-1}\leq c_{8}(2^{\nu}t)^{(d-1)/2}\frac{1}{\delta^{j}}\left(\frac{\rho\delta^{(1+\chi_{1})/2}}{\beta^{2}}\right)^{(d-1)j}.

Hence again using Lemma 3.2, provided tt is large,

ν=1ν0\displaystyle\sum_{\nu=1}^{\nu_{0}} P(|T^(v,w)h(|wv|)|Aj2(v,w) for some (v,w)Rr,jν,0)\displaystyle P\Big{(}\big{|}\hat{T}(v,w)-h(|w-v|)\big{|}\geq A_{j}^{2}(v,w)\text{ for some }(v,w)\in R_{r,j}^{\nu,0}\Big{)}
c81δj(ρδ(1+χ1)/2β2)(d1)jν=1ν0(2νt)(d1)/2exp(c9(λ7δχ1)j2νt)\displaystyle\leq c_{8}\frac{1}{\delta^{j}}\left(\frac{\rho\delta^{(1+\chi_{1})/2}}{\beta^{2}}\right)^{(d-1)j}\sum_{\nu=1}^{\nu_{0}}(2^{\nu}t)^{(d-1)/2}\exp\left(-c_{9}\left(\frac{\lambda}{7\delta^{\chi_{1}}}\right)^{j}2^{\nu}t\right)
(4.85) c81δj(ρδ(1+χ1)/2β2)(d1)jexp(c9(λ7δχ1)jt).\displaystyle\leq c_{8}\frac{1}{\delta^{j}}\left(\frac{\rho\delta^{(1+\chi_{1})/2}}{\beta^{2}}\right)^{(d-1)j}\exp\left(-c_{9}\left(\frac{\lambda}{7\delta^{\chi_{1}}}\right)^{j}t\right).

Third, for ν=0,10(r,j+1)\nu=0,1\leq\ell\leq\ell_{0}(r,j+1) we have

Aj2(v,w)σ(10δj1r)\displaystyle\frac{A_{j}^{2}(v,w)}{\sigma(10\delta^{j-1}r)} 14λj[17jt3σrσ(10δj1r)+δμ(22(j+1)K0βjΔr)2360δj1rσ(10δj1r)]\displaystyle\geq\frac{1}{4}\lambda^{j}\left[\frac{1}{7^{j}}\frac{t}{3}\frac{\sigma_{r}}{\sigma(10\delta^{j-1}r)}+\frac{\delta\mu(2^{\ell}\ell_{2}(j+1)K_{0}\beta^{j}\Delta_{r})^{2}}{360\delta^{j-1}r\sigma(10\delta^{j-1}r)}\right]
c10(λ7δχ1)jt+c1122(λρ2)j,(v,w)Rr,j0,\displaystyle\geq c_{10}\left(\frac{\lambda}{7\delta^{\chi_{1}}}\right)^{j}t+c_{11}2^{2\ell}\left(\lambda\rho^{2}\right)^{j},\quad(v,w)\in R_{r,j}^{0,\ell}

and from (4.15)

|Rr,j0,|c12δj(t1/2βj)d1(22(j+1))d1c12t(d1)/22(d1)1δj(ρδ(1+χ1)/2β2)(d1)j.\left|R_{r,j}^{0,\ell}\right|\leq\frac{c_{12}}{\delta^{j}}\left(\frac{t^{1/2}}{\beta^{j}}\right)^{d-1}\left(2^{\ell}\ell_{2}(j+1)\right)^{d-1}\leq c_{12}t^{(d-1)/2}2^{(d-1)\ell}\frac{1}{\delta^{j}}\left(\frac{\rho\delta^{(1+\chi_{1})/2}}{\beta^{2}}\right)^{(d-1)j}.

so similarly to (4.4)

=10\displaystyle\sum_{\ell=1}^{\ell_{0}} P(|T^(v,w)h(|wv|)|Aj2(v,w) for some (v,w)Rr,j0,)\displaystyle P\Big{(}\big{|}\hat{T}(v,w)-h(|w-v|)\big{|}\geq A_{j}^{2}(v,w)\text{ for some }(v,w)\in R_{r,j}^{0,\ell}\Big{)}
c13t(d1)/21δj(ρδ(1+χ1)/2β2)(d1)j=102(d1)exp(c14[(λ7δχ1)jt+22(λρ2)j])\displaystyle\leq c_{13}t^{(d-1)/2}\frac{1}{\delta^{j}}\left(\frac{\rho\delta^{(1+\chi_{1})/2}}{\beta^{2}}\right)^{(d-1)j}\sum_{\ell=1}^{\ell_{0}}2^{(d-1)\ell}\exp\left(-c_{14}\left[\left(\frac{\lambda}{7\delta^{\chi_{1}}}\right)^{j}t+2^{2\ell}(\lambda\rho^{2})^{j}\right]\right)
(4.86) c131δj(ρδ(1+χ1)/2β2)(d1)jexp(c14(λ7δχ1)jt).\displaystyle\leq c_{13}\frac{1}{\delta^{j}}\left(\frac{\rho\delta^{(1+\chi_{1})/2}}{\beta^{2}}\right)^{(d-1)j}\exp\left(-c_{14}\left(\frac{\lambda}{7\delta^{\chi_{1}}}\right)^{j}t\right).

Finally, for k==0k=\ell=0 we can again drop the second term in brackets in (4.76), and we have analogously

Aj2(v,w)σ(10δj1r)\displaystyle\frac{A_{j}^{2}(v,w)}{\sigma(10\delta^{j-1}r)} 14(λ7)jt3σrσ(10δj1r)c15(λ7δχ1)jt,(v,w)Rr,j0,0,\displaystyle\geq\frac{1}{4}\left(\frac{\lambda}{7}\right)^{j}\frac{t}{3}\frac{\sigma_{r}}{\sigma(10\delta^{j-1}r)}\geq c_{15}\left(\frac{\lambda}{7\delta^{\chi_{1}}}\right)^{j}t,\quad(v,w)\in R_{r,j}^{0,0},

and

|Rr,j0,0|c16δj(t1/22(j+1)βj)d1c17t(d1)/21δj(ρδ(1+χ1)/2β2)(d1)j.\left|R_{r,j}^{0,0}\right|\leq\frac{c_{16}}{\delta^{j}}\left(\frac{t^{1/2}\ell_{2}(j+1)}{\beta^{j}}\right)^{d-1}\leq c_{17}t^{(d-1)/2}\frac{1}{\delta^{j}}\left(\frac{\rho\delta^{(1+\chi_{1})/2}}{\beta^{2}}\right)^{(d-1)j}.

so

P(\displaystyle P\Big{(} |T^(v,w)h(|wv|)|Aj2(v,w) for some (v,w)Rr,j0,0)\displaystyle\big{|}\hat{T}(v,w)-h(|w-v|)\big{|}\geq A_{j}^{2}(v,w)\text{ for some }(v,w)\in R_{r,j}^{0,0}\Big{)}
c18t(d1)/21δj(ρδ(1+χ1)/2β2)(d1)jexp(c19(λ7δχ1)jt)\displaystyle\leq c_{18}t^{(d-1)/2}\frac{1}{\delta^{j}}\left(\frac{\rho\delta^{(1+\chi_{1})/2}}{\beta^{2}}\right)^{(d-1)j}\exp\left(-c_{19}\left(\frac{\lambda}{7\delta^{\chi_{1}}}\right)^{j}t\right)
(4.87) c201δj(ρδ(1+χ1)/2β2)(d1)jexp(c21(λ7δχ1)jt).\displaystyle\leq c_{20}\frac{1}{\delta^{j}}\left(\frac{\rho\delta^{(1+\chi_{1})/2}}{\beta^{2}}\right)^{(d-1)j}\exp\left(-c_{21}\left(\frac{\lambda}{7\delta^{\chi_{1}}}\right)^{j}t\right).

Since tt is large, (4.6) follows from (4.14) and (4.4)—(4.4). ∎

For j2j<j1j_{2}\leq j<j_{1} and j2<j1j_{2}<\ell\leq j-1, a (j,)(j,\ell)th–scale joining 4–path is a marked PG path Γ:v0v1v2v3\Gamma:v^{0}\to v^{1}\to v^{2}\to v^{3} with vi𝕃j+1Gr+v^{i}\in\mathbb{L}_{j+1}\cap G_{r}^{+}, such that for some jjth–scale hyperplane HaH_{a},

(4.88) v0Ha,v1Ha+δj+1r,v2Ha+δ+1r,v3Ha+δr.v^{0}\in H_{a},\quad v^{1}\in H_{a+\delta^{j+1}r},\quad v^{2}\in H_{a+\delta^{\ell+1}r},\quad v^{3}\in H_{a+\delta^{\ell}r}.

In a jjth–scale interval with left endpoint aa, these four hyperplanes represent the hyperplane at aa, a sandwiching (j+1)(j+1)th–scale hyperplane, and two possible joining hyperplanes. The pairs (v0,v1),(v1,v2)(v^{0},v^{1}),(v^{1},v^{2}), (v2,v3)(v^{2},v^{3}) are the links of the joining 4–path. Let ziz^{i} be the point where Πv0v3\Pi_{v^{0}v^{3}} intersects the hyperplane HH_{\boldsymbol{\cdot}} containing viv^{i}. The intermediate path corresponding to Γ\Gamma is Γint:z0z1z2z3{\color[rgb]{1,0,0}\Gamma^{int}}:z^{0}\to z^{1}\to z^{2}\to z^{3}; note these points are collinear. Recalling Remark 4.3, we say the (j,)(j,\ell)th–scale joining 4–path is internally bowed if

(4.89) |v2z2|2δ+1r2jδ128μ(λ7)j+1σ(δ+1r)σ(δjr)t(v0)σr\frac{|v^{2}-z^{2}|^{2}}{\delta^{\ell+1}r}\geq 2^{j-\ell}\frac{\delta}{128\mu}\left(\frac{\lambda}{7}\right)^{j+1}\frac{\sigma(\delta^{\ell+1}r)}{\sigma(\delta^{j}r)}t^{*}(v^{0})\sigma_{r}

(compare to (4.40)) and

(4.90) |v1z1|2δj+1r2(j4)σ(δj+1r)σ(δ+1r)|v2z2|2δ+1r\displaystyle\frac{|v^{1}-z^{1}|^{2}}{\delta^{j+1}r}\leq 2^{-(j-\ell-4)}\frac{\sigma(\delta^{j+1}r)}{\sigma(\delta^{\ell+1}r)}\frac{|v^{2}-z^{2}|^{2}}{\delta^{\ell+1}r}

(compare to (4.3)) or equivalently

(4.91) (|v1z1|Δ(δj+1r))22(j4)(|v2z2|Δ(δ+1r))2.\displaystyle\left(\frac{|v^{1}-z^{1}|}{\Delta(\delta^{j+1}r)}\right)^{2}\leq 2^{-(j-\ell-4)}\left(\frac{|v^{2}-z^{2}|}{\Delta(\delta^{\ell+1}r)}\right)^{2}.

We define special allocations to deal with internally bowed paths. For each (j,)(j,\ell)th–scale joining 4–path Γ:v0v1v2v3\Gamma:v^{0}\to v^{1}\to v^{2}\to v^{3} let

Aj3(Γ)=δμ324(|v2z2|2δ+1r+λj|(v3v0)|2δr).{\color[rgb]{1,0,0}A_{j}^{3}(\Gamma)}=\frac{\delta\mu}{324}\left(\frac{|v^{2}-z^{2}|^{2}}{\delta^{\ell+1}r}+\lambda^{j}\frac{|(v^{3}-v^{0})^{*}|^{2}}{\delta^{\ell}r}\right).

Note that by (4.88), \ell here is a function of Γ\Gamma. We will need an analog of Lemma 4.6 which enables us to deal with joining 4-paths as single units. Normally for \ellth–scale links (length of order δr\delta^{\ell}r), where the fluctuations of the passage time T^(vi1,vi)\hat{T}(v^{i-1},v^{i}) are of order σ(δr)\sigma(\delta^{\ell}r), we need \ellth–scale allocations (proportional to λ\lambda^{\ell}) to get a good bound from Lemma 3.2, but in the next lemma we are able to use jjth–scale allocations even for much longer \ellth–scale lengths, by taking advantage of bowedness.

Lemma 4.7.

There exist constants CiC_{i} as follows. Let j2j<j1j_{2}\leq j<j_{1} and j2<j1j_{2}<\ell\leq j-1.

(i) For every (j,)(j,\ell)th–scale joining 4–path Γ:v0v1v2v3\Gamma:v^{0}\to v^{1}\to v^{2}\to v^{3} in Gr+G_{r}^{+}, and C56C_{56} from (3.25),

(4.92) 6Aj+13(Γ)i=13Aj+12(vi1,vi)+δμ18[ΥEuc(Γ)|v3v0|]6C56.\displaystyle 6A_{j+1}^{3}(\Gamma)\leq\sum_{i=1}^{3}A_{j+1}^{2}(v^{i-1},v^{i})+\frac{\delta\mu}{18}\Big{[}\Upsilon_{Euc}(\Gamma)-|v^{3}-v^{0}|\Big{]}-6C_{56}.

(ii)

P\displaystyle P (there exists an internally bowed (j,)th–scale joining 4–path Γ:v0v1v2v3\displaystyle\Big{(}\text{there exists an internally bowed $(j,\ell)$th--scale joining 4--path $\Gamma:v^{0}\to v^{1}\to v^{2}\to v^{3}$}
in Gr+G_{r}^{+}, and 1i31\leq i\leq 3, for which |T^(vi1,vi)h(|vivi1|)|Aj+13(Γ))\big{|}\hat{T}(v^{i-1},v^{i})-h(|v^{i}-v^{i-1}|)\big{|}\geq A_{j+1}^{3}(\Gamma)\Big{)}
(4.93) C72(2δχ2+1)j(δβ2)jexp(C73(λδχ1)j+12jt).\displaystyle\leq C_{72}\left(\frac{2}{\delta^{\chi_{2}+1}}\right)^{j-\ell}\left(\frac{\delta}{\beta^{2}}\right)^{j}\exp\left(-C_{73}\left(\frac{\lambda}{\delta^{\chi_{1}}}\right)^{j+1}2^{j-\ell}t\right).

(iii)

P\displaystyle P (there exists an internally bowed (j,)th–scale joining 4–path Γ in Gr+, with\displaystyle\Bigg{(}\text{there exists an internally bowed $(j,\ell)$th--scale joining 4--path $\Gamma$ in $G_{r}^{+}$, with}
corresponding intermediate path Γint:u0u1u2u3\Gamma^{int}:u^{0}\to u^{1}\to u^{2}\to u^{3},
and 1i31\leq i\leq 3, for which |T^(ui1,ui)h(|uiui1|)|Aj+13(Γint))\big{|}\hat{T}(u^{i-1},u^{i})-h(|u^{i}-u^{i-1}|)\big{|}\geq A_{j+1}^{3}(\Gamma^{int})\Bigg{)}
(4.94) C72(2δχ2+1)j(δβ2)jexp(C73(λδχ1)j+12jt).\displaystyle\leq C_{72}\left(\frac{2}{\delta^{\chi_{2}+1}}\right)^{j-\ell}\left(\frac{\delta}{\beta^{2}}\right)^{j}\exp\left(-C_{73}\left(\frac{\lambda}{\delta^{\chi_{1}}}\right)^{j+1}2^{j-\ell}t\right).
Proof.

(i). Using (4.21),

6Aj+13(Γ)\displaystyle 6A_{j+1}^{3}(\Gamma) δμ54(3[ΥEuc(v0,v2,v3)|v3v0|]+3λj[|v3v0|(v3v0)1])\displaystyle\leq\frac{\delta\mu}{54}\left(3\Big{[}\Upsilon_{Euc}(v^{0},v^{2},v^{3})-|v^{3}-v^{0}|\Big{]}+3\lambda^{j}\Big{[}|v^{3}-v^{0}|-(v^{3}-v^{0})_{1}\Big{]}\right)
δμ18([ΥEuc(Γ)|v3v0|]+12λjΨ(Γ))\displaystyle\leq\frac{\delta\mu}{18}\left(\Big{[}\Upsilon_{Euc}(\Gamma)-|v^{3}-v^{0}|\Big{]}+\frac{1}{2}\lambda^{j}\Psi(\Gamma)\right)
i=13Aj+12(vi1,vi)14(λ7)jtσr+δμ18[ΨEuc(Γ)|v3v0|]\displaystyle\leq\sum_{i=1}^{3}A_{j+1}^{2}(v^{i-1},v^{i})-\frac{1}{4}\left(\frac{\lambda}{7}\right)^{j}t\sigma_{r}+\frac{\delta\mu}{18}\Big{[}\Psi_{Euc}(\Gamma)-|v^{3}-v^{0}|\Big{]}
(4.95) i=13Aj+12(vi1,vi)6C56+δμ18[ΨEuc(Γ)|v3v0|],\displaystyle\leq\sum_{i=1}^{3}A_{j+1}^{2}(v^{i-1},v^{i})-6C_{56}+\frac{\delta\mu}{18}\Big{[}\Psi_{Euc}(\Gamma)-|v^{3}-v^{0}|\Big{]},

where the last inequality follows from jj1=O(loglogr)j\leq j_{1}=O(\log logr).

(ii) and (iii). The proof of (iii) is a slightly simplified version of the proof of (ii), so we only prove (ii). We proceed as in Lemma 4.6. We decompose the set of joining 4–paths according to the sizes of |(v0)||(v^{0})^{*}| and |(v3v0)||(v^{3}-v^{0})^{*}|, and the degree of bowedness, measured by the left side of (4.89). From Remark 4.3, every internally bowed (j,)(j,\ell)th–scale joining 4–path Γ:v0v1v2v3\Gamma:v^{0}\to v^{1}\to v^{2}\to v^{3} in Gr+G_{r}^{+} satisfies

(4.96) |v2z2|2δ+1rδ128μ(λ7)j+1t(v0)σrσ(δ+1r)σ(δjr).\frac{|v^{2}-z^{2}|^{2}}{\delta^{\ell+1}r}\geq\frac{\delta}{128\mu}\left(\frac{\lambda}{7}\right)^{j+1}t^{*}(v^{0})\sigma_{r}\frac{\sigma(\delta^{\ell+1}r)}{\sigma(\delta^{j}r)}.

Thus define for ν,m2,m31\nu,m_{2},m_{3}\geq 1

Rr,j,(ν,m2,m3)\displaystyle{\color[rgb]{1,0,0}R_{r,j,\ell}(\nu,m_{2},m_{3})}
={Γ:v0v1v2v3|Γ is an internally bowed (j,)th–scale joining 4–path in Gr+ such that\displaystyle=\Bigg{\{}\Gamma:v^{0}\to v^{1}\to v^{2}\to v^{3}\Big{|}\,\Gamma\text{ is an internally bowed $(j,\ell)$th--scale joining 4--path in $G_{r}^{+}$ such that}
(2ν1t)1/2Δr|(v0)|(2νt)1/2Δr,\displaystyle\qquad(2^{\nu-1}t)^{1/2}\Delta_{r}\leq|(v^{0})^{*}|\leq(2^{\nu}t)^{1/2}\Delta_{r},
2m212jδ128μ(λ7)j+1t(v0)σrσ(δ+1r)σ(δjr)<|v2z2|2δ+1r2m22jδ128μ(λ7)j+1t(v0)σrσ(δ+1r)σ(δjr),\displaystyle\qquad 2^{m_{2}-1}2^{j-\ell}\frac{\delta}{128\mu}\left(\frac{\lambda}{7}\right)^{j+1}t^{*}(v^{0})\sigma_{r}\frac{\sigma(\delta^{\ell+1}r)}{\sigma(\delta^{j}r)}<\frac{|v^{2}-z^{2}|^{2}}{\delta^{\ell+1}r}\leq 2^{m_{2}}2^{j-\ell}\frac{\delta}{128\mu}\left(\frac{\lambda}{7}\right)^{j+1}t^{*}(v^{0})\sigma_{r}\frac{\sigma(\delta^{\ell+1}r)}{\sigma(\delta^{j}r)},
(4.97) 2m312jt(v0)σrσ(δr)σ(δj+1r)<|(v3v0)|2δr2m32jt(v0)σrσ(δr)σ(δj+1r)}.\displaystyle\qquad 2^{m_{3}-1}2^{j-\ell}t^{*}(v^{0})\sigma_{r}\frac{\sigma(\delta^{\ell}r)}{\sigma(\delta^{j+1}r)}<\frac{|(v^{3}-v^{0})^{*}|^{2}}{\delta^{\ell}r}\leq 2^{m_{3}}2^{j-\ell}t^{*}(v^{0})\sigma_{r}\frac{\sigma(\delta^{\ell}r)}{\sigma(\delta^{j+1}r)}\Bigg{\}}.

Rr,j,(0,m2,m3){\color[rgb]{1,0,0}R_{r,j,\ell}(0,m_{2},m_{3})} is defined similarly with the first condition in (4.4) replaced by |(v0)|t1/2Δr|(v^{0})^{*}|\leq t^{1/2}\Delta_{r}. Rr,j,(ν,m2,0){\color[rgb]{1,0,0}R_{r,j,\ell}(\nu,m_{2},0)} is defined similarly with the last condition in (4.4) replaced by

|(v3v0)|2δr2jt(v0)σrσ(δr)σ(δj+1r).\frac{|(v^{3}-v^{0})^{*}|^{2}}{\delta^{\ell}r}\leq 2^{j-\ell}t^{*}(v^{0})\sigma_{r}\frac{\sigma(\delta^{\ell}r)}{\sigma(\delta^{j+1}r)}.

Every internally bowed joining 4–path in Gr+G_{r}^{+} is in one of these classes, since by (4.96) we don’t need classes with m2=0m_{2}=0.

Suppose Γ:v0v1v2v3\Gamma:v^{0}\to v^{1}\to v^{2}\to v^{3} is in Rr,j,(ν,m2,m3)R_{r,j,\ell}(\nu,m_{2},m_{3}). We have

Aj+13(Γ)σ(δr)\displaystyle\frac{A_{j+1}^{3}(\Gamma)}{\sigma(\delta^{\ell}r)} δμ3242jt(v0)σrσ(δjr)(δ128μ(λ7)j+12m21σ(δ+1r)σ(δr)+λj+12m31)\displaystyle\geq\frac{\delta\mu}{324}2^{j-\ell}\frac{t^{*}(v^{0})\sigma_{r}}{\sigma(\delta^{j}r)}\left(\frac{\delta}{128\mu}\left(\frac{\lambda}{7}\right)^{j+1}2^{m_{2}-1}\frac{\sigma(\delta^{\ell+1}r)}{\sigma(\delta^{\ell}r)}+\lambda^{j+1}2^{m_{3}-1}\right)
(4.98) c0(λ7δχ1)j+12j(2m2+2m3)2νt.\displaystyle\geq c_{0}\left(\frac{\lambda}{7\delta^{\chi_{1}}}\right)^{j+1}2^{j-\ell}(2^{m_{2}}+2^{m_{3}})2^{\nu}t.

Hence for each 1i31\leq i\leq 3, by Lemma 3.2,

P(|T^(vi1,vi)\displaystyle P\Big{(}\big{|}\hat{T}(v^{i-1},v^{i}) h(|vivi1|)|Aj+13(Γ))C44exp(C45Aj+13(Γ)2σ(δr))\displaystyle-h(|v^{i}-v^{i-1}|)\big{|}\geq A_{j+1}^{3}(\Gamma)\Big{)}\leq C_{44}\exp\left(-C_{45}\frac{A_{j+1}^{3}(\Gamma)}{2\sigma(\delta^{\ell}r)}\right)
(4.99) C44exp(c1(λ7δχ1)j+12j(2m2+2m3)2νt).\displaystyle\leq C_{44}\exp\left(-c_{1}\left(\frac{\lambda}{7\delta^{\chi_{1}}}\right)^{j+1}2^{j-\ell}(2^{m_{2}}+2^{m_{3}})2^{\nu}t\right).

Regarding the size of Rr,j,(ν,m2,m3)R_{r,j,\ell}(\nu,m_{2},m_{3}), the number of possible v0v^{0} (necessarily in 𝕃j+1\mathbb{L}_{j+1}) in a given jjth–scale hyperplane is at most

2(2(2νt)1/2K0βj+1)d1.2\left(\frac{2(2^{\nu}t)^{1/2}}{K_{0}\beta^{j+1}}\right)^{d-1}.

The upper bound for |(v0)||(v^{0})^{*}| in (4.4) gives t(v0)c22νtt^{*}(v^{0})\leq c_{2}2^{\nu}t, which with the last upper bound in (4.4) yields

(|(v3v0)|Δr)2c32m3(2δχ2)jδ2νt,\left(\frac{|(v^{3}-v^{0})^{*}|}{\Delta_{r}}\right)^{2}\leq c_{3}2^{m_{3}}\left(\frac{2}{\delta^{\chi_{2}}}\right)^{j-\ell}\delta^{\ell}2^{\nu}t,

so for a given v0v^{0} the number of possible v3v^{3} is at most

2(c42m3(2δχ2)j1β2(j+1)δ2νt)(d1)/2=2(c4β22m3(2δχ2+1)j(δβ2)j2νt)(d1)/2.2\left(c_{4}2^{m_{3}}\left(\frac{2}{\delta^{\chi_{2}}}\right)^{j-\ell}\frac{1}{\beta^{2(j+1)}}\delta^{\ell}2^{\nu}t\right)^{(d-1)/2}=2\left(\frac{c_{4}}{\beta^{2}}2^{m_{3}}\left(\frac{2}{\delta^{\chi_{2}+1}}\right)^{j-\ell}\left(\frac{\delta}{\beta^{2}}\right)^{j}2^{\nu}t\right)^{(d-1)/2}.

The upper bound for |v2z2|2/δ+1r|v^{2}-z^{2}|^{2}/\delta^{\ell+1}r in (4.4) implies

(|(v2z2|Δr)2c52m2(2δχ2)jδ2νt\left(\frac{|(v^{2}-z^{2}|}{\Delta_{r}}\right)^{2}\leq c_{5}2^{m_{2}}\left(\frac{2}{\delta^{\chi_{2}}}\right)^{j-\ell}\delta^{\ell}2^{\nu}t

and for given v0,v3v^{0},v^{3}, the point z2z^{2} is determined, and then the number of possible v2v^{2} is at most

2(c6β22m2(2δχ2+1)j(δβ2)j2νt)(d1)/2.2\left(\frac{c_{6}}{\beta^{2}}2^{m_{2}}\left(\frac{2}{\delta^{\chi_{2}+1}}\right)^{j-\ell}\left(\frac{\delta}{\beta^{2}}\right)^{j}2^{\nu}t\right)^{(d-1)/2}.

Combining these, we see that

|Rr,j,(ν,m2,m3)|c7δj((2νt)1/2βj+1)d1(2m2/22m3/2(2δχ2+1)j(δβ2)j2νt)d1.|R_{r,j,\ell}(\nu,m_{2},m_{3})|\leq\frac{c_{7}}{\delta^{j}}\left(\frac{(2^{\nu}t)^{1/2}}{\beta^{j+1}}\right)^{d-1}\left(2^{m_{2}/2}2^{m_{3}/2}\left(\frac{2}{\delta^{\chi_{2}+1}}\right)^{j-\ell}\left(\frac{\delta}{\beta^{2}}\right)^{j}2^{\nu}t\right)^{d-1}.

Multiplying this by (4.4) and summing over ν,m2,m3\nu,m_{2},m_{3} gives (4.7). ∎

4.5. Step 5. First stage of the (j11)(j_{1}-1)th–scale (second) iteration of coarse–graining: shifting to the (j11)(j_{1}-1)th–scale grid.

The current marked PG path at the start of the (j11)(j_{1}-1)th–scale iteration step is Γxyj1,m\Gamma_{xy}^{j_{1},m}. We rename it now as

Γxyj11,0:p0p1pmpm+1.{\color[rgb]{1,0,0}\Gamma_{xy}^{j_{1}-1,0}}:p^{0}\to p^{1}\to\cdots\to p^{m}\to p^{m+1}.

We shift certain points to the (j11)(j_{1}-1)th grid; the procedure is somewhat different from the j1j_{1}th–scale iteration step, as we are starting from a j1j_{1}th–scale marked PG path Γxyj11,0\Gamma_{xy}^{j_{1}-1,0}. Fix (x,y)Xr(x,y)\in X_{r} and, recalling xy={Hsi,1im}\mathcal{H}_{xy}=\{H_{s_{i}},1\leq i\leq m\}, let

Ixy\displaystyle{\color[rgb]{1,0,0}I_{xy}} ={i{1,,m}:Hsi is a non-incidental (j11)th–scale hyperplane in xy},\displaystyle=\Big{\{}i\in\{1,\dots,m\}:H_{s_{i}}\text{ is a non-incidental $(j_{1}-1)$th--scale hyperplane in $\mathcal{H}_{xy}$}\Big{\}},

then relabel {si:iIxy{1,m}}\{s_{i}:i\in I_{xy}\cup\{1,m\}\} as a1<<ana_{1}<\cdots<a_{n}, so Ha1=Hs1H_{a_{1}}=H_{s_{1}} and Han=HsmH_{a_{n}}=H_{s_{m}} are the terminal j1j_{1}th–scale hyperplanes, and define indices γ(N)\gamma(N) by aN=sγ(N)a_{N}=s_{\gamma(N)}, so the pγ(N),2Nn1,p^{\gamma(N)},2\leq N\leq n-1, are the marked points in non-incidental (j11)(j_{1}-1)th–scale hyperplanes. Observe that every (j11)(j_{1}-1)th–scale interval, including terminal ones, has at least one j1j_{1}th–scale hyperplane in its interior; hence γ(N+1)γ(N)+2\gamma(N+1)\geq\gamma(N)+2 for all 1N<n1\leq N<n.

For each non-incidental (j11)(j_{1}-1)th–scale hyperplane in xy\mathcal{H}_{xy} let bN=Vj11(pγ(N)){\color[rgb]{1,0,0}b^{N}}=V_{j_{1}-1}(p^{\gamma(N)}). Also let b0=p0=x^,b1=p1,bn=pm{\color[rgb]{1,0,0}b^{0}}=p^{0}=\hat{x},{\color[rgb]{1,0,0}b^{1}}=p^{1},{\color[rgb]{1,0,0}b^{n}}=p^{m}, and bn+1=pm+1=y^{\color[rgb]{1,0,0}b^{n+1}}=p^{m+1}=\hat{y}. We shift to the (j11)(j_{1}-1)th scale grid in each non-incidental (j11)(j_{1}-1)th–scale hyperplane Hsi,iIxyH_{s_{i}},i\in I_{xy}, replacing pγ(N)p^{\gamma(N)} with bNb^{N} for 2Nn12\leq N\leq n-1, to create the updated path which we denote Γxyj11,1\Gamma_{xy}^{j_{1}-1,1}. Letting p^i=𝔪si(Γxyj11,1){\color[rgb]{1,0,0}\hat{p}^{i}}=\mathfrak{m}_{s_{i}}(\Gamma_{xy}^{j_{1}-1,1}) (so p^i=pi\hat{p}^{i}=p^{i} if iIxy,p^i=bη1(i)i\notin I_{xy},\,\hat{p}^{i}=b^{\eta^{-1}(i)} if iIxyi\in I_{xy}) , we may equivalently write this as

Γxyj11,1:p^0p^1p^2p^m+1.\Gamma_{xy}^{j_{1}-1,1}:\hat{p}^{0}\to\hat{p}^{1}\to\hat{p}^{2}\to\cdots\to\hat{p}^{m+1}.

The black path from uu^{\prime} to vv^{\prime} in Figure 6 illustrates a segment of such a path, with u=bN1=p^γ(N1),v=bN=p^γ(N)u^{\prime}=b^{N-1}=\hat{p}^{\gamma(N-1)},v^{\prime}=b^{N}=\hat{p}^{\gamma(N)} for some NN there; the vertices between uu^{\prime} and vv^{\prime} are points pi=p^ip^{i}=\hat{p}^{i} with γ(N1)<i<γ(N)\gamma(N-1)<i<\gamma(N). In the second stage of the iteration we will remove marked points in non-terminal j1j_{1}th–scale hyperplanes to create the path

Γxyj11,2:b0b1bnbn+1.{\color[rgb]{1,0,0}\Gamma_{xy}^{j_{1}-1,2}}:b^{0}\to b^{1}\to\cdots\to b^{n}\to b^{n+1}.

By Lemma 4.5 we have

(4.100) iIxyAj11(Γxyj11,0,i)23λj1[tσr+δμ(ΥEuc(Γxyj11,0)(y^x^)1)],\sum_{i\in I_{xy}}A_{j_{1}}^{1}(\Gamma_{xy}^{j_{1}-1,0},i)\leq\frac{2}{3}\lambda^{j_{1}}\Big{[}t\sigma_{r}+\delta\mu\Big{(}\Upsilon_{Euc}\left(\Gamma_{xy}^{j_{1}-1,0}\right)-(\hat{y}-\hat{x})_{1}\Big{)}\Big{]},

while similarly to (4.60) and (4.62),

(4.101) |ΥEuc(Γxyj11,1)ΥEuc(Γxyj11,0)|λj12μ[tσr3+δμ(ΥEuc(Γxyj11,0)(y^x^)1)]\Big{|}\Upsilon_{Euc}\left(\Gamma_{xy}^{j_{1}-1,1}\right)-\Upsilon_{Euc}\left(\Gamma_{xy}^{j_{1}-1,0}\right)\Big{|}\leq\frac{\lambda^{j_{1}}}{2\mu}\left[\frac{t\sigma_{r}}{3}+\delta\mu\Big{(}\Upsilon_{Euc}(\Gamma_{xy}^{j_{1}-1,0})-(\hat{y}-\hat{x})_{1}\Big{)}\right]

and

(4.102) |Υh(Γxyj11,1)Υh(Γxyj11,0)|λj1[tσr3+δμ(ΥEuc(Γxyj11,0)(y^x^)1)].\Big{|}\Upsilon_{h}\left(\Gamma_{xy}^{j_{1}-1,1}\right)-\Upsilon_{h}\left(\Gamma_{xy}^{j_{1}-1,0}\right)\Big{|}\leq\lambda^{j_{1}}\left[\frac{t\sigma_{r}}{3}+\delta\mu\Big{(}\Upsilon_{Euc}(\Gamma_{xy}^{j_{1}-1,0})-(\hat{y}-\hat{x})_{1}\Big{)}\right].

(The only notable change from the derivation of (4.60) and (4.62) is that now, since we are shifting to the (j11)(j_{1}-1)th scale, we have the bound

|(pip^i)|d1K0βj11Δr,|(p^{i}-\hat{p}^{i})^{*}|\leq\sqrt{d-1}K_{0}\beta^{j_{1}-1}\Delta_{r},

larger only by a constant β1\beta^{-1} compared to the analogous bound in (4.2)–(4.2).) Then (4.100) and (4.102) give

(4.103) iIxyAj11(Γxyj11,0,i)+Υh(Γxyj11,1)Υh(Γxyj11,0)λj1[tσr+53δμ(ΥEuc(Γxyj11,0)(y^x^)1)].\sum_{i\in I_{xy}}A_{j_{1}}^{1}(\Gamma_{xy}^{j_{1}-1,0},i)+\Upsilon_{h}\left(\Gamma_{xy}^{j_{1}-1,1}\right)-\Upsilon_{h}\left(\Gamma_{xy}^{j_{1}-1,0}\right)\leq\lambda^{j_{1}}\left[t\sigma_{r}+\frac{5}{3}\delta\mu\Big{(}\Upsilon_{Euc}\left(\Gamma_{xy}^{j_{1}-1,0}\right)-(\hat{y}-\hat{x})_{1}\Big{)}\right].

From (4.101) and (4.103), analogously to (4.2), we have for the event on the right in (4.3) that

{ΥT^(Γxyj11,0)h((yx)1)(12λj1)tσr+4δμλj1(ΥEuc(Γxyj11,0)(y^x^)1)}\displaystyle\bigg{\{}\Upsilon_{\hat{T}}\left(\Gamma_{xy}^{j_{1}-1,0}\right)-h((y-x)_{1})\leq-\left(1-2\lambda^{j_{1}}\right)t\sigma_{r}+4\delta\mu\lambda^{j_{1}}\Big{(}\Upsilon_{Euc}\left(\Gamma_{xy}^{j_{1}-1,0}\right)-(\hat{y}-\hat{x})_{1}\Big{)}\bigg{\}}
{ΥT^(Γxyj11,1)h((yx)1)(14λj1)tσr+6δμλj1(ΥEuc(Γxyj11,0)(y^x^)1)\displaystyle\subset\bigg{\{}\Upsilon_{\hat{T}}\left(\Gamma_{xy}^{j_{1}-1,1}\right)-h((y-x)_{1})\leq-\left(1-4\lambda^{j_{1}}\right)t\sigma_{r}+6\delta\mu\lambda^{j_{1}}\Big{(}\Upsilon_{Euc}\left(\Gamma_{xy}^{j_{1}-1,0}\right)-(\hat{y}-\hat{x})_{1}\Big{)}
+δμ(ΥEuc(Γxyj11,1)ΥEuc(Γxyj11,0))}\displaystyle\qquad\qquad+\delta\mu\Big{(}\Upsilon_{Euc}\left(\Gamma_{xy}^{j_{1}-1,1}\right)-\Upsilon_{Euc}\left(\Gamma_{xy}^{j_{1}-1,0}\right)\Big{)}\bigg{\}}
(4.104) {ΥT^(Γxyj11,0)ΥT^(Γxyj11,1)Υh(Γxyj11,0)Υh(Γxyj11,1)iIxyAj11(Γxyj11,0,i)}.\displaystyle\qquad\bigcup\left\{\Upsilon_{\hat{T}}\left(\Gamma_{xy}^{j_{1}-1,0}\right)-\Upsilon_{\hat{T}}\left(\Gamma_{xy}^{j_{1}-1,1}\right)\leq\Upsilon_{h}\left(\Gamma_{xy}^{j_{1}-1,0}\right)-\Upsilon_{h}\left(\Gamma_{xy}^{j_{1}-1,1}\right)-\sum_{i\in I_{xy}}A_{j_{1}}^{1}(\Gamma_{xy}^{j_{1}-1,0},i)\right\}.
Remark 4.8.

In view of Remark 4.4, in the context of shifting to the grid, we can think of “tracking” as corresponding showing that a probability of form

P(ΥT^(Γxyj11,0)\displaystyle P\Bigg{(}\Upsilon_{\hat{T}}\left(\Gamma_{xy}^{j_{1}-1,0}\right)- ΥT^(Γxyj11,1)δ[Υh(Γxyj11,0)Υh(Γxyj11,1)] (allocations)\displaystyle\Upsilon_{\hat{T}}\left(\Gamma_{xy}^{j_{1}-1,1}\right)\leq\delta\Big{[}\Upsilon_{h}\left(\Gamma_{xy}^{j_{1}-1,0}\right)-\Upsilon_{h}\left(\Gamma_{xy}^{j_{1}-1,1}\right)\Big{]}-\text{ (allocations)}
(4.105) for some (x,y)Xr),\displaystyle\text{ for some }(x,y)\in X_{r}\Bigg{)},

is small, or similarly with Υh\Upsilon_{h} replaced by its approximation μΥEuc\mu\Upsilon_{Euc}. In (4.5) the particular allocations chosen are Aj11(Γxyj11,0,i)A_{j_{1}}^{1}(\Gamma_{xy}^{j_{1}-1,0},i). The event in (4.8) says that, as the shifting–to–the–grid process changes the hh–length of the path, the change in T^\hat{T}–sum fails to track even a small fraction δ\delta of the change in hh–length, to within the error given by the allocations. Further, in (4.3) and on the left in (4.5),

(4.106) 2λj1tσr+4δμλj1(ΥEuc(Γxyj11,0)(y^x^)1)2\lambda^{j_{1}}t\sigma_{r}+4\delta\mu\lambda^{j_{1}}\Big{(}\Upsilon_{Euc}\left(\Gamma_{xy}^{j_{1}-1,0}\right)-(\hat{y}-\hat{x})_{1}\Big{)}

represents roughly the accumulated error allocations used in the completed j1j_{1}th–scale iteration. Thus what (4.101) and (4.102) say is that for the current shift to the grid, the change in hh–length (or in its approximation μΥEuc\mu\Upsilon_{Euc}) is negligible in the sense of being small relative to the accumulated allocations, making tracking only a minor issue here. This negligible–ness will not be valid for the marked–point–removal stage of the iteration, however.

It should also be noted that from the first to second lines in (4.5), the coefficients 2, 4 become 4, 6. The difference, if it is negative, represents a reduction of the original value

Observe that failure to track is a one–sided phenomenon—we only care about failure of the T^\hat{T}–sum to track decreases in hh–length created by shifting to the grid, not increases. In the point–removal stage, the hh–length always decreases, and we care that the T^\hat{T}–sum decreases at least proportionally.

Using Lemma 4.6 we have for the last event in (4.5)

P\displaystyle P (ΥT^(Γxyj11,0)ΥT^(Γxyj11,1)Υh(Γxyj11,0)Υh(Γxyj11,1)iIxyAj11(Γxyj11,0,i)\displaystyle\Bigg{(}\Upsilon_{\hat{T}}\left(\Gamma_{xy}^{j_{1}-1,0}\right)-\Upsilon_{\hat{T}}\left(\Gamma_{xy}^{j_{1}-1,1}\right)\leq\Upsilon_{h}\left(\Gamma_{xy}^{j_{1}-1,0}\right)-\Upsilon_{h}\left(\Gamma_{xy}^{j_{1}-1,1}\right)-\sum_{i\in I_{xy}}A_{j_{1}}^{1}(\Gamma_{xy}^{j_{1}-1,0},i)
for some (x,y)Xr;ωJ(0)J(1c))\displaystyle\hskip 42.67912pt\text{ for some }(x,y)\in X_{r};\ \omega\notin J^{(0)}\cup J^{(1c)}\Bigg{)}
P(max(|T^(p^i1,p^i)h(|p^ip^i1|)|,|T^(pi1,pi)h(|pipi1|)|)14Aj11(Γxyj11,0,i)\displaystyle\leq P\Bigg{(}\max\Big{(}\big{|}\hat{T}(\hat{p}^{i-1},\hat{p}^{i})-h(|\hat{p}^{i}-\hat{p}^{i-1}|)\big{|},\big{|}\hat{T}(p^{i-1},p^{i})-h(|p^{i}-p^{i-1}|)\big{|}\Big{)}\geq\frac{1}{4}A_{j_{1}}^{1}(\Gamma_{xy}^{j_{1}-1,0},i)
for some 1im+1 and (x,y)Xr with {i1,i}Ixy;ωJ(0)J(1c))\displaystyle\hskip 42.67912pt\text{ for some $1\leq i\leq m+1$ and $(x,y)\in X_{r}$ with $\{i-1,i\}\cap I_{xy}\neq\emptyset$};\,\omega\notin J^{(0)}\cup J^{(1c)}\Bigg{)}
P(|T^(v,w)h(|wv|)|Aj12(v,w)\displaystyle\leq P\Bigg{(}\big{|}\hat{T}(v,w)-h(|w-v|)\big{|}\geq A_{j_{1}}^{2}(v,w)
for some j1th–scale transition vw with v,wGr+𝕃j1)\displaystyle\hskip 42.67912pt\text{ for some $j_{1}$th--scale transition $v\to w$ with }v,w\in G_{r}^{+}\cap\mathbb{L}_{j_{1}}\Bigg{)}
(4.107) C70exp(C71(λ7δχ1)j1t),\displaystyle\leq C_{70}\exp\left(-C_{71}\left(\frac{\lambda}{7\delta^{\chi_{1}}}\right)^{j_{1}}t\right),

establishing tracking as desired. Combining this with (4.3) and (4.5) yields

P(T(x,y)h((yx)1)tσr for some (x,y)Xr)\displaystyle P\Big{(}T(x,y)\leq h((y-x)_{1})-t\sigma_{r}\text{ for some }(x,y)\in X_{r}\Big{)}
P(ΥT^(Γxyj11,1)h((yx)1)(14λj1)tσr+6δμλj1(ΥEuc(Γxyj11,0)(y^x^)1)\displaystyle\leq P\Bigg{(}\Upsilon_{\hat{T}}(\Gamma_{xy}^{j_{1}-1,1})-h((y-x)_{1})\leq-\left(1-4\lambda^{j_{1}}\right)t\sigma_{r}+6\delta\mu\lambda^{j_{1}}\Big{(}\Upsilon_{Euc}\left(\Gamma_{xy}^{j_{1}-1,0}\right)-(\hat{y}-\hat{x})_{1}\Big{)}
+δμ(ΥEuc(Γxyj11,1)ΥEuc(Γxyj11,0)) for some (x,y)Xr;ωJ(0)(c29)J(1c))\displaystyle\hskip 56.9055pt+\delta\mu\Big{(}\Upsilon_{Euc}\left(\Gamma_{xy}^{j_{1}-1,1}\right)-\Upsilon_{Euc}\left(\Gamma_{xy}^{j_{1}-1,0}\right)\Big{)}\text{ for some }(x,y)\in X_{r};\ \omega\notin J^{(0)}(c_{29})\cup J^{(1c)}\Bigg{)}
(4.108) +c32ec33t+C70exp(C71(λ7δχ1)j1t).\displaystyle\hskip 34.14322pt+c_{32}e^{-c_{33}t}+C_{70}\exp\left(-C_{71}\left(\frac{\lambda}{7\delta^{\chi_{1}}}\right)^{j_{1}}t\right).

Analogously to the comment after (4.3), the increase of the coefficients 2, 4 in (4.3) to be 4, 6 in (4.5), together with the introduction of the additional term with coefficient δμ\delta\mu, represent a further reduction taken from the original bound tσrt\sigma_{r} in (1.13), allocated to bound errors in the first stage of the (j11)(j_{1}-1)th–scale iteration, just completed.

4.6. Step 6. Second stage of the (j11)(j_{1}-1)th–scale (second) coarse–graining iteration: removing marked points.

For the next update of the current marked PG path Γxyj11,1\Gamma_{xy}^{j_{1}-1,1}, we remove all the marked points in non-terminal j1j_{1}th–scale hyperplanes to create the updated marked PG path

Γxyj11,2:b0b1bnbn+1.{\color[rgb]{1,0,0}\Gamma_{xy}^{j_{1}-1,2}:b^{0}\to b^{1}\to\cdots\to b^{n}\to b^{n+1}}.

Here we recall that b0=x^,bn+1=y^,b1b^{0}=\hat{x},b^{n+1}=\hat{y},\,b^{1} and bnb^{n} lie in terminal j1j_{1}th–scale hyperplanes, and b2,,bn1b^{2},\dots,b^{n-1} lie in (j11)(j_{1}-1)th–scale hyperplanes. As with pi,p^ip^{i},\hat{p}^{i}, etc., nn and bib^{i} should be viewed as functions of x,y,ωx,y,\omega.

In this second stage, the removal of marked points always reduces the Euclidean length of the path (see Figure 5), meaning ΥEuc(Γxyj11,1)ΥEuc(Γxyj11,2)0\Upsilon_{Euc}(\Gamma_{xy}^{j_{1}-1,1})-\Upsilon_{Euc}(\Gamma_{xy}^{j_{1}-1,2})\geq 0, and on average the reduction in passage time, ΥT^(Γxyj11,1)ΥT^(Γxyj11,2)\Upsilon_{\hat{T}}(\Gamma_{xy}^{j_{1}-1,1})-\Upsilon_{\hat{T}}(\Gamma_{xy}^{j_{1}-1,2}), should be about μ\mu times the reduction in length. Here a tracking failure means the actual reduction in passage time is at most δμ\delta\mu times the reduction in length, to within an allocated error; see the last probability in (4.6).

From (4.101) we have

ΥEuc(Γxyj11,2)(y^x^)1ΥEuc(Γxyj11,1)(y^x^)112tσr+32(ΥEuc(Γxyj11,0)(y^x^)1)\Upsilon_{Euc}\left(\Gamma_{xy}^{j_{1}-1,2}\right)-(\hat{y}-\hat{x})_{1}\leq\Upsilon_{Euc}\left(\Gamma_{xy}^{j_{1}-1,1}\right)-(\hat{y}-\hat{x})_{1}\leq\frac{1}{2}t\sigma_{r}+\frac{3}{2}\Big{(}\Upsilon_{Euc}\left(\Gamma_{xy}^{j_{1}-1,0}\right)-(\hat{y}-\hat{x})_{1}\Big{)}

and therefore, assuming δ\delta is small,

13[2tσr+δμ(ΥEuc(Γxyj11,1)(y^x^)1+ΥEuc(Γxyj11,2)(y^x^)1)]tσr+δμ(ΥEuc(Γxyj11,0)(y^x^)1).\frac{1}{3}\Big{[}2t\sigma_{r}+\delta\mu\Big{(}\Upsilon_{Euc}\left(\Gamma_{xy}^{j_{1}-1,1}\right)-(\hat{y}-\hat{x})_{1}+\Upsilon_{Euc}\left(\Gamma_{xy}^{j_{1}-1,2}\right)-(\hat{y}-\hat{x})_{1}\Big{)}\Big{]}\leq t\sigma_{r}+\delta\mu\Big{(}\Upsilon_{Euc}\left(\Gamma_{xy}^{j_{1}-1,0}\right)-(\hat{y}-\hat{x})_{1}\Big{)}.

From this and (4.5) we obtain the setup to establish tracking:

P\displaystyle P (T(x,y)h((yx)1)tσr for some (x,y)Xr)\displaystyle\Big{(}T(x,y)\leq h((y-x)_{1})-t\sigma_{r}\text{ for some }(x,y)\in X_{r}\Big{)}
P(ΥT^(Γxyj11,1)h((yx)1)(14λj1)tσr+6δμλj1(ΥEuc(Γxyj11,0)(y^x^)1)\displaystyle\leq P\bigg{(}\Upsilon_{\hat{T}}(\Gamma_{xy}^{j_{1}-1,1})-h((y-x)_{1})\leq-\left(1-4\lambda^{j_{1}}\right)t\sigma_{r}+6\delta\mu\lambda^{j_{1}}\Big{(}\Upsilon_{Euc}\left(\Gamma_{xy}^{j_{1}-1,0}\right)-(\hat{y}-\hat{x})_{1}\Big{)}
+δμ(ΥEuc(Γxyj11,1)ΥEuc(Γxyj11,0)) for some (x,y)Xr;ωJ(0)(c29)J(1c))\displaystyle\hskip 56.9055pt+\delta\mu\Big{(}\Upsilon_{Euc}\left(\Gamma_{xy}^{j_{1}-1,1}\right)-\Upsilon_{Euc}\left(\Gamma_{xy}^{j_{1}-1,0}\right)\Big{)}\text{ for some }(x,y)\in X_{r};\ \omega\notin J^{(0)}(c_{29})\cup J^{(1c)}\bigg{)}
+c32ec33t+C70exp(C71(λ7δχ1)j1t)\displaystyle\hskip 34.14322pt+c_{32}e^{-c_{33}t}+C_{70}\exp\left(-C_{71}\left(\frac{\lambda}{7\delta^{\chi_{1}}}\right)^{j_{1}}t\right)
P(ΥT^(Γxyj11,2)h((yx)1)(15λj1)tσr+7δμλj1(ΥEuc(Γxyj11,0)(y^x^)1)\displaystyle\leq P\bigg{(}\Upsilon_{\hat{T}}(\Gamma_{xy}^{j_{1}-1,2})-h((y-x)_{1})\leq-\left(1-5\lambda^{j_{1}}\right)t\sigma_{r}+7\delta\mu\lambda^{j_{1}}\Big{(}\Upsilon_{Euc}\left(\Gamma_{xy}^{j_{1}-1,0}\right)-(\hat{y}-\hat{x})_{1}\Big{)}
+δμ(ΥEuc(Γxyj11,2)ΥEuc(Γxyj11,0)) for some (x,y)Xr;ωJ(0)(c29)J(1c))\displaystyle\hskip 56.9055pt+\delta\mu\Big{(}\Upsilon_{Euc}\left(\Gamma_{xy}^{j_{1}-1,2}\right)-\Upsilon_{Euc}\left(\Gamma_{xy}^{j_{1}-1,0}\right)\Big{)}\text{ for some }(x,y)\in X_{r};\ \omega\notin J^{(0)}(c_{29})\cup J^{(1c)}\bigg{)}
+P(ΥT^(Γxyj11,1)ΥT^(Γxyj11,2)\displaystyle\hskip 22.76228pt+P\bigg{(}\Upsilon_{\hat{T}}(\Gamma_{xy}^{j_{1}-1,1})-\Upsilon_{\hat{T}}(\Gamma_{xy}^{j_{1}-1,2})
13λj1[2tσr+δμ(ΥEuc(Γxyj11,1)(y^x^)1+ΥEuc(Γxyj11,2)(y^x^)1)]\displaystyle\hskip 56.9055pt\leq-\frac{1}{3}\lambda^{j_{1}}\Big{[}2t\sigma_{r}+\delta\mu\Big{(}\Upsilon_{Euc}\left(\Gamma_{xy}^{j_{1}-1,1}\right)-(\hat{y}-\hat{x})_{1}+\Upsilon_{Euc}\left(\Gamma_{xy}^{j_{1}-1,2}\right)-(\hat{y}-\hat{x})_{1}\Big{)}\Big{]}
+δμ(ΥEuc(Γxyj11,1)ΥEuc(Γxyj11,2)) for some (x,y)Xr;ωJ(0)(c29)J(1c))\displaystyle\hskip 56.9055pt+\delta\mu\Big{(}\Upsilon_{Euc}\left(\Gamma_{xy}^{j_{1}-1,1}\right)-\Upsilon_{Euc}\left(\Gamma_{xy}^{j_{1}-1,2}\right)\Big{)}\text{ for some }(x,y)\in X_{r};\ \omega\notin J^{(0)}(c_{29})\cup J^{(1c)}\bigg{)}
(4.109) +c32ec33t+C70exp(C71(λ7δχ1)j1t).\displaystyle\hskip 34.14322pt+c_{32}e^{-c_{33}t}+C_{70}\exp\left(-C_{71}\left(\frac{\lambda}{7\delta^{\chi_{1}}}\right)^{j_{1}}t\right).

Let us consider the contribution to the difference of sums ΥEuc(Γxyj11,1)ΥEuc(Γxyj11,2)\Upsilon_{Euc}\left(\Gamma_{xy}^{j_{1}-1,1}\right)-\Upsilon_{Euc}\left(\Gamma_{xy}^{j_{1}-1,2}\right), appearing in the last probability in (4.6), from a single (j11)(j_{1}-1)th–scale interval IN=[bN,bN+1]=[p^γ(N),p^γ(N+1)]{\color[rgb]{1,0,0}I_{N}}=[b^{N},b^{N+1}]=[\hat{p}^{\gamma(N)},\hat{p}^{\gamma(N+1)}]. Removing the marked points from the hyperplanes in the interior of INI_{N} changes the marked PG path from the full path

ΓN,full:p^γ(N)p^γ(N)+1p^γ(N)+2p^γ(N+1){\color[rgb]{1,0,0}\Gamma^{N,full}}:\ \hat{p}^{\gamma(N)}\to\hat{p}^{\gamma(N)+1}\to\hat{p}^{\gamma(N)+2}\to\hat{p}^{\gamma(N+1)}

to the direct path p^γ(N)p^γ(N+1)\hat{p}^{\gamma(N)}\to\hat{p}^{\gamma(N+1)} (that is, bNbN+1b^{N}\to b^{N+1}.) We then have

(4.110) ΥT^(Γxyj11,1)ΥT^(Γxyj11,2)=N=1n+1[ΥT^(ΓN,full)T^(p^γ(N),p^γ(N+1))].\Upsilon_{\hat{T}}(\Gamma_{xy}^{j_{1}-1,1})-\Upsilon_{\hat{T}}(\Gamma_{xy}^{j_{1}-1,2})=\sum_{N=1}^{n+1}\left[\Upsilon_{\hat{T}}\left(\Gamma^{N,full}\right)-\hat{T}(\hat{p}^{\gamma(N)},\hat{p}^{\gamma(N+1)})\right].

Given n1n\geq 1 and Γ:u1un\Gamma:u_{1}\to\dots\to u_{n} with all uiu_{i} in some grid 𝕃j\mathbb{L}_{j}, we define

Sj(u0,,un)=Sj(Γ)=i=1nAj2(ui1,ui).S_{j}(u_{0},\dots,u_{n})={\color[rgb]{1,0,0}S_{j}(\Gamma)}=\sum_{i=1}^{n}A_{j}^{2}(u_{i-1},u_{i}).

From Lemma 4.5 we have

(4.111) N=0nSj1(ΓN,full)\displaystyle\sum_{N=0}^{n}S_{j_{1}}\left(\Gamma^{N,full}\right) =i=1m+1Aj12(p^i1,p^i)13λj[tσr+δμ(ΥEuc(Γxyj11,1)(y^x^)1))],\displaystyle=\sum_{i=1}^{m+1}A_{j_{1}}^{2}(\hat{p}^{i-1},\hat{p}^{i})\leq\frac{1}{3}\lambda^{j}\Big{[}t\sigma_{r}+\delta\mu\Big{(}\Upsilon_{Euc}\left(\Gamma_{xy}^{j_{1}-1,1}\right)-(\hat{y}-\hat{x})_{1})\Big{)}\Big{]},

so the last probability in (4.6) is bounded above by

P(\displaystyle P\Bigg{(} ΥT^(Γxyj11,1)ΥT^(Γxyj11,2)δμ(ΥEuc(Γxyj11,1)ΥEuc(Γxyj11,2))\displaystyle\Upsilon_{\hat{T}}(\Gamma_{xy}^{j_{1}-1,1})-\Upsilon_{\hat{T}}(\Gamma_{xy}^{j_{1}-1,2})\leq\delta\mu\Big{(}\Upsilon_{Euc}\left(\Gamma_{xy}^{j_{1}-1,1}\right)-\Upsilon_{Euc}\left(\Gamma_{xy}^{j_{1}-1,2}\right)\Big{)}
N=0nSj1(ΓN,full)13λj1[tσr+δμ(ΥEuc(Γxyj11,2)(y^x^)1)]\displaystyle-\sum_{N=0}^{n}S_{j_{1}}\left(\Gamma^{N,full}\right)-\frac{1}{3}\lambda^{j_{1}}\Big{[}t\sigma_{r}+\delta\mu\Big{(}\Upsilon_{Euc}\left(\Gamma_{xy}^{j_{1}-1,2}\right)-(\hat{y}-\hat{x})_{1}\Big{)}\Big{]}
(4.112) for some (x,y)Xr;ωJ(0)(c29)J(1c)).\displaystyle\text{ for some }(x,y)\in X_{r};\ \omega\notin J^{(0)}(c_{29})\cup J^{(1c)}\Bigg{)}.

This is the tracking–failure event (see Remark 4.4) for the marked–point–removal stage of the iteration, and our main task is to bound its probability. The last of the 3 terms on the right inside the probability can be viewed as part of the allocation of allowed errors. As noted in Remark 4.8, the quantity

4λj1tσr+6δμλj1(ΥEuc(Γxyj11,0)(y^x^)1)4\lambda^{j_{1}}t\sigma_{r}+6\delta\mu\lambda^{j_{1}}\Big{(}\Upsilon_{Euc}\left(\Gamma_{xy}^{j_{1}-1,0}\right)-(\hat{y}-\hat{x})_{1}\Big{)}

in the second probabilty in (4.6) represents the accumulated error allocations used in the 1.5 iterations completed so far; the allocations for the present stage increase the 4 and 6 to 5 and 7 in the third probability in (4.6). Our ability to bound the tracking–failure event is what allows us to replace the quantity

δμ(ΥEuc(Γxyj11,1)ΥEuc(Γxyj11,0))withδμ(ΥEuc(Γxyj11,2)ΥEuc(Γxyj11,0))\delta\mu\Big{(}\Upsilon_{Euc}\left(\Gamma_{xy}^{j_{1}-1,1}\right)-\Upsilon_{Euc}\left(\Gamma_{xy}^{j_{1}-1,0}\right)\Big{)}\quad\text{with}\quad\delta\mu\Big{(}\Upsilon_{Euc}\left(\Gamma_{xy}^{j_{1}-1,2}\right)-\Upsilon_{Euc}\left(\Gamma_{xy}^{j_{1}-1,0}\right)\Big{)}

in that second probability in (4.6) to obtain the third probability. We need each iteration to involve similar such replacement, so that when the iterations are complete this term becomes

δμ(ΥEuc(ΓxyCG)ΥEuc(Γxyj11,0))\delta\mu\Big{(}\Upsilon_{Euc}\left(\Gamma_{xy}^{CG}\right)-\Upsilon_{Euc}\left(\Gamma_{xy}^{j_{1}-1,0}\right)\Big{)}

which is typically negative and can in part cancel the accumulated error allocations (see (4.162).)

Let w^i{\color[rgb]{1,0,0}\hat{w}^{i}} be the point Πp^γ(N),p^γ(N+1)H(p^i)1\Pi_{\hat{p}^{\gamma(N)},\hat{p}^{\gamma(N+1)}}\cap H_{(\hat{p}^{i})_{1}}; note w^i\hat{w}^{i} does not necessarily lie in any jjth–scale grid. Let wi{\color[rgb]{1,0,0}w_{\perp}^{i}} be the orthogonal projection of p^i\hat{p}^{i} into Πp^γ(N),p^γ(N+1)\Pi_{\hat{p}^{\gamma(N)},\hat{p}^{\gamma(N+1)}}, noting that by (4.19), |wiw^i||w_{\perp}^{i}-\hat{w}^{i}| is much smaller than |p^iw^i||\hat{p}^{i}-\hat{w}^{i}|. (Note the indexing of marked points differs here from that used in Step 1 in defining L(I)L^{-}(I). Our w^i\hat{w}^{i} here has index ii matching that of the point p^i\hat{p}^{i} in the hyperplane, whereas ww^{\ell} in Step 1 has index corresponding to the distance δr\delta^{\ell}r from the left end of the interval.)

We continue considering the contribution to the difference of sums ΥEuc(Γxyj11,1)ΥEuc(Γxyj11,2)\Upsilon_{Euc}\left(\Gamma_{xy}^{j_{1}-1,1}\right)-\Upsilon_{Euc}\left(\Gamma_{xy}^{j_{1}-1,2}\right) in (4.6) from a single (j11)(j_{1}-1)th–scale interval IN=[bN,bN+1]=[p^γ(N),p^γ(N+1)]{\color[rgb]{1,0,0}I_{N}}=[b^{N},b^{N+1}]=[\hat{p}^{\gamma(N)},\hat{p}^{\gamma(N+1)}]. We split into cases according to the type of interval INI_{N}.

Case 1. INI_{N} is a short non–terminal (j11)(j_{1}-1)th–scale interval. Here xy\mathcal{H}_{xy} includes no joining hyperplanes in the interval, so it includes exactly two maximally j1j_{1}th–scale (sandwiching) hyperplanes there, at distance δj1r\delta^{j_{1}}r from each end; see Figure 7. We introduce the intermediate path

ΓN,int:wγ(N)wγ(N)+1wγ(N)+2wγ(N+1){\color[rgb]{1,0,0}\Gamma^{N,int}}:\ w_{\perp}^{\gamma(N)}\to w_{\perp}^{\gamma(N)+1}\to w_{\perp}^{\gamma(N)+2}\to w_{\perp}^{\gamma(N+1)}

which has the same endpoints and satisfies ΥT^(ΓN,int)T^(p^γ(N),p^γ(N+1))\Upsilon_{\hat{T}}(\Gamma^{N,int})\geq\hat{T}(\hat{p}^{\gamma(N)},\hat{p}^{\gamma(N+1)}). To bound (4.6) we use the expression on the right in (4.110). Applying Lemma 3.6 with ϵ=1δ\epsilon=1-\delta yields

h(|p^ip^i1|)h(|wiwi1|)δμ(|p^ip^i1||wiwi1|)C56h(|\hat{p}^{i}-\hat{p}^{i-1}|)-h(|w_{\perp}^{i}-w_{\perp}^{i-1}|)\geq\delta\mu\left(|\hat{p}^{i}-\hat{p}^{i-1}|-|w_{\perp}^{i}-w_{\perp}^{i-1}|\right)-C_{56}

and therefore

(4.113) Υh(ΓN,full)Υh(ΓN,int)δμ(ΥEuc(ΓN,full)|p^γ(N+1)p^γ(N)|)3C56.\Upsilon_{h}\left(\Gamma^{N,full}\right)-\Upsilon_{h}\left(\Gamma^{N,int}\right)\geq\delta\mu\left(\Upsilon_{Euc}\left(\Gamma^{N,full}\right)-|\hat{p}^{\gamma(N+1)}-\hat{p}^{\gamma(N)}|\right)-3C_{56}.
Refer to caption
Figure 7. Diagram for Case 1 showing (j11)(j_{1}-1)th–scale endpoint hyperplanes and j1j_{1}th–scale sandwiching hyperplanes in a short (j11)(j_{1}-1)th–scale interval. The black path is ΓN,full\Gamma^{N,full} and the gray is ΓN,int\Gamma^{N,int}.

This is the essential property of the intermediate path: when we look at the bowedness of the full path relative to the intermediate path (represented by the left side of (4.113)), and relative to the direct path (right side of (4.113), without δ\delta), the first is at least δ\delta fraction of the second, to within a constant. By (4.64), for ωJ(0)(c29)\omega\notin J^{(0)}(c_{29}) the intermediate path also satisfies

(4.114) T^(p^γ(N),p^γ(N+1))ΥT^(ΓN,int)+(γ(N+1)γ(N)1)c29logr.\hat{T}(\hat{p}^{\gamma(N)},\hat{p}^{\gamma(N+1)})\leq\Upsilon_{\hat{T}}\left(\Gamma^{N,int}\right)+(\gamma(N+1)-\gamma(N)-1)c_{29}\log r.

Similarly to (4.111), since in Case 1 ΥEuc(ΓN,int)=|p^γ(N+1)p^γ(N)|=|bN+1bN|\Upsilon_{Euc}\left(\Gamma^{N,int}\right)=|\hat{p}^{\gamma(N+1)}-\hat{p}^{\gamma(N)}|=|b^{N+1}-b^{N}|, we have

(4.115) N=0nSj1(ΓN,int)\displaystyle\sum_{N=0}^{n}S_{j_{1}}\left(\Gamma^{N,int}\right) =i=1m+1Aj12(wi1,wi)14λj1[tσr+δμ(ΥEuc(Γxyj11,2)(y^x^)1))].\displaystyle=\sum_{i=1}^{m+1}A_{j_{1}}^{2}(w_{\perp}^{i-1},w_{\perp}^{i})\leq\frac{1}{4}\lambda^{j_{1}}\Big{[}t\sigma_{r}+\delta\mu\Big{(}\Upsilon_{Euc}\left(\Gamma_{xy}^{j_{1}-1,2}\right)-(\hat{y}-\hat{x})_{1})\Big{)}\Big{]}.

From (4.110)—(4.115) it follows that the contribution to the tracking–failure probability (4.6) from short non–terminal intervals is bounded by

P(T^(p^γ(N),p^γ(N+1))ΥT^(ΓN,full)Sj1(ΓN,full)+Sj1(ΓN,int)+112λj1tσr\displaystyle P\Bigg{(}\hat{T}(\hat{p}^{\gamma(N)},\hat{p}^{\gamma(N+1)})-\Upsilon_{\hat{T}}\left(\Gamma^{N,full}\right)\geq S_{j_{1}}\left(\Gamma^{N,full}\right)+S_{j_{1}}\left(\Gamma^{N,int}\right)+\frac{1}{12}\lambda^{j_{1}}t\sigma_{r}
+δμ(|p^γ(N+1)p^γ(N)|ΥEuc(ΓN,full)) for some N with IN short non–terminal\displaystyle\hskip 42.67912pt+\delta\mu\Big{(}|\hat{p}^{\gamma(N+1)}-\hat{p}^{\gamma(N)}|-\Upsilon_{Euc}\left(\Gamma^{N,full}\right)\Big{)}\text{ for some $N$ with $I_{N}$ short non--terminal}
(j11)th–scale, and some (x,y)Xr;ωJ(0)(c29)J(1c))\displaystyle\hskip 42.67912pt\text{$(j_{1}-1)$th--scale, and some }(x,y)\in X_{r};\ \omega\notin J^{(0)}(c_{29})\cup J^{(1c)}\Bigg{)}
P(ΥT^(ΓN,int)ΥT^(ΓN,full)Sj1(ΓN,full)+Sj1(ΓN,int)+112λj1tσr2c29logr\displaystyle\leq P\Bigg{(}\Upsilon_{\hat{T}}\left(\Gamma^{N,int}\right)-\Upsilon_{\hat{T}}\left(\Gamma^{N,full}\right)\geq S_{j_{1}}\left(\Gamma^{N,full}\right)+S_{j_{1}}\left(\Gamma^{N,int}\right)+\frac{1}{12}\lambda^{j_{1}}t\sigma_{r}-2c_{29}\log r
+Υh(ΓN,int)Υh(ΓN,full)2C56 for some N with IN short non–terminal\displaystyle\hskip 42.67912pt+\Upsilon_{h}\left(\Gamma^{N,int}\right)-\Upsilon_{h}\left(\Gamma^{N,full}\right)-2C_{56}\text{ for some $N$ with $I_{N}$ short non--terminal}
(j11)th–scale, and some (x,y)Xr;ωJ(0)(c29)J(1c))\displaystyle\hskip 42.67912pt\text{$(j_{1}-1)$th--scale, and some }(x,y)\in X_{r};\ \omega\notin J^{(0)}(c_{29})\cup J^{(1c)}\Bigg{)}
P(|ΥT^(ΓN,full)Υh(ΓN,full)|Sj1(ΓN,full) or |ΥT^(ΓN,int)Υh(ΓN,int)|\displaystyle\leq P\Bigg{(}\left|\Upsilon_{\hat{T}}\left(\Gamma^{N,full}\right)-\Upsilon_{h}\left(\Gamma^{N,full}\right)\right|\geq S_{j_{1}}\left(\Gamma^{N,full}\right)\text{ or }\Big{|}\Upsilon_{\hat{T}}\left(\Gamma^{N,int}\right)-\Upsilon_{h}\left(\Gamma^{N,int}\right)\Big{|}
Sj1(ΓN,int) for some N with IN short non–terminal\displaystyle\hskip 42.67912pt\geq S_{j_{1}}\left(\Gamma^{N,int}\right)\text{ for some $N$ with $I_{N}$ short non--terminal}
(j11)th–scale, and some (x,y)Xr;ωJ(0)(c29)J(1c))\displaystyle\hskip 42.67912pt\text{$(j_{1}-1)$th--scale, and some }(x,y)\in X_{r};\ \omega\notin J^{(0)}(c_{29})\cup J^{(1c)}\Bigg{)}
P(|T^(p^i1,p^i)h(|p^ip^i1|)|Aj12(p^i1,p^i) or |T^(wi1,wi)h(|wiwi1|)|\displaystyle\leq P\Bigg{(}\left|\hat{T}(\hat{p}^{i-1},\hat{p}^{i})-h(|\hat{p}^{i}-\hat{p}^{i-1}|)\right|\geq A_{j_{1}}^{2}(\hat{p}^{i-1},\hat{p}^{i})\text{ or }\left|\hat{T}(w_{\perp}^{i-1},w_{\perp}^{i})-h(|w_{\perp}^{i}-w_{\perp}^{i-1}|)\right|
Aj12(wi1,wi) for some γ(N)+1iγ(N+1), for some N\displaystyle\hskip 42.67912pt\geq A_{j_{1}}^{2}(w_{\perp}^{i-1},w_{\perp}^{i})\text{ for some }\gamma(N)+1\leq i\leq\gamma(N+1),\text{ for some $N$}
(4.116) with IN short non–terminal (j11)th–scale, and some (x,y)Xr;ωJ(0)(c29)J(1c)).\displaystyle\hskip 42.67912pt\text{ with $I_{N}$ short non--terminal $(j_{1}-1)$th--scale, and some }(x,y)\in X_{r};\ \omega\notin J^{(0)}(c_{29})\cup J^{(1c)}\Bigg{)}.

The terms C56C_{56} and c29logrc_{29}\log r are negligible in (4.116) relative to λj1tσr\lambda^{j_{1}}t\sigma_{r}, because the latter is of the order of a power of rr, due to j1=O(loglogr)j_{1}=O(\log\log r). All of the increments T^(u,v)\hat{T}(u,v) in the last event have δj1r(vu)1δj11r\delta^{j_{1}}r\leq(v-u)_{1}\leq\delta^{j_{1}-1}r. We can therefore bound the last probability similarly to Lemma 4.6, with the main difference being that in place of pairs (u,v)(u,v) in the definitions of Rr,j,R_{r,j}^{*,*} we need to consider 4–tuples (u,v,w,z)(u,v,w,z) corresponding to values of (p^γ(N),p^γ(N)+1,p^γ(N)+2,p^γ(N+1))(𝕃j1Gr+)4(\hat{p}^{\gamma(N)},\hat{p}^{\gamma(N)+1},\hat{p}^{\gamma(N)+2},\hat{p}^{\gamma(N+1)})\in(\mathbb{L}_{j_{1}}\cap G_{r}^{+})^{4}. This means the exponents d1d-1 in the bounds on |Rr,j,||R_{r,j}^{*,*}| become 3(d1)3(d-1). The values wiw_{\perp}^{i} are determined by (p^γ(N),p^γ(N)+1,p^γ(N)+2,p^γ(N+1))(\hat{p}^{\gamma(N)},\hat{p}^{\gamma(N)+1},\hat{p}^{\gamma(N)+2},\hat{p}^{\gamma(N+1)}) so their presence does not increase the necessary size of Rr,j,R_{r,j}^{*,*} in the lemma. As with the sets Rr,jν,R_{r,j}^{\nu,\ell} in the lemma proof, we can decompose the possible 4–tuples (p^γ(N),p^γ(N)+1,p^γ(N)+2,p^γ(N+1))(\hat{p}^{\gamma(N)},\hat{p}^{\gamma(N)+1},\hat{p}^{\gamma(N)+2},\hat{p}^{\gamma(N+1)}) according to the size of |(p^γ(N)+1p^γ(N))|,|p^γ(N)+1wγ(N)+1||(\hat{p}^{\gamma(N)+1}-\hat{p}^{\gamma(N)})^{*}|,\,|\hat{p}^{\gamma(N)+1}-w_{\perp}^{\gamma(N)+1}|, and |p^γ(N)+2wγ(N)+2||\hat{p}^{\gamma(N)+2}-w_{\perp}^{\gamma(N)+2}| and sum over the possible size ranges. Otherwise the proof remains the same, and we get that the last probability in (4.116) is bounded by

(4.117) c34exp(c35(λ7δχ1)j1t).c_{34}\exp\left(-c_{35}\left(\frac{\lambda}{7\delta^{\chi_{1}}}\right)^{j_{1}}t\right).

Case 2. INI_{N} is a terminal (j11)(j_{1}-1)th–scale interval (meaning either [p^γ(1),p^γ(2)][\hat{p}^{\gamma(1)},\hat{p}^{\gamma(2)}] or [p^γ(n)1,p^γ(n)][\hat{p}^{\gamma(n)-1},\hat{p}^{\gamma(n)}]). The proof is similar to Case 1, except that the interval includes only one maximally j1j_{1}th–scale (sandwiching) hyperplane between the two terminal hyperplanes that are at the ends of the interval, so the full path in the interval has form p^γ(N)p^γ(N)+1p^γ(N+1)\hat{p}^{\gamma(N)}\to\hat{p}^{\gamma(N)+1}\to\hat{p}^{\gamma(N+1)}. We obtain for the terminal–interval contribution to the tracking–failure probability (4.6) the bound

P(T^(p^γ(N),p^γ(N+1))ΥT^(ΓN,full)Sj1(ΓN,full)+Sj1(ΓN,int)\displaystyle P\Bigg{(}\hat{T}(\hat{p}^{\gamma(N)},\hat{p}^{\gamma(N+1)})-\Upsilon_{\hat{T}}\left(\Gamma^{N,full}\right)\geq S_{j_{1}}\left(\Gamma^{N,full}\right)+S_{j_{1}}\left(\Gamma^{N,int}\right)
+δμ(|p^γ(N+1)p^γ(N)|ΥEuc(ΓN,full)) for some N with IN terminal\displaystyle\hskip 42.67912pt+\delta\mu\Big{(}|\hat{p}^{\gamma(N+1)}-\hat{p}^{\gamma(N)}|-\Upsilon_{Euc}\left(\Gamma^{N,full}\right)\Big{)}\text{ for some $N$ with $I_{N}$ terminal}
(j11)th–scale, and some (x,y)Xr;ωJ(0)(c29)J(1c))\displaystyle\hskip 42.67912pt\text{$(j_{1}-1)$th--scale, and some }(x,y)\in X_{r};\ \omega\notin J^{(0)}(c_{29})\cup J^{(1c)}\Bigg{)}
(4.118) c34exp(c35(λ7δχ1)j1t).\displaystyle\leq c_{34}\exp\left(-c_{35}\left(\frac{\lambda}{7\delta^{\chi_{1}}}\right)^{j_{1}}t\right).

Case 3. INI_{N} is a long non–terminal (j11)(j_{1}-1)th–scale interval. Such an interval, and thus also the middle increment p^γ(N+1)1p^γ(N)+1\hat{p}^{\gamma(N+1)-1}-\hat{p}^{\gamma(N)+1} of the 3 comprising ΓN,full\Gamma^{N,full} in Case 1, may be much longer than δj11r\delta^{j_{1}-1}r. Therefore the quantity Aj12(p^γ(N)+1,p^γ(N+1)1)A_{j_{1}}^{2}(\hat{p}^{\gamma(N)+1},\hat{p}^{\gamma(N+1)-1}) used on the right side of (4.116) for that increment is no longer large enough to give a useful bound on the probability. To avoid this problem we will sometimes use a different intermediate path in INI_{N} which coincides with the full path between the inner joining hyperplanes, so differs from the full path only near the ends of INI_{N}, while preserving the property (4.113) (this preservation being the purpose of our choice of L±(I)L^{\pm}(I).) Equation (4.113) represents what we may informally call deterministic tracking, a nonrandom analog of the tracking of Remark 4.4 which facilitates our desired (random) form of tracking.

Fix a long non–terminal (j11)(j_{1}-1)th–scale interval INI_{N}, and suppose it has kkth–scale length for some k<j11k<j_{1}-1. The hyperplanes of xy\mathcal{H}_{xy} in INI_{N} are the (j11)(j_{1}-1)th–scale ones at each endpoint, two sandwiching j1j_{1}th–scale hyperplanes at distance δj1r\delta^{j_{1}}r from each end, and between 2 and 4 j1j_{1}th–scale joining hyperplanes between these. These hyperplanes are at the joining points (p^γ(N))1+δL(I)+1r,(p^γ(N))1+δL(I)r,(p^γ(N+1))1δL+(I)r(\hat{p}^{\gamma(N)})_{1}+\delta^{L^{-}(I)+1}r,(\hat{p}^{\gamma(N)})_{1}+\delta^{L^{-}(I)}r,(\hat{p}^{\gamma(N+1)})_{1}-\delta^{L^{+}(I)}r, and (p^γ(N+1))1δL+(I)+1r(\hat{p}^{\gamma(N+1)})_{1}-\delta^{L^{+}(I)+1}r, with two exceptions. First, if L(IN)=j11L^{-}(I_{N})=j_{1}-1 then the first of these 4 joining hyperplanes coincides with the left–end sandwiching one, and similarly for L+(IN)L^{+}(I_{N}), which reduces the number of j1j_{1}th–scale joining hyperplanes to fewer than 4, as discussed in criterion (ii) after (4.33). Second, in the totally unbowed case (third option in (4.33)) at either end of INI_{N}, there is no outer joining hyperplane at that end, as in criterion (iii). We define 4V(N)64\leq{\color[rgb]{1,0,0}V(N)}\leq 6 to be the number of j1j_{1}th–scale hyperplanes in the interior of INI_{N}.

Case 3a. The bowed case (second option in (4.33)) for both L±(I)L^{\pm}(I), with V(N)=6V(N)=6. Since V(N)=6V(N)=6 we must have L(IN)<j11L^{-}(I_{N})<j_{1}-1 and L+(IN)<j11L^{+}(I_{N})<j_{1}-1. Here the full path is

ΓN,full:p^γ(N)p^γ(N)+1p^γ(N)+6p^γ(N+1)\Gamma^{N,full}:\ \hat{p}^{\gamma(N)}\to\hat{p}^{\gamma(N)+1}\to\cdots\to\hat{p}^{\gamma(N)+6}\to\hat{p}^{\gamma(N+1)}

and the direct path again is p^γ(N)p^γ(N+1)\hat{p}^{\gamma(N)}\to\hat{p}^{\gamma(N+1)}. Define

z^i={the point Πp^γ(N),p^γ(N)+3H(p^i)1if i=γ(N)+1,γ(N)+2,the point Πp^γ(N)+4,p^γ(N+1)H(p^i)1if i=γ(N)+5,γ(N)+6,p^iif i=γ(N),γ(N)+3,γ(N)+4,γ(N+1);{\color[rgb]{1,0,0}\hat{z}^{i}}=\begin{cases}\text{the point }\Pi_{\hat{p}^{\gamma(N)},\hat{p}^{\gamma(N)+3}}\cap H_{(\hat{p}^{i})_{1}}&\text{if }i=\gamma(N)+1,\gamma(N)+2,\\ \text{the point }\Pi_{\hat{p}^{\gamma(N)+4},\hat{p}^{\gamma(N+1)}}\cap H_{(\hat{p}^{i})_{1}}&\text{if }i=\gamma(N)+5,\gamma(N)+6,\\ \hat{p}^{i}&\text{if }i=\gamma(N),\gamma(N)+3,\gamma(N)+4,\gamma(N+1);\end{cases}

see Figure 8. This time the intermediate path is defined as

ΓN,int:z^γ(N)z^γ(N)+1z^γ(N)+6z^γ(N+1),{\color[rgb]{1,0,0}\Gamma^{N,int}}:\hat{z}^{\gamma(N)}\to\hat{z}^{\gamma(N)+1}\to\cdots\to\hat{z}^{\gamma(N)+6}\to\hat{z}^{\gamma(N+1)},

which coincides with ΓN,full\Gamma^{N,full} between the inner joining hyperplanes, which is “most” of INI_{N}. We denote the parts of the paths outside the inner joining hyperplanes by

ΓN,full,:p^γ(N)p^γ(N)+1p^γ(N)+2p^γ(N)+3,{\color[rgb]{1,0,0}\Gamma^{N,full,-}}:\ \hat{p}^{\gamma(N)}\to\hat{p}^{\gamma(N)+1}\to\hat{p}^{\gamma(N)+2}\to\hat{p}^{\gamma(N)+3},
ΓN,full,+:p^γ(N)+4p^γ(N)+5p^γ(N)+6p^γ(N+1),{\color[rgb]{1,0,0}\Gamma^{N,full,+}}:\ \hat{p}^{\gamma(N)+4}\to\hat{p}^{\gamma(N)+5}\to\hat{p}^{\gamma(N)+6}\to\hat{p}^{\gamma(N+1)},

with ΓN,int,±\Gamma^{N,int,\pm} defined similarly with z^i\hat{z}^{i} in place of p^i\hat{p}^{i}, so that

(4.119) ΥT^(ΓN,full)ΥT^(ΓN,int)\displaystyle\Upsilon_{\hat{T}}\left(\Gamma^{N,full}\right)-\Upsilon_{\hat{T}}\left(\Gamma^{N,int}\right) =[ΥT^(ΓN,full,)ΥT^(ΓN,int,)]+[ΥT^(ΓN,full,+)ΥT^(ΓN,int,+)].\displaystyle=\Big{[}\Upsilon_{\hat{T}}\left(\Gamma^{N,full,-}\right)-\Upsilon_{\hat{T}}\left(\Gamma^{N,int,-}\right)\Big{]}+\Big{[}\Upsilon_{\hat{T}}\left(\Gamma^{N,full,+}\right)-\Upsilon_{\hat{T}}\left(\Gamma^{N,int,+}\right)\Big{]}.

For the corresponding quantities for means, similarly to (4.113), but using ϵ=1/2\epsilon=1/2 in Lemma 3.6, we have

Υh\displaystyle\Upsilon_{h} (ΓN,full)Υh(ΓN,int)\displaystyle\left(\Gamma^{N,full}\right)-\Upsilon_{h}\left(\Gamma^{N,int}\right)
=[Υh(ΓN,full,)Υh(ΓN,int,)]+[Υh(ΓN,full,+)Υh(ΓN,int,+)]\displaystyle=\Big{[}\Upsilon_{h}\left(\Gamma^{N,full,-}\right)-\Upsilon_{h}\left(\Gamma^{N,int,-}\right)\Big{]}+\Big{[}\Upsilon_{h}\left(\Gamma^{N,full,+}\right)-\Upsilon_{h}\left(\Gamma^{N,int,+}\right)\Big{]}
μ2[ΥEuc(ΓN,full,)|p^γ(N)+3p^γ(N)|]+μ2[ΥEuc(ΓN,full,+)|p^γ(N+1)p^γ(N)+4|]6C56\displaystyle\geq\frac{\mu}{2}\left[\Upsilon_{Euc}\left(\Gamma^{N,full,-}\right)-|\hat{p}^{\gamma(N)+3}-\hat{p}^{\gamma(N)}|\right]+\frac{\mu}{2}\left[\Upsilon_{Euc}\left(\Gamma^{N,full,+}\right)-|\hat{p}^{\gamma(N+1)}-\hat{p}^{\gamma(N)+4}|\right]-6C_{56}
(4.120) =μ2[ΥEuc(ΓN,full)ΥEuc(ΓN,int)]6C56.\displaystyle=\frac{\mu}{2}\Big{[}\Upsilon_{Euc}\left(\Gamma^{N,full}\right)-\Upsilon_{Euc}\left(\Gamma^{N,int}\right)\Big{]}-6C_{56}.
Refer to caption
Figure 8. The left end of a long (j11)(j_{1}-1)th–scale interval IN=[a,b]I_{N}=[a,b] with the bowed case, with L(In)=L^{-}(I_{n})=\ell, showing the direct path (black) and intermediate path (gray.) The full path has marked points at the p^γ(N)+i\hat{p}^{\gamma(N)+i}.

We claim that deterministic tracking holds in the sense that

(4.121) ΥEuc(ΓN,full)ΥEuc(ΓN,int)3δ[ΥEuc(ΓN,full)|p^γ(N+1)p^γ(N)|].\displaystyle\Upsilon_{Euc}\left(\Gamma^{N,full}\right)-\Upsilon_{Euc}\left(\Gamma^{N,int}\right)\geq 3\delta\left[\Upsilon_{Euc}\left(\Gamma^{N,full}\right)-|\hat{p}^{\gamma(N+1)}-\hat{p}^{\gamma(N)}|\right].

This and (4.6) give the full analog of (4.113) for Case 3a. To prove the claim, suppose L(IN)=L^{-}(I_{N})=\ell^{-} for some k+1<j11k+1\leq\ell^{-}<j_{1}-1. Recall α()\alpha(\cdot) and θ()\theta(\cdot) from (4.25) and (4.26), noting that in our present notation, v,w,zv,w,z there have become p^,w^,z^\hat{p},\hat{w},\hat{z}, with different superscript labeling. Using (4.28)—(4.30) with j=j11j=j_{1}-1,

α(+1)=|p^γ(N)+2w^γ(N)+2|2δ+1r,θ(+1)=|z^γ(N)+2w^γ(N)+2||p^γ(N)+2w^γ(N)+2|12\alpha(\ell^{-}+1)=\frac{|\hat{p}^{\gamma(N)+2}-\hat{w}^{\gamma(N)+2}|^{2}}{\delta^{\ell^{-}+1}r},\quad\theta(\ell^{-}+1)=\frac{|\hat{z}^{\gamma(N)+2}-\hat{w}^{\gamma(N)+2}|}{|\hat{p}^{\gamma(N)+2}-\hat{w}^{\gamma(N)+2}|}\leq\frac{1}{2}

and hence

ΥEuc(ΓN,full,)|p^γ(N)+3p^γ(N)|\displaystyle\Upsilon_{Euc}\left(\Gamma^{N,full,-}\right)-|\hat{p}^{\gamma(N)+3}-\hat{p}^{\gamma(N)}| ΥEuc(p^γ(N),p^γ(N)+2,p^γ(N)+3)|p^γ(N)+3p^γ(N)|\displaystyle\geq\Upsilon_{Euc}\left(\hat{p}^{\gamma(N)},\hat{p}^{\gamma(N)+2},\hat{p}^{\gamma(N)+3}\right)-|\hat{p}^{\gamma(N)+3}-\hat{p}^{\gamma(N)}|
|p^γ(N)+2z^γ(N)+2|23δ+1r\displaystyle\geq\frac{|\hat{p}^{\gamma(N)+2}-\hat{z}^{\gamma(N)+2}|^{2}}{3\delta^{\ell^{-}+1}r}
(4.122) α(+1)12.\displaystyle\geq\frac{\alpha(\ell^{-}+1)}{12}.

Here the second inequality uses the fact that p^γ(N)+2z^γ(N)+2\hat{p}^{\gamma(N)+2}-\hat{z}^{\gamma(N)+2} is nearly perpendicular to Πp^γ(N),p^γ(N)+3\Pi_{\hat{p}^{\gamma(N)},\hat{p}^{\gamma(N)+3}}, by (4.19). In the other direction, recalling INI_{N} has kkth–scale length (so (p^γ(N)+4p^γ(N)+3)18δk+1r(\hat{p}^{\gamma(N)+4}-\hat{p}^{\gamma(N)+3})_{1}\geq 8\delta^{k+1}r) and supposing L+(IN)=+L^{+}(I_{N})=\ell^{+}, since k+1+k+1\leq\ell^{+} and k+1k+1\leq\ell^{-} we have similarly to (4.1) and (4.36)

ΥEuc(ΓN,int)|p^γ(N+1)p^γ(N)|\displaystyle\Upsilon_{Euc}\left(\Gamma^{N,int}\right)-|\hat{p}^{\gamma(N+1)}-\hat{p}^{\gamma(N)}| |p^γ(N)+3wγ(N)+3|22δr+|p^γ(N)+4wγ(N)+4|22δ+r\displaystyle\leq\frac{|\hat{p}^{\gamma(N)+3}-w_{\perp}^{\gamma(N)+3}|^{2}}{2\delta^{\ell^{-}}r}+\frac{|\hat{p}^{\gamma(N)+4}-w_{\perp}^{\gamma(N)+4}|^{2}}{2\delta^{\ell^{+}}r}
+|(p^γ(N)+3wγ(N)+3)(p^γ(N)+4wγ(N)+4)|216δk+1r\displaystyle\qquad+\frac{|(\hat{p}^{\gamma(N)+3}-w_{\perp}^{\gamma(N)+3})-(\hat{p}^{\gamma(N)+4}-w_{\perp}^{\gamma(N)+4})|^{2}}{16\delta^{k+1}r}
(4.123) |p^γ(N)+3w^γ(N)+3|2δr+|p^γ(N)+4w^γ(N)+4|2δ+r.\displaystyle\leq\frac{|\hat{p}^{\gamma(N)+3}-\hat{w}^{\gamma(N)+3}|^{2}}{\delta^{\ell^{-}}r}+\frac{|\hat{p}^{\gamma(N)+4}-\hat{w}^{\gamma(N)+4}|^{2}}{\delta^{\ell^{+}}r}.

Now the first ratio on the right is α()\alpha(\ell^{-}), so it follows from (4.30) and (4.6) that

|p^γ(N)+3w^γ(N)+3|2δr24C23δχ2[ΥEuc(ΓN,full,)|p^γ(N)+3p^γ(N)|],\frac{|\hat{p}^{\gamma(N)+3}-\hat{w}^{\gamma(N)+3}|^{2}}{\delta^{\ell^{-}}r}\leq 24C_{23}\delta^{-\chi_{2}}\Big{[}\Upsilon_{Euc}\left(\Gamma^{N,full,-}\right)-|\hat{p}^{\gamma(N)+3}-\hat{p}^{\gamma(N)}|\Big{]},

and similarly

|p^γ(N)+4w^γ(N)+4|2δr24C23δχ2[ΥEuc(ΓN,full,+)|p^γ(N+1)p^γ(N)+4|].\frac{|\hat{p}^{\gamma(N)+4}-\hat{w}^{\gamma(N)+4}|^{2}}{\delta^{\ell^{-}}r}\leq 24C_{23}\delta^{-\chi_{2}}\Big{[}\Upsilon_{Euc}\left(\Gamma^{N,full,+}\right)-|\hat{p}^{\gamma(N+1)}-\hat{p}^{\gamma(N)+4}|\Big{]}.

Hence from (4.6) and the second equality in (4.20),

(4.124) ΥEuc(ΓN,int)|p^γ(N+1)p^γ(N)|\displaystyle\Upsilon_{Euc}\left(\Gamma^{N,int}\right)-|\hat{p}^{\gamma(N+1)}-\hat{p}^{\gamma(N)}| 24C23δχ2[ΥEuc(ΓN,full)ΥEuc(ΓN,int)]\displaystyle\leq 24C_{23}\delta^{-\chi_{2}}\Big{[}\Upsilon_{Euc}\left(\Gamma^{N,full}\right)-\Upsilon_{Euc}\left(\Gamma^{N,int}\right)\Big{]}

which implies

(4.125) ΥEuc(ΓN,full)|p^γ(N+1)p^γ(N)|\displaystyle\Upsilon_{Euc}\left(\Gamma^{N,full}\right)-|\hat{p}^{\gamma(N+1)}-\hat{p}^{\gamma(N)}| (1+24C23δχ2)[ΥEuc(ΓN,full)ΥEuc(ΓN,int)],\displaystyle\leq(1+24C_{23}\delta^{-\chi_{2}})\Big{[}\Upsilon_{Euc}\left(\Gamma^{N,full}\right)-\Upsilon_{Euc}\left(\Gamma^{N,int}\right)\Big{]},

proving the claim (4.121) when we take δ\delta small.

From Lemma 4.7(i) we have

(4.126) 6Aj13(ΓN,full,)Sj1(ΓN,full,)+δμ18[ΨEuc(ΓN,full,)|p^γ(N)+3p^γ(N)|]6C56,6A_{j_{1}}^{3}\left(\Gamma^{N,full,-}\right)\leq S_{j_{1}}\left(\Gamma^{N,full,-}\right)+\frac{\delta\mu}{18}\Big{[}\Psi_{Euc}(\Gamma^{N,full,-})-|\hat{p}^{\gamma(N)+3}-\hat{p}^{\gamma(N)}|\Big{]}-6C_{56},

and the equivalent “mirror image” of Lemma 4.7 covers ΓN,full,+\Gamma^{N,full,+} symmetrically, incorporating a symmetric definition of joining 4–path.

The analog of (4.114) remains valid, and we now have the ingredients (4.6), (4.121) and (4.126) for the analog of (4.116), bounding the bowed–case contribution to the tracking–failure probability (4.6)—see (4.6) below:

P(ΥT^(ΓN,full)T^(p^γ(N),p^γ(N+1))Sj1(ΓN,full,)Sj1(ΓN,full,+)13λj1tσr\displaystyle P\Bigg{(}\Upsilon_{\hat{T}}\left(\Gamma^{N,full}\right)-\hat{T}(\hat{p}^{\gamma(N)},\hat{p}^{\gamma(N+1)})\leq-S_{j_{1}}\left(\Gamma^{N,full,-}\right)-S_{j_{1}}\left(\Gamma^{N,full,+}\right)-\frac{1}{3}\lambda^{j_{1}}t\sigma_{r}
+δμ(ΥEuc(ΓN,full)|p^γ(N+1)p^γ(N)|) for some N with V(N)=6\displaystyle\hskip 17.07182pt+\delta\mu\Big{(}\Upsilon_{Euc}\left(\Gamma^{N,full}\right)-|\hat{p}^{\gamma(N+1)}-\hat{p}^{\gamma(N)}|\Big{)}\text{ for some $N$ with $V(N)=6$}
and INI_{N} long non–terminal (j11)(j_{1}-1)th–scale, in the bowed case of (4.33)
for both of L±(IN), for some (x,y)Xr;ωJ(0)(c29)J(1c))\displaystyle\hskip 17.07182pt\text{for both of $L^{\pm}(I_{N})$, for some }(x,y)\in X_{r};\ \omega\notin J^{(0)}(c_{29})\cup J^{(1c)}\Bigg{)}
P([ΥT^(ΓN,full,)ΥT^(ΓN,int,)]+[ΥT^(ΓN,full,+)ΥT^(ΓN,int,+)]\displaystyle\leq P\Bigg{(}\Big{[}\Upsilon_{\hat{T}}\left(\Gamma^{N,full,-}\right)-\Upsilon_{\hat{T}}\left(\Gamma^{N,int,-}\right)\Big{]}+\Big{[}\Upsilon_{\hat{T}}\left(\Gamma^{N,full,+}\right)-\Upsilon_{\hat{T}}\left(\Gamma^{N,int,+}\right)\Big{]}
6Aj13(ΓN,full,)6Aj13(ΓN,full,+)+Υh(ΓN,full)Υh(ΓN,int)+6c29logr+18C56\displaystyle\hskip 28.45274pt\leq-6A_{j_{1}}^{3}(\Gamma^{N,full,-})-6A_{j_{1}}^{3}(\Gamma^{N,full,+})+\Upsilon_{h}\left(\Gamma^{N,full}\right)-\Upsilon_{h}\left(\Gamma^{N,int}\right)+6c_{29}\log r+18C_{56}
13λj1tσr-\frac{1}{3}\lambda^{j_{1}}t\sigma_{r} for some NN with V(N)=6V(N)=6 and INI_{N} long non–terminal (j11)(j_{1}-1)th–scale, in the
bowed case of (4.33) for both of L±(IN), and for some (x,y)Xr;ωJ(0)(c29)J(1c))\displaystyle\hskip 28.45274pt\text{bowed case of \eqref{Lminus} for both of $L^{\pm}(I_{N})$, and for some }(x,y)\in X_{r};\ \omega\notin J^{(0)}(c_{29})\cup J^{(1c)}\Bigg{)}
=k+1j12+=k+1j12P(|T^(p^i1,p^i)h(|p^ip^i1|)|Aj13(ΓN,full,±) or\displaystyle\leq\sum_{\ell^{-}=k+1}^{j_{1}-2}\,\sum_{\ell^{+}=k+1}^{j_{1}-2}P\Bigg{(}\left|\hat{T}(\hat{p}^{i-1},\hat{p}^{i})-h(|\hat{p}^{i}-\hat{p}^{i-1}|)\right|\geq A_{j_{1}}^{3}(\Gamma^{N,full,\pm})\text{ or }
|T^(z^i1,z^i)h(|z^iz^i1|)|Aj13(ΓN,full,±) for some γ(N)+1iγ(N+1)\displaystyle\hskip 28.45274pt\left|\hat{T}(\hat{z}^{i-1},\hat{z}^{i})-h(|\hat{z}^{i}-\hat{z}^{i-1}|)\right|\geq A_{j_{1}}^{3}(\Gamma^{N,full,\pm})\text{ for some }\gamma(N)+1\leq i\leq\gamma(N+1)
with iγ(N)+4i\neq\gamma(N)+4, for some NN with V(N)=6V(N)=6 and INI_{N} long non–terminal
(j11)(j_{1}-1)th–scale with L(IN)=L^{-}(I_{N})=\ell^{-} and L+(IN)=+L^{+}(I_{N})=\ell^{+}, in the bowed case of
(4.127) (4.33) for both of L±(IN), and some (x,y)Xr;ωJ(0)(c29)J(1c)).\displaystyle\hskip 28.45274pt\text{\eqref{Lminus} for both of $L^{\pm}(I_{N})$, and some }(x,y)\in X_{r};\ \omega\notin J^{(0)}(c_{29})\cup J^{(1c)}\Bigg{)}.

Here the first inequality uses that

T^(p^γ(N),p^γ(N+1))ΥT^(ΓN,int,)+ΥT^(ΓN,int,+)+6c29logr,\hat{T}(\hat{p}^{\gamma(N)},\hat{p}^{\gamma(N+1)})\leq\Upsilon_{\hat{T}}\left(\Gamma^{N,int,-}\right)+\Upsilon_{\hat{T}}\left(\Gamma^{N,int,+}\right)+6c_{29}\log r,

and that from (4.126), (4.121), and then (4.6),

Sj1\displaystyle-S_{j_{1}} (ΓN,full,)Sj1(ΓN,full,+)+δμ(ΥEuc(ΓN,full)|p^γ(N+1)p^γ(N)|)\displaystyle\left(\Gamma^{N,full,-}\right)-S_{j_{1}}\left(\Gamma^{N,full,+}\right)+\delta\mu\Big{(}\Upsilon_{Euc}\left(\Gamma^{N,full}\right)-|\hat{p}^{\gamma(N+1)}-\hat{p}^{\gamma(N)}|\Big{)}
6Aj13(ΓN,full,)6Aj13(ΓN,full,+)+109δμ(ΥEuc(ΓN,full)|p^γ(N+1)p^γ(N)|)+12C56\displaystyle\leq-6A_{j_{1}}^{3}(\Gamma^{N,full,-})-6A_{j_{1}}^{3}(\Gamma^{N,full,+})+\frac{10}{9}\delta\mu\Big{(}\Upsilon_{Euc}\left(\Gamma^{N,full}\right)-|\hat{p}^{\gamma(N+1)}-\hat{p}^{\gamma(N)}|\Big{)}+12C_{56}
6Aj13(ΓN,full,)6Aj13(ΓN,full,+)+1027μ[ΥEuc(ΓN,full)ΥEuc(ΓN,int)]+12C56\displaystyle\leq-6A_{j_{1}}^{3}(\Gamma^{N,full,-})-6A_{j_{1}}^{3}(\Gamma^{N,full,+})+\frac{10}{27}\mu\Big{[}\Upsilon_{Euc}\left(\Gamma^{N,full}\right)-\Upsilon_{Euc}\left(\Gamma^{N,int}\right)\Big{]}+12C_{56}
(4.128) 6Aj13(ΓN,full,)6Aj13(ΓN,full,+)+Υh(ΓN,full)Υh(ΓN,int)+18C56.\displaystyle\leq-6A_{j_{1}}^{3}(\Gamma^{N,full,-})-6A_{j_{1}}^{3}(\Gamma^{N,full,+})+\Upsilon_{h}\left(\Gamma^{N,full}\right)-\Upsilon_{h}\left(\Gamma^{N,int}\right)+18C_{56}.

For the ±\pm in the last event in (4.127), the - applies to γ(N)+1iγ(N)+3\gamma(N)+1\leq i\leq\gamma(N)+3 and the ++ applies to γ(N)+5iγ(N+1)\gamma(N)+5\leq i\leq\gamma(N+1). An application of Lemma 4.7(ii) and (iii) with j=j11j=j_{1}-1, followed by summing over ±\ell^{\pm}, bounds the last (tracking–failure) probability in (4.127) by

[=1j12C72(2δχ2+1)j11(λδβ2)j11exp(C73(λδχ1)j112j11t)]2\displaystyle\left[\sum_{\ell=1}^{j_{1}-2}C_{72}\left(\frac{2}{\delta^{\chi_{2}+1}}\right)^{j_{1}-1-\ell}\left(\frac{\lambda\delta}{\beta^{2}}\right)^{j_{1}-1}\exp\left(-C_{73}\left(\frac{\lambda}{\delta^{\chi_{1}}}\right)^{j_{1}-1}2^{j_{1}-1-\ell}t\right)\right]^{2}
(4.129) c36(λδβ2)2(j11)exp(C73(λδχ1)j11t).\displaystyle\qquad\leq c_{36}\left(\frac{\lambda\delta}{\beta^{2}}\right)^{2(j_{1}-1)}\exp\left(-C_{73}\left(\frac{\lambda}{\delta^{\chi_{1}}}\right)^{j_{1}-1}t\right).

Case 3b. The bowed case (second option in (4.33)) for both L±(I)L^{\pm}(I), with V(N)<6V(N)<6. This means we have at least one of L±(IN)=j11L^{\pm}(I_{N})=j_{1}-1. If for example L(IN)=j11L^{-}(I_{N})=j_{1}-1, then what were in Case 3a the two points p^γ(N)+1,p^γ(N)+2\hat{p}^{\gamma(N)+1},\hat{p}^{\gamma(N)+2} are now the same point, so effectively there is no separate point p^γ(N)+1\hat{p}^{\gamma(N)+1}. Instead we have only the equivalent of p^γ(N),p^γ(N)+2,p^γ(N)+3\hat{p}^{\gamma(N)},\hat{p}^{\gamma(N)+2},\hat{p}^{\gamma(N)+3}, so joining 4–paths become joining 3–paths. This has no significant effect on the arguments, including Lemma 4.7, other than some simplifications, and the bound in (4.6) still applies for the corresponding contribution to the tracking–failure probability (4.6):

P(T^(p^γ(N),p^γ(N+1))ΥT^(ΓN,full)Sj1(ΓN,full,)+Sj1(ΓN,full,+)\displaystyle P\Bigg{(}\hat{T}(\hat{p}^{\gamma(N)},\hat{p}^{\gamma(N+1)})-\Upsilon_{\hat{T}}\left(\Gamma^{N,full}\right)\geq S_{j_{1}}\left(\Gamma^{N,full,-}\right)+S_{j_{1}}\left(\Gamma^{N,full,+}\right)
+δμ(|p^γ(N+1)p^γ(N)|ΥEuc(ΓN,full)) for some N with V(N)<6\displaystyle\hskip 17.07182pt+\delta\mu\Big{(}|\hat{p}^{\gamma(N+1)}-\hat{p}^{\gamma(N)}|-\Upsilon_{Euc}\left(\Gamma^{N,full}\right)\Big{)}\text{ for some $N$ with $V(N)<6$}
and INI_{N} long non–terminal (j11)(j_{1}-1)th–scale, in the bowed case of (4.33)
for both of L±(IN), and for some (x,y)Xr;ωJ(0)(c29)J(1c))\displaystyle\hskip 17.07182pt\text{for both of $L^{\pm}(I_{N})$, and for some }(x,y)\in X_{r};\ \omega\notin J^{(0)}(c_{29})\cup J^{(1c)}\Bigg{)}
(4.130) c36(λδβ2)2(j11)exp(C73(λδχ1)j11t).\displaystyle\leq c_{36}\left(\frac{\lambda\delta}{\beta^{2}}\right)^{2(j_{1}-1)}\exp\left(-C_{73}\left(\frac{\lambda}{\delta^{\chi_{1}}}\right)^{j_{1}-1}t\right).

Case 3c. The forward case (first option in (4.33)) for both L±(IN)L^{\pm}(I_{N}). Here we have V(N)=4V(N)=4 as there are only inner joining points, at distance δj1r\delta^{j_{1}}r from each end of INI_{N}. As before the direct path is p^γ(N)p^γ(N+1)\hat{p}^{\gamma(N)}\to\hat{p}^{\gamma(N+1)}, and the full path is

ΓN,full:p^γ(N)p^γ(N)+1p^γ(N)+4p^γ(N+1);{\color[rgb]{1,0,0}\Gamma^{N,full}}:\ \hat{p}^{\gamma(N)}\to\hat{p}^{\gamma(N)+1}\to\cdots\to\hat{p}^{\gamma(N)+4}\to\hat{p}^{\gamma(N+1)};

by (4.64), for ωJ(0)(c29)\omega\notin J^{(0)}(c_{29}) we have

(4.131) ΥT^(ΓN,full)T^(p^γ(N),p^γ(N+1))4c29logr.\Upsilon_{\hat{T}}\left(\Gamma^{N,full}\right)-\hat{T}(\hat{p}^{\gamma(N)},\hat{p}^{\gamma(N+1)})\geq-4c_{29}\log r.

We claim that in the forward case we have

(4.132) Sj1(ΓN,full)δμ(ΥEuc(ΓN,full)|p^γ(N+1)p^γ(N)|)+4c29logr.S_{j_{1}}\left(\Gamma^{N,full}\right)\geq\delta\mu\Big{(}\Upsilon_{Euc}\left(\Gamma^{N,full}\right)-|\hat{p}^{\gamma(N+1)}-\hat{p}^{\gamma(N)}|\Big{)}+4c_{29}\log r.

By (4.131), this means that in the forward case there is no tracking failure:

P(ΥT^(ΓN,full)T^(p^γ(N),p^γ(N+1))Sj1(ΓN,full)\displaystyle P\Bigg{(}\Upsilon_{\hat{T}}\left(\Gamma^{N,full}\right)-\hat{T}(\hat{p}^{\gamma(N)},\hat{p}^{\gamma(N+1)})\leq-S_{j_{1}}\left(\Gamma^{N,full}\right)
+δμ(ΥEuc(ΓN,full)|p^γ(N+1)p^γ(N)|) for some N with\displaystyle\hskip 17.07182pt+\delta\mu\Big{(}\Upsilon_{Euc}\left(\Gamma^{N,full}\right)-|\hat{p}^{\gamma(N+1)}-\hat{p}^{\gamma(N)}|\Big{)}\text{ for some $N$ with}
INI_{N} long non–terminal (j11)(j_{1}-1)th–scale, in the forward case of (4.33)
(4.133) for both of L±(IN), and for some (x,y)Xr;ωJ(0)(c29)J(1c))=0.\displaystyle\hskip 17.07182pt\text{for both of $L^{\pm}(I_{N})$, and for some }(x,y)\in X_{r};\ \omega\notin J^{(0)}(c_{29})\cup J^{(1c)}\Bigg{)}=0.

To prove (4.132), we first observe that from the definition (4.76),

(4.134) Sj1(ΓN,full)14(λ7)j1(t(p^γ(N))+t(p^γ(N+1))σr.\displaystyle S_{j_{1}}\left(\Gamma^{N,full}\right)\geq\frac{1}{4}\left(\frac{\lambda}{7}\right)^{j_{1}}\left(t^{*}(\hat{p}^{\gamma(N)})+t^{*}(\hat{p}^{\gamma(N+1)}\right)\sigma_{r}.

From (4.20) and (4.33), since k<j11k<j_{1}-1,

ΥEuc\displaystyle\Upsilon_{Euc} (ΓN,full)|p^γ(N+1)p^γ(N)|\displaystyle\left(\Gamma^{N,full}\right)-|\hat{p}^{\gamma(N+1)}-\hat{p}^{\gamma(N)}|
12i=γ(N)+1γ(N+1)|(p^iwi)(p^i1wi1)|2|wiwi1|\displaystyle\leq\frac{1}{2}\sum_{i=\gamma(N)+1}^{\gamma(N+1)}\frac{|(\hat{p}^{i}-w_{\perp}^{i})-(\hat{p}^{i-1}-w_{\perp}^{i-1})|^{2}}{|w_{\perp}^{i}-w_{\perp}^{i-1}|}
(12δ)[|p^γ(N)+1wγ(N)+1|2δj1r+(|p^γ(N)+1wγ(N)+1|+|p^γ(N)+2wγ(N)+2|)2(1δ)δj11r\displaystyle\leq(1-2\delta)\Bigg{[}\frac{|\hat{p}^{\gamma(N)+1}-w_{\perp}^{\gamma(N)+1}|^{2}}{\delta^{j_{1}}r}+\frac{(|\hat{p}^{\gamma(N)+1}-w_{\perp}^{\gamma(N)+1}|+|\hat{p}^{\gamma(N)+2}-w_{\perp}^{\gamma(N)+2}|)^{2}}{(1-\delta)\delta^{j_{1}-1}r}
+(|p^γ(N)+2wγ(N)+2|+|p^γ(N)+3wγ(N)+3|)2(12δ)10δk+1r\displaystyle\hskip 56.9055pt+\frac{(|\hat{p}^{\gamma(N)+2}-w_{\perp}^{\gamma(N)+2}|+|\hat{p}^{\gamma(N)+3}-w_{\perp}^{\gamma(N)+3}|)^{2}}{(1-2\delta)10\delta^{k+1}r}
+(|p^γ(N)+3wγ(N)+3|+|p^γ(N)+4wγ(N)+4|)2(1δ)δj11r+|p^γ(N)+4wγ(N)+4|2δj1r]\displaystyle\hskip 56.9055pt+\frac{(|\hat{p}^{\gamma(N)+3}-w_{\perp}^{\gamma(N)+3}|+|\hat{p}^{\gamma(N)+4}-w_{\perp}^{\gamma(N)+4}|)^{2}}{(1-\delta)\delta^{j_{1}-1}r}+\frac{|\hat{p}^{\gamma(N)+4}-w_{\perp}^{\gamma(N)+4}|^{2}}{\delta^{j_{1}}r}\Bigg{]}
|p^γ(N)+1wγ(N)+1|2δj1r+|p^γ(N)+4wγ(N)+4|2δj1r+6δj11rmax1i4|p^γ(N)+iwγ(N)+i|2\displaystyle\leq\frac{|\hat{p}^{\gamma(N)+1}-w_{\perp}^{\gamma(N)+1}|^{2}}{\delta^{j_{1}}r}+\frac{|\hat{p}^{\gamma(N)+4}-w_{\perp}^{\gamma(N)+4}|^{2}}{\delta^{j_{1}}r}+\frac{6}{\delta^{j_{1}-1}r}\max_{1\leq i\leq 4}|\hat{p}^{\gamma(N)+i}-w_{\perp}^{\gamma(N)+i}|^{2}
(4.135) 1+6δ16μ(λ7)j1(t(p^γ(N))+t(p^γ(N+1))σr.\displaystyle\leq\frac{1+6\delta}{16\mu}\left(\frac{\lambda}{7}\right)^{j_{1}}\left(t^{*}(\hat{p}^{\gamma(N)})+t^{*}(\hat{p}^{\gamma(N+1)}\right)\sigma_{r}.

Since (4.16) ensures the right side of (4.134) is much larger than logr\log r, the claim (4.132) follows from (4.134) and (4.6).

Case 3d. The totally unbowed case (third option in (4.33)) for both L±(IN)L^{\pm}(I_{N}). Here we have V(N)=4V(N)=4 as there are the sandwiching hyperplanes at distance δj1r\delta^{j_{1}}r from each end of INI_{N}, and inner joining hyperplanes at distance δk+1r\delta^{k+1}r from each end, with k+1j11k+1\leq j_{1}-1 such that INI_{N} is of kkth–scale length; there are no outer joining hyperplanes. See Figure 9. From (4.31) (valid now for k+1k+1 in place of +1\ell+1) and (4.33), this means that

|p^γ(N)+2wγ(N)+2|2δk+1r\displaystyle\frac{|\hat{p}^{\gamma(N)+2}-w_{\perp}^{\gamma(N)+2}|^{2}}{\delta^{k+1}r} 12max(2j1k1σ(δk+1r)σ(δj1r)|p^γ(N)+1wγ(N)+1|2δj1r,\displaystyle\geq\frac{1}{2}\max\Bigg{(}2^{j_{1}-k-1}\frac{\sigma(\delta^{k+1}r)}{\sigma(\delta^{j_{1}}r)}\frac{|\hat{p}^{\gamma(N)+1}-w_{\perp}^{\gamma(N)+1}|^{2}}{\delta^{j_{1}}r},
(4.136) 2j1k2σ(δk+1r)σ(δj11r)δ16μ(λ7)j1t(p^γ(N))σr).\displaystyle\hskip 51.21504pt2^{j_{1}-k-2}\frac{\sigma(\delta^{k+1}r)}{\sigma(\delta^{j_{1}-1}r)}\frac{\delta}{16\mu}\left(\frac{\lambda}{7}\right)^{j_{1}}t^{*}(\hat{p}^{\gamma(N)})\sigma_{r}\Bigg{)}.

Here the second term in the max comes from the fact that to come under the third (totally unbowed) option in (4.33), we must have 2k+1κ(k+1)2j11κ(j11)2^{k+1}\kappa(k+1)\geq 2^{j_{1}-1}\kappa(j_{1}-1). We note that the definition of the totally unbowed case gives (4.6) for w^i\hat{w}^{i} in place of wiw_{\perp}^{i}, but by (4.19) this only changes each of the 4 terms in (4.6) by a factor 1+o(1)1+o(1) as rr\to\infty, so we have accounted for this via the factor 1/2 in front of the max. The bound (4.6) is for the left end of INI_{N}; a symmetric bound is valid for the right end. As before, the direct path is p^γ(N)p^γ(N+1)\hat{p}^{\gamma(N)}\to\hat{p}^{\gamma(N+1)}, and the full path is

ΓN,full:p^γ(N)p^γ(N)+1p^γ(N)+4p^γ(N+1),{\color[rgb]{1,0,0}\Gamma^{N,full}}:\ \hat{p}^{\gamma(N)}\to\hat{p}^{\gamma(N)+1}\to\cdots\to\hat{p}^{\gamma(N)+4}\to\hat{p}^{\gamma(N+1)},

but this time the intermediate path is

ΓN,int:wγ(N)wγ(N)+1wγ(N)+4wγ(N+1){\color[rgb]{1,0,0}\Gamma^{N,int}}:\ w_{\perp}^{\gamma(N)}\to w_{\perp}^{\gamma(N)+1}\to\cdots\to w_{\perp}^{\gamma(N)+4}\to w_{\perp}^{\gamma(N+1)}

These points are collinear so ΥEuc(ΓN,int)=|p^γ(N+1)p^γ(N)|\Upsilon_{Euc}(\Gamma^{N,int})=|\hat{p}^{\gamma(N+1)}-\hat{p}^{\gamma(N)}|.

Refer to caption
Figure 9. A long (j11)(j_{1}-1)th–scale interval IN=[a,b]I_{N}=[a,b] of kkth–scale length with the totally unbowed case, with L(In)=k+1L^{-}(I_{n})=k+1, showing the full path (black) and intermediate path (gray.) The full path has marked points at the p^γ(N)+i\hat{p}^{\gamma(N)+i}.

We use a special allocation for the totally unbowed case, the same for all 10 links of ΓN,full\Gamma^{N,full} and ΓN,int\Gamma^{N,int}, defined (when INI_{N} is of kkth–scale length) as

Aj4(ΓN,full)=δμ540(|p^γ(N)+2wγ(N)+2|2δk+1r+|p^γ(N)+3wγ(N)+3|2δk+1r+λj|(p^γ(N+1)p^γ(N))|23δkr).{\color[rgb]{1,0,0}A_{j}^{4}(\Gamma^{N,full})}=\frac{\delta\mu}{540}\left(\frac{|\hat{p}^{\gamma(N)+2}-w_{\perp}^{\gamma(N)+2}|^{2}}{\delta^{k+1}r}+\frac{|\hat{p}^{\gamma(N)+3}-w_{\perp}^{\gamma(N)+3}|^{2}}{\delta^{k+1}r}+\lambda^{j}\frac{|(\hat{p}^{\gamma(N+1)}-\hat{p}^{\gamma(N)})^{*}|^{2}}{3\delta^{k}r}\right).

Now ΥEuc(ΓN,int)=|p^γ(N+1)p^γ(N)|\Upsilon_{Euc}\left(\Gamma^{N,int}\right)=|\hat{p}^{\gamma(N+1)}-\hat{p}^{\gamma(N)}| so by Lemma 3.6,

Υh(ΓN,full)Υh(ΓN,int)μ2[ΥEuc(ΓN,full)|p^γ(N+1)p^γ(N)|]4C56.\Upsilon_{h}\left(\Gamma^{N,full}\right)-\Upsilon_{h}\left(\Gamma^{N,int}\right)\geq\frac{\mu}{2}\Big{[}\Upsilon_{Euc}\left(\Gamma^{N,full}\right)-|\hat{p}^{\gamma(N+1)}-\hat{p}^{\gamma(N)}|\Big{]}-4C_{56}.

while from(4.20),

(4.137) Sj1(ΓN,full)λj1δμ18[ΥEuc(ΓN,full)(p^γ(N+1)p^γ(N))1]+13(λ7)j1tσr.S_{j_{1}}(\Gamma^{N,full})\geq\lambda^{j_{1}}\frac{\delta\mu}{18}\Big{[}\Upsilon_{Euc}\left(\Gamma^{N,full}\right)-(\hat{p}^{\gamma(N+1)}-\hat{p}^{\gamma(N)})_{1}\Big{]}+\frac{1}{3}\left(\frac{\lambda}{7}\right)^{j_{1}}t\sigma_{r}.

From these we get deterministic tracking:

10\displaystyle 10 Aj14(ΓN,full)\displaystyle A_{j_{1}}^{4}(\Gamma^{N,full})
δμ54(3[ΥEuc(ΓN,full)|p^γ(N+1)p^γ(N)|]\displaystyle\leq\frac{\delta\mu}{54}\Bigg{(}3\Big{[}\Upsilon_{Euc}\left(\Gamma^{N,full}\right)-|\hat{p}^{\gamma(N+1)}-\hat{p}^{\gamma(N)}|\Big{]}
+3λj1[|p^γ(N+1)p^γ(N)|(p^γ(N+1)p^γ(N))1])\displaystyle\hskip 56.9055pt+3\lambda^{j_{1}}\Big{[}|\hat{p}^{\gamma(N+1)}-\hat{p}^{\gamma(N)}|-(\hat{p}^{\gamma(N+1)}-\hat{p}^{\gamma(N)})_{1}\Big{]}\Bigg{)}
(12δ)μ[ΥEuc(ΓN,full)|p^γ(N+1)p^γ(N)|]\displaystyle\leq\left(\frac{1}{2}-\delta\right)\mu\Big{[}\Upsilon_{Euc}\left(\Gamma^{N,full}\right)-|\hat{p}^{\gamma(N+1)}-\hat{p}^{\gamma(N)}|\Big{]}
+λj1δμ18[ΥEuc(ΓN,full)(p^γ(N+1)p^γ(N))1]\displaystyle\hskip 56.9055pt+\lambda^{j_{1}}\frac{\delta\mu}{18}\Big{[}\Upsilon_{Euc}\left(\Gamma^{N,full}\right)-(\hat{p}^{\gamma(N+1)}-\hat{p}^{\gamma(N)})_{1}\Big{]}
Υh(ΓN,full)Υh(ΓN,int)δμ[ΥEuc(ΓN,full)|p^γ(N+1)p^γ(N)|]\displaystyle\leq\Upsilon_{h}\left(\Gamma^{N,full}\right)-\Upsilon_{h}\left(\Gamma^{N,int}\right)-\delta\mu\Big{[}\Upsilon_{Euc}\left(\Gamma^{N,full}\right)-|\hat{p}^{\gamma(N+1)}-\hat{p}^{\gamma(N)}|\Big{]}
(4.138) +Sj1(ΓN,full)16(λ7)j1tσr.\displaystyle\hskip 56.9055pt+S_{j_{1}}(\Gamma^{N,full})-\frac{1}{6}\left(\frac{\lambda}{7}\right)^{j_{1}}t\sigma_{r}.

We now can establish the analog of (4.116) and (4.127) for the totally–unbowed–case contribution to the tracking–failure probability (4.6), using (4.64) and (4.6):

P(ΥT^(ΓN,full)T^(p^γ(N),p^γ(N+1))Sj1(ΓN,full)+δμ(ΥEuc(ΓN,full)|p^γ(N+1)p^γ(N)|)\displaystyle P\Bigg{(}\Upsilon_{\hat{T}}\left(\Gamma^{N,full}\right)-\hat{T}(\hat{p}^{\gamma(N)},\hat{p}^{\gamma(N+1)})\leq-S_{j_{1}}\left(\Gamma^{N,full}\right)+\delta\mu\Big{(}\Upsilon_{Euc}\left(\Gamma^{N,full}\right)-|\hat{p}^{\gamma(N+1)}-\hat{p}^{\gamma(N)}|\Big{)}
for some NN with INI_{N} long non–terminal (j11)(j_{1}-1)th–scale, in the totally unbowed case of
(4.33) for both of L±(IN), for some (x,y)Xr;ωJ(0)(c29)J(1c))\displaystyle\hskip 17.07182pt\text{\eqref{Lminus} for both of $L^{\pm}(I_{N})$, for some }(x,y)\in X_{r};\ \omega\notin J^{(0)}(c_{29})\cup J^{(1c)}\Bigg{)}
P(ΥT^(ΓN,full)ΥT^(ΓN,int)Υh(ΓN,full)Υh(ΓN,int)10Aj14(ΓN,full)16(λ7)j1tσr\displaystyle\leq P\Bigg{(}\Upsilon_{\hat{T}}\left(\Gamma^{N,full}\right)-\Upsilon_{\hat{T}}\left(\Gamma^{N,int}\right)\leq\Upsilon_{h}\left(\Gamma^{N,full}\right)-\Upsilon_{h}\left(\Gamma^{N,int}\right)-10A_{j_{1}}^{4}(\Gamma^{N,full})-\frac{1}{6}\left(\frac{\lambda}{7}\right)^{j_{1}}t\sigma_{r}
+4c29logr for some N with IN long non–terminal (j11)th–scale, in the totally unbowed\displaystyle\hskip 34.14322pt+4c_{29}\log r\text{ for some $N$ with $I_{N}$ long non--terminal $(j_{1}-1)$th--scale, in the totally unbowed}
case of (4.33) for both of L±(IN), for some (x,y)Xr;ωJ(0)(c29)J(1c))\displaystyle\hskip 34.14322pt\text{case of \eqref{Lminus} for both of $L^{\pm}(I_{N})$, for some }(x,y)\in X_{r};\ \omega\notin J^{(0)}(c_{29})\cup J^{(1c)}\Bigg{)}
P(|T^(p^γ(N)+i1,p^γ(N)+i)h(|p^γ(N)+ip^γ(N)+i1|)|Aj14(ΓN,full) or\displaystyle\leq P\Bigg{(}\Big{|}\hat{T}(\hat{p}^{\gamma(N)+i-1},\hat{p}^{\gamma(N)+i})-h\big{(}|\hat{p}^{\gamma(N)+i}-\hat{p}^{\gamma(N)+i-1}|\big{)}\Big{|}\geq A_{j_{1}}^{4}(\Gamma^{N,full})\text{ or}
|T^(wγ(N)+i1,wγ(N)+i)h(|wγ(N)+iwγ(N)+i1|)|Aj14(ΓN,full) for some 1i5\displaystyle\hskip 34.14322pt\Big{|}\hat{T}(w_{\perp}^{\gamma(N)+i-1},w_{\perp}^{\gamma(N)+i})-h\big{(}|w_{\perp}^{\gamma(N)+i}-w_{\perp}^{\gamma(N)+i-1}|\big{)}\Big{|}\geq A_{j_{1}}^{4}(\Gamma^{N,full})\text{ for some $1\leq i\leq 5$}
and some NN with INI_{N} long non–terminal (j11)(j_{1}-1)th–scale, in the totally unbowed case
(4.139) of (4.33) for both of L±(IN), for some (x,y)Xr;ωJ(0)(c29)J(1c)).\displaystyle\hskip 34.14322pt\text{of \eqref{Lminus} for both of $L^{\pm}(I_{N})$, for some }(x,y)\in X_{r};\ \omega\notin J^{(0)}(c_{29})\cup J^{(1c)}\Bigg{)}.

Here we have again used j1=O(loglogr)j_{1}=O(\log\log r), from (4.16), to ensure (λ/7)j1tσr/64c29logr(\lambda/7)^{j_{1}}t\sigma_{r}/6\geq 4c_{29}\log r. With the second term of the max in (4.6) in mind, suppose that for some NN and some ν,m0,m1\nu,m_{0},m^{*}\geq 1 we have

(4.140) (2ν1t)1/2Δr<|(p^γ(N))|(2νt)1/2Δr,\displaystyle(2^{\nu-1}t)^{1/2}\Delta_{r}<|(\hat{p}^{\gamma(N)})^{*}|\leq(2^{\nu}t)^{1/2}\Delta_{r},
2m012j1k2σ(δk+1r)σ(δj11r)δ16μ(λ7)j1t(p^γ(N))σr\displaystyle 2^{m_{0}-1}2^{j_{1}-k-2}\frac{\sigma(\delta^{k+1}r)}{\sigma(\delta^{j_{1}-1}r)}\frac{\delta}{16\mu}\left(\frac{\lambda}{7}\right)^{j_{1}}t^{*}(\hat{p}^{\gamma(N)})\sigma_{r} |p^γ(N)+2wγ(N)+2|2δk+1r+|p^γ(N)+3wγ(N)+3|2δk+1r\displaystyle\leq\frac{|\hat{p}^{\gamma(N)+2}-w_{\perp}^{\gamma(N)+2}|^{2}}{\delta^{k+1}r}+\frac{|\hat{p}^{\gamma(N)+3}-w_{\perp}^{\gamma(N)+3}|^{2}}{\delta^{k+1}r}
(4.141) 2m02j1k2σ(δk+1r)σ(δj11r)δ16μ(λ7)j1t(p^γ(N))σr,\displaystyle\leq 2^{m_{0}}2^{j_{1}-k-2}\frac{\sigma(\delta^{k+1}r)}{\sigma(\delta^{j_{1}-1}r)}\frac{\delta}{16\mu}\left(\frac{\lambda}{7}\right)^{j_{1}}t^{*}(\hat{p}^{\gamma(N)})\sigma_{r},

and

2m12j1k2σ(δk+1r)σ(δj11r)δ16μ(λ7)j1t(p^γ(N))σr\displaystyle 2^{m^{*}-1}2^{j_{1}-k-2}\frac{\sigma(\delta^{k+1}r)}{\sigma(\delta^{j_{1}-1}r)}\frac{\delta}{16\mu}\left(\frac{\lambda}{7}\right)^{j_{1}}t^{*}(\hat{p}^{\gamma(N)})\sigma_{r} λj11|(p^γ(N+1)p^γ(N))|2δkr\displaystyle\leq\lambda^{j_{1}-1}\frac{|(\hat{p}^{\gamma(N+1)}-\hat{p}^{\gamma(N)})^{*}|^{2}}{\delta^{k}r}
(4.142) 2m2j1k2σ(δk+1r)σ(δj11r)δ16μ(λ7)j1t(p^γ(N))σr\displaystyle\leq 2^{m^{*}}2^{j_{1}-k-2}\frac{\sigma(\delta^{k+1}r)}{\sigma(\delta^{j_{1}-1}r)}\frac{\delta}{16\mu}\left(\frac{\lambda}{7}\right)^{j_{1}}t^{*}(\hat{p}^{\gamma(N)})\sigma_{r}

Then using (1.10),

(4.143) Aj14(ΓN,full)σ(δkr)\displaystyle\frac{A_{j_{1}}^{4}(\Gamma^{N,full})}{\sigma(\delta^{k}r)} c37(2m0+2m)2j1k(λ7δχ1)j12νt,\displaystyle\geq c_{37}(2^{m_{0}}+2^{m^{*}})2^{j_{1}-k}\left(\frac{\lambda}{7\delta^{\chi_{1}}}\right)^{j_{1}}2^{\nu}t,

and by Lemma 3.2, for every possible value (u1,,u6)(u^{1},\dots,u^{6}) of (p^γ(N),,p^γ(N+1))(\hat{p}^{\gamma(N)},\dots,\hat{p}^{\gamma(N+1)}) and every link (ui1,ui)(u^{i-1},u^{i}), we have

(4.144) P(|T^(uiui1)h(|ui1ui|)|Aj14(u1,,u6))C44exp(C45Aj14(u1,,u6)σ(δkr)).P\Bigg{(}\Big{|}\hat{T}(u^{i}-u^{i-1})-h\big{(}|u^{i-1}-u^{i}|\big{)}\Big{|}\geq A_{j_{1}}^{4}(u^{1},\dots,u^{6})\Bigg{)}\leq C_{44}\exp\left(-C_{45}\frac{A_{j_{1}}^{4}(u^{1},\dots,u^{6})}{\sigma(\delta^{k}r)}\right).

It is important here that the lower bound (4.143) not depend on the length scale kk of INI_{N}, except through the factor 2j1k2^{j_{1}-k} which is always at least 1. Similarly to the entropy bounds in Lemmas 4.6 and 4.7, and in Case 3c, we see that the number of possible choices of ΓN,full\Gamma^{N,full} satisfying (4.140)—(4.6) is at most

(4.145) c38δ2j1(2νtβ2j1)(d1)/2(2m2ν(2δ1+χ2)j1k(δ7β2)j1)(d1)/2(2m02ν(2δ1+χ2)j1k(λδ7β2)j1t)2(d1).\frac{c_{38}}{\delta^{2j_{1}}}\cdot\left(\frac{2^{\nu}t}{\beta^{2j_{1}}}\right)^{(d-1)/2}\cdot\left(2^{m^{*}}2^{\nu}\left(\frac{2}{\delta^{1+\chi_{2}}}\right)^{j_{1}-k}\left(\frac{\delta}{7\beta^{2}}\right)^{j_{1}}\right)^{(d-1)/2}\cdot\Bigg{(}2^{m_{0}}2^{\nu}\left(\frac{2}{\delta^{1+\chi_{2}}}\right)^{j_{1}-k}\left(\frac{\lambda\delta}{7\beta^{2}}\right)^{j_{1}}t\Bigg{)}^{2(d-1)}.

Here the dots separate bounds for the number of choices (up to a constant) of endpoint hyperplanes ((p^γ(N))1,(p^γ(N+1))1)((\hat{p}^{\gamma(N)})_{1},(\hat{p}^{\gamma(N+1)})_{1}) and then of p^γ(N),p^γ(N+1)\hat{p}^{\gamma(N)},\hat{p}^{\gamma(N+1)}, and finally of (p^γ(N)+1,,p^γ(N)+4)(\hat{p}^{\gamma(N)+1},\dots,\hat{p}^{\gamma(N)+4}). For |(p^γ(N))|t1/2Δr|(\hat{p}^{\gamma(N)})^{*}|\leq t^{1/2}\Delta_{r}, (4.143) and (4.145) remain valid for m0,m1m_{0},m^{*}\geq 1 with 2ν2^{\nu} replaced by 1. For p^γ(N),p^γ(N+1)\hat{p}^{\gamma(N)},\hat{p}^{\gamma(N+1)} with

λj11|(p^γ(N+1)p^γ(N))|2δkr2j1k2σ(δk+1r)σ(δj11r)δ16μ(λ7)j1t(p^γ(N))σr\lambda^{j_{1}-1}\frac{|(\hat{p}^{\gamma(N+1)}-\hat{p}^{\gamma(N)})^{*}|^{2}}{\delta^{k}r}\\ \leq 2^{j_{1}-k-2}\frac{\sigma(\delta^{k+1}r)}{\sigma(\delta^{j_{1}-1}r)}\frac{\delta}{16\mu}\left(\frac{\lambda}{7}\right)^{j_{1}}t^{*}(\hat{p}^{\gamma(N)})\sigma_{r}

(i.e. too small to satisfy (4.6) for any m1m^{*}\geq 1) they remain valid with 2m2^{m^{*}} replaced by 1. (Note that from the definition (4.33) of the totally unbowed case, m01m_{0}\geq 1 covers all cases.) Hence as in previous cases, inserting the bound (4.143) into (4.144), multiplying by the entropy factor (4.145), and summing over ν0,m0,m01\nu\geq 0,m^{*}\geq 0,m_{0}\geq 1, and kj12k\leq j_{1}-2 we get that the right side of (4.139) is bounded by

(4.146) c39(2λ75β12δ5χ2)(d1)j1/2exp(c40(λ7δχ1)j1t).c_{39}\left(\frac{2\lambda}{7^{5}\beta^{12}\delta^{5\chi_{2}}}\right)^{(d-1)j_{1}/2}\exp\left(-c_{40}\left(\frac{\lambda}{7\delta^{\chi_{1}}}\right)^{j_{1}}t\right).

We have thus bounded the totally–unbowed–case contribution to the tracking–failure probability (4.6).

Case 3e. Mixed cases, which we subdivide as mixed forward case, mixed bowed case, and mixed totally unbowed case, according to the condition at the dominant end (as defined after (4.36)) of INI_{N}. In previous cases we have assumed that the same option in (4.33) occurs at both ends of the interval INI_{N}, but this is strictly for clarity of exposition. As explained in Step 1, in mixed cases we have joining hyperplanes only at the dominant end of INI_{N}. The situation is symmetric so let us assume the left end is dominant. In mixed cases the full path in INI_{N} is always p^γ(N)p^γ(N)+1p^γ(N+1)\hat{p}^{\gamma(N)}\to\hat{p}^{\gamma(N)+1}\to\cdots\to\hat{p}^{\gamma(N+1)}, with γ(N+1)γ(N)=4\gamma(N+1)-\gamma(N)=4 or 5. Suppose INI_{N} is a (j11)(j_{1}-1)th–scale interval of kkth–scale length. The intermediate paths are analogous to those in cases 3a—3d, as follows. If the dominant left end has the forward case then there is one joining hyperplane in INI_{N}, containing p^γ(N)+2\hat{p}^{\gamma(N)+2}, at the left end at distance δj1+1r\delta^{j_{1}+1}r from p^γ(N)\hat{p}^{\gamma(N)}, and the intermediate path is

ΓN,int:p^γ(N)wγ(N)+1p^γ(N)+2p^γ(N)+3p^γ(N+1).{\color[rgb]{1,0,0}\Gamma^{N,int}}:\ \hat{p}^{\gamma(N)}\to w_{\perp}^{\gamma(N)+1}\to\hat{p}^{\gamma(N)+2}\to\hat{p}^{\gamma(N)+3}\to\hat{p}^{\gamma(N+1)}.

If the (dominant) left end has the totally unbowed case then there is one (inner) joining hyperplane in INI_{N}, containing p^γ(N)+2\hat{p}^{\gamma(N)+2}, at the left end at distance δk+1r\delta^{k+1}r from p^γ(N)\hat{p}^{\gamma(N)}, and the intermediate path follows the line from p^γ(N)\hat{p}^{\gamma(N)} to p^γ(N)+1\hat{p}^{\gamma(N)+1}:

ΓN,int:p^γ(N)wγ(N)+1wγ(N)+3p^γ(N+1).{\color[rgb]{1,0,0}\Gamma^{N,int}}:\ \hat{p}^{\gamma(N)}\to w_{\perp}^{\gamma(N)+1}\to\cdots\to w_{\perp}^{\gamma(N)+3}\to\hat{p}^{\gamma(N+1)}.

If the left end has the bowed case with L(N)=<j11L^{-}(N)=\ell<j_{1}-1 then there are two joining hyperplanes in INI_{N}, containing p^γ(N)+2\hat{p}^{\gamma(N)+2} and p^γ(N)+3\hat{p}^{\gamma(N)+3}, at the left end at distances δ+1r\delta^{\ell+1}r and δr\delta^{\ell}r from p^γ(N)\hat{p}^{\gamma(N)}, and the intermediate path is

ΓN,int:p^γ(N)z^γ(N)+1z^γ(N)+2p^γ(N)+3p^γ(N)+4p^γ(N+1);{\color[rgb]{1,0,0}\Gamma^{N,int}}:\ \hat{p}^{\gamma(N)}\to\hat{z}^{\gamma(N)+1}\to\hat{z}^{\gamma(N)+2}\to\hat{p}^{\gamma(N)+3}\to\hat{p}^{\gamma(N)+4}\to\hat{p}^{\gamma(N+1)};

see Figure 8. If the left end has the bowed case with L(N)=j11L^{-}(N)=j_{1}-1 then there is one (inner) joining hyperplane in INI_{N}, containing p^γ(N)+2\hat{p}^{\gamma(N)+2}, at the left end at distance δj11r\delta^{j_{1}-1}r from p^γ(N)\hat{p}^{\gamma(N)}, and the intermediate path is

ΓN,int:p^γ(N)z^γ(N)+1p^γ(N)+2p^γ(N)+3p^γ(N+1),{\color[rgb]{1,0,0}\Gamma^{N,int}}:\ \hat{p}^{\gamma(N)}\to\hat{z}^{\gamma(N)+1}\to\hat{p}^{\gamma(N)+2}\to\hat{p}^{\gamma(N)+3}\to\hat{p}^{\gamma(N+1)},

similar to Figure 8 but with the middle two hyperplanes coinciding. In each case, we define the subpaths ΓN,full,{\color[rgb]{1,0,0}\Gamma^{N,full,-}} and ΓN,int,{\color[rgb]{1,0,0}\Gamma^{N,int,-}} between the left end of the interval and the left inner joining hyperplane. In all cases the arguments are essentially the same as in the analogous non-mixed case, with the addition that for the final transition ending at p^γ(N+1)\hat{p}^{\gamma(N+1)}, one uses (4.38) to bound |p^γ(N+1)1wγ(N+1)1||\hat{p}^{\gamma(N+1)-1}-w_{\perp}^{\gamma(N+1)-1}|. We will not reiterate the arguments here, but simply state that the result is again the analog of (4.116) and (4.127), bounding the mixed–case contribution to the tracking–failure probability (4.6):

P(T^(p^γ(N),p^γ(N+1))ΥT^(ΓN,full)Sj1(ΓN,full)+δμ(|p^γ(N+1)p^γ(N)|ΥEuc(ΓN,full))\displaystyle P\Bigg{(}\hat{T}(\hat{p}^{\gamma(N)},\hat{p}^{\gamma(N+1)})-\Upsilon_{\hat{T}}\left(\Gamma^{N,full}\right)\geq S_{j_{1}}\left(\Gamma^{N,full}\right)+\delta\mu\Big{(}|\hat{p}^{\gamma(N+1)}-\hat{p}^{\gamma(N)}|-\Upsilon_{Euc}\left(\Gamma^{N,full}\right)\Big{)}
+13λj1[tσr+δμ(ΥEuc(Γxyj11,2)(y^x^)1)] for some N with IN long non–terminal\displaystyle\hskip 17.07182pt+\frac{1}{3}\lambda^{j_{1}}\Big{[}t\sigma_{r}+\delta\mu\Big{(}\Upsilon_{Euc}\left(\Gamma_{xy}^{j_{1}-1,2}\right)-(\hat{y}-\hat{x})_{1}\Big{)}\Big{]}\text{ for some $N$ with $I_{N}$ long non--terminal}
(j11)th–scale, in the mixed case of (4.33) for some (x,y)Xr;ωJ(0)(c29)J(1c))\displaystyle\hskip 17.07182pt\text{$(j_{1}-1)$th--scale, in the mixed case of \eqref{Lminus} for some }(x,y)\in X_{r};\ \omega\notin J^{(0)}(c_{29})\cup J^{(1c)}\Bigg{)}
P(|T^(u,v)h(|vu|)|A for some link (u,v) of ΓN,full, or ΓN,int, (or ΓN,full,ΓN,int\displaystyle\leq P\Bigg{(}\Big{|}\hat{T}(u,v)-h(|v-u|)\Big{|}\geq A\text{ for some link $(u,v)$ of $\Gamma^{N,full,-}$ or $\Gamma^{N,int,-}$ (or $\Gamma^{N,full},\Gamma^{N,int}$}
in the mixed totally unbowed case) for some NN with INI_{N} long non–terminal
(4.147) (j11)th–scale, in the mixed case of (4.33) for some(x,y)Xr;ωJ(0)(c29)J(1c)),\displaystyle\hskip 36.98866pt\text{$(j_{1}-1)$th--scale, in the mixed case of \eqref{Lminus} for some}(x,y)\in X_{r};\ \omega\notin J^{(0)}(c_{29})\cup J^{(1c)}\Bigg{)},

where

A={in the mixed forward case for IN,Aj13(ΓN,full,)in the mixed bowed case for IN,Aj14(ΓN,full)in the mixed totally unbowed case for IN.{\color[rgb]{1,0,0}A}=\begin{cases}\infty&\text{in the mixed forward case for $I_{N}$},\\ A_{j_{1}}^{3}(\Gamma^{N,full,-})&\text{in the mixed bowed case for $I_{N}$},\\ A_{j_{1}}^{4}(\Gamma^{N,full})&\text{in the mixed totally unbowed case for $I_{N}$}.\end{cases}

As in Cases 3a–3d, the right side of (4.6), and thus the mixed–case contribution to the tracking–failure event (4.6), is bounded above by

(4.148) f(λ,δ,β)j1exp(c41(λ7δχ1)j1t)f(\lambda,\delta,\beta)^{j_{1}}\exp\left(-c_{41}\left(\frac{\lambda}{7\delta^{\chi_{1}}}\right)^{j_{1}}t\right)

for some f(λ,δ,β){\color[rgb]{1,0,0}f(\lambda,\delta,\beta)}.

We have now bounded all contributions to (4.6), by the sum of (4.117), (4.6), (4.6), (4.6), (4.6), (4.146), and (4.148). From this and (4.6) we have the completion of the (j11)(j_{1}-1)th–scale iteration:

P\displaystyle P (T(x,y)h((yx)1)tσr for some (x,y)Xr)\displaystyle\Big{(}T(x,y)\leq h((y-x)_{1})-t\sigma_{r}\text{ for some }(x,y)\in X_{r}\Big{)}
P(ΥT^(Γxyj11,2)h((yx)1)(15λj1)tσr+7δμλj1(ΥEuc(Γxyj11,0)(y^x^)1)\displaystyle\leq P\Bigg{(}\Upsilon_{\hat{T}}\left(\Gamma_{xy}^{j_{1}-1,2}\right)-h((y-x)_{1})\leq-\left(1-5\lambda^{j_{1}}\right)t\sigma_{r}+7\delta\mu\lambda^{j_{1}}\Big{(}\Upsilon_{Euc}\left(\Gamma_{xy}^{j_{1}-1,0}\right)-(\hat{y}-\hat{x})_{1}\Big{)}
+δμ(ΥEuc(Γxyj11,2)ΥEuc(Γxyj11,0)) for some (x,y)Xr;ωJ(0)(c29)J(1c))\displaystyle\hskip 56.9055pt+\delta\mu\Big{(}\Upsilon_{Euc}\left(\Gamma_{xy}^{j_{1}-1,2}\right)-\Upsilon_{Euc}\left(\Gamma_{xy}^{j_{1}-1,0}\right)\Big{)}\text{ for some }(x,y)\in X_{r};\ \omega\notin J^{(0)}(c_{29})\cup J^{(1c)}\Bigg{)}
(4.149) +c32ec33t+c42exp(c43(λ7δχ1)j1t).\displaystyle\hskip 34.14322pt+c_{32}e^{-c_{33}t}+c_{42}\exp\left(-c_{43}\left(\frac{\lambda}{7\delta^{\chi_{1}}}\right)^{j_{1}}t\right).

As in the comments after (4.3) and (4.5), the increase of the coefficients 4, 6 in (4.3) to be 5, 7 in (4.5), together with an increment to the “length–change” term with coefficient δμ\delta\mu, represent a further reduction taken from the original bound tσrt\sigma_{r} in (1.13), and allocated to bound errors in the second stage of the (j11)(j_{1}-1)th–scale iteration, just completed. In this second stage, however, the increment of the length–change term, due to replacing Γxyj11,1\Gamma_{xy}^{j_{1}-1,1} with Γxyj11,2\Gamma_{xy}^{j_{1}-1,2}, is negative (removing points reduces path length) and may compensate at least in part for the increases from 4, 6 to 5, 7. This compensation, made possible by control of tracking errors, is what allows the total allocation through all iterations to potentially exceed the entire original bound tσrt\sigma_{r}—see (4.162).

4.7. Step 7. Further iterations of coarse–graining.

The further iterations proceed quite similarly to the (j11)(j_{1}-1)th–scale iteration; for the most part, to do the jjth–scale iteration we simply replace j11,j1j_{1}-1,j_{1} throughout by j,j+1j,j+1. We will sketch the (j12)(j_{1}-2)th–scale (third) iteration to make the pattern clear.

For the first stage of the (j12)(j_{1}-2)th–scale iteration, the current marked PG path at the start is Γxyj11,2:b0b1bn+1\Gamma_{xy}^{j_{1}-1,2}:b^{0}\to b^{1}\to\cdots\to b^{n+1}, which we rename Γxyj12,0{\color[rgb]{1,0,0}\Gamma_{xy}^{j_{1}-2,0}}. Letting

Ixy2={i{3,,n2}:bi lies in a non-incidental (j12)th–scale hyperplane in xy}{\color[rgb]{1,0,0}I_{xy}^{2}}=\{i\in\{3,\dots,n-2\}:b^{i}\text{ lies in a non-incidental $(j_{1}-2)$th--scale hyperplane in $\mathcal{H}_{xy}$}\}

we shift each bi,iIxy2b^{i},\,i\in I_{xy}^{2}, to the (j12)(j_{1}-2)th–scale grid, creating the updated marked PG path

Γxyj12,1:b^0b^1b^nb^n+1.{\color[rgb]{1,0,0}\Gamma_{xy}^{j_{1}-2,1}:\hat{b}^{0}\to\hat{b}^{1}\to\cdots\to\hat{b}^{n}\to\hat{b}^{n+1}}.

Removing those bib^{i} which lie in non-terminal (j11)(j_{1}-1)th–scale hyperplanes then creates the marked PG path

Γxyj12,2:ζ0ζ1ζn2ζn2+1,{\color[rgb]{1,0,0}\Gamma_{xy}^{j_{1}-2,2}:\zeta^{0}\to\zeta^{1}\to\cdots\to\zeta^{n_{2}}\to\zeta^{n_{2}+1}},

in which (recalling (4.18)) ζ0=x^,ζn2+1=y^\zeta^{0}=\hat{x},\,\zeta^{n_{2}+1}=\hat{y}, ζ1\zeta^{1} and ζn2\zeta^{n_{2}} lie in terminal j1j_{1}th–scale hyperplanes, ζ2,ζn21\zeta^{2},\zeta^{n_{2}-1} lie in terminal (j11)(j_{1}-1)th–scale hyperplanes, and ζ3,,ζn22\zeta^{3},\dots,\zeta^{n_{2}-2} lie in (j12)(j_{1}-2)th–scale hyperplanes. Noninteraction of shifts again applies (see Step 4), since if bib^{i} and bkb^{k} both lie in (j12)(j_{1}-2)th–scale hyperplanes then there are sandwiching hyperplanes, at least, in between, ensuring |ik|2|i-k|\geq 2. For Nn2N\leq n_{2} we write Γ2,N,full{\color[rgb]{1,0,0}\Gamma^{2,N,full}} for the portion of Γxyj12,1\Gamma_{xy}^{j_{1}-2,1} in the interval (denoted IN2{\color[rgb]{1,0,0}I_{N}^{2}}) from (ζN)1(\zeta^{N})_{1} to (ζN+1)1(\zeta^{N+1})_{1}, and define γ(2,N){\color[rgb]{1,0,0}\gamma(2,N)} by ζN=b^γ(2,N),Nn2+1\zeta^{N}=\hat{b}^{\gamma(2,N)},N\leq n_{2}+1, analogous to γ(N)\gamma(N) used in the previous iteration.

Similarly to (4.100)—(4.102) we have

(4.150) iIxyAj111(Γxyj12,0,i)23λj11[tσr+δμ(ΥEuc(Γxyj12,0)(y^x^)1)],\sum_{i\in I_{xy}}A_{j_{1}-1}^{1}(\Gamma_{xy}^{j_{1}-2,0},i)\leq\frac{2}{3}\lambda^{j_{1}-1}\Big{[}t\sigma_{r}+\delta\mu\Big{(}\Upsilon_{Euc}\left(\Gamma_{xy}^{j_{1}-2,0}\right)-(\hat{y}-\hat{x})_{1}\Big{)}\Big{]},
(4.151) δμ|ΥEuc(Γxyj12,1)ΥEuc(Γxyj12,0)|δλj112[tσr3+δμ(ΥEuc(Γxyj12,0)(y^x^)1)],\delta\mu\Big{|}\Upsilon_{Euc}\left(\Gamma_{xy}^{j_{1}-2,1}\right)-\Upsilon_{Euc}\left(\Gamma_{xy}^{j_{1}-2,0}\right)\Big{|}\leq\frac{\delta\lambda^{j_{1}-1}}{2}\left[\frac{t\sigma_{r}}{3}+\delta\mu\Big{(}\Upsilon_{Euc}(\Gamma_{xy}^{j_{1}-2,0})-(\hat{y}-\hat{x})_{1}\Big{)}\right],

and

(4.152) |Υh(Γxyj12,1)Υh(Γxyj12,0)|λj11[tσr3+δμ(ΥEuc(Γxyj12,0)(y^x^)1)].\Big{|}\Upsilon_{h}\left(\Gamma_{xy}^{j_{1}-2,1}\right)-\Upsilon_{h}\left(\Gamma_{xy}^{j_{1}-2,0}\right)\Big{|}\leq\lambda^{j_{1}-1}\left[\frac{t\sigma_{r}}{3}+\delta\mu\Big{(}\Upsilon_{Euc}(\Gamma_{xy}^{j_{1}-2,0})-(\hat{y}-\hat{x})_{1}\Big{)}\right].

These lead to a tracking bound like (4.5) for the first stage (shifting to the (j12)(j_{1}-2)th–scale grid) using Lemma 4.6:

P\displaystyle P (ΥT^(Γxyj12,0)ΥT^(Γxyj12,1)<iIxy2Aj111(Γxyj12,0,i)+Υh(Γxyj12,0)Υh(Γxyj12,1)\displaystyle\Bigg{(}\Upsilon_{\hat{T}}(\Gamma_{xy}^{j_{1}-2,0})-\Upsilon_{\hat{T}}(\Gamma_{xy}^{j_{1}-2,1})<-\sum_{i\in I_{xy}^{2}}A_{j_{1}-1}^{1}(\Gamma_{xy}^{j_{1}-2,0},i)+\Upsilon_{h}\left(\Gamma_{xy}^{j_{1}-2,0}\right)-\Upsilon_{h}\left(\Gamma_{xy}^{j_{1}-2,1}\right)
for some (x,y)Xr;ωJ(0)(c29)J(1c))\displaystyle\hskip 42.67912pt\text{ for some }(x,y)\in X_{r};\ \omega\notin J^{(0)}(c_{29})\cup J^{(1c)}\Bigg{)}
P(max(|T^(b^i1,b^i)h(|b^ib^i1|)|,|T^(bi1,bi)h(|bibi1|)|)>14Aj111(Γxyj12,0,i)\displaystyle\leq P\Bigg{(}\max\Big{(}\big{|}\hat{T}(\hat{b}^{i-1},\hat{b}^{i})-h(|\hat{b}^{i}-\hat{b}^{i-1}|)\big{|},\big{|}\hat{T}(b^{i-1},b^{i})-h(|b^{i}-b^{i-1}|)\big{|}\Big{)}>\frac{1}{4}A_{j_{1}-1}^{1}(\Gamma_{xy}^{j_{1}-2,0},i)
for some 1in+1 and (x,y)Xr with {i1,i}Ixy2;ωJ(0)(c29)J(1c))\displaystyle\hskip 42.67912pt\text{ for some $1\leq i\leq n+1$ and $(x,y)\in X_{r}$ with $\{i-1,i\}\cap I_{xy}^{2}\neq\emptyset$};\,\omega\notin J^{(0)}(c_{29})\cup J^{(1c)}\Bigg{)}
P(|T^(v,w)h(|wv|)|Aj112(v,w)\displaystyle\leq P\Bigg{(}\big{|}\hat{T}(v,w)-h(|w-v|)\big{|}\geq A_{j_{1}-1}^{2}(v,w)
for some (j11)th–scale transition vw with v,wGr+𝕃j11)\displaystyle\hskip 42.67912pt\text{ for some $(j_{1}-1)$th--scale transition $v\to w$ with }v,w\in G_{r}^{+}\cap\mathbb{L}_{j_{1}-1}\Bigg{)}
(4.153) C70exp(C71(λ7δχ1)j11t).\displaystyle\leq C_{70}\exp\left(-C_{71}\left(\frac{\lambda}{7\delta^{\chi_{1}}}\right)^{j_{1}-1}t\right).

As with (4.3) and (4.5), with (4.6) this yields

P(T(x,y)h((yx)1)tσr for some (x,y)Xr)\displaystyle P\Big{(}T(x,y)\leq h((y-x)_{1})-t\sigma_{r}\text{ for some }(x,y)\in X_{r}\Big{)}
P(ΥT^(Γxyj12,1)h((yx)1)(12λj1)tσr+4δμλj1(ΥEuc(Γxyj11,0)(y^x^)1)\displaystyle\leq P\Bigg{(}\Upsilon_{\hat{T}}(\Gamma_{xy}^{j_{1}-2,1})-h((y-x)_{1})\leq-\left(1-2\lambda^{j_{1}}\right)t\sigma_{r}+4\delta\mu\lambda^{j_{1}}\Big{(}\Upsilon_{Euc}\left(\Gamma_{xy}^{j_{1}-1,0}\right)-(\hat{y}-\hat{x})_{1}\Big{)}
+3λj1(tσr+δμ[ΥEuc(Γxyj11,0)(y^x^)1])\displaystyle\hskip 56.9055pt+3\lambda^{j_{1}}\Big{(}t\sigma_{r}+\delta\mu\Big{[}\Upsilon_{Euc}\left(\Gamma_{xy}^{j_{1}-1,0}\right)-(\hat{y}-\hat{x})_{1}\Big{]}\Big{)}
+2λj11(tσr+δμ[ΥEuc(Γxyj12,0)(y^x^)1])\displaystyle\hskip 56.9055pt+2\lambda^{j_{1}-1}\Big{(}t\sigma_{r}+\delta\mu\Big{[}\Upsilon_{Euc}\left(\Gamma_{xy}^{j_{1}-2,0}\right)-(\hat{y}-\hat{x})_{1}\Big{]}\Big{)}
+δμ(ΥEuc(Γxyj12,1)ΥEuc(Γxyj11,0)) for some (x,y)Xr;ωJ(0)(c29)J(1c))\displaystyle\hskip 56.9055pt+\delta\mu\Big{(}\Upsilon_{Euc}\left(\Gamma_{xy}^{j_{1}-2,1}\right)-\Upsilon_{Euc}\left(\Gamma_{xy}^{j_{1}-1,0}\right)\Big{)}\text{ for some }(x,y)\in X_{r};\ \omega\notin J^{(0)}(c_{29})\cup J^{(1c)}\Bigg{)}
(4.154) +c32ec33t+c42exp(c43(λ7δχ1)j1t)+C70exp(C71(λ7δχ1)j11t).\displaystyle\hskip 34.14322pt+c_{32}e^{-c_{33}t}+c_{42}\exp\left(-c_{43}\left(\frac{\lambda}{7\delta^{\chi_{1}}}\right)^{j_{1}}t\right)+C_{70}\exp\left(-C_{71}\left(\frac{\lambda}{7\delta^{\chi_{1}}}\right)^{j_{1}-1}t\right).
Remark 4.9.

The second probability here contains three quantities of the form

λj+1(tσr+δμ[ΥEuc(Γxyj,0)(y^x^)1]),\lambda^{j+1}\Big{(}t\sigma_{r}+\delta\mu\Big{[}\Upsilon_{Euc}\left(\Gamma_{xy}^{j,0}\right)-(\hat{y}-\hat{x})_{1}\Big{]}\Big{)},

with certain additional integer coefficients: 2 and 4 in the first quantity, 3 in the second quantity, and 2 in the third. As noted in Remark 4.8 and after (4.5), (4.6), and (4.6), these represent the accumulated error allocations from the j1j_{1}th, (j11)(j_{1}-1)th, and (first–stage) (j12)(j_{1}-2)th–scale iterations, respectively. We have split these out here for clarity; in (4.6) and (4.6) the first two of the three quantities are combined, giving the terms with coefficients 5 and 7. In general after the first stage of the jjth–scale iteration (which is the source of the third quantity), the second quantity would represent allocations from all stages j11j_{1}-1 through j+1j+1. With this in mind we define the accumulated–allocations upper bounds

𝒜j1(Γxy)=\displaystyle{\color[rgb]{1,0,0}\mathcal{A}_{j}^{1}(\Gamma_{xy})}= 2λj1(tσr+2δμ[ΥEuc(Γxyj11,0)(y^x^)1])\displaystyle 2\lambda^{j_{1}}\Big{(}t\sigma_{r}+2\delta\mu\Big{[}\Upsilon_{Euc}\left(\Gamma_{xy}^{j_{1}-1,0}\right)-(\hat{y}-\hat{x})_{1}\Big{]}\Big{)}
+k=j+1j113λk+1(tσr+δμ[ΥEuc(Γxyk,0)(y^x^)1])\displaystyle+\sum_{k=j+1}^{j_{1}-1}3\lambda^{k+1}\Big{(}t\sigma_{r}+\delta\mu\Big{[}\Upsilon_{Euc}\left(\Gamma_{xy}^{k,0}\right)-(\hat{y}-\hat{x})_{1}\Big{]}\Big{)}
(4.155) +2λj+1(tσr+δμ[ΥEuc(Γxyj,0)(y^x^)1])\displaystyle+2\lambda^{j+1}\Big{(}t\sigma_{r}+\delta\mu\Big{[}\Upsilon_{Euc}\left(\Gamma_{xy}^{j,0}\right)-(\hat{y}-\hat{x})_{1}\Big{]}\Big{)}

and

𝒜j2(Γxy)=\displaystyle{\color[rgb]{1,0,0}\mathcal{A}_{j}^{2}(\Gamma_{xy})}= 2λj1(tσr+2δμ[ΥEuc(Γxyj11,0)(y^x^)1])\displaystyle 2\lambda^{j_{1}}\Big{(}t\sigma_{r}+2\delta\mu\Big{[}\Upsilon_{Euc}\left(\Gamma_{xy}^{j_{1}-1,0}\right)-(\hat{y}-\hat{x})_{1}\Big{]}\Big{)}
(4.156) +k=jj113λk+1(tσr+δμ[ΥEuc(Γxyk,0)(y^x^)1]),\displaystyle+\sum_{k=j}^{j_{1}-1}3\lambda^{k+1}\Big{(}t\sigma_{r}+\delta\mu\Big{[}\Upsilon_{Euc}\left(\Gamma_{xy}^{k,0}\right)-(\hat{y}-\hat{x})_{1}\Big{]}\Big{)},

with 𝒜j1(Γxy)\mathcal{A}_{j}^{1}(\Gamma_{xy}) a valid upper bound after the first stage of the jjth–scale iteration, and 𝒜j2(Γxy)\mathcal{A}_{j}^{2}(\Gamma_{xy}) valid after the second stage. Comparing (4.9) to (4.5), in this case we have j=j11j=j_{1}-1, the sum in (4.9) has no terms, and the other two terms on the right in (4.5) merge into one. Comparing (4.9) to (4.6), in this instance also j=j11j=j_{1}-1, and the sum in (4.9) has one term which is merged with the other term in (4.6). Equation (4.9) may also be compared to (4.3), where j=j1j=j_{1} and the sum in (4.9) has no terms. We can rewrite the second probability in (4.7) as

P\displaystyle P (ΥT^(Γxyj12,1)h((yx)1)tσr+𝒜j121(Γxy)\displaystyle\Bigg{(}\Upsilon_{\hat{T}}\left(\Gamma_{xy}^{j_{1}-2,1}\right)-h((y-x)_{1})\leq-t\sigma_{r}+\mathcal{A}_{j_{1}-2}^{1}(\Gamma_{xy})
(4.157) +δμ(ΥEuc(Γxyj12,1)ΥEuc(Γxyj11,0)) for some (x,y)Xr;ωJ(0)(c29)J(1c)).\displaystyle\hskip 28.45274pt+\delta\mu\Big{(}\Upsilon_{Euc}\left(\Gamma_{xy}^{j_{1}-2,1}\right)-\Upsilon_{Euc}\left(\Gamma_{xy}^{j_{1}-1,0}\right)\Big{)}\text{ for some }(x,y)\in X_{r};\ \omega\notin J^{(0)}(c_{29})\cup J^{(1c)}\Bigg{)}.

Moving on to the second stage of the (j12)(j_{1}-2)th–scale iteration, from (4.7), using the form (4.9), we have similarly to (4.6) and (4.6)

P\displaystyle P (T(x,y)h((yx)1)tσr for some (x,y)Xr)\displaystyle\Big{(}T(x,y)\leq h((y-x)_{1})-t\sigma_{r}\text{ for some }(x,y)\in X_{r}\Big{)}
P(ΥT^(Γxyj12,2)h((yx)1)tσr+𝒜j122(Γxy)\displaystyle\leq P\Bigg{(}\Upsilon_{\hat{T}}\left(\Gamma_{xy}^{j_{1}-2,2}\right)-h((y-x)_{1})\leq-t\sigma_{r}+\mathcal{A}_{j_{1}-2}^{2}(\Gamma_{xy})
+δμ(ΥEuc(Γxyj12,2)ΥEuc(Γxyj11,0)) for some (x,y)Xr;ωJ(0)(c29)J(1c))\displaystyle\hskip 28.45274pt+\delta\mu\Big{(}\Upsilon_{Euc}\left(\Gamma_{xy}^{j_{1}-2,2}\right)-\Upsilon_{Euc}\left(\Gamma_{xy}^{j_{1}-1,0}\right)\Big{)}\text{ for some }(x,y)\in X_{r};\ \omega\notin J^{(0)}(c_{29})\cup J^{(1c)}\Bigg{)}
+P(ΥT^(Γxyj12,1)ΥT^(Γxyj12,2)N=0n2Sj11(Γ2,N,full)\displaystyle\qquad+P\Bigg{(}\Upsilon_{\hat{T}}\left(\Gamma_{xy}^{j_{1}-2,1}\right)-\Upsilon_{\hat{T}}\left(\Gamma_{xy}^{j_{1}-2,2}\right)\leq-\sum_{N=0}^{n_{2}}S_{j_{1}-1}(\Gamma^{2,N,full})
13λj11(tσr+δμ[ΥEuc(Γxyj12,2)(y^x^)1])\displaystyle\qquad\hskip 28.45274pt-\frac{1}{3}\lambda^{j_{1}-1}\Big{(}t\sigma_{r}+\delta\mu\Big{[}\Upsilon_{Euc}\left(\Gamma_{xy}^{j_{1}-2,2}\right)-(\hat{y}-\hat{x})_{1}\Big{]}\Big{)}
+δμ(ΥEuc(Γxyj12,1)ΥEuc(Γxyj12,2)) for some (x,y)Xr;ωJ(0)(c29)J(1c))\displaystyle\qquad\hskip 28.45274pt+\delta\mu\Big{(}\Upsilon_{Euc}\left(\Gamma_{xy}^{j_{1}-2,1}\right)-\Upsilon_{Euc}\left(\Gamma_{xy}^{j_{1}-2,2}\right)\Big{)}\text{ for some }(x,y)\in X_{r};\ \omega\notin J^{(0)}(c_{29})\cup J^{(1c)}\Bigg{)}
(4.158) +c32ec33t+c42exp(c43(λ7δχ1)j1t)+C70exp(C71(λ7δχ1)j11t),\displaystyle\hskip 28.45274pt+c_{32}e^{-c_{33}t}+c_{42}\exp\left(-c_{43}\left(\frac{\lambda}{7\delta^{\chi_{1}}}\right)^{j_{1}}t\right)+C_{70}\exp\left(-C_{71}\left(\frac{\lambda}{7\delta^{\chi_{1}}}\right)^{j_{1}-1}t\right),

the last probability being the tracking–failure probability. We now divide into Cases 1–5 as in the (j11)(j_{1}-1)th–scale iteration. In each case (excluding 3c) there is an intermediate path Γ2,N,int\Gamma^{2,N,int} in each (j12)(j_{1}-2)th–scale interval IN2I_{N}^{2}, which is slower than the direct path (up to a multiple of log rr), satisfying

ΥT^(Γ2,N,int)T^(b^γ(2,N),b^γ(2,N+1))(γ(2,N+1)γ(2,N)1)c29logr\Upsilon_{\hat{T}}(\Gamma^{2,N,int})\geq\hat{T}(\hat{b}^{\gamma(2,N)},\hat{b}^{\gamma(2,N+1)})-\big{(}\gamma(2,N+1)-\gamma(2,N)-1\big{)}c_{29}\log r

assuming ωJ(0)(c29)\omega\notin J^{(0)}(c_{29}), and hence

N=0n2ΥT^(Γ2,N,int)ΥT^(Γxyj12,2)(nn2)c29logr,\sum_{N=0}^{n_{2}}\Upsilon_{\hat{T}}(\Gamma^{2,N,int})\geq\Upsilon_{\hat{T}}\left(\Gamma_{xy}^{j_{1}-2,2}\right)-(n-n_{2})c_{29}\log r,

and which satisfies deterministic tracking in a form like (4.113), sometimes with extra terms in the form of error allocations, as in (4.6); this deterministic tracking says that the intermediate path is sufficiently shorter relative to the full path, to within the error given by the allocations. This enables us to bound the last probability in (4.7) by a tracking–failure probability of the form

P(ΥT^(Γ2,N,full)ΥT^(Γ2,N,int)Υh(Γ2,N,full)Υh(Γ2,N,int) (allocations)\displaystyle P\Bigg{(}\Upsilon_{\hat{T}}\left(\Gamma^{2,N,full}\right)-\Upsilon_{\hat{T}}\left(\Gamma^{2,N,int}\right)\leq\Upsilon_{h}\left(\Gamma^{2,N,full}\right)-\Upsilon_{h}\left(\Gamma^{2,N,int}\right)-\text{ (allocations)}
(4.159) for some N for some (x,y)Xr;ωJ(0)(c29)J(1c)),\displaystyle\hskip 34.14322pt\text{ for some $N$ for some }(x,y)\in X_{r};\ \omega\notin J^{(0)}(c_{29})\cup J^{(1c)}\Bigg{)},

differently for each of the 5 cases; see for example (4.139) for the totally–unbowed case. This is then bounded by summing probabilities of form

P(|T^(v,w)h(|wv|)|A)P\Big{(}\Big{|}\hat{T}(v,w)-h(|w-v|)\Big{|}\geq A)

over all possible links (v,w)(v,w) of paths Γ2,N,full,Γ2,N,int\Gamma^{2,N,full},\Gamma^{2,N,int} for all NN, using Lemmas 4.6 and 4.7. The end result of the (j12)(j_{1}-2)th–scale iteration is that

P\displaystyle P (T(x,y)h((yx)1)tσr for some (x,y)Xr)\displaystyle\Big{(}T(x,y)\leq h((y-x)_{1})-t\sigma_{r}\text{ for some }(x,y)\in X_{r}\Big{)}
P(ΥT^(Γxyj12,2)h((yx)1)tσr+𝒜j122(Γxy)\displaystyle\leq P\Bigg{(}\Upsilon_{\hat{T}}\left(\Gamma_{xy}^{j_{1}-2,2}\right)-h((y-x)_{1})\leq-t\sigma_{r}+\mathcal{A}_{j_{1}-2}^{2}(\Gamma_{xy})
+δμ(ΥEuc(Γxyj12,2)ΥEuc(Γxyj11,0)) for some (x,y)Xr;ωJ(0)(c29)J(1c))\displaystyle\hskip 28.45274pt+\delta\mu\Big{(}\Upsilon_{Euc}\left(\Gamma_{xy}^{j_{1}-2,2}\right)-\Upsilon_{Euc}\left(\Gamma_{xy}^{j_{1}-1,0}\right)\Big{)}\text{ for some }(x,y)\in X_{r};\ \omega\notin J^{(0)}(c_{29})\cup J^{(1c)}\Bigg{)}
(4.160) +c32ec33t+j=j12j11c42exp(c43(λ7δχ1)j+1t).\displaystyle\hskip 28.45274pt+c_{32}e^{-c_{33}t}+\sum_{j=j_{1}-2}^{j_{1}-1}c_{42}\exp\left(-c_{43}\left(\frac{\lambda}{7\delta^{\chi_{1}}}\right)^{j+1}t\right).

After all iterations are completed through the j2j_{2}th scale, this becomes

P\displaystyle P (T(x,y)h((yx)1)tσr for some (x,y)Xr)\displaystyle\Big{(}T(x,y)\leq h((y-x)_{1})-t\sigma_{r}\text{ for some }(x,y)\in X_{r}\Big{)}
P(ΥT^(Γxyj2,2)h((yx)1)tσr+𝒜j22(Γxy)+δμ(ΥEuc(Γxyj2,2)ΥEuc(Γxyj11,0))\displaystyle\leq P\Bigg{(}\Upsilon_{\hat{T}}\left(\Gamma_{xy}^{j_{2},2}\right)-h((y-x)_{1})\leq-t\sigma_{r}+\mathcal{A}_{j_{2}}^{2}(\Gamma_{xy})+\delta\mu\Big{(}\Upsilon_{Euc}\left(\Gamma_{xy}^{j_{2},2}\right)-\Upsilon_{Euc}\left(\Gamma_{xy}^{j_{1}-1,0}\right)\Big{)}
for some (x,y)Xr;ωJ(0)(c29)J(1c))\displaystyle\hskip 45.52458pt\text{ for some }(x,y)\in X_{r};\ \omega\notin J^{(0)}(c_{29})\cup J^{(1c)}\Bigg{)}
(4.161) +c32ec33t+j=j2j11c42exp(c43(λ7δχ1)j+1t).\displaystyle\hskip 17.07182pt+c_{32}e^{-c_{33}t}+\sum_{j=j_{2}}^{j_{1}-1}c_{42}\exp\left(-c_{43}\left(\frac{\lambda}{7\delta^{\chi_{1}}}\right)^{j+1}t\right).

We claim that

(4.162) 𝒜j22(Γxy)+δμ(ΥEuc(Γxyj2,2)ΥEuc(Γxyj11,0))12tσr+δμ(ΥEuc(Γxyj2,2)(y^x^)1).\mathcal{A}_{j_{2}}^{2}(\Gamma_{xy})+\delta\mu\Big{(}\Upsilon_{Euc}\left(\Gamma_{xy}^{j_{2},2}\right)-\Upsilon_{Euc}\left(\Gamma_{xy}^{j_{1}-1,0}\right)\Big{)}\leq\frac{1}{2}t\sigma_{r}+\delta\mu\Big{(}\Upsilon_{Euc}\left(\Gamma_{xy}^{j_{2},2}\right)-(\hat{y}-\hat{x})_{1}\Big{)}.

This says that the (typically negative) second term on the left, representing part of the cumulative effects of tracking, is enough to adequately cancel the (positive) cumulative allocations 𝒜j22(Γxy)\mathcal{A}_{j_{2}}^{2}(\Gamma_{xy}); see the comments after (4.6) and (4.6). To prove (4.162) we make the subclaim

(4.163) D:=maxj2jj11ΥEuc(Γxyj,0)(y^x^)12(ΥEuc(Γxyj11,0)(y^x^)1)+tσr.{\color[rgb]{1,0,0}D}:=\max_{j_{2}\leq j\leq j_{1}-1}\Upsilon_{Euc}\left(\Gamma_{xy}^{j,0}\right)-(\hat{y}-\hat{x})_{1}\leq 2\Big{(}\Upsilon_{Euc}\left(\Gamma_{xy}^{j_{1}-1,0}\right)-(\hat{y}-\hat{x})_{1}\Big{)}+t\sigma_{r}.

Assuming (4.163) and assuming λ\lambda satisfies 7λ/(1λ)<1/47\lambda/(1-\lambda)<1/4 we have from the definition (4.9)

𝒜j22(Γxy)\displaystyle\mathcal{A}_{j_{2}}^{2}(\Gamma_{xy}) 7λ1λ(tσr+δμ[maxj2jj11ΥEuc(Γxyj,0)(y^x^)1])\displaystyle\leq\frac{7\lambda}{1-\lambda}\Bigg{(}t\sigma_{r}+\delta\mu\bigg{[}\max_{j_{2}\leq j\leq j_{1}-1}\Upsilon_{Euc}\left(\Gamma_{xy}^{j,0}\right)-(\hat{y}-\hat{x})_{1}\bigg{]}\Bigg{)}
(4.164) 1+δμ4tσr+δμ(ΥEuc(Γxyj11,0)(y^x^)1)\displaystyle\leq\frac{1+\delta\mu}{4}t\sigma_{r}+\delta\mu\Big{(}\Upsilon_{Euc}\left(\Gamma_{xy}^{j_{1}-1,0}\right)-(\hat{y}-\hat{x})_{1}\Big{)}

and (4.162) follows. To prove (4.163) we use (4.101) (which generalizes to all jj in place of j11j_{1}-1) and the fact that, since removing points reduces length, we have ΥEuc(Γxyj,2)ΥEuc(Γxyj,1)\Upsilon_{Euc}(\Gamma_{xy}^{j,2})\leq\Upsilon_{Euc}(\Gamma_{xy}^{j,1}) for all jj. This yields that for all j1j\geq 1,

ΥEuc(Γxyj,0)\displaystyle\Upsilon_{Euc}\left(\Gamma_{xy}^{j,0}\right) ΥEuc(Γxyj11,0)+k=j+1j11|ΥEuc(Γxyk,1)ΥEuc(Γxyk,0)|\displaystyle\leq\Upsilon_{Euc}\left(\Gamma_{xy}^{j_{1}-1,0}\right)+\sum_{k=j+1}^{j_{1}-1}\Big{|}\Upsilon_{Euc}\left(\Gamma_{xy}^{k,1}\right)-\Upsilon_{Euc}\left(\Gamma_{xy}^{k,0}\right)\Big{|}
(4.165) ΥEuc(Γxyj11,0)+k=j+1j11λk+12μ[tσr3+δμD]\displaystyle\leq\Upsilon_{Euc}\left(\Gamma_{xy}^{j_{1}-1,0}\right)+\sum_{k=j+1}^{j_{1}-1}\frac{\lambda^{k+1}}{2\mu}\Big{[}\frac{t\sigma_{r}}{3}+\delta\mu D\Big{]}

and therefore

(4.166) DΥEuc(Γxyj11,0)(y^x^)1+λ36μ(1λ)tσr+δλ32(1λ)D,\displaystyle D\leq\Upsilon_{Euc}\left(\Gamma_{xy}^{j_{1}-1,0}\right)-(\hat{y}-\hat{x})_{1}+\frac{\lambda^{3}}{6\mu(1-\lambda)}t\sigma_{r}+\frac{\delta\lambda^{3}}{2(1-\lambda)}D,

from which (4.163) follows, and hence also (4.162). The right side of (4.7) is therefore bounded above by

P\displaystyle P (ΥT^(Γxyj2,2)h((yx)1)12tσr+δμ(ΥEuc(Γxyj2,2)(y^x^)1)\displaystyle\Bigg{(}\Upsilon_{\hat{T}}\left(\Gamma_{xy}^{j_{2},2}\right)-h((y-x)_{1})\leq-\frac{1}{2}t\sigma_{r}+\delta\mu\Big{(}\Upsilon_{Euc}\left(\Gamma_{xy}^{j_{2},2}\right)-(\hat{y}-\hat{x})_{1}\Big{)}
(4.167) for some (x,y)Xr;ωJ(0)(c29)J(1c))+c44exp(c45(λ7δχ1)j2+1t).\displaystyle\hskip 28.45274pt\text{ for some }(x,y)\in X_{r};\ \omega\notin J^{(0)}(c_{29})\cup J^{(1c)}\Bigg{)}+c_{44}\exp\left(-c_{45}\left(\frac{\lambda}{7\delta^{\chi_{1}}}\right)^{j_{2}+1}t\right).

4.8. Step 8. Final marked CG paths.

In Γxyj2,2\Gamma_{xy}^{j_{2},2}, only terminal hyperplanes contain marked points (excluding x^,y^\hat{x},\hat{y}), one at each end of [x^1,y^1][\hat{x}_{1},\hat{y}_{1}] for each scale j2jj1j_{2}\leq j\leq j_{1}. The marked point in the jj–terminal hyperplane is in the grid 𝕃j\mathbb{L}_{j} for all jj. As noted in Step 1, the gap between the j2j_{2}–terminal hyperplanes is at least 4δj2r4\delta^{j_{2}}r and at most 5δj21r5\delta^{j_{2}-1}r. Now Γxyj2,2\Gamma_{xy}^{j_{2},2} is our final CG path, so we rename it

ΓxyCG:x^=u0uR+1=y^,{\color[rgb]{1,0,0}\Gamma_{xy}^{CG}}:\,\hat{x}=u^{0}\to\cdots\to u^{R+1}=\hat{y},

where R=2(j1j2+1){\color[rgb]{1,0,0}R}=2(j_{1}-j_{2}+1). We also define a projected path with collinear marked points

ΓxyCG,pr:v0vR+1,{\color[rgb]{1,0,0}\Gamma_{xy}^{CG,pr}}:\,v^{0}\to\cdots\to v^{R+1},

where vi=(ui)1e1{\color[rgb]{1,0,0}v^{i}}=(u^{i})_{1}e_{1} is the projection onto the e1e_{1} axis. For j11jj2j_{1}-1\leq j\leq j_{2}, the links (uj1j,uj1j+1)(u^{j_{1}-j},u^{j_{1}-j+1}) and (uRj1+j,uRj1+j+1)(u^{R-j_{1}+j},u^{R-j_{1}+j+1}) each have one end in a jj–terminal hyperplane and the other in a (j+1)(j+1)–terminal hyperplane; these will be called the jth–scale links of ΓxyCG\Gamma_{xy}^{CG}. The links (u0,u1)(u^{0},u^{1}) and (uR,uR+1)(u^{R},u^{R+1}) are called final links, and the link (uR/2,uR/2+1)(u^{R/2},u^{R/2+1}) between j2j_{2}–terminal hyperplanes is called a macroscopic link. See Figure 3 in Section 4.1, where (u3,u4)(u^{3},u^{4}) is the macroscopic link, which (by definition of j2j_{2}) always covers at least 1/5 the length of [x^1,y^1][\hat{x}_{1},\hat{y}_{1}].

We have ΥEuc(ΓxyCG,pr)=(y^x^)1\Upsilon_{Euc}\left(\Gamma_{xy}^{CG,pr}\right)=(\hat{y}-\hat{x})_{1} so by Lemma 3.6, since R2j1R\leq 2j_{1},

Υh(ΓxyCG)Υh(ΓxyCG,pr)(12+δ)μ(ΥEuc(ΓxyCG)(y^x^)1)2j1C56.\Upsilon_{h}\left(\Gamma_{xy}^{CG}\right)-\Upsilon_{h}\left(\Gamma_{xy}^{CG,pr}\right)\geq\left(\frac{1}{2}+\delta\right)\mu\Big{(}\Upsilon_{Euc}\left(\Gamma_{xy}^{CG}\right)-(\hat{y}-\hat{x})_{1}\Big{)}-2j_{1}C_{56}.

Therefore, using (4.64), the probability in (4.7) is bounded above by

P\displaystyle P (ΥT^(ΓxyCG)Υh(ΓxyCG)13tσr+δμ(ΥEuc(ΓxyCG)(y^x^)1)[Υh(ΓxyCG)Υh(ΓxyCG,pr)]\displaystyle\Bigg{(}\Upsilon_{\hat{T}}\left(\Gamma_{xy}^{CG}\right)-\Upsilon_{h}\left(\Gamma_{xy}^{CG}\right)\leq-\frac{1}{3}t\sigma_{r}+\delta\mu\Big{(}\Upsilon_{Euc}\left(\Gamma_{xy}^{CG}\right)-(\hat{y}-\hat{x})_{1}\Big{)}-\Big{[}\Upsilon_{h}\left(\Gamma_{xy}^{CG}\right)-\Upsilon_{h}\left(\Gamma_{xy}^{CG,pr}\right)\Big{]}
for some (x,y)Xr;ωJ(0)(c29)J(1c))\displaystyle\hskip 28.45274pt\text{ for some }(x,y)\in X_{r};\ \omega\notin J^{(0)}(c_{29})\cup J^{(1c)}\Bigg{)}
P(ΥT^(ΓxyCG)Υh(ΓxyCG)13tσrμ2(ΥEuc(ΓxyCG)(y^x^)1)\displaystyle\leq P\Bigg{(}\Upsilon_{\hat{T}}\left(\Gamma_{xy}^{CG}\right)-\Upsilon_{h}\left(\Gamma_{xy}^{CG}\right)\leq-\frac{1}{3}t\sigma_{r}-\frac{\mu}{2}\Big{(}\Upsilon_{Euc}\left(\Gamma_{xy}^{CG}\right)-(\hat{y}-\hat{x})_{1}\Big{)}
(4.168) for some (x,y)Xr;ωJ(0)(c29)J(1c)).\displaystyle\hskip 42.67912pt\text{ for some }(x,y)\in X_{r};\ \omega\notin J^{(0)}(c_{29})\cup J^{(1c)}\Bigg{)}.

To bound this we use allocations

AjCG(v,w)=14λj[t(v,w)σr+δμ18|(wv)|2|(wv)1|]{\color[rgb]{1,0,0}A_{j}^{CG}(v,w)}=\frac{1}{4}\lambda^{j}\left[t^{*}(v,w)\sigma_{r}+\frac{\delta\mu}{18}\frac{|(w-v)^{*}|^{2}}{|(w-v)_{1}|}\right]

for jjth–scale links, Aj1CG(v,w)A_{j_{1}}^{CG}(v,w) for final links, and Aj2CG(v,w)A_{j_{2}}^{CG}(v,w) for macroscopic links. From (4.80) and (4.81) we have

δμ18maxkR+1|(uk)|2rσrδt3+δμ12σri=1R+1|(ui1ui)|2|(ui1ui)1|\frac{\delta\mu}{18}\max_{k\leq R+1}\frac{|(u^{k})^{*}|^{2}}{r\sigma_{r}}\leq\frac{\delta t}{3}+\frac{\delta\mu}{12\sigma_{r}}\sum_{i=1}^{R+1}\frac{|(u^{i-1}-u^{i})^{*}|^{2}}{|(u^{i-1}-u^{i})_{1}|}

Therefore using also (4.21) the total of these for all links in a path ΓxyCG\Gamma_{xy}^{CG} satisfies

Aj2CG\displaystyle A_{j_{2}}^{CG} (uR/2,uR/2+1)+Aj1CG(u0,u1)+Aj1CG(uR,uR+1)\displaystyle(u^{R/2},u^{R/2+1})+A_{j_{1}}^{CG}(u^{0},u^{1})+A_{j_{1}}^{CG}(u^{R},u^{R+1})
+j=j2j11[Aj+1CG(uj1j,uj1j+1)+Aj+1CG(uRj1+j,uRj1+j+1)]\displaystyle\qquad+\sum_{j=j_{2}}^{j_{1}-1}\Big{[}A_{j+1}^{CG}(u^{j_{1}-j},u^{j_{1}-j+1})+A_{j+1}^{CG}(u^{R-j_{1}+j},u^{R-j_{1}+j+1})\Big{]}
4j=j21j11λj+14[(t3+2δμ18maxkR+1|(uk)|2rσr)σr+δμ18i=1R+1|(ui1ui)|2|(ui1ui)1|]\displaystyle\leq 4\sum_{j=j_{2}-1}^{j_{1}-1}\frac{\lambda^{j+1}}{4}\left[\left(\frac{t}{3}+2\frac{\delta\mu}{18}\max_{k\leq R+1}\frac{|(u^{k})^{*}|^{2}}{r\sigma_{r}}\right)\sigma_{r}+\frac{\delta\mu}{18}\sum_{i=1}^{R+1}\frac{|(u^{i-1}-u^{i})^{*}|^{2}}{|(u^{i-1}-u^{i})_{1}|}\right]
j=j2j113λj(1+2δ)tσr+j=j2j1λj(δμ3+δμ6)i=1R+1|(ui1ui)|2|(ui1ui)1|\displaystyle\leq\sum_{j=j_{2}}^{j_{1}}\frac{1}{3}\lambda^{j}\left(1+2\delta\right)t\sigma_{r}+\sum_{j=j_{2}}^{j_{1}}\lambda^{j}\left(\frac{\delta\mu}{3}+\frac{\delta\mu}{6}\right)\sum_{i=1}^{R+1}\frac{|(u^{i-1}-u^{i})^{*}|^{2}}{|(u^{i-1}-u^{i})_{1}|}
λ1λtσr+3δμλ2(1λ)(ΥEuc(ΓxyCG)(y^x^)1)\displaystyle\leq\frac{\lambda}{1-\lambda}t\sigma_{r}+\frac{3\delta\mu\lambda}{2(1-\lambda)}\Big{(}\Upsilon_{Euc}\left(\Gamma_{xy}^{CG}\right)-(\hat{y}-\hat{x})_{1}\Big{)}
(4.169) 13tσr+μ2(ΥEuc(ΓxyCG)(y^x^)1).\displaystyle\leq\frac{1}{3}t\sigma_{r}+\frac{\mu}{2}\Big{(}\Upsilon_{Euc}\left(\Gamma_{xy}^{CG}\right)-(\hat{y}-\hat{x})_{1}\Big{)}.

Therefore the last probability in (4.8) is bounded above by

j=1j1P(|T^(ui1,ui)h(|ui1ui|)|Aj+1CG(ui1,ui) for some jth–scale link\displaystyle\sum_{j=1}^{j_{1}}P\bigg{(}\Big{|}\hat{T}(u^{i-1},u^{i})-h(|u^{i-1}-u^{i}|)\Big{|}\geq A_{j+1}^{CG}(u^{i-1},u^{i})\text{ for some $j$th--scale link}
(ui1,ui) of ΓxyCG and some (x,y)Xr;ωJ(0)(c29)J(1c))\displaystyle\hskip 56.9055pt(u^{i-1},u^{i})\text{ of $\Gamma_{xy}^{CG}$ and some }(x,y)\in X_{r};\ \omega\notin J^{(0)}(c_{29})\cup J^{(1c)}\bigg{)}
+P(|T^(ui1,ui)h(|ui1ui|)|Aj2CG(ui1,ui) for some macroscopic link\displaystyle\qquad+P\bigg{(}\Big{|}\hat{T}(u^{i-1},u^{i})-h(|u^{i-1}-u^{i}|)\Big{|}\geq A_{j_{2}}^{CG}(u^{i-1},u^{i})\text{ for some macroscopic link}
(ui1,ui) of ΓxyCG and some (x,y)Xr;ωJ(0)(c29)J(1c))\displaystyle\hskip 56.9055pt(u^{i-1},u^{i})\text{ of $\Gamma_{xy}^{CG}$ and some }(x,y)\in X_{r};\ \omega\notin J^{(0)}(c_{29})\cup J^{(1c)}\bigg{)}
+P(|T^(ui1,ui)h(|ui1ui|)|Aj1CG(ui1,ui) for some final link\displaystyle\qquad+P\bigg{(}\Big{|}\hat{T}(u^{i-1},u^{i})-h(|u^{i-1}-u^{i}|)\Big{|}\geq A_{j_{1}}^{CG}(u^{i-1},u^{i})\text{ for some final link}
(4.170) (ui1,ui) of ΓxyCG and some (x,y)Xr;ωJ(0)(c29)J(1c)).\displaystyle\hskip 56.9055pt(u^{i-1},u^{i})\text{ of $\Gamma_{xy}^{CG}$ and some }(x,y)\in X_{r};\ \omega\notin J^{(0)}(c_{29})\cup J^{(1c)}\bigg{)}.

Considering the probability for final links (v,w)(v,w), the number of possible such links in Gr+G_{r}^{+} is at most c46r2dc_{46}r^{2d} and for each such link we have from Lemma 3.2 and (4.16)

P(|T^(v,w)\displaystyle P\Big{(}\Big{|}\hat{T}(v,w) h(|wv|)|Aj1CG(v,w))C44exp(C45Aj1CG(v,w)σ(2δj1r))\displaystyle-h(|w-v|)\Big{|}\geq A_{j_{1}}^{CG}(v,w)\Big{)}\leq C_{44}\exp\left(-C_{45}\frac{A_{j_{1}}^{CG}(v,w)}{\sigma(2\delta^{j_{1}}r)}\right)
(4.171) c47exp(c48j1(λδχ1)j1t)c47exp(c49tlogr).\displaystyle\leq c_{47}\exp\left(-\frac{c_{48}}{j_{1}}\left(\frac{\lambda}{\delta^{\chi_{1}}}\right)^{j_{1}}t\right)\leq c_{47}\exp\left(-c_{49}t\log r\right).

The probabilities for jjth–scale and macroscopic links can be bounded using minor modifications of Lemma 4.6, showing that (4.8) (and hence also the probability on the right in (4.7)) is bounded above by

j=1j1\displaystyle\sum_{j=1}^{j_{1}} c50exp(c51(λ7δχ1)jt)+c50exp(c51λ7δχ1t)+c46c47r2dexp(c49tlogr)\displaystyle c_{50}\exp\left(-c_{51}\left(\frac{\lambda}{7\delta^{\chi_{1}}}\right)^{j}t\right)+c_{50}\exp\left(-c_{51}\frac{\lambda}{7\delta^{\chi_{1}}}t\right)+c_{46}c_{47}r^{2d}\exp\left(-c_{49}t\log r\right)
(4.172) c52ec53t.\displaystyle\leq c_{52}e^{-c_{53}t}.

With (4.7) this completes the proof of (1.13). As noted after Theorem (1.3), the downward–deviations part of (1.12) is a consequence, so the proof of the downward–deviations part of Theorem (1.3) is complete.

5. Proof of Theorem 1.6 for fixed (x,y)(x,y).

We move on to step (2) of the strategy in Remark 1.7. As with the proof of Theorem 1.3 (downward deviations), there are simpler cases which can be proved from Lemma 3.2 and do not require Theorem 1.3. These we can handle uniformly over (x,y)(x,y); after dealing with these, in Lemma 5.1 we will handle the main case for the moment only for fixed (x,y)(x,y).

Let

(5.1) r0=c0r(logr)1/(1+χ1),{\color[rgb]{1,0,0}r_{0}}=\frac{c_{0}r}{(\log r)^{1/(1+\chi_{1})}},

with c0c_{0} to be specified; we will consider separately short geodesics (meaning |y^x^|r0|\hat{y}-\hat{x}|\leq r_{0}) and longer ones. When ΓxyGr,s for some x,y𝕍Gr(K)\Gamma_{xy}\not\subset G_{r,s}\text{ for some }x,y\in\mathbb{V}\cap G_{r}(K) with |(yx)|(yx)1|(y-x)^{*}|\leq(y-x)_{1}, taking u{\color[rgb]{1,0,0}u} to be the first vertex in Γxy\Gamma_{xy} outside Gr,sG_{r,s}, we see that one of the following cases must hold.

Transverse wandering cases (see Figure 10):

  • (i)

    (non-transverse wandering) there exist x^,y^,u^qd{\color[rgb]{1,0,0}\hat{x},\hat{y},\hat{u}}\in q\mathbb{Z}^{d} with x^,y^Gr(K),u^Gr,s\hat{x},\hat{y}\in G_{r}(K),\hat{u}\notin G_{r,s} with d(u^,Gr,s)5d(\hat{u},G_{r,s})\leq 5, and x,y,u𝕍{\color[rgb]{1,0,0}x,y,u}\in\mathbb{V} with

    max(|xx^|,|yy^|,|uu^|)5d1,uΓxy,u^1[x^1,y^1],\max(|x-\hat{x}|,|y-\hat{y}|,|u-\hat{u}|)\leq 5\sqrt{d-1},\quad u\in\Gamma_{xy},\quad\hat{u}_{1}\notin[\hat{x}_{1},\hat{y}_{1}],
  • (ii)

    (wandering by short geodesics) there exist x^,y^,u^qd\hat{x},\hat{y},\hat{u}\in q\mathbb{Z}^{d} with x^,y^Gr(K),u^Gr,s\hat{x},\hat{y}\in G_{r}(K),\hat{u}\notin G_{r,s} with d(u^,Gr,s)5d(\hat{u},G_{r,s})\leq 5, and x,y,u𝕍x,y,u\in\mathbb{V} with

    max(|xx^|,|yy^|,|uu^|)5d1,uΓxy,u^1[x^1,y^1],|y^x^|r0,\max(|x-\hat{x}|,|y-\hat{y}|,|u-\hat{u}|)\leq 5\sqrt{d-1},\quad u\in\Gamma_{xy},\quad\hat{u}_{1}\in[\hat{x}_{1},\hat{y}_{1}],\quad|\hat{y}-\hat{x}|\leq r_{0},
  • (iii)

    (large wandering) s>c1(logr)1/2s>c_{1}(\log r)^{1/2} and there exist x^,y^,u^qd\hat{x},\hat{y},\hat{u}\in q\mathbb{Z}^{d} with x^,y^Gr(K),u^Gr,s\hat{x},\hat{y}\in G_{r}(K),\hat{u}\notin G_{r,s} with d(u^,Gr,s)5d(\hat{u},G_{r,s})\leq 5, and x,y,u𝕍x,y,u\in\mathbb{V} with

    (5.2) max(|xx^|,|yy^|,|uu^|)5d1,|yx|>r0,uΓxy,u1[x1,y1],\max(|x-\hat{x}|,|y-\hat{y}|,|u-\hat{u}|)\leq 5\sqrt{d-1},\quad|y-x|>r_{0},\quad u\in\Gamma_{xy},\quad u_{1}\in[x_{1},y_{1}],
  • (iv)

    (moderate wandering) sc1(logr)1/2s\leq c_{1}(\log r)^{1/2} and there exist x,y,u𝕍x,y,u\in\mathbb{V} with

    (5.3) x,yGr(K),uGr,s,d(u,Gr,s)2|yx|>r0,uΓxy,u1[x1,y1],x,y\in G_{r}(K),\quad u\notin G_{r,s},\quad d(u,G_{r,s})\leq 2\quad|y-x|>r_{0},\quad u\in\Gamma_{xy},\quad u_{1}\in[x_{1},y_{1}],

where c1c_{1} is to be specified. In all cases (i)–(iv) we assume |(yx)|(yx)1|(y-x)^{*}|\leq(y-x)_{1}.

Refer to caption
Figure 10. The inner box Gr(K)G_{r}(K) has height 2KΔr2K\Delta_{r}, and the outer box Gr,sG_{r,s} has height 2sΔr2s\Delta_{r}. The dotted line shows Γxy\Gamma_{xy} in transverse wandering case (i), the solid line shows case (ii), and the dashed line shows cases (iii) and (iv), for large and small ss, respectively.

Cases (i)—(iii) are the ones which do not require Theorem 1.3 and can be proved from Lemma 3.2. This is because the exponent obtained from that lemma is at least of order logr\log r, meaning it dominates the entropy from the number of possible choices of x^,y^,u^\hat{x},\hat{y},\hat{u}.

It follows from routine geometry that under (i), for C34C_{34} from (1.15) we have

|u^x^|+|y^u^||y^x^|d(Gr(K),Gr,sc){s2σrlogrif s(C34logr)1/2,s2σrif (C34logr)1/2<sr/Δr,sΔrif s>r/Δr|\hat{u}-\hat{x}|+|\hat{y}-\hat{u}|-|\hat{y}-\hat{x}|\geq d(G_{r}(K),G_{r,s}^{c})\geq\begin{cases}s^{2}\sigma_{r}\log r&\text{if }s\leq(C_{34}\log r)^{1/2},\\ s^{2}\sigma_{r}&\text{if }(C_{34}\log r)^{1/2}<s\leq r/\Delta_{r},\\ s\Delta_{r}&\text{if }s>r/\Delta_{r}\end{cases}

so also, using Lemma 3.6,

(5.4) h(|u^x^|)+h(|y^u^|)h(|y^x^|){μ2s2σrlogrif s(C34logr)1/2,μ2s2σrif (C34logr)1/2<sr/Δr,μ2sΔrif s>r/Δr,h(|\hat{u}-\hat{x}|)+h(|\hat{y}-\hat{u}|)-h(|\hat{y}-\hat{x}|)\geq\begin{cases}\frac{\mu}{2}s^{2}\sigma_{r}\log r&\text{if }s\leq(C_{34}\log r)^{1/2},\\ \frac{\mu}{2}s^{2}\sigma_{r}&\text{if }(C_{34}\log r)^{1/2}<s\leq r/\Delta_{r},\\ \frac{\mu}{2}s\Delta_{r}&\text{if }s>r/\Delta_{r},\end{cases}

while

|T^(x^,u^)+T^(u^,y^)T^(x^,y^)|M(x^)+M(y^)+M(u^).\Big{|}\hat{T}(\hat{x},\hat{u})+\hat{T}(\hat{u},\hat{y})-\hat{T}(\hat{x},\hat{y})\Big{|}\leq M(\hat{x})+M(\hat{y})+M(\hat{u}).

Therefore one of the following 6 quantities

|T^(x^,u^)h(|u^x^|)|,|T^(u^,y^)h(|y^u^|)|,|T^(x^,y^)h(|y^x^|)|,M(x^),M(y^),M(u^)\Big{|}\hat{T}(\hat{x},\hat{u})-h(|\hat{u}-\hat{x}|)\Big{|},\quad\Big{|}\hat{T}(\hat{u},\hat{y})-h(|\hat{y}-\hat{u}|)\Big{|},\quad\Big{|}\hat{T}(\hat{x},\hat{y})-h(|\hat{y}-\hat{x}|)\Big{|},\quad M(\hat{x}),\ \ M(\hat{y}),\ \ M(\hat{u})

exceeds 1/6 of the right side of (5.4). There are at most c2sdr2dc_{2}s^{d}r^{2d} possible values of (x^,y^,u^)(\hat{x},\hat{y},\hat{u}) under (i), so from Lemmas 3.1 and 3.2, provided C34C_{34} is sufficiently large we have

(5.5) P((i) holds)\displaystyle P\Big{(}(i)\text{ holds}\Big{)} {c2sdr2dC44exp(c3s2σrlogrσ(2r))c4ec5s2if s(C34logr)1/2c2sdr2dC44exp(c3s2σrσ(2r))c4ec5s2if (C34logr)1/2<sr/Δr,c2sdr2dC44exp(c3sΔrσ(sΔr))c4ec5sΔr/σ(sΔr)if s>r/Δr.\displaystyle\leq\begin{cases}c_{2}s^{d}r^{2d}\cdot C_{44}\exp\left(-c_{3}\frac{s^{2}\sigma_{r}\log r}{\sigma(2r)}\right)\leq c_{4}e^{-c_{5}s^{2}}&\text{if }s\leq(C_{34}\log r)^{1/2}\\ c_{2}s^{d}r^{2d}\cdot C_{44}\exp\left(-c_{3}\frac{s^{2}\sigma_{r}}{\sigma(2r)}\right)\leq c_{4}e^{-c_{5}s^{2}}&\text{if }(C_{34}\log r)^{1/2}<s\leq r/\Delta_{r},\\ c_{2}s^{d}r^{2d}\cdot C_{44}\exp\left(-c_{3}\frac{s\Delta_{r}}{\sigma(s\Delta_{r})}\right)\leq c_{4}e^{-c_{5}s\Delta_{r}/\sigma(s\Delta_{r})}&\text{if }s>r/\Delta_{r}.\end{cases}

Under (ii) we have for some c6c_{6}

|u^x^|+|y^u^||y^x^|{c6s2Δr2/r0if sr0/Δr,c6sΔrif s>r0/Δr.|\hat{u}-\hat{x}|+|\hat{y}-\hat{u}|-|\hat{y}-\hat{x}|\geq\begin{cases}c_{6}s^{2}\Delta_{r}^{2}/r_{0}&\text{if }s\leq r_{0}/\Delta_{r},\\ c_{6}s\Delta_{r}&\text{if }s>r_{0}/\Delta_{r}.\end{cases}

Further, for sr/Δrs\leq r/\Delta_{r} we have 1/sΔrσ(sΔr)c7/Δr21/s\Delta_{r}\sigma(s\Delta_{r})\leq c_{7}/\Delta_{r}^{2} or equivalently sΔr/σ(sΔr)c7s2s\Delta_{r}/\sigma(s\Delta_{r})\geq c_{7}s^{2}. Hence similarly to (i), provided we take c0c_{0} large in (5.1),

(5.6) P((ii) holds)\displaystyle P\Big{(}(ii)\text{ holds}\Big{)} {c1sdr2dC44exp(c8s2rσrr0σ(r0))c9ec9s2logrif sr0/Δrc1sdr2dC44exp(c8sΔrσ(sΔr))c9ec9s2if r0/Δr<sr/Δr,c1sdr2dC44exp(c8sΔrσ(sΔr))c9ec9sΔr/σ(sΔr)if s>r/Δr.\displaystyle\leq\begin{cases}c_{1}s^{d}r^{2d}\cdot C_{44}\exp\left(-c_{8}\frac{s^{2}r\sigma_{r}}{r_{0}\sigma(r_{0})}\right)\leq c_{9}e^{-c_{9}s^{2}\log r}&\text{if }s\leq r_{0}/\Delta_{r}\\ c_{1}s^{d}r^{2d}\cdot C_{44}\exp\left(-c_{8}\frac{s\Delta_{r}}{\sigma(s\Delta_{r})}\right)\leq c_{9}e^{-c_{9}s^{2}}&\text{if }r_{0}/\Delta_{r}<s\leq r/\Delta_{r},\\ c_{1}s^{d}r^{2d}\cdot C_{44}\exp\left(-c_{8}\frac{s\Delta_{r}}{\sigma(s\Delta_{r})}\right)\leq c_{9}e^{-c_{9}s\Delta_{r}/\sigma(s\Delta_{r})}&\text{if }s>r/\Delta_{r}.\end{cases}

Under (iii) we have

|u^x^|+|y^u^||y^x^|{c11s2σrif c0(logr)1/2sr/Δr,c11sΔrif s>r/Δr.|\hat{u}-\hat{x}|+|\hat{y}-\hat{u}|-|\hat{y}-\hat{x}|\geq\begin{cases}c_{11}s^{2}\sigma_{r}&\text{if }c_{0}(\log r)^{1/2}\leq s\leq r/\Delta_{r},\\ c_{11}s\Delta_{r}&\text{if }s>r/\Delta_{r}.\end{cases}

Hence as in (i) and (ii) we get

(5.7) P((iii) holds)\displaystyle P\Big{(}(iii)\text{ holds}\Big{)} {c1sdr2dC44exp(c12s2σrσ(2r))c13ec14s2if c0(logr)1/2sr/Δrc1sdr2dC44exp(c12sΔrσ(sΔr))c13ec14sΔr/σ(sΔr)if s>r/Δr.\displaystyle\leq\begin{cases}c_{1}s^{d}r^{2d}\cdot C_{44}\exp\left(-c_{12}\frac{s^{2}\sigma_{r}}{\sigma(2r)}\right)\leq c_{13}e^{-c_{14}s^{2}}&\text{if }c_{0}(\log r)^{1/2}\leq s\leq r/\Delta_{r}\\ c_{1}s^{d}r^{2d}\cdot C_{44}\exp\left(-c_{12}\frac{s\Delta_{r}}{\sigma(s\Delta_{r})}\right)\leq c_{13}e^{-c_{14}s\Delta_{r}/\sigma(s\Delta_{r})}&\text{if }s>r/\Delta_{r}.\end{cases}

To deal with (iv) and complete the proof for fixed (x,y)(x,y), we have the following. We note the difference from Lemma 4.2, which covered many x,yx,y simultaneously but considered only larger transverse wandering, of order Δrlogr\Delta_{r}\log r or more.

Lemma 5.1.

Suppose 𝔾=(𝕍,𝔼)\mathbb{G}=(\mathbb{V},\mathbb{E}) and {ηe,e𝔼}\{\eta_{e},e\in\mathbb{E}\} satisfy A1, A2, and A3. There exist CiC_{i} such that for all KC74K\geq C_{74} and all x,yGr(K)x,y\in G_{r}(K) with |(yx)|(yx)1|(y-x)^{*}|\leq(y-x)_{1},

(5.8) P(ΓxyGr,s)C75eC76s2for all C77KsC78(logr)1/2.\displaystyle P\Big{(}\Gamma_{xy}\not\subset G_{r,s}\Big{)}\leq C_{75}e^{-C_{76}s^{2}}\quad\text{for all }C_{77}K\leq s\leq C_{78}(\log r)^{1/2}.
Proof.

Fix x,yGr(K){\color[rgb]{1,0,0}x,y}\in G_{r}(K) and let r1=(yx)1{\color[rgb]{1,0,0}r_{1}}=(y-x)_{1}. We consider first the case of r1<r/2r_{1}<r/2. Let m0{\color[rgb]{1,0,0}m}\geq 0 satisfy mr1x1<y1(m+2)r1mr_{1}\leq x_{1}<y_{1}\leq(m+2)r_{1}, and for C22C_{22} from (1.10) let

s1=2C22s(r2r1)(1+χ1)/2,Gr,2s(m)=[mr1,(m+2)r1]×2sΔr𝔅d1,{\color[rgb]{1,0,0}s_{1}}=2C_{22}s\left(\frac{r}{2r_{1}}\right)^{(1+\chi_{1})/2},\quad{\color[rgb]{1,0,0}G_{r,2s}^{(m)}}=[mr_{1},(m+2)r_{1}]\times 2s\Delta_{r}\mathfrak{B}_{d-1},

the latter being a slice of Gr,2sG_{r,2s}. Define s2{\color[rgb]{1,0,0}s_{2}} by 2sΔr=s2Δ2r12s\Delta_{r}=s_{2}\Delta_{2r_{1}}. Then s2ss_{2}\geq s, and from (1.10) we have s2s1s_{2}\geq s_{1}, and Gr,2s(m)G_{r,2s}^{(m)} is a translate of G2r1(s2)G_{2r_{1}}(s_{2}).

In view of (5.5) and (5.6), we need only consider (x,y,u)(x,y,u) as in (5.3); in particular r1r0/2r_{1}\geq r_{0}/2. Here we have for some c0c_{0}

|ux|+|yu||yx|c0s22σ(2r1)and henceh(|ux|)+h(|yu|)h(|yx|)c0μ2s22σ(2r1),|u-x|+|y-u|-|y-x|\geq c_{0}s_{2}^{2}\sigma(2r_{1})\quad\text{and hence}\quad h(|u-x|)+h(|y-u|)-h(|y-x|)\geq\frac{c_{0}\mu}{2}s_{2}^{2}\sigma(2r_{1}),

so as in transverse wandering cases (i)–(iii), since uΓxyu\in\Gamma_{xy} one of the quantities

h(|ux|)T(x,u),h(|yu|)T(u,y),T(x,y)h(|yx|)h(|u-x|)-T(x,u),\quad h(|y-u|)-T(u,y),\quad T(x,y)-h(|y-x|)

must exceed c0μs22σ(2r1)/6c_{0}\mu s_{2}^{2}\sigma(2r_{1})/6. It follows from (1.11) and the downward–deviations part of Theorem 1.3 (with ϵ,r,K,t\epsilon,r,K,t there taken as 1/2,2r1,Ks2/2s,c0μs22/61/2,2r_{1},Ks_{2}/2s,c_{0}\mu s_{2}^{2}/6 here) that for x0=xmr1e1,y0=ymr1e1{\color[rgb]{1,0,0}x_{0}}=x-mr_{1}e_{1},{\color[rgb]{1,0,0}y_{0}}=y-mr_{1}e_{1} we have

P\displaystyle P (Γxy contains a vertex u as in (5.3))\displaystyle\left(\Gamma_{xy}\text{ contains a vertex $u$ as in \eqref{twiv}}\right)
P(max(h(|ux|)T(x,u),h(|yu|)T(u,y))c0μ6s22σ(2r1) for some uGr,2s(m))\displaystyle\leq P\bigg{(}\max\Big{(}h(|u-x|)-T(x,u),h(|y-u|)-T(u,y)\Big{)}\geq\frac{c_{0}\mu}{6}s_{2}^{2}\sigma(2r_{1})\text{ for some $u\in G_{r,2s}^{(m)}$}\bigg{)}
+P(T(x,y)h(|yx|)c0μ6s22σ(2r1))\displaystyle\quad+P\bigg{(}T(x,y)-h(|y-x|)\geq\frac{c_{0}\mu}{6}s_{2}^{2}\sigma(2r_{1})\bigg{)}
P(max(h(|u~x0|)T(x0,u~),h(|y0u~|)T(u~,y0))c0μ6s22σ(2r1) for some u~G2r1(s2))\displaystyle\leq P\bigg{(}\max\Big{(}h(|\tilde{u}-x_{0}|)-T(x_{0},\tilde{u}),h(|y_{0}-\tilde{u}|)-T(\tilde{u},y_{0})\Big{)}\geq\frac{c_{0}\mu}{6}s_{2}^{2}\sigma(2r_{1})\text{ for some $\tilde{u}\in G_{2r_{1}}(s_{2})$}\bigg{)}
+P(T(x,y)h(|yx|)c0μ6s22σ(2r1))\displaystyle\quad+P\bigg{(}T(x,y)-h(|y-x|)\geq\frac{c_{0}\mu}{6}s_{2}^{2}\sigma(2r_{1})\bigg{)}
C27ec1s22\displaystyle\leq C_{27}e^{-c_{1}s_{2}^{2}}
(5.9) C27ec1s2.\displaystyle\leq C_{27}e^{-c_{1}s^{2}}.

This completes the proof of Theorem 1.6 for fixed (x,y)(x,y), and thus of (2) in Remark 1.7.

6. Proof of Theorem 1.5.

We move to (3) of Remark 1.7. We begin with an extension of a consequence of Theorem 1.3, removing the requirement that yy lie in the same tube Gr(K)G_{r}(K) as xx, to create a bound on the probability of a fast “hyperplane–block to hyperplane” passage time. Define

Λr=[0,2]×[Δr,Δr]d1.{\color[rgb]{1,0,0}\Lambda_{r}}=[0,2]\times[-\Delta_{r},\Delta_{r}]^{d-1}.
Lemma 6.1.

Suppose 𝔾=(𝕍,𝔼)\mathbb{G}=(\mathbb{V},\mathbb{E}) and {ηe,e𝔼}\{\eta_{e},e\in\mathbb{E}\} satisfy A1, A2, and A3. There exist constants CiC_{i} such that for all rC79r\geq C_{79} and tC80t\geq C_{80},

(6.1) P(T(x,y)h(r)tσr for some xΛr𝕍 and yHr+)C81eC82t.P\Big{(}T(x,y)\leq h(r)-t\sigma_{r}\text{ for some $x\in\Lambda_{r}\cap\mathbb{V}$ and $y\in H_{r}^{+}$}\Big{)}\leq C_{81}e^{-C_{82}t}.
Proof.

It is enough to consider yH[r,r+2]y\in H_{[r,r+2]} and th(r)/σrt\leq h(r)/\sigma_{r}. We first deal with large |y||y^{*}|. With c0c_{0} to be specified we have

P(\displaystyle P\Bigg{(} T(x,y)h(r)tσr for some xΛr𝕍 and yH[r,r+2] with |y|>c0(logr)1/2Δr)\displaystyle T(x,y)\leq h(r)-t\sigma_{r}\text{ for some $x\in\Lambda_{r}\cap\mathbb{V}$ and $y\in H_{[r,r+2]}$ with $|y^{*}|>c_{0}(\log r)^{1/2}\Delta_{r}$}\Bigg{)}
k=1P(T(x,y)h(r)tσr for some xΛr𝕍 and yH[r,r+2]\displaystyle\leq\sum_{k=1}^{\infty}P\Bigg{(}T(x,y)\leq h(r)-t\sigma_{r}\text{ for some $x\in\Lambda_{r}\cap\mathbb{V}$ and $y\in H_{[r,r+2]}$}
with 2k1c0(logr)1/2Δr<|y|2kc0(logr)1/2Δr)\displaystyle\hskip 56.9055pt\text{with $2^{k-1}c_{0}(\log r)^{1/2}\Delta_{r}<|y^{*}|\leq 2^{k}c_{0}(\log r)^{1/2}\Delta_{r}$}\Bigg{)}
k=1P(T^(x^,y^)h(r)tσr for some x^Λrqd and y^Hrqd\displaystyle\leq\sum_{k=1}^{\infty}P\Bigg{(}\hat{T}(\hat{x},\hat{y})\leq h(r)-t\sigma_{r}\text{ for some $\hat{x}\in\Lambda_{r}\cap q\mathbb{Z}^{d}$ and $\hat{y}\in H_{r}\cap q\mathbb{Z}^{d}$}
(6.2) with 2k1c0(logr)1/2Δr<|y^|2kc0(logr)1/2Δr).\displaystyle\hskip 56.9055pt\text{with $2^{k-1}c_{0}(\log r)^{1/2}\Delta_{r}<|\hat{y}^{*}|\leq 2^{k}c_{0}(\log r)^{1/2}\Delta_{r}$}\Bigg{)}.

For c9c_{9} from (4.20), let k0=max{k:2kc0(logr)1/2Δrc9r}{\color[rgb]{1,0,0}k_{0}}=\max\{k:2^{k}c_{0}(\log r)^{1/2}\Delta_{r}\leq c_{9}r\}. For kk0k\leq k_{0}, and for x^,y^\hat{x},\hat{y} of the last event, we have from (4.20) and Lemma 3.6

(6.3) |y^x^|r+|y^|23rr+22kc02σrlogr12soh(|y^x^|)h(r)+μc022422kσrlogr,|\hat{y}-\hat{x}|\geq r+\frac{|\hat{y}^{*}|^{2}}{3r}\geq r+\frac{2^{2k}c_{0}^{2}\sigma_{r}\log r}{12}\quad\text{so}\quad h(|\hat{y}-\hat{x}|)\geq h(r)+\frac{\mu c_{0}^{2}}{24}2^{2k}\sigma_{r}\log r,

and the number of allowed x^,y^\hat{x},\hat{y} is at most c1(2k(logr)1/2)d1Δr2(d1)2kdr2dc_{1}(2^{k}(\log r)^{1/2})^{d-1}\Delta_{r}^{2(d-1)}\leq 2^{kd}r^{2d}. Therefore by Lemma 3.2, provided c0c_{0} is large, the sum up to k0k_{0} on the right side of (6) is bounded above by

k=1k0P\displaystyle\sum_{k=1}^{k_{0}}P (T^(x^,y^)h(|y^x^|)tσrμc022422kσrlogr for some x^Λrqd and y^Hrqd\displaystyle\Bigg{(}\hat{T}(\hat{x},\hat{y})\leq h(|\hat{y}-\hat{x}|)-t\sigma_{r}-\frac{\mu c_{0}^{2}}{24}2^{2k}\sigma_{r}\log r\text{ for some $\hat{x}\in\Lambda_{r}\cap q\mathbb{Z}^{d}$ and $\hat{y}\in H_{r}\cap q\mathbb{Z}^{d}$}
with 2k1c0(logr)1/2Δr<|y^|2kc0(logr)1/2Δr)\displaystyle\hskip 14.22636pt\text{with $2^{k-1}c_{0}(\log r)^{1/2}\Delta_{r}<|\hat{y}^{*}|\leq 2^{k}c_{0}(\log r)^{1/2}\Delta_{r}$}\Bigg{)}
k=1k02kdr2dC44exp(C45σrσ(2r)(t+22kμc0224logr))\displaystyle\leq\sum_{k=1}^{k_{0}}2^{kd}r^{2d}C_{44}\exp\left(-C_{45}\frac{\sigma_{r}}{\sigma(2r)}\left(t+2^{2k}\frac{\mu c_{0}^{2}}{24}\log r\right)\right)
(6.4) c2ec3t.\displaystyle\leq c_{2}e^{-c_{3}t}.

For k>k0k>k_{0}, in place of (6.3) we have

|y^x^|r+c4|y^|r+c42k1c0(logr)1/2Δrsoh(|y^x^|)h(r)+c4c0μ42k(logr)1/2Δr,|\hat{y}-\hat{x}|\geq r+c_{4}|\hat{y}^{*}|\geq r+c_{4}2^{k-1}c_{0}(\log r)^{1/2}\Delta_{r}\quad\text{so}\quad h(|\hat{y}-\hat{x}|)\geq h(r)+\frac{c_{4}c_{0}\mu}{4}2^{k}(\log r)^{1/2}\Delta_{r},

and we obtain similarly that the sum from k0+1k_{0}+1 to \infty on the right side of (6) is bounded above by

k=k0+1P\displaystyle\sum_{k=k_{0}+1}^{\infty}P (T^(x^,y^)h(|y^x^|)tσrc4c0μ42k(logr)1/2Δr for some x^Λrqd and y^Hrqd\displaystyle\Bigg{(}\hat{T}(\hat{x},\hat{y})\leq h(|\hat{y}-\hat{x}|)-t\sigma_{r}-\frac{c_{4}c_{0}\mu}{4}2^{k}(\log r)^{1/2}\Delta_{r}\text{ for some $\hat{x}\in\Lambda_{r}\cap q\mathbb{Z}^{d}$ and $\hat{y}\in H_{r}\cap q\mathbb{Z}^{d}$}
with 2k1c0(logr)1/2Δr<|y^|2kc0(logr)1/2Δr)\displaystyle\hskip 14.22636pt\text{with $2^{k-1}c_{0}(\log r)^{1/2}\Delta_{r}<|\hat{y}^{*}|\leq 2^{k}c_{0}(\log r)^{1/2}\Delta_{r}$}\Bigg{)}
k=k0+12kdr2dC44exp(C45σ(r+2kc0(logr)1/2Δr)(tσr+c4c0μ42k(logr)1/2Δr))\displaystyle\leq\sum_{k=k_{0}+1}^{\infty}2^{kd}r^{2d}C_{44}\exp\left(-\frac{C_{45}}{\sigma(r+2^{k}c_{0}(\log r)^{1/2}\Delta_{r})}\left(t\sigma_{r}+\frac{c_{4}c_{0}\mu}{4}2^{k}(\log r)^{1/2}\Delta_{r}\right)\right)
c5exp(c6(tσr+r)σ(2r))\displaystyle\leq c_{5}\exp\left(-\frac{c_{6}(t\sigma_{r}+r)}{\sigma(2r)}\right)
(6.5) c2ec3t.\displaystyle\leq c_{2}e^{-c_{3}t}.

The last inequality uses th(r)/σrt\leq h(r)/\sigma_{r}.

We now deal with the remaining case |y|c0(logr)1/2Δr|y^{*}|\leq c_{0}(\log r)^{1/2}\Delta_{r}. For C26C_{26} from Theorem 1.3, we take K=t/C26(d1){\color[rgb]{1,0,0}K}=\sqrt{t/C_{26}(d-1)} to be specified and subdivide H[r,r+2]H_{[r,r+2]} into blocks

Y𝐦=[r,r+2]×i=1d1[(mi1)KΔr,miKΔr],𝐦d1.{\color[rgb]{1,0,0}Y_{\mathbf{m}}}=[r,r+2]\times\prod_{i=1}^{d-1}[(m_{i}-1)K\Delta_{r},m_{i}K\Delta_{r}],\quad\mathbf{m}\in\mathbb{Z}^{d-1}.

Let z𝐦{\color[rgb]{1,0,0}z_{\mathbf{m}}} denote the center point of Y𝐦Y_{\mathbf{m}} and let

𝔐={𝐦d1:0Y𝐦,yY𝐦 with |y|c0(logr)1/2Δr}.{\color[rgb]{1,0,0}\mathfrak{M}}=\Big{\{}\mathbf{m}\in\mathbb{Z}^{d-1}:0\notin Y_{\mathbf{m}},\,\exists y\in Y_{\mathbf{m}}\text{ with }|y^{*}|\leq c_{0}(\log r)^{1/2}\Delta_{r}\Big{\}}.

Given 𝐦𝔐\mathbf{m}\in\mathfrak{M}, there exists a cylinder 𝒞𝐦\mathcal{C}_{\mathbf{m}}, with axis containing Π0z𝐦\Pi_{0z_{\mathbf{m}}}, radius 2d1KΔr2\sqrt{d-1}K\Delta_{r}, and length 2r2r, which contains Λr\Lambda_{r} and Y𝐦Y_{\mathbf{m}}. See Figure 11. Further, d(Y𝐦,[r,r+2]×{0})d_{\infty}(Y_{\mathbf{m}},[r,r+2]\times\{0\}) is a positive integer multiple of KΔrK\Delta_{r}, and for xΛrx\in\Lambda_{r} and yY𝐦y\in Y_{\mathbf{m}} satisfying d(Y𝐦,[r,r+2]×{0})=jKΔrd_{\infty}(Y_{\mathbf{m}},[r,r+2]\times\{0\})=jK\Delta_{r} for some jj, we have using (4.20) and Lemma 3.6(i) that

|yx|r+(jKΔr)23r=r+(jK)23σrand henceh(|yx|)h(r)+μ(jK)26σr.|y-x|\geq r+\frac{(jK\Delta_{r})^{2}}{3r}=r+\frac{(jK)^{2}}{3}\sigma_{r}\quad\text{and hence}\quad h(|y-x|)\geq h(r)+\frac{\mu(jK)^{2}}{6}\sigma_{r}.
Refer to caption
Figure 11. The block Λr\Lambda_{r} in H0H_{0} (“fattened” slightly to thickness 2), the similar block Y𝐦Y_{\mathbf{m}} of HrH_{r}, and the cylinder 𝒞𝐦\mathcal{C}_{\mathbf{m}} containing both, for 𝐦=(0,1)\mathbf{m}=(0,1). The gray blocks in HrH_{r} are those with j=1j=1.

The definition of KK says t=C26(d1)K2t=C_{26}(d-1)K^{2}, so by rotational invariance we can apply Theorem 1.3 (for downward deviations) to the cylinder 𝒞𝐦\mathcal{C}_{\mathbf{m}} and obtain

P\displaystyle P (T(x,y)h(r)tσr for some xΛr𝕍 and yY𝐦)\displaystyle\Big{(}T(x,y)\leq h(r)-t\sigma_{r}\text{ for some $x\in\Lambda_{r}\cap\mathbb{V}$ and $y\in Y_{\mathbf{m}}$}\Big{)}
P(T(x,y)h(|yx|)(t+μ(jK)26)σr for some xΛr𝕍 and yY𝐦)\displaystyle\leq P\left(T(x,y)\leq h(|y-x|)-\left(t+\frac{\mu(jK)^{2}}{6}\right)\sigma_{r}\text{ for some $x\in\Lambda_{r}\cap\mathbb{V}$ and $y\in Y_{\mathbf{m}}$}\right)
(6.6) C27exp(C28(t+μ(jK)26)).\displaystyle\leq C_{27}\exp\left(-C_{28}\left(t+\frac{\mu(jK)^{2}}{6}\right)\right).

Summing over jj0=max{j:jKΔrc0(logr)1/2Δr}j\leq{\color[rgb]{1,0,0}j_{0}}=\max\{j:jK\Delta_{r}\leq c_{0}(\log r)^{1/2}\Delta_{r}\} gives

P\displaystyle P (T(x,y)h(r)tσr for some xΛr𝕍,yH[r,r+2] with |y|c0(logr)1/2Δr)\displaystyle\Big{(}T(x,y)\leq h(r)-t\sigma_{r}\text{ for some $x\in\Lambda_{r}\cap\mathbb{V},y\in H_{[r,r+2]}$ with $|y^{*}|\leq c_{0}(\log r)^{1/2}\Delta_{r}$}\Big{)}
P(T(x,y)h(r)tσr for some xΛr𝕍,yY𝐦, and 𝐦𝔐\displaystyle\leq P\Big{(}T(x,y)\leq h(r)-t\sigma_{r}\text{ for some $x\in\Lambda_{r}\cap\mathbb{V},y\in Y_{\mathbf{m}}$, and $\mathbf{m}\in\mathfrak{M}$}
with d(Y𝐦,[r,r+2]×{0})j0KΔr)\displaystyle\hskip 56.9055pt\text{with $d_{\infty}(Y_{\mathbf{m}},[r,r+2]\times\{0\})\leq j_{0}K\Delta_{r}$}\Big{)}
j=0j0P(T(x,y)h(r)tσr for some xΛr𝕍,yY𝐦, and 𝐦𝔐\displaystyle\leq\sum_{j=0}^{j_{0}}P\bigg{(}T(x,y)\leq h(r)-t\sigma_{r}\text{ for some $x\in\Lambda_{r}\cap\mathbb{V},y\in Y_{\mathbf{m}}$, and $\mathbf{m}\in\mathfrak{M}$}
with d(Y𝐦,[r,r+2]×{0})=jKΔr)\displaystyle\hskip 56.9055pt\text{with $d_{\infty}(Y_{\mathbf{m}},[r,r+2]\times\{0\})=jK\Delta_{r}$}\bigg{)}
j=0j0(2j+2)d1C27exp(C28(t+μ(jK)26))\displaystyle\leq\sum_{j=0}^{j_{0}}(2j+2)^{d-1}C_{27}\exp\left(-C_{28}\left(t+\frac{\mu(jK)^{2}}{6}\right)\right)
(6.7) c7ec8t.\displaystyle\leq c_{7}e^{-c_{8}t}.

With (6), (6), and (6) this completes the proof of Lemma 6.1. ∎

Define the “small box”

𝒢r=[0,r]×[Δr,Δr]d1.{\color[rgb]{1,0,0}\mathcal{G}_{r}}=[0,r]\times[-\Delta_{r},\Delta_{r}]^{d-1}.

We now tile a region of d\mathbb{R}^{d} with translates of 𝒢r\mathcal{G}_{r}. Fix k,Kk,K to be specified and let j=j(r,k,K)j={\color[rgb]{1,0,0}j(r,k,K)} be the least jj for which (2j+1)ΔrKΔ(kr)(2j+1)\Delta_{r}\geq K\Delta(kr). Define the “big box”

𝒢+=[0,kr]×[(2j+1)Δr,(2j+1)Δr]d1,{\color[rgb]{1,0,0}\mathcal{G}^{+}}=[0,kr]\times[-(2j+1)\Delta_{r},(2j+1)\Delta_{r}]^{d-1},

so the width of 𝒢+\mathcal{G}^{+} is near 2KΔ(kr)2K\Delta(kr). For 𝐦d\mathbf{m}\in\mathbb{Z}^{d} let 𝒢r,𝐦,Λr,𝐦\mathcal{G}_{r,\mathbf{m}},\Lambda_{r,\mathbf{m}} be 𝒢r,Λr\mathcal{G}_{r},\Lambda_{r} translated by (rm1,2Δr𝐦)(rm_{1},2\Delta_{r}\mathbf{m}^{*}), and let ={𝐦d:𝒢r,𝐦𝒢+}{\color[rgb]{1,0,0}\mathcal{M}}=\{\mathbf{m}\in\mathbb{Z}^{d}:\mathcal{G}_{r,\mathbf{m}}\subset\mathcal{G}^{+}\}; see Figure 12. Then the number of small boxes comprising 𝒢+\mathcal{G}^{+} is

||=k(2j+1)d12k(KΔ(kr)Δr)d1c0Kd1k1+(d1)χ2,|\mathcal{M}|=k(2j+1)^{d-1}\leq 2k\left(\frac{K\Delta(kr)}{\Delta_{r}}\right)^{d-1}\leq c_{0}K^{d-1}k^{1+(d-1)\chi_{2}},

and we have 𝒢+Gkr,KH[0,kr]\mathcal{G}^{+}\supset G_{kr,K}\cap H_{[0,kr]}. Let 𝐦(t)\mathcal{E}_{\mathbf{m}}(t) be the event in (6.1) translated to 𝒢r,𝐦\mathcal{G}_{r,\mathbf{m}}, that is, we replace Λr\Lambda_{r} with Λr,𝐦\Lambda_{r,\mathbf{m}} and Hr+H_{r}^{+} with H(m1+1)r+H_{(m_{1}+1)r}^{+}. Fix CC to be specified; when ω𝐦(Clogk)\omega\in\mathcal{E}_{\mathbf{m}}(C\log k) we say Λr,𝐦\Lambda_{r,\mathbf{m}} is a fast source. Let (r)=(h(r)rμ)/σr{\color[rgb]{1,0,0}\mathcal{L}(r)}=(h(r)-r\mu)/\sigma_{r}, so

(6.8) 0(r)C46logr0\leq\mathcal{L}(r)\leq C_{46}\log r

by Proposition 3.3.

Refer to caption
Figure 12. The big box 𝒢+\mathcal{G}^{+}, of size kr×(4j+2)Δrkr×KΔ(kr)kr\times(4j+2)\Delta_{r}\approx kr\times K\Delta(kr), here with k=5,j=2k=5,j=2. Each small box 𝒢r,𝐦\mathcal{G}_{r,\mathbf{m}} has size r×2Δrr\times 2\Delta_{r}. Λr,(3,1)\Lambda_{r,(3,1)} is a fast source if some path like the dashed one is “sufficiently fast” relative to h(r)h(r).

We now consider the passage time between the ends of the big box. If ΓxyGkr,K\Gamma_{xy}\subset G_{kr,K} then Γ0,kre1\Gamma_{0,kre_{1}} must intersect at least kk of the regions Λr,𝐦\Lambda_{r,\mathbf{m}}, one for each 0m1<k0\leq m_{1}<k. If there are no fast sources, this means T(0,kre1)>krμ+k(r)σrCσrklogkT(0,kre_{1})>kr\mu+k\mathcal{L}(r)\sigma_{r}-C\sigma_{r}k\log k. Provided KK is large, it then follows from Lemmas 5.1 and 6.1 that

P(T(0,kre1)krμ+k(r)σrCσrklogk)\displaystyle P\Big{(}T(0,kre_{1})\leq kr\mu+k\mathcal{L}(r)\sigma_{r}-C\sigma_{r}k\log k\Big{)} P(Γ0,kre1Gkr,K)+P(𝐦𝐦(Clogk))\displaystyle\leq P\Big{(}\Gamma_{0,kre_{1}}\not\subset G_{kr,K}\Big{)}+P\Big{(}\cup_{\mathbf{m}\in\mathcal{M}}\mathcal{E}_{\mathbf{m}}(C\log k)\Big{)}
C75eC76K2+C81||eC82Clogk\displaystyle\leq C_{75}e^{-C_{76}K^{2}}+C_{81}|\mathcal{M}|e^{-C_{82}C\log k}
(6.9) C75eC76K2+c1Kd1k1+(d1)χ2eC82Clogk.\displaystyle\leq C_{75}e^{-C_{76}K^{2}}+c_{1}K^{d-1}k^{1+(d-1)\chi_{2}}e^{-C_{82}C\log k}.

By taking KK large and then CC large, we can make the right side of (6) less than 1/2 for all k3k\geq 3. On the other hand, from (1.11) for large c>1c>1 we have

P(T(0,kre1)krμ+(kr)σ(kr)+cσ(kr))1C24eC25c>12.P\Big{(}T(0,kre_{1})\leq kr\mu+\mathcal{L}(kr)\sigma(kr)+c\sigma(kr)\Big{)}\geq 1-C_{24}e^{-C_{25}c}>\frac{1}{2}.

From this and (6) it follows that

(6.10) ((kr)+c)σ(kr)>k((r)Clogk)σrfor all r large and k3.(\mathcal{L}(kr)+c)\sigma(kr)>k(\mathcal{L}(r)-C\log k)\sigma_{r}\quad\text{for all $r$ large and }k\geq 3.

Fix k3k\geq 3 large enough so k1χ23C23ck^{1-\chi_{2}}\geq 3C_{23}c, with C23C_{23} from (1.10), and, to get a contradiction, suppose there exists rr arbitrarily large with (r)2Clogk\mathcal{L}(r)\geq 2C\log k. By (1.10) and (6.10) we then have

(kr)σrσ(kr)k(r)2ck1χ23C23(r)c(r).\mathcal{L}(kr)\geq\frac{\sigma_{r}}{\sigma(kr)}\frac{k\mathcal{L}(r)}{2}-c\geq\frac{k^{1-\chi_{2}}}{3C_{23}}\mathcal{L}(r)\geq c\mathcal{L}(r).

Then iteration and (6.8) give that for all n1n\geq 1, C46(nlogk+logr)(knr)cn(r)C_{46}(n\log k+\log r)\geq\mathcal{L}(k^{n}r)\geq c^{n}\mathcal{L}(r). Since this is false for large nn, we must have (r)<2Clogk\mathcal{L}(r)<2C\log k for all large rr, so ()\mathcal{L}(\cdot) is bounded, which completes the proof of Theorem 1.5, and thus (3) of Remark 1.7.

7. Proof of Theorem 1.3—upward deviations.

We move on to (4) of Remark 1.7. The proof is similar to the LPP proof for d=2d=2 in ([8] Proposition 10.1). As with downward deviations, we need only consider x,yx,y as in (4.18). Let xy\mathcal{H}_{xy} be as in the downward–deviations proof, and

xyter={all terminal hyperplanes in xy},{\color[rgb]{1,0,0}\mathcal{H}_{xy}^{ter}}=\{\text{all terminal hyperplanes in }\mathcal{H}_{xy}\},

so xyter={Hs1,,Hsn}\mathcal{H}_{xy}^{ter}=\{H_{s_{1}},\dots,H_{s_{n}}\} for some n,s1,,snn,s_{1},\dots,s_{n} depending on (x,y)(x,y). Note that xyter\mathcal{H}_{xy}^{ter} does not depend on Γxy\Gamma_{xy}; the jj–terminal hyperplane at each end of [x^1,y^1][\hat{x}_{1},\hat{y}_{1}] is just the second–closest jjth–scale hyperplane to the endpoint. We form a marked PG path

Ωxy:x^=u0un+1=y^{\color[rgb]{1,0,0}\Omega_{xy}:\hat{x}=u^{0}\to\cdots\to u^{n+1}=\hat{y}}

by taking uiu^{i} as the closest point to wi=Πx^y^Hsi{\color[rgb]{1,0,0}w^{i}}=\Pi_{\hat{x}\hat{y}}\cap H_{s_{i}} in the jjth–scale grid, when HsiH_{s_{i}} is a jj–terminal hyperplane; this means |uiwi|d1βjΔr|u^{i}-w^{i}|\leq\sqrt{d-1}\beta^{j}\Delta_{r} and n2j1n\leq 2j_{1} (from (4.16).) Thus the CG approximation gets coarser as we move away from the endpoints of the interval. See Figure 3.

We proceed generally as in Step 8 of the proof for downward deviations. Let wi{\color[rgb]{1,0,0}w_{\perp}^{i}} be the orthogonal projection of uiu^{i} into Πx^y^\Pi_{\hat{x}\hat{y}}. We use the terminology jjth–scale link, final link, and macroscopic link from there. For jj1j\leq j_{1}, for a jjth–scale link (ui1,ui)(u^{i-1},u^{i}) we have

(7.1) |uiui1||wiwi1|+(|ui1wi1|+|uiwi|)2δjr|wiwi1|+2(d1)β2jΔr2δjr.\displaystyle|u^{i}-u^{i-1}|\leq|w_{\perp}^{i}-w_{\perp}^{i-1}|+\frac{(|u^{i-1}-w_{\perp}^{i-1}|+|u^{i}-w_{\perp}^{i}|)^{2}}{\delta^{j}r}\leq|w_{\perp}^{i}-w_{\perp}^{i-1}|+\frac{2(d-1)\beta^{2j}\Delta_{r}^{2}}{\delta^{j}r}.

Further, the angle α\alpha between e1e_{1} and y^x^\hat{y}-\hat{x} satisfies tanα2KΔr/ϵr\tan\alpha\leq 2K\Delta_{r}/\epsilon r and therefore

(7.2) |wiwi|c0KΔrϵr|uiwi|c1Kβjϵσr,|w^{i}-w_{\perp}^{i}|\leq c_{0}\frac{K\Delta_{r}}{\epsilon r}|u^{i}-w^{i}|\leq c_{1}\frac{K\beta^{j}}{\epsilon}\sigma_{r},

and similarly for i1i-1 in place of ii. We have also δjr/2(uiui1)12δjr\delta^{j}r/2\leq(u^{i}-u^{i-1})_{1}\leq 2\delta^{j}r so from (4.20) and the bound on α\alpha we also get

|wiwi1|(wiwi1)1=(wiwi1)1(y^x^)1(|y^x^|(y^x^)1)2δjϵ2K2ϵσr.|w^{i}-w^{i-1}|-(w^{i}-w^{i-1})_{1}=\frac{(w^{i}-w^{i-1})_{1}}{(\hat{y}-\hat{x})_{1}}\Big{(}|\hat{y}-\hat{x}|-(\hat{y}-\hat{x})_{1}\Big{)}\leq\frac{2\delta^{j}}{\epsilon}\frac{2K^{2}}{\epsilon}\sigma_{r}.

Combining this with (4.13), (7.1), and (7.2) we see that

|uiui1|(uiui1)1+(2(d1)β2jδj+2c1Kβjϵ+4δjK2ϵ2)σr(uiui1)1+8δjK2ϵ2σr|u^{i}-u^{i-1}|\leq(u^{i}-u^{i-1})_{1}+\left(\frac{2(d-1)\beta^{2j}}{\delta^{j}}+\frac{2c_{1}K\beta^{j}}{\epsilon}+\frac{4\delta^{j}K^{2}}{\epsilon^{2}}\right)\sigma_{r}\leq(u^{i}-u^{i-1})_{1}+\frac{8\delta^{j}K^{2}}{\epsilon^{2}}\sigma_{r}

and therefore by Theorem 1.5, using (4.13) and the assumption tC26K2t\geq C_{26}K^{2},

h(|uiui1|)\displaystyle h(|u^{i}-u^{i-1}|) h((uiui1)1)+16μδjK2ϵ2σrμ(uiui1)1+2C33σ(2δjr)+16μδjK2ϵ2σr\displaystyle\leq h((u^{i}-u^{i-1})_{1})+\frac{16\mu\delta^{j}K^{2}}{\epsilon^{2}}\sigma_{r}\leq\mu(u^{i}-u^{i-1})_{1}+2C_{33}\sigma(2\delta^{j}r)+\frac{16\mu\delta^{j}K^{2}}{\epsilon^{2}}\sigma_{r}
(7.3) μ(uiui1)1+c2δjχ1K2ϵ2σrμ(uiui1)1+λj2tσr.\displaystyle\leq\mu(u^{i}-u^{i-1})_{1}+\frac{c_{2}\delta^{j\chi_{1}}K^{2}}{\epsilon^{2}}\sigma_{r}\leq\mu(u^{i}-u^{i-1})_{1}+\frac{\lambda^{j}}{2}t\sigma_{r}.

It follows using Lemma 3.2 that

P(T^(ui1,ui)μ(uiui1)1λjtσr)\displaystyle P\Big{(}\hat{T}(u^{i-1},u^{i})-\mu(u^{i}-u^{i-1})_{1}\geq\lambda^{j}t\sigma_{r}\Big{)} P(T^(ui1,ui)h(|uiui1|)λj2tσr)\displaystyle\leq P\left(\hat{T}(u^{i-1},u^{i})-h(|u^{i}-u^{i-1}|)\geq\frac{\lambda^{j}}{2}t\sigma_{r}\right)
C44exp(C45λjtσrσ(2δjr))\displaystyle\leq C_{44}\exp\left(-C_{45}\frac{\lambda^{j}t\sigma_{r}}{\sigma(2\delta^{j}r)}\right)
(7.4) C44exp(c3(λδχ1)jt).\displaystyle\leq C_{44}\exp\left(-c_{3}\left(\frac{\lambda}{\delta^{\chi_{1}}}\right)^{j}t\right).

The same is valid for a final link, with j=j1j=j_{1}. For macroscopic links it is valid with σ(2δjr)\sigma(2\delta^{j}r) replaced by σr\sigma_{r}, giving

(7.5) P(T^(ui1,ui)μ(uiui1)1λtσr)C44ec4λt.P\Big{(}\hat{T}(u^{i-1},u^{i})-\mu(u^{i}-u^{i-1})_{1}\geq\lambda t\sigma_{r}\Big{)}\leq C_{44}e^{-c_{4}\lambda t}.

The numbers of possible links inside Gr(K)G_{r}(K) are as follows:

  • (i)

    jjth–scale links: at most c5Kd1/δ2jβ2j(d1)c_{5}K^{d-1}/\delta^{2j}\beta^{2j(d-1)},

  • (ii)

    final links: at most c6Kd1rdc_{6}K^{d-1}r^{d},

  • (iii)

    macroscopic links: at most c7Kd1/δ2β2(d1)c_{7}K^{d-1}/\delta^{2}\beta^{2(d-1)}.

Since tC26K2t\geq C_{26}K^{2}, provided C26C_{26} is taken large enough it follows from these bounds and (4.14), (7), (7.5) that

P\displaystyle P (for some x^,y^Gr(K) and jj1, there is a jth–scale link (v,w) in Ωxy\displaystyle\Big{(}\text{for some $\hat{x},\hat{y}\in G_{r}(K)$ and $j\leq j_{1}$, there is a $j$th--scale link $(v,w)$ in $\Omega_{xy}$}
satisfying T^(v,w)μ(wv)1λjtσr)c8exp(c10(λδχ1)jt),\displaystyle\qquad\text{satisfying }\hat{T}(v,w)-\mu(w-v)_{1}\geq\lambda^{j}t\sigma_{r}\Big{)}\leq c_{8}\exp\left(-c_{10}\left(\frac{\lambda}{\delta^{\chi_{1}}}\right)^{j}t\right),
P\displaystyle P (for some x^,y^Gr(K) there is a final link (v,w) in Ωxy?\displaystyle\Big{(}\text{for some $\hat{x},\hat{y}\in G_{r}(K)$ there is a final link $(v,w)$ in $\Omega_{xy}$ }
satisfying T^(v,w)μ(wv)1λj1tσr)c8exp(c10(λδχ1)j1t),\displaystyle\qquad\text{satisfying }\hat{T}(v,w)-\mu(w-v)_{1}\geq\lambda^{j_{1}}t\sigma_{r}\Big{)}\leq c_{8}\exp\left(-c_{10}\left(\frac{\lambda}{\delta^{\chi_{1}}}\right)^{j_{1}}t\right),
P\displaystyle P (for some x^,y^Gr(K) the macroscopic link (v,w) in Ωxy?\displaystyle\Big{(}\text{for some $\hat{x},\hat{y}\in G_{r}(K)$ the macroscopic link $(v,w)$ in $\Omega_{xy}$ }
(7.6) satisfies T^(v,w)μ(wv)1λtσr)c8ec10λt.\displaystyle\qquad\text{satisfies }\hat{T}(v,w)-\mu(w-v)_{1}\geq\lambda t\sigma_{r}\Big{)}\leq c_{8}e^{-c_{10}\lambda t}.

If ω\omega is not in any of the events in (7), and ωJ(0)(c29)\omega\notin J^{(0)}(c_{29}), then for all x,yx,y as in (1.12),

T(x,y)=T(x^,y^)\displaystyle T(x,y)=T(\hat{x},\hat{y}) i=1n+1T^(ui1,ui)+c29nlogr\displaystyle\leq\sum_{i=1}^{n+1}\hat{T}(u^{i-1},u^{i})+c_{29}n\log r
μ(yx)1+c29j1logr+(λ+λj1)tσr+j=1j1λjtσr\displaystyle\leq\mu(y-x)_{1}+c_{29}j_{1}\log r+(\lambda+\lambda^{j_{1}})t\sigma_{r}+\sum_{j=1}^{j_{1}}\lambda^{j}t\sigma_{r}
h(|yx|)+2λ1λtσr.\displaystyle\leq h(|y-x|)+\frac{2\lambda}{1-\lambda}t\sigma_{r}.

Taking λ<1/3\lambda<1/3 it follows that

P(T(x,y)ET(x,y)tσr for some x,yGr(K) with |yx|ϵr)c10ec11t,P\Big{(}T(x,y)-ET(x,y)\geq t\sigma_{r}\text{ for some $x,y\in G_{r}(K)$ with }|y-x|\geq\epsilon r\Big{)}\leq c_{10}e^{-c_{11}t},

which completes the proof of Theorem 1.3 for downward deviations.

8. Proof of Theorem 1.6 and Lemma 1.2.

We finish with (5) of Remark 1.7 by proving Theorem 1.6. In the proof in section 5 for fixed x,yx,y, transverse wandering cases (i)–(iii) were dealt with uniformly over x,yx,y, so we need only consider the case there:

(iv) sc0(logr)1/2s\leq c_{0}(\log r)^{1/2} and there exist x,y,u𝕍x,y,u\in\mathbb{V} with

(8.1) x,yGr(K),uGr,s,d(u,Gr,s)2|yx|>r0,uΓxy,u1[x1,y1].x,y\in G_{r}(K),\quad u\notin G_{r,s},\quad d(u,G_{r,s})\leq 2\quad|y-x|>r_{0},\quad u\in\Gamma_{xy},\quad u_{1}\in[x_{1},y_{1}].

See the dashed line in Figure 10. As in section 5, this means that, for C56C_{56} from Lemma 3.6,

|ux|+|yu||yx|s2σr,soh(|ux|)+h(|yu|)h(|yx|)μs22σrC56|u-x|+|y-u|-|y-x|\geq s^{2}\sigma_{r},\quad\text{so}\quad h(|u-x|)+h(|y-u|)-h(|y-x|)\geq\frac{\mu s^{2}}{2}\sigma_{r}-C_{56}

while

T(x,u)+T(u,y)T(x,y)=0T(x,u)+T(u,y)-T(x,y)=0

so by Theorem 1.3 and Remark 1.4,

P((iv) holds)\displaystyle P\Big{(}(iv)\text{ holds}\Big{)} P(there exist v,wGr(2s) with |T(v,w)h(|wv|)|μs27σr)\displaystyle\leq P\left(\text{there exist $v,w\in G_{r}(2s)$ with }\big{|}T(v,w)-h(|w-v|)\big{|}\geq\frac{\mu s^{2}}{7}\sigma_{r}\right)
(8.2) C36ec1s2.\displaystyle\leq C_{36}e^{-c_{1}s^{2}}.

Together with cases (i)–(iii) in section 5, this completes the proof of Theorem 1.6.

Proof of Lemma 1.2.

Fix MM (large) and ϵ>0\epsilon>0, and define

f(r)=logρ(er)χr,βk=sup{f(r):2k1M<r2kM},{\color[rgb]{1,0,0}f(r)}=\log\rho(e^{r})-\chi r,\quad{\color[rgb]{1,0,0}\beta_{k}}=\sup\{f(r):2^{k-1}M<r\leq 2^{k}M\},

so f(r)=o(r)f(r)=o(r) and hence βk=o(2k)\beta_{k}=o(2^{k}). Letting

ak=(2k1+2k)M2,{\color[rgb]{1,0,0}a_{k}}=\frac{(2^{k-1}+2^{k})M}{2},

we define f~\tilde{f} as follows. First let f~β1\tilde{f}\equiv\beta_{1} on (0,a1](0,a_{1}]. Then for those k1k\geq 1 with βkβk+1\beta_{k}\geq\beta_{k+1}, define f~\tilde{f} on (ak,ak+1](a_{k},a_{k+1}] by

f~(t)={βkif t(ak,2kM]βk+1if t=ak+1linear on [2kM,ak+1].{\color[rgb]{1,0,0}\tilde{f}(t)}=\begin{cases}\beta_{k}&\text{if }t\in(a_{k},2^{k}M]\\ \beta_{k+1}&\text{if }t=a_{k+1}\\ \text{linear on }[2^{k}M,a_{k+1}].\end{cases}

For k1k\geq 1 with βk<βk+1\beta_{k}<\beta_{k+1}, define f~\tilde{f} on (ak,ak+1](a_{k},a_{k+1}] by

f~(t)={βk+1if t[2kM,ak+1]βkif t=aklinear on [ak,2kM].{\color[rgb]{1,0,0}\tilde{f}(t)}=\begin{cases}\beta_{k+1}&\text{if }t\in[2^{k}M,a_{k+1}]\\ \beta_{k}&\text{if }t=a_{k}\\ \text{linear on }[a_{k},2^{k}M].\end{cases}

Since βk=o(2k)\beta_{k}=o(2^{k}) it is easily seen that if we take MM sufficiently large, then the slope of the piecewise–linear function f~\tilde{f} is never more than ϵ\epsilon, and the slope at rr approaches 0 as rr\to\infty. Defining ρ~(r)\tilde{\rho}(r) by

logρ~(er)=f~(r)+χr\log{\color[rgb]{1,0,0}\tilde{\rho}(e^{r})}=\tilde{f}(r)+\chi r

it follows that for all sr>1s\geq r>1,

logρ~(s)logρ~(r)logslogr=f~(logs)f~(logr)logslogr+χ[χϵ,χ+ϵ],\frac{\log\tilde{\rho}(s)-\log\tilde{\rho}(r)}{\log s-\log r}=\frac{\tilde{f}(\log s)-\tilde{f}(\log r)}{\log s-\log r}+\chi\in[\chi-\epsilon,\chi+\epsilon],

and the sublinearly powerlike property follows. ∎

References

  • [1] Alexander, K. S. (1997). Approximation of subadditive functions and rates of convergence in limiting shape results. Ann. Probab. 24 30–55.
  • [2] Alexander, K. S. (2020). Geodesics, bigeodesics, and coalescence in first passage percolation in general dimension. arXiv:2001.08736 [math.PR]
  • [3] Alves, S. G., Oliveira, T. J., and Ferreira, S. C. (2018). Universality of fluctuations in the Kardar-Parisi-Zhang class in high dimensions and its upper critical dimension. Phys. Rev. E 90 020103. arXiv:1405.0974 [cond-mat.stat-mech]
  • [4] Baik, J., Ferrari, P. L., and Péché, S. (2014). Convergence of the two-point function of the stationary TASEP. Singular phenomena and scalingin mathematical models, 91–110, Springer, Cham. arXiv:1209.0116 [math-ph]
  • [5] Balász, Busani, O., and Seppäläinen, T. (2020). Nonexistence of bi-infinite geodesics in the exponential corner growth model. Forum Math. Sigma 8, Paper No. e46, 1–34. arXiv:1909.06883 [math.PR]
  • [6] Basu, R., Hoffman, C., and Sly, A. (2018). Nonexistence of bigeodesics in integrable models of last passage percolation. arXiv:1811.04908 [math.PR]
  • [7] Basu, R., Sarkar, S., and Sly, A. (2019). Coalescence of geodesics in exactly solvable models of last passage percolation. J. Math. Phys. 60 093301, 22 pp. arXiv:1704.05219 [math.PR]
  • [8] Basu, R., Sidoravicius, V., and Sly, A. (2016). Last passage percolation with a defect line and the solution of the slow bond problem. arXiv:1408.3464 [math.PR]
  • [9] Chatterjee, S. (2013). The universal relation between scaling exponents in first-passage percolation.Ann. of Math. (2) 127, no. 2, 663–697. arXiv:1105.4566 [math.PR]
  • [10] Corwin, I., Liu, Z., and Wang, D. (2016). Fluctuations of TASEP and LPP with general initial data. Ann. Appl. Probab. 26, 2030–2082. arXiv:1412.5087 [math.PR]
  • [11] Damron, M., Hanson, J., and Sosoe, P. (2014). Subdiffusive concentration in first-passage percolation. Electon. J. Probab. 19, Paper No. 109, 27 pp. arXiv:1401.0917 [math.PR]
  • [12] Damron, M. and Wang, X. (2016). Entropy reduction in Euclidean first-passage percolation. Electon. J. Probab. 21, Paper No. 65, 23 pp. arXiv:1605.06665 [math.PR]
  • [13] Fogedby, H. C. (2006). Kardar-Parisi-Zhang equation in the weak noise limit: Pattern formation and upper critical dimension. Phys. Rev. E 73 031104. arXiv:cond-mat/0510268 [cond-mat.stat-mech]
  • [14] Gangopadhyay, U. (2020). Fluctuations of transverse increments in two-dimensional first passage percolation. arXiv:2011:14686 [math.pr]
  • [15] Ganguly, S. and Hegde, M. (2020). Optimal tail exponents in general last passage percolation via bootstrapping & geodesic geometry. arXiv:math.PR/2007.03594
  • [16] Howard, C. D. and Newman, C. M. (1997). Euclidean models of first-passage percolation. Probab. Th. Rel. Fields 108, 153–170.
  • [17] Kesten, H. (1986). H. Kesten. Aspects of first passage percolation. In Ecole d’Eté de probabilité de Saint-Flour XIV - 1984, Lecture Notes in Math. 1180, Springer, Berlin, 125–264.
  • [18] Kesten, H. (1993). On the speed of convergence in first-passage percolation. Ann. Appl. Probab. 3 296–338.
  • [19] Kim, S.-W. and Kim, J. M. (2014). A restricted solid-on-solid model in higher dimensions. J. Stat. Mech. 2014 P07005.
  • [20] Le Doussal, P. and Wiese, K. J. (2005). Two-loop functional renormalization for elastic manifolds pinned by disorder in NN dimensions. Phys. Rev. E 72 035101. arXiv:cond-mat/0501315 [cond-mat.dis-nn]
  • [21] Ledoux, M. and Rider, B. (2010) Small deviations for beta ensembles. Electron. J. Probab. 15, 1319–1343. arXiv:0912.5040 [math.PR]
  • [22] Loẅe, M. and Merkl, F. (2001). Moderate deviations for longest increasing subsequences: The upper tail. Comm. Pure Appl. Math. 54, 1488–1519.
  • [23] Loẅe, M., Merkl, F., and Rolles, S. (2002). Moderate deviations for longest increasing subsequences: The lower tail. J. Theor. Probab. 15, 1031–1047.
  • [24] Marinari, E., Pagnani, A., Parisi, G., Rácz, Z. (2002). Width distributions and the upper critical dimension of Kardar-Parisi-Zhang interfaces. Phys. Rev. E 65 026136. arXiv:cond-mat/0105158 [cond-mat.stat-mech]
  • [25] Rodrigues, E. A., Oliveira, F. A., and Mello, B. A. (2015). On the existence of an upper critical dimension for systems within the KPZ universality class. Acta. Phys. Pol. B 46, 1231–1234. arXiv:cond-mat/1502.06121 [cond-mat.stat-mech]
  • [26] Talagrand, M. (1995). Concentration of measure and isoperimetric inequalities in product spaces. Publications Mathématiques de l’Institut des hautes Etudes Scientifiques 81(1), 73–205.
  • [27] Tessera, R. (2018). Speed of convergence in first passage percolation and geodesicity of the average distance. Ann. Inst. Henri Poincaré Probab. Stat. 54, 569–586. arXiv:1410.1701 [math.PR]
  • [28] Xia, G. (2013). The stretch factor of the Delaunay triangulation is less than 1.998. SIAM J. Comput. 42, 1620–1659. arXiv:1103.4361 [cs.CG]