This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Unexpectedly enhanced đœ¶\bm{\alpha}-particle preformation in 48Ti probed by the (𝒑,đ’‘â€‹đœ¶)\bm{(p,p\alpha)} reaction

Yasutaka Taniguchi [email protected] Department of Information Engineering, National Institute of Technology (KOSEN), Kagawa College, Mitoyo, Kagawa 769-1192, Japan Research Center for Nuclear Physics (RCNP), Osaka University, Ibaraki 567-0047, Japan    Kazuki Yoshida Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195, Japan Research Center for Nuclear Physics (RCNP), Osaka University, Ibaraki 567-0047, Japan    Yohei Chiba Department of Physics, Osaka City University, Osaka 558-8585, Japan Nambu Yoichiro Institute of Theoretical and Experimental Physics (NITEP), Osaka City University, Osaka 558-8585, Japan Research Center for Nuclear Physics (RCNP), Osaka University, Ibaraki 567-0047, Japan    Yoshiko Kanada-En’yo Department of Physics, Kyoto University, Kyoto 606-8502, Japan Research Center for Nuclear Physics (RCNP), Osaka University, Ibaraki 567-0047, Japan    Masaaki Kimura Department of Physics, Hokkaido University, Sapporo 060-0810, Japan Nuclear Reaction Data Centre, Hokkaido University, Sapporo 060-0810, Japan Research Center for Nuclear Physics (RCNP), Osaka University, Ibaraki 567-0047, Japan    Kazuyuki Ogata Research Center for Nuclear Physics (RCNP), Osaka University, Ibaraki 567-0047, Japan Department of Physics, Osaka City University, Osaka 558-8585, Japan Nambu Yoichiro Institute of Theoretical and Experimental Physics (NITEP), Osaka City University, Osaka 558-8585, Japan
Abstract

The formation of α\alpha particle on nuclear surface has been a fundamental problem since the early age of nuclear physics. It strongly affects the α\alpha decay lifetime of heavy and superheavy elements, level scheme of light nuclei, and the synthesis of the elements in stars. However, the α\alpha-particle formation in medium-mass nuclei has been poorly known despite its importance. Here, based on the Ti48​(p,p​α)44​Ca{}^{48}{\rm Ti}(p,p\alpha)^{44}{\rm Ca} reaction analysis, we report that the α\alpha-particle formation in a medium-mass nucleus Ti48{}^{48}{\rm Ti} is much stronger than that expected from a mean-field approximation, and the estimated average distance between α\alpha particle and the residue is as large as 4.5 fm. This new result poses a challenge of describing four nucleon correlations by microscopic nuclear models.

pacs:

—Introduction. Since Gamow explained the α\alpha decay as the quantum tunneling of α\alpha particle out of an atomic nucleus [1], the formation of α\alpha particle in nuclei has been a fundamental subject for understanding the structure and decay of nuclei [2, 3, 4, 5]. It has been considered that α\alpha particles are formed at a low-density nuclear surface with a certain probability, which is called the preformation factor or the α\alpha-particle preformation probability. It determines the lifetime of heavy and superheavy nuclei, and its empirical values have often been estimated from the α\alpha decay lifetime. For instance, the very short lifetime of Xe108{}^{108}{\rm Xe} and Te104{}^{104}{\rm Te} were recently measured [6, 7], and the enhancement of the α\alpha-particle preformation probability beyond proton-rich nucleus Sn100{}^{100}{\rm Sn} has been discussed [8, 9, 10].

It is also well known that the α\alpha-particle preformation manifests itself in light nuclei as α\alpha clustering [11, 12] and is closely related to the synthesis of elements in stars [13, 14]. Because it exhibits the unique excitation spectra, α\alpha clustering has been identified in many light nuclei [15, 16]. Compared to heavy or light mass nuclei, the α\alpha-particle preformation in medium-mass nuclei has been poorly known. Generally, it is believed that α\alpha-particle preformation is hindered in medium-mass nuclei because of the largely negative α\alpha-decay QQ-values. The deep binding energies of these nuclei also lead to the dominance of the mean-field dynamics over the four nucleon correlation preventing α\alpha-particle formation. However, such hindrance of α\alpha-particle preformation has never been quantitatively confirmed by experiment due to the lack of reliable measure for the α\alpha-particle preformation.

The proton-induced α\alpha-knockout reaction (p,p​α)(p,p\alpha) has been expected as the sensitive probe for the α\alpha-particle preformation [17, 18, 19, 20, 21]. Due to the strong absorption effect, the α\alpha particle kicked by the projectile proton cannot get out from the interior of the target nucleus. Consequently, the reaction is only sensitive to the α\alpha particles formed on the surface of the target nucleus. Several experiments have been conducted to measure the α\alpha-particle preformation probability in light-medium mass nuclei. Carey et al. reported a systematic measurement of the (p,p​α)(p,p\alpha) reactions with various target nuclei from O16{}^{16}{\rm O} to Zn66{}^{66}{\rm Zn} [19]. However, due to the lack of quantitative analysis, the absolute value of the α\alpha-particle preformation probabilities deduced from the cross sections have large uncertainty.

Recently, it has been shown that the distorted wave impulse approximation (DWIA) with reliable optical potentials realizes an accurate description of the (p,p​α)(p,p\alpha) reaction [22]. Taking well-known light-mass α\alpha clustered nucleus Ne20{}^{20}{\rm Ne} as an example, it was demonstrated that the α\alpha-particle preformation probability is quantitatively evaluated. The new analysis showed that the α\alpha-particle preformation probability of Ne20{}^{20}{\rm Ne} is smaller than that estimated by Carey et al. by a factor of two. Among the nuclei studied by Carey et al., Ti48{}^{48}{\rm Ti} is the only one except for Ne20{}^{20}{\rm Ne}, for which the optical potentials between a proton, α\alpha particle, the residue (Ca44{}^{44}\mathrm{Ca}), and the target nucleus (Ti48{}^{48}{\rm Ti}) have already been known accurately [23, 24, 25]. Furthermore, the residue Ca44{}^{44}\mathrm{Ca} is a magic stable nucleus as an inert core, and hence, the enhancement of the α\alpha-particle preformation can be expected. Therefore, the DWIA analysis of the Ti48​(p,p​α)44​Ca{}^{48}{\rm Ti}(p,p\alpha)^{44}{\rm Ca} reaction must shed new insight into the α\alpha-particle preformation in medium-mass nuclei.

—DWIA framework. The DWIA framework [26, 27, 28, 22] has been adopted to describe the Ti48​(p,p​α)44​Ca{}^{48}{\rm Ti}(p,p\alpha)^{44}{\rm Ca} reaction. Within the factorization approximation, the triple differential cross section is given as,

d3​σd​Tp​d​Ωp​d​Ωα=C0​Fkin​d​σp​αd​Ωp​α​|TÂŻ|2,\displaystyle\frac{\mathrm{d}^{3}\sigma}{\mathrm{d}T_{p}\mathrm{d}\Omega_{p}\mathrm{d}\Omega_{\alpha}}=C_{0}F_{\rm kin}\frac{\mathrm{d}\sigma_{p\alpha}}{\mathrm{d}\Omega_{p\alpha}}\left|\bar{T}\right|^{2}, (1)

where TpT_{p}, Ωp\Omega_{p} and Ωα\Omega_{\alpha} are the kinetic energy of the emitted proton, the solid angles of the proton and α\alpha particles, respectively. C0​FkinC_{0}F_{\rm kin} is the kinematical factor, and d​σp​α/d​Ωp​α\mathrm{d}\sigma_{p\alpha}/\mathrm{d}\Omega_{p\alpha} is the pp-α\alpha differential cross section at the pp-α\alpha relative momentum of the (p,p​α)(p,p\alpha) reaction kinematics. The detail of this approximation is given in Refs. [26, 27], and the validity of this approximation has been tested and confirmed [26]. The reduced transition matrix element TÂŻ\bar{T} is defined as,

TÂŻ\displaystyle\bar{T} =∫d3​R​F​(đ‘č)​y​(R)​Y00​(đ‘č^),\displaystyle=\int d^{3}R\,F(\bm{R})y(R)Y_{00}(\hat{\bm{R}}), (2)
F​(đ‘č)\displaystyle F(\bm{R}) =χp∗(−)​(đ‘č)​χα∗(−)​(đ‘č)​χp(+)​(đ‘č)​e−i​𝒌0⋅đ‘č/12,\displaystyle=\chi_{p}^{*(-)}(\bm{R})\chi_{\alpha}^{*(-)}(\bm{R})\chi_{p}^{(+)}(\bm{R})e^{-i\bm{k}_{0}\cdot\bm{R}/12}, (3)

where 𝒌0\bm{k}_{0} is the momentum of the incident proton. Equation (2) shows the sensitivity of the cross section to the α\alpha-particle preformation because it depends on the probability amplitude of the α\alpha-particle preformation y​(R)y(R). The other ingredients of the analysis are the optical potentials for the pp-Ti48{}^{48}{\rm Ti}, pp-Ca44{}^{44}{\rm Ca}, and α\alpha-Ca44{}^{44}{\rm Ca} scattering, which are used to describe the distorted waves χp(±)​(đ‘č)\chi_{p}^{(\pm)}(\bm{R}) and χα(−)​(đ‘č)\chi_{\alpha}^{(-)}(\bm{R}); the superscripts (+)(+) and (−)(-) indicate outgoing and incoming boundary conditions, respectively. It was shown that the use of the accurate optical potentials is essential for the precise description of the cross sections and the evaluation of α\alpha-particle preformation. In the present work, the EDAD1 optical potential  [24, 25] with Dirac phenomenology has been adopted to the pp-Ti48{}^{48}\mathrm{Ti} and pp-Ca44{}^{44}\mathrm{Ca} distorted waves. This potential reproduces the proton-nucleus elastic scattering with various stable targets from C12{}^{12}{\rm C} to Pb208{}^{208}{\rm Pb} in a wide energy range from 20 MeV to 1 GeV. For the α\alpha-Ca44{}^{44}\mathrm{Ca} distorted wave, we applied the optical potential proposed by Delbar et al. [23], which reproduces the elastic differential cross sections from 24.1 to 100 MeV very accurately. All these optical potentials cover the required energy range for the analysis of the Ti48​(p,p​α)44​Ca{}^{48}{\rm Ti}(p,p\alpha)^{44}{\rm Ca} reaction.

—The α\alpha-particle preformation probability. The probability amplitude for α\alpha-particle preformation, called the reduced width amplitude (RWA), is defined as,

y​(R)=48!4!​44!​⟹ή​(r−R)​Ία​ΊCa​Y00​(r^)|ΊTi⟩/R2,\displaystyle y(R)=\sqrt{\frac{48!}{4!~{}44!}}\Braket{\delta(r-R)\Phi_{\alpha}\Phi_{\rm Ca}Y_{00}(\hat{r})}{\Phi_{\rm Ti}}/R^{2}, (4)

where Ία\Phi_{\alpha}, ΊCa\Phi_{\rm Ca}, and ΊTi\Phi_{\rm Ti} denote the ground state wave functions of the α\alpha particle, the residue (Ca44{}^{44}\mathrm{Ca}), and the target nucleus (Ti48{}^{48}{\rm Ti}), respectively. In this work, the α\alpha is assumed to have a (0​s)4(0s)^{4} configuration, and the wave functions of Ca44{}^{44}{\rm Ca} and Ti48{}^{48}{\rm Ti} are described by using the antisymmetrized molecular dynamics (AMD) [29, 30, 31]. The parity-projected AMD wave function is given as,

Κ\displaystyle\Psi =(1+Px)/2×𝒜​{φ1​φ2​ ​φA},\displaystyle=(1+P_{x})/2\times\mathcal{A}\Set{\varphi_{1}\varphi_{2}...\varphi_{A}}, (5)
φi\displaystyle\varphi_{i} =∏σ=x,y,zexp⁥{−Μσ​(rσ−Zi​σ)2}\displaystyle=\prod_{\sigma=x,y,z}\exp\Set{-\nu_{\sigma}\left(r_{\sigma}-Z_{i\sigma}\right)^{2}}
×(αi​|↑⟩+ÎČi​|↓⟩)×(|p⟩​ or ​|n⟩),\displaystyle\times(\alpha_{i}\ket{\uparrow}+\beta_{i}\ket{\downarrow})\times(\ket{p}\mbox{ or }\ket{n}), (6)

where PxP_{x} is the parity operator, 𝒜\mathcal{A} is the antisymmetrizer and φi\varphi_{i} is the nucleon wave packet. The centroid of a nucleon wave packet is a complex vector 𝒁i\bm{Z}_{i}, in which the real (imaginary) part describes the mean position (momentum) of a nucleon. The parameters of the model wave function are the centroids 𝒁i\bm{Z}_{i}, the spin directions αi\alpha_{i} and ÎČi\beta_{i}, and the Gaussian widths Μx\nu_{x}, Μy\nu_{y}, and Μz\nu_{z}. The wave function of Ca44{}^{44}{\rm Ca} is calculated within the mean-field approximation, i.e., the parameters are optimized to minimize the intrinsic energy E=⟹ι|H|Κ⟩/⟹ι|Κ⟩E=\braket{\Psi}{H}{\Psi}/\braket{\Psi}{\Psi}. Here, the Hamiltonian consists of the nucleon kinetic energies, the effective nucleon-nucleon interaction, and the Coulomb interaction. As an effective nucleon-nucleon interaction, we have used Gogny D1S density functional [32] that reasonably reproduces the fundamental nuclear properties. After the energy minimization, the Ca44{}^{44}{\rm Ca} wave function is projected to Jπ=0+J^{\pi}=0^{+} to calculate the RWA [Eq. (4)] using the Laplace expansion method [33].

Refer to caption
Figure 1: Density distributions of the wave functions from which the RWAs have been calculated. (a) The mean-field solution. (b)–(f) The α+Ca44\alpha+{}^{44}\mathrm{Ca} system with various inter-nuclear distance dd.
Refer to caption
Figure 2: (a) The RWA calculated from the wave functions shown in Fig. 1. (b) The TMD of the Ti48​(p,p​α)44​Ca{}^{48}{\rm Ti}(p,p\alpha)^{44}{\rm Ca} reaction at Tp=63T_{p}=63 MeV. The TMD obtained from the mean-field solution and the d=3.0d=3.0 fm wave function are multiplied by a factor of 10 and 5, respectively. The arrow indicates the sum of the charge radii of α\alpha and Ca44{}^{44}{\rm Ca}, which approximately corresponds to the nuclear surface.

The wave function of Ti48{}^{48}{\rm Ti} is also calculated in the same manner. The obtained wave function, i.e., the mean-field solution for Ti48{}^{48}{\rm Ti}, is shown in Fig. 1 (a). It has an almost spherical shape and does not clearly show the α\alpha-particle preformation. Indeed, the RWA calculated from this mean-field solution [Fig. 2 (a)] has only a small peak at R=4.8R=4.8 fm, and as discussed later, it is too small to reproduce the observed cross section. Therefore, we artificially generate the test wave functions of Ti48{}^{48}{\rm Ti} that exhibit prominent α\alpha-particle preformation. For this purpose, we introduce an approximate inter-nuclear distance dd [34, 35],

d=|14​∑i=1,
,4Re​𝒁i−144​∑i=5,
,48Re​𝒁j|,\displaystyle d=\left|\frac{1}{4}\sum_{i=1,...,4}{\rm Re}\bm{Z}_{i}-\frac{1}{44}\sum_{i=5,...,48}{\rm Re}\bm{Z}_{j}\right|, (7)

where the first and second terms correspond to the center-of-mass of α\alpha and Ca44{}^{44}{\rm Ca}, respectively. We perform the energy variation with the constraint on the value of dd and obtain the wave functions which mimic the α\alpha-particle preformation with various inter-nuclear distance as shown in Fig. 1 (b)–(f). The RWAs calculated from these wave functions shown in Fig. 2 (a) have prominent peaks that become higher and move outward with the increase of dd. Note that the RWAs are strongly suppressed in the interior of the residual nucleus (Râ‰Č5R\lesssim 5 fm) due to the Pauli principle. Consequently, the peak position is not necessarily the same as the value of dd.

Refer to caption
Figure 3: Triple differential cross section of the Ti48​(p,p​α)44​Ca{}^{48}{\rm Ti}(p,p\alpha)^{44}{\rm Ca} reaction obtained by the DWIA calculations using the RWAs shown in Fig. 2 (a) compared with the experiment [19]. The incident proton energy, the emitted angles of proton and α\alpha are set to Ep=101.5E_{p}=101.5 MeV, Ξp=−70.0∘\theta_{p}=-70.0^{\circ} and Ξα=45.0∘\theta_{\alpha}=45.0^{\circ}, respectively.
Refer to caption
Figure 4: (a) Binding energy (b) charge radii, and (c) E2 transition matrix of Ti44{}^{44}{\rm Ti} calculated from the mean-field solution and α+Ca44\alpha+{}^{44}\mathrm{Ca} wave functions in comparison with the experimental data [36, 37, 38]. The binding energy is given relative to the α\alpha+Ca44{}^{44}{\rm Ca} decay threshold.

—Results and Discussions. Figure 3 shows the triple differential cross sections of the Ti48​(p,p​α)​Ca44{}^{48}\mathrm{Ti}(p,p\alpha){}^{44}\mathrm{Ca} reaction obtained by the DWIA calculations using the RWAs shown in Fig. 2 (a). The cross sections are plotted as functions of the outgoing proton energy. The incident proton energy, the emitted angles of the proton and α\alpha particle are set to the same values as in the experiment by Carey et al. [19]. Unexpectedly, it is found that the mean-field solution does not reproduce the observed cross section at all. It underestimates the cross section in three orders of magnitude, which cannot be explained by the uncertainty of the optical potentials used in DWIA analysis or the density functional (Gogny D1S) used to calculate the mean-field solution. Consequently, we conclude that the α\alpha preformation probability is much larger than that described by the mean-field solution.

To estimate the degree of α\alpha-particle preformation, we have also tested the RWAs obtained from the α+Ca44\alpha+{}^{44}\mathrm{Ca} wave functions with various inter-nuclear distances. Figure 3 shows that these RWAs yield much larger cross sections than the mean-field solution, and the cross section increases by approximately one order of magnitude for every 1 fm increase of the inter-nuclear distance. It is found that the RWA obtained from the α+Ca44\alpha+{}^{44}\mathrm{Ca} wave function with d=4.5d=4.5 fm gives the most plausible description of the observed cross section. The peripherality of the (p,p​α)(p,p\alpha) reaction is confirmed from the real part of the transition matrix density (TMD) [27] that is defined as,

ή​(R)=TÂŻâˆ—â€‹âˆ«đ‘‘đ‘č^​R2​F​(đ‘č)​y​(R)​Y00​(đ‘č^).\displaystyle\delta(R)=\bar{T}^{*}\int d\hat{\bm{R}}~{}R^{2}F(\bm{R})y(R)Y_{00}(\hat{\bm{R}}). (8)

Note that the integral of TMD over the distance is equal to the square of the transition matrix TT, and hence, ή​(R)\delta(R) gives a hint at which distance RR the reaction takes places. As shown in Fig. 2 (b), TMD is negligible in the interior region (Râ‰Č5R\lesssim 5 fm) due to the strong absorption of an α\alpha particle and small RWA. It explains why the cross section with the mean-field solution is smaller in order of magnitude than that with the α+Ca44\alpha+{}^{44}\mathrm{Ca} wave functions. We also note that the peak position (Tp∌63T_{p}\sim 63 MeV) and width of the cross section are approximately determined by the kinematical condition (recoil-less condition for the residue Ca44{}^{44}{\rm Ca}) and the momentum distribution of the RWA, respectively.

Although the α+Ca44\alpha+{}^{44}\mathrm{Ca} wave function with d=4.5d=4.5 fm gives the best result for the Ti48​(p,p​α)44​Ca{}^{48}{\rm Ti}(p,p\alpha)^{44}{\rm Ca} reaction, its validity should be verified from different perspectives. Firstly, it must be noted that the binding energies of the α+Ca44\alpha+{}^{44}\mathrm{Ca} wave functions are much smaller than that of the mean-field solution because of the artificial constraint imposed on the inter-nuclear distance [Eq. (7)]. Figure 4 (a) shows that the binding energy of the α+Ca44\alpha+{}^{44}\mathrm{Ca} wave function rapidly decreases as the inter-nuclear distance increases. At d=d=4.5 fm, it underestimates the experimental value [36] by approximately 10 MeV and yields the positive QQ-value of the α\alpha decay, whereas the mean-field solution gives reasonable binding energy and QQ-value. Panels (b) and (c) show the charge radius and the reduced matrix elements for the E2 transition from the ground state to the 21+2^{+}_{1} state, respectively. As expected, both the charge radius and E2 transition matrix elements increase with the inter-nuclear distance. Although the α+Ca44\alpha+{}^{44}\mathrm{Ca} wave function gives reasonable values at d=2.0d=2.0–2.5 fm, it overestimates the observed values [37, 38] at d=4.5d=4.5 fm. In short, the α+Ca44\alpha+{}^{44}\mathrm{Ca} wave function can describe the Ti48​(p,p​α)44​Ca{}^{48}{\rm Ti}(p,p\alpha)^{44}{\rm Ca} reaction, but it fails to reproduce the fundamental structural properties. On the contrary, the mean-field solution offers a better description of the energy, radius, and E2 transition but fails in the α\alpha knockout reaction. From these results, we can deduce that the ground state wave function should be an admixture of the mean-field solution and the α+Ca44\alpha+{}^{44}\mathrm{Ca} type wave functions. The mean-field solution should be the dominant component of the ground state due to its large binding energy, but the contamination of the α+Ca44\alpha+{}^{44}\mathrm{Ca} wave function is indispensable to explain the observed large α\alpha knockout cross section.

—Summary. The Ti48​(p,p​α)44​Ca{}^{48}{\rm Ti}(p,p\alpha)^{44}{\rm Ca} reaction has been studied to investigate the α\alpha-particle preformation in a medium-mass nucleus Ti48{}^{48}{\rm Ti}. The DWIA analysis using accurate optical potentials offers a reliable and quantitative description of the α\alpha-knockout reaction, and it has revealed that the α\alpha-particle preformation in Ti48{}^{48}{\rm Ti} is unexpectedly enhanced. It has been shown that the mean-field solution underestimates the cross section in orders of magnitude, and one must assume the α+Ca44\alpha+{}^{44}\mathrm{Ca} wave function whose the inter-nuclear distance is as large as d=4.5d=4.5 fm to reproduce the observed cross section. However, the α+Ca44\alpha+{}^{44}\mathrm{Ca} wave function fails to explain other basic properties of Ti48{}^{48}{\rm Ti}, which are reasonably described by the mean-field approximation. Hence, we conclude that the ground state is an admixture of the mean-field and α+Ca44\alpha+{}^{44}\mathrm{Ca} configurations. This new insight requests the systematic analysis of the (p,p​α)(p,p\alpha) reactions to reveal the universality of the α\alpha-particle preformation and poses a challenge to the microscopic nuclear models for describing α\alpha-particle preformation in medium-mass nuclei.

Acknowledgements.
This work was supported by the COREnet program at the RCNP, Osaka University, the Hattori Hokokai Foundation Grant-in-Aid for Technological and Engineering Research, and JSPS KAKENHI Grant Nos. JP16K05352, JP18H05407, JP18K03617, and JP20K14475. Numerical calculations were performed using Oakforest-PACS at the Center for Computational Sciences, University of Tsukuba, and XC40 at Yukawa Institute for Theoretical Physics, Kyoto University.

References

  • Gamow [1928] G. Gamow, Zur Quantentheorie des Atomkernes, Zeitschrift fĂŒr Physik 51, 204 (1928).
  • Mang [1964] H. J. Mang, Alpha Decay, Annual Review of Nuclear Science 14, 1 (1964).
  • Jackson and Rhoades-Brown [1977] D. F. Jackson and M. Rhoades-Brown, Theories of alpha-decay, Annals of Physics 105, 151 (1977).
  • Lovas et al. [1998] R. G. Lovas, R. J. Liotta, A. Insolia, K. Varga, and D. S. Delion, Microscopic theory of cluster radioactivity, Physics Report 294, 265 (1998).
  • Qi et al. [2019] C. Qi, R. Liotta, and R. Wyss, Recent developments in radioactive charged-particle emissions and related phenomena, Progress in Particle and Nuclear Physics 105, 214 (2019).
  • Auranen et al. [2018] K. Auranen, D. Seweryniak, M. Albers, A. D. Ayangeakaa, S. Bottoni, M. P. Carpenter, C. J. Chiara, P. Copp, H. M. David, D. T. Doherty, J. Harker, C. R. Hoffman, R. V. Janssens, T. L. Khoo, S. A. Kuvin, T. Lauritsen, G. Lotay, A. M. Rogers, J. Sethi, C. Scholey, R. Talwar, W. B. Walters, P. J. Woods, and S. Zhu, Superallowed α\alpha Decay to Doubly Magic Sn 100, Physical Review Letters 121, 182501 (2018).
  • Xiao et al. [2019] Y. Xiao, S. Go, R. Grzywacz, R. Orlandi, A. N. Andreyev, M. Asai, M. A. Bentley, G. De Angelis, C. J. Gross, P. Hausladen, K. Hirose, S. Hofmann, H. Ikezoe, D. G. Jenkins, B. Kindler, R. LĂ©guillon, B. Lommel, H. Makii, C. Mazzocchi, K. Nishio, P. Parkhurst, S. V. Paulauskas, C. M. Petrache, K. P. Rykaczewski, T. K. Sato, J. Smallcombe, A. Toyoshima, K. Tsukada, K. Vaigneur, and R. Wadsworth, Search for α\alpha decay of Te 104 with a novel recoil-decay scintillation detector, Physical Review C 100, 034315 (2019).
  • Clark et al. [2020] R. M. Clark, A. O. Macchiavelli, H. L. Crawford, P. Fallon, D. Rudolph, A. SĂ„mark-Roth, C. M. Campbell, M. Cromaz, C. Morse, and C. Santamaria, Enhancement of α\alpha -particle formation near Sn 100, Physical Review C 101, 034313 (2020).
  • Mercier et al. [2020] F. Mercier, J. Zhao, R. D. Lasseri, J. P. Ebran, E. Khan, T. NikĆĄić, and D. Vretenar, Microscopic description of the self-conjugate Xe 108 and Te 104 α\alpha -decay chain MICROSCOPIC DESCRIPTION of the SELF-CONJUGATE 
 F. MERCIER et al., Physical Review C 102, 011301(R) (2020).
  • Yang et al. [2020] S. Yang, C. Xu, G. Röpke, P. Schuck, Z. Ren, Y. Funaki, H. Horiuchi, A. Tohsaki, T. Yamada, and B. Zhou, α\alpha decay to a doubly magic core in the quartetting wave function approach, Physical Review C 101, 024316 (2020).
  • Ikeda et al. [1968] K. Ikeda, N. Takigawa, and H. Horiuchi, The Systematic Structure-Change into the Molecule-like Structures in the Self-Conjugate 4N Nuclei, Progress of Theoretical Physics Supplement E68, 464 (1968).
  • Wildermuth and Tang [1977] K. Wildermuth and Y. C. Tang, A Unified Theory of the Nucleus (Vieweg+Teubner Verlag, Wiesbaden, 1977).
  • Adelberger et al. [1998] E. G. Adelberger, S. M. Austin, J. N. Bahcall, A. B. Balantekin, G. Bogaert, L. S. Brown, L. Buchmann, F. E. Cecil, A. E. Champagne, L. De Braeckeleer, C. A. Duba, S. R. Elliott, S. J. Freedman, M. Gai, G. Goldring, C. R. Gould, A. Gruzinov, W. C. Haxton, K. M. Heeger, E. Henley, C. W. Johnson, M. Kamionkowski, R. W. Kavanagh, S. E. Koonin, K. Kubodera, K. Langanke, T. Motobayashi, V. Pandharipande, P. Parker, R. G. Robertson, C. Rolfs, R. F. Sawyer, N. Shaviv, T. D. Shoppa, K. A. Snover, E. Swanson, R. E. Tribble, S. Turck-ChiĂšze, and J. F. Wilkerson, Solar fusion cross sections, Reviews of Modern Physics 70, 1265 (1998).
  • Descouvemont and Baye [2010] P. Descouvemont and D. Baye, The R-matrix theory, Reports on Progress in Physics 73, 036301 (2010).
  • Fujiwara et al. [1980] Y. Fujiwara, H. Horiuchi, K. Ikeda, M. Kamimura, K. Kato, Y. Suzuki, and E. Uegaki, Chapter II. Comprehensive Study of Alpha-Nuclei, Progress of Theoretical Physics Supplement 68, 29 (1980).
  • Bijker and Iachello [2020] R. Bijker and F. Iachello, Cluster structure of light nuclei, Progress in Particle and Nuclear Physics 110, 103735 (2020).
  • Roos et al. [1977] P. G. Roos, N. S. Chant, A. A. Cowley, D. A. Goldberg, H. D. Holmgren, and R. Woody, Absolute spectroscopic factors from the (p,pα\alpha) reaction at 100 MeV on 1p-shell nuclei, Physical Review C 15, 69 (1977).
  • Nadasen et al. [1980] A. Nadasen, N. S. Chant, P. G. Roos, T. A. Carey, R. Cowen, C. Samanta, and J. Wesick, Non-coplanar (p, pα\alpha) and (p, d He3) reactions on Be9 at 101.5 MeV, Physical Review C 22, 1394 (1980).
  • Carey et al. [1984] T. A. Carey, P. G. Roos, N. S. Chant, A. Nadasen, and H. L. Chen, Alpha-particle spectroscopic strengths using the (p,p) reaction at 101.5 MeV, Physical Review C 29, 1273 (1984).
  • Yoshimura et al. [1998] T. Yoshimura, A. Okihana, R. E. Warner, N. S. Chant, P. G. Roos, C. Samanta, S. Kakigi, N. Koori, M. Fujiwara, N. Matsuoka, K. Tamura, E. Kubo, and K. Ushiro, Alpha spectroscopic factors for 6Li, 7Li, 9Be and 12C from the (p→, pa) reaction at 296 MeV, Nuclear Physics A 641, 3 (1998).
  • Mabiala et al. [2009] J. Mabiala, A. A. Cowley, S. V. Förtsch, E. Z. Buthelezi, R. Neveling, F. D. Smit, G. F. Steyn, and J. J. Van Zyl, Analyzing power and cross section distributions of the C12(p,pα\alpha)Be8 cluster knockout reaction at an incident energy of 100 MeV, Physical Review C 79, 054612 (2009).
  • Yoshida et al. [2019] K. Yoshida, Y. Chiba, M. Kimura, Y. Taniguchi, Y. Kanada-En’yo, and K. Ogata, Quantitative description of the Ne 20 (p,pα\alpha) O 16 reaction as a means of probing the surface α\alpha amplitude, Physical Review C 100, 044601 (2019).
  • Delbar et al. [1978] T. Delbar, G. GrĂ©goire, G. Paic, R. Ceuleneer, F. Michel, R. Vanderpoorten, A. Budzanowski, H. Dabrowski, L. Freindl, K. Grotowski, S. Micek, R. Planeta, A. Strzalkowski, and K. A. Eberhard, Elastic and inelastic scattering of alpha particles from Ca40,44 over a broad range of energies and angles, Physical Review C 18, 1237 (1978).
  • Hama et al. [1990] S. Hama, B. C. Clark, E. D. Cooper, H. S. Sherif, and R. L. Mercer, Global Dirac optical potentials for elastic proton scattering from heavy nuclei, Physical Review C 41, 2737 (1990).
  • Cooper et al. [1993] E. D. Cooper, S. Hama, B. C. Clark, and R. L. Mercer, Global Dirac phenomenology for proton-nucleus elastic scattering, Physical Review C 47, 297 (1993).
  • Yoshida et al. [2016] K. Yoshida, K. Minomo, and K. Ogata, Investigating α\alpha clustering on the surface of Sn 120 via the (p,pα\alpha) reaction, and the validity of the factorization approximation, Physical Review C 94, 044604 (2016).
  • Wakasa et al. [2017] T. Wakasa, K. Ogata, and T. Noro, Proton-induced knockout reactions with polarized and unpolarized beams, Progress in Particle and Nuclear Physics 96, 32 (2017).
  • Yoshida et al. [2018] K. Yoshida, K. Ogata, and Y. Kanada-En’yo, Investigation of α\alpha clustering with knockout reactions, Physical Review C 98, 024614 (2018).
  • Kanada-En’yo et al. [2003] Y. Kanada-En’yo, M. Kimura, and H. Horiuchi, Antisymmetrized Molecular Dynamics: a new insight into the structure of nuclei, Comptes Rendus Physique 4, 497 (2003).
  • Kanada-En’yo et al. [2012] Y. Kanada-En’yo, M. Kimura, and A. Ono, Antisymmetrized molecular dynamics and its applications to cluster phenomena, Progress of Theoretical and Experimental Physics 2012, 1A202 (2012).
  • Kimura et al. [2016] M. Kimura, T. Suhara, and Y. Kanada-En’yo, Antisymmetrized molecular dynamics studies for exotic clustering phenomena in neutron-rich nuclei, The European Physical Journal A 52, 373 (2016).
  • Berger et al. [1991] J. Berger, M. Girod, and D. Gogny, Time-dependent quantum collective dynamics applied to nuclear fission, Computer Physics Communications 63, 365 (1991).
  • Chiba and Kimura [2017] Y. Chiba and M. Kimura, Laplace expansion method for the calculation of the reduced-width amplitudes, Progress of Theoretical and Experimental Physics 2017, 053D01 (2017).
  • Taniguchi et al. [2004] Y. Taniguchi, M. Kimura, and H. Horiuchi, New Constraint of Clustering for AMD and Its Application to the Study of the 2 -12C Structure of 20Ne, Progress of Theoretical Physics 112, 475 (2004).
  • Taniguchi and Kimura [2020] Y. Taniguchi and M. Kimura, 12C+16O molecular resonances at deep sub-barrier energy, Physics Letters B 800, 135086 (2020).
  • Huang et al. [2017] W. J. Huang, G. Audi, M. Wang, F. G. Kondev, S. Naimi, and X. Xu, The AME2016 atomic mass evaluation (I). Evaluation of input data; And adjustment procedures, Chinese Physics C 41, 030002 (2017).
  • Angeli and Marinova [2013] I. Angeli and K. P. Marinova, Table of experimental nuclear ground state charge radii: An update, Atomic Data and Nuclear Data Tables 99, 69 (2013).
  • Burrows [2006] T. W. Burrows, Nuclear Data Sheets for A = 48, Nuclear Data Sheets 107, 1747 (2006).