This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Understanding Partial 𝒫𝒯\mathcal{PT} symmetry as Weighted Composition Conjugation in Reproducing Kernel Hilbert Space :An application to Non-hermitian Bose-Hubbard Type Hamiltonian in Fock space

Arindam Chakraborty
Department of Physics, Heritage Institute of Technology, Kolkata-700107, India
[email protected]:
Abstract

A new kind of symmetry behaviour introduced as partial 𝒫𝒯{\mathcal{PT}}-symmetry(henceforth 𝒫𝒯\partial_{\mathcal{PT}}) is investigated in a typical Fock space setting understood as a Reproducing Kernel Hilbert Space (RKHS). The same kind of symmetry is understood for a non-hermitian Bose-Hubbard type Hamiltonian involving two boson operators as well as its eigenstates. The phenomenon of symmetry breaking has also been considered.

Keywords: Non-hermitian operator, Bose-Hubbard model, Partial 𝒫𝒯{\mathcal{PT}}-symmetry, Fock space, Reproducing Kernel Hilbert Space.

1. Introduction

Non-hermitian Hamiltonian with real eihenvalues in the context of 𝒫𝒯{\mathcal{PT}} symmetry has become an interesting area of investigation for last couple of decades [1, 2, 3, 4, 5, 6, 7, 8]. The present article stems from a recent study of partial 𝒫𝒯\mathcal{PT} symmetry by Beygi et. al. [9] where a variable specific action of symmetry operator is understood considering a model of an N-coupled harmonic oscillator Hamiltonian with purely imaginary coupling terms. It has also been observed that the reality and partial reality of the spectrum have direct correspondences with the classical trajectories.The present formulation attempts to explore the possibility of partial 𝒫𝒯\mathcal{PT} symmetry in a Bose-Hubberd hamiltonian operator[10] as well as in its eigenstates in a typical Fock space environment. The relevant Fock space [11] has been viewed as a Reproducing Kernel Hilbert Space [12, 13, 14, 15, 16, 17]and the symetry operators are understood as Weighted Composition Conjugation [13, 14, 15] acting on it.

We begin with the following definition of Fock space involving functions of nn complex variable.

  •       Definition 1.

    A Fock (or Segal-Bargmann) space (2(Cn))(\mathcal{F}^{2}({C}^{n})) is a separable complex Hilbert space of entire functions (of the complex variables {ζj:j=1n}\{\zeta_{j}:j=1\dots n\} ) equipped with an inner-product

    ψ,ϕ=j=1nW(ζj)ψ(ζj:j=1n)ϕ(ζj:j=1n)¯\displaystyle\langle\psi,\phi\rangle=\prod_{j=1}^{n}\int_{W(\zeta_{j})}\psi(\zeta_{j}:j=1\dots n)\overline{\phi(\zeta_{j}:j=1\dots n)}
    withj=1nW(ζj)𝑑W(ζ1)𝑑W(ζn).\displaystyle\;\;{\rm{with}}\prod_{j=1}^{n}\int_{W(\zeta_{j})}\equiv\int\int d{W(\zeta_{1})}\dots d{W(\zeta_{n})}. (1)

    Here, dW(u)=1πe|u|2d(Re(u))d(Im(u)){d}{W(u)}=\frac{1}{\pi}e^{-|u|^{2}}{d}({\rm{Re}}(u))d({\rm{Im}}(u)) represents the relevant Gaussian measure relative to the complex variable uu.

In a Fock space of one complex variable 𝒫𝒯{\mathcal{PT}} symmetry is often understood as a consequence of the more general notion of weighted composition conjugation [13] defined as follows.

  •       Definition 2.

    Let, ζ\zeta is a complex variable and {ϑ,η,υ}\{\vartheta,\eta,\upsilon\} are complex numbers satisfying the set of necessary and sufficient conditions : |ϑ|=1,ϑ¯η+η¯=0|\vartheta|=1,\bar{\vartheta}\eta+\bar{\eta}=0 and |υ|2e|η|2=1|\upsilon|^{2}e^{|\eta|^{2}}=1.The weighted composition conjugation is defined as

    𝒞(ϑ,η,υ)ψ(ζ)=υeηζψ(ϑζ+η¯)¯.\displaystyle\mathcal{C}_{(\vartheta,\eta,\upsilon)}\psi(\zeta)=\upsilon e^{\eta\zeta}\overline{\psi(\overline{\vartheta\zeta+\eta})}. (2)

The anti-linear operator 𝒞(ϑ,η,υ)\mathcal{C}_{(\vartheta,\eta,\upsilon)} is a conjugation since it is involutive and isometric. The action of the operator 𝒫𝒯\mathcal{PT} is equivalent to the choice : ϑ=1=υ,η=0\vartheta=-1=-\upsilon,\eta=0 which results to the following equation

𝒞(ϑ,0,1)|ϑ=1ψ(ζ)=ψ(ζ¯)¯.\displaystyle\mathcal{C}_{(\vartheta,0,1)}|_{\vartheta=-1}\psi(\zeta)=\overline{\psi(\overline{-\zeta})}. (3)

Similarly, the action of 𝒯\mathcal{T} is indicative of the choice : ϑ=1,η=0,υ=1\vartheta=1,\eta=0,\upsilon=1 giving

𝒞(ϑ,0,1)|ϑ=1ψ(ζ)=ψ(ζ¯)¯.\displaystyle\mathcal{C}_{(\vartheta,0,1)}|_{\vartheta=1}\psi(\zeta)=\overline{\psi(\overline{\zeta})}. (4)

If ψ\psi is a function of several complex variables {ζj:j=1n}\{\zeta_{j}:j=1\dots n\} one can define an operator 𝒞(ϑj,ηj,υj:j=1n)\mathcal{C}_{(\vartheta_{j},\eta_{j},\upsilon_{j}:j=1\dots n)} with the action

𝒞(ϑj,ηj=0,υj=1:j=1n)ψ(ζ1,,ζj,,ζn)=ψ(ϑ1ζ1¯,,ϑjζj¯,,ϑnζn¯)¯.\displaystyle\mathcal{C}_{(\vartheta_{j},\eta_{j}=0,\upsilon_{j}=1:j=1\dots n)}\psi(\zeta_{1},\dots,\zeta_{j},\dots,\zeta_{n})=\overline{\psi(\overline{\vartheta_{1}\zeta_{1}},\dots,\overline{\vartheta_{j}\zeta_{j}},\dots,\overline{\vartheta_{n}\zeta_{n}})}. (5)

Let us introduce an operator 𝒞n(j)=𝒞(ϑj,ηj=0,υj=1;j=1n)|ϑ1=1,,ϑj=1,,ϑn=1\mathcal{C}^{(j)}_{n}=\mathcal{C}_{(\vartheta_{j},\eta_{j}=0,\upsilon_{j}=1;j=1\dots n)}|_{\vartheta_{1}=1,\dots,\vartheta_{j}=-1,\dots,\vartheta_{n}=1} as jj-th partial 𝒫𝒯\mathcal{PT} symmetry (𝒫𝒯\partial_{\mathcal{PT}}) operator through the following action

𝒞n(j)ψ(ζ1,,ζj,,ζn)=ψ(ζ1¯,,ζj¯,,ζn¯)¯.\displaystyle\mathcal{C}^{(j)}_{n}\psi(\zeta_{1},\dots,\zeta_{j},\dots,\zeta_{n})=\overline{\psi(\bar{\zeta_{1}},\dots,\overline{-\zeta_{j}},\dots,\bar{\zeta_{n}})}. (6)

and a global 𝒫𝒯\mathcal{PT} symmetry operator 𝒞n\mathcal{C}_{n} through the action

𝒞nψ(ζ1,,ζj,,ζn)=ψ(ζ1¯,,ζj¯,,ζn¯)¯.\displaystyle\mathcal{C}_{n}\psi(\zeta_{1},\dots,\zeta_{j},\dots,\zeta_{n})=\overline{\psi(\overline{-\zeta_{1}},\dots,\overline{-\zeta_{j}},\dots,\overline{-\zeta_{n}})}. (7)

For our present purpose we shall only consider the operators 𝒞2\mathcal{C}_{2} and {𝒞2(j):j=1,2}\{\mathcal{C}_{2}^{(j)}:j=1,2\}. Now, global and partial 𝒫𝒯\mathcal{PT} symmetries of any function ψ(ζ1,ζ2)\psi(\zeta_{1},\zeta_{2}) are understood through the following equations

𝒞2ψ(ζ1,ζ2)=ψ(ζ1,ζ2)and𝒞2(j)ψ(ζ1,ζ2)=ψ(ζ1,ζ2)j=1,2\displaystyle\mathcal{C}_{2}\psi(\zeta_{1},\zeta_{2})=\psi(\zeta_{1},\zeta_{2})\>\>{\rm and}\>\>\mathcal{C}_{2}^{(j)}\psi(\zeta_{1},\zeta_{2})=\psi(\zeta_{1},\zeta_{2})\>\>\forall\>\>j=1,2 (8)

respectively.

2. The model Hamiltonian and 𝒫𝒯\partial_{\mathcal{PT}} symmetry in Fock space

In the present discussion, following [10] a Bose-Hubbard type Hamiltonian has been considered. Such a Hamiltonian has been invoked as a two mode version for a second quantized many particle system showing Bose-Einstein Condensation (BEC) in a double well potential at low temperature. The said Hamiltonian becomes non-hermitian if one of the interaction terms present in it is taken as purely imaginary.The model Hamiltonian under consideration is given by

H=ϵ0(a1a1a2a2)+ϵ(a1a2+a2a1)+α(a1a1a2a2)2.\displaystyle H=\epsilon_{0}(a_{1}^{\dagger}a_{1}-a_{2}^{\dagger}a_{2})+\epsilon(a_{1}^{\dagger}a_{2}+a_{2}^{\dagger}a_{1})+\alpha(a_{1}^{\dagger}a_{1}-a_{2}^{\dagger}a_{2})^{2}. (9)

Here ϵ0\epsilon_{0} represents the on site energy difference, ϵ\epsilon is the single particle tunneling and α\alpha stands for the interaction strength. {aj,aj:j=1,2}\{a_{j},a_{j}^{\dagger}:j=1,2\} are boson operators satisfying the condition [aj,ak]δjk=[aj,ak]=[aj,ak]=0[a_{j},a^{\dagger}_{k}]-\delta_{jk}=[a_{j},a_{k}]=[a^{\dagger}_{j},a^{\dagger}_{k}]=0. The Hamiltonian commutes with the number operator N=a1a1+a2a2N=a_{1}^{\dagger}a_{1}+a_{2}^{\dagger}a_{2} indicating particle conservation. For the time being we consider ϵ0=1,ϵ=iγ\epsilon_{0}=1,\epsilon=i\gamma and γ\gamma and α\alpha to be real.

In order to understand 𝒫𝒯\partial_{\mathcal{PT}} symmetry in Fock space we rewrite the Hamiltonian using Bargmann-Fock correspondence : aj=ζj,aj=ζja_{j}^{\dagger}=\zeta_{j},a_{j}=\partial_{\zeta_{j}} as follows

H=(ζ1ζ1ζ2ζ2)+iγ(ζ1ζ2+ζ2ζ1)+α(ζ1ζ1ζ2ζ2)2.\displaystyle H=(\zeta_{1}\partial_{\zeta_{1}}-\zeta_{2}\partial_{\zeta_{2}})+i\gamma(\zeta_{1}\partial_{\zeta_{2}}+\zeta_{2}\partial_{\zeta_{1}})+\alpha(\zeta_{1}\partial_{\zeta_{1}}-\zeta_{2}\partial_{\zeta_{2}})^{2}. (10)

Following [13, 14, 15] we shall demonstrate the actions of weighted composition conjugations 𝒞2\mathcal{C}_{2} and 𝒞2(j)\mathcal{C}_{2}^{(j)} on HH via the notion of Reproducing Kernel Hilbert Space (RKHS).

  •       Definition 3.

    A function of the form K{ζj}[mj](uj:j=1n)=j=1nujmjeujζj¯K^{[m_{j}]}_{\{\zeta_{j}\}}(u_{j}:j=1\dots n)=\prod_{j=1}^{n}u_{j}^{m_{j}}e^{u_{j}\overline{\zeta_{j}}}(mjNm_{j}\in{N} and ζj,ujCj=1n\zeta_{j},u_{j}\in{C}\>\>\forall\>\>j=1\dots n) is called a kernel function (or a reproducing kernel) which satisfies the condition

    ψ(m1,m2,,mn)(ζ1,ζ2,,ζn)=ψ,K{ζ1}[mj]\displaystyle\psi^{(m_{1},m_{2},\dots,m_{n})}(\zeta_{1},\zeta_{2},\dots,\zeta_{n})=\langle\psi,K^{[m_{j}]}_{\{\zeta_{1}\}}\rangle
    =W(u1)W(u2)W(un)ψ(u1,u2,,un)K{ζ1}[mj]¯.\displaystyle=\int_{W(u_{1})}\int_{W(u_{2})}\dots\int_{W(u_{n})}\psi(u_{1},u_{2},\dots,u_{n})\overline{K^{[m_{j}]}_{\{\zeta_{1}\}}}. (11)

Considering the case with two complex variables the following proposition is immediate.

  •       Proposition 1.

    HHH^{\star}\neq H where HH^{\star} is defined as Hψ(u1,u2),Kζ1,ζ2[m1,m2]=ψ(u1,u2),HKζ1,ζ2[m1,m2]\langle H\psi(u_{1},u_{2}),K^{[m_{1},m_{2}]}_{\zeta_{1},\zeta_{2}}\rangle=\langle\psi(u_{1},u_{2}),H^{\star}K^{[m_{1},m_{2}]}_{\zeta_{1},\zeta_{2}}\rangle.

Proof : We shall first show that u1u1ψ(u1,u2),Kζ1,ζ2[m1,m2]=ψ(u1,u2),u1u1Kζ1,ζ2[m1,m2]\langle u_{1}\partial_{u_{1}}\psi(u_{1},u_{2}),K^{[m_{1},m_{2}]}_{\zeta_{1},\zeta_{2}}\rangle=\langle\psi(u_{1},u_{2}),u_{1}\partial_{u_{1}}K^{[m_{1},m_{2}]}_{\zeta_{1},\zeta_{2}}\rangle.

u1u1ψ(u1,u2),Kζ1,ζ2[m1,m2]=u1u1ψ(u1,u2),u1m1u2m2eu1ζ1¯+u2ζ2¯\displaystyle\langle u_{1}\partial_{u_{1}}\psi(u_{1},u_{2}),K^{[m_{1},m_{2}]}_{\zeta_{1},\zeta_{2}}\rangle=\langle u_{1}\partial_{u_{1}}\psi{(u_{1},u_{2})},u_{1}^{m_{1}}u_{2}^{m_{2}}e^{u_{1}\overline{\zeta_{1}}+u_{2}\overline{\zeta_{2}}}\rangle
=W(u1)W(u2)u1u1ψ(u1,u2)u1¯m1u2¯m2eu1¯ζ1+u2¯ζ2\displaystyle=\int_{W(u_{1})}\int_{W(u_{2})}u_{1}\partial_{u_{1}}\psi(u_{1},u_{2})\overline{u_{1}}^{m_{1}}\overline{u_{2}}^{m_{2}}e^{\overline{u_{1}}{\zeta_{1}}+\overline{u_{2}}{\zeta_{2}}}
=W(u1)W(u2)u1[W(v1)W(v2)v1¯ψ(v1,v2)ev1¯u1+v2¯u2]u1¯m1u2¯m2eu1¯ζ1+u2¯ζ2\displaystyle=\int_{W(u_{1})}\int_{W(u_{2})}u_{1}[\int_{W(v_{1})}\int_{W(v_{2})}\overline{v_{1}}\psi(v_{1},v_{2})e^{\overline{v_{1}}{u_{1}}+\overline{v_{2}}{u_{2}}}]\overline{u_{1}}^{m_{1}}\overline{u_{2}}^{m_{2}}e^{\overline{u_{1}}{\zeta_{1}}+\overline{u_{2}}{\zeta_{2}}}
=W(v1)W(v2)v1¯ψ(v1,v2)[W(u1)W(u2)u1u1¯m1u2¯m2eu1¯ζ1+u2¯ζ2ev1¯u1+v2¯u2]\displaystyle=\int_{W(v_{1})}\int_{W(v_{2})}\overline{v_{1}}\psi(v_{1},v_{2})[\int_{W(u_{1})}\int_{W(u_{2})}u_{1}\overline{u_{1}}^{m_{1}}\overline{u_{2}}^{m_{2}}e^{\overline{u_{1}}{\zeta_{1}}+\overline{u_{2}}{\zeta_{2}}}e^{\overline{v_{1}}{u_{1}}+\overline{v_{2}}{u_{2}}}]
=W(v1)W(v2)v1¯ψ(v1,v2)u1ev1¯u1+v2¯u2,u1m1u2m2eu1ζ1¯+u2ζ2¯\displaystyle=\int_{W(v_{1})}\int_{W(v_{2})}\overline{v_{1}}\psi(v_{1},v_{2})\langle u_{1}e^{\overline{v_{1}}{u_{1}}+\overline{v_{2}}{u_{2}}},{u_{1}}^{m_{1}}{u_{2}}^{m_{2}}e^{{u_{1}}\overline{\zeta_{1}}+{u_{2}}\overline{\zeta_{2}}}\rangle
=W(v1)W(v2)v1¯ψ(v1,v2)ζ1m1ζ2m2(ζ1ev1¯ζ1+v2¯ζ2)\displaystyle=\int_{W(v_{1})}\int_{W(v_{2})}\overline{v_{1}}\psi(v_{1},v_{2})\partial_{\zeta_{1}}^{m_{1}}\partial_{\zeta_{2}}^{m_{2}}(\zeta_{1}e^{\overline{v_{1}}{\zeta_{1}}+\overline{v_{2}}{\zeta_{2}}})
=W(v1)W(v2)v1¯ψ(v1,v2)ζ1m1ζ2m2v1¯(ev1¯ζ1+v2¯ζ2)\displaystyle=\int_{W(v_{1})}\int_{W(v_{2})}\overline{v_{1}}\psi(v_{1},v_{2})\partial_{\zeta_{1}}^{m_{1}}\partial_{\zeta_{2}}^{m_{2}}\partial_{\overline{v_{1}}}(e^{\overline{v_{1}}{\zeta_{1}}+\overline{v_{2}}{\zeta_{2}}})
=W(v1)W(v2)ψ(v1,v2)v1¯v1¯ζ1m1ζ2m2(ev1¯ζ1+v2¯ζ2)\displaystyle=\int_{W(v_{1})}\int_{W(v_{2})}\psi(v_{1},v_{2})\overline{v_{1}}\partial_{\overline{v_{1}}}\partial_{\zeta_{1}}^{m_{1}}\partial_{\zeta_{2}}^{m_{2}}(e^{\overline{v_{1}}{\zeta_{1}}+\overline{v_{2}}{\zeta_{2}}})
=ψ(v1,v2),v1v1Kζ1,ζ2[m1,m2](v1,v2).\displaystyle=\langle\psi(v_{1},v_{2}),v_{1}\partial_{v_{1}}K^{[m_{1},m_{2}]}_{\zeta_{1},\zeta_{2}}(v_{1},v_{2})\rangle. (12)

An identical argument holds for u2u2u_{2}\partial_{u_{2}} and similar calculations justify forms of adjoints for the operators iujukiu_{j}\partial_{u_{k}} for jkj\neq k. For example, it can be shown that

iu1u2ψ(u1,u2),u1m1u2m2eu1ζ1¯+u2ζ2¯\displaystyle\langle iu_{1}\partial_{u_{2}}\psi(u_{1},u_{2}),u_{1}^{m_{1}}u_{2}^{m_{2}}e^{u_{1}\overline{\zeta_{1}}+u_{2}\overline{\zeta_{2}}}\rangle
=ψ(v1,v2),iv2v1v1m1v2m2ev1ζ1¯+v2ζ2¯.\displaystyle=\langle\psi(v_{1},v_{2}),-iv_{2}\partial_{v_{1}}v_{1}^{m_{1}}v_{2}^{m_{2}}e^{v_{1}\overline{\zeta_{1}}+v_{2}\overline{\zeta_{2}}}\rangle. (13)

Using these results in the expression of Hamiltonian the proposition is verified. 

  •       Proposition 2.

    HH is 𝒞2\mathcal{C}_{2} self-adjoint i. e.; 𝒞2H𝒞2=H\mathcal{C}_{2}H^{\star}\mathcal{C}_{2}=H

Proof : We shall first show the case with u1u1u_{1}\partial_{u_{1}}. Considering the conjugation operator 𝒞2\mathcal{C}_{2} we find

𝒞2(u1u1)𝒞2Kζ1,ζ2[m1,m2](u1,u2)\displaystyle\mathcal{C}_{2}(u_{1}\partial_{u_{1}})^{\star}\mathcal{C}_{2}K^{[m_{1},m_{2}]}_{\zeta_{1},\zeta_{2}}(u_{1},u_{2})
=𝒞2u1u1𝒞2u1m1u2m2eu1ζ1¯+u2ζ2¯\displaystyle=\mathcal{C}_{2}u_{1}\partial_{u_{1}}\mathcal{C}_{2}u_{1}^{m_{1}}u_{2}^{m_{2}}e^{u_{1}\overline{\zeta_{1}}+u_{2}\overline{\zeta_{2}}}
=𝒞2u1u1(u1)¯m1¯(u2)¯m2¯eu1¯ζ1¯+u2¯ζ2¯¯\displaystyle=\mathcal{C}_{2}u_{1}\partial_{u_{1}}\overline{\overline{(-u_{1})}^{m_{1}}}\overline{\overline{(-u_{2})}^{m_{2}}}\overline{e^{\overline{-u_{1}}\overline{\zeta_{1}}+\overline{-u_{2}}\overline{\zeta_{2}}}}
=𝒞2u1u1(1)m1+m2u1m1u2m2eu1ζ1u2ζ2\displaystyle=\mathcal{C}_{2}u_{1}\partial_{u_{1}}(-1)^{m_{1}+m_{2}}u_{1}^{m_{1}}u_{2}^{m_{2}}e^{-u_{1}{\zeta_{1}}-u_{2}{\zeta_{2}}}
=𝒞2u1(1)m1+m2[u1m1u2m2(ζ1)eu1ζ1u2ζ2+m1u1m11u2m2eu1ζ1u2ζ2]\displaystyle=\mathcal{C}_{2}u_{1}(-1)^{m_{1}+m_{2}}[u_{1}^{m_{1}}u_{2}^{m_{2}}(-{\zeta_{1}})e^{-u_{1}{\zeta_{1}}-u_{2}{\zeta_{2}}}+m_{1}u_{1}^{m_{1}-1}u_{2}^{m_{2}}e^{-u_{1}{\zeta_{1}}-u_{2}{\zeta_{2}}}]
=u1(1)m1+m2[(1)m1+m2u1m1u2m2(ζ1¯)\displaystyle=-u_{1}(-1)^{m_{1}+m_{2}}[(-1)^{m_{1}+m_{2}}u_{1}^{m_{1}}u_{2}^{m_{2}}(-\overline{\zeta_{1}})
+m1(1)m1+m21u1m11u2m2]eu1ζ1¯+u2ζ2¯\displaystyle+m_{1}(-1)^{m_{1}+m_{2}-1}u_{1}^{m_{1}-1}u_{2}^{m_{2}}]e^{u_{1}\overline{\zeta_{1}}+u_{2}\overline{\zeta_{2}}}
=u1u1Kζ1,ζ2[m1,m2](u1,u2).\displaystyle=u_{1}\partial_{u_{1}}K^{[m_{1},m_{2}]}_{\zeta_{1},\zeta_{2}}(u_{1},u_{2}). (14)

Similarly one can prove 𝒞2(iu1u2)𝒞2Kζ1,ζ2[m1,m2](u1,u2)=(iu2u1)Kζ1,ζ2[m1,m2](u1,u2)\mathcal{C}_{2}(iu_{1}\partial_{u_{2}})^{\star}\mathcal{C}_{2}K^{[m_{1},m_{2}]}_{\zeta_{1},\zeta_{2}}(u_{1},u_{2})=(iu_{2}\partial_{u_{1}})K^{[m_{1},m_{2}]}_{\zeta_{1},\zeta_{2}}(u_{1},u_{2}) and 𝒞2(iu2u1)𝒞2Kζ1,ζ2[m1,m2](u1,u2)=(iu1u2)Kζ1,ζ2[m1,m2](u1,u2)\mathcal{C}_{2}(iu_{2}\partial_{u_{1}})^{\star}\mathcal{C}_{2}K^{[m_{1},m_{2}]}_{\zeta_{1},\zeta_{2}}(u_{1},u_{2})=(iu_{1}\partial_{u_{2}})K^{[m_{1},m_{2}]}_{\zeta_{1},\zeta_{2}}(u_{1},u_{2}). Using these result in the expression of the Hamiltonian the above proposition is verified.  

  •       Proposition 3.

    HH has 𝒫𝒯\partial_{\mathcal{PT}} symmetry i. e.; 𝒞2(j)H𝒞2(j)=H\mathcal{C}_{2}^{(j)}H\mathcal{C}_{2}^{(j)}=H, for j=1,2j=1,2 but it lacks global 𝒫𝒯\mathcal{PT} symmetry i. e.; 𝒞2H𝒞2H\mathcal{C}_{2}H\mathcal{C}_{2}\neq H.

Proof : We shall only verify the that 𝒞2(1)u1u1𝒞2(j)Kζ1,ζ2[m1,m2](u1,u2)=u1u1Kζ1,ζ2[m1,m2](u1,u2)\mathcal{C}_{2}^{(1)}u_{1}\partial_{u_{1}}\mathcal{C}_{2}^{(j)}K^{[m_{1},m_{2}]}_{\zeta_{1},\zeta_{2}}(u_{1},u_{2})=u_{1}\partial_{u_{1}}K^{[m_{1},m_{2}]}_{\zeta_{1},\zeta_{2}}(u_{1},u_{2}) through the following steps

𝒞2(1)u1u1𝒞2(1)Kζ1,ζ2[m1,m2](u1,u2)\displaystyle\mathcal{C}_{2}^{(1)}u_{1}\partial_{u_{1}}\mathcal{C}_{2}^{(1)}K^{[m_{1},m_{2}]}_{\zeta_{1},\zeta_{2}}(u_{1},u_{2})
=𝒞2(1)u1u1[(u1)m1(u2)m2eu1ζ1+u2ζ2]\displaystyle=\mathcal{C}_{2}^{(1)}u_{1}\partial_{u_{1}}[(-u_{1})^{m_{1}}(u_{2})^{m_{2}}e^{-u_{1}\zeta_{1}+u_{2}\zeta_{2}}]
=𝒞2(1)u1(1)m1[m1u1m11u2m2+(ζ1)u1m1u2m2]eu1ζ1+u2ζ2\displaystyle=\mathcal{C}_{2}^{(1)}u_{1}(-1)^{m_{1}}[m_{1}u_{1}^{m_{1}-1}u_{2}^{m_{2}}+(-\zeta_{1})u_{1}^{m_{1}}u_{2}^{m_{2}}]e^{-u_{1}\zeta_{1}+u_{2}\zeta_{2}}
=u1(1)m1[m1(u1)m11u2m2+(ζ1)¯(u1)m1u2m2]eu1ζ1¯+u2ζ2¯\displaystyle=-u_{1}(-1)^{m_{1}}[m_{1}(-u_{1})^{m_{1}-1}u_{2}^{m_{2}}+\overline{(-\zeta_{1})}(-u_{1})^{m_{1}}u_{2}^{m_{2}}]e^{u_{1}\overline{\zeta_{1}}+u_{2}\overline{\zeta_{2}}}
=u1u1Kζ1,ζ2[m1,m2](u1,u2).\displaystyle=u_{1}\partial_{u_{1}}K^{[m_{1},m_{2}]}_{\zeta_{1},\zeta_{2}}(u_{1},u_{2}). (15)

Similarly,

𝒞2(1)iu1u2𝒞2(1)Kζ1,ζ2[m1,m2](u1,u2)\displaystyle\mathcal{C}_{2}^{(1)}iu_{1}\partial_{u_{2}}\mathcal{C}_{2}^{(1)}K^{[m_{1},m_{2}]}_{\zeta_{1},\zeta_{2}}(u_{1},u_{2})
=𝒞2(1)iu1u2[(u1)m1(u2)m2eu1ζ1+u2ζ2]\displaystyle=\mathcal{C}_{2}^{(1)}iu_{1}\partial_{u_{2}}[(-u_{1})^{m_{1}}(u_{2})^{m_{2}}e^{-u_{1}\zeta_{1}+u_{2}\zeta_{2}}]
=𝒞2(1)iu1(1)m1[(u1)m1m2(u2)m21+(u1)m1(u2)m2(ζ2)]eu1ζ1+u2ζ2\displaystyle=\mathcal{C}_{2}^{(1)}iu_{1}(-1)^{m_{1}}[(u_{1})^{m_{1}}m_{2}(u_{2})^{m_{2}-1}+(u_{1})^{m_{1}}(u_{2})^{m_{2}}(\zeta_{2})]e^{-u_{1}\zeta_{1}+u_{2}\zeta_{2}}
=iu1u2Kζ1,ζ2[m1,m2](u1,u2).\displaystyle=iu_{1}\partial_{u_{2}}K^{[m_{1},m_{2}]}_{\zeta_{1},\zeta_{2}}(u_{1},u_{2}). (16)

Using these and similar results for the expression of the Hamiltonian the proposition can be verified. 

3. 𝒫𝒯\partial_{\mathcal{PT}} symmetry of the eigenstates of the Hamiltonian HH

First we shall show that the reality of the eigenvalues is directly related to the 𝒫𝒯\partial_{\mathcal{PT}} symmetry of the eigen states of the Hamiltonian. It is readily observed that the present Hamiltonian leaves the homogeneous polynomial space of two indeterminates (ζ1,ζ2)(\zeta_{1},\zeta_{2}) invariant. Considering such a space of degree of homogeneity mm and polynomial bases {fk=ζ1mkζ2k:k=0m}\{f_{k}=\zeta_{1}^{m-k}\zeta_{2}^{k}:k=0\dots m\} the operator HH has the following tridiagonal representation

H=(βmiγ00000imγβm22iγ00000iγ(m1)βm43iγ000β(m2)imγ00000iγβm).\displaystyle H=\left(\begin{array}[]{cccccccc}\beta_{m}&i\gamma&0&0&0&\dots&0&0\\ im\gamma&\beta_{m-2}&2i\gamma&0&0&\dots&0&0\\ 0&i\gamma(m-1)&\beta_{m-4}&3i\gamma&0&\dots&0&0\\ \vdots&\vdots&\vdots&\vdots&\vdots&\dots&\beta_{-(m-2)}&im\gamma\\ 0&0&0&0&0&\dots&i\gamma&\beta_{-m}\end{array}\right). (22)

Here, βμ=μ+αμ2\beta_{\mu}=\mu+\alpha{\mu}^{2}. The the eigenvalues of such a matrix can be found out with the help of the following theorem [18].

  •       Theorem 1.

    Given a tri-diagonal matrix

    =(b0d000000c0b1d100000c1b2d2000bl2dl200000cl2bl1){\mathcal{M}}=\left(\begin{array}[]{cccccccc}b_{0}&d_{0}&0&0&0&\dots&0&0\\ c_{0}&b_{1}&d_{1}&0&0&\dots&0&0\\ 0&c_{1}&b_{2}&d_{2}&0&\dots&0&0\\ \vdots&\vdots&\vdots&\vdots&\vdots&\dots&b_{l-2}&d_{l-2}\\ 0&0&0&0&0&\dots&c_{l-2}&b_{l-1}\end{array}\right) (23)

    with di0id_{i}\neq 0\>\>\forall\>\>i, let us consider a polynomial Pn(λ)P_{n}(\lambda) that follows the well-known three term recursion relation [19, 20]

    Pn+1(λ)=1dn[(λbn)Pn(x)cn1Pn1(λ)].P_{n+1}(\lambda)=\frac{1}{d_{n}}[(\lambda-b_{n})P_{n}(x)-c_{n-1}P_{n-1}(\lambda)]. (24)

    If P1(λ)=0P_{-1}(\lambda)=0 and P0(λ)=1P_{0}(\lambda)=1 the eigenvalues are given by the zeros of the polynomial Pl(λ)P_{l}(\lambda) and eigenvector corresponding to jj-th eigenvalue λj\lambda_{j} is given by the vector

    (P0(λj)P1(λj)Pl2(λj)Pl1(λj)).\left(\begin{array}[]{c}P_{0}(\lambda_{j})\\ P_{1}(\lambda_{j})\\ \vdots\\ P_{l-2}(\lambda_{j})\\ P_{l-1}(\lambda_{j})\end{array}\right). (25)

Proof : Let (v0v1vl2vl1).\left(\begin{array}[]{c}v_{0}\\ v_{1}\\ \vdots\\ v_{l-2}\\ v_{l-1}\end{array}\right).be the eigen vector corresponding to the eigenvalue λ\lambda. Then the eigenvalue equation gives us

b0v0+d0v1=λv0\displaystyle b_{0}v_{0}+d_{0}v_{1}=\lambda v_{0}
c0v0+b1v1+d1v2=λv1\displaystyle c_{0}v_{0}+b_{1}v_{1}+d_{1}v_{2}=\lambda v_{1}
\displaystyle\vdots
cl2vl2+bl1vl1=λvl1\displaystyle c_{l-2}v_{l-2}+b_{l-1}v_{l-1}=\lambda v_{l-1} (26)

Since P0(λ)=1P_{0}(\lambda)=1, one can write v0=P0(λ)v0v_{0}=P_{0}(\lambda)v_{0}. Now in view of the recurrence relation (equation-24)

v1=1d0(λb0)P0(λ)v0=P1(λ)\displaystyle v_{1}=\frac{1}{d_{0}}(\lambda-b_{0})P_{0}(\lambda)v_{0}=P_{1}(\lambda) (27)

Continuing the substitution recursively we get

vn=Pn(λ)v0:0n<lv_{n}=P_{n}(\lambda)v_{0}:0\leq n<l (28)

Substituting n=l1n=l-1 in equation-28 and using the three term relation (equation-24) we get

Pl(λ)v0=0P_{l}(\lambda)v_{0}=0 (29)

giving the characteristic equation Pl(λ)=0P_{l}(\lambda)=0. 

Now going back to the matrix in equation-22 and comparing the matrices in equation-22 and equation-23 we get {b0,,bl1}={βm,,βm}\{b_{0},\dots,b_{l-1}\}=\{\beta_{m},\dots,\beta_{-m}\}, {c0,,cl2}={imγ,,iγ}\{c_{0},\dots,c_{l-2}\}=\{im\gamma,\dots,i\gamma\} and {d0,,dl2}={iγ,,imγ}\{d_{0},\dots,d_{l-2}\}=\{i\gamma,\dots,im\gamma\}, one can determine the eigenvectors and eigenvalues of the matrix using the above algorithm.

3.1. Reality of the eigenvalues and 𝒫𝒯\partial_{\mathcal{PT}} symmetry of the eigenstates

Without calculating the eigenvalues explicitly, an immediate inference regarding the symmetry behaviour of the eigenfunctions is possible in view of the reality of the eigenvalues. We shall consider the following two cases.

Case-I : |m|{2s:sZ+}|m|\in\{2s:s\in{Z^{+}}\} Let us begin from the value |m|=2|m|=2. The matrix of HH is a 3×33\times 3 matrix. Correspondingly the matrix {\mathcal{M}} has the diagonal elements b0=2+4α,b1=0,b2=2+4αb_{0}=2+4\alpha,b_{1}=0,b_{2}=-2+4\alpha. This implies l=3l=3. When |m|=2s|m|=2s for some fixed ss, l=2s+1l=2s+1 and the matrix {\mathcal{M}} becomes a (2s+1)×(2s+1)(2s+1)\times(2s+1) matrix. As a consequence a polynomial equation Pl(x)=0P_{l}(x)=0 implies P2s+1(x)=0P_{2s+1}(x)=0 and roots of this polynomial equation gives us the eigenvalues. The eigenvector corresponding to an eigenvalue λ0\lambda_{0} would be given by the vector

(P0(λ0)P1(λ0)P2s(λ0)).\displaystyle(P_{0}(\lambda_{0})\>\>\>P_{1}(\lambda_{0})\dots P_{2s}(\lambda_{0})). (30)

The first term is equal to one for all values of λ0\lambda_{0}. Now for real λ0\lambda_{0} it is easy to verify that starting from the purely imaginary second term the subsequent terms are alternatively real and purely imaginary leading to the following equivalence

(P0(λ0)P1(λ0)P2s(λ0))=(A0(λ0)iA1(λ0)A2s(λ0)).\displaystyle(P_{0}(\lambda_{0})\>\>\>P_{1}(\lambda_{0})\dots P_{2s}(\lambda_{0}))=(A_{0}(\lambda_{0})\>\>\>iA_{1}(\lambda_{0})\dots A_{2s}(\lambda_{0})). (31)

Here, {Al:l=02s}\{A_{l}:l=0\dots 2s\} are real functions of λ0\lambda_{0} with A0=1A_{0}=1. In the Fock space setting the eigenfunction in (ζ1,ζ2)({\zeta_{1},\zeta_{2}}) can be given by

ψ2s(I)(ζ1,ζ2)=A0ζ12s+iA1ζ12s1ζ2+A2ζ12s2ζ22++A2sζ22s.\displaystyle\psi^{(I)}_{2s}(\zeta_{1},\zeta_{2})=A_{0}\zeta_{1}^{2s}+iA_{1}\zeta_{1}^{2s-1}\zeta_{2}+A_{2}\zeta_{1}^{2s-2}\zeta_{2}^{2}+\dots+A_{2s}\zeta_{2}^{2s}. (32)

Now the action of partial parity operator {𝒞2(j):j=1,2}\{\mathcal{C}_{2}^{(j)}:j=1,2\} on ψ2s(I)(ζ1,ζ2)\psi^{(I)}_{2s}(\zeta_{1},\zeta_{2}) can be understood through the following equation

𝒞2(1)ψ2s(I)(ζ1,ζ2)\displaystyle\mathcal{C}_{2}^{(1)}\psi^{(I)}_{2s}(\zeta_{1},\zeta_{2})
=A0(ζ1)¯2s+iA1(ζ1)¯2s1ζ2¯+A2(ζ1)¯2s2ζ2¯2++A2s(ζ2)¯2s¯\displaystyle=\overline{A_{0}\overline{(-\zeta_{1})}^{2s}+iA_{1}\overline{(-\zeta_{1})}^{2s-1}\overline{\zeta_{2}}+A_{2}\overline{(-\zeta_{1})}^{2s-2}\overline{\zeta_{2}}^{2}+\dots+A_{2s}\overline{(\zeta_{2})}^{2s}}
=ψ2s(I)(ζ1,ζ2).\displaystyle=\psi^{(I)}_{2s}(\zeta_{1},\zeta_{2}). (33)

Similarly, 𝒞2(2)ψ2s(I)(ζ1,ζ2)=ψ2s(I)(ζ1,ζ2)\mathcal{C}_{2}^{(2)}\psi^{(I)}_{2s}(\zeta_{1},\zeta_{2})=\psi^{(I)}_{2s}(\zeta_{1},\zeta_{2}).

Case-II : |m|{2s1:sZ+}|m|\in\{2s-1:s\in{Z^{+}}\} Similar argument as given above can lead to the following eigenfunction for odd mm

ψ2s1(II)(ζ1,ζ2)=B0ζ12s1+iB1ζ12s2ζ2+B2ζ12s3ζ23++iB2s1ζ22s1\displaystyle\psi^{(II)}_{2s-1}(\zeta_{1},\zeta_{2})=B_{0}\zeta_{1}^{2s-1}+iB_{1}\zeta_{1}^{2s-2}\zeta_{2}+B_{2}\zeta_{1}^{2s-3}\zeta_{2}^{3}+\dots+iB_{2s-1}\zeta_{2}^{2s-1} (34)

where, {Bl:l=02s1}\{B_{l}:l=0\dots 2s-1\} are real functions of some real eigenvalue λ1\lambda_{1} with B0=1B_{0}=1.

Now actions of {𝒞2(j):j=1,2}\{\mathcal{C}_{2}^{(j)}:j=1,2\} on ψ2s1(II)(ζ1,ζ2)\psi^{(II)}_{2s-1}(\zeta_{1},\zeta_{2}) are given by

𝒞2(1)ψ2s1(II)(ζ1,ζ2)=ψ2s1(II)(ζ1,ζ2)and𝒞2(2)ψ2s1(II)(ζ1,ζ2)=ψ2s1(II)(ζ1,ζ2).\displaystyle\mathcal{C}_{2}^{(1)}\psi^{(II)}_{2s-1}(\zeta_{1},\zeta_{2})=-\psi^{(II)}_{2s-1}(\zeta_{1},\zeta_{2})\>\>{\rm and}\>\>\mathcal{C}_{2}^{(2)}\psi^{(II)}_{2s-1}(\zeta_{1},\zeta_{2})=\psi^{(II)}_{2s-1}(\zeta_{1},\zeta_{2}). (35)

Remark-I : It is observed that the eigen functions for even mm are 𝒫𝒯\partial_{\mathcal{PT}} symmetric in either of the variables whereas, for odd mm the eigenfunctions are symmetric in one variable (ζ2)(\zeta_{2}) and anti-symmetric in the other (ζ1)(\zeta_{1}). It can also be shown that 𝒞2ψ2s(I)(ζ1,ζ2)ψ2s(I)(ζ1,ζ2)\mathcal{C}_{2}\psi^{(I)}_{2s}(\zeta_{1},\zeta_{2})\neq\psi^{(I)}_{2s}(\zeta_{1},\zeta_{2}) and 𝒞2ψ2s1(II)(ζ1,ζ2)ψ2s1(II)(ζ1,ζ2)\mathcal{C}_{2}\psi^{(II)}_{2s-1}(\zeta_{1},\zeta_{2})\neq\psi^{(II)}_{2s-1}(\zeta_{1},\zeta_{2}) implying the fact that neither of them has any global 𝒫𝒯\mathcal{PT} symmetry.

Remark-II : If the eigenvalue has any nonzero complex part the antilinear action of the operators representing 𝒫𝒯\partial_{\mathcal{PT}} symmetry replaces the coefficients {Al}\{A_{l}\} or {Bl}\{B_{l}\} by their respective complex conjugates thus destroying the symmetry of the eigenfunctions. This phenomenon may termed as 𝒫𝒯\partial_{\mathcal{PT}} symmetry breaking.

It is obvious that the eigenvalues have a strong parametric dependence on the values of the parameters γ\gamma and α\alpha an issue that may be discussed elsewhere. Considering m=2m=2 and γ=α=12\gamma=\alpha=\frac{1}{2} the eigenvalues are λ1=3.87513,λ2,3=0.06244±0.71569i\lambda_{1}=3.87513,\lambda_{2,3}=0.06244\pm 0.71569i. This means, according to the above discussion, the states corresponding to λ1\lambda_{1} is a 𝒫𝒯\partial_{\mathcal{PT}} symmetric state but those corresponding to λ2\lambda_{2} and λ3\lambda_{3} are symmetry breaking states. On the other hand, for α=4=8γ\alpha=4=8\gamma the eigenvalues are (0.06375,13.96387,17.97237)(0.06375,13.96387,17.97237) and consequently, all the states are 𝒫𝒯\partial_{\mathcal{PT}} symmetric.

In the above discussion only the cases with non-degenerate eigenvalues have been considered. The situation with degenerate eigenvalues may be an interesting area of investigation.

4. Conclusion

The present investigation deals with a new kind of symmetry operator that acts on operators or functions in a variable specific way. In this article, the presence of such symmetry known as Partial 𝒫𝒯\mathcal{PT} symmetry is understood in a typical Fock space setting for a two-boson Bose-Hubbard type Hamiltonian with one purely imaginary interaction term. The symmetry operators are represented as Weighted Composition Conjugations acting on a Reproducing Kernel Hilbert Space. The existence of such symmetry as well as the possibility of breaking of such symmetry are found to have direct correspondence with the reality of eigenvalues of the Hamiltonian.

References

  • [1] C. M. Bender and S. Boettcher : Phys. Rev. Lett. 𝟖𝟎\bf{80}, 5243 (1998).
  • [2] C. M. Bender , S. Boettcher and P. N. Meisinger : J. Math. Phys. 𝟒𝟎\bf{40}, 2201 (1999).
  • [3] C. M. Bender , D. C. Brody and H. F. Jones : Phys. Rev. Lett. 𝟖𝟗\bf{89}, 27040 (2002).
  • [4] D. C. Brody : J. Phys. A: Math. Theor. 𝟒𝟗\bf{49}, 10LT03 (2016).
  • [5] A. Mostafazadeh : J. Math. Phys. 𝟒𝟑\bf{43}, 205 (2002).
  • [6] D. C. Brody : J. Phys. A: Math. Theor. 𝟒𝟕\bf{47}, 035305 (2014).
  • [7] N. Moiseyev : Non-Hermitian Quantum Mechanics (chapter-3, 4) (Chambridge(UK) : Chembridge University Press) (2011).
  • [8] Bagarello F, Gazeau J P, Szafraniec F H, Znojil M (Editors) : Non-Selfadjoint Operators in Quantum Physics (chapter-3 pp 123-124 and pp 277-278 regarding basis construction), (chapter-6 specifically pp 323-324 regarding 𝒫𝒯{\mathcal{PT}} symmetry ) (New Jersry : John Wiley and Sons, Inc.) (2015)
  • [9] A. Beygi ,S. P. Klevansky and C. M. Bender : Phys. Rev. A. 𝟗𝟏\bf{91}, 062101 (2015).
  • [10] E. M. Graefe , U. Gu¨\ddot{\rm u}nther, H. J. Korsch , A. E. Niederle : J. Phys. A: Math. Theor. 𝟒𝟏\bf{41}, 255206 (2008).
  • [11] K. Zhu : Analysis on Fock Spaces(Springer(NY) )(2012).
  • [12] V. I. Paulsen and M. Raghupathi : An Introduction To The Theory of Reproducing Kernel Hilbert Space(Chambridge(UK) : Chembridge University Press)(2016).
  • [13] P. V. Hai and M. Putinar : J. Diff. Equations 𝟐𝟔𝟓\bf{265}, 4213 (2018).
  • [14] P. V. Hai and L. H. Khoi : J. Math. Anal. Appl. 𝟒𝟑𝟑\bf{433}, 1757 (2016).
  • [15] P. V. Hai and L. H. Khoi : Complex Variables and Elliptic Equations 𝟔𝟑(𝟑)\bf{63(3)}, 391 (2018).
  • [16] S. R. Garcia and M. Putinar : Trans. Am. Math. Soc. 𝟑𝟓𝟖\bf{358}, 1285 (2006).
  • [17] S. R. Garcia and M, Putinar : Trans. Am. Math. Soc. 𝟑𝟓𝟗\bf{359},3913 (2007).
  • [18] A. Sandryhaila ,M. F. Moura : (arXiv:1306.0217v1[math.SP]2 June) (2013) .
  • [19] C. F. Dunkl and Xu. Y. : Orthogonal Polynomials of Several Variables, second edition (chapter-1 pp 9 proposition-1.3.7 and corollary-1.3.8) (Cambridge : Cambridge University Press ) (2014).
  • [20] M. E. H. Ismail and W. V. Assche : Classical and Quantum Orthogonal Polynomials in One Variable (chapter-2 pp 22 theorem-2.2.1) (Cambridge : Cambridge University Press) (2005).