This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Ultrasound Response in Quantum Critical β\beta-YbAlB4 and α\alpha-YbAl0.986Fe0.014B4

Shinji Watanabe Department of Basic SciencesDepartment of Basic Sciences Kyushu Institute of Technology Kyushu Institute of Technology Kitakyushu Kitakyushu Fukuoka 804-8550 Fukuoka 804-8550 Japan Japan
Abstract

We analyze the key origin of quantum valence criticality in the heavy electron metal β\beta-YbAlB4 evidenced in the sister compound α\alpha-YbAl0.986Fe0.014B4. By constructing a realistic canonical model for β\beta-YbAlB4, we evaluate Coulomb repulsion between the 4f and 5d electrons at Yb Ufd6.2U_{\rm fd}\approx 6.2 eV realizing the quantum critical point (QCP) of the Yb-valence transition. To reveal the Yb 5d contribution to the quantum critical state, we propose ultrasound measurement. We find that softening of elastic constants of not only the bulk modulus but also the shear moduli is caused by electric quadrupole fluctuations enhanced by critical 4f and 5d charge fluctuations for low temperatures at the valence QCP. Possible relevance of these results to β\beta-YbAlB4 and also α\alpha-YbAl1-xFexB4 is discussed.

Quantum critical phenomena in strongly correlated metals have attracted great interest in condensed matter physics. In heavy-electron metal β\beta-YbAlB4 with an intermediate valence of Yb [1], unconventional quantum criticality as the susceptibility χT0.5\chi\sim T^{-0.5}, the specific-heat coefficient C/TlogTC/T\sim-\log T, and the resistivity ρT1.5(T)\rho\sim T^{1.5}(\sim T) for T<1T\mathop{\vtop{\halign{#\cr$\hfil\displaystyle{<}\hfil$\crcr\kern 1.0pt\nointerlineskip\cr$\,\,\sim$ \crcr\kern 1.0pt\cr}}}\limits 1 K (T>1K)(T\mathop{\vtop{\halign{#\cr$\hfil\displaystyle{>}\hfil$\crcr\kern 1.0pt\nointerlineskip\cr$\,\sim$ \crcr\kern 1.0pt\cr}}}\limits 1~{}{\rm K}) was observed [2]. Furthermore, a new type of scaling called T/BT/B scaling, where the magnetic susceptibility is expressed by a single scaling function of the ratio of temperature TT and magnetic field BB, was observed in β\beta-YbAlB4 [3]. These phenomena have been shown to be explained by the theory of critical Yb-valence fluctuations in a unified way [4, 5]. Recently, the evidence of the quantum critical point (QCP) of the Yb-valence transition giving rise to the quantum valence criticality as well as the T/BT/B scaling as observed in β\beta-YbAlB4 has been discovered experimentally in α\alpha-YbAl1-xFexB4 (x=0.014)(x=0.014) [6].

The key origin of the quantum valence criticality and the T/BT/B scaling is Coulomb repulsion UfdU_{\rm fd} between 4f and 5d electrons at Yb [4, 5]. Furthermore, novel odd-parity multipole degrees of freedom have recently been shown to be active by Yb 5d electrons theoretically [7]. Hence, it is important to clarify the value of UfdU_{\rm fd} as well as to identify the Yb 5d contribution to the quantum critical state. In this Letter, we evaluate UfdU_{\rm fd} by constructing a realistic canonical model for β\beta-YbAlB4 and propose elastic-constant measurement to detect the Yb 5d contribution. We will show that not only the bulk modulus but also the shear moduli exhibit softening for low temperatures at the valence QCP. So far, ultrasound measurement in the unconventional quantum-critical materials has not been reported [8]. Hence, the present study will pioneer this field.

Let us start with the analysis of the crystalline-electric-field (CEF) in β\beta-YbAlB4 with orthorhombic crystal structure (No.65 CmmmCmmm D2h19D_{2h}^{19}[9]. The CEF ground state of the 4f hole at Yb was theoretically proposed to be [10]

|Ψ±4f=|J=7/2,Jz=±5/2,\displaystyle|\Psi^{4{\rm f}}_{\pm}\rangle=|J=7/2,J_{z}=\pm 5/2\rangle, (1)

which has recently been supported by the linear polarization dependence of angle-resolved core level photoemission spectroscopy [11]. The conical wave function spreads toward 7 B rings in the upper and lower planes, which acquire the largest hybridization [see Fig. 1(a)]. As for the first-excited state, the mixture of |7/2,±1/2|7/2,\pm 1/2\rangle and |7/2,3/2|7/2,\mp 3/2\rangle, i.e. |7/2,±1/2+γ|7/2,3/2|7/2,\pm 1/2\rangle+\gamma|7/2,\mp 3/2\rangle, was shown to explain the anisotropic temperature dependence of the magnetic susceptibility, which earns the second-largest hybridization. This mixture is considered to be due to crystal fields of Al atoms that break the sevenfold symmetry of B rings [see Fig. 1(b)] [10].

As for the 5d state in Yb, the Hund’s rule tells us that the J=3/2J=3/2 state gives the lowest energy. The 𝒓^|3/2,±1/2\langle\hat{\bm{r}}|3/2,\pm 1/2\rangle state is aligned along the cc direction while the 𝒓^|3/2,3/2\langle\hat{\bm{r}}|3/2,\mp 3/2\rangle state is lying in the abab plane. The Yb 5d ground state is expected to be the mixture of both the states similarly to the first-excited Yb 4f state as

|Ψ±5d=a5d|3/2,±1/2+b5d|3/2,3/2\displaystyle|\Psi^{5{\rm d}}_{\pm}\rangle=a_{5{\rm d}}|3/2,\pm 1/2\rangle+b_{5{\rm d}}|3/2,\mp 3/2\rangle (2)

with a5d2+b5d2=1a_{5{\rm d}}^{2}+b_{5{\rm d}}^{2}=1. We expect that the wave function 𝒓^|3/2,±1/2\langle\hat{\bm{r}}|3/2,\pm 1/2\rangle has larger hybridizations with 2p wave functions in the upper and lower B rings [see Fig. 1(a)] so that |b5d/a5d||b_{5{\rm d}}/a_{5{\rm d}}| is considered to be small from the viewpoint of the hybridization picture of the CEF.

Refer to caption
Figure 1: (color online) (a)Yb surrounded by 7 B rings. The squares of absolute values of spherical parts of the 4f wavefunction Ψ±4f(𝒓^)=𝒓^|Ψ±4f\Psi^{4{\rm f}}_{\pm}(\hat{\bm{r}})=\langle\hat{\bm{r}}|\Psi^{4{\rm f}}_{\pm}\rangle (orange) and 5d wave function Ψ±5d(𝒓^)=𝒓^|Ψ±5d\Psi^{5{\rm d}}_{\pm}(\hat{\bm{r}})=\langle\hat{\bm{r}}|\Psi^{5{\rm d}}_{\pm}\rangle (purple) with a5d=0.9a_{5{\rm d}}=\sqrt{0.9} and b5d=0.1b_{5{\rm d}}=\sqrt{0.1} in Eq. (2) at Yb are shown (see text). (b) Top view of the lattice structure of β\beta-YbAlB4. Unit cell is the enclosed area by dashed lines.

Next let us construct the effective Hamiltonian for the low-energy electronic states in β\beta-YbAlB4. Since now we are interested in the properties of the ground state as well as the low temperature much smaller than the first excited CEF energy (Δ80K)(\Delta\approx 80~{}{\rm K}) [10], we consider the following model in the hole picture which consists of the 4f state |Ψ±4f|\Psi_{\pm}^{4{\rm f}}\rangle and 5d state |Ψ±5d|\Psi_{\pm}^{5{\rm d}}\rangle at Yb as well as the 2p2p state at B.

H=iα=1,2[Hiαf+Hiαpf+Hiαpd+HiαUfd]+Hd+Hp,\displaystyle H=\sum_{i}\sum_{\alpha=1,2}\left[H^{\rm f}_{i\alpha}+H^{\rm pf}_{i\alpha}+H^{\rm pd}_{i\alpha}+H^{U_{\rm fd}}_{i\alpha}\right]+H^{\rm d}+H^{\rm p}, (3)

where i=1,Ni=1,\cdots N with NN being the number of the unit cell and α=1,2\alpha=1,2 denote the Yb1 and Yb2 sites respectively [see Fig. 1(b)].

The 4f part is

Hiαf=εfη=±niαηf+Uniα+fniαf\displaystyle H^{\rm f}_{i\alpha}=\varepsilon_{\rm f}\sum_{\eta=\pm}n^{\rm f}_{i\alpha\eta}+Un^{\rm f}_{i\alpha+}n^{\rm f}_{i\alpha-} (4)

with niαηffiαηfiαηn^{\rm f}_{i\alpha\eta}\equiv f^{\dagger}_{i\alpha\eta}f_{i\alpha\eta}, where the fiαηf^{\dagger}_{i\alpha\eta} (fiαη)(f_{i\alpha\eta}) operators create (annifilate) 4f holes with the Kramers state η=±\eta=\pm of |Ψ±4f|\Psi_{\pm}^{4{\rm f}}\rangle in Eq. (1) and εf\varepsilon_{\rm f} is the energy level. Here UU is the onsite Coulomb repulsion.

The 2p part is

Hp=j,jσ=,m,m=z,±tjm,jmpppjmσpjmσ,\displaystyle H^{\rm p}=\sum_{\langle j,j^{\prime}\rangle}\sum_{\sigma=\uparrow,\downarrow}\sum_{m,m^{\prime}=z,\pm}t^{\rm pp}_{jm,j^{\prime}m^{\prime}}p^{\dagger}_{jm\sigma}p_{j^{\prime}m^{\prime}\sigma}, (5)

where j,j\langle j,j^{\prime}\rangle denotes the nearest neighbor (N.N.) B sites in the abab plane and cc direction [see Figs. 1(a) and 1(b)] and tjm,jmppt^{\rm pp}_{jm,j^{\prime}m^{\prime}} is the transfer integral between the 2p states. Here, the pjmσp^{\dagger}_{jm\sigma} (pjmσ)(p_{jm\sigma}) operators create (annifilate) 2p holes at the jj-th B site with m=pz,p±m=p_{z},p_{\pm}, where p±p_{\pm} is defined by p±(px±ipy)/2p_{\pm}\equiv(p_{x}\pm ip_{y})/\sqrt{2}, and spin σ=,\sigma=\uparrow,\downarrow. For simplicity, the energy levels of the 2p state at each B site are set to be the same, which is taken as the origin of the energy.

The 4f-2p hybridization is

Hiαpf=iα,jm,σ,η(Vjmσ,iαηpfpjmσfiαη+h.c.),\displaystyle H^{\rm pf}_{i\alpha}=\sum_{\langle i\alpha,j\rangle}\sum_{m,\sigma,\eta}(V^{\rm pf}_{jm\sigma,i\alpha\eta}p^{\dagger}_{jm\sigma}f_{i\alpha\eta}+h.c.), (6)

where iα,j\langle i\alpha,j\rangle denotes the N.N. pair of the Ybα\alpha site in the ii-th unit cell and the jj-th B site with j=17j=1-7 (upper plane) and j=814j=8-14 (lower plane) in Fig. 1(a).

The 5d part is

Hd=εdiα=1,2η=±niαηd+iα,iαη,η=±tiαη,iαηdddiαηdiαη\displaystyle H^{\rm d}=\varepsilon_{\rm d}\sum_{i}\sum_{\alpha=1,2}\sum_{\eta=\pm}n^{\rm d}_{i\alpha\eta}+\sum_{\langle i\alpha,i^{\prime}\alpha^{\prime}\rangle}\sum_{\eta,\eta^{\prime}=\pm}t^{\rm dd}_{i\alpha\eta,i^{\prime}\alpha^{\prime}\eta^{\prime}}d^{\dagger}_{i\alpha\eta}d_{i^{\prime}\alpha^{\prime}\eta^{\prime}} (7)

with niαηddiαηdiαηn^{\rm d}_{i\alpha\eta}\equiv d^{\dagger}_{i\alpha\eta}d_{i\alpha\eta}, where the diαηd^{\dagger}_{i\alpha\eta} (diαη)(d_{i\alpha\eta}) operators create (annihilate) 5d holes with the Kramers state η=±\eta=\pm of |Ψ±5d|\Psi_{\pm}^{5{\rm d}}\rangle in Eq. (2) and εd\varepsilon_{\rm d} is the energy level. Here tiαη,iαηddt^{\rm dd}_{i\alpha\eta,i^{\prime}\alpha^{\prime}\eta^{\prime}} is the transfer integral between the 5d states and iα,iα\langle i\alpha,i^{\prime}\alpha^{\prime}\rangle denotes the pair of the Yb sites for the N.N. (in the cc direction), the second N.N. (Yb1-Yb2 sites inside the unit cell), and the third N.N. (Yb1-Yb2 sites between the adjacent unit cells) [see Fig. 1(b)].

The 5d-2p hybridization is

Hiαpd=iα,jm,σ,η(Vjmσ,iαηpdpjmσdiαη+h.c.).\displaystyle H^{\rm pd}_{i\alpha}=\sum_{\langle i\alpha,j\rangle}\sum_{m,\sigma,\eta}(V^{\rm pd}_{jm\sigma,i\alpha\eta}p^{\dagger}_{jm\sigma}d_{i\alpha\eta}+h.c.). (8)

The 4f-5d Coulomb repulsion at Yb is

HiαUfd=Ufdη=±η=±niαηfniαηd.\displaystyle H^{U_{\rm fd}}_{i\alpha}=U_{\rm fd}\sum_{\eta=\pm}\sum_{\eta^{\prime}=\pm}n^{\rm f}_{i\alpha\eta}n^{\rm d}_{i\alpha\eta^{\prime}}. (9)

We note that onsite 4f-5d hybridization occurs at Yb via the 4f-2p and 2p-5d hybridizations in Eq. (3), as shown in Ref. \citenWM2019. This is nothing but the odd-parity CEF due to the local violation of the inversion symmetry at the Yb site by the sevenfold configuration of the surrounding B sites [7]. The 4f-5d hybridization between the Yb sites is ignored since its magnitude is negligibly small. The other interactions such as 5d-5d Coulomb repulsion are ignored since their effects are regarded to be renormalized into the conduction bands in Eq. (3).

To analyze electronic states in β\beta-YbAlB4, we apply the slave-boson mean-field (MF) theory to Eq. (3[12]. To describe the state for U=U=\infty causative of heavy electrons, we consider fiαηbiαf^{\dagger}_{i\alpha\eta}b_{i\alpha} instead of fiαηf^{\dagger}_{i\alpha\eta} in Eq. (3) by introducing the slave-boson operator biαb_{i\alpha} to describe the f0f^{0}-hole state and require the constraint iαλiα(η=±niαηf+biαbiα1)\sum_{i\alpha}\lambda_{i\alpha}(\sum_{\eta=\pm}n^{\rm f}_{i\alpha\eta}+b^{\dagger}_{i\alpha}b_{i\alpha}-1). Here λiα\lambda_{i\alpha} is the Lagrange multiplier. To HiαUfdH^{U_{\rm fd}}_{i\alpha} in Eq. (9), we apply the MF decoupling as UfdniαηfniαηdUfdn¯αfniαηd+R¯αniαηfR¯αn¯αfU_{\rm fd}n^{\rm f}_{i\alpha\eta}n^{\rm d}_{i\alpha\eta^{\prime}}\approx U_{\rm fd}\bar{n}^{\rm f}_{\alpha}n^{\rm d}_{i\alpha\eta^{\prime}}+\bar{R}_{\alpha}n^{\rm f}_{i\alpha\eta}-\bar{R}_{\alpha}\bar{n}^{\rm f}_{\alpha}, with R¯αUfdn¯αd\bar{R}_{\alpha}\equiv U_{\rm fd}\bar{n}^{\rm d}_{\alpha} and n¯αf(d)iηniαηf(d)/N\bar{n}^{\rm f(d)}_{\alpha}\equiv\sum_{i\eta}\langle n^{\rm f(d)}_{i\alpha\eta}\rangle/N. Since we focus on the paramagnetic-metal phase, it is natural to approximate the MFs to uniform ones b¯α=biα\bar{b}_{\alpha}=\langle b_{i\alpha}\rangle and λ¯α=λiα\bar{\lambda}_{\alpha}=\lambda_{i\alpha}. Then, by optimizing the Hamiltonian as H/b¯α=0\partial\langle H\rangle/\partial\bar{b}_{\alpha}=0, H/λ¯α=0\partial\langle H\rangle/\partial\bar{\lambda}_{\alpha}=0, and H/R¯α=0\partial\langle H\rangle/\partial\bar{R}_{\alpha}=0, we obtain the set of the MF equations : 1N𝒌ηf𝒌αηf𝒌αη+b¯α2=1\frac{1}{N}\sum_{{\bm{k}}\eta}\langle f_{{\bm{k}}\alpha\eta}^{\dagger}f_{{\bm{k}}\alpha\eta}\rangle+\bar{b}_{\alpha}^{2}=1, 12N𝒌[ηξmσV𝒌,ξmσ,αηpff𝒌αηp𝒌ξmσ+h.c.]+λ¯αb¯α=0\frac{1}{2N}\sum_{{\bm{k}}}\left[\sum_{\eta\xi m\sigma}V^{\rm pf*}_{{\bm{k}},\xi m\sigma,\alpha{\eta}}\langle f^{\dagger}_{{\bm{k}}\alpha{\eta}}p_{{\bm{k}}\xi m\sigma}\rangle+h.c.\right]+\bar{\lambda}_{\alpha}\bar{b}_{\alpha}=0, and n¯αf=1N𝒌ηf𝒌αηf𝒌αη\bar{n}^{\rm f}_{\alpha}=\frac{1}{N}\sum_{{\bm{k}}\eta}\langle f^{\dagger}_{{\bm{k}}\alpha{\eta}}f_{{\bm{k}}\alpha{\eta}}\rangle. Here, ξ\xi specifies the N.N. B sites for the Ybα\alpha site [see Fig. 1(b)]. We solve the MF equations together with the equation for the filling n¯α=1,2(n¯αf+n¯αd)/4+j=18n¯jp/16\bar{n}\equiv\sum_{\alpha=1,2}(\bar{n}^{\rm f}_{\alpha}+\bar{n}^{\rm d}_{\alpha})/4+\sum_{j=1}^{8}\bar{n}^{p}_{j}/16 with n¯jp𝒌mσp𝒌jmσp𝒌jmσ/(3N)\bar{n}^{p}_{j}\equiv\sum_{{\bm{k}}m\sigma}\langle p^{\dagger}_{{\bm{k}}jm\sigma}p_{{\bm{k}}jm\sigma}\rangle/(3N) self-consistently.

In the calculation of tjm,jmppt^{\rm pp}_{jm,j^{\prime}m^{\prime}}, tiαη,iαηddt^{\rm dd}_{i\alpha\eta,i^{\prime}\alpha^{\prime}\eta^{\prime}}, Vjmσ,iαηpfV^{\rm pf}_{jm\sigma,i\alpha\eta}, and Vjmσ,iαηpdV^{\rm pd}_{jm\sigma,i\alpha\eta}, we need to input the Slater-Koster parameters [13, 14]. Following the argument of the linear muffin-tin orbital (LMTO) method [15], we employ the general relation (ppπ)=(ppσ)/2(pp\pi)=-(pp\sigma)/2, (pdπ)=(pdσ)/3(pd\pi)=-(pd\sigma)/\sqrt{3}, (pfπ)=(pfσ)/3(pf\pi)=-(pf\sigma)/\sqrt{3}, (ddπ)=2(ddσ)/3(dd\pi)=-2(dd\sigma)/3, and (ddδ)=(ddσ)/6(dd\delta)=(dd\sigma)/6. In the hole picture, we take the energy unit as (ppσ)=1.0(pp\sigma)=-1.0 and set (pdσ)=0.6(pd\sigma)=0.6, (pfσ)=0.3(pf\sigma)=-0.3, and (ddσ)=0.4(dd\sigma)=0.4 as typical values. We note that distance dependences of transfer integrals and hybridizations between the ll and ll^{\prime} states with ll being the orbital angular momentum are set so as to follow 1/rl+l+1\sim 1/r^{l+l^{\prime}+1} with rr being the distance between the two atoms in the LMTO method [15]. We set a5d=0.9a_{5{\rm d}}=\sqrt{0.9} and b5d=0.1b_{5{\rm d}}=\sqrt{0.1} in Eq. (2) as the representative case [see Fig. 1(a)]. The calculated band structure near the Fermi level for εd=1\varepsilon_{\rm d}=-1 and εf2.1\varepsilon_{\rm f}\approx-2.1 at n¯=1\bar{n}=1 well reproduces the recent photoemission data [16] and then we adopt these parameters in this study. We performed the numerical calculations in the N=83N=8^{3}, 16316^{3}, and 32332^{3} systems and will show the results in N=323N=32^{3}.

Refer to caption
Figure 2: (color online) The εf\varepsilon_{\rm f} dependences of (a) the 4f-hole number and (b) the 5d-hole number at Yb for Ufd=1.20U_{\rm fd}=1.20 (open triangle), 1.301.30 (open inverted triangle), 1.321.32 (filled circle), 1.331.33 (filled square), and 1.351.35 (filled diamond).

The εf\varepsilon_{\rm f} dependences of the 4f-hole number n¯f(=n¯1f=n¯2f)\bar{n}^{\rm f}(=\bar{n}^{\rm f}_{1}=\bar{n}^{\rm f}_{2}) and the 5d-hole number n¯d(=n¯1d=n¯2d)\bar{n}^{\rm d}(=\bar{n}^{\rm d}_{1}=\bar{n}^{\rm d}_{2}) at Yb for the ground state is shown in Figs. 2(a) and 2(b), respectively. As εf\varepsilon_{\rm f} increases, n¯f\bar{n}_{\rm f} (n¯d)(\bar{n}_{\rm d}) decreases (increases). As UfdU_{\rm fd} increases, the n¯f\bar{n}_{\rm f} (n¯d)(\bar{n}_{\rm d}) change becomes sharp and for Ufd=1.32U_{\rm fd}=1.32 the slope n¯f/εf-\partial\bar{n}_{\rm f}/\partial\varepsilon_{\rm f} and n¯d/εf\partial\bar{n}_{\rm d}/\partial\varepsilon_{\rm f} diverges at εf=2.1185\varepsilon_{\rm f}=-2.1185. For Ufd>1.32U_{\rm fd}>1.32, a jump in n¯f\bar{n}_{\rm f} and n¯d\bar{n}_{\rm d} appears as shown in Figs. 2(a) and 2(b), respectively, indicating the first-order valence transition. From these results, the QCP of the valence transition is identified to be (εfQCP,UfdQCP)=(2.1185,1.32)(\varepsilon_{\rm f}^{\rm QCP},U_{\rm fd}^{\rm QCP})=(-2.1185,1.32). We note that n¯f=0.74\bar{n}_{\rm f}=0.74 realized at the QCP, which is favorably compared with Yb+2.75 observed in β\beta-YbAlB4 at T=20T=20 K [1]. If we estimate (ppσ)4.7(pp\sigma)\approx 4.7 eV from the first-principles calculation in B [17], UfdQCPU_{\rm fd}^{\rm QCP} is evaluated to be UfdQCP6.2U_{\rm fd}^{\rm QCP}\approx 6.2 eV. This value seems reasonable since UfdU_{\rm fd} is onsite Coulomb repulsion at Yb. The examination of the UfdU_{\rm fd} value by direct measurements such as the partial-fluorescence-yield method of X ray [18] in β\beta-YbAlB4 and α\alpha-YbAl1-xFexB4 (x=0.014)(x=0.014) is highly desirable.

Next, let us proceed to the framework beyond the MF theory. Namely, we calculate the susceptibility by the random phase approximation (RPA) with respect to UfdU_{\rm fd} as the corrections for the MF state. This enables us to analyze the irreducible susceptibility systematically. The RPA susceptibility is calculated as [19]

χ1η12η23η34η4αβ(𝒒,ω)=χ¯1η12η23η34η4αβ(𝒒,ω)\displaystyle\chi^{\alpha\beta}_{\ell_{1}\eta_{1}\ell_{2}\eta_{2}\ell_{3}\eta_{3}\ell_{4}\eta_{4}}({\bm{q}},\omega)=\bar{\chi}^{\alpha\beta}_{\ell_{1}\eta_{1}\ell_{2}\eta_{2}\ell_{3}\eta_{3}\ell_{4}\eta_{4}}({\bm{q}},\omega)
\displaystyle- γττmmχ¯1η12η2mτmταγ(𝒒,ω)Ufdχmτmτ3η34η4γβ(𝒒,ω)\displaystyle\sum_{\gamma}\sum_{\tau\tau^{\prime}}\sum_{m\neq m^{\prime}}\bar{\chi}^{\alpha\gamma}_{\ell_{1}\eta_{1}\ell_{2}\eta_{2}m\tau m\tau}({\bm{q}},\omega)U_{\rm fd}\chi^{\gamma\beta}_{m^{\prime}\tau^{\prime}m^{\prime}\tau^{\prime}\ell_{3}\eta_{3}\ell_{4}\eta_{4}}({\bm{q}},\omega)
+\displaystyle+ γττmmχ¯1η12η2mτmταγ(𝒒,ω)Ufdχmτmτ3η34η4γβ(𝒒,ω),\displaystyle\sum_{\gamma}\sum_{\tau\tau^{\prime}}\sum_{m\neq m^{\prime}}\bar{\chi}^{\alpha\gamma}_{\ell_{1}\eta_{1}\ell_{2}\eta_{2}m\tau m^{\prime}\tau^{\prime}}({\bm{q}},\omega)U_{\rm fd}\chi^{\gamma\beta}_{m\tau m^{\prime}\tau^{\prime}\ell_{3}\eta_{3}\ell_{4}\eta_{4}}({\bm{q}},\omega),

where the susceptibility is defined by

χ1η12η23η34η4αβ(𝒒,ω)iN𝒌𝒌0𝑑teiωt\displaystyle\chi^{\alpha\beta}_{\ell_{1}\eta_{1}\ell_{2}\eta_{2}\ell_{3}\eta_{3}\ell_{4}\eta_{4}}({\bm{q}},\omega)\equiv\frac{i}{N}\sum_{{\bm{k}}{\bm{k}^{\prime}}}\int_{0}^{\infty}dte^{i\omega t}
×[c𝒌α1η1(t)c𝒌+𝒒α2η2(t),c𝒌+𝒒β4η4c𝒌β3η3].\displaystyle\times\langle[c^{\dagger}_{{\bm{k}}\alpha\ell_{1}\eta_{1}}(t)c_{{\bm{k}}+{\bm{q}}\alpha\ell_{2}\eta_{2}}(t),c^{\dagger}_{{\bm{k}^{\prime}}+{\bm{q}}\beta\ell_{4}\eta_{4}}c_{{\bm{k}^{\prime}}\beta\ell_{3}\eta_{3}}]\rangle. (11)

Here, =1(2)\ell=1(2) denotes the f (d) orbital and χ¯1η12η23η34η4αγ(𝒒,ω)\bar{\chi}^{\alpha\gamma}_{\ell_{1}\eta_{1}\ell_{2}\eta_{2}\ell_{3}\eta_{3}\ell_{4}\eta_{4}}({\bm{q}},\omega) represents the susceptibility calculated for the MF state. The valence transition is caused by the inter-orbital Coulomb repulsion UfdU_{\rm fd} after the formation of heavy quasiparticles by UU\to\infty. We first obtained the QCP of the valence transition within the MF theory for UU\to\infty and then to take into account further critical fluctuations caused by UfdU_{\rm fd}, we employ Eq. (LABEL:eq:RPA). The RPA susceptibility in Eq. (LABEL:eq:RPA) is expressed by the 32×3232\times 32 matrix χ^\hat{\chi}, χ¯^\hat{\bar{\chi}} and U^\hat{U} in the symmetrized form as

χ^\displaystyle\hat{\chi} =\displaystyle= χ¯^+χ¯^U^χ¯^+χ¯^U^χ¯^U^χ¯^+,\displaystyle\hat{\bar{\chi}}+\hat{\bar{\chi}}\hat{U}\hat{\bar{\chi}}+\hat{\bar{\chi}}\hat{U}\hat{\bar{\chi}}\hat{U}\hat{\bar{\chi}}+\cdots, (12)
=\displaystyle= χ¯^1/2(1^χ¯^1/2U^χ¯^1/2)1χ¯^1/2,\displaystyle\hat{\bar{\chi}}^{1/2}\left(\hat{1}-\hat{\bar{\chi}}^{1/2}\hat{U}\hat{\bar{\chi}}^{1/2}\right)^{-1}\hat{\bar{\chi}}^{1/2},

where χ¯^1/2\hat{\bar{\chi}}^{1/2} is the matrix satisfying χ¯^=χ¯^1/2χ¯^1/2\hat{\bar{\chi}}=\hat{\bar{\chi}}^{1/2}\hat{\bar{\chi}}^{1/2} and 1^\hat{1} is the identity matrix. The interaction matrix U^\hat{U} has the elements of UfdU_{\rm fd} for 1=32=4\ell_{1}=\ell_{3}\neq\ell_{2}=\ell_{4}, η1=η3\eta_{1}=\eta_{3}, and η2=η4\eta_{2}=\eta_{4} and Ufd-U_{\rm fd} for 1=23=4\ell_{1}=\ell_{2}\neq\ell_{3}=\ell_{4}, η1=η2\eta_{1}=\eta_{2}, and η3=η4\eta_{3}=\eta_{4}.

The critical point in this RPA formalism is identified by

det(1^χ¯^1/2U^χ¯^1/2)=0.\displaystyle{\rm det}\left(\hat{1}-\hat{\bar{\chi}}^{1/2}\hat{U}\hat{\bar{\chi}}^{1/2}\right)=0. (13)

By using the MF states obtained in the calculation in Fig. 2, we calculate χ¯^\hat{\bar{\chi}} by Eq. (11) and solve Eq. (13). Then, critical point in this formalism is identified to be (εfcRPA,UfdcRPA)=(2.1185,0.4788)(\varepsilon_{\rm f}^{\rm cRPA},U_{\rm fd}^{\rm cRPA})=(-2.1185,0.4788).

In the present multi-orbital system, there exist total charge fluctuation and relative charge fluctuation with respect to the 4f and 5d orbitals, which are defined by

χnf±ndαβ(𝒒,ω)\displaystyle\chi^{\alpha\beta}_{n_{\rm f}\pm n_{\rm d}}({\bm{q}},\omega) =\displaystyle= iN0𝑑teiωt\displaystyle\frac{i}{N}\int_{0}^{\infty}dte^{i\omega t}
×[δn𝒒αf(t)±δn𝒒αd(t),δn𝒒βf(0)±δn𝒒βd(0)],\displaystyle\times\langle[\delta n^{\rm f}_{\bm{q}\alpha}(t)\pm\delta n^{\rm d}_{\bm{q}\alpha}(t),\delta n^{\rm f}_{-\bm{q}\beta}(0)\pm\delta n^{\rm d}_{-\bm{q}\beta}(0)]\rangle,
=\displaystyle= ηη[χηηηηαβ(𝒒,ω)±χηηηηαβ(𝒒,ω)]\displaystyle\sum_{\eta\eta^{\prime}}\left[\sum_{\ell}\chi^{\alpha\beta}_{\ell\eta\ell\eta\ell\eta^{\prime}\ell\eta^{\prime}}({\bm{q}},\omega)\pm\sum_{\ell\neq\ell^{\prime}}\chi^{\alpha\beta}_{\ell\eta\ell\eta\ell^{\prime}\eta^{\prime}\ell^{\prime}\eta^{\prime}}({\bm{q}},\omega)\right]

with +()+(-) denoting the total (relative) charge susceptibility. Here δ𝒪^\delta\hat{\cal O} is defined as δ𝒪^𝒪^𝒪^\delta\hat{\cal O}\equiv\hat{\cal O}-\langle\hat{\cal O}\rangle and n𝒒αf(d)n^{\rm f(d)}_{{\bm{q}}\alpha} is given by n𝒒αf(d)=iei𝒒𝒓iniαf(d)n^{\rm f(d)}_{{\bm{q}}\alpha}=\sum_{i}e^{-i{\bm{q}}\cdot\bm{r}_{i}}n^{\rm f(d)}_{i\alpha}.

In Fig. 3(a), we plot the temperature dependence of the uniform relative-charge fluctuation between 4f and 5d holes χnfndF=lim𝒒𝟎χnfndF(𝒒,ω=0)\chi^{\rm F}_{n_{\rm f}-n_{\rm d}}=\lim_{{\bm{q}}\to{\bm{0}}}\chi^{\rm F}_{n_{\rm f}-n_{\rm d}}({\bm{q}},\omega=0) and the uniform total-charge fluctuation between 4f and 5d holes χnf+ndF=lim𝒒𝟎χnf+ndF(𝒒,ω=0)\chi^{\rm F}_{n_{\rm f}+n_{\rm d}}=\lim_{{\bm{q}}\to{\bm{0}}}\chi^{\rm F}_{n_{\rm f}+n_{\rm d}}({\bm{q}},\omega=0) for (εfcRPA,UfdcRPA)(\varepsilon_{\rm f}^{\rm cRPA},U_{\rm fd}^{\rm cRPA}). Here, χnf±ndF(𝒒,ω)\chi^{\rm F}_{n_{\rm f}\pm n_{\rm d}}({\bm{q}},\omega) is defined by χnf±ndF(𝒒,ω)=αβχnf±ndαβ(𝒒,ω).\chi^{\rm F}_{n_{\rm f}\pm n_{\rm d}}({\bm{q}},\omega)=\sum_{\alpha\beta}\chi^{\alpha\beta}_{n_{\rm f}\pm n_{\rm d}}({\bm{q}},\omega).

At the valence QCP, χnfndF\chi^{\rm F}_{n_{\rm f}-n_{\rm d}} diverges for T0T\to 0, while χnf+ndF\chi^{\rm F}_{n_{\rm f}+n_{\rm d}} remains finite for T0T\to 0 although χnf+ndF\chi^{\rm F}_{n_{\rm f}+n_{\rm d}} increases at low temperatures. This was confirmed by the temperature dependence of eigenvalues of χ¯^1/2U^χ¯^1/2\hat{\bar{\chi}}^{1/2}\hat{U}\hat{\bar{\chi}}^{1/2} in Fig.3(b). The eigenvector analysis tells us that the maximum and minimum eigenvalues Λ1\Lambda_{1}, Λ32\Lambda_{32} corresponds to the relative and total charge fluctuations χnfndF\chi^{\rm F}_{n_{\rm f}-n_{\rm d}}, χnf+ndF\chi^{\rm F}_{n_{\rm f}+n_{\rm d}}, respectively. Figure3(b) shows Λ1(T)1\Lambda_{1}(T)\to 1 for T0T\to 0, which satisfies Eq. (13) at T=0T=0, indicating the QCP within the RPA. The divergence of the relative-charge fluctuation is naturally understood from Figs. 2(a) and 2(b).

Refer to caption
Figure 3: (color online) Temperature dependence of (a) relative and total charge susceptibilities and (b) eigenvalues of χ¯^1/2U^χ¯^1/2\hat{\bar{\chi}}^{1/2}\hat{U}\hat{\bar{\chi}}^{1/2} for (εfcRPA,UfdcRPA)(\varepsilon_{\rm f}^{\rm cRPA},U_{\rm fd}^{\rm cRPA}).

Next let us discuss the electric quadrupole susceptibility

χOΓαβ(𝒒,ω)=iN0𝑑teiωt[δO^𝒒αΓ(t),δO^𝒒βΓ(0)],\displaystyle\chi^{\alpha\beta}_{O_{\Gamma}}({\bm{q}},\omega)=\frac{i}{N}\int_{0}^{\infty}dte^{i\omega t}\langle[\delta\hat{O}^{\Gamma}_{\bm{q}\alpha}(t),\delta\hat{O}^{\Gamma}_{\bm{q}\beta}(0)^{\dagger}]\rangle, (16)

where O^𝒒αΓ\hat{O}^{\Gamma}_{{\bm{q}}\alpha} is given by O^𝒒αΓ=iei𝒒𝒓iO^iα\hat{O}^{\Gamma}_{{\bm{q}}\alpha}=\sum_{i}e^{-i{\bm{q}}\cdot\bm{r}_{i}}\hat{O}_{i\alpha} with the irreducible representation Γ\Gamma. Here, O^iαΓ\hat{O}^{\Gamma}_{i\alpha} is expressed as

O^iαΓ=ηηOαη,αηΓciαηciαη,\displaystyle\hat{O}^{\Gamma}_{i\alpha}=\sum_{\ell\ell^{\prime}}\sum_{\eta\eta^{\prime}}O^{\Gamma}_{\alpha\ell\eta,\alpha\ell^{\prime}\eta^{\prime}}c^{\dagger}_{i\alpha\ell\eta}c_{i\alpha\ell^{\prime}\eta^{\prime}}, (17)

where Oαη,αηΓO^{\Gamma}_{\alpha\ell\eta,\alpha\ell^{\prime}\eta^{\prime}} is the form factor given by Oαη,αηΓ=αη|O^Γ|αηO^{\Gamma}_{\alpha\ell\eta,\alpha\ell^{\prime}\eta^{\prime}}=\langle\alpha\ell\eta|\hat{O}_{\Gamma}|\alpha\ell^{\prime}\eta^{\prime}\rangle. Then, Eq. (16) leads to

χOΓαβ(𝒒,ω)\displaystyle\chi^{\alpha\beta}_{O_{\Gamma}}({\bm{q}},\omega) =\displaystyle= 1234η1η2η3η4Oα1η1,α2η2Γχ1η12η23η34η4αβ(𝒒,ω)\displaystyle\sum_{\ell_{1}\ell_{2}\ell_{3}\ell_{4}}\sum_{\eta_{1}\eta_{2}\eta_{3}\eta_{4}}O^{\Gamma}_{\alpha\ell_{1}\eta_{1},\alpha\ell_{2}\eta_{2}}\chi_{\ell_{1}\eta_{1}\ell_{2}\eta_{2}\ell_{3}\eta_{3}\ell_{4}\eta_{4}}^{\alpha\beta}({\bm{q}},\omega) (18)
×Oβ4η4,β3η3Γ,\displaystyle\times O^{\Gamma}_{\beta\ell_{4}\eta_{4},\beta\ell_{3}\eta_{3}},

In β\beta-YbAlB4, the crystal structure is orthorhombic and the point group is D2hD_{2h}. Then Γ\Gamma is given by Γ=x2\Gamma=x^{2}, y2y^{2}, z2z^{2}, xyxy, xzxz, and yzyz. Here, following Ref. \citenLuthi, we consider the basis x2+y2+z2x^{2}+y^{2}+z^{2}, 2z2x2y22z^{2}-x^{2}-y^{2}, and x2y2x^{2}-y^{2} for the A1gA_{\rm 1g} symmetry instead of x2x^{2}, y2y^{2}, and z2z^{2}, which also belong to the same A1gA_{\rm 1g} representation. The corresponding operators of O^Γ\hat{O}_{\Gamma} are expressed as the symmetrized form of the operators of the total angular momentum as O^x2+y2+z2=Jx2+Jy2+Jz2\hat{O}_{x^{2}+y^{2}+z^{2}}=J_{x}^{2}+J_{y}^{2}+J_{z}^{2}, O^2z2x2y2=2Jz2Jx2Jy2\hat{O}_{2z^{2}-x^{2}-y^{2}}=2J_{z}^{2}-J_{x}^{2}-J_{y}^{2}, O^x2y2=Jx2Jy2\hat{O}_{x^{2}-y^{2}}=J_{x}^{2}-J_{y}^{2}, O^xy=JxJy+JyJx\hat{O}_{xy}=J_{x}J_{y}+J_{y}J_{x}, O^xz=JxJz+JzJx\hat{O}_{xz}=J_{x}J_{z}+J_{z}J_{x}, and O^yz=JyJz+JzJy\hat{O}_{yz}=J_{y}J_{z}+J_{z}J_{y}. The form factors are calculated for the 4f state |Ψ4f|\Psi^{4{\rm f}}\rangle by using Eq. (1) as α1±|O^x2+y2+z2|α1±=63/4\langle\alpha{1}\pm|\hat{O}_{x^{2}+y^{2}+z^{2}}|\alpha 1\pm\rangle=63/4, α1±|O^2z2x2y2|α1±=3\langle\alpha 1{\pm}|\hat{O}_{2z^{2}-x^{2}-y^{2}}|\alpha 1{\pm}\rangle=3, and α1±|O^Γ|α1±=0\langle\alpha 1{\pm}|\hat{O}_{\Gamma}|\alpha 1{\pm}\rangle=0 for Γ=x2y2,xy,yz\Gamma=x^{2}-y^{2},xy,yz, and zxzx. The form factors for the 5d state |Ψ5d|\Psi^{5{\rm d}}\rangle are calculated by using Eq. (2) as α2±|O^x2+y2+z2|α2±=15/4\langle\alpha 2{\pm}|\hat{O}_{x^{2}+y^{2}+z^{2}}|\alpha 2{\pm}\rangle=15/4, α2±|O^2z2x2y2|α2±=3a5d2+3b5d2\langle\alpha 2{\pm}|\hat{O}_{2z^{2}-x^{2}-y^{2}}|\alpha 2{\pm}\rangle=-3a_{5{\rm d}}^{2}+3b_{5{\rm d}}^{2}, α2±|O^x2y2|α2±=23a5db5d\langle\alpha 2{\pm}|\hat{O}_{x^{2}-y^{2}}|\alpha 2{\pm}\rangle=2\sqrt{3}a_{5{\rm d}}b_{5{\rm d}}, and α2±|O^Γ|α2±=0\langle\alpha 2{\pm}|\hat{O}_{\Gamma}|\alpha 2{\pm}\rangle=0 for Γ=xy\Gamma=xy, yzyz, and zxzx. Then, we obtain

χOΓαβ(𝒒,ω)==1,2[ηOαη,αηΓχηηηηαβ(𝒒,ω)Oβη,βηΓ\displaystyle\chi^{\alpha\beta}_{O_{\Gamma}}({\bm{q}},\omega)=\sum_{\ell=1,2}\left[\sum_{\eta}O^{\Gamma}_{\alpha\ell\eta,\alpha\ell\eta}\chi^{\alpha\beta}_{\ell\eta\ell\eta\ell\eta\ell\eta}({\bm{q}},\omega)O^{\Gamma}_{\beta\ell\eta,\beta\ell\eta}\right.
+ηOαη,αηΓχηηηηαβ(𝒒,ω)Oβη,βηΓ]\displaystyle+\left.\sum_{\eta}O^{\Gamma}_{\alpha\ell\eta,\alpha\ell\eta}\chi^{\alpha\beta}_{\ell\eta\ell\eta\ell-\eta\ell-\eta}({\bm{q}},\omega)O^{\Gamma}_{\beta\ell-\eta,\beta\ell-\eta}\right] (19)

for Γ=x2+y2+z2\Gamma=x^{2}+y^{2}+z^{2} and 2z2x2y22z^{2}-x^{2}-y^{2} and obtain χOx2y2αβ(𝒒,ω)\chi_{O_{x^{2}-y^{2}}}^{\alpha\beta}({\bm{q}},\omega) by setting =2\ell=2 in the right hand side (r.h.s.) of Eq. (19).

The elastic constant is expressed as

CΓ=CΓ(0)gΓ2χΓ,\displaystyle C_{\Gamma}=C_{\Gamma}^{(0)}-g_{\Gamma}^{2}\chi_{\Gamma}, (20)

where CΓ(0)C_{\Gamma}^{(0)} is the elastic constant of the background and gΓg_{\Gamma} is the quadrupole-strain coupling constant. Here, χΓ\chi_{\Gamma} is defined by χΓ=lim𝒒𝟎χΓF(𝒒,ω=0)\chi_{\Gamma}=\lim_{{\bm{q}}\to{\bm{0}}}\chi_{\Gamma}^{\rm F}({\bm{q}},\omega=0) with χOΓF(𝒒,ω)=αβχOΓαβ(𝒒,ω)\chi^{\rm F}_{O_{\Gamma}}({\bm{q}},\omega)=\sum_{\alpha\beta}\chi^{\alpha\beta}_{O_{\Gamma}}({\bm{q}},\omega).

Refer to caption
Figure 4: (color online) Temperature dependence of (a) electric quadrupole susceptibilities χx2+y2+z2\chi_{x^{2}+y^{2}+z^{2}} and χ2z2x2y2\chi_{2z^{2}-x^{2}-y^{2}} and charge susceptibility (63/4)2χnfF(63/4)^{2}\chi_{n_{\rm f}}^{\rm F} and (b) electric quadrupole susceptibility χx2y2\chi_{x^{2}-y^{2}} and charge susceptibility (33/5)2χndF(3\sqrt{3}/5)^{2}\chi_{n_{\rm d}}^{\rm F} for (εfcRPA,UfdcRPA)(\varepsilon_{\rm f}^{\rm cRPA},U_{\rm fd}^{\rm cRPA}).

In Fig.4(a), we plot the temperature dependence of χx2+y2+z2\chi_{x^{2}+y^{2}+z^{2}} and χ2z2x2y2\chi_{2z^{2}-x^{2}-y^{2}} for (εf,Ufd)=(εfcRPA,UfdcRPA)(\varepsilon_{\rm f},U_{\rm fd})=(\varepsilon_{\rm f}^{\rm cRPA},U_{\rm fd}^{\rm cRPA}). As TT decreases, χx2+y2+z2\chi_{x^{2}+y^{2}+z^{2}} and χ2z2x2y2\chi_{2z^{2}-x^{2}-y^{2}} increase. For T<103T<10^{-3}, i.e., in the low-temperature region below 55K<Δ/kB55~{}{\rm K}<\Delta/k_{\rm B} with kBk_{\rm B} being the Boltzmann constant, a remarkable enhancement emerges [here, T=10355T=10^{-3}\sim 55 K is estimated by assuming (ppσ)4.7(pp\sigma)\approx 4.7 eV as above]. Both show the same temperature dependence although the former is one order of magnitude larger than the latter reflecting the difference of the form factors as shown above. We also plot (63/4)2χnfF(63/4)^{2}\chi^{\rm F}_{n_{\rm f}} with χnfF=lim𝒒0χnfF(𝒒,ω=0)\chi^{\rm F}_{n_{\rm f}}=\lim_{{\bm{q}}\to 0}\chi^{\rm F}_{n_{\rm f}}({\bm{q}},\omega=0) in Fig.4(a). Here, χnf(d)F\chi_{n_{\rm f(d)}}^{\rm F} is obtained by setting the d (f) part zero in Eq. (Ultrasound Response in Quantum Critical β\beta-YbAlB4 and α\alpha-YbAl0.986Fe0.014B4), which is expressed by the first term in the r.h.s. of Eq. (LABEL:eq:chi_nf_nd) with =1(2)\ell=1(2) only. We see that (63/4)2χnfF(63/4)^{2}\chi^{\rm F}_{n_{\rm f}} well scales with χx2+y2+z2χ2z2x2y2\chi_{x^{2}+y^{2}+z^{2}}\propto\chi_{2z^{2}-x^{2}-y^{2}}. This is due to the fact that the main contribution to Eq. (19) comes from the 4f part (=1)(\ell=1) and then Eq. (19) is approximated as χx2+y2+z2|Oα1±,α1±x2+y2+z2|2χnfF\chi_{x^{2}+y^{2}+z^{2}}\approx|O^{x^{2}+y^{2}+z^{2}}_{\alpha 1\pm,\alpha 1\pm}|^{2}\chi^{\rm F}_{n_{\rm f}}. Strictly speaking, the irreducible susceptibility which diverges at T=0T=0 is χnfndF\chi^{\rm F}_{n_{\rm f}-n_{\rm d}}, as noted in the eigenvalue analysis in Fig.3(b). However, χnfndF\chi^{\rm F}_{n_{\rm f}-n_{\rm d}} can be approximated as χnfndFχnfF\chi^{\rm F}_{n_{\rm f}-n_{\rm d}}\approx\chi^{\rm F}_{n_{\rm f}} in Eq. (LABEL:eq:chi_nf_nd). Hence, χx2+y2+z2\chi_{x^{2}+y^{2}+z^{2}} shows enhancement for T0T\to 0, which is proportional to χnfF\chi^{\rm F}_{n_{\rm f}}.

Interestingly, χx2y2\chi_{x^{2}-y^{2}} also increases for T0T\to 0 as shown in Fig.4(b), although the magnitude is three order smaller than χx2+y2+z2\chi_{x^{2}+y^{2}+z^{2}}. We also plot the temperature dependence of (33/5)2χndF(3\sqrt{3}/5)^{2}\chi^{\rm F}_{n_{\rm d}} in Fig.4(b), which well scales with χx2y2\chi_{x^{2}-y^{2}}. This implies that χx2y2\chi_{x^{2}-y^{2}} can be approximated as χx2y2|Oα2±,α2±x2y2|2χndF\chi_{x^{2}-y^{2}}\approx|O^{x^{2}-y^{2}}_{\alpha 2\pm,\alpha 2\pm}|^{2}\chi^{\rm F}_{n_{\rm d}}.

These results indicate that from Eq. (20) softening in elastic constants of not only the bulk modulus CB(C11+C22+C33+2C12+2C13+2C23)/9C_{\rm B}\equiv(C_{11}+C_{22}+C_{33}+2C_{12}+2C_{13}+2C_{23})/9 but also the shear moduli Cu(C11+C22+4C33+2C124C134C23)/12C_{\rm u}\equiv(C_{11}+C_{22}+4C_{33}+2C_{12}-4C_{13}-4C_{23})/12 and Cv(C11+C222C12)/4C_{\rm v}\equiv(C_{11}+C_{22}-2C_{12})/4 occur for low temperatures at the valence QCP. Here, CBC_{\rm B}, CuC_{\rm u}, and CvC_{\rm v} are the elastic constants for the symmetry strains εxx+εyy+εzz\varepsilon_{xx}+\varepsilon_{yy}+\varepsilon_{zz}, 2εzzεxxεyy2\varepsilon_{zz}-\varepsilon_{xx}-\varepsilon_{yy}, and εxxεyy\varepsilon_{xx}-\varepsilon_{yy}, respectively. Namely, from the results shown in Figs. 4(a) and 4(b) and Eq. (20) the order of the magnitude of the elastic constants for TΔT\ll\Delta are estimated as |CB|:|Cu|:|Cv|104:103:10|C_{\rm B}|:|C_{\rm u}|:|C_{\rm v}|\approx 10^{4}:10^{3}:10 when each quadrupole-strain coupling constant gΓg_{\Gamma} is assumed to be the same for Γ=x2+y2+z2\Gamma=x^{2}+y^{2}+z^{2}, 2z2x2y22z^{2}-x^{2}-y^{2}, and x2y2x^{2}-y^{2}. The present study has revealed that if softening of CvC_{\rm v} is observed for TΔT\ll\Delta in β\beta-YbAlB4, it indicates that the mixture of the Jz=±1/2J_{z}=\pm 1/2 and 3/2\mp 3/2 states is realized in |Ψ±5d|\Psi^{5{\rm d}}_{\rm\pm}\rangle as Eq. (2). This achieves the first direct observation of Yb 5d electron’s contribution to the quantum critical state, which is of great significance.

We also note that χΓ\chi_{\Gamma} for Γ=x2,y2\Gamma=x^{2},y^{2} and z2z^{2} behave as χx2(19/4)2χnfFχy2\chi_{x^{2}}\approx(19/4)^{2}\chi^{\rm F}_{n_{\rm f}}\sim\chi_{y^{2}} and χz2(25/4)2χnfF\chi_{z^{2}}\approx(25/4)^{2}\chi^{\rm F}_{n_{\rm f}}, whose TT dependence can be seen by rescaling the data of χnfF\chi^{\rm F}_{n_{\rm f}} in Fig. 4(a). This implies that softening of elastic constants of longitudinal modes C11C_{11}, C22C_{22}, and C33C_{33} for strains εxx\varepsilon_{xx}, εyy\varepsilon_{yy}, and εzz\varepsilon_{zz} respectively occurs for T0T\to 0. No softening at least for T0T\to 0 is expected in transverse modes C44C_{44}, C55C_{55}, and C66C_{66} for strains εyz\varepsilon_{yz}, εzx\varepsilon_{zx}, and εxy\varepsilon_{xy} respectively because of vanishing of the form factors.

In α\alpha-YbAl1-xFexB4 with orthorhombic crystal structure (No.55 PbamPbam D2h9D_{2h}^{9}), the Yb atom is also surrounded by 7 B rings as illustrated in Fig. 1(a) [9]. The sevenfold symmetry around Yb is broken by Al and/or Fe so that the mixture of the Jz=±1/2J_{z}=\pm 1/2 and 3/2\mp 3/2 states is expected in |Ψ±5d|\Psi^{5{\rm d}}_{\pm}\rangle as Eq. (2). Furthermore, the Yb 4f CEF ground state as a4f|±5/2+b4f|±1/2+c4f|3/2a_{4{\rm f}}|\pm 5/2\rangle+b_{4{\rm f}}|\pm 1/2\rangle+c_{4{\rm f}}|\mp 3/2\rangle is suggested to be realized by the neutron [20] and Mössbauer [21] measurements. In this case, the softening of CvC_{\rm v} occurs more drastically since χnfF\chi^{\rm F}_{n_{\rm f}} contributes to χv\chi_{\rm v} in addition to χndF\chi^{\rm F}_{n_{\rm d}}. It is interesting to observe the softening of CBC_{\rm B}, CuC_{\rm u}, and CvC_{\rm v} for low temperatures in α\alpha-YbAl0.986Fe0.014B4.

The present RPA analysis has made it possible to identify which mode shows the softening in CΓ(T)C_{\Gamma}(T) for T0T\to 0. To clarify the temperature dependence of CΓ(T)C_{\Gamma}(T) accurately, the effect of the mode-mode coupling of critical Yb-valence fluctuations should be taken into account beyond the RPA. Such a calculation was performed in Ref. \citenWM2010 and for β\beta-YbAlB4 in Ref. \citenWM2014 where the valence susceptibility i.e., χnfndF\chi^{\rm F}_{n_{\rm f}-n_{\rm d}} is shown to behave as χnfndFT0.5\chi^{\rm F}_{n_{\rm f}-n_{\rm d}}\sim T^{-0.5} at the valence QCP. Hence, this temperature dependence is expected to appear in the elastic constants noted above.

{acknowledgment}

The author acknowledges M. Yoshizawa who brought his attention to ultrasound measurements with enlightening discussions. He is grateful to R. Kurihara for valuable discussions about elastic constants. Thanks are also due to K. Miyake, Y. Kuramoto, H. Harima, C. Bareille, H. Kobayashi, and S. Wu for useful discussions. This work was supported by JSPS KAKENHI Grant Numbers JP18K03542, JP18H04326, and JP19H00648.

References

  • [1] M. Okawa, M. Matsunami, K. Ishizaka, R. Eguchi, M. Taguchi, A. Chainani, Y. Takata, M. Yabashi, K. Tamasaku, Y. Nishino, T. Ishikawa, K. Kuga, N. Horie, S. Nakatsuji, and S. Shin, Phys. Rev. Lett. 104, 247201 (2010).
  • [2] S. Nakatsuji, K. Kuga, Y. Machida, T. Tayama, T. Sakakibara, Y. Karaki, H. Ishimoto, S. Yonezawa, Y. Maeno, E. Pearson, G. G. Lonzarich, L. Balicas, H. Lee, and Z. Fisk, Nat. Phys. 4, 603 (2008).
  • [3] Y. Matsumoto, S. Nakatsuji, K. Kuga, Y. Karaki, N. Horie, Y. Shimura, T. Sakakibara, A. H. Nevidomskyy, and P. Coleman, Science 331, 316 (2011).
  • [4] S. Watanabe and K. Miyake, Phys. Rev. Lett. 105, 186403 (2010).
  • [5] S. Watanabe and K. Miyake, J. Phys. Soc. Jpn. 83, 103708 (2014).
  • [6] K. Kuga, Y. Matsumoto, M. Okawa, S. Suzuki, T. Tomita, K. Sone, Y. Shimura, T. Sakakibara, D. Nishio-Hamane, Y. Karaki, Y. Takata, M. Matsunami, R. Eguchi, M. Taguchi, A. Chainani, S. Shin, K. Tamasaku, Y. Nishino, M. Yabashi, T. Ishikawa, and S. Nakatsuji, Science Adv. 4, (2018) 3547.
  • [7] S. Watanabe and K. Miyake, J. Phys. Soc. Jpn. 88, 033701 (2019).
  • [8] B. Lüthi, Physical Acoustics in the Solid State (Springer, Berlin, 2004).
  • [9] R. T. Macaluso, S. Nakatsuji, K. Kuga, E. L. Thomas, Y. Machida, Y. Maeno, Z. Fisk,and J. Y. Chan, Chem. Mater. 19, 1918 (2007).
  • [10] A. H. Nevidomskyy and P. Coleman, Phys. Rev. Lett. 102, 077202 (2009).
  • [11] K. Kuga, Y. Kanai, H. Fujiwara, K. Yamagami, S. Hamamoto, Y. Aoyama, A. Sekiyama, A. Higashiya, T. Kadono, S. Imada, A. Yamasaki, A. Tanaka, K. Tamasaku, M. Yabashi, T. Ishikawa, S. Nakatsuji, and T. Kiss, Phys. Rev. Lett. 123, (2019) 036404.
  • [12] N. Read and D. M. Newns, J. Phys. C 16, 3273 (1983).
  • [13] J. C. Slater and G. F. Koster, Phys. Rev. 94, 1498 (1954).
  • [14] K. Takegahara, Y. Aoki, and A. Yanase, J. Phys.: Solid. St. Phys., 13, 583 (1980).
  • [15] O. K. Andersen and O. Jepsen, Physica B 91, 317 (1977).
  • [16] C. Bareille, S. Suzuki, M. Nakayama, K. Kuroda, A. H. Nevidomskyy, Y. Matsumoto, S. Nakatsuji, T. Kondo, and S. Shin, Phys. Rev. B 97, 045112 (2018) ; private communications.
  • [17] D. A. Papaconstantopoulos, Handbook of the Band Structure of Elemental Solids (Springer US, 2015).
  • [18] H. Tonai, N. Sasabe, T. Uozumi, N. Kawamura, and M. Mizumaki, J. Phys. Soc. Jpn. 86, 093704 (2017).
  • [19] T. Takimoto, T. Hotta, and K. Ueda, Phys. Rev. B 69, 104504 (2004).
  • [20] S. Wu and C. Broholm, private communications.
  • [21] H. Kobayashi, private communications.