This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

\catchline

Ultralight scalar dark matter detection with ZAIGA

Wei Zhao1,2    Xitong Mei1,2    Dongfeng Gao1,    Jin Wang1,\dagger    Mingsheng Zhan1,\ddagger 1State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics,
Wuhan Institute of Physics and Mathematics, APM,
Chinese Academy of Sciences,
Wuhan 430071, China
2School of Physical Sciences,
University of Chinese Academy of Sciences,
Beijing 100049, China
[email protected]
[email protected]
[email protected]
(Day Month Year; Day Month Year)
Abstract

ZAIGA is a proposed underground long-baseline atom interferometer (AI) facility, aiming for experimental research on gravitation and related problems. In this paper, we study the possibility of detecting the ultralight scalar dark matter (DM) with ZAIGA. According to a popular scalar DM model, the DM field contains a background oscillation term and a local exponential fluctuation term. In order to calculate the proposed constraints on DM coupling parameters, we need to first compute the DM signals in ZAIGA. For the case of two AIs vertically separated by 300 meters, the DM-induced differential phase consists of three contributions, coming from the DM-induced changes in atomic internal energy levels, atomic masses and the gravitational acceleration. For the case of two AIs horizontally separated by several kilometers, the signal comes from the DM-induced changes in atomic internal energy levels. With the current and future technical parameters of ZAIGA, we then obtain the proposed constraints on five DM coupling parameters. It turns out that our proposed constraints could be several orders of magnitude better than the ones set by the MICROSCOPE space mission.

keywords:
dark matter; atom interferometers; long-baseline.
{history}
\ccode

PACS numbers:

1 Introduction

Dark matter (DM) is one of the most challenging problems of modern physics and cosmology. A variety of astrophysical and cosmological observations indicate the existence of DM [1, 2, 3]. Current data suggest that 80% of all matters in the universe is DM [4]. Up to now, we only observe the gravitational effect of DM, while its other properties are still unknown. Weakly interacting massive particles (WIMPs) are the major DM candidate but no signals have been found [5, 6, 7]. Recently, the ultralight DM candidate attracts a lot of attentions. There are various proposals to search for the ultralight DM with precision tools, such as AIs [8], atomic clocks [9, 10, 11, 12], accelerometers [13, 14, 15], optical cavities [16, 17, 18, 19] and laser interferometers [20, 21, 22, 23, 24, 25, 26, 27, 28].

AIs rely on coherently manipulating atomic matter waves. Details could be found in the paper [29]. AIs have been widely applied to test the weak equivalence principle with accuracy of 101210^{-12}-level [30] and measure the fine structure constant with α1\alpha^{-1}= 137.035999206(11) [31]. More applications could be found in the paper [32]. Recently, several long-baseline atomic sensor schemes have been put forward, such as AION [33], MAGIS-100 [34], MIGA [35], ELGAR [36] and ZAIGA [37]. One important goal of these schemes is to search for the ultralight DM.

According to the popular ultralight scalar DM model [38, 39], DM may interact with standard model matters and change the mass of fermions, the electromagnetic fine structure constant as well as the QCD energy scale. Consequently, the masses of atoms and the Earth will be modified by the DM. These modifications will go into the phase shift of AIs. We have given a complete result for the DM-induced phase shift for a single AI in the paper [40]. In this paper, we will first compute the DM signals in ZAIGA, namely for the case of two vertically separated AIs, and the case of two horizontally separated AIs. After that, we compute the proposed constraints on five DM coupling parameters and compare with the MICROSCOPE space mission.

The paper is organized as follows. We first introduce the popular ultralight scalar DM model and give the DM-induced phase shift for a single AI in Sec. 2. In Sec. 3, we introduce the ZAIGA proposal and its technical parameters for detecting the ultralight scalar DM. The DM-induced differential phases for two separated AIs are also calculated. Then we discuss the possible constraints on five coupling parameters by ZAIGA in Sec. 4. Finally, conclusion and discussion are made in Sec. 5.

2 The ultralight scalar DM model

In this section, we will briefly introduce the ultralight scalar DM model [38, 39] and the result of DM-induced phase shift for a single AI calculated in our previous paper [40].

2.1 The model

For the linear coupling DM model, the action and the interaction Lagrangian density at the microscopic level are the following

S\displaystyle S =d4xg2κ[R2gμνμφνφV(φ)]\displaystyle=\int d^{4}x\dfrac{\sqrt{-g}}{2\kappa}\Bigg{[}R-2g^{\mu\nu}\partial_{\mu}\varphi\partial_{\nu}\varphi-V(\varphi)\Bigg{]}
+d4xg[SM(gμν,ψi)+int(gμν,φ,ψi)],\displaystyle+\int d^{4}x\sqrt{-g}\Bigg{[}\mathcal{L}_{SM}(g_{\mu\nu},\psi_{i})+\mathcal{L}_{int}(g_{\mu\nu},\varphi,\psi_{i})\Bigg{]}\,, (1)

and

int\displaystyle\mathcal{L}_{int} =φ[de4e2FμνFμνdgβ32g3FμνAFAμνi=e,u,d(dmi+γmidg)miψ¯iψi],\displaystyle=\varphi\Bigg{[}\frac{d_{e}}{4e^{2}}F_{\mu\nu}F^{\mu\nu}-\frac{d_{g}\beta_{3}}{2g_{3}}F^{A}_{\mu\nu}F^{A\mu\nu}-\sum_{i=e,u,d}(d_{m_{i}}+\gamma_{m_{i}}d_{g})m_{i}\bar{\psi}_{i}\psi_{i}\Bigg{]}\,, (2)

where κ=8πGc4\kappa=\frac{8\pi G}{c^{4}}, gμνg_{\mu\nu} is the spacetime metric, and φ\varphi denotes the dimensionless scalar DM field. β3\beta_{3} is the beta function for g3g_{3}, where g3g_{3} is the QCD gauge coupling. γmi\gamma_{m_{i}} is the anomalous dimension from the energy running of the quark masses, ded_{e}, dgd_{g} and dmid_{m_{i}} are the coupling parameters between DM and the electromagnetic field, the gluonic field as well as the masses of the electron and quarks. For convenience, we write the symmetrical and antisymmetric form for the coupling parameters of up and down quarks as

dm^=mudmu+mddmdmu+md,dδm=mddmdmudmumdmu.\displaystyle d_{\hat{m}}=\frac{m_{u}d_{m_{u}}+m_{d}d_{m_{d}}}{m_{u}+m_{d}}\,,\ d_{\delta m}=\frac{m_{d}d_{m_{d}}-m_{u}d_{m_{u}}}{m_{d}-m_{u}}\,. (3)

To describe the behavior of the DM field near the Earth, the following phenomenological action is derived from the microscopic action Eq. (1)

S=d4xg2κ[R2gμνμφνφV(φ)]c2ρE(φ)gd4x,S=\int d^{4}x\dfrac{\sqrt{-g}}{2\kappa}\Bigg{[}R-2g^{\mu\nu}\partial_{\mu}\varphi\partial_{\nu}\varphi-V(\varphi)\Bigg{]}-c^{2}\int\rho_{E}(\varphi)\,\sqrt{-g}\,d^{4}x\,, (4)

where V(φ)=2c2mφ22φ2V({\varphi})=2\frac{c^{2}m_{\varphi}^{2}}{\hbar^{2}}\varphi^{2} is the quadratic scalar potential, ρE=3ME(φ)4πRE3\rho_{E}=\frac{3M_{E}(\varphi)}{4\pi R_{E}^{3}} is the average density of the Earth. We can do the Taylor expansion for the Earth’s mass

ME(φ)=ME[1+αEφ+αE~φ2+𝒪(φ3)].M_{E}(\varphi)=M_{E}\Bigg{[}1+\alpha_{E}\varphi+\tilde{\alpha_{E}}\varphi^{2}+\mathcal{O}(\varphi^{3})\Bigg{]}\,. (5)

Here αE=0.92dg+0.08dm^+2.35×105dδm+2.71×104dme+1.71×103de\alpha_{E}=0.92d_{g}+0.08d_{\hat{m}}+2.35\times 10^{-5}d_{\delta m}+2.71\times 10^{-4}d_{m_{e}}+1.71\times 10^{-3}d_{e} is the DM charge for the Earth and αE~dg 2\tilde{\alpha_{E}}\backsimeq d_{g}^{\,2} [40].

From Eq. (4), one can get the solution of φ\varphi near the Earth

φ=φ0cos(kφrωt+δ)αEI(REλeff)GMEc2erλeffr,\varphi=\varphi_{0}\cos(k_{\varphi}\,r-\omega t+\delta)-\alpha_{E}I(\frac{R_{E}}{\lambda_{\text{eff}}})\frac{GM_{E}}{c^{2}}\frac{e^{-\frac{r}{\lambda_{\text{eff}}}}}{r}\,, (6)

where φ0=7.2×1031eVmφ\varphi_{0}=\frac{7.2\times 10^{-31}\rm eV}{m_{\varphi}} is the amplitude, kφ=mφvvir/k_{\varphi}=m_{\varphi}v_{\rm vir}/\hbar is the wave vector where vvir=103cv_{\rm vir}=10^{-3}c, ω2=mφc4/2+kφ2c2\omega^{2}=m_{\varphi}c^{4}/\hbar^{2}+k_{\varphi}^{2}c^{2}, the δ\delta is the initial phase of the DM field and the effective wavelength is λeff=meffc\lambda_{\text{eff}}=\frac{\hbar}{m_{\text{eff}}c} with

meff2=mφ2+4πG2c4ρEα~E=mφ2+(1.4×1018eV)2αE~.\displaystyle m^{2}_{\text{eff}}=m^{2}_{\varphi}+\frac{4\pi G\hbar^{2}}{c^{4}}\rho_{E}\tilde{\alpha}_{E}=m^{2}_{\varphi}+(1.4\times 10^{-18}{\rm eV})^{2}\tilde{\alpha_{E}}\,. (7)

One can see that the solution to the DM field is a sum of the background harmonic oscillation term and the local exponential fluctuation term. The latter term comes from the effect of the Earth.

2.2 The DM signal in single AI

Here we consider the π2\frac{\pi}{2}-π\pi-π2\frac{\pi}{2} Raman AI [41, 42]. In the terrestrial AI experiments, the DM could change the atomic mass and the Earth’s gravitational acceleration gg. The DM also causes a modification of the electronic transition energy due to changes in the electronic mass mem_{e} and the electromagnetic fine structure constant α\alpha. The modification of the atomic mass is

mA(φ)\displaystyle m_{A}(\varphi) =m0(1+αAφ),\displaystyle=m_{0}(1+\alpha_{A}\varphi)\,, (8)

where αA\alpha_{A} is the DM charge for the atom as defined and calculated in [38, 40]. The modification of the gravitational acceleration is

g(φ)\displaystyle g(\varphi) =GME(φ)/r2=g0[1+αEφ+𝒪(φ02)+𝒪(di3)],\displaystyle=GM_{E}(\varphi)/r^{2}=g_{0}\big{[}1+\alpha_{E}\varphi+\mathcal{O}(\varphi_{0}^{2})+\mathcal{O}(d_{i}^{3})\big{]}\,, (9)

The change in the electronic transition energy is

ωA(φ)\displaystyle\omega_{A}(\varphi) =ωA[1+(dme+ξde)φ].\displaystyle\!=\omega_{A}\big{[}1+(d_{m_{e}}+\xi d_{e})\varphi\big{]}\,. (10)

For the 87Rb atom, ξ2.34\xi\approx 2.34 is the relativistic correction factor [43] and

α87\displaystyle\alpha_{87} =9.1556685×101dg+8.3945×102dm^+2.54×104dδm\displaystyle=9.1556685\times 10^{-1}d_{g}+8.3945\times 10^{-2}d_{\hat{m}}+2.54\times 10^{-4}d_{\delta m}
+2.339×104dme+2.869×103de.\displaystyle+2.339\times 10^{-4}d_{m_{e}}+2.869\times 10^{-3}d_{e}\,. (11)

These modifications will be reflected in the AI’s phase shift. The result for a single AI is calculated to be

ϕ\displaystyle\phi =g0T2keffkeffc2kφαAφ0ω2[sin(kφr2ωT+δ)2sin(kφrωT+δ)+sin(kφr+δ)]\displaystyle\!=\!-g_{0}T^{2}k_{\text{eff}}\!-\!k_{\text{eff}}\frac{c^{2}k_{\varphi}\alpha_{A}\varphi_{0}}{\omega^{2}}\bigg{[}\!\sin(k_{\varphi}r\!-\!2\omega T\!+\!\delta)\!-\!2\sin(k_{\varphi}r\!-\!\omega T\!+\!\delta)\!+\!\sin(k_{\varphi}r\!+\!\delta)\!\bigg{]}
+αA2g0keffTωφ0[sin(kφrωT+δ)sin(kφr2ωT+δ)]\displaystyle+\alpha_{A}\frac{2g_{0}k_{\rm eff}T}{\omega}\varphi_{0}\Big{[}\sin(k_{\varphi}r-\omega T+\delta)-\sin(k_{\varphi}r-2\omega T+\delta)\Big{]}
+(αE+2αA)g0keffω2φ0[cos(kφr+δ)2cos(kφrωT+δ)+cos(kφr2ωT+δ)]\displaystyle\!+\!\left(\alpha_{E}\!+\!2\alpha_{A}\right)\frac{g_{0}k_{\text{eff}}}{\omega^{2}}\varphi_{0}\bigg{[}\cos(k_{\varphi}r+\delta)\!-\!2\cos(k_{\varphi}r-\omega T+\delta)\!+\!\cos(k_{\varphi}r-2\omega T+\delta)\bigg{]}
T2keff[76g0T2(2vL+vR)Tλeff+(1+rλeff)]I(REλeff)g0αAαEerλeff.\displaystyle-T^{2}k_{\text{eff}}\Bigg{[}\frac{\frac{7}{6}g_{0}T^{2}-(2v_{L}+v_{R})T}{\lambda_{\text{eff}}}+(1+\frac{r}{\lambda_{\text{eff}}})\Bigg{]}I(\frac{R_{E}}{\lambda_{\text{eff}}})g_{0}\alpha_{A}\alpha_{E}e^{-\frac{r}{\lambda_{\text{eff}}}}\,. (12)

3 The ultralight scalar DM detection with ZAIGA

3.1 The ZAIGA proposal

ZAIGA (Zhaoshan long-baseline atom interferometer gravitation antenna) is a proposed underground long-baseline atom interferometer facility [37]. It includes a pair of 10-meter AIs vertically separated by 300 meters and a pair of 5-meter AIs horizontally separated by kilometers (See Fig. 1). The spatially separated AIs are controlled by the same laser. An important advantage is that common-mode noises from laser phase fluctuations and platform vibrations can be cancelled out by taking differential phase measurements. The atomic shot noise could be suppressed by improving the atomic flux density. For the state-of-the-art technology of 10810^{8} atoms/s, the phase sensitivity is 104rad/Hz10^{-4}\text{rad}/\sqrt{\text{Hz}} [44]. With the improvement of technology, the phase sensitivity could be improved by increasing flux density or adopting squeezed atomic states [45].

The facility sensitivity is also associated with the baseline length LL and the number of large momentum transfer (LMT) nn. So it is possible to improve the sensitivity by adopting longer baseline and larger LMT. The LMT with 102 k\hbar k has been demonstrated and 1000 k\hbar k or larger is also possible in the future [46, 47]. The main technical parameters for ZAIGA are listed in Table 3.1 for the vertical configuration and Table 3.1 for the horizontal configuration.

Refer to caption
Figure 1: (a) the schematic diagram of ZAIGA. (b) the spacetime diagram of AIs. First the atomic beam is prepared in the ground state |g|g\rangle and launched upwards with a velocity vLv_{L}. The π2\frac{\pi}{2}-pulse coherently splits the atom beam into a superposition of ground and excited states (|g|g\rangle and |e|e\rangle) at the time t=0t=0. The upper path will obtain a recoil momentum keff\hbar k_{\text{eff}} (i.e., a recoil velocity vRv_{R}) compared with the lower path, where 𝐤eff=𝐤𝟏𝐤𝟐\mathbf{k_{\text{eff}}}=\mathbf{k_{1}}-\mathbf{k_{2}}. Then a π\pi-pulse is used to transform the state |g|g\rangle to |e|e\rangle and the state |e|e\rangle to |g|g\rangle at the time t=Tt=T. Finally, a π2\frac{\pi}{2}-pulse is applied to recombine the two paths. The phase shift can be measured by detecting the number of atoms in ground or excited states.
\tbl

The technical parameters for a pair of vertically separated AIs \toprule Free evolution Phase sensitivity Momentum Integration time Arm- time (T) transfer (n) (tintt_{int}) length (L) \colruleNear term 1.4s 010310^{-3}rad/Hz\sqrt{\text{Hz}} 4 10410^{4}s 300m Future 1.4s 010410^{-4}rad/Hz\sqrt{\text{Hz}} 10410^{4} 10610^{6}s 300m \botrule

\tbl

The technical parameters for a pair of horizontally separated AIs \toprule Free evolution Phase sensitivity Momentum Integration time Arm- time (T) transfer (n) (tintt_{int}) length (L) \colruleNear term 1s 010310^{-3}rad/Hz\sqrt{\text{Hz}} 4 10410^{4}s 1km Future 1s 010710^{-7}rad/Hz\sqrt{\text{Hz}} 10310^{3} 10610^{6}s 3km \botrule

3.2 The DM signal in two separated AIs

The DM signal is measured by taking the differential phase between two separated AIs.

Firstly we consider the case of two vertically separated AIs. The phase shift of the first AI is given by

ϕ1\displaystyle\phi_{1} =g1T2keffkeffc2kφαAφ0ω2[sin(kφRE2ωT+δ)2sin(kφREωT+δ)\displaystyle\!=\!-g_{1}T^{2}k_{\text{eff}}\!-\!k_{\text{eff}}\frac{c^{2}k_{\varphi}\alpha_{A}\varphi_{0}}{\omega^{2}}\Big{[}\!\sin(k_{\varphi}R_{E}\!-\!2\omega T\!+\!\delta)\!-\!2\sin(k_{\varphi}R_{E}\!-\!\omega T\!+\!\delta)\!
+sin(kφRE+δ)]+αA2g1keffTωφ0[sin(kφREωT+δ)sin(kφRE2ωT+δ)]\displaystyle+\!\sin(k_{\varphi}R_{E}\!+\!\delta)\!\Big{]}\!+\!\alpha_{A}\frac{2g_{1}k_{\rm eff}T}{\omega}\varphi_{0}\Big{[}\sin(k_{\varphi}R_{E}-\omega T+\delta)-\sin(k_{\varphi}R_{E}-2\omega T+\delta)\Big{]}
+(αE+2αA)g1keffω2φ0[cos(kφRE+δ)2cos(kφREωT+δ)+cos(kφRE2ωT+δ)]\displaystyle\!+\!\left(\alpha_{E}\!+\!2\alpha_{A}\right)\!\frac{g_{1}k_{\text{eff}}}{\omega^{2}}\varphi_{0}\!\Big{[}\!\cos(k_{\varphi}R_{E}\!+\!\delta)\!\!-\!2\cos(k_{\varphi}R_{E}\!-\!\omega T\!+\!\delta)\!\!+\!\!\cos(k_{\varphi}R_{E}\!-\!2\omega T\!+\!\delta)\!\Big{]}\!
T2keff[76g1T2(2vL+vR)Tλeff+(1+REλeff)]I(REλeff)g1αAαEeREλeff,\displaystyle-T^{2}k_{\text{eff}}\bigg{[}\frac{\frac{7}{6}g_{1}T^{2}-(2v_{L}+v_{R})T}{\lambda_{\text{eff}}}+(1+\frac{R_{E}}{\lambda_{\text{eff}}})\bigg{]}I(\frac{R_{E}}{\lambda_{\text{eff}}})g_{1}\alpha_{A}\alpha_{E}e^{-\frac{R_{E}}{\lambda_{\text{eff}}}}\,, (13)

where g1g_{1} denotes the gravitational acceleration at z1z_{1}. The phase shift of the second AI located at z2z_{2} is calculated to be

ϕ2\displaystyle\phi_{2} =g2T2keffkeffc2kφαAφ0ω2[sin(kφRE2ωT+δ)2sin(kφREωT+δ)\displaystyle\!=\!-g_{2}T^{2}k_{\text{eff}}\!-\!k_{\text{eff}}\frac{c^{2}k_{\varphi}\alpha_{A}\varphi_{0}}{\omega^{2}}\Big{[}\!\sin(k_{\varphi}R_{E}\!-\!2\omega T\!+\!\delta)\!-\!2\sin(k_{\varphi}R_{E}\!-\!\omega T\!+\!\delta)
+sin(kφRE+δ)]+αA2g2keffTωφ0[sin(kφREωT+δ)sin(kφRE2ωT+δ)]\displaystyle\!+\!\sin(k_{\varphi}R_{E}\!+\!\delta)\!\Big{]}+\alpha_{A}\frac{2g_{2}k_{\rm eff}T}{\omega}\varphi_{0}\Big{[}\sin(k_{\varphi}R_{E}-\omega T+\delta)-\sin(k_{\varphi}R_{E}-2\omega T+\delta)\Big{]}
+(αE+2αA)g2keffω2φ0[cos(kφRE+δ)2cos(kφREωT+δ)+cos(kφRE2ωT+δ)]\displaystyle\!+\!\left(\alpha_{E}\!+\!2\alpha_{A}\right)\frac{g_{2}k_{\text{eff}}}{\omega^{2}}\varphi_{0}\!\Big{[}\!\cos(k_{\varphi}R_{E}\!+\!\delta)\!\!-\!\!2\cos(k_{\varphi}R_{E}\!-\!\omega T\!+\!\delta)\!\!+\!\!\cos(k_{\varphi}R_{E}\!-\!2\omega T\!+\!\delta)\!\Big{]}
T2keff[76g1T2(2vL+vR)Tλeff+(1+REλeff)]I(REλeff)g2αAαEeREλeff\displaystyle-T^{2}k_{\text{eff}}\bigg{[}\frac{\frac{7}{6}g_{1}T^{2}-(2v_{L}+v_{R})T}{\lambda_{\text{eff}}}+(1+\frac{R_{E}}{\lambda_{\text{eff}}})\bigg{]}I(\frac{R_{E}}{\lambda_{\text{eff}}})g_{2}\alpha_{A}\alpha_{E}e^{-\frac{R_{E}}{\lambda_{\text{eff}}}}
+(dme+ξde)ωAωφ0[sin[kφREω(T+Lc)+δ]sin[kφREω(T(n1)Lc)+δ]\displaystyle\!+\!\frac{(d_{m_{e}}\!\!+\!\xi d_{e})\omega_{A}}{\omega}\varphi_{0}\bigg{[}\sin\big{[}k_{\varphi}R_{E}\!-\!\omega\big{(}T\!+\!\frac{L}{c}\big{)}\!+\!\delta\big{]}\!-\!\sin\big{[}k_{\varphi}R_{E}\!-\!\omega\big{(}T\!-\!(n\!-\!1)\frac{L}{c}\big{)}\!+\!\delta\big{]}
sin[kφREωnLc+δ]+sin[kφRE+δ]sin[kφREω(2T+Lc)+δ]\displaystyle-\sin\big{[}k_{\varphi}R_{E}-\frac{\omega nL}{c}+\delta\big{]}+\sin\big{[}k_{\varphi}R_{E}+\delta\big{]}-\sin\big{[}k_{\varphi}R_{E}-\omega\big{(}2T+\frac{L}{c}\big{)}+\delta\big{]}
+sin[kφREω(2T(n1)Lc)+δ]+sin[kφREω(T+nLc)+δ]\displaystyle+\sin\big{[}k_{\varphi}R_{E}-\omega\big{(}2T-(n-1)\frac{L}{c}\big{)}+\delta\big{]}+\sin\big{[}k_{\varphi}R_{E}-\omega\big{(}T+\frac{nL}{c}\big{)}+\delta\big{]}
sin[kφREωT+δ]],\displaystyle-\sin\big{[}k_{\varphi}R_{E}-\omega T+\delta\big{]}\bigg{]}\,, (14)

where g2g_{2} is the gravitational acceleration at z2z_{2}.

So the differential phase Φsumv\Phi^{\rm v}_{\text{sum}} for two vertically separated AIs is ϕ2ϕ1\phi_{2}-\phi_{1} , which can be rewritten into the following form

Φsumv\displaystyle\Phi^{\rm v}_{\text{sum}} =(g2g1)T2keff+Φexp+Φosc+Φeng,\displaystyle=-(g_{2}-g_{1})T^{2}k_{\text{eff}}+\Phi_{\rm exp}+\Phi_{\rm osc}+\Phi_{\rm eng}\,, (15)

with

Φexp\displaystyle\Phi_{\rm exp} =T2keff[76g1T2(2vL+vR)Tλeff+(1+REλeff)]I(REλeff)(g2g1)αAαEeREλeff,\displaystyle=-T^{2}k_{\text{eff}}\Bigg{[}\frac{\frac{7}{6}g_{1}T^{2}-(2v_{L}+v_{R})T}{\lambda_{\text{eff}}}+(1+\frac{R_{E}}{\lambda_{\text{eff}}})\Bigg{]}I(\frac{R_{E}}{\lambda_{\text{eff}}})(g_{2}-g_{1})\alpha_{A}\alpha_{E}e^{-\frac{R_{E}}{\lambda_{\text{eff}}}}\,, (16)
Φosc\displaystyle\Phi_{\rm osc} =αA2(g2g1)keffTωφ0[sin(kφREωT+δ)sin(kφRE2ωT+δ)]\displaystyle=\alpha_{A}\frac{2(g_{2}-g_{1})k_{\rm eff}T}{\omega}\varphi_{0}\Big{[}\sin(k_{\varphi}R_{E}-\omega T+\delta)-\sin(k_{\varphi}R_{E}\!-\!2\omega T\!+\!\delta)\Big{]}
+(αE+2αA)(g2g1)keffω2φ0[cos(kφRE+δ)2cos(kφREωT+δ)\displaystyle+\big{(}\alpha_{E}+2\alpha_{A}\big{)}\frac{(g_{2}-g_{1})k_{\text{eff}}}{\omega^{2}}\varphi_{0}\Big{[}\cos(k_{\varphi}R_{E}+\delta)-2\cos(k_{\varphi}R_{E}-\omega T+\delta)
+cos(kφRE2ωT+δ)],\displaystyle+\cos(k_{\varphi}R_{E}-2\omega T+\delta)\Big{]}\,, (17)

and

Φeng\displaystyle\Phi_{\rm eng} =(dme+ξde)ωAω[sin[kφREω(T+Lc)+δ]sin[kφREω(T(n1)Lc)+δ]\displaystyle=\frac{(d_{m_{e}}\!\!+\!\xi d_{e})\omega_{A}}{\omega}\!\bigg{[}\!\sin\!\big{[}k_{\varphi}R_{E}\!-\!\omega\big{(}T\!+\!\frac{L}{c}\big{)}\!+\!\delta\big{]}\!-\!\sin\big{[}k_{\varphi}R_{E}\!-\!\omega\big{(}T\!-\!(n\!-\!1)\frac{L}{c}\big{)}\!+\!\delta\big{]}
sin[kφREωnLc+δ]+sin[kφRE+δ]sin[kφREω(2T+Lc)+δ]\displaystyle-\sin\big{[}k_{\varphi}R_{E}-\frac{\omega nL}{c}+\delta\big{]}+\sin\big{[}k_{\varphi}R_{E}+\delta\big{]}-\sin\big{[}k_{\varphi}R_{E}-\omega\big{(}2T+\frac{L}{c}\big{)}+\delta\big{]}
+sin[kφREω(2T(n1)Lc)+δ]+sin[kφREω(T+nLc)+δ]\displaystyle+\sin\big{[}k_{\varphi}R_{E}-\omega\big{(}2T-(n-1)\frac{L}{c}\big{)}+\delta\big{]}+\sin\big{[}k_{\varphi}R_{E}-\omega\big{(}T+\frac{nL}{c}\big{)}+\delta\big{]}
sin[kφREωT+δ]].\displaystyle-\sin\big{[}k_{\varphi}R_{E}-\omega T+\delta\big{]}\bigg{]}\,. (18)

According to Eqs. (8) and (9), the atomic mass and the gravitational acceleration are changed by the DM. Φosc\Phi_{\rm osc} stands for the contribution due to changes in the atomic mass and the gravitational acceleration caused by the oscillatory term of the DM field. Φexp\Phi_{\rm exp} denotes the contribution due to changes in the atomic mass and the gravitational acceleration caused by the exponential fluctuation term of the DM field. They are both proportional to g2g1g_{2}-g_{1}, and are functions of all the five DM coupling parameters. Lastly, according to Eq. (10), the electronic transition energy is also influenced by the DM. Then, we use Φeng\Phi_{\rm eng} to denote the corresponding contribution to the differential phase, which is surely independent of the gravitational acceleration, and is a function of ded_{e} and dmed_{m_{e}}. It has already been discussed in papers [40, 48].

Secondly, we consider the case of two horizontally separated AIs. To be simple, we ignore the horizontal gradient in the Earth’s gravity field. Doing the similar calculation of phase shifts for the two AIs as before, one can find that the phase shifts are also given by Eqs. (13) and (14) except g1g_{1} = g2g_{2}. Thus, the differential phase for two horizontally separated AIs is found to be

Φsumh\displaystyle\Phi^{\rm h}_{\text{sum}} =ϕ2ϕ1=Φeng.\displaystyle=\phi_{2}-\phi_{1}=\Phi_{\rm eng}\,. (19)

In other words, the DM signal comes only from the modification of the electronic transitional energy.

Refer to caption
Figure 2: (a) Seismic acceleration amplitude spectral density given by the NLNM [49, 50]. (b) The corresponding strain amplitude spectral density.
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Figure 3: Constraints on DM coupling parameters by a pair of vertically separated AIs, assuming a 50-time mitigation in the NN. The blue and black solid lines are the overall constraints set by the near-term ZAIGA and the future ZAIGA. The gray areas denote the parameter regions excluded by the MICROSCOPE space mission[51, 52]. Dotted lines and dashed lines denote the various contributions to the corresponding overall constraints for the near-term ZAIGA and the future ZAIGA, respectively. The green color is for Φ¯osc\bar{\Phi}_{\rm osc}, the cyan color is for Φ¯eng\bar{\Phi}_{\rm eng}, and the orange color is for Φexp\Phi_{\rm exp}.
Refer to caption
Refer to caption
Figure 4: Constraints on DM coupling parameters by a pair of horizontally separated AIs, assuming a 50-time mitigation in NN. The blue and black solid lines are the overall constraints set by the near-term ZAIGA and the future ZAIGA.

4 Constraints on the DM coupling parameters

We constrain only one parameter every time by setting the rest four parameters to zero. This method has been used in many papers [10, 52, 53].

Let us first discuss the vertical configuration of ZAIGA, where a pair of 10-meter AIs are vertically separated by 300 meters. The DM signal is given by Eq. (15), which is a sum of Φexp\Phi_{\rm exp}, Φosc\Phi_{\rm osc}, and Φeng\Phi_{\rm eng}. Since Φosc\Phi_{\rm osc} and Φeng\Phi_{\rm eng} are oscillatory in the initial phase δ\delta, it is helpful to use the corresponding signal amplitudes defined by Φ¯osc=(202πΦosc2/2π𝑑δ)1/2\bar{\Phi}_{\rm osc}=\big{(}2\int_{0}^{2\pi}\Phi^{2}_{\rm osc}/2\pi d\delta\big{)}^{1/2}, and Φ¯eng=(202πΦeng2/2π𝑑δ)1/2\bar{\Phi}_{\rm eng}=\big{(}2\int_{0}^{2\pi}\Phi^{2}_{\rm eng}/2\pi d\delta\big{)}^{1/2}. As discussed in the paper [37], the sensitivity of ZAIGA is determined by the atomic shot noise and the Newtonian gravity gradient noise (NN). The atomic shot noise is determined by the technical parameters in Table 3.1. The NN is a crucial background noise for any terrestrial gravitational wave detector, which varies widely for different experimental sites. Since we have not started any real-time NN measurement, here we use the well-known NLNM (the New Low Noise Model) [49, 50] to estimate the NN, as depicted in Fig. 2. On the other hand, according to the paper [54], it is possible that the NN could be mitigated by 50 times by using dedicated arrays of auxiliary sensors. Then, constraints on dgd_{g}, dm^d_{\hat{m}}, dδmd_{\delta m}, ded_{e} and dmed_{m_{e}} are depicted in Fig. 3, assuming a 50-time mitigation in the NN. It is clear that curves for the near-term ZAIGA are determined by the NN below 2×1032\times 10^{-3}Hz and by the shot noise above that frequency. Curves for the future ZAIGA are determined by the NN below 0.1Hz and by the shot noise above that frequency. The blue and black solid lines are the overall constraints set by the near-term ZAIGA and the future ZAIGA. The gray areas denote the parameter regions excluded by the MICROSCOPE space mission [51, 52].

In Fig. 3, in order to obtain the overall constraints in the full DM mass range, we need to first find out the contributions to the overall constraint from Φ¯eng\bar{\Phi}_{\rm eng}, Φ¯osc\bar{\Phi}_{\rm osc} and Φexp\Phi_{\rm exp} individually. The green lines are the constraints set by Φ¯osc\bar{\Phi}_{\rm osc}, and the orange lines are the constraints set by Φexp\Phi_{\rm exp} in all the five pictures. In the pictures for ded_{e} and dmed_{m_{e}}, the cyan lines denote the constraints set by Φ¯eng\bar{\Phi}_{\rm eng}. Then, by connecting the dominant constraint curves in different DM mass range, one can get the overall constraint curves, which are denoted by blue and black solid curves. For the near-term ZAIGA, constraints set by Φexp\Phi_{\rm exp} are always the dominant ones. For the future ZAIGA, constraints set by Φexp\Phi_{\rm exp} are the dominant ones over most DM mass ranges. Only in the pictures for ded_{e} and dmed_{m_{e}}, in the DM mass range 1016eV1014eV10^{-16}{\rm eV}-10^{-14}{\rm eV}, the dominant constraints are set by Φ¯eng\bar{\Phi}_{\rm eng}. In one word, the final constraints for all five DM coupling parameters set by the near-term ZAIGA are worse than the MICROSCOPE’s constraints by one to two orders of magnitude. However, for the future ZAIGA, the final constraints are better than the MICROSCOPE’s constraints by one to two orders of magnitude above the 1016eV10^{-16}{\rm eV} DM mass range.

Next, let us consider the horizontal configuration of ZAIGA, where a pair of 5-meter AIs are horizontally separated by 1000 meters. The DM signal is given by Φ¯eng\bar{\Phi}_{\rm eng}. Since Φ¯eng\bar{\Phi}_{\rm eng} depends on ded_{e} and dmed_{m_{e}}, we could only constrain ded_{e} and dmed_{m_{e}}, which are shown in Fig. 4, again assuming a 50-time mitigation in the NN. For the near-term ZAIGA, curves are determined by the NN below 3×1033\times 10^{-3}Hz and by the shot noise above that frequency. Curves for the future ZAIGA are determined by the NN below 1.0Hz and by the shot noise above that frequency. It is clear that the final constraints from the near-term ZAIGA are worse than the MICROSCOPE’s constraints. On the other hand, for the future ZAIGA, the final constraints are better than the MICROSCOPE’s constraints above the 1016eV10^{-16}{\rm eV} DM mass range. Especially, in the DM mass range 1015eV1013eV10^{-15}{\rm eV}-10^{-13}{\rm eV}, the constraints can be improved by more than three orders of magnitude.

5 Conclusion and discussion

In this paper, we discuss the ultralight scalar DM detection with ZAIGA. According to a popular scalar DM model, the DM field couples to the standard model matter through five coupling parameters. We calculate the DM signals in ZAIGA, and give the expected constraints for the five DM coupling parameters. It turns out that our proposed constraints could be several orders of magnitude better than the ones set by the MICROSCOPE space mission. For the vertical configuration of ZAIGA, the advantage is that all the five DM coupling parameters can be constrained, and the disadvantage is that the arm-length is not easy to extend. For the horizontal configuration of ZAIGA, the advantage is that the arm-length is relatively easy to extend, and the disadvantage is that only ded_{e} and dmed_{m_{e}} can be constrained. In summary, ZAIGA shows an impressive potential on the ultralight scalar DM detection over a wide mass range, and can join with other long-baseline atomic sensor schemes to form a network of the ultralight scalar DM detection.

Acknowledgments

This work was supported by the National Key Research and Development Program of China under Grant No. 2016YFA0302002, and the Strategic Priority Research Program of the Chinese Academy of Sciences under Grant No. XDB21010100.

References

  • [1] G. Bertone and D. Hooper, Rev. Mod. Phys. 90 (2018) 045002.
  • [2] S. W. Allen, R. W. Schmidt, A. C. Fabian and H. Ebeling, Mon. Not. R. Astron. Soc. 342 (2003) 287.
  • [3] C. Mondino, A.-M. Taki, K. Van Tilburg and N. Weiner, Phys. Rev. Lett. 125 (2020) 111101.
  • [4] M. S. Safronova, D. Budker, D. DeMille, D. F. J. Kimball, A. Derevianko and C. W. Clark, Rev. Mod. Phys. 90 (2018) 025008.
  • [5] R. Agnese et al., Phys. Rev. Lett. 121 (2018) 051301.
  • [6] E. Aprile et al., Phys. Rev. Lett. 121 (2018) 111302.
  • [7] D. S. Akerib et al., Phys. Rev. Lett. 122 (2019) 131301.
  • [8] A. A. Geraci and A. Derevianko, Phys. Rev. Lett. 117 (2016) 261301.
  • [9] A. Derevianko and M. Pospelov, Nat. Phys. 10 (2014) 933.
  • [10] A. Arvanitaki, J. Huang and K. Van Tilburg, Phys. Rev. D 91 (2015) 015015.
  • [11] B. M. Roberts et al., New J. Phys. 22 (2020) 093010.
  • [12] K. Beloy et al., Nature 591 (2021) 564.
  • [13] P. W. Graham, D. E. Kaplan, J. Mardon, S. Rajendran and W. A. Terrano, Phys. Rev. D 93 (2016) 075029.
  • [14] J. Manley et al., Phys. Rev. Lett. 126 (2021) 061301.
  • [15] D. Carney et al., New J. Phys. 23 (2021) 023041.
  • [16] I. Obata, T. Fujita and Y. Michimura, Phys. Rev. Lett. 121 (2018) 161301.
  • [17] A. A. Geraci, C. Bradley, D. F. Gao, J. Weinstein and A. Derevianko, Phys. Rev. Lett. 123 (2019) 031304.
  • [18] E. Savalle et al., Phys. Rev. Lett. 126 (2021) 051301.
  • [19] C. J. Kennedy et al., Phys. Rev. Lett. 125 (2020) 201302.
  • [20] Y. V. Stadnik and V. V. Flambaum, Phys. Rev. Lett. 114 (2015) 161301.
  • [21] Y. V. Stadnik and V. V. Flambaum, Phys. Rev. A 93 (2016) 063630.
  • [22] H. Grote and Y. V. Stadnik, Phys. Rev. Research 1 (2019) 033187.
  • [23] A. Pierce, K. Riles and Y. Zhao, Phys. Rev. Lett. 121 (2018) 061102.
  • [24] K. Nagano, T. Fujita, Y. Michimura and I. Obata, Phys. Rev. Lett. 123 (2019) 111301.
  • [25] H.-K. Guo, K. Riles, F.-W. Yang and Y. Zhao, Commun. Phys. 2 (2019) 155.
  • [26] S. Morisaki and T. Suyama, Phys. Rev. D 100 (2019) 123512.
  • [27] S. Morisaki et al., Phys. Rev. D 103 (2021) L051702.
  • [28] Y. Michimura et al., Phys. Rev. D 102 (2020) 102001.
  • [29] A. D. Cronin, J. Schmiedmayer and D. E. Pritchard, Rev. Mod. Phys. 81 (2009) 1051.
  • [30] P. Asenbaum, C. Overstreet, M. Kim, J. Curti and M. A. Kasevich, Phys. Rev. Lett. 125 (2020) 191101.
  • [31] L. Morel, Z. Yao, P. Cladé and S. Guellati-Khélifa, Nature 588 (2020) 61.
  • [32] G. M. Tino, Quantum Sci. Technol. 6 (2021) 024014.
  • [33] L. Badurina et al., J. Cosmol. Astropart. Phys. 5 (2020) 011.
  • [34] M. Abe et al., Quantum Sci. Technol. 6 (2021) 044003.
  • [35] B. Canuel et al., Sci. Rep. 8 (2018) 14064.
  • [36] B. Canuel et al., Class. Quantum Grav. 37 (2020) 225017.
  • [37] M.-S. Zhan et al., Int. J. Mod. Phys. D 29 (2020) 1940005.
  • [38] T. Damour and J. F. Donoghue, Phys. Rev. D 82 (2010) 084033.
  • [39] A. Hees, O. Minazzoli, E. Savalle, Y. V. Stadnik and P. Wolf, Phys. Rev. D 98 (2018) 064051.
  • [40] W. Zhao, D. F. Gao, J. Wang and M. S. Zhan, arXiv:2102.02391 (2021).
  • [41] M. Kasevich and S. Chu, Phys. Rev. Lett. 67 (1991) 181.
  • [42] M. Kasevich and S. Chu, Appl. Phys. B 54 (1992) 321.
  • [43] V. V. Flambaum and A. F. Tedesco, Phys. Rev. C 73 (2006) 055501.
  • [44] P. Treutlein, K. Y. Chung and S. Chu, Phys. Rev. A 63 (2001) 053821.
  • [45] O. Hosten, N. J. Engelsen, R. Krishnakumar and M. A. Kasevich, Nature 529 (2016) 505.
  • [46] H. Müller, S. W. Chiow, Q. Long, S. Herrmann and S. Chu, Phys. Rev. Lett. 100 (2008) 180405.
  • [47] S. W. Chiow, T. Kovachy, H. C. Chien and M. A. Kasevich, Phys. Rev. Lett. 107 (2011) 130403.
  • [48] A. Arvanitaki, P. W. Graham, J. M. Hogan, S. Rajendran and K. Van Tilburg, Phys. Rev. D 97 (2018) 075020.
  • [49] J. R. Peterson, Observations and modeling of seismic background noise, U.S. Geol. Surv. Open-File Report 93-322 (1993).
  • [50] W. Zürn and E. Wielandt, Geophys. J. Int. 168 (2007) 647.
  • [51] P. Touboul et al., Phys. Rev. Lett. 119 (2017) 231101.
  • [52] J. Bergé et al., Phys. Rev. Lett. 120 (2018) 141101.
  • [53] N. Leefer, A. Gerhardus, D. Budker, V. V. Flambaum and Y. V. Stadnik, Phys. Rev. Lett. 117 (2016) 271601.
  • [54] J. Harms, Living Rev. Relativ. 22 (2019)  6.