This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Two rigidity results for surfaces in Schwarzschild spacetimes

Po-Ning Chen Department of Mathematics, University of California, Riverside, CA, USA [email protected]  and  Ye-Kai Wang Department of Applied Mathematics, National Yang Ming Chiao Tung University, Hsinchu, Taiwan National Center for Theoretical Sciences
No. 1 Sec. 4 Roosevelt Rd., National Taiwan University
Taipei,106, Taiwan
[email protected]
Abstract.

We prove two rigidity results for surfaces lying in the standard null hypersurfaces of Schwarzschild spacetime satisfying certain mean curvature type equations. The first is for the equation αH=dlog|H|\alpha_{H}=-d\log|H| studied in [13]. The second is for the mean curvature vector of constant norm. The latter is related to the Liouville and Obata Theorem in conformal geometry.

P.-N. Chen is supported by Simons Foundation collaboration grant #584785
Y.-K. Wang is supported by Taiwan NSTC grant 109-2628-M-006-001-MY3. We would like to thank professor Mu-Tao Wang for his encouragement.

1. Introduction

Alexandrov Theorem [1] is a landmark in differential geometry. It asserts that any closed embedded hypersurface with constant mean curvature in Euclidean space is a round sphere. Later Reilly [9] and Ros [10] (see also [7]) gave different proofs. The methods of proof–Alexandrov’s moving plane method, Reilly formula, and Ros inequality–have become indispensable tools in partial differential equations and geometry.

In the seminal work [2], Brendle generalized the Alexandrov theorem by showing that any closed embedded hypersurface of constant mean curvature in a class of warped product manifolds must be umbilical; moreover, for (anti-)de Sitter Schwarzschild and Reissner-Nordstrom manifolds that are of interest in general relativity, he showed that umbilical hypersurfaces are spheres of symmetry. In [13], Wang, Zhang, and the second-named author proved a spacetime Alexandrov theorem building upon Brendle’s result.

Let’s recall the setup of [13] which we adopted in the present work. Fix an integer n3n\geq 3. Consider a class of (n+1)(n+1)-dimensional static spherically symmetric spacetimes (V,g¯)(V,\bar{g}):

Assumption 1.1.
g¯=f2(r)dt2+1f2(r)dr2+r2gSn1\displaystyle\bar{g}=-f^{2}(r)dt^{2}+\frac{1}{f^{2}(r)}dr^{2}+r^{2}g_{S^{n-1}}

where the warping factor f:I[0,)(0,)f:I\subset[0,\infty)\rightarrow(0,\infty) satisfies the differential inequality

(1.1) f21r2ffr0.\displaystyle\frac{f^{2}-1}{r^{2}}-\frac{ff^{\prime}}{r}\leq 0.

Here gSn1g_{S^{n-1}} denotes the metric of the (n1)(n-1)-dimensional sphere with constant sectional curvature 11.

The equality case of (1.1) produces the Lorentz space forms. Namely, in the case

f21r2ffr=0,\frac{f^{2}-1}{r^{2}}-\frac{ff^{\prime}}{r}=0,

we get f=1κr2f=1-\kappa r^{2} for some constant κ\kappa. (V,g¯)(V,\bar{g}) then corresponds to the Minkowski (κ=0\kappa=0), anti-de Sitter (κ<0\kappa<0), and de Sitter (κ>0)(\kappa>0) spacetimes.

For any codimension 2 submanifold, we consider the connection 1-form of the normal bundle in the mean curvature direction αH\alpha_{H}

Definition 1.2.

When the mean curvature vector is spacelike, we consider the unit spacelike normal enH=H|H|e_{n}^{H}=-\frac{H}{|H|} and the future-directed unit timelike normal en+1He_{n+1}^{H} that form an orthonormal basis of the normal bundle. Let

αH(X)=DXenH,en+1H for XTΣ\displaystyle\alpha_{H}(X)=\langle D_{X}e_{n}^{H},e_{n+1}^{H}\rangle\quad\mbox{ for }X\in T\Sigma

be the connection 1-form of the normal bundle.

Terminology.

A sphere of symmetry is a sphere t=t0,r=r0t=t_{0},r=r_{0} or its image under a Lorentz transformation when (V,g¯)(V,\bar{g}) is a Lorentz space form (see Subsection 2.3.2). The null hypersurface emanating from a sphere of symmetry is called a standard null cone.

The main theorem of [13] is:

Theorem 1.3.

Let Σ\Sigma be a spacelike codimension 2 submanifold in a static spherically symmetric spacetime satisfying Assumption 1.1. Suppose

(1.2) αH=dlog|H|\displaystyle\alpha_{H}=-d\log|H|

holds on Σ\Sigma. Then Σ\Sigma lies in an outgoing standard null cone provided the past outgoing null hypersurface emanating from Σ\Sigma intersects a time slice at an embedded hypersurface of positive mean curvature.

We remark that for Minkowski spacetime, the rigidity is proved unconditionally in [6] using spinor method.

In this paper, we prove two rigidity results for spacelike codimension 2 submanifolds lying in a standard null cone.

Theorem 1.4.

Let Σ\Sigma be a spacelike hypersurface in the standard null cone of a static spherically symmetric spacetime satisfying Assumption 1.1. Then Σ\Sigma is infinitesimally rigid (see Definition 3.2) for (1.2).

Theorem 1.5.

Let Σ\Sigma be a spacelike codimension 2 submanifold lying in the standard null cone of a static spherically symmetric spacetime (V,g¯)(V,\bar{g}) satisfying Assumption 1.1. Suppose the mean curvature vector of Σ\Sigma has constant norm. Then Σ\Sigma is a sphere of symmetry.

[Uncaptioned image]

In the preliminary Section 2, we discuss the geometry of codimension 2 submanifolds in static spherically symmetric spacetimes. Special care, given in Section 2.3, is needed for the Lorentz space forms because of the additional boost isometries (Lorentz transformations). In Section 3, we prove Theorem 1.4. It is an infinitesimal version of Theorem 1.3. While one expects it to hold, the proof here uses only elementary integration by parts instead of the spacetime Minkowski formula and monotonicity formula established in [13]. In Section 4, we begin with a discussion of the constant Gauss curvature equation which turns out to be equivalent to finding surfaces in the standard null cone of Minkowski spacetime with constant mean curvature vector norm. The proof of Theorem 1.5 similar to that of Theorem 1.4 and leads to the Obata Theorem on the uniqueness of constant scalar curvature metric in conformal geometry.

We remark that Theorem 1.4 and Theorem 1.5 hold in static warped product spacetimes. See the end of Section 3 and 4 respectively.

2. Geometry of codimension 2 submanifolds in static spherically symmetric spacetimes

2.1. Static spherically symmetric spacetimes

Note that (1.1) is just the assumption (H4) in [2]. Indeed, for a warped product metric g=1f2dr2+r2gS2g=\frac{1}{f^{2}}dr^{2}+r^{2}g_{S^{2}}, one has Ric(ν,ν)=(n1)ffrRic(\nu,\nu)=-(n-1)\frac{ff^{\prime}}{r} and Ric(e1,e1)=(n2)1f2r2ffrRic(e_{1},e_{1})=(n-2)\frac{1-f^{2}}{r^{2}}-\frac{ff^{\prime}}{r} where ν\nu and e1e_{1} are unit normal and unit tangent vector of the sphere of symmetry with area radius rr. (1.1) thus means that the Ricci curvature is smallest in the radial direction.

The differential inequality (1.1) is related to the null convergence condition in general relativity [5, page 95], which requires that Ricci curvature of the spacetime satisfy Ric¯(W,W)0\overline{Ric}(W,W)\geq 0 for any null vector WW.

Lemma 2.1.

In the following two cases

  1. (1)

    I=[0,r1)f(0)=1,f(0)=0I=[0,r_{1})\quad f(0)=1,f^{\prime}(0)=0

  2. (2)

    I=(r0,r1),limrr0+f(r)=0I=(r_{0},r_{1}),\quad\lim_{r\rightarrow r_{0}^{+}}f(r)=0

the null convergence condition is equivalent to the differential inequality (1.1).

Proof.

We consider the inequality rn1ff+rn2(1f2)0r^{n-1}ff^{\prime}+r^{n-2}(1-f^{2})\geq 0, which is equivalent to (1.1). Since we have rn1ff+rn2(1f2)0r^{n-1}ff^{\prime}+r^{n-2}(1-f^{2})\geq 0 at r=0r=0 in case 1 and as rr0+r\rightarrow r_{0}^{+}, it suffices to check that the quantity has nonnegative derivative.

Let e1e_{1} be a unit tangent vector on the sphere of symmetry. Null convergence condition implies that

0Ric¯(1ft+e1,1ft+e1)=(n3)ffr+12(f2)′′+(n2)1r2(1f2).0\leq\overline{Ric}\left(\frac{1}{f}\frac{\partial}{\partial t}+e_{1},\frac{1}{f}\frac{\partial}{\partial t}+e_{1}\right)=(n-3)\frac{ff^{\prime}}{r}+\frac{1}{2}(f^{2})^{\prime\prime}+(n-2)\frac{1}{r^{2}}(1-f^{2}).

On the other hand,

(rn1ff+rn2(1f2))\displaystyle\big{(}r^{n-1}ff^{\prime}+r^{n-2}(1-f^{2})\Big{)}^{\prime}
=rn1[(n3)ffr+12(f2)′′+(n2)1r2(1f2)]0.\displaystyle=r^{n-1}\left[(n-3)\frac{ff^{\prime}}{r}+\frac{1}{2}(f^{2})^{\prime\prime}+(n-2)\frac{1}{r^{2}}(1-f^{2})\right]\geq 0.

This completes the proof. ∎

Remark 2.2.

Case 1 includes the Lorentz space forms. Case 2 includes the Schwarzschild spacetime with positive mass mm where f(r)=12mrf(r)=\sqrt{1-\frac{2m}{r}} and r0=2mr_{0}=2m.

2.2. Geometry of codimension 2 submanifolds

Let (V,g¯)(V,\bar{g}) be an (n+1)(n+1)-dimensional time-oriented spacetime with Levi-Civita connection DD. Let Σ\Sigma be a spacelike codimension 2 submanifold in VV. We will write X,Y=g¯(X,Y)\langle X,Y\rangle=\bar{g}(X,Y) for the metric on VV. Let σ\sigma and HH be the induced metric and the mean curvature vector of Σ\Sigma. The normal bundle of Σ\Sigma is of rank 2 and is spanned by two future-directed null normal vector fields LL and L¯\underline{L}, normalized by L,L¯=2\langle L,\underline{L}\rangle=-2. Let

χab\displaystyle\chi_{ab} =DaL,b,χ¯ab=DaL¯,b\displaystyle=\langle D_{a}L,\partial_{b}\rangle,\quad\underline{\chi}_{ab}=\langle D_{a}\underline{L},\partial_{b}\rangle
trχ\displaystyle\operatorname{tr}\chi =σabχab,trχ¯=σabχ¯ab\displaystyle=\sigma^{ab}\chi_{ab},\quad\operatorname{tr}\underline{\chi}=\sigma^{ab}\underline{\chi}_{ab}
ζa\displaystyle\zeta_{a} =12DaL,L¯\displaystyle=\frac{1}{2}\langle D_{a}L,\underline{L}\rangle

be the null second fundamental forms, null mean curvatures, and the torsion 1-form of Σ\Sigma with respect to LL and L¯\underline{L}. If we take L=enH+en+1HL=e_{n}^{H}+e_{n+1}^{H} and L¯=enH+en+1H\underline{L}=-e_{n}^{H}+e_{n+1}^{H}, then ζ=αH\zeta=\alpha_{H}.

From the rest of the paper, the spacetime (V,g¯)(V,\bar{g}) is static and spherically symmetric as given in Assumption 1.1. The spheres t=t0,r=r0t=t_{0},r=r_{0} are referred to as spheres of symmetry, and the null hypersurfaces emanating from the spheres of symmetry are referred to as standard null cones.

It is convenient to work in the Eddington–Finkelstein coordinates. Let r=drf2r^{*}=\int\frac{dr}{f^{2}} be the tortoise coordinate and v=t+r,w=trv=t+r^{*},w=t-r^{*} be the advanced and retarded time. The metric in the Eddington–Finkelstein coordinates [5, page 153] becomes g¯=f2dvdw+r2gSn1.\bar{g}=-f^{2}dvdw+r^{2}g_{S^{n-1}}. (rr is implicitly a function of coordinates vv and ww). The outgoing standard null cones are defined by w=w0w=w_{0}. For a spacelike codimension 2 submanifold Σ\Sigma lying in the standard null cone, we view it as a graph over the sphere of symmetry. Namely, Σ=F(Sn1)\Sigma=F(S^{n-1}) where F:Sn1VF:S^{n-1}\rightarrow V

F(x)=(v(x),w0,x).F(x)=(v(x),w_{0},x).

We abuse the notation to write r=rF:Sn1r=r\circ F:S^{n-1}\rightarrow\mathbb{R} and v=vF:Sn1v=v\circ F:S^{n-1}\rightarrow\mathbb{R}.

The tangent vector of Σ\Sigma is given by Fθa=vθav+θa.\frac{\partial F}{\partial\theta^{a}}=\frac{\partial v}{\partial\theta^{a}}\frac{\partial}{\partial v}+\frac{\partial}{\partial\theta^{a}}. We always choose the null normal vector field LL that is tangent to w=w0w=w_{0} to be

(2.3) L=2rf2v,\displaystyle L=\frac{2r}{f^{2}}\frac{\partial}{\partial v},

which satisfies

DFθaL\displaystyle D_{\frac{\partial F}{\partial\theta^{a}}}L =φvθav+φ(vθaDvv+Dθav)\displaystyle=\varphi^{\prime}\frac{\partial v}{\partial\theta^{a}}\frac{\partial}{\partial v}+\varphi\left(\frac{\partial v}{\partial\theta^{a}}D_{\frac{\partial}{\partial v}}\frac{\partial}{\partial v}+D_{\frac{\partial}{\partial\theta^{a}}}\frac{\partial}{\partial v}\right)
=φvθav+φvθalogfvv+φf22rθa\displaystyle=\varphi^{\prime}\frac{\partial v}{\partial\theta^{a}}\frac{\partial}{\partial v}+\varphi\frac{\partial v}{\partial\theta^{a}}\frac{\partial\log f}{\partial v}\frac{\partial}{\partial v}+\varphi\frac{f^{2}}{2r}\frac{\partial}{\partial\theta^{a}}
=(φ+φlogfv)vθav+θa\displaystyle=\left(\varphi^{\prime}+\varphi\frac{\partial\log f}{\partial v}\right)\frac{\partial v}{\partial\theta^{a}}\frac{\partial}{\partial v}+\frac{\partial}{\partial\theta^{a}}
=(2rvf22rf2vf4+2rf2logfv)vθav+θa\displaystyle=\left(\dfrac{2\frac{\partial r}{\partial v}f^{2}-2r\frac{\partial f^{2}}{\partial v}}{f^{4}}+\frac{2r}{f^{2}}\frac{\partial\log f}{\partial v}\right)\frac{\partial v}{\partial\theta^{a}}\frac{\partial}{\partial v}+\frac{\partial}{\partial\theta^{a}}
=2f2rvvθav+θa\displaystyle=\frac{2}{f^{2}}\frac{\partial r}{\partial v}\frac{\partial v}{\partial\theta^{a}}\frac{\partial}{\partial v}+\frac{\partial}{\partial\theta^{a}}
=Fθa.\displaystyle=\frac{\partial F}{\partial\theta^{a}}.

In the above computation, the following Christoffel symbols of g¯\bar{g} are used

Γ¯avb\displaystyle\bar{\Gamma}_{av}^{b} =1rrvδab\displaystyle=\frac{1}{r}\frac{\partial r}{\partial v}\delta_{a}^{b}
Γ¯vvv\displaystyle\bar{\Gamma}_{vv}^{v} =logfv.\displaystyle=\frac{\partial\log f}{\partial v}.

As a result, H,L=2\langle\vec{H},L\rangle=-2. Let L¯\underline{L} be the null normal complement to LL such that L,L¯=2.\langle L,\underline{L}\rangle=-2. It is straightforward to show that

(2.4) L¯=1r(2w+f2vf22|v|2v)\displaystyle\underline{L}=\frac{1}{r}\left(2\frac{\partial}{\partial w}+f^{2}\nabla v-\frac{f^{2}}{2}|\nabla v|^{2}\frac{\partial}{\partial v}\right)

where v=σabvθaθb\nabla v=\sigma^{ab}\frac{\partial v}{\partial\theta^{a}}\frac{\partial}{\partial\theta^{b}}. We end this subsection with

Lemma 2.3.

Spacelike codimension 2 submanifolds lying in a standard null cone satisfy (1.2).

Proof.

We have

H=L¯+ψL\displaystyle\vec{H}=\underline{L}+\psi L
J=L¯ψL\displaystyle\vec{J}=\underline{L}-\psi L

with |H|2=4ψ.|\vec{H}|^{2}=-4\psi. The connection 1-form thus satisfies

(αH)a\displaystyle(\alpha_{H})_{a} =Da(H|H|),J|H|\displaystyle=\langle D_{a}\left(-\frac{\vec{H}}{|\vec{H}|}\right),\frac{\vec{J}}{|\vec{H}|}\rangle
=1|H|2Da(L¯+ψL),L¯ψL\displaystyle=-\frac{1}{|\vec{H}|^{2}}\langle D_{a}(\underline{L}+\psi L),\underline{L}-\psi L\rangle
=alog|H|.\displaystyle=-\partial_{a}\log|\vec{H}|.

2.3. Lorentz space forms

Lorentz space forms (Minkowski, de Sitter, anti-de Sitter spacetimes) admit additional isometries compared to generic spherically symmetric static spacetimes. In the proof of our main results, it is essential to include these additional isometries. We review the Lorentz space forms in this subsection.

2.3.1. Killing vector fields along the surfaces

For any spherically symmetric static spacetime, we have

Proposition 2.4.

Along any spacelike codimension 2 submanifold lying in a standard null cone w=w0w=w_{0} of static spherically symmetric spacetime, we have

t,L=r.\displaystyle\langle\frac{\partial}{\partial t},L\rangle=-r.
Proof.

Recall we take L=2rf2vL=\frac{2r}{f^{2}}\frac{\partial}{\partial v}. As v=12(t+f2r)\frac{\partial}{\partial v}=\frac{1}{2}(\frac{\partial}{\partial t}+f^{2}\frac{\partial}{\partial r}), the assertion follows. ∎

Next, we describe the Killing vector fields along the surfaces in the Minkowski spacetime.

Proposition 2.5.

Let 𝒦\mathcal{K} denote the boost Killing vector fields y0yi+yiy0,i=1,,ny^{0}\frac{\partial}{\partial y^{i}}+y^{i}\frac{\partial}{\partial y^{0}},i=1,\cdots,n of the (n+1)(n+1)-dimensional Minkowski spacetime. Then along a spacelike codimension 2 submanifold lying in a standard null cone w=w0w=w_{0}, we have

𝒦,L=rw0X~i\displaystyle\langle\mathcal{K},L\rangle=rw_{0}\widetilde{X}^{i}
Proof.

We write g~=gSn1\widetilde{g}=g_{S^{n-1}} in the proof. In spherical coordinates,

𝒦=rX~it+t(X~ir+~aX~irθa).\displaystyle\mathcal{K}=r\widetilde{X}^{i}\frac{\partial}{\partial t}+t\left(\widetilde{X}^{i}\frac{\partial}{\partial r}+\frac{\widetilde{\nabla}^{a}\widetilde{X}^{i}}{r}\frac{\partial}{\partial\theta^{a}}\right).

Recall that L=2rvL=\frac{2}{r}\frac{\partial}{\partial v} with v=12(t+r)\frac{\partial}{\partial v}=\frac{1}{2}\left(\frac{\partial}{\partial t}+\frac{\partial}{\partial r}\right). As t=r+w0t=r+w_{0} on Σ\Sigma, we get 𝒦,L=rw0X~i\langle\mathcal{K},L\rangle=rw_{0}\widetilde{X}^{i}. ∎

The (n+1)(n+1)-dimensional anti-de Sitter spacetime is defined as the quadric

(y0)2+(y1)2+(y2)2++(yn)2(yn+1)2=l2-(y^{0})^{2}+(y^{1})^{2}+(y^{2})^{2}+\cdots+(y^{n})^{2}-(y^{n+1})^{2}=-l^{2}

embedded in n,2\mathbb{R}^{n,2} with the metric

(dy0)2+(dy1)2+(dy2)2++(dyn)2(dyn+1)2.-(dy^{0})^{2}+(dy^{1})^{2}+(dy^{2})^{2}+\cdots+(dy^{n})^{2}-(dy^{n+1})^{2}.

Anti-de Sitter spacetime is a space form with sectional curvature 1l2-\frac{1}{l^{2}}.

The static patch is given by the coordinate system

y0\displaystyle y^{0} =l2+r2sin(t/l)\displaystyle=\sqrt{l^{2}+r^{2}}\sin(t/l)
yi\displaystyle y^{i} =rX~i,i=1,n\displaystyle=r\widetilde{X}^{i},\quad i=1,\cdots n
yn+1\displaystyle y^{n+1} =l2+r2cos(t/l)\displaystyle=\sqrt{l^{2}+r^{2}}\cos(t/l)

in which the metric is given by

f2dt2+1f2dr2+r2gSn1-f^{2}dt^{2}+\frac{1}{f^{2}}dr^{2}+r^{2}g_{S^{n-1}}

where f(r)=1+(r/l)2f(r)=\sqrt{1+(r/l)^{2}}.

The Killing vector fields y0yi+yiy0,yn+1yi+yiyn+1,i=1,,ny^{0}\frac{\partial}{\partial y^{i}}+y^{i}\frac{\partial}{\partial y^{0}},y^{n+1}\frac{\partial}{\partial y^{i}}+y^{i}\frac{\partial}{\partial y^{n+1}},i=1,\cdots,n of n,2\mathbb{R}^{n,2} are tangent to the quadric and thus give rise to Killing vector fields of the anti-de Sitter spacetime.

Lemma 2.6.

Let 𝒦\mathcal{K} and 𝒦\mathcal{K}^{\prime} denote the Killing vector field of anti-de Sitter spacetime given by y0yi+yiy0y^{0}\frac{\partial}{\partial y^{i}}+y^{i}\frac{\partial}{\partial y^{0}} and yn+1yi+yiyn+1y^{n+1}\frac{\partial}{\partial y^{i}}+y^{i}\frac{\partial}{\partial y^{n+1}} respectively. In the static patch,

𝒦\displaystyle\mathcal{K} =rX~ifcos(t/l)t+lfX~isin(t/l)r+W\displaystyle=\frac{r\widetilde{X}^{i}}{f}\cos(t/l)\frac{\partial}{\partial t}+lf\widetilde{X}^{i}\sin(t/l)\frac{\partial}{\partial r}+W
𝒦\displaystyle\mathcal{K}^{\prime} =rX~ifsin(t/l)t+lfX~icos(t/l)r+W\displaystyle=-\frac{r\widetilde{X}^{i}}{f}\sin(t/l)\frac{\partial}{\partial t}+lf\widetilde{X}^{i}\cos(t/l)\frac{\partial}{\partial r}+W^{\prime}

where WW and WW^{\prime} are tangent to the sphere of symmetry.

Proof.

We extend the coordinate functions tt and rr off the quadric by

t\displaystyle t =ltan1(y0yn+1)\displaystyle=l\tan^{-1}\left(\frac{y^{0}}{y^{n+1}}\right)
r\displaystyle r =(y1)2+(yn)2.\displaystyle=(y^{1})^{2}+\cdots(y^{n})^{2}.

Suppose y0yi+yiy0=At+Br+Wy^{0}\frac{\partial}{\partial y^{i}}+y^{i}\frac{\partial}{\partial y^{0}}=A\frac{\partial}{\partial t}+B\frac{\partial}{\partial r}+W where WW is tangent to the sphere of symmetry. We compute

A=(y0yi+yiy0)t=yilyn+1(y0)2+(yn+1)2=rX~ifcos(t/l),\displaystyle A=\left(y^{0}\frac{\partial}{\partial y^{i}}+y^{i}\frac{\partial}{\partial y^{0}}\right)t=y^{i}l\frac{y^{n+1}}{(y^{0})^{2}+(y^{n+1})^{2}}=\frac{r\widetilde{X}^{i}}{f}\cos(t/l),

and

B=(y0yi+yiy0)r=y0yir=lfX~isin(t/l).\displaystyle B=\left(y^{0}\frac{\partial}{\partial y^{i}}+y^{i}\frac{\partial}{\partial y^{0}}\right)r=y^{0}\frac{y^{i}}{r}=lf\widetilde{X}^{i}\sin(t/l).

The formula for 𝒦\mathcal{K}^{\prime} is obtained similarly. ∎

Remark 2.7.

The Killing vector field y0yn+1yn+1y0y^{0}\frac{\partial}{\partial y^{n+1}}-y^{n+1}\frac{\partial}{\partial y^{0}} gives rise to the time translating Killing vector field lt-l\frac{\partial}{\partial t} in the static patch.

Proposition 2.8.

Let 𝒦\mathcal{K} and 𝒦\mathcal{K}^{\prime} denote the Killing vector field of anti-de Sitter spacetime given by y0yi+yiy0y^{0}\frac{\partial}{\partial y^{i}}+y^{i}\frac{\partial}{\partial y^{0}} and yn+1yi+yiyn+1y^{n+1}\frac{\partial}{\partial y^{i}}+y^{i}\frac{\partial}{\partial y^{n+1}} respectively. Then along a spacelike codimension 2 submanifold lying in the standard null cone w=w0w=w_{0}, we have

𝒦,L\displaystyle\langle\mathcal{K},L\rangle =rlsin(w0/l)X~i\displaystyle=r\cdot l\sin(w_{0}/l)\widetilde{X}^{i}
𝒦,L\displaystyle\langle\mathcal{K}^{\prime},L\rangle =rlcos(w0/l)X~i.\displaystyle=r\cdot l\cos(w_{0}/l)\widetilde{X}^{i}.
Proof.

We have the relation

v\displaystyle\frac{\partial}{\partial v} =12(t+f2r)\displaystyle=\frac{1}{2}\left(\frac{\partial}{\partial t}+f^{2}\frac{\partial}{\partial r}\right)
w\displaystyle\frac{\partial}{\partial w} =12(tf2r).\displaystyle=\frac{1}{2}\left(\frac{\partial}{\partial t}-f^{2}\frac{\partial}{\partial r}\right).

Recall that L=2rf2vL=\frac{2r}{f^{2}}\frac{\partial}{\partial v} and we have

𝒦,L\displaystyle\langle\mathcal{K},L\rangle =rfX~i(rcos(t/l)+lsin(t/l)).\displaystyle=\frac{r}{f}\widetilde{X}^{i}\left(-r\cos(t/l)+l\sin(t/l)\right).

Also, recall that t=r+w0=ltan1(r/l)+w0t=r_{*}+w_{0}=l\tan^{-1}(r/l)+w_{0} (the constant of integration does not matter), and hence by the addition formula, we obtain

rcos(t/l)+lsin(t/l)\displaystyle-r\cos(t/l)+l\sin(t/l) =r(ll2+r2cos(w0/l)rl2+r2sin(w0/l))\displaystyle=-r\left(\frac{l}{\sqrt{l^{2}+r^{2}}}\cos(w_{0}/l)-\frac{r}{\sqrt{l^{2}+r^{2}}}\sin(w_{0}/l)\right)
+l(rl2+r2cos(w0/l)+ll2+r2sin(w0/l))\displaystyle\quad+l\left(\frac{r}{\sqrt{l^{2}+r^{2}}}\cos(w_{0}/l)+\frac{l}{\sqrt{l^{2}+r^{2}}}\sin(w_{0}/l)\right)
=lfsin(w0/l).\displaystyle=lf\sin(w_{0}/l).

The formula for 𝒦,L\langle\mathcal{K},L\rangle follows. 𝒦,L\langle\mathcal{K^{\prime}},L\rangle is computed similarly. ∎

The situation of de Sitter spacetime is similar. We describe the results without proof. The (n+1)(n+1)-dimensional de Sitter spacetime is defined as the quadric

(y0)2+(y1)2+(y2)2++(yn)2+(yn+1)2=l2-(y^{0})^{2}+(y^{1})^{2}+(y^{2})^{2}+\cdots+(y^{n})^{2}+(y^{n+1})^{2}=l^{2}

embedded in n+1,1\mathbb{R}^{n+1,1} with the metric

(dy0)2+(dy1)2+(dy2)2++(dyn+1)2.-(dy^{0})^{2}+(dy^{1})^{2}+(dy^{2})^{2}+\cdots+(dy^{n+1})^{2}.

De Sitter spacetime is a space form with sectional curvature 1l2\frac{1}{l^{2}}.

The static patch is given by the coordinate system

y0\displaystyle y^{0} =l2r2sinh(t/l)\displaystyle=\sqrt{l^{2}-r^{2}}\sinh(t/l)
yi\displaystyle y^{i} =rX~i,i=1,,n\displaystyle=r\widetilde{X}^{i},\quad i=1,\cdots,n
yn+1\displaystyle y^{n+1} =l2r2cosh(t/l)\displaystyle=\sqrt{l^{2}-r^{2}}\cosh(t/l)

in which the metric is given by

f2dt2+1f2dr2+r2gSn1-f^{2}dt^{2}+\frac{1}{f^{2}}dr^{2}+r^{2}g_{S^{n-1}}

where f(r)=1(r/l)2f(r)=\sqrt{1-(r/l)^{2}}.

The Killing vector fields y0yi+yiy0,i=1,,ny^{0}\frac{\partial}{\partial y^{i}}+y^{i}\frac{\partial}{\partial y^{0}},i=1,\cdots,n of n+1,1\mathbb{R}^{n+1,1} are tangent to the quadric and thus give rise to Killing vector fields of the de Sitter spacetime.

Lemma 2.9.

Let 𝒦\mathcal{K} denote the Killing vector fields of de Sitter spacetime given by y0yi+yiy0,i=1,,ny^{0}\frac{\partial}{\partial y^{i}}+y^{i}\frac{\partial}{\partial y^{0}},i=1,\cdots,n. In the static patch,

𝒦=rX~ifcosh(t/l)t+lfX~isinh(t/l)r+W\displaystyle\mathcal{K}=\frac{r\widetilde{X}^{i}}{f}\cosh(t/l)\frac{\partial}{\partial t}+lf\widetilde{X}^{i}\sinh(t/l)\frac{\partial}{\partial r}+W

where WW is tangent to the sphere of symmetry.

Remark 2.10.

The Killing vector field y0yn+1+yn+1y0y^{0}\frac{\partial}{\partial y^{n+1}}+y^{n+1}\frac{\partial}{\partial y^{0}} gives rise to the time translating Killing vector field ltl\frac{\partial}{\partial t} in the static patch.

Proposition 2.11.

Let 𝒦\mathcal{K} denote the Killing vector fields of de Sitter spacetime given by y0yi+yiy0,i=1,,ny^{0}\frac{\partial}{\partial y^{i}}+y^{i}\frac{\partial}{\partial y^{0}},i=1,\cdots,n. Then along a spacelike codimension 2 submanifold lying in the standard null cone w=w0w=w_{0}, we have

𝒦,L=rlsinh(w0/l)X~i.\displaystyle\langle\mathcal{K},L\rangle=r\cdot l\sinh(w_{0}/l)\widetilde{X}^{i}.

2.3.2. Sphere of symmetry in Lorentz space forms

In this subsection, we study the image of a sphere t=t0,r=r0t=t_{0},r=r_{0} under a Lorentz transformation. By a time translation, we assume that it lies in the future null cone of the origin t=0,r=0t=0,r=0.

Proposition 2.12.

Let Σ\Sigma be a sphere t=r0,r=r0t=r_{0},r=r_{0} in the Minkowski spacetime. Then the image of Σ\Sigma under the Lorentz transformation T(y0,,yn)=(coshβy0+sinhβyn,y1,,yn1,sinhβy0+coshβyn)T(y^{0},\cdots,y^{n})=(\cosh\beta\,y^{0}+\sinh\beta\,y^{n},y^{1},\cdots,y^{n-1},\sinh\beta\,y^{0}+\cosh\beta\,y^{n}) is

T(Σ)=(r,rX~1,,rX~n)\displaystyle T(\Sigma)=(r,r\widetilde{X}^{1},\cdots,r\widetilde{X}^{n})

where r=r0coshβsinhβX~nr=\frac{r_{0}}{\cosh\beta-\sinh\beta\widetilde{X}^{n}}.

Proof.

We carry out the computation for n=3n=3. T(Σ)T(\Sigma) is given by the embedding

r0(coshβ+sinhβcosθ,sinθcosϕ,sinθsinϕ,sinhβ+coshβcosθ).r_{0}(\cosh\beta+\sinh\beta\cos\theta,\sin\theta\cos\phi,\sin\theta\sin\phi,\sinh\beta+\cosh\beta\cos\theta).

To prove the assertion, we have to solve

{r0sinθ=r(θ)sinθr0(sinhβ+coshβcosθ)=r(θ)cosθ\begin{cases}r_{0}\sin\theta=r(\theta^{\prime})\sin\theta^{\prime}\\ r_{0}(\sinh\beta+\cosh\beta\cos\theta)=r(\theta^{\prime})\cos\theta^{\prime}\end{cases}

Taking the sum of squares of the equations, we get

r(θ)=r0(sinhβcosθ+coshβ).r(\theta^{\prime})=r_{0}(\sinh\beta\cos\theta+\cosh\beta).

Taking the quotient of the equations, we get

tanθ=sinθsinhβ+coshβcosθ.\tan\theta^{\prime}=\frac{\sin\theta}{\sinh\beta+\cosh\beta\cos\theta}.

Then we have cosθ=sinhβ+coshβcosθcoshβ+sinhβcosθ\cos\theta^{\prime}=\frac{\sinh\beta+\cosh\beta\cos\theta}{\cosh\beta+\sinh\beta\cos\theta} and consequently

r(θ)=r0coshβsinhβcosθ.r(\theta^{\prime})=\frac{r_{0}}{\cosh\beta-\sinh\beta\cos\theta^{\prime}}.

The cases of anti-de Sitter and de Sitter spacetimes are identical. Taking the 4-dimensional anti-de Sitter spacetime with sectional curvature 1-1 for example. The null cone at the origin is given by t=tan1rt=\tan^{-1}r in the static patch. We consider a sphere Σ\Sigma on this null cone given by t=tan1r0,r=r0t=\tan^{-1}r_{0},r=r_{0}. It corresponds to the sphere with embedding

(r0,r0X~1,r0X~2,r0X~3,1)\displaystyle(r_{0},r_{0}\widetilde{X}^{1},r_{0}\widetilde{X}^{2},r_{0}\widetilde{X}^{3},1)

in 3,2\mathbb{R}^{3,2}. The Lorentz transformation

T(y0,,y4)=(coshβy0+sinhβy3,y1,y2,sinβy0+coshβy3,y4)T(y^{0},\cdots,y^{4})=(\cosh\beta\,y^{0}+\sinh\beta\,y^{3},y^{1},y^{2},\sin\beta\,y^{0}+\cosh\beta\,y^{3},y^{4})

thus has the same effect on Σ\Sigma as in the case of Minkowski spacetime.

We summarize the above discussion into the following theorem.

Definition 2.13.

We identify Sn1S^{n-1} as the unit sphere in n\mathbb{R}^{n}. Let X~i,i=1,,n\widetilde{X}^{i},i=1,\cdots,n, be the restriction of Cartesian coordinate functions of n\mathbb{R}^{n} on Sn1S^{n-1}. A function uu on Sn1S^{n-1} is said to be supported in 1\ell\leq 1 modes if u=a0+aiX~iu=a_{0}+\sum a_{i}\widetilde{X}^{i} for some constants a0,a1,,ana_{0},a_{1},\cdots,a_{n}.

Theorem 2.14.

Let Σ\Sigma be a spacelike codimension 2 submanifold in a standard null cone of a Lorentz space form. If the restriction of the radial coordinate 1r\frac{1}{r} on Σ\Sigma is supported in 1\ell\leq 1 modes, then Σ\Sigma is a sphere of symmetry.

Proof.

Again we work with n=3n=3 to illustrate the idea. By a time translation and a rotation, we may assume Σ\Sigma lies in the null cone of the origin and r1(x)=a+bcosθr^{-1}(x)=a+b\cos\theta with a>|b|a>|b|. We then solve r0,βr_{0},\beta from a,ba,b such that r1=r0(coshβ+sinhβcosθ)r^{-1}=r_{0}(\cosh\beta+\sinh\beta\cos\theta). It follows that Σ\Sigma is the image of a sphere defined by r=r0r=r_{0}, t=r0t=r_{0} (tan1r0,tanh1(r0)(\tan^{-1}r_{0},\tanh^{-1}(r_{0}) resp.) under a Lorentz transformation in Minkowski (anti-de Sitter, de Sitter, resp.) spacetime. ∎

3. Infinitesimal Rigidity for (1.2)

Let Σ\Sigma be a spacelike codimension 2 submanifold lying in a standard null cone given by the embedding F(θa)=(v(θa),w=w0,θa)F(\theta^{a})=(v(\theta^{a}),w=w_{0},\theta^{a}) with null normals

L\displaystyle L =2rf2v\displaystyle=\frac{2r}{f^{2}}\frac{\partial}{\partial v}
L¯\displaystyle\underline{L} =1r(2w+f2vf22|v|2v).\displaystyle=\frac{1}{r}\left(2\frac{\partial}{\partial w}+f^{2}\nabla v-\frac{f^{2}}{2}|\nabla v|^{2}\frac{\partial}{\partial v}\right).

We study variations of Σ\Sigma in the spacetime so that (1.2) is preserved infinitesimally. Since (1.2) is preserved if Σ\Sigma moves within the standard null cone, it suffices to consider variations of Σ\Sigma in 𝒞¯(Σ)\underline{\mathcal{C}}(\Sigma)–the incoming null hypersurface of Σ\Sigma. Extend L¯\underline{L} and LL to C¯(Σ)\underline{C}(\Sigma) such that DL¯L¯=0D_{\underline{L}}\underline{L}=0 and L,L¯=2\langle L,\underline{L}\rangle=-2. Let F(x,s):Σ×[0,ε)𝒞¯(Σ)F(x,s):\Sigma\times[0,\varepsilon)\rightarrow\underline{\mathcal{C}}(\Sigma) be a variation of Σ\Sigma. Let Fs(x,0)=U(x)L¯\frac{\partial F}{\partial s}(x,0)=U(x)\underline{L} and L¯(s)=ψ(x,s)L¯,L(s)=1ψL\underline{L}(s)=\psi(x,s)\underline{L},L(s)=\frac{1}{\psi}L be the null normals of F(Σ,s).F(\Sigma,s).

It is proved in Proposition 3.4 of [13] that (1.2) is equivalent to the existence of null normal vector fields L,L¯L,\underline{L} along Σ\Sigma such that H,L=const.\langle H,L\rangle=const. and DaL¯,L=0\langle D_{a}\underline{L},L\rangle=0. Suppose the image of F(x,s)F(x,s) satisfies (1.2) for 0sϵ0\leq s\leq\epsilon. Differentiating at s=0s=0 motivates the following definition.

Definition 3.1.

F(x,s)F(x,s) is said to preserve (1.2) infinitesimally if

(3.5) s|s=0atrχ=0s|s=0DaL¯(s),L(s)=0.\displaystyle\begin{split}\frac{\partial}{\partial s}&\Big{|}_{s=0}\partial_{a}\operatorname{tr}\chi=0\\ \frac{\partial}{\partial s}&\Big{|}_{s=0}\langle D_{a}\underline{L}(s),L(s)\rangle=0.\end{split}

Isometry of the spacetime gives rise to solutions to (3.5). For any constant cc, U=crU=cr is a always solution of (3.5). Such a solution corresponds to Σ\Sigma being moved by the time-translation Killing vector field t\frac{\partial}{\partial t}. Moreover, when (V,g¯)(V,\bar{g}) is a space form, there are additional solutions where the standard null cone is moved by an isometry of (V,g¯)(V,\bar{g}). In case there are no further solutions to (3.5), a codimension 2 submanifold is said to be infinitesimally rigid for (1.2).

Definition 3.2.

A spacelike codimension 2 submanifold lying in a standard null cone is said to be infinitesimally rigid for (1.2) if all the solutions UU of (3.5) are a constant multiple of rr or UU is equal to rr times a function on Sn1S^{n-1} supported in the 1\ell\leq 1 modes when (V,g¯)(V,\bar{g}) is a space form.

We need the following well-known theorem to prove the infinitesimally rigidity in space form. We include the proof for completeness.

Theorem 3.3.

Let (M,g)(M,g) be a complete connected closed Riemannian manifold of dimension n2n\geq 2. Suppose MM is an Einstein manifold when n3n\geq 3 or has constant Gauss curvature when n=2n=2. If there is a non-constant solution to

(3.6) iju=Δungij,\displaystyle\nabla_{i}\nabla_{j}u=\frac{\Delta u}{n}g_{ij},

then MM is isometric to a round sphere Sn(c)n+1S^{n}(c)\subset\mathbb{R}^{n+1}. Moreover,

u(x)=c1+c2xau(x)=c_{1}+c_{2}x\cdot a

for some constants c1,c2c_{1},c_{2} and point aSn(c)a\in S^{n}(c).

Proof.

Taking the divergence of (3.6), we see that ΔuRn1u\Delta u-\frac{R}{n-1}u is a constant function where RR is the (constant) scalar curvature. Since MM is closed, by Theorem 2 of [11], MM is isometric to a round sphere. Note that (3.6)\eqref{concircular} implies that the level sets of uu are umbilical and hence are geodesic spheres on a round sphere. The second assertion then follows. ∎

We are ready to prove Theorem 1.4.

Theorem 3.4 (Theorem 1.4).

Let Σ\Sigma be a spacelike codimension 2 submanifold lying in a standard null cone of a static spherically symmetric spacetime satisfying Assumption 1.1. Then Σ\Sigma is infinitesimally rigid for (1.2).

Proof.

We write (3.5) into a differential equation of UU. The variation of LL is given by

(3.7) DsL(s),a|s=0\displaystyle\langle D_{\partial_{s}}L(s),\partial_{a}\rangle\big{|}_{s=0} =L,Da(uL¯)=2aU,\displaystyle=-\langle L,D_{a}(u\underline{L})\rangle=2\nabla_{a}U,
(3.8) DsL(s),L¯(s)|s=0\displaystyle\langle D_{\partial_{s}}L(s),\underline{L}(s)\rangle\big{|}_{s=0} =L,ψL¯=2ψ,\displaystyle=-\langle L,\psi^{\prime}\underline{L}\rangle=2\psi^{\prime},

where ψ=ψs(x,0).\psi^{\prime}=\frac{\partial\psi}{\partial s}(x,0). Hence, we have

(3.9) s\displaystyle\frac{\partial}{\partial s} |s=0atrχ=a(Utrχ¯+2ΔU2(n1)ψ+UσbcR¯(L¯,b,c,L))\displaystyle\Big{|}_{s=0}\partial_{a}\operatorname{tr}\chi=\partial_{a}\left(-U\operatorname{tr}\underline{\chi}+2\Delta U-2(n-1)\psi^{\prime}+U\sigma^{bc}\bar{R}(\underline{L},\partial_{b},\partial_{c},L)\right)
(3.10) s\displaystyle\frac{\partial}{\partial s} |s=0DaL¯(s),L(s)=2χ¯abbU+UR¯(L¯,a,L,L¯)2aψ\displaystyle\Big{|}_{s=0}\langle D_{a}\underline{L}(s),L(s)\rangle=2\underline{\chi}_{ab}\nabla^{b}U+U\bar{R}(\underline{L},\partial_{a},L,\underline{L})-2\nabla_{a}\psi^{\prime}

where the first equation follows from

s|s=0trχ\displaystyle\frac{\partial}{\partial s}\Big{|}_{s=0}\operatorname{tr}\chi
=s|s=0σbcDbL,c)\displaystyle=\frac{\partial}{\partial s}\Big{|}_{s=0}\sigma^{bc}\langle D_{b}L,\partial_{c}\rangle)
=2Uχ¯bcσbc+σbc(R¯(UL¯,b,c,L)+Db(2ψL),c+DbL,Dc(UL¯))\displaystyle=-2U\underline{\chi}^{bc}\sigma_{bc}+\sigma^{bc}\left(\bar{R}(U\underline{L},\partial_{b},\partial_{c},L)+\langle D_{b}(-2\psi^{\prime}L),\partial_{c}\rangle+\langle D_{b}L,D_{c}(U\underline{L})\rangle\right)
=2Utrχ¯+UσbcR¯(L¯,b,c,L)2(n1)ψ+Utrχ¯.\displaystyle=-2U\operatorname{tr}\underline{\chi}+U\sigma^{bc}\bar{R}(\underline{L},\partial_{b},\partial_{c},L)-2(n-1)\psi^{\prime}+U\operatorname{tr}\underline{\chi}.

By Proposition A.1, we have

(3.11) σbcR¯(L¯,b,c,L)=2(n1)ffrR¯(L¯,a,L,L¯)=4rrθa((ff)+ffr).\displaystyle\begin{split}\sigma^{bc}\bar{R}(\underline{L},\partial_{b},\partial_{c},L)&=-2(n-1)\frac{ff^{\prime}}{r}\\ \bar{R}(\underline{L},\partial_{a},L,\underline{L})&=\frac{4}{r}\frac{\partial r}{\partial\theta^{a}}\left(-(ff^{\prime})^{\prime}+\frac{ff^{\prime}}{r}\right).\end{split}

Equation (3.5) implies

a(Utrχ¯)+\displaystyle-\nabla_{a}(U\operatorname{tr}\underline{\chi})+ 2aΔU2(n1)a(ffrU)\displaystyle 2\nabla_{a}\Delta U-2(n-1)\nabla_{a}\left(\frac{ff^{\prime}}{r}U\right)
(3.12) (n1)χ¯abbU2(n1)Uarr((ff)ffr)=0.\displaystyle-(n-1)\underline{\chi}_{ab}\nabla^{b}U-2(n-1)U\frac{\nabla_{a}r}{r}\left((ff^{\prime})^{\prime}-\frac{ff^{\prime}}{r}\right)=0.

Let U=urU=u\cdot r in (3) and we get

a(urtrχ¯)\displaystyle-\nabla_{a}(ur\operatorname{tr}\underline{\chi})- 2(n1)a(ffrur)+2a(Δ(ur))\displaystyle 2(n-1)\nabla_{a}\left(\frac{ff^{\prime}}{r}ur\right)+2\nabla_{a}(\Delta(ur))
(3.13) +2(n1)uar((ff)ffr)(n1)χ¯abb(ur)=0\displaystyle+2(n-1)u\nabla_{a}r\left((ff^{\prime})^{\prime}-\frac{ff^{\prime}}{r}\right)-(n-1)\underline{\chi}_{ab}\nabla^{b}(ur)=0

On Σ\Sigma, we have

(3.14) χ¯ab\displaystyle\underline{\chi}_{ab} =1r2((f2+|r|2)σab2rabr),\displaystyle=-\frac{1}{r^{2}}\left((f^{2}+|\nabla r|^{2})\sigma_{ab}-2r\nabla_{a}\nabla_{b}r\right),
(3.15) trχ¯\displaystyle\operatorname{tr}\underline{\chi} =1r2((n1)(f2+|r|2)2rΔr).\displaystyle=-\frac{1}{r^{2}}\left((n-1)\left(f^{2}+|\nabla r|^{2}\right)-2r\Delta r\right).

Combining (3), (3.14) and (3.15) and the fact that u=1u=1 is a solution of (3), we have

0\displaystyle 0 =n1r(f2+|r|2)au2(n1)ffau+2a(Δur+2bubr)\displaystyle=\frac{n-1}{r}(f^{2}+|\nabla r|^{2})\nabla_{a}u-2(n-1)ff^{\prime}\nabla_{a}u+2\nabla_{a}(\Delta u\cdot r+2\nabla_{b}u\nabla^{b}r)
+n1r((f2+|r|2)σab2rabr)bu\displaystyle\quad+\frac{n-1}{r}\left((f^{2}+|\nabla r|^{2})\sigma_{ab}-2r\nabla_{a}\nabla_{b}r\right)\nabla^{b}u
=2(n1)(f2+|r|2rff)au+2a(Δur)+4abubr\displaystyle=2(n-1)\left(\frac{f^{2}+|\nabla r|^{2}}{r}-ff^{\prime}\right)\nabla_{a}u+2\nabla_{a}(\Delta u\cdot r)+4\nabla_{a}\nabla_{b}u\nabla^{b}r
+4buabr2(n1)abrbu.\displaystyle\quad+4\nabla^{b}u\nabla_{a}\nabla_{b}r-2(n-1)\nabla_{a}\nabla_{b}r\nabla^{b}u.

Note that the induced metric of Σ\Sigma is conformal to the standard metric σ~\widetilde{\sigma} of Sn1S^{n-1}: σ=r2σ~\sigma=r^{2}\widetilde{\sigma}. We rewrite the equation in terms of σ~\widetilde{\sigma}:

0=(n1)(f2rff)~au+~a(Δ~ur)+(n1)~a~bu~brr2\displaystyle 0=(n-1)\left(\frac{f^{2}}{r}-ff^{\prime}\right)\widetilde{\nabla}_{a}u+\widetilde{\nabla}_{a}\left(\frac{\widetilde{\Delta}u}{r}\right)+(n-1)\widetilde{\nabla}_{a}\widetilde{\nabla}_{b}u\frac{\widetilde{\nabla}^{b}r}{r^{2}}

We multiply the equation by rn1~aur^{n-1}\widetilde{\nabla}^{a}u and integrate by parts to get

(3.16) 0=Sn1[(n1)rn2(f2rff)|~u|2+rn2~aΔ~u~au1n2Δ~u~a(rn2)~au+n1n2~a~bu~b(rn2)~au]=Sn1[(n1)rn2(f21rff)|~u|2n1n2rn2(|~2u|21n1(Δ~u)2)].\displaystyle\begin{split}0&=\int_{S^{n-1}}\Big{[}(n-1)r^{n-2}(f^{2}-rff^{\prime})|\widetilde{\nabla}u|^{2}\\ &\qquad\qquad+r^{n-2}\widetilde{\nabla}_{a}\widetilde{\Delta}u\widetilde{\nabla}^{a}u-\frac{1}{n-2}\widetilde{\Delta}u\widetilde{\nabla}_{a}(r^{n-2})\widetilde{\nabla}^{a}u\\ &\qquad\qquad+\frac{n-1}{n-2}\widetilde{\nabla}_{a}\widetilde{\nabla}_{b}u\widetilde{\nabla}^{b}(r^{n-2})\widetilde{\nabla}^{a}u\Big{]}\\ &=\int_{S^{n-1}}\Bigg{[}(n-1)r^{n-2}\left(f^{2}-1-rff^{\prime}\right)|\widetilde{\nabla}u|^{2}\\ &\qquad\qquad-\frac{n-1}{n-2}r^{n-2}\left(|\widetilde{\nabla}^{2}u|^{2}-\frac{1}{n-1}(\widetilde{\Delta}u)^{2}\right)\Bigg{]}.\end{split}

In the second equality, we make use of the Ricci identity with Ric(gSn1)=(n2)gSn1Ric(g_{S^{n-1}})=(n-2)g_{S^{n-1}}. Here the integral is taken with respect to the volume form of the standard metric gSn1g_{S^{n-1}}. Note that

|~2u|21n1(Δ~u)2=|~2u1n1(Δ~u)σ~|2.|\widetilde{\nabla}^{2}u|^{2}-\frac{1}{n-1}(\widetilde{\Delta}u)^{2}=\left|\widetilde{\nabla}^{2}u-\frac{1}{n-1}(\widetilde{\Delta}u)\widetilde{\sigma}\right|^{2}.

By (1.1), either u=const.u=const. or the equality of (1.1) holds and (V,g¯)(V,\bar{g}) is a space form. In the latter case, uu is supported in 1\ell\leq 1 modes by Theorem 3.3. ∎

Let (N,gN)(N,g_{N}) be an (n1)(n-1)-dimensional Einstein manifold with Ric(gN)=(n2)gNRic(g_{N})=(n-2)g_{N}. The above infinitesimal rigidity holds in the (n+1)(n+1)-dimensional static warped product spacetimes

g¯=1f2(r)dt2+f2(r)dr2+r2gN\displaystyle\bar{g}=-\frac{1}{f^{2}(r)}dt^{2}+f^{2}(r)dr^{2}+r^{2}g_{N}

where the warping factor ff satisfies (1.1). To see this, observe that the curvature of NN is only used in (3.11).

4. Codimension 2 submanifolds with constant norm mean curvature vector

We first review a fundamental result in 2-dimensional conformal geometry. The stereographic projection identifies S23S^{2}\subset\mathbb{R}^{3} and \mathbb{C} with

z=x1+ix21x3.\displaystyle z=\frac{x_{1}+ix_{2}}{1-x_{3}}.

It is well-known that all conformal transformations on S2S^{2} arise as fractional linear transformations

w=az+bcz+d,adbc0\displaystyle w=\frac{az+b}{cz+d},ad-bc\neq 0

on \mathbb{C}\cup\infty.

Under a conformal transformation, the standard metric on S2S^{2}, 4(1+|z|2)2|dz|2\frac{4}{(1+|z|^{2})^{2}}|dz|^{2} in complex coordinate, is changed by

4(1+|w|2)2|dw|2=4(|cz+d|2+|az+b|2)2|dz|2=r24(1+|z|2)2|dz|2\displaystyle\frac{4}{(1+|w|^{2})^{2}}|dw|^{2}=\frac{4}{(|cz+d|^{2}+|az+b|^{2})^{2}}|dz|^{2}=r^{2}\frac{4}{(1+|z|^{2})^{2}}|dz|^{2}

where the conformal factor rr satisfies

1r\displaystyle\frac{1}{r} =|cz+d|2+|az+b|21+|z|2\displaystyle=\frac{|cz+d|^{2}+|az+b|^{2}}{1+|z|^{2}}
=(|a|2+|c|2)|z|2+|b|2+|d|2+Re(z(ab¯+cd¯))1+|z|2\displaystyle=\frac{(|a|^{2}+|c|^{2})|z|^{2}+|b|^{2}+|d|^{2}+\mbox{Re}\left(z(a\bar{b}+c\bar{d})\right)}{1+|z|^{2}}
=(|a|2+|b|2+|c|2+|d|2)+Re(ab¯+cd¯)x1\displaystyle=(|a|^{2}+|b|^{2}+|c|^{2}+|d|^{2})+\mbox{Re}(a\bar{b}+c\bar{d})x_{1}
Im(ab¯+cd¯)x2+(|a2|+|c|2|b|2|d|2)x3.\displaystyle\quad-\mbox{Im}(a\bar{b}+c\bar{d})x_{2}+(|a^{2}|+|c|^{2}-|b|^{2}-|d|^{2})x_{3}.

Let σ~\widetilde{\sigma} denote the standard metric on S2S^{2}. Denote the covariant derivative and Laplacian with respect to σ~\widetilde{\sigma} by ~\widetilde{\nabla} and Δ~\widetilde{\Delta}. For a metric e2wσ~e^{2w}\widetilde{\sigma} to have constant Gauss curvature EE, the conformal factor satisfies the equation

(4.17) Δ~w+Ee2w=1.\displaystyle\widetilde{\Delta}w+Ee^{2w}=1.

Let r=ewr=e^{w}, u=1ru=\frac{1}{r} and (4.17) becomes

(4.18) u2+uΔ~u|~u|2=E.\displaystyle u^{2}+u\widetilde{\Delta}u-|\widetilde{\nabla}u|^{2}=E.

The above discussion thus gives a function-theoretic proof of the following uniqueness result. Indeed, there exists a diffeomorphism φ:S2S2\varphi:S^{2}\rightarrow S^{2} such that φσ~=E1e2wσ~\varphi^{*}\widetilde{\sigma}=E^{-1}e^{2w}\widetilde{\sigma}. Since φ\varphi is a conformal map, the assertion follows.

Theorem 4.1.

All the positive solutions of (4.18) are supported in the 1\ell\leq 1 modes.

We now present an analytical proof. The equation is equivalent to

Δ~(u2+uΔ~u|~u|2)=0.\displaystyle\widetilde{\Delta}\left(u^{2}+u\widetilde{\Delta}u-|\widetilde{\nabla}u|^{2}\right)=0.

By the Bochner formula, we have

2uΔ~u+(Δ~u)2+uΔ~2u2|~2u|2=0,\displaystyle 2u\widetilde{\Delta}u+(\widetilde{\Delta}u)^{2}+u\widetilde{\Delta}^{2}u-2|\widetilde{\nabla}^{2}u|^{2}=0,

which is equivalent to

uΔ~(Δ~+2)u(u11u22)2=0.\displaystyle u\cdot\widetilde{\Delta}(\widetilde{\Delta}+2)u-(u_{11}-u_{22})^{2}=0.

The maximum principle implies that (Δ~+2)u(\widetilde{\Delta}+2)u is a constant function.

Remark 4.2.

It is mentioned in [4, page 15] that Struwe and Uhlenbeck have an analytic proof.

The constant Gauss curvature equation (4.17) has an interpretation in Minkowski spacetime geometry. Let Σ3,1\Sigma\subset\mathbb{R}^{3,1} be a spacelike 2-surface lying in the outgoing null cone of the origin given by the embedding F:S23,1,F(θ,ϕ)=(r(θ,ϕ),r(θ,ϕ),θ,ϕ).F:S^{2}\rightarrow\mathbb{R}^{3,1},F(\theta,\phi)=(r(\theta,\phi),r(\theta,\phi),\theta,\phi). The induced metric of Σ\Sigma is r2σ~r^{2}\widetilde{\sigma}. By the Gauss equation, the square norm of the mean curvature vector of Σ\Sigma equals its Gauss curvature. By Proposition 2.12, Theorem 4.1 says surfaces with constant norm mean curvature vector must come from spheres of symmetry by isometries.

This can be generalized to (n+1)(n+1)-dimensional static spherically symmetric spacetimes.

Theorem 4.3 (Theorem 1.5).

Let Σ\Sigma be a spacelike codimension 2 submanifold lying in the standard null cone of a static spherically symmetric spacetime (V,g¯)(V,\bar{g}) satisfying Assumption 1.1. Suppose the mean curvature vector of Σ\Sigma has constant norm. Then Σ\Sigma is a sphere of symmetry.

Proof.

With our choice of LL and L¯\underline{L}, trχ=n1\operatorname{tr}\chi=n-1. Since |H|2=trχtrχ¯|\vec{H}|^{2}=\operatorname{tr}\chi\operatorname{tr}\underline{\chi}, the equation we want to investigate is

(4.19) E=1r2((n1)(f2+|r|2)2rΔr)\displaystyle E=\frac{1}{r^{2}}\Big{(}(n-1)(f^{2}+|\nabla r|^{2})-2r\Delta r\Big{)}

for some constant EE. As in the proof of Theorem 1.4, we rewrite the equation with respect to the standard metric σ~\widetilde{\sigma} on Sn1S^{n-1} and let u=1ru=\frac{1}{r}. We obtain

E\displaystyle E =1r2((n1)(f2+|~r|2r2)2r(Δ~rr2+(n3)|~r|2r3))\displaystyle=\frac{1}{r^{2}}\Big{(}(n-1)\left(f^{2}+\frac{|\widetilde{\nabla}r|^{2}}{r^{2}}\right)-2r\left(\frac{\widetilde{\Delta}r}{r^{2}}+(n-3)\frac{|\widetilde{\nabla}r|^{2}}{r^{3}}\right)\Big{)}
=u2((n1)f2(n1)|~u|2u2+2uΔ~u).\displaystyle=u^{2}\left((n-1)f^{2}-(n-1)\frac{|\widetilde{\nabla}u|^{2}}{u^{2}}+\frac{2}{u}\widetilde{\Delta}u\right).

Taking Laplacian, we get

(4.20) 0=Δ~((n1)f2u2)2(n1)(|~2u|21n1(Δ~u)2)(2n6)~Δ~u~u2(n1)(n2)|~u|2+2uΔ~2u.\displaystyle\begin{split}0&=\widetilde{\Delta}\big{(}(n-1)f^{2}u^{2}\big{)}-2(n-1)\left(|\widetilde{\nabla}^{2}u|^{2}-\frac{1}{n-1}(\widetilde{\Delta}u)^{2}\right)\\ &\quad-(2n-6)\widetilde{\nabla}\widetilde{\Delta}u\cdot\widetilde{\nabla}u-2(n-1)(n-2)|\widetilde{\nabla}u|^{2}+2u\widetilde{\Delta}^{2}u.\end{split}

Here we use the Ricci identity with Ric(gSn1)=gSn1Ric(g_{S^{n-1}})=g_{S^{n-1}}. We multiply u2nu^{2-n} and integrate by parts on (Sn1,gSn1)(S^{n-1},g_{S^{n-1}}) to get

0\displaystyle 0 =Sn1[(n1)(n2)un1~a(f2u2)~au\displaystyle=\int_{S^{n-1}}\Bigg{[}\frac{(n-1)(n-2)}{u^{n-1}}\widetilde{\nabla}_{a}\big{(}f^{2}u^{2}\big{)}\widetilde{\nabla}^{a}u
2(n1)un2(|~2u|21n1(Δ~u)2)\displaystyle\qquad\qquad-\frac{2(n-1)}{u^{n-2}}\left(|\widetilde{\nabla}^{2}u|^{2}-\frac{1}{n-1}(\widetilde{\Delta}u)^{2}\right)
2(n1)(n2)un2|~u|2]\displaystyle\qquad\qquad-\frac{2(n-1)(n-2)}{u^{n-2}}|\widetilde{\nabla}u|^{2}\Bigg{]}
=Sn1[(n1)(n2)un1((f2)+2r(f21))|~u|2\displaystyle=\int_{S^{n-1}}\Bigg{[}\frac{(n-1)(n-2)}{u^{n-1}}\left(-(f^{2})^{\prime}+\frac{2}{r}(f^{2}-1)\right)|\widetilde{\nabla}u|^{2}
2(n1)un2|~2u1n1(Δ~u)σ~|2]\displaystyle\qquad\qquad-\frac{2(n-1)}{u^{n-2}}\left|\widetilde{\nabla}^{2}u-\frac{1}{n-1}(\widetilde{\Delta}u)\widetilde{\sigma}\right|^{2}\Bigg{]}

Hence u=const.u=const. is the only solution unless f21r2ffr=0\frac{f^{2}-1}{r^{2}}-\frac{ff^{\prime}}{r}=0. In the latter case, (V,g¯)(V,\bar{g}) is a Lorentz space form, and uu is supported in 1\ell\leq 1 modes (see Definition 2.13) by Theorem 3.3. The assertion then follows from Theorem 2.14. ∎

The above argument proves the uniqueness of constant scalar curvature metrics in conformal geometry.

Theorem 4.4.

Let n2n\geq 2. Suppose (Σn,σ)(\Sigma^{n},\sigma) is a closed manifold with constant Ricci curvature, Ric(σ)=cσRic(\sigma)=c\sigma. Let σ¯=r2σ\bar{\sigma}=r^{2}\sigma be a conformal metric with constant scalar curvature, where rr is a smooth positive function. Then rr must be constant unless (Σ,σ)(\Sigma,\sigma) is isometric to the standard sphere (Sn,σc)(S^{n},\sigma_{c}) and

r(x)=(c1+c2xa)1r(x)=(c_{1}+c_{2}x\cdot a)^{-1}

for some constants c1,c2c_{1},c_{2} and point aSna\in S^{n}.

Remark 4.5.

The case n=2n=2 is just Theorem 4.1. The case n3n\geq 3 is known as Obata’s Theorem [8, Theorem 6.2], which Obata proved by studying the traceless Ricci tensor. The proof given below is not new but rather than a special case of Veron-Veron [3, Theorem 6.1]. We are indebted to Professor Xiaodong Wang for bringing [3] to our attention. See also Section 2 of [14] for another proof.

Proof.

Let u=1ru=\frac{1}{r}. The scalar curvature under conformal transformation satisfies [12, (D.9), page 446]

R¯=u2(nc+2(n1)(Δuu|u|2u2)(n1)(n2)|u|2u2).\bar{R}=u^{2}\left(nc+2(n-1)\left(\frac{\Delta u}{u}-\frac{|\nabla u|^{2}}{u^{2}}\right)-(n-1)(n-2)\frac{|\nabla u|^{2}}{u^{2}}\right).

Simplify the formula, and we get

R¯n1=ncn1u2+2uΔun|u|2.\frac{\bar{R}}{n-1}=\frac{nc}{n-1}u^{2}+2u\Delta u-n|\nabla u|^{2}.

By the assumption, R¯=constant\bar{R}=constant. Taking Laplacian on both sides and using the Bochner formula, we get

0\displaystyle 0 =ncn1(uΔu+|u|2)+(Δu)2+2uΔu+uΔ2u\displaystyle=\frac{nc}{n-1}(u\Delta u+|\nabla u|^{2})+(\Delta u)^{2}+2\nabla u\cdot\nabla\Delta u+u\Delta^{2}u
n(|2u|2+uΔu+c|u|2)\displaystyle\quad-n(|\nabla^{2}u|^{2}+\nabla u\cdot\nabla\Delta u+c|\nabla u|^{2})
=n(|2u|21n(Δu)2)+(2n)uΔu+uΔ2u\displaystyle=-n(|\nabla^{2}u|^{2}-\frac{1}{n}(\Delta u)^{2})+(2-n)\nabla u\cdot\nabla\Delta u+u\Delta^{2}u
+ncn1(uΔu+(2n)|u|2).\displaystyle\quad+\frac{nc}{n-1}(u\Delta u+(2-n)|\nabla u|^{2}).

Multiplying by u1nu^{1-n} and integrating by parts, we obtain

0=Σnun1|2u1n(Δu)σ|20=\int_{\Sigma}-\dfrac{n}{u^{n-1}}\left|\nabla^{2}u-\frac{1}{n}(\Delta u)\sigma\right|^{2}

and the assertion follows from Theorem 3.3. ∎

Note that the characterization of constant mean curvature norm submanifold also holds in the static warped product spacetimes described in the end of last section, since the argument only uses the Ricci curvature.

Appendix A Curvature of static spherically symmetric spacetimes

The purpose of this appendix is to compute the (spacetime) curvature of the warped product (,)×(r1,r2)×N(-\infty,\infty)\times(r_{1},r_{2})\times N with metric

(A.21) g¯=f2(r)dt2+1f2(r)dr2+r2g~\displaystyle\bar{g}=-f^{2}(r)dt^{2}+\frac{1}{f^{2}(r)}dr^{2}+r^{2}\widetilde{g}

where the base (N,g~)(N,\widetilde{g}) is an (n1)(n-1)-dimensional Riemannian manifold. Our convention of curvature is

R¯(X,Y)Z\displaystyle\bar{R}(X,Y)Z =DXDYZDYDXZD[X,Y]Z\displaystyle=D_{X}D_{Y}Z-D_{Y}D_{X}Z-D_{[X,Y]}Z
R¯(X,Y,Z,W)\displaystyle\bar{R}(X,Y,Z,W) =g¯(R(X,Y)W,Z),\displaystyle=\bar{g}(R(X,Y)W,Z),

and in local coordinates,

R¯(xα,xβ)γ\displaystyle\bar{R}\left(\frac{\partial}{\partial x^{\alpha}},\frac{\partial}{\partial x^{\beta}}\right)\frac{\partial}{\partial\gamma} =R¯αβγδxδ\displaystyle=\bar{R}_{\alpha\beta\;\;\gamma}^{\;\;\;\;\;\delta}\frac{\partial}{\partial x^{\delta}}
R¯αβϵγ\displaystyle\bar{R}_{\alpha\beta\epsilon\gamma} =g¯ϵδR¯αβγδ=R¯(xα,xβ,xϵ,xγ).\displaystyle=\bar{g}_{\epsilon\delta}\bar{R}_{\alpha\beta\;\;\gamma}^{\;\;\;\;\;\delta}=\bar{R}\left(\frac{\partial}{\partial x^{\alpha}},\frac{\partial}{\partial x^{\beta}},\frac{\partial}{\partial x^{\epsilon}},\frac{\partial}{\partial x^{\gamma}}\right).

Let θa,a=1,,n1\theta^{a},a=1,\cdots,n-1 be a local coordinate system of NN. The nonzero Christoffel symbols are given by

Γttr=ff,Γtrt=ff,Γrrr=ff,Γarb=1rδab,Γabr=f2rg~ab,Γabc=Γ~abc.\displaystyle\Gamma_{tt}^{r}=-\frac{f^{\prime}}{f},\Gamma_{tr}^{t}=\frac{f^{\prime}}{f},\Gamma_{rr}^{r}=-\frac{f^{\prime}}{f},\Gamma_{ar}^{b}=\frac{1}{r}\delta_{a}^{b},\Gamma_{ab}^{r}=-f^{2}r\widetilde{g}_{ab},\Gamma_{ab}^{c}=\widetilde{\Gamma}_{ab}^{c}.

The nonzero curvature components

R¯αβγδ=xαΓβγδxβΓαγδ+ΓαϵδΓβγϵΓβϵδΓαγϵ\bar{R}_{\alpha\beta\;\;\gamma}^{\;\;\;\;\;\delta}=\frac{\partial}{\partial x^{\alpha}}\Gamma_{\beta\gamma}^{\delta}-\frac{\partial}{\partial x^{\beta}}\Gamma_{\alpha\gamma}^{\delta}+\Gamma_{\alpha\epsilon}^{\delta}\Gamma_{\beta\gamma}^{\epsilon}-\Gamma_{\beta\epsilon}^{\delta}\Gamma_{\alpha\gamma}^{\epsilon}

are

R¯trrt\displaystyle\bar{R}_{trrt} =ff′′(f)2\displaystyle=-ff^{\prime\prime}-(f^{\prime})^{2}
R¯tabt\displaystyle\bar{R}_{tabt} =rf3fg~ab\displaystyle=-rf^{3}f^{\prime}\widetilde{g}_{ab}
R¯rabr\displaystyle\bar{R}_{rabr} =ffr2g~ab\displaystyle=\frac{f^{\prime}}{f}r^{2}\widetilde{g}_{ab}
R¯abdc\displaystyle\bar{R}_{abdc} =r2R~abdc+rf2(g~acg~bdg~adg~bc).\displaystyle=r^{2}\widetilde{R}_{abdc}+rf^{2}(\widetilde{g}_{ac}\widetilde{g}_{bd}-\widetilde{g}_{ad}\widetilde{g}_{bc}).

In Eddinton–Finkelstein coordinates, recalling v=12(t+f2r)\frac{\partial}{\partial v}=\frac{1}{2}(\frac{\partial}{\partial t}+f^{2}\frac{\partial}{\partial r}) and w=12(tf2r)\frac{\partial}{\partial w}=\frac{1}{2}(\frac{\partial}{\partial t}-f^{2}\frac{\partial}{\partial r}), the above translates into

R¯(w,v,w,v)\displaystyle\bar{R}\left(\frac{\partial}{\partial w},\frac{\partial}{\partial v},\frac{\partial}{\partial w},\frac{\partial}{\partial v}\right) =f44(ff′′+(f)2)\displaystyle=-\frac{f^{4}}{4}\left(ff^{\prime\prime}+(f^{\prime})^{2}\right)
R¯(w,θa,θb,v)\displaystyle\bar{R}\left(\frac{\partial}{\partial w},\frac{\partial}{\partial\theta^{a}},\frac{\partial}{\partial\theta^{b}},\frac{\partial}{\partial v}\right) =12rf3fg~ab\displaystyle=-\frac{1}{2}rf^{3}f^{\prime}\widetilde{g}_{ab}
R¯(w,θa,θb,w)\displaystyle\bar{R}\left(\frac{\partial}{\partial w},\frac{\partial}{\partial\theta^{a}},\frac{\partial}{\partial\theta^{b}},\frac{\partial}{\partial w}\right) =R¯(v,θa,θb,v)=0.\displaystyle=\bar{R}\left(\frac{\partial}{\partial v},\frac{\partial}{\partial\theta^{a}},\frac{\partial}{\partial\theta^{b}},\frac{\partial}{\partial v}\right)=0.
Proposition A.1.

Let Σ\Sigma be a spacelike codimension 2 submanifold lying the standard null cone in an (n+1)(n+1)-dimensional spacetime with metric (A.21). Let σ\sigma denote the induced metric of Σ\Sigma. Then

σabR¯(L¯,a,b,L)\displaystyle\sigma^{ab}\bar{R}(\underline{L},\partial_{a},\partial_{b},L) =2(n1)ffr\displaystyle=-2(n-1)\frac{ff^{\prime}}{r}
R¯(L¯,a,L,L¯)\displaystyle\bar{R}(\underline{L},\partial_{a},L,\underline{L}) =4rrθa((ff)+ffr).\displaystyle=\frac{4}{r}\frac{\partial r}{\partial\theta^{a}}\left(-(ff^{\prime})^{\prime}+\frac{ff^{\prime}}{r}\right).
Proof.

Recall that we take

L\displaystyle L =2rf2v\displaystyle=\frac{2r}{f^{2}}\frac{\partial}{\partial v}
L¯\displaystyle\underline{L} =1r(2w+f2vf22|v|2v)\displaystyle=\frac{1}{r}\left(2\frac{\partial}{\partial w}+f^{2}\nabla v-\frac{f^{2}}{2}|\nabla v|^{2}\frac{\partial}{\partial v}\right)

along Σ\Sigma where v=σabvθaθb\nabla v=\sigma^{ab}\frac{\partial v}{\partial\theta^{a}}\frac{\partial}{\partial\theta^{b}}. Moreover, a=vθav+θa\partial_{a}=\frac{\partial v}{\partial\theta^{a}}\frac{\partial}{\partial v}+\frac{\partial}{\partial\theta^{a}}. We compute

R¯(L¯,a,b,L)\displaystyle\bar{R}(\underline{L},\partial_{a},\partial_{b},L) =2f2R¯(2w,θa,θb,v)=2rffg~ab.\displaystyle=\frac{2}{f^{2}}\bar{R}\left(2\frac{\partial}{\partial w},\frac{\partial}{\partial\theta^{a}},\frac{\partial}{\partial\theta^{b}},\frac{\partial}{\partial v}\right)=-2rff^{\prime}\widetilde{g}_{ab}.

Since σab=r2g~ab\sigma_{ab}=r^{2}\widetilde{g}_{ab}, the first formula follows. For the second formula, we note that on Σ,\Sigma, v=2r+const.v=2r^{*}+const. and hence vθa=2f2rθa\frac{\partial v}{\partial\theta^{a}}=\frac{2}{f^{2}}\frac{\partial r}{\partial\theta^{a}}. Hence,

R¯(L¯,a,L,L¯)\displaystyle\bar{R}(\underline{L},\partial_{a},L,\underline{L})
=2rf2(R¯(2w,θa,v,f2bvθb)+R¯(2w,vθav,v,2w))\displaystyle=\frac{2}{rf^{2}}\left(\bar{R}\left(2\frac{\partial}{\partial w},\frac{\partial}{\partial\theta^{a}},\frac{\partial}{\partial v},f^{2}\nabla^{b}v\frac{\partial}{\partial\theta^{b}}\right)+\bar{R}\left(2\frac{\partial}{\partial w},\frac{\partial v}{\partial\theta^{a}}\frac{\partial}{\partial v},\frac{\partial}{\partial v},2\frac{\partial}{\partial w}\right)\right)
=2rf2(2f3rf2f2(ff′′+(f)2))rθa.\displaystyle=\frac{2}{rf^{2}}\left(2\frac{f^{3}}{r}f^{\prime}-2f^{2}(ff^{\prime\prime}+(f^{\prime})^{2})\right)\frac{\partial r}{\partial\theta^{a}}.

References

  • [1] Alexandrov, A.D. Uniqueness theorems for surfaces in the large I. Vestnik Leningrad. Univ., 11(19):5–17, 1956.
  • [2] Brendle, Simon Constant mean curvature surfaces in warped product manifolds. Publ. Math. Inst. Hautes Études Sci. 117 (2013), 247–269.
  • [3] Bidaut-Véron, Marie-Françoise; Véron, Laurent Nonlinear elliptic equations on compact Riemannian manifolds and asymptotics of Emden equations. Invent. Math. 106 (1991), no. 3, 489–539.
  • [4] Chang, Sun-Yung Alice Non-linear elliptic equations in conformal geometry. Zurich Lectures in Advanced Mathematics. European Mathematical Society (EMS), Zürich, 2004.
  • [5] Hawking, S. W.; Ellis, G. F. R. The large scale structure of space-time. Cambridge Monographs on Mathematical Physics, No. 1. Cambridge University Press, London-New York, 1973.
  • [6] Hijazi, Oussama; Montiel, Sebastián; Raulot, Simon An Alexandrov theorem in Minkowski spacetime. Asian J. Math. 23 (2019), no. 6, 933–951.
  • [7] Montiel, Sebastián; Ros, Antonio Compact hypersurfaces: the Alexandrov theorem for higher order mean curvatures. Differential geometry, 279–296, Pitman Monogr. Surveys Pure Appl. Math., 52, Longman Sci. Tech., Harlow, 1991.
  • [8] Obata, Morio The conjectures on conformal transformations of Riemannian manifolds. J. Differential Geometry 6 (1971/72), 247–258.
  • [9] Reilly, Robert C. Applications of the Hessian operator in a Riemannian manifold. Indiana Univ. Math. J. 26 (1977), no. 3, 459–472.
  • [10] Ros, Antonio Compact hypersurfaces with constant scalar curvature and a congruence theorem. With an appendix by Nicholas J. Korevaar. J. Differential Geom. 27 (1988), no. 2, 215–223.
  • [11] Tashiro, Yoshihiro Complete Riemannian manifolds and some vector fields. Trans. Amer. Math. Soc. 117 (1965), 251–275.
  • [12] Wald, Robert M. General relativity. University of Chicago Press, Chicago, IL, 1984.
  • [13] Wang, Mu-Tao; Wang, Ye-Kai; Zhang, Xiangwen Minkowski formulae and Alexandrov theorems in spacetime. J. Differential Geom. 105 (2017), no. 2, 249–290.
  • [14] Wang, Xiaodong Uniqueness results on a geometric PDE in Riemannian and CR geometry revisited. Math. Z. 301 (2022), no. 2, 1299–1314.