This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Two remarks on proof theory of first-order arithmetic

Toshiyasu Arai
Graduate School of Mathematical Sciences, University of Tokyo,
3-8-1 Komaba, Meguro-ku, Tokyo 153-8914, JAPAN
[email protected]
Abstract

In this note let us give two remarks on proof-theory of PA. First a derivability relation is introduced to bound witnesses for provable Σ1\Sigma_{1}-formulas in PA. Second Paris-Harrington’s proof for their independence result is reformulated to show a ‘consistency’ proof of PA based on a combinatorial principle.

1 A derivability relation to bound witnesses

Theorem 1.1

Each provably computable function in PA is dominated by a Hardy function Hα(α<ε0)H_{\alpha}\,(\alpha<\varepsilon_{0}).

Theorem 1.1 is a classic result in proof theory of PA, and there are known several proofs of it by G. Kreisel, S. Wainer, H. Schwichtenberg, et al. Let us introduce a derivability relation to bound witnesses for provable Σ1\Sigma_{1}-formulas in PA, which is a variant of one given in Chapter 4 of Schwichtenberg-Wainer[4]. The latter seems to be inspired from the proof in Buchholz-Wainer[1].

In this section by ordinals we mean ordinals<ε0<\varepsilon_{0}. When γ+α=γ#α\gamma+\alpha=\gamma\#\alpha, we write γ+˙α\gamma\dot{+}\alpha for γ+α\gamma+\alpha. In this case we say that γ+˙α\gamma\dot{+}\alpha is defined. Also let 0+˙γ=γ+˙0:=γ0\dot{+}\gamma=\gamma\dot{+}0:=\gamma.

Fundamental sequences {λ[x]}x\{\lambda[x]\}_{x\in\mathbb{N}} for limit ordinals λ<ε0\lambda<\varepsilon_{0} are defined as follows. Let 0[x]=00[x]=0, (α+1)[x]=α(\alpha+1)[x]=\alpha. For ordinals 0<α<ε00<\alpha<\varepsilon_{0} in Cantor normal form α=ωα0m0++ωαkmk(α0>>αk0,0<m0,,mk<ω)\alpha=\omega^{\alpha_{0}}m_{0}+\cdots+\omega^{\alpha_{k}}m_{k}\,(\alpha_{0}>\cdots>\alpha_{k}\geq 0,0<m_{0},\ldots,m_{k}<\omega), let

α[x]={ωα0m0++ωαk(mk1)+ωαk[x]αk is a limit ordinalωα0m0++ωαk(mk1)+ωβxαk=β+1ωα0m0++ωαk(mk1)αk=0\alpha[x]=\left\{\begin{array}[]{ll}\omega^{\alpha_{0}}m_{0}+\cdots+\omega^{\alpha_{k}}(m_{k}-1)+\omega^{\alpha_{k}[x]}&\alpha_{k}\mbox{ is a limit ordinal}\\ \omega^{\alpha_{0}}m_{0}+\cdots+\omega^{\alpha_{k}}(m_{k}-1)+\omega^{\beta}x&\alpha_{k}=\beta+1\\ \omega^{\alpha_{0}}m_{0}+\cdots+\omega^{\alpha_{k}}(m_{k}-1)&\alpha_{k}=0\end{array}\right.

α<nβ\alpha<_{n}\beta denotes the transitive closure of the relation {(α,β):α=β[n]}\{(\alpha,\beta):\alpha=\beta[n]\}. Let αnβ:α<nβα=β\alpha\leq_{n}\beta:\Leftrightarrow\alpha<_{n}\beta\lor\alpha=\beta.

Hardy functions HαH_{\alpha} are defined by transfinite recursion on ordinals α<ε0\alpha<\varepsilon_{0}: H0(x)=xH_{0}(x)=x, Hα+1(x)=Hα(x+1)H_{\alpha+1}(x)=H_{\alpha}(x+1), and Hλ(x)=Hλ[x](x)H_{\lambda}(x)=H_{\lambda[x]}(x) for limit ordinals λ\lambda.

PA denotes the first-order arithmetic in the language {0,1,+,,λx,y.xy,<,=}\{0,1,+,\cdot,\lambda x,y.\,x^{y},<,=\}. dg(A)<ω{\rm dg}(A)<\omega for formulas AA is defined by dg(A)=0{\rm dg}(A)=0 if AΔ0A\in\Delta_{0}, dg(A0A1)=max{dg(Ai):i<2}({,}){\rm dg}(A_{0}\circ A_{1})=\max\{{\rm dg}(A_{i}):i<2\}\,(\circ\in\{\lor,\land\}), and dg(QxA)=dg(A)+1(Q{,}){\rm dg}(QxA)={\rm dg}(A)+1\,(Q\in\{\exists,\forall\}).

Definition 1.2

For ordinals γ,α<ε0\gamma,\alpha<\varepsilon_{0}, natural numbers k,c<ωk,c<\omega and finite sets Γ\Gamma of sentences, a derivability relation (γ,k)cαΓ(\gamma,k)\vdash^{\alpha}_{c}\Gamma is defined by recursion on α\alpha as follows. Let =Hγ(k)\ell=H_{\gamma}(k).

(Ax)

If Γ\Gamma contains a true Δ0\Delta_{0}-sentence, denoted by \top ambiguously, then (γ,k)cαΓ(\gamma,k)\vdash^{\alpha}_{c}\Gamma holds for any k,c<ωk,c<\omega and γ,α<ε0\gamma,\alpha<\varepsilon_{0}.

(cut)

If α0+1α\alpha_{0}+1\leq_{\ell}\alpha, (γ,k)cα0Γ,A(\gamma,k)\vdash^{\alpha_{0}}_{c}\Gamma,A with dg(A)<c{\rm dg}(A)<c, and (γ,k)cα0Γ,¬A(\gamma,k)\vdash^{\alpha_{0}}_{c}\Gamma,\lnot A, then (γ,k)cαΓ(\gamma,k)\vdash^{\alpha}_{c}\Gamma.

(\land)

If α0<α\alpha_{0}<_{\ell}\alpha, (A0A1)Δ0(A_{0}\land A_{1})\not\in\Delta_{0}, (A0A1)Γ(A_{0}\land A_{1})\in\Gamma, and (γ,k)cα0Γ,Ai(\gamma,k)\vdash^{\alpha_{0}}_{c}\Gamma,A_{i} for any i=0,1i=0,1, then, (γ,k)cαΓ(\gamma,k)\vdash^{\alpha}_{c}\Gamma.

(\lor)

If α0+1α\alpha_{0}+1\leq_{\ell}\alpha, (A0A1)Δ0(A_{0}\lor A_{1})\not\in\Delta_{0}, (A0A1)Γ(A_{0}\lor A_{1})\in\Gamma, and (γ,k)cα0Γ,Ai(\gamma,k)\vdash^{\alpha_{0}}_{c}\Gamma,A_{i} for an i=0,1i=0,1, then (γ,k)cαΓ(\gamma,k)\vdash^{\alpha}_{c}\Gamma.

(ω\forall\omega)

If α0<α\alpha_{0}<_{\ell}\alpha, xA(x)Δ0\forall xA(x)\not\in\Delta_{0}, xA(x)Γ\forall xA(x)\in\Gamma, and (γ,max{k,n})cαΓ,A(n)(\gamma,\max\{k,n\})\vdash^{\alpha}_{c}\Gamma,A(n) for any nn\in\mathbb{N}, then (γ,k)cαΓ(\gamma,k)\vdash^{\alpha}_{c}\Gamma.

(\exists)

If α0+1α\alpha_{0}+1\leq_{\ell}\alpha, xA(x)Δ0\exists xA(x)\not\in\Delta_{0}, xA(x)Γ\exists xA(x)\in\Gamma, and there exists a natural number nn such that (γ,k)cα0A(n),Γ(\gamma,k)\vdash^{\alpha_{0}}_{c}A(n),\Gamma and n<n<\ell, then (γ,k)cαΓ(\gamma,k)\vdash^{\alpha}_{c}\Gamma.

For natural numbers kk and Σ1\Sigma_{1}-sentences xA(AΔ0)\exists xA\,(A\in\Delta_{0}), kxA:x<kAk\models\exists xA:\Leftrightarrow\mathbb{N}\models\exists x<k\,A. For finite sets Γ\Gamma of Σ1\Sigma_{1}-sentences, kΓk\models\Gamma iff there exists a BΓB\in\Gamma such that kBk\models B.

Lemma 1.3

(Bounding) Let Γ\Gamma be a finite set of Σ1\Sigma_{1}-sentences.
Assume (γ,k)0αΓ(\gamma,k)\vdash^{\alpha}_{0}\Gamma. Then Hγ(k)ΓH_{\gamma}(k)\models\Gamma.

Proof.  This is seen by induction on ordinals α\alpha. Consider the case when (γ,k)0αΓ(\gamma,k)\vdash^{\alpha}_{0}\Gamma follows from an inference rule ()(\exists). Let xA(x)\exists xA(x) be its principal (major) formula. We have α0+1kα\alpha_{0}+1\leq_{k}\alpha and (γ,k)0α0A(m),Γ(\gamma,k)\vdash^{\alpha_{0}}_{0}A(m),\Gamma with m<Hγ(k)m<H_{\gamma}(k). IH yields Hγ(k){A(m)}ΓH_{\gamma}(k)\models\{A(m)\}\cup\Gamma. \Box

Lemma 1.4
  1. 1.

    (Weakening) Let (γ,k)cαΓ(\gamma,k)\vdash^{\alpha}_{c}\Gamma, and assume n[Hγ(max{k,n})Hγ1(max{k1,n})]\forall n[H_{\gamma}(\max\{k,n\})\leq H_{\gamma_{1}}(\max\{k_{1},n\})]. Then for ΓΓ1\Gamma\subset\Gamma_{1}, αHγ1(k1)α1\alpha\leq_{H_{\gamma_{1}}(k_{1})}\alpha_{1}, and cc1c\leq c_{1}, (γ1,k1)c1α1Γ1(\gamma_{1},k_{1})\vdash^{\alpha_{1}}_{c_{1}}\Gamma_{1} holds.

  2. 2.

    (False) For a false Δ0\Delta_{0}-sentence \bot, if (γ,k)cαΓ,(\gamma,k)\vdash^{\alpha}_{c}\Gamma,\bot, then (γ,k)cαΓ(\gamma,k)\vdash^{\alpha}_{c}\Gamma.

  3. 3.

    (Inversion) If (γ,k)cαΓ,xA(x)(\gamma,k)\vdash^{\alpha}_{c}\Gamma,\forall xA(x), then (γ,max{k,n})cαΓ,A(n)(\gamma,\max\{k,n\})\vdash^{\alpha}_{c}\Gamma,A(n) for any nn\in\mathbb{N}.

  4. 4.

    Assume γ+˙δ\gamma\dot{+}\delta is defined, n<Hδ(k)n<H_{\delta}(k) and (γ,max{k,n})cαΓ(\gamma,\max\{k,n\})\vdash^{\alpha}_{c}\Gamma.

    Then (γ+˙δ,k)cαΓ(\gamma\dot{+}\delta,k)\vdash^{\alpha}_{c}\Gamma.

Proof.  1.4.2. No Δ0\Delta_{0}-formula is a principal formula of an inference rule.
1.4.4. This is seen from Lemma 1.4.1. \Box

Lemma 1.5

(Reduction) Let CC be a sentence such that dg(C)c{\rm dg}(C)\leq c and CC is either one of the form xA,A0A1Δ0\forall x\,A,A_{0}\land A_{1}\not\in\Delta_{0} or a true Δ0\Delta_{0}-sentence \top. Assume that α+˙β\alpha\dot{+}\beta is defined, and γ=ωγ0m\gamma=\omega^{\gamma_{0}}m.

Suppose (γ,k)cαΓ,C(\gamma,k)\vdash^{\alpha}_{c}\Gamma,C and (γ,k)cβ¬C,Δ(\gamma,k)\vdash^{\beta}_{c}\lnot C,\Delta. Then (γ2,k)cα+˙βΓ,Δ(\gamma\cdot 2,k)\vdash^{\alpha\dot{+}\beta}_{c}\Gamma,\Delta.

Proof.  By induction on β\beta. Consider the case when (γ,k)cβ¬C,Δ(\gamma,k)\vdash^{\beta}_{c}\lnot C,\Delta follows from an inference rule ()(\exists) with its principal formula ¬C(x¬A(x))\lnot C\equiv(\exists x\lnot A(x)). There are β0+1β\beta_{0}+1\leq_{\ell}\beta, n<=Hγ(k)n<\ell=H_{\gamma}(k) for which (γ,k)cβ0Δ,¬C,¬A(n)(\gamma,k)\vdash^{\beta_{0}}_{c}\Delta,\lnot C,\lnot A(n). IH yields (γ2,k)cα+˙β0Γ,Δ,¬A(n)(\gamma\cdot 2,k)\vdash^{\alpha\dot{+}\beta_{0}}_{c}\Gamma,\Delta,\lnot A(n). On the other hand we have (γ,max{k,n})cαΓ,A(n)(\gamma,\max\{k,n\})\vdash^{\alpha}_{c}\Gamma,A(n) by Lemma 1.4.3. Lemma 1.4.4 with n<n<\ell yields (γ2k)cαΓ,A(n)(\gamma\cdot 2k)\vdash^{\alpha}_{c}\Gamma,A(n). Since dg(A(n))<c{\rm dg}(A(n))<c, we obtain (γ2,k)cα+˙βΓ,Δ(\gamma\cdot 2,k)\vdash^{\alpha\dot{+}\beta}_{c}\Gamma,\Delta by a (cut)(cut). \Box

Lemma 1.6

(Elimination) Assume that γ+˙α\gamma\dot{+}\alpha is defined for γ=ωγ0mω\gamma=\omega^{\gamma_{0}}m\geq\omega, and k2k\geq 2. If (γ,k)c+1αΓ(\gamma,k)\vdash^{\alpha}_{c+1}\Gamma, then (ωγ+˙α+γ,k)cωαΓ(\omega^{\gamma\dot{+}\alpha}+\gamma,k)\vdash^{\omega^{\alpha}}_{c}\Gamma.

Proof.  By induction on α\alpha. Suppose that (γ,k)c+1αΓ(\gamma,k)\vdash^{\alpha}_{c+1}\Gamma follows from an inference rule II. Let =Hγ(k)\ell=H_{\gamma}(k).

First consider the case when II is an ()(\exists). We have (γ,k)c+1βΓ,B(n)(\gamma,k)\vdash^{\beta}_{c+1}\Gamma,B(n) for β+1α\beta+1\leq_{\ell}\alpha, n<n<\ell, and (xB(x))Γ(\exists xB(x))\in\Gamma. IH yields (ωγ+˙β+γ,k)cωβΓ,B(n)(\omega^{\gamma\dot{+}\beta}+\gamma,k)\vdash^{\omega^{\beta}}_{c}\Gamma,B(n). By β+1α\beta+1\leq_{\ell}\alpha, we obtain ωβ+1<kωα\omega^{\beta}+1<_{k^{\prime}}\omega^{\alpha} and ωγ+˙β<kωγ+˙α\omega^{\gamma\dot{+}\beta}<_{k^{\prime}}\omega^{\gamma\dot{+}\alpha} for any kHγ(k)2k^{\prime}\geq H_{\gamma}(k)\geq 2. Hence for nkn\geq k we obtain Hωγ+˙β(Hγ(n))Hωγ+˙α(Hγ(n))H_{\omega^{\gamma\dot{+}\beta}}(H_{\gamma}(n))\leq H_{\omega^{\gamma\dot{+}\alpha}}(H_{\gamma}(n)), and (ωγ+˙α+γ,k)cωβΓ,B(n)(\omega^{\gamma\dot{+}\alpha}+\gamma,k)\vdash^{\omega^{\beta}}_{c}\Gamma,B(n) by Lemma 1.4.1. An ()(\exists) yields (ωγ+˙α+γ,k)cωαΓ(\omega^{\gamma\dot{+}\alpha}+\gamma,k)\vdash^{\omega^{\alpha}}_{c}\Gamma.

Next consider the case when II is a (ω)(\forall\omega). We have (γ,max{k,n})c+1βΓ,B(n)(\gamma,\max\{k,n\})\vdash^{\beta}_{c+1}\Gamma,B(n) for β<α\beta<_{\ell}\alpha and (xB(x))Γ(\forall xB(x))\in\Gamma. IH yields (ωγ+˙β+γ,max{k,n})cωβΓ,B(n)(\omega^{\gamma\dot{+}\beta}+\gamma,\max\{k,n\})\vdash^{\omega^{\beta}}_{c}\Gamma,B(n). We see (ωγ+˙α+γ,max{k,n})cωβΓ,B(n)(\omega^{\gamma\dot{+}\alpha}+\gamma,\max\{k,n\})\vdash^{\omega^{\beta}}_{c}\Gamma,B(n) similarly for the case ()(\exists). A (ω)(\forall\omega) yields (ωγ+˙α+γ,k)cωαΓ(\omega^{\gamma\dot{+}\alpha}+\gamma,k)\vdash^{\omega^{\alpha}}_{c}\Gamma.

Finally consider the case when II is a (cut)(cut) with the cut formula CC. We have dg(C)c{\rm dg}(C)\leq c, (γ,k)c+1βΓ,C(\gamma,k)\vdash^{\beta}_{c+1}\Gamma,C and (γ,k)c+1βΓ,¬C(\gamma,k)\vdash^{\beta}_{c+1}\Gamma,\lnot C for β+1α\beta+1\leq_{\ell}\alpha. IH yields (ωγ+˙β+γ,k)cωβΓ,C(\omega^{\gamma\dot{+}\beta}+\gamma,k)\vdash^{\omega^{\beta}}_{c}\Gamma,C and (ωγ+˙β+γ,k)cωβΓ,¬C(\omega^{\gamma\dot{+}\beta}+\gamma,k)\vdash^{\omega^{\beta}}_{c}\Gamma,\lnot C. We have Hγ(k)<Hωγ+˙β(k)H_{\gamma}(k^{\prime})<H_{\omega^{\gamma\dot{+}\beta}}(k^{\prime}) for k2k^{\prime}\geq 2. Lemma 1.4.1 yields for k2k\geq 2, (ωγ+˙β2,k)cωβΓ,C(\omega^{\gamma\dot{+}\beta}\cdot 2,k)\vdash^{\omega^{\beta}}_{c}\Gamma,C and (ωγ+˙β2,k)cωβΓ,¬C(\omega^{\gamma\dot{+}\beta}\cdot 2,k)\vdash^{\omega^{\beta}}_{c}\Gamma,\lnot C. Lemma 1.5 yields (ωγ+˙β4,k)cωβ2Γ(\omega^{\gamma\dot{+}\beta}\cdot 4,k)\vdash^{\omega^{\beta}\cdot 2}_{c}\Gamma. On the other hand we have ωγ+˙β4<Hγ(k)ωγ+˙α\omega^{\gamma\dot{+}\beta}\cdot 4<_{H_{\gamma}(k^{\prime})}\omega^{\gamma\dot{+}\alpha} and ωβ2<Hγ(k)ωα\omega^{\beta}\cdot 2<_{H_{\gamma}(k)}\omega^{\alpha} for kkk^{\prime}\geq k with Hγ(k)Hω(k)=2k4H_{\gamma}(k)\geq H_{\omega}(k)=2k\geq 4, k2=|ω|k\geq 2=|\omega|, and γω\gamma\geq\omega. This yields Hωγ+˙β4(k)Hωγ+˙β4(Hγ(k))<Hωγ+˙α(Hγ(k))H_{\omega^{\gamma\dot{+}\beta}\cdot 4}(k^{\prime})\leq H_{\omega^{\gamma\dot{+}\beta}\cdot 4}(H_{\gamma}(k^{\prime}))<H_{\omega^{\gamma\dot{+}\alpha}}(H_{\gamma}(k^{\prime})). Lemma 1.4.1 yields (ωγ+˙α+γ,k)cωαΓ(\omega^{\gamma\dot{+}\alpha}+\gamma,k)\vdash^{\omega^{\alpha}}_{c}\Gamma. \Box

Lemma 1.7

(Embedding) Let Γ(a)\Gamma(\vec{a}) be a sequent with free variables a\vec{a}. Γ(n)\Gamma(\vec{n}) dnotes the result of replacing variables a\vec{a} by numerals n\vec{n}. If 𝖯𝖠Γ(a){\sf PA}\vdash\Gamma(\vec{a}), then there are natural numbers ,d,m,c<ω\ell,d,m,c<\omega such that (ω2,max({1}n))cωd+mΓ(n)(\omega^{2}\ell,\max(\{1\}\cup\vec{n}))\vdash^{\omega\cdot d+m}_{c}\Gamma(\vec{n}) for any n\vec{n}.

Proof.  Let n=max({1}n)n^{\prime}=\max(\{1\}\cup\vec{n}). Consider the case when Γ\Gamma follows from an ()(\exists) with its principal formula (xA(x))Γ(\exists x\,A(x))\in\Gamma.

Γ,A(t)()Γ\Gamma\Gamma,A(t)

IH yields ω2,ncωd+mΓ,A(t(n))\omega^{2}\ell,n^{\prime}\vdash^{\omega\cdot d+m}_{c}\Gamma,A(t(\vec{n})). Pick a kk so that t(n)<Hω2k(n)t(\vec{n})<H_{\omega^{2}k}(n^{\prime}) with Hω2(x)2xH_{\omega^{2}}(x)\geq 2^{x}. An inference rule ()(\exists) with 1=max{,k}\ell_{1}=\max\{\ell,k\} yields (ω21,n)cωd+m+1Γ(\omega^{2}\ell_{1},n^{\prime})\vdash^{\omega\cdot d+m+1}_{c}\Gamma. \Box

Let us prove Theorem 1.1. Assume 𝖯𝖠yθ(x,y)(θΔ0){\sf PA}\vdash\exists y\,\theta(x,y)\,(\theta\in\Delta_{0}). By Lemma 1.7 pick natural numbers >0,d,m,c\ell>0,d,m,c so that for any nn\in\mathbb{N}, ω2,max{1,n}cωd+myA(n,y)\omega^{2}\ell,\max\{1,n\}\vdash^{\omega\cdot d+m}_{c}\exists y\,A(n,y). Define ordinals γc\gamma_{c} by γ0=ω2\gamma_{0}=\omega^{2}\ell, γc+1=ωγc+˙ωc(ωd+m)2\gamma_{c+1}=\omega^{\gamma_{c}\dot{+}\omega_{c}(\omega\cdot d+m)}\cdot 2. Lemma 1.6 yields γc,n0αuy,zA(n,y,z)\gamma_{c},n\vdash^{\alpha}_{0}\exists u\exists y,zA(n,y,z) for n2n\geq 2 and α=ωc(ωd+m)\alpha=\omega_{c}(\omega\cdot d+m). We obtain y<Hγc(n)A(n,y)\exists y<H_{\gamma_{c}}(n)\,A(n,y) by Lemma 1.3 for n2n\geq 2.

Remark 1.8

Our proof does not give the optimal bound 2k(ω2)2_{k}(\omega^{2}) for fragments IΣk(k>0)\Sigma_{k}\,(k>0). The number cc in Lemma 1.7 is bounded by k+1k+1. Then γk+1<ωk+1(ω3)\gamma_{k+1}<\omega_{k+1}(\omega^{3}). To obtain a better bound, the derivability relation (γ,k)cαΓ(\gamma,k)\vdash^{\alpha}_{c}\Gamma is modified as follows.

First let us assume that every formula is in prenex normal form c(ΣcΠc)\bigcup_{c}(\Sigma_{c}\cup\Pi_{c}), and dg1(A)=min{c:AΣc+1Πc+1}{\rm dg}_{1}(A)=\min\{c:A\in\Sigma_{c+1}\cup\Pi_{c+1}\}. (γ,k)cαΓ(\gamma,k)\vdash^{\alpha}_{c}\Gamma is defined through dg1(A){\rm dg}_{1}(A).

Elimination Lemma 1.6 is stated as follows: Assume (γ,k)c+1αΓ(\gamma,k)\vdash^{\alpha}_{c+1}\Gamma for k,c1k,c\geq 1. Then (γ4α+γ,k)c2αΓ(\gamma\cdot 4^{\alpha}+\gamma,k)\vdash^{2^{\alpha}}_{c}\Gamma.

Likewise Bounding Lemma 1.3 is stated as follows: Let ΓΣ1\Gamma\subset\Sigma_{1} and (γ,k)1αΓ(\gamma,k)\vdash^{\alpha}_{1}\Gamma. Then Hγ4α(Hγ(k))ΓH_{\gamma\cdot 4^{\alpha}}(H_{\gamma}(k))\models\Gamma for k1k\geq 1.

Now assume IΣkyA(x,y){\rm I}\Sigma_{k}\vdash\exists yA(x,y) for a yA(x,y)Σ1\exists yA(x,y)\in\Sigma_{1} and k>0k>0. We see n1y<Hδk(n)A(n,y)\forall n\geq 1\exists y<H_{\delta_{k}}(n)\,A(n,y) for an ordinal δk<2k(ω2)\delta_{k}<2_{k}(\omega^{2}).

2 A consistency proof of PA based on a combinatorial principle

Definition 2.1
  1. 1.

    A subset HXH\subset X is diagonal homogeneous for a partition
    P:[X]1+ncP:[X]^{1+n}\to c if

    x0Ha<x0Y,Z[H]n[x0<Y&x0<ZP({a}Y)=P({a}Z)]\forall x_{0}\in H\forall a<x_{0}\forall Y,Z\in[H]^{n}[x_{0}<Y\,\&\,x_{0}<Z\Rightarrow P(\{a\}\cup Y)=P(\{a\}\cup Z)]
  2. 2.

    For positive integers n,m,cn,m,c, XΔ(m)c1+nX\to_{\Delta}(m)^{1+n}_{c} designates that for any partition P:[X]1+ncP:[X]^{1+n}\to c, there exists a diagonal homogeneous set H[X]mH\in[X]^{m}.

  3. 3.

    Diagonal Homogeneous principle denoted by DH states that
    n,m,c>0K>1+n[KΔ(m)c1+n]\forall n,m,c>0\exists K>1+n[K\to_{\Delta}(m)^{1+n}_{c}].

  4. 4.

    Let Γ={φ[y,x1,,xn],}\Gamma=\{\varphi[y,x_{1},\ldots,x_{n}],\ldots\} be a set of formulas in variables y,x1,,xny,x_{1},\ldots,x_{n}, and DK={0,1,,K1}D\subset K=\{0,1,\ldots,K-1\}. DD is said to be a diagonal indiscernibles with respect to Γ\Gamma (and KK) if for any

    a<i0<i1<<inj1<<jn,(aK,i0,i1,,in,j1,,jnD)a<i_{0}<\begin{array}[]{lllll}i_{1}&<&\cdots&<&i_{n}\\ j_{1}&<&\cdots&<&j_{n}\end{array},\,(a\in K,\,i_{0},i_{1},\ldots,i_{n},j_{1},\ldots,j_{n}\in D)

    φ[a,i1,,in]φ[a,j1,,jn]\mathbb{N}\models\varphi[a,i_{1},\ldots,i_{n}]\leftrightarrow\varphi[a,j_{1},\ldots,j_{n}] holds.

It is easy to see that the infinite Ramsey theorem together with König’s lemma implies DH.

Proposition 2.2

Let Γ={φr[x0,x1,,xn]:r<m}\Gamma=\{\varphi_{r}[x_{0},x_{1},\ldots,x_{n}]:r<m\} be a finite set of formulas in the language of PA, and kk an integer.

DH (K[KΔ(k)2m1+n])(\exists K[K\to_{\Delta}(k)^{1+n}_{2^{m}}]) yields a diagonal indiscernible set D={a1<<ak}KD=\{a_{1}<\cdots<a_{k}\}\subset K with respect to Γ\Gamma.

Proof.  Let P:[K]1+n2mP:[K]^{1+n}\to 2^{m} be the partion P(b0,b1,,bn)={i<m:φi[b0,b1,,bn]}P(b_{0},b_{1},\ldots,b_{n})=\{i<m:\varphi_{i}[b_{0},b_{1},\ldots,b_{n}]\}, and D={a1<<ak}KD=\{a_{1}<\cdots<a_{k}\}\subset K be a diagonal homogeneous set for the partition PP. \Box

Pari-Harrington’s principle PH states that n,m,cK>n[K(m)cn]\forall n,m,c\exists K>n[K\to_{*}(m)^{n}_{c}], where K(m)cnK\to_{*}(m)^{n}_{c} designates that for any partition P:[K]ncP:[K]^{n}\to c there exists a homogeneous set HKH\subset K with #HminH\#H\geq\min H. The proof in Paris-Harrington[3] of the independence of PH from PA consists of two steps. First Con(T)Con(𝖯𝖠){\rm Con}(T)\to{\rm Con}({\sf PA}) for an extension TT of PA, and PHCon(T){\rm PH}\to{\rm Con}(T). TT is obtained from PA by adding an infinite list {ci}i<ω\{c_{i}\}_{i<\omega} of (individual constants intended to denote) diagonal indiscernibles cic_{i}. The purely model-theoretic proof of the independence is given in Kanamori-McAloon[2]. In these proofs the principle DH is implicit, and crucial.

Let us reformulate the proof of Con(T)Con(𝖯𝖠){\rm Con}(T)\to{\rm Con}({\sf PA}) in [3] to get a purely proof-theoretic result for PA, cf. Theorem 2.5.

Theorem 2.3

𝖤𝖠+xy(2x=y)DH1-Con(𝖯𝖠){\sf EA}+\forall x\exists y(2_{x}=y)\vdash{\rm DH}\to\mbox{{\rm 1-Con}}({\sf PA}).

A formula φ(Q1z1Q2z2Qnznθ)\varphi\equiv\left(Q_{1}z_{1}Q_{2}z_{2}\cdots Q_{n}z_{n}\theta\right) with a Δ0\Delta_{0}-matrix θ\theta and alternating quantifiers Q1,Q2,,QnQ_{1},Q_{2},\ldots,Q_{n} is a Σn\Sigma_{n}-formula [Πn\Pi_{n}-formula] if Q1Q_{1}\equiv\exists [Q1Q_{1}\equiv\forall], resp.

In this section PA is formulated in an applied one-sided sequent calculus. Besides usual inference rules for first-order logic, there are two inference rules for complete induction and axioms for constants. The inference rule for complete induction is stated as follows.

Γ,A(0,s)Γ,¬A(a,s),A(a+1,s)Γ,¬A(t,s)Γ\Gamma\lx@proof@logical@and\Gamma,A(0,\vec{s})\Gamma,\lnot A(a,\vec{s}),A(a+1,\vec{s})\Gamma,\lnot A(t,\vec{s}) (1)

where An(ΣnΠn)A\in\bigcup_{n}(\Sigma_{n}\cup\Pi_{n}).

Let xθ(x)\forall\vec{x}\theta(\vec{x}) be a Π1\Pi_{1}-axiom for constants 0,1,+,,λx,y.xy,<,=0,1,+,\cdot,\lambda x,y.\,x^{y},<,=. Then for each list t\vec{t} of terms, the following is an inference rule in PA:

¬θ(t),ΓΓ\Gamma\lnot\theta(\vec{t}),\Gamma

The applied calculus admits a cut-elimination. 𝖯𝖠dΓ{\sf PA}\vdash^{d}\Gamma designates that there exists a derivation of the sequent Γ\Gamma in depthd\leq d.

In what follows argue in 𝖤𝖠+xy(2x=y){\sf EA}+\forall x\exists y(2_{x}=y). Let π\pi be a (cut-free) derivation of a Σ1\Sigma_{1}-sentence xθ0(x)\exists x\,\theta_{0}(x) in PA. Each formula in π\pi is in n(ΣnΠn)\bigcup_{n}(\Sigma_{n}\cup\Pi_{n}).

For a formula φ(Q1z1Q2z2Qnznθ)ΣnΠn\varphi\equiv\left(Q_{1}z_{1}Q_{2}z_{2}\cdots Q_{n}z_{n}\theta\right)\in\Sigma_{n}\cup\Pi_{n}, let q(φ)=nq(\varphi)=n. q(θ)=0q(\theta)=0 for θΔ0\theta\in\Delta_{0}. Let Fml(π)Fml(\pi) denote the set of all formulas φ\varphi appearing in π\pi. Then q(π):=max{q(φ):φFml(π)}q(\pi):=\max\{q(\varphi):\varphi\in Fml(\pi)\}.

Second m(π)=#({φFml(π):q(φ)>0})m(\pi)=\#\left(\{\varphi\in Fml(\pi):q(\varphi)>0\}\right). Third d(π)d(\pi) denotes the depth of π\pi: 𝖯𝖠d(π)xθ0(x){\sf PA}\vdash^{d(\pi)}\exists x\,\theta_{0}(x). Moreover let (y0,,y1)(y_{0},\ldots,y_{\ell-1}) be a list of all free variables occurring in π\pi. Tm(π)Tm(\pi) denotes the set of all terms tt, which is either the (induction) term tt in (1), or the (witnessing) term tt in

Γ,A(t)()Γ\Gamma\Gamma,A(t)

Let c(π)2c(\pi)\geq 2 be the number defined as follows. First let e1(x)=xe_{1}(x)=x, ec+1(x)=xec(x)e_{c+1}(x)=x^{e_{c}(x)}. Then c=c(π)c=c(\pi) denotes a number for which the following holds for ec(x)e_{c}(x):

max{t(y0,,y1),y0,,y1:tTm(π)}ec(max{y0,,y1})\max\{t(y_{0},\ldots,y_{\ell-1}),\langle y_{0},\ldots,y_{\ell-1}\rangle:t\in Tm(\pi)\}\leq e_{c}(\max\{y_{0},\ldots,y_{\ell-1}\}) (2)

with a code y0,,y1\langle y_{0},\ldots,y_{\ell-1}\rangle of the sequence (y0,,y1)(y_{0},\ldots,y_{\ell-1}).

By invoking the principle DH, let KK be a positive integer such that

KΔ(k+c+n2)2m1+nK\to_{\Delta}\left(k+c+n-2\right)^{1+n}_{2^{m}}

where n=q(π)n=q(\pi), m=m(π)+6m=m(\pi)+6, c=c(π)c=c(\pi), k=max{n,3,2d(π)+5c}k=\max\{n,3,2d(\pi)+5-c\} with K={0,1,,K1}K=\{0,1,\ldots,K-1\}.

Let Fml(π)={φj:j<m(π)}Fml(\pi)=\{\varphi_{j}:j<m(\pi)\} be the set of all formulas occurring in π\pi other than Δ0\Delta_{0}-formulas. For formulas φjφj(y0,,y1)\varphi_{j}\equiv\varphi_{j}(y_{0},\ldots,y_{\ell-1}), let φj(y)φj((y)0,,(y)1)\varphi_{j}^{\prime}(y)\equiv\varphi_{j}((y)_{0},\ldots,(y)_{\ell-1}). Also for lists X=(x1,,xn)X=(x_{1},\ldots,x_{n}) of variables, let (φj)(X)(x0):Q1z1<x1Q2z2<x2Qnzn<xnθ((x0)0,,(x0)1)\left(\varphi_{j}^{\prime}\right)^{(X)}(x_{0}):\equiv Q_{1}z_{1}<x_{1}Q_{2}z_{2}<x_{2}\cdots Q_{n}z_{n}<x_{n}\theta((x_{0})_{0},\ldots,(x_{0})_{\ell-1}). Then Γ0=Γ0(x0,x1,,xn)\Gamma_{0}=\Gamma_{0}(x_{0},x_{1},\ldots,x_{n}) denotes the set of formulas {(φj)(X)(x0):j<m(π)}\{\left(\varphi_{j}^{\prime}\right)^{(X)}(x_{0}):j<m(\pi)\} augmented with the six formulas {c<x1,x2=x1+x0+1,x1(x0+1)<x2,x1x0+1<x2,x1x1<x2,ec(x1)<x2}\{c<x_{1},x_{2}=x_{1}+x_{0}+1,x_{1}(x_{0}+1)<x_{2},x_{1}^{x_{0}+1}<x_{2},x_{1}^{x_{1}}<x_{2},e_{c}(x_{1})<x_{2}\}.

Let D={α1<α0<α1<<αk<αk+1<<αk+c+n4}D=\{\alpha_{-1}<\alpha_{0}<\alpha_{1}<\cdots<\alpha_{k}<\alpha_{k+1}<\cdots<\alpha_{k+c+n-4}\} be a diagonal indiscernible subset of KK with respect to Γ0\Gamma_{0}, cf. Proposition 2.2.

Proposition 2.4

Let 0i<k0\leq i<k and β0,,β1<αi\beta_{0},\ldots,\beta_{\ell-1}<\alpha_{i}. Then
max{t(β0,,β1),β0,,β1:tTm(π)}<αi+1\max\{t(\beta_{0},\ldots,\beta_{\ell-1}),\langle\beta_{0},\ldots,\beta_{\ell-1}\rangle:t\in Tm(\pi)\}<\alpha_{i+1}.

Proof.  First we see that c<α1c<\alpha_{1} from the fact that DD is indiscernible for c<x1c<x_{1}. Second we see that 0i<j<pk+3αj+αi<αp0\leq i<j<p\leq k+3\Rightarrow\alpha_{j}+\alpha_{i}<\alpha_{p}, 0i<j<pk+2αjαi<αp0\leq i<j<p\leq k+2\Rightarrow\alpha_{j}\alpha_{i}<\alpha_{p}, and 0i<j<pk+1αjαi<αp0\leq i<j<p\leq k+1\Rightarrow\alpha_{j}^{\alpha_{i}}<\alpha_{p} from the indiscerniblity for x2=x1+x0+1,x1(x0+1)<x2,x1x0+1<x2x_{2}=x_{1}+x_{0}+1,x_{1}(x_{0}+1)<x_{2},x_{1}^{x_{0}+1}<x_{2}. Third 0<i<jkαiαi<αj0<i<j\leq k\Rightarrow\alpha_{i}^{\alpha_{i}}<\alpha_{j} follows from the indiscernibility for x1x1<x2x_{1}^{x_{1}}<x_{2}. Finally by the third and the indiscernibility for ec(x1)<x2e_{c}(x_{1})<x_{2} we obtain ec(αi)<αi+1e_{c}(\alpha_{i})<\alpha_{i+1}. (2) yields the proposition. \Box

For formulas σ(QmxmQnxnθ)(1mn+1)\sigma\equiv\left(Q_{m}x_{m}\cdots Q_{n}x_{n}\theta\right)\,(1\leq m\leq n+1) and I={α1<<αn}[]nI=\{\alpha_{1}<\cdots<\alpha_{n}\}\in[\mathbb{N}]^{n}, let σ(I)\sigma^{(I)} be the Δ0\Delta_{0}-formula

σ(I):(Qmzm<α1Qnzn<αnm+1θ)\sigma^{(I)}:\equiv\left(Q_{m}z_{m}<\alpha_{1}\cdots Q_{n}z_{n}<\alpha_{n-m+1}\theta\right)

We write σ(I)\sigma^{(I)} for σ(I)\mathbb{N}\models\sigma^{(I)}.

For any formula φ\varphi occurring in the derivation π\pi, the following holds by the indiscernibiity for (φj)(X)(x0)\left(\varphi_{j}^{\prime}\right)^{(X)}(x_{0}).

β0,,β1<αi<αi+1<I,J[D]n[φ(I)(β0,,β1)φ(J)(β0,,β1)]\beta_{0},\ldots,\beta_{\ell-1}<\alpha_{i}<\alpha_{i+1}<I,J\in[D]^{n}\Rightarrow\left[\varphi^{(I)}(\beta_{0},\ldots,\beta_{\ell-1})\Leftrightarrow\varphi^{(J)}(\beta_{0},\ldots,\beta_{\ell-1})\right] (3)

To show Theorem 2.3, it suffices to show the following Theorem 2.5. Let Γ\Gamma be a sequent in the derivation π\pi. For J={αj,αj+1,,αj+n1}(0<jk)J=\{\alpha_{j},\alpha_{j+1},\ldots,\alpha_{j+n-1}\}\,(0<j\leq k), let φ(j):φ(J)\varphi^{(j)}:\equiv\varphi^{(J)}.

Theorem 2.5

Assume 𝖯𝖠dΓ{\sf PA}\vdash^{d}\Gamma, and for sequences (i0,,i1)(i_{0},\ldots,i_{\ell-1})\in\mathbb{N}^{\ell}, let i=max{ij:j<}2(d(π)d)i=\max\{i_{j}:j<\ell\}\leq 2(d(\pi)-d). Then {φ(i+2)(β0,,β1):φΓ}\bigvee\{\varphi^{(i+2)}(\beta_{0},\ldots,\beta_{\ell-1}):\varphi\in\Gamma\} holds for j<(βj<αij)\bigwedge_{j<\ell}(\beta_{j}<\alpha_{i_{j}}).

Corollary 2.6

Assume 𝖯𝖠Q1z1Q2z2Qnznθ{\sf PA}\vdash Q_{1}z_{1}Q_{2}z_{2}\cdots Q_{n}z_{n}\theta with θΔ0\theta\in\Delta_{0} and a sentence Q1z1Q2z2QnznθQ_{1}z_{1}Q_{2}z_{2}\cdots Q_{n}z_{n}\theta for Qi{,}Q_{i}\in\{\exists,\forall\}. Then there are natural numbers α1<α2<<αn\alpha_{1}<\alpha_{2}<\cdots<\alpha_{n} such that Q1z1<α1Q2z2<α2Qnzn<αnθ\mathbb{N}\models Q_{1}z_{1}<\alpha_{1}Q_{2}z_{2}<\alpha_{2}\cdots Q_{n}z_{n}<\alpha_{n}\theta.

Proof of Theorem 2.5 by induction on dd. Let us write dΓ\vdash^{d}\Gamma for 𝖯𝖠dΓ{\sf PA}\vdash^{d}\Gamma.

First consider the case for ()(\exists).

d1Γ,A(t)()dΓ\vdash^{d}\Gamma\vdash^{d-1}\Gamma,A(t)

Suppose ¬{φ(i+2)(β0,,β1):φΓ}\lnot\bigvee\{\varphi^{(i+2)}(\beta_{0},\ldots,\beta_{\ell-1}):\varphi\in\Gamma\}. Then ¬{φ(i+3)(β0,,β1):φΓ}\lnot\bigvee\{\varphi^{(i+3)}(\beta_{0},\ldots,\beta_{\ell-1}):\varphi\in\Gamma\} by dΓ\vdash^{d}\Gamma. IH yields for t1t(β0,,β1)t_{1}\equiv t(\beta_{0},\ldots,\beta_{\ell-1}), A(i+3)(t1)A^{(i+3)}(t_{1}). For the term tTm(π)t\in Tm(\pi) we obtain t1<αi+1<αi+2t_{1}<\alpha_{i+1}<\alpha_{i+2} by Proposition 2.4. Hence (xA)(i+2)(x<αi+2A(i+3))(\exists xA)^{(i+2)}\equiv(\exists x<\alpha_{i+2}A^{(i+3)}) follows.

Next consider the case for ()(\forall).

d1Γ,A(y)()dΓ\vdash^{d}\Gamma\vdash^{d-1}\Gamma,A(y)

By IH we can assume β<αi+2A(i+4)(β)\beta<\alpha_{i+2}\Rightarrow A^{(i+4)}(\beta). Hence x<αi+2A(i+4)(x)\forall x<\alpha_{i+2}A^{(i+4)}(x). (3) yields x<αi+2A(i+3)(x)\forall x<\alpha_{i+2}A^{(i+3)}(x), i.e., (xA)(i+2)(\forall xA)^{(i+2)}.

Finally consider the case for the complete induction.

d1Γ,A(0)d1Γ,¬A(a),A(a+1)d1Γ,¬A(t)dΓ\vdash^{d}\Gamma\lx@proof@logical@and\vdash^{d-1}\Gamma,A(0)\vdash^{d-1}\Gamma,\lnot A(a),A(a+1)\vdash^{d-1}\Gamma,\lnot A(t)

By IH we can assume A(i+3)(0)A^{(i+3)}(0). For terms tTm(π)t\in Tm(\pi) and t1t(β0,,β1)t_{1}\equiv t(\beta_{0},\ldots,\beta_{\ell-1}), we obtain t1<αi+1t_{1}<\alpha_{i+1} by Proposition 2.4. IH yields β<αi+1[A(i+3)(β)A(i+3)(β+1)]\forall\beta<\alpha_{i+1}\left[A^{(i+3)}(\beta)\to A^{(i+3)}(\beta+1)\right], and A(i+3)(t1)A^{(i+3)}(t_{1}). On the other hand we have ¬A(i+3)(t1)\lnot A^{(i+3)}(t_{1}) by IH. \Box

Assume 𝖯𝖠d(π)xθ0(θ0Δ0){\sf PA}\vdash^{d(\pi)}\exists x\,\theta_{0}\,(\theta_{0}\in\Delta_{0}). Theorem 2.5 yields (xθ0)(2)x<α2θ0\left(\exists x\,\theta_{0}\right)^{(2)}\equiv\exists x<\alpha_{2}\,\theta_{0}. Theorem 2.3 is shown.

For positive integers n,m,kn,m,k, let

D(n,m,k):=min{Kmax{n+2,m}:KΔ(k)m1+n}D(n,m,k):=\min\{K\geq\max\{n+2,m\}:K\to_{\Delta}(k)_{m}^{1+n}\}
Corollary 2.7
  1. 1.

    Let f(x)f(x) be a provably computable function in PA. Then there exists an n0n_{0} such that x(f(x)<Dn0(x))\forall x\in\mathbb{N}\left(f(x)<D_{n_{0}}(x)\right) for xDn0(x)=D(n0,n0,n0+x)x\mapsto D_{n_{0}}(x)=D(n_{0},n_{0},n_{0}+x).

  2. 2.

    nD(n)=D(n,n,2n)n\mapsto D(n)=D(n,n,2n) dominates every provably computable function in PA.

Proof.  2.7.1. Let π=π(x)\pi=\pi(x) be a derivation of yθ(x,y)\exists y\,\theta(x,y) in PA, and n0=max{2m(π)+6,2q(π)+c(π)1,3+c(π)1,q(π)+2d(π)+5}n_{0}=\max\{2^{m(\pi)+6},2q(\pi)+c(\pi)-1,3+c(\pi)-1,q(\pi)+2d(\pi)+5\}. For a natural number aa, let Γa\Gamma_{a} be a set of formulas obtained from Γ0\Gamma_{0} by replacing the formula c<x1c<x_{1} by max{c,a}<x1\max\{c,a\}<x_{1}. Let Ka=Dn0(a)K_{a}=D_{n_{0}}(a), and Da={α1<α0<α1<}D_{a}=\{\alpha_{-1}<\alpha_{0}<\alpha_{1}<\cdots\} be a diagonal homogeneous subset of KaK_{a} for Γa\Gamma_{a}, and in size #(Da)n0+a\#(D_{a})\geq n_{0}+a. We see easily a<α1a<\alpha_{1}. π(a)\pi(a) denotes the derivation of yθ(a,y)\exists y\,\theta(a,y) in PA obtained from π(x)\pi(x) by substituting the numeral aa for the variable xx.

Theorem 2.5 yields y<α3θ(a,y)\exists y<\alpha_{3}\,\theta(a,y), and y<Kaθ(a,y)\exists y<K_{a}\,\theta(a,y) by α3<Ka\alpha_{3}<K_{a},
2.7.2. This follows from Corollary 2.7.1 and the fact Dn0(a)D(a)D_{n_{0}}(a)\leq D(a) for an0a\geq n_{0}. \Box

References

  • [1] W. Buchholz and S. Wainer, Provably computable functions and the fast growing hierarchy, in Logic and Combinatorics ed. by S. Simpson, Contemporary Math. vol 65, Amer. Math. Soc. (1987), pp.179-198.
  • [2] A. Kanamori and K. McAloon, On Gödel incompleteness and finite combinatorics, Ann. Pure Appl. Logic 33(1987), 23-41.
  • [3] J. Paris and L. Harrington, A mathematical incompleteness in Peano arithmetic, in Handbook of Mathematical Logic ed. by J. Barwise, North-Holland, 1977, pp. 1133-1142.
  • [4] H. Schwichtenberg and S. Wainer, Proofs and Computations. Perspectives in Logic, Cambridge UP, 2012.