This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Two-point functions from chiral kinetic theory in magnetized plasma

Lixin Yang [email protected] School of Physics and Astronomy, Sun Yat-Sen University, Zhuhai 519082, China
Abstract

We study the two-point functions from chiral kinetic theory which characterize the response to perturbative vector and axial gauge fields in magnetized chiral plasma. In the lowest Landau level approximation, the solution of chiral kinetic equations gives density waves of electric and axial charges, which contain chiral magnetic wave implied by the axial anomaly and magnetic field. We then obtain the constitutive relations for covariant currents and stress tensor that involving the density waves. By considering the difference between consistent and covariant anomalies explicitly, the correlators of consistent currents and stress tensor satisfy derivative symmetry, and therefore allow an effective action for the perturbative gauge fields as the generating functional of the correlators. We also verify the derivative symmetry of the correlators agrees with the Onsager relations.

I Introduction

It has been revealed that axial anomaly signifies a type of gapless collective excitation arising from the coupling of the the electric and chiral charge density waves, which is known as the chiral magnetic wave (CMW) Kharzeev:2010gd . These density waves are closely related to the anomalous transports of chiral magnetic effect (CME) Vilenkin:1980fu ; Kharzeev:2004ey ; Kharzeev:2007tn ; Fukushima:2008xe ; Son:2009tf ; Neiman:2010zi and chiral separation effect (CSE) Metlitski:2005pr ; Son:2004tq . For the quark-gluon plasma with a strong magnetic field, it has been demonstrated in a dimensionally reduced (1+1)D theory Kharzeev:2010gd that the CMW indeed stems from the connections J0=J15J_{0}=J_{1}^{5}, J05=J1J_{0}^{5}=J_{1} between the vector JJ and axial J5J^{5} currents of CME and CSE. Besides the transports along magnetic field, axial anomaly also implies anomalous currents from chiral vortical effects (CVE) Vilenkin:1980zv ; Erdmenger:2008rm ; Banerjee:2008th ; Son:2009tf ; Neiman:2010zi ; Landsteiner:2011cp as responses to vorticity.

The chiral anomalous effects have been investigated in the framework of chiral kinetic theory (CKT) Son:2012wh ; Son:2012zy ; Stephanov:2012ki ; Gao:2012ix ; Pu:2010as ; Chen:2012ca ; Hidaka:2016yjf ; Manuel:2013zaa ; Manuel:2014dza ; Wu:2016dam ; Mueller:2017arw ; Mueller:2017lzw ; Huang:2018wdl ; Gao:2018wmr ; Carignano:2018gqt ; Lin:2019ytz ; Carignano:2019zsh ; Liu:2018xip ; Weickgenannt:2019dks ; Gao:2019znl ; Hattori:2019ahi ; Wang:2019moi ; Yang:2020hri ; Liu:2020flb ; Hayata:2020sqz ; chen2021equaltime , which can be viewed as an expansion in weak electromagnetic field and spacetime gradient. Furthermore, CKT with Landau level basis Lin:2019fqo ; Gao:2020ksg ; Hattori:2016lqx ; Sheng:2017lfu ; Fukushima:2019ugr has been derived in a different expansion scheme to study plasma magnetized by non-perturbative magnetic field. Particularly, in a strong magnetic field, the CKT in lowest Landau level approximation (LLLA) and collisionless limit has been applied to study photon self-energy Gao:2020ksg and magneto-vortical effect Lin:2021sjw . Recently, CKT in weak field expansion has been generalized to incorporate axial gauge field to derive correlation functions of axial currents and stress tensor Chen:2021azy . It would be interesting to study the transport phenomena in magnetized plasma as responses to perturbative vector and axial gauge fields with CKT.

In linear regime, the transport coefficients are related to the retarded two-point correlation functions via the Kubo formulas. The two-point function is important in its own right, e.g. the photon self-energy as a fundamental quantity characterizing the vacuum polarization by electromagnetic field has been intensively studied for magnetized plasma in field theory Danielsson:1995rh ; PhysRevD.83.111501 ; Chao:2014wla ; Fukushima:2015wck ; Chao:2016ysx ; Hattori:2017xoo ; Singh:2020fsj ; Wang:2021eud . On the other hand, as a contrast to the full non-perturbative effective Lagrangian of vacuum for constant electromagnetic field established by Heisenberg and Euler Heisenberg:1936nmg in the study of vacuum polarization, an effective action for the perturbative gauge fields in magnetized medium can also be constructed as the generating functional of the correlators.

In this paper, we introduce perturbative vector and axial gauge potentials to CKT in a strong background magnetic field to study the correlators among currents Jμ,J5μJ^{\mu},\,J_{5}^{\mu} and energy-momentum tensor TμνT^{{\mu}{\nu}}. The CKT results, which express Jμ,J5μJ^{\mu},\,J_{5}^{\mu} and TμνT^{{\mu}{\nu}} in terms of the thermodynamic variables, give the constitutive relations that involve CMW mode as a consequence of axial anomaly and the presence of magnetic field. It is known that there is distinction between consistent and covariant anomalies Bardeen:1984pm , see also 2016AcPPB..47.2617L for a review, which is more explicit in the presence of axial gauge field. We find that CKT gives covariant currents, while the consistent currents are obtained by adding the Chern-Simons currents. The correlators of the consistent currents and stress tensor satisfy the derivative symmetry upon the interchange of the functional derivatives. It turns out that the derivative symmetry of correlators also fit the Onsager relations Hernandez:2017mch .

The paper is organized as follows: In Section (II), we discuss the property of current-current correlators in consistent and covariant anomalies with perturbative gauge potentials and strong background magnetic field. The density waves of vector and axial charges including CMW is obtained in this condition. In Section (III), we give a brief introduction of the covariant CKT with the same external field configuration. We then solve the chiral kinetic equations (CKE) to derive the constitutive relations of currents and stress tensor in Section (IV), where we reproduce the density waves in the currents and verify the property of the resulting correlators, whose generating functional is derived as the effective action for gauge fields.

Throughout this paper, we set =1{\hbar}=1 and c=1c=1. We take positive charge qf=eq_{f}=e for chiral fermions and absorb electric charge ee into the gauge potentials. We use the notations (xμ)=(x0,𝐱),(pμ)=(p0,𝐩)(x^{\mu})=(x_{0},{\bf x}),\,(p^{\mu})=(p_{0},{\bf p}) for four-vectors and adopt mostly minus signature. We also define X[μYν]XμYνXνYμX^{[{\mu}}Y^{{\nu}]}\equiv X^{\mu}Y^{\nu}-X^{\nu}Y^{\mu} and X{μYν}XμYν+XνYμX^{\{{\mu}}Y^{{\nu}\}}\equiv X^{\mu}Y^{\nu}+X^{\nu}Y^{\mu} to be concise.

II Correlators from effective action in axial anomaly

In the presence of axial gauge field, the difference between consistent current 𝒥μ{\cal J}^{\mu} and covariant current JμJ^{\mu} is nontrivial 2016AcPPB..47.2617L . With the explicitly conserved vector current, the consistent anomaly writes

μ𝒥μ=\displaystyle\partial_{\mu}{\cal J}^{\mu}= 0,\displaystyle 0\,,
μ𝒥5μ=\displaystyle\partial_{\mu}{\cal J}_{5}^{\mu}= 148π2ϵμνρλ(3FμνFρλ+Fμν5Fρλ5).\displaystyle-\frac{1}{48{\pi}^{2}}{\epsilon}^{{\mu}{\nu}{\rho}{\lambda}}\left(3F_{{\mu}{\nu}}F_{{\rho}{\lambda}}+F_{{\mu}{\nu}}^{5}F_{{\rho}{\lambda}}^{5}\right)\,. (1)

For the gauge invariant currents, one has covariant anomaly,

μJμ=\displaystyle\partial_{\mu}J^{\mu}= 18π2ϵμνρλFμνFρλ5,\displaystyle-\frac{1}{8{\pi}^{2}}{\epsilon}^{{\mu}{\nu}{\rho}{\lambda}}F_{{\mu}{\nu}}F_{{\rho}{\lambda}}^{5}\,,
μJ5μ=\displaystyle\partial_{\mu}J_{5}^{\mu}= 116π2ϵμνρλ(FμνFρλ+Fμν5Fρλ5).\displaystyle-\frac{1}{16{\pi}^{2}}{\epsilon}^{{\mu}{\nu}{\rho}{\lambda}}\left(F_{{\mu}{\nu}}F_{{\rho}{\lambda}}+F_{{\mu}{\nu}}^{5}F_{{\rho}{\lambda}}^{5}\right)\,. (2)

The currents are related by the Chern-Simons currents as follows,

𝒥μ14π2ϵμνρλAν5Fρλ=Jμ,\displaystyle{\cal J}^{\mu}-\frac{1}{4{\pi}^{2}}{\epsilon}^{{\mu}{\nu}{\rho}{\lambda}}A_{\nu}^{5}F_{{\rho}{\lambda}}=J^{\mu}\,,
𝒥5μ112π2ϵμνρλAν5Fρλ5=J5μ.\displaystyle{\cal J}_{5}^{\mu}-\frac{1}{12{\pi}^{2}}{\epsilon}^{{\mu}{\nu}{\rho}{\lambda}}A_{\nu}^{5}F_{{\rho}{\lambda}}^{5}=J_{5}^{\mu}\,. (3)

We study the magnetized chiral plasma with a constant fluid velocity uμu^{\mu} in the strong magnetic field BμB^{\mu}. To this end, we take vanishing axial gauge field A5μ=0A_{5}^{\mu}=0 and O(1)O(1) magnetic field Fμν=[μAν]=ϵμνρσuρBσF_{{\mu}{\nu}}=\partial_{[{\mu}}A_{{\nu}]}={\epsilon}_{{\mu}{\nu}{\rho}{\sigma}}u^{\rho}B^{\sigma} as the constant backgrounds. In the perturbations, we turn on vector gauge field aλa^{\lambda} and axial gauge field a5λa_{5}^{\lambda} symmetrically at O(a)O(a) which give fμν=[μaν]=E[μuν]+ϵμνρσuρσf_{{\mu}{\nu}}=\partial_{[{\mu}}a_{{\nu}]}=E_{[{\mu}}u_{{\nu}]}+{\epsilon}_{{\mu}{\nu}{\rho}{\sigma}}u^{\rho}{\cal B}^{\sigma} and fμν5=[μaν]5=E[μ5uν]+ϵμνρσuρ5σf_{{\mu}{\nu}}^{5}=\partial_{[{\mu}}a_{{\nu}]}^{5}=E_{[{\mu}}^{5}u_{{\nu}]}+{\epsilon}_{{\mu}{\nu}{\rho}{\sigma}}u^{\rho}{\cal B}_{5}^{\sigma} at O(a)O(\partial a). This is also the perturbation expansion scheme of the CKT in the next section.

To O(a)O(\partial a), the Ward identities in (II) and (II) are reduced to

μ𝒥μ=\displaystyle\partial_{\mu}{\cal J}^{\mu}= μJμ+18π2ϵμνρλFμνfρλ5=0,\displaystyle\,\partial_{\mu}J^{\mu}+\frac{1}{8{\pi}^{2}}{\epsilon}^{{\mu}{\nu}{\rho}{\lambda}}F_{{\mu}{\nu}}f_{{\rho}{\lambda}}^{5}=0\,,
μ𝒥5μ=\displaystyle\partial_{\mu}{\cal J}_{5}^{\mu}= μJ5μ=18π2ϵμνρλFμνfρλ,\displaystyle\,\partial_{\mu}J_{5}^{\mu}=-\frac{1}{8{\pi}^{2}}{\epsilon}^{{\mu}{\nu}{\rho}{\lambda}}F_{{\mu}{\nu}}f_{{\rho}{\lambda}}\,, (4)

and the currents are

𝒥μ=\displaystyle{\cal J}^{\mu}= Jμ+14π2ϵμνρλaν5Fρλ,\displaystyle J^{\mu}+\frac{1}{4{\pi}^{2}}{\epsilon}^{{\mu}{\nu}{\rho}{\lambda}}a_{\nu}^{5}F_{{\rho}{\lambda}}\,,
𝒥5μ=\displaystyle{\cal J}_{5}^{\mu}= J5μ.\displaystyle J_{5}^{\mu}\,. (5)

In the regime of strong magnetic field, one can effectively perform a dimensional reduction from (3+1)D to (1+1)D, where the orthonormal vectors uμu^{\mu} and bμ=Bμ/Bb^{\mu}=B^{\mu}/B give the directions of temporal and spatial axes severally. In this effective (1+1)D theory, the metric writes g^μν=uμuνbμbν{\hat{g}}^{{\mu}{\nu}}=u^{\mu}u^{\nu}-b^{\mu}b^{\nu}, while the anti-symmetric tensor is ϵμν=u[μbν]{\epsilon}^{{\mu}{\nu}}=u^{[{\mu}}b^{{\nu}]}. Then, the Ward identities (II) to O(a)O(\partial a) can be further written as

μ𝒥μ=\displaystyle\partial_{\mu}{\cal J}^{\mu}= μJμB4π2ϵρλfρλ5=0,\displaystyle\,\partial_{\mu}J^{\mu}-\frac{B}{4{\pi}^{2}}{\epsilon}^{{\rho}{\lambda}}f_{{\rho}{\lambda}}^{5}=0\,,
μ𝒥5μ=\displaystyle\partial_{\mu}{\cal J}_{5}^{\mu}= μJ5μ=B4π2ϵρλfρλ,\displaystyle\,\partial_{\mu}J_{5}^{\mu}=\frac{B}{4{\pi}^{2}}{\epsilon}^{{\rho}{\lambda}}f_{{\rho}{\lambda}}\,, (6)

which can be understood as the genuine (1+1)D anomalies 12πϵρλfρλ5\frac{1}{2{\pi}}{\epsilon}^{{\rho}{\lambda}}f_{{\rho}{\lambda}}^{5} and 12πϵρλfρλ\frac{1}{2{\pi}}{\epsilon}^{{\rho}{\lambda}}f_{{\rho}{\lambda}} multiplied by the Landau-level degeneracy B2π\frac{B}{2{\pi}}. Likewise, the currents in (II) write

𝒥μ=\displaystyle{\cal J}^{\mu}= JμB2π2ϵμνaν5,\displaystyle J^{\mu}-\frac{B}{2{\pi}^{2}}{\epsilon}^{{\mu}{\nu}}a_{\nu}^{5}\,,
𝒥5μ=\displaystyle{\cal J}_{5}^{\mu}= J5μ.\displaystyle J_{5}^{\mu}\,. (7)

Meanwhile, the dimensional reducd vector and axial currents are connected by the leading order constitutive relation,

J5μ=ϵμνJν.\displaystyle J_{5}^{\mu}=-{\epsilon}^{{\mu}{\nu}}J_{\nu}\,. (8)

Note we have used the covariant currents in the above gauge invariant identity which will be confirmed by the CKT solution. While the consistent currents are not gauge invariant in general due to the additional gauge dependent Chern-Simons currents, a nice characteristic thereof is that they can be interpreted as the functional derivatives of effective action. The consequential current-current correlators are constrained by the derivative symmetry since the order of variations does not matter. Concretely, we have

𝒢VVμνδ𝒥μδaν=δ2δaνδaμ,𝒢AAμνδ𝒥5μδaν5=δ2δaν5δaμ5,\displaystyle{\cal G}_{VV}^{{\mu}{\nu}}\equiv\frac{{\delta}{\cal J}^{\mu}}{{\delta}a_{\nu}}=\frac{{\delta}^{2}{\cal L}}{{\delta}a_{\nu}\,{\delta}a_{\mu}}\,,\qquad{\cal G}_{AA}^{{\mu}{\nu}}\equiv\frac{{\delta}{\cal J}_{5}^{\mu}}{{\delta}a_{\nu}^{5}}=\frac{{\delta}^{2}{\cal L}}{{\delta}a_{\nu}^{5}\,{\delta}a_{\mu}^{5}}\,,
𝒢VAμνδ𝒥μδaν5=δ2δaν5δaμ,𝒢AVμνδ𝒥5μδaν=δ2δaνδaμ5,\displaystyle{\cal G}_{VA}^{{\mu}{\nu}}\equiv\frac{{\delta}{\cal J}^{\mu}}{{\delta}a_{\nu}^{5}}=\frac{{\delta}^{2}{\cal L}}{{\delta}a_{\nu}^{5}\,{\delta}a_{\mu}}\,,\qquad{\cal G}_{AV}^{{\mu}{\nu}}\equiv\frac{{\delta}{\cal J}_{5}^{\mu}}{{\delta}a_{\nu}}=\frac{{\delta}^{2}{\cal L}}{{\delta}a_{\nu}\,{\delta}a_{\mu}^{5}}\,, (9)

where we have defined the correlators with effective Lagrangian density. In momentum space, the derivative symmetry relations write

𝒢VVμν(q)=𝒢VVνμ(q),𝒢AAμν(q)=𝒢AAνμ(q),𝒢VAμν(q)=𝒢AVνμ(q),\displaystyle{\cal G}_{VV}^{{\mu}{\nu}}(q)={\cal G}_{VV}^{{\nu}{\mu}}(-q)\,,\qquad{\cal G}_{AA}^{{\mu}{\nu}}(q)={\cal G}_{AA}^{{\nu}{\mu}}(-q)\,,\qquad{\cal G}_{VA}^{{\mu}{\nu}}(q)={\cal G}_{AV}^{{\nu}{\mu}}(-q)\,, (10)

which hold beyond (1+1)D. Though the covariant currents can not be thought of as functional derivatives of effective action, we can still define the correlators in form as,

GVVμνδJμδaν,GAAμνδJ5μδaν5,\displaystyle G_{VV}^{{\mu}{\nu}}\equiv\frac{{\delta}J^{\mu}}{{\delta}a_{\nu}}\,,\qquad G_{AA}^{{\mu}{\nu}}\equiv\frac{{\delta}J_{5}^{\mu}}{{\delta}a_{\nu}^{5}}\,,
GVAμνδJμδaν5,GAVμνδJ5μδaν.\displaystyle G_{VA}^{{\mu}{\nu}}\equiv\frac{{\delta}J^{\mu}}{{\delta}a_{\nu}^{5}}\,,\qquad G_{AV}^{{\mu}{\nu}}\equiv\frac{{\delta}J_{5}^{\mu}}{{\delta}a_{\nu}}\,. (11)

By noting the connection (II) to O(a)O(\partial a), 𝒢{\cal G} and GG are related as

𝒢VVμν=\displaystyle{\cal G}_{VV}^{{\mu}{\nu}}= GVVμν,𝒢VAμν=GVAμνB2π2u[μbν],\displaystyle G_{VV}^{{\mu}{\nu}}\,,\qquad{\cal G}_{VA}^{{\mu}{\nu}}=G_{VA}^{{\mu}{\nu}}-\frac{B}{2{\pi}^{2}}u^{[{\mu}}b^{{\nu}]}\,,
𝒢AAμν=\displaystyle{\cal G}_{AA}^{{\mu}{\nu}}= GAAμν,𝒢AVμν=GAVμν.\displaystyle G_{AA}^{{\mu}{\nu}}\,,\qquad{\cal G}_{AV}^{{\mu}{\nu}}=G_{AV}^{{\mu}{\nu}}\,. (12)

Before closing this section, we compute the response to the perturbative aμa^{\mu} and a5μa_{5}^{\mu} in the effective (1+1)D theory. In such condition, there are only temporal and longitudinal components in the currents,

Jμ=nuμ+n5bμ,J5μ=n5uμ+nbμ.\displaystyle J^{\mu}=n\,u^{\mu}+n_{5}\,b^{\mu}\,,\qquad J_{5}^{\mu}=n_{5}\,u^{\mu}+n\,b^{\mu}\,. (13)

Using constitutive relation (8) together with the Fourier transformation of the anomaly equations (II), one easily finds

n=Δμ2π2B,n5=Δμ52π2B,\displaystyle n=\frac{{\Delta}{\mu}}{2{\pi}^{2}}B\,,\qquad n_{5}=\frac{{\Delta}{\mu}_{5}}{2{\pi}^{2}}B\,, (14)

where we have defined

Δμ\displaystyle{\Delta}{\mu}\equiv q¯3(q¯3a¯0q¯0a¯3)+q¯0(q¯3a¯05q¯0a¯35)q¯02q¯32,\displaystyle\frac{{\bar{q}}_{3}\left({\bar{q}}_{3}{\bar{a}}_{0}-{\bar{q}}_{0}{\bar{a}}_{3}\right)+{\bar{q}}_{0}\left({\bar{q}}_{3}{\bar{a}}_{0}^{5}-{\bar{q}}_{0}{\bar{a}}_{3}^{5}\right)}{{\bar{q}}_{0}^{2}-{\bar{q}}_{3}^{2}}\,,
Δμ5\displaystyle{\Delta}{\mu}_{5}\equiv q¯0(q¯3a¯0q¯0a¯3)+q¯3(q¯3a¯05q¯0a¯35)q¯02q¯32.\displaystyle\frac{{\bar{q}}_{0}\left({\bar{q}}_{3}{\bar{a}}_{0}-{\bar{q}}_{0}{\bar{a}}_{3}\right)+{\bar{q}}_{3}\left({\bar{q}}_{3}{\bar{a}}_{0}^{5}-{\bar{q}}_{0}{\bar{a}}_{3}^{5}\right)}{{\bar{q}}_{0}^{2}-{\bar{q}}_{3}^{2}}\,. (15)

Here a¯{\bar{a}} and q¯{\bar{q}} are the gauge potentials and momentum in the local rest frame of the fluid, which can be obtained by the Lorentz tansformation defined in Appendix (A) . We interpret Δμ{\Delta}{\mu} and Δμ5{\Delta}{\mu}_{5} as the change of chemical potential μ{\mu} and axial chemical potential μ5{\mu}_{5} characterizing the redistribution of the chiral plasma induced by the gauge fields aμa^{\mu} and a5μa_{5}^{\mu}. Correspondingly, n5n_{5} and nn give the Fourier transformed densities of electric and axial charges, which are related to the anomalous transports of CME and CSE. In coordinate space, Δμ{\Delta}{\mu} and Δμ5{\Delta}{\mu}_{5} write

Δμ=\displaystyle{\Delta}{\mu}= 12𝒟(xy)[b(ϵμνfμν)+u(ϵμνfμν5)],\displaystyle\frac{1}{2}{\cal D}(x-y)\left[b\cdot\partial\left({\epsilon}^{{\mu}{\nu}}f_{{\mu}{\nu}}\right)+u\cdot\partial\left({\epsilon}^{{\mu}{\nu}}f_{{\mu}{\nu}}^{5}\right)\right]\,,
Δμ5=\displaystyle{\Delta}{\mu}_{5}= 12𝒟(xy)[u(ϵμνfμν)+b(ϵμνfμν5)],\displaystyle\frac{1}{2}{\cal D}(x-y)\left[u\cdot\partial\left({\epsilon}^{{\mu}{\nu}}f_{{\mu}{\nu}}\right)+b\cdot\partial\left({\epsilon}^{{\mu}{\nu}}f_{{\mu}{\nu}}^{5}\right)\right]\,, (16)

with ^μg^μνν\hat{\partial}^{\mu}\equiv{\hat{g}}^{{\mu}{\nu}}\partial_{\nu} and the Green’s function 𝒟(xy){\cal D}(x-y) being the inverse of the operator ^μ^μ\hat{\partial}_{\mu}\hat{\partial}^{\mu},

^μ^μ𝒟(xy)=d4yδ(4)(xy).\displaystyle\hat{\partial}_{\mu}\hat{\partial}^{\mu}{\cal D}(x-y)=\int d^{4}y\,{\delta}^{(4)}(x-y)\,. (17)

The non-local factor 1q¯02q¯32\frac{1}{{\bar{q}}_{0}^{2}-{\bar{q}}_{3}^{2}} in nn and n5n_{5} indicates there are density waves of electric and axial charges propagate with frequency q¯0{\bar{q}}_{0} and momentum q¯3{\bar{q}}_{3} along the direction of the magnetic field. The poles q¯0±q¯3=0{\bar{q}}_{0}\pm{\bar{q}}_{3}=0 give the dispersion relation of the gapless collective excitation in the chiral plasma, which describes the CMW propagating with the speed of light in the limit of strong magnetic field. The poles are independent of the limit aμ0a^{\mu}\to 0 and a5μ0a_{5}^{\mu}\to 0, which means the existence of CMW does not rely on the perturbation of the gauge potentials.

III Chiral kinetic theory with vector/axial gauge fields

The Lorentz covariant CKE with Landau level states have been given by Lin:2021sjw in the collisonless limit,

pμjsμ\displaystyle p_{{\mu}}j_{s}^{{\mu}} =0,\displaystyle=0\,, (18)
Δμjsμ\displaystyle{\Delta}_{{\mu}}j_{s}^{{\mu}} =0,\displaystyle=0\,, (19)
p[μjsν]\displaystyle p^{[{\mu}}j_{s}^{{\nu}]} =s2ϵμνρσΔρjσs,\displaystyle=-\frac{s}{2}{\epsilon}^{{\mu}{\nu}{\rho}{\sigma}}{\Delta}_{{\rho}}j_{{\sigma}}^{s}\,, (20)

where Δμ=μpν(Fμν+fμνs){\Delta}_{\mu}=\partial_{\mu}-\frac{\partial}{\partial p_{\nu}}\left(F_{{\mu}{\nu}}+f_{{\mu}{\nu}}^{s}\right) with helicity s=±1s=\pm 1 for right/left-handed chiral fermions and fμνs=fμν+sfμν5f_{{\mu}{\nu}}^{s}=f_{{\mu}{\nu}}+sf_{{\mu}{\nu}}^{5}, which means the perturbative left-handed and right-handed gauge fields, or equivalently, vector and axial gauge fields are taken on the equal footing. We note that in Gao:2020ksg , it has been verified that the transport equation agrees with the anomalous Ward identity. Repeating the same procedure, one readily reproduces the covariant anomaly (II) from (19). This implies that CKT gives covariant currents, which will be checked in the final solutions.

The CKE (18) to (20) are valid to O(a)O(\partial a) expansion. Therefore we seek solution of jsμj_{s}^{\mu} to the first order in perturbation aa and gradient a\partial a,

jsμ=j(0)sμ+jasμ+𝒜sj𝒜sμ,\displaystyle j_{s}^{\mu}=j_{(0)s}^{\mu}+j_{a\,s}^{\mu}+\sum_{{\cal A}s}j_{{\cal A}s}^{\mu}\,, (21)

where j(0)sμj_{(0)s}^{\mu} is the O(1)O(1) background solution while jasμj_{a\,s}^{\mu} is solution for the O(a)O(a) perturbations asμa_{s}^{\mu}. The last term j𝒜sμ\sum j_{{\cal A}s}^{\mu} is the solution for the O(a)O(\partial a) perturbations, where 𝒜s=Es,Es,s,s{\cal A}_{s}=E_{\parallel}^{s},E_{\perp}^{s},{\cal B}_{\parallel}^{s},{\cal B}_{\perp}^{s} denote parallel/perpendicular electric/magnetic field respectively as is detailed in Appendix (B).

The O(1)O(1) background solution for j(0)sμj_{(0)s}^{\mu} in LLL has been given as

j(0)sμ=\displaystyle j_{(0)s}^{{\mu}}= (u+sb)μδ(p^(u+sb))fs(p^u)epT2B\displaystyle(u+sb)^{{\mu}}{\delta}({\hat{p}}\cdot(u+sb))f_{s}({\hat{p}}\cdot u)e^{\frac{p_{T}^{2}}{B}}
=\displaystyle= (u+sb)μδ(p(u+sb))fs(pu)epT2B(u+sb)μjs,\displaystyle(u+sb)^{{\mu}}{\delta}(p\cdot(u+sb))f_{s}(p\cdot u)e^{\frac{p_{T}^{2}}{B}}\equiv(u+sb)^{{\mu}}j_{s}\,, (22)

where p^μ{\hat{p}}^{\mu} is the (1+1)D momentum and pTμp_{T}^{\mu} is the rest part transverse to both uμu^{\mu} and bμb^{\mu}. They are defined by the (1+1)D metric g^μν=uμuνbμbν{\hat{g}}^{{\mu}{\nu}}=u^{{\mu}}u^{{\nu}}-b^{{\mu}}b^{{\nu}} and transverse projector Pμνg^μνgμνP^{{\mu}{\nu}}\equiv{\hat{g}}^{{\mu}{\nu}}-g^{{\mu}{\nu}} as p^μg^μνpν=(pu)uμ(pb)bμ{\hat{p}}^{\mu}\equiv{\hat{g}}^{{\mu}{\nu}}p_{\nu}=(p\cdot u)u^{\mu}-(p\cdot b)b^{\mu} and pTμPμνpν=pμp^μp_{T}^{\mu}\equiv-P^{{\mu}{\nu}}p_{\nu}=p^{\mu}-{\hat{p}}^{\mu}. These projections confine the LLL background currents to be effective (1+1)D since the pTp_{T} dependent factor epT2Be^{\frac{p_{T}^{2}}{B}} only gives Landau-level degeneracy B2π\frac{B}{2{\pi}}. The distribution function involving fermion energy is defined as

fs(pu)=2(2π)3r=±rθ(rpu)er(puμs)/T+1,\displaystyle f_{s}(p\cdot u)=\frac{2}{(2{\pi})^{3}}\sum_{r=\pm}\frac{r{\theta}(rp\cdot u)}{e^{r\left(p\cdot u-{\mu}_{s}\right)/T}+1}\,, (23)

where μs=μ+sμ5{\mu}_{s}={\mu}+s{\mu}_{5} is the chemical potential for chiral fermions and TT is temperature, which are taken as constant for simplicity. Also, to be concise, when solving the CKE, we focus on the right-handed fermions and suppress helicity ss in the notation, which will be restored in the final solution.

IV Solution to chiral kinetic equations

To begin with, we examine the structure of the CKE by analyzing perturbative solution at O(a)O(a) and O(a)O(\partial a) separately. Substituting the perturbative expansion (21) into CKE (18) to (20) and noting the background solution (III) automatically satisfies the CKE, at O(a)O(a) we obtain

pμjaμ\displaystyle p_{{\mu}}j_{a}^{{\mu}} =0,\displaystyle=0\,, (24)
Fμνpνjaμ\displaystyle F_{{\mu}{\nu}}\frac{\partial}{\partial p_{\nu}}j_{a}^{{\mu}} =0,\displaystyle=0\,, (25)
p[μjaν]12ϵμνρσFρλpλjσa\displaystyle p^{[{\mu}}j_{a}^{{\nu}]}-\frac{1}{2}{\epsilon}^{{\mu}{\nu}{\rho}{\sigma}}F_{{\rho}{\lambda}}\frac{\partial}{\partial p_{\lambda}}j_{{\sigma}}^{a} =0.\displaystyle=0. (26)

Since (24) through (26) are homogeneous equations, which are generally satisfied by the solution with a structure similar to the LL states (III), we take the ansatz jaμ=(u+b)μjaj_{a}^{\mu}=(u+b)^{\mu}j_{a} with jaδ(p(u+b))epT2Bj_{a}\propto{\delta}(p\cdot(u+b))e^{\frac{p_{T}^{2}}{B}} as O(a)O(a) redistribution of the LLL state.

At O(a)O(\partial a), the CKE with constant fluid velocity can be grouped into four cases for 𝒜=E,E,,{\cal A}=E_{\parallel},E_{\perp},{\cal B}_{\parallel},{\cal B}_{\perp},

pμj𝒜μ=\displaystyle p_{\mu}j_{{\cal A}}^{\mu}= 0,\displaystyle 0\,, (27)
Fμνpνj𝒜μ=\displaystyle F_{{\mu}{\nu}}\frac{\partial}{\partial p_{\nu}}j_{{\cal A}}^{\mu}= μ𝒜jaμfμν𝒜pνj(0)μ,\displaystyle\partial_{\mu}^{\cal A}j_{a}^{{\mu}}-f_{{\mu}{\nu}}^{{\cal A}}\frac{\partial}{\partial p_{\nu}}j_{(0)}^{\mu}\,, (28)
p[μj𝒜ν]12ϵμνρσFρλpλjσ𝒜=\displaystyle p^{[{\mu}}j_{{\cal A}}^{{\nu}]}-\frac{1}{2}{\epsilon}^{{\mu}{\nu}{\rho}{\sigma}}F_{{\rho}{\lambda}}\frac{\partial}{\partial p_{\lambda}}j_{\sigma}^{{\cal A}}= 12ϵμνρσ(ρ𝒜jσafρλ𝒜pλjσ(0)),\displaystyle-\frac{1}{2}{\epsilon}^{{\mu}{\nu}{\rho}{\sigma}}\left(\partial_{\rho}^{\cal A}j_{{\sigma}}^{a}-f_{{\rho}{\lambda}}^{{\cal A}}\frac{\partial}{\partial p_{\lambda}}j_{\sigma}^{(0)}\right)\,, (29)

where μ𝒜ja\partial_{\mu}^{\cal A}j_{a} are defined by splitting the gradient of jaj_{a} into four terms in accordance to 𝒜{\cal A},

μja=\displaystyle\partial_{\mu}j_{a}= (uμ¯0+wμk¯k+bμ¯3)(a¯0jaa¯0+a¯kjaa¯k+a¯3jaa¯3)\displaystyle\left(u_{\mu}\bar{\partial}_{0}+w_{\mu}^{k}\bar{\partial}_{k}+b_{\mu}\bar{\partial}_{3}\right)\left({\bar{a}}_{0}\frac{\partial j_{a}}{\partial{\bar{a}}_{0}}+{\bar{a}}_{k}\frac{\partial j_{a}}{\partial{\bar{a}}_{k}}+{\bar{a}}_{3}\frac{\partial j_{a}}{\partial{\bar{a}}_{3}}\right)
=\displaystyle= (uμ¯0+bμ¯3)(a¯0jaa¯0+a¯3jaa¯3)+wμk¯ka¯ijaa¯i\displaystyle\left(u_{\mu}\bar{\partial}_{0}+b_{\mu}\bar{\partial}_{3}\right)\left({\bar{a}}_{0}\frac{\partial j_{a}}{\partial{\bar{a}}_{0}}+{\bar{a}}_{3}\frac{\partial j_{a}}{\partial{\bar{a}}_{3}}\right)+w_{\mu}^{k}\bar{\partial}_{k}{\bar{a}}_{i}\frac{\partial j_{a}}{\partial{\bar{a}}_{i}}
+(uμ¯0a¯kjaa¯k+wμk¯ka¯0jaa¯0)+(wμk¯ka¯3jaa¯3+bμ¯3a¯kjaa¯k)\displaystyle\quad+\left(u_{\mu}\bar{\partial}_{0}{\bar{a}}_{k}\frac{\partial j_{a}}{\partial{\bar{a}}_{k}}+w_{\mu}^{k}\bar{\partial}_{k}{\bar{a}}_{0}\frac{\partial j_{a}}{\partial{\bar{a}}_{0}}\right)+\left(w_{\mu}^{k}\bar{\partial}_{k}{\bar{a}}_{3}\frac{\partial j_{a}}{\partial{\bar{a}}_{3}}+b_{\mu}\bar{\partial}_{3}{\bar{a}}_{k}\frac{\partial j_{a}}{\partial{\bar{a}}_{k}}\right)
\displaystyle\equiv μEja+μja+μEja+μja.\displaystyle\partial_{\mu}^{E\parallel}j_{a}+\partial_{\mu}^{{\cal B}\parallel}j_{a}+\partial_{\mu}^{E\perp}j_{a}+\partial_{\mu}^{{\cal B}\perp}j_{a}\,. (30)

IV.1 Perturbative solutions in all possible cases

We start with the case of parallel electric field EμE_{\parallel}^{\mu} sourced from μEja\partial_{\mu}^{E\parallel}j_{a}. In collisonless limit, there are no dissipative transports such as electric current along EμE_{\mu}. Therefore we exclude dissipative solution proportional to pμEμp^{\mu}E_{\mu}. Since there is no other solution at O(a)O(\partial a) in the EE_{\parallel} situation, we expect parallel electric field only leads to classical motion of Landau level states in the longitudinal direction. In the LLLA, this classical longitudinal motion amounts to the redistribution of the LLL state jaμj_{a}^{\mu}, which satisfies homogeneous CKE (24) to (26) automatically. In order to let the CKE (27) to (29) hold for a vanishing jEμj_{E\parallel}^{{\mu}}, we require the inhomogeneous terms of the CKE to vanish,

μEjaμ=\displaystyle\partial_{\mu}^{E\parallel}j_{a}^{{\mu}}= fμνEpνj(0)μ,\displaystyle f_{{\mu}{\nu}}^{E\parallel}\frac{\partial}{\partial p_{\nu}}j_{(0)}^{\mu}\,, (31)
ϵμνρσρEjσa=\displaystyle{\epsilon}^{{\mu}{\nu}{\rho}{\sigma}}\partial_{\rho}^{E\parallel}j_{{\sigma}}^{a}= ϵμνρσfρλEpλjσ(0).\displaystyle{\epsilon}^{{\mu}{\nu}{\rho}{\sigma}}f_{{\rho}{\lambda}}^{E\parallel}\frac{\partial}{\partial p_{\lambda}}j_{\sigma}^{(0)}. (32)

The above two equations give the following constraint on jaj_{a},

a¯0jaa¯0+a¯3jaa¯3=\displaystyle{\bar{a}}_{0}\frac{\partial j_{a}}{\partial{\bar{a}}_{0}}+{\bar{a}}_{3}\frac{\partial j_{a}}{\partial{\bar{a}}_{3}}= q¯0a¯3q¯3a¯0q¯0q¯3(jp¯0+jp¯3)\displaystyle\frac{{\bar{q}}_{0}{\bar{a}}_{3}-{\bar{q}}_{3}{\bar{a}}_{0}}{{\bar{q}}_{0}-{\bar{q}}_{3}}\left(\frac{\partial j}{\partial{\bar{p}}_{0}}+\frac{\partial j}{\partial{\bar{p}}_{3}}\right)
=\displaystyle= q¯0a¯3q¯3a¯0q¯0q¯3δ(p¯0p¯3)f(p¯0)epT2B.\displaystyle\frac{{\bar{q}}_{0}{\bar{a}}_{3}-{\bar{q}}_{3}{\bar{a}}_{0}}{{\bar{q}}_{0}-{\bar{q}}_{3}}{\delta}({\bar{p}}_{0}-{\bar{p}}_{3})f^{\prime}({\bar{p}}_{0})e^{\frac{p_{T}^{2}}{B}}\,. (33)

We turn to the case of parallel magnetic field μ{\cal B}_{\parallel}^{\mu} induced by μja\partial_{\mu}^{{\cal B}\parallel}j_{a}. One finds that μ=bμ{\cal B}_{\parallel}^{\mu}={\cal B}_{\parallel}b^{\mu} just enhances the magnitude of the longitudinal magnetic field. By the replacement BB+B\to B+{\cal B}_{\parallel} in (III) to O(a)O(\partial a), one gets

j(0)μ+jμ=(u+b)μδ(p(u+b))f(pu)epT2B+.\displaystyle j_{(0)}^{{\mu}}+j_{{\cal B}\parallel}^{{\mu}}=(u+b)^{{\mu}}{\delta}(p\cdot(u+b))f(p\cdot u)e^{\frac{p_{T}^{2}}{B+{\cal B}_{\parallel}}}\,. (34)

When including fμνf_{{\mu}{\nu}}^{{\cal B}\parallel} into FμνF_{{\mu}{\nu}}, (34) automatically satisfies the homogeneous CKE (24) to (26), which gives

jμ=(u+b)μδ(p(u+b))f(pu)epT2BpT2B2=(u+b)μBpT2Bj.\displaystyle j_{{\cal B}\parallel}^{{\mu}}=-(u+b)^{{\mu}}{\delta}(p\cdot(u+b))f(p\cdot u)e^{\frac{p_{T}^{2}}{B}}\frac{p_{T}^{2}{\cal B}_{\parallel}}{B^{2}}=-(u+b)^{{\mu}}\frac{{\cal B}_{\parallel}}{B}\frac{p_{T}^{2}}{B}j\,. (35)

This indicates (35) satisfies the CKE (27) to (29) by requiring vanishing gradient terms, i.e., μja=0\partial_{\mu}^{{\cal B}\parallel}j_{a}=0. Thus we get constraints on jaj_{a},

μjaμ=0(u+b)μqμTa¯kjaa¯k=0,\displaystyle\partial_{\mu}^{{\cal B}\parallel}j_{a}^{{\mu}}=0\quad\to\quad(u+b)^{\mu}q_{\mu}^{T}{\bar{a}}_{k}\frac{\partial j_{a}}{\partial{\bar{a}}_{k}}=0\,, (36)
ϵμνρσρjσa=0ϵμνρσ(u+b)σqρTa¯kjaa¯k=0.\displaystyle{\epsilon}^{{\mu}{\nu}{\rho}{\sigma}}\partial_{\rho}^{{\cal B}\parallel}j_{{\sigma}}^{a}=0\quad\to\quad{\epsilon}^{{\mu}{\nu}{\rho}{\sigma}}(u+b)_{{\sigma}}q_{\rho}^{T}{\bar{a}}_{k}\frac{\partial j_{a}}{\partial{\bar{a}}_{k}}=0. (37)

One finds (36) holds trivially while (37) gives

ϵμνρσ(u+b)σq¯iwρia¯kjaa¯k=0q¯ia¯kjaa¯k=0.\displaystyle{\epsilon}^{{\mu}{\nu}{\rho}{\sigma}}(u+b)_{{\sigma}}{\bar{q}}_{i}w_{\rho}^{i}{\bar{a}}_{k}\frac{\partial j_{a}}{\partial{\bar{a}}_{k}}=0\quad\to\quad{\bar{q}}_{i}{\bar{a}}_{k}\frac{\partial j_{a}}{\partial{\bar{a}}_{k}}=0\,. (38)

This is the constraint on jaj_{a} in {\cal B}_{\parallel} case.

The perpendicular electric field EμE_{\perp}^{\mu} is induced by μEja\partial_{\mu}^{E\perp}j_{a}. In collisionless limit, the chiral medium is driven into a new state, where the plasma drifts in the direction transverse to both EμE_{\perp}^{\mu} and BμB^{\mu}. We take the following ansatz at O(a)O(\partial a) for the drift state solution,

jEμ=\displaystyle j_{E\perp}^{{\mu}}= (u+b)μpu((pu)G1+G2)+uμG3,\displaystyle(u+b)^{{\mu}}\,p\cdot u_{\perp}\left(\frac{\partial}{\partial(p\cdot u)}G_{1}+G_{2}\right)+u_{\perp}^{{\mu}}G_{3}\,, (39)

where drift velocity uμ=UμBu_{\perp}^{{\mu}}=\frac{U^{\mu}}{B} and Uμ12ϵμνρσbνfρσEU^{\mu}\equiv\frac{1}{2}{\epsilon}^{{\mu}{\nu}{\rho}{\sigma}}b_{\nu}f_{{\rho}{\sigma}}^{E\perp} with uμu_{\perp}^{\mu} orthogonal to Eμ,bμE_{\mu}^{\perp},\,b_{\mu} and uμu_{\mu}. As is shown in Appendix (C), by solving for the undetermined functions Gnδ(p(u+b))epT2BG_{n}\propto{\delta}(p\cdot(u+b))e^{\frac{p_{T}^{2}}{B}}, we obtain the drift solution for right-handed fermions as

jEμ=\displaystyle j_{E\perp}^{{\mu}}= (u+b)μpu(j(pu)2puBjjaa¯0)+uμj.\displaystyle(u+b)^{{\mu}}p\cdot u_{\perp}\left(\frac{\partial j}{\partial(p\cdot u)}-\frac{2p\cdot u}{B}j-\frac{\partial j_{a}}{\partial{\bar{a}}_{0}}\right)+u_{\perp}^{\mu}j. (40)

If the drift state is in equilibrium, we can neglect the term jaa¯0\frac{\partial j_{a}}{\partial{\bar{a}}_{0}} sourced by the redistribution. Then the drift solution can be combined with the zeroth order solution into a more suggestive form,

j(0)μ+jEμ=\displaystyle j_{(0)}^{{\mu}}+j_{E\perp}^{{\mu}}= (u~+b)μδ(p(u~+b))f(pu~)e(p2(pu~)2+(pb)2)/B.\displaystyle({\tilde{u}}+b)^{{\mu}}{\delta}(p\cdot({\tilde{u}}+b))f(p\cdot{\tilde{u}})e^{(p^{2}-(p\cdot{\tilde{u}})^{2}+(p\cdot b)^{2})/B}\,. (41)

This is nothing but the zeroth order solution with uμu~μ(u+u)μu^{\mu}\to{\tilde{u}}^{\mu}\equiv(u+u_{\perp})^{\mu}. This means the drift state is equivalent to the boosted equilibrium state.

In the case of the perpendicular magnetic field μ{\cal B}_{\perp}^{\mu} caused by μja\partial_{\mu}^{{\cal B}\perp}j_{a}, the magnetic field will tilt a bit upon adding a perturbative transverse μ{\cal B}_{\perp}^{\mu} into the background BμB^{\mu}. The analysis is similar to the EE_{\perp} case. Taking the ansatz similar to (39),

jμ=\displaystyle j_{{\cal B}\perp}^{{\mu}}= (u+b)μpB((pu)H1+H2)+μBH3,\displaystyle(u+b)^{{\mu}}\,\frac{p\cdot{\cal B}_{\perp}}{B}\left(\frac{\partial}{\partial(p\cdot u)}H_{1}+H_{2}\right)+\frac{{\cal B}_{\perp}^{{\mu}}}{B}H_{3}\,, (42)

one gets the tilted solution for right-handed fermions as

jμ=\displaystyle j_{{\cal B}\perp}^{{\mu}}= (u+b)μpB(j(pb)2puBj+jaa¯3)+μBj.\displaystyle(u+b)^{{\mu}}\frac{p\cdot{\cal B}_{\perp}}{B}\left(\frac{\partial j}{\partial(p\cdot b)}-\frac{2p\cdot u}{B}j+\frac{\partial j_{a}}{\partial{\bar{a}}_{3}}\right)+\frac{{\cal B}_{\perp}^{\mu}}{B}j. (43)

Again, by dropping the redistribution mode jaa¯3\frac{j_{a}}{\partial{\bar{a}}_{3}}, the tilted solution can be connected with the zeroth order solution into

j(0)μ+jμ=\displaystyle j_{(0)}^{{\mu}}+j_{{\cal B}\perp}^{{\mu}}= (u+b~)μδ(p(u+b~))f(pu)e(p2(pu)2+(pb~)2)/B.\displaystyle(u+{\tilde{b}})^{{\mu}}{\delta}(p\cdot(u+{\tilde{b}}))f(p\cdot u)e^{(p^{2}-(p\cdot u)^{2}+(p\cdot{\tilde{b}})^{2})/B}\,. (44)

This is just the zeroth order solution with bμb~μbμ+μ/Bb^{\mu}\to{\tilde{b}}^{\mu}\equiv b^{\mu}+{\cal B}_{\perp}^{\mu}/B. Thus we can understand the tilted state as an equivalent to rotated equilibrium state.

At last, in arriving at the O(a)O(\partial a) drift solution (40) and tilted solution (43), there are constraints on the O(a)O(a) source jaj_{a},

jaa¯ka¯k(q¯0q¯3)=0,(jaa¯0q¯0+jaa¯3q¯3)a¯k=0.\displaystyle\frac{\partial j_{a}}{\partial{\bar{a}}_{k}}{\bar{a}}_{k}\left({\bar{q}}_{0}-{\bar{q}}_{3}\right)=0\,,\qquad\left(\frac{\partial j_{a}}{\partial{\bar{a}}_{0}}{\bar{q}}_{0}+\frac{\partial j_{a}}{\partial{\bar{a}}_{3}}{\bar{q}}_{3}\right){\bar{a}}_{k}=0\,. (45)

Combining the constraints on jaj_{a} in (IV.1), (38) and (45), we obtain the O(a)O(a) redistribution of the LLL state jaμj_{a}^{\mu} as,

jaμ=(u+b)μq¯0a¯3q¯3a¯0q¯0q¯3δ(p¯0p¯3)f(p¯0)epT2B.\displaystyle j_{a}^{\mu}=(u+b)^{\mu}\frac{{\bar{q}}_{0}{\bar{a}}_{3}-{\bar{q}}_{3}{\bar{a}}_{0}}{{\bar{q}}_{0}-{\bar{q}}_{3}}{\delta}({\bar{p}}_{0}-{\bar{p}}_{3})f^{\prime}({\bar{p}}_{0})e^{\frac{p_{T}^{2}}{B}}\,. (46)

Here we correct a minor mistake in the drift and tilted solution of Gao:2020ksg where the medium dependent terms 2puBj\frac{2p\cdot u}{B}j and 2pbBj\frac{2p\cdot b}{B}j should be attributed to the O(a)O(\partial a) solutions (40) and (43) instead of the O(a)O(a) solution (46). We will see in the following subsections that only in this way will the currents satisfy the covariant anomalies (II) and the stress tensor match with MHD in the limit |q¯3|q¯00|{\bar{q}}_{3}|\ll{\bar{q}}_{0}\to 0. Also, the resultant correlators will meet derivative symmetry relations and agree with the result in field theory approach PhysRevD.83.111501 .

IV.2 Final solution

Restoring helicity s=±s=\pm for right/left-handed fermions, we get

j(0)sμ=\displaystyle j_{(0)s}^{\mu}= (u+sb)μδ(p¯0sp¯3)fs(p¯0)epT2B(u+sb)μjs,\displaystyle\,(u+sb)^{\mu}{\delta}({\bar{p}}_{0}-s{\bar{p}}_{3})f_{s}({\bar{p}}_{0})e^{\frac{p_{T}^{2}}{B}}\equiv(u+sb)^{\mu}j_{s}\,,
jasμ=\displaystyle j_{as}^{\mu}= (u+sb)μq¯0a¯3sq¯3a¯0ssq¯0q¯3δ(p¯0sp¯3)fs(p¯0)epT2B,\displaystyle\,(u+sb)^{\mu}\frac{{\bar{q}}_{0}{\bar{a}}_{3}^{s}-{\bar{q}}_{3}{\bar{a}}_{0}^{s}}{s{\bar{q}}_{0}-{\bar{q}}_{3}}{\delta}({\bar{p}}_{0}-s{\bar{p}}_{3})f_{s}^{\prime}({\bar{p}}_{0})e^{\frac{p_{T}^{2}}{B}}\,,
jEsμ=\displaystyle j_{E\parallel s}^{{\mu}}=  0,\displaystyle\,0\,,
jsμ=\displaystyle j_{{\cal B}\parallel s}^{{\mu}}= (u+sb)μsBpT2Bjs,\displaystyle\,-(u+sb)^{{\mu}}\frac{{\cal B}_{\parallel s}}{B}\frac{p_{T}^{2}}{B}j_{s}\,,
jEsμ=\displaystyle j_{E\perp s}^{{\mu}}= (u+sb)μpUsB(js(pu)2puBjsjasa¯0s)+UsμBjs,\displaystyle\,(u+sb)^{{\mu}}\frac{p\cdot U_{s}}{B}\left(\frac{\partial j_{s}}{\partial(p\cdot u)}-\frac{2p\cdot u}{B}j_{s}-\frac{\partial j_{as}}{\partial{\bar{a}}_{0}^{s}}\right)+\frac{U_{s}^{\mu}}{B}j_{s}\,,
jsμ=\displaystyle j_{{\cal B}\perp s}^{{\mu}}= (u+sb)μpsB(js(pb)+2pbBjs+jasa¯3s)+ssμBjs,\displaystyle\,(u+sb)^{{\mu}}\frac{p\cdot{\cal B}_{\perp s}}{B}\left(\frac{\partial j_{s}}{\partial(p\cdot b)}+\frac{2p\cdot b}{B}j_{s}+\frac{\partial j_{as}}{\partial{\bar{a}}_{3}^{s}}\right)+s\frac{{\cal B}_{\perp s}^{\mu}}{B}j_{s}\,, (47)

where sμ=μ+s5μ{\cal B}_{s}^{\mu}={\cal B}^{\mu}+s{\cal B}_{5}^{\mu} and Usμ=Uμ+sU5μU_{s}^{{\mu}}=U^{\mu}+sU_{5}^{\mu} are defined by fμνs=fμν+sfμν5f_{{\mu}{\nu}}^{s}=f_{{\mu}{\nu}}+sf_{{\mu}{\nu}}^{5}. After integration over momenta and summation/subtraction over right/left-handed contributions, we get the constitutive relation of currents,

J(0)μ=\displaystyle J_{(0)}^{{\mu}}= μB2π2uμ+μ5B2π2bμ,\displaystyle\frac{{\mu}B}{2{\pi}^{2}}u^{\mu}+\frac{{\mu}_{5}B}{2{\pi}^{2}}b^{\mu}\,, (48)
J(0)5μ=\displaystyle J_{(0)5}^{{\mu}}= μ5B2π2uμ+μB2π2bμ,\displaystyle\frac{{\mu}_{5}B}{2{\pi}^{2}}u^{\mu}+\frac{{\mu}B}{2{\pi}^{2}}b^{\mu}\,, (49)
Jaμ=\displaystyle J_{a}^{{\mu}}= ΔμB2π2uμ+Δμ5B2π2bμ,\displaystyle\frac{{\Delta}{\mu}B}{2{\pi}^{2}}u^{\mu}+\frac{{\Delta}{\mu}_{5}B}{2{\pi}^{2}}b^{\mu}\,, (50)
Ja5μ=\displaystyle J_{a5}^{{\mu}}= Δμ5B2π2uμ+ΔμB2π2bμ,\displaystyle\frac{{\Delta}{\mu}_{5}B}{2{\pi}^{2}}u^{\mu}+\frac{{\Delta}{\mu}B}{2{\pi}^{2}}b^{\mu}\,, (51)
J𝒜μ=\displaystyle J_{{\cal A}}^{{\mu}}= μ(Uμ+uμ)+μ5(U5μ+5uμ)2π2+μ5(μ+μ)+μ(5μ+5μ)2π2,\displaystyle\frac{{\mu}\left(U^{\mu}+{\cal B}_{\parallel}u^{\mu}\right)+{\mu}_{5}\left(U_{5}^{\mu}+{\cal B}_{\parallel 5}u^{\mu}\right)}{2{\pi}^{2}}+\frac{{\mu}_{5}\left({\cal B}_{\perp}^{\mu}+{\cal B}_{\parallel}^{\mu}\right)+{\mu}\left({\cal B}_{\perp 5}^{\mu}+{\cal B}_{\parallel 5}^{\mu}\right)}{2{\pi}^{2}}\,, (52)
J𝒜5μ=\displaystyle J_{{\cal A}5}^{{\mu}}= μ5(Uμ+uμ)+μ(U5μ+5uμ)2π2+μ(μ+μ)+μ5(5μ+5μ)2π2.\displaystyle\frac{{\mu}_{5}\left(U^{\mu}+{\cal B}_{\parallel}u^{\mu}\right)+{\mu}\left(U_{5}^{\mu}+{\cal B}_{\parallel 5}u^{\mu}\right)}{2{\pi}^{2}}+\frac{{\mu}\left({\cal B}_{\perp}^{\mu}+{\cal B}_{\parallel}^{\mu}\right)+{\mu}_{5}\left({\cal B}_{\perp 5}^{\mu}+{\cal B}_{\parallel 5}^{\mu}\right)}{2{\pi}^{2}}\,. (53)

The O(a)O(a) currents (50) and (51) as the redistribution of the LLL state, indeed reproduce the density waves (14) which are dictated by covariant anomalies (II). This confirms that the gauge invariant currents solved from CKT are the covariant ones. One readily gets the consistent currents by adding the Chern-Simons current according to (II), where it turns out that only JaμJ_{a}^{\mu} is changed to 𝒥aμ{\cal J}_{a}^{\mu},

𝒥aμ=\displaystyle{\cal J}_{a}^{\mu}= B2π2q¯3q¯3a¯0q¯0a¯3+q¯0a¯05q¯3a¯35q¯02q¯32uμ\displaystyle\frac{B}{2{\pi}^{2}}{\bar{q}}_{3}\frac{{\bar{q}}_{3}{\bar{a}}_{0}-{\bar{q}}_{0}{\bar{a}}_{3}+{\bar{q}}_{0}{\bar{a}}_{0}^{5}-{\bar{q}}_{3}{\bar{a}}_{3}^{5}}{{\bar{q}}_{0}^{2}-{\bar{q}}_{3}^{2}}u^{\mu}
+B2π2q¯0q¯3a¯0q¯0a¯3+q¯0a¯05q¯3a¯35q¯02q¯32bμ.\displaystyle+\frac{B}{2{\pi}^{2}}{\bar{q}}_{0}\frac{{\bar{q}}_{3}{\bar{a}}_{0}-{\bar{q}}_{0}{\bar{a}}_{3}+{\bar{q}}_{0}{\bar{a}}_{0}^{5}-{\bar{q}}_{3}{\bar{a}}_{3}^{5}}{{\bar{q}}_{0}^{2}-{\bar{q}}_{3}^{2}}b^{\mu}\,. (54)

One also finds the currents (50) and (51) satisfy the (1+1)D constitutive relation (8). The O(a)O(\partial a) currents (52) and (53) go beyond (1+1)D in the transverse direction due to the perpendicular gradients of the gauge fields. The terms in the direction of UμU^{\mu} in (52) and (53) are the vector and axial Hall currents which are transverse to EμE_{\perp}^{\mu}, bμb^{\mu} and uμu^{\mu}. The parts along the magnetic field in (48), (50) and (52) give the well-known CME at O(1)O(1), O(a)O(a) and O(a)O(\partial a) separately, while those in (49), (51) and (53) give CSE.

The constitutive relation of stress tensor writes

T(0)μν=\displaystyle T_{(0)}^{{\mu}{\nu}}= χB2π2(uμuν+bμbν)+χ5B2π2u{μbν},\displaystyle\frac{{\chi}B}{2{\pi}^{2}}(u^{\mu}u^{\nu}+b^{\mu}b^{\nu})+\frac{{\chi}_{5}B}{2{\pi}^{2}}u^{\{{\mu}}b^{{\nu}\}}\,, (55)
Taμν=\displaystyle T_{a}^{{\mu}{\nu}}= (μΔμ+μ5Δμ5)B2π2(uμuν+bμbν)+(μΔμ5+μ5Δμ)B2π2u{μbν},\displaystyle\frac{\left({\mu}{\Delta}{\mu}+{\mu}_{5}{\Delta}{\mu}_{5}\right)B}{2{\pi}^{2}}(u^{\mu}u^{\nu}+b^{\mu}b^{\nu})+\frac{\left({\mu}{\Delta}{\mu}_{5}+{\mu}_{5}{\Delta}{\mu}\right)B}{2{\pi}^{2}}u^{\{{\mu}}b^{{\nu}\}}\,, (56)
T𝒜μν=\displaystyle T_{{\cal A}}^{{\mu}{\nu}}= χ+χ552π2(uμuν+bμbν)+χ5+χ52π2u{μbν}\displaystyle\frac{{\chi}{\cal B}_{\parallel}+{\chi}_{5}{\cal B}_{\parallel 5}}{2{\pi}^{2}}(u^{\mu}u^{\nu}+b^{\mu}b^{\nu})+\frac{{\chi}_{5}{\cal B}_{\parallel}+{\chi}{\cal B}_{\parallel 5}}{2{\pi}^{2}}u^{\{{\mu}}b^{{\nu}\}}
+12π2(q¯02q¯02q¯32B4+χ)(u{μUν}+u{μ5ν}+U5{μbν}+{μbν})\displaystyle+\frac{1}{2{\pi}^{2}}\left(\frac{{\bar{q}}_{0}^{2}}{{\bar{q}}_{0}^{2}-{\bar{q}}_{3}^{2}}\frac{B}{4}+{\chi}\right)\left(u^{\{{\mu}}U^{{\nu}\}}+u^{\{{\mu}}{\cal B}_{\perp 5}^{{\nu}\}}+U_{5}^{\{{\mu}}b^{{\nu}\}}+{\cal B}_{\perp}^{\{{\mu}}b^{{\nu}\}}\right)
+12π2(q¯0q¯3q¯02q¯32B4+χ5)(u{μU5ν}+u{μν}+U{μbν}+ 5{μbν}),\displaystyle+\frac{1}{2{\pi}^{2}}\left(\frac{{\bar{q}}_{0}{\bar{q}}_{3}}{{\bar{q}}_{0}^{2}-{\bar{q}}_{3}^{2}}\frac{B}{4}+{\chi}_{5}\right)\left(u^{\{{\mu}}U_{5}^{{\nu}\}}+u^{\{{\mu}}{\cal B}_{\perp}^{{\nu}\}}+U^{\{{\mu}}b^{{\nu}\}}+{\cal B}_{\perp\ 5}^{\{{\mu}}b^{{\nu}\}}\right)\,, (57)

where χ=μ2+μ522+π2T26{\chi}=\frac{{\mu}^{2}+{\mu}_{5}^{2}}{2}+\frac{{\pi}^{2}T^{2}}{6} and χ5=μμ5{\chi}_{5}={\mu}{\mu}_{5}. There are waves in stress tensor at O(a)O(a) and O(a)O(\partial a) accompanying the density waves of vector and axial charges. In (56), the O(a)O(a) terms uμuνu^{\mu}u^{\nu}, u{μbν}u^{\{{\mu}}b^{{\nu}\}} and bμbνb^{\mu}b^{\nu} can be identified as the waves of energy density, longitudinal heat flow and longitudinal momentem flow. Beyond (1+1)D, there are O(a)O(\partial a) waves q¯02q¯02q¯32B4\frac{{\bar{q}}_{0}^{2}}{{\bar{q}}_{0}^{2}-{\bar{q}}_{3}^{2}}\frac{B}{4} and q¯0q¯3q¯02q¯32B4\frac{{\bar{q}}_{0}{\bar{q}}_{3}}{{\bar{q}}_{0}^{2}-{\bar{q}}_{3}^{2}}\frac{B}{4} in the transverse heat flow and momentem flow of (57), which are caused by the perpendicular gradients of the redistribution JaμJ_{a}^{\mu}. Interestingly, the redistribution does not induce waves in the O(a)O(\partial a) currents (52) and (53) since the wave dependent terms in the solution are odd functions of transverse momentem pTp_{T} and therefore vanishing upon momenta integration.

IV.3 Correlators and effective action

After the functional differentiation performed in Appendix (D), we obtain the current-current correlators as follows. For the O(a)O(a) currents, we have

GVV,aμλ(q)=GAA,aμλ(q)=\displaystyle G_{VV,a}^{{\mu}{\lambda}}(q)=G_{AA,a}^{{\mu}{\lambda}}(q)= B2π2q¯32uμuλ+q¯02bμbλ+q¯0q¯3u{μbλ}q¯02q¯32,\displaystyle\frac{B}{2{\pi}^{2}}\frac{{\bar{q}}_{3}^{2}u^{\mu}u^{\lambda}+{\bar{q}}_{0}^{2}b^{\mu}b^{\lambda}+{\bar{q}}_{0}{\bar{q}}_{3}u^{\{{\mu}}b^{{\lambda}\}}}{{\bar{q}}_{0}^{2}-{\bar{q}}_{3}^{2}}\,,
GVA,aμλ(q)=GAV,aμλ(q)=\displaystyle G_{VA,a}^{{\mu}{\lambda}}(q)=G_{AV,a}^{{\mu}{\lambda}}(q)= B2π2q¯02uμbλ+q¯32bμuλ+q¯0q¯3(uμuλ+bμbλ)q¯02q¯32.\displaystyle\frac{B}{2{\pi}^{2}}\frac{{\bar{q}}_{0}^{2}u^{\mu}b^{\lambda}+{\bar{q}}_{3}^{2}b^{\mu}u^{\lambda}+{\bar{q}}_{0}{\bar{q}}_{3}\left(u^{\mu}u^{\lambda}+b^{\mu}b^{\lambda}\right)}{{\bar{q}}_{0}^{2}-{\bar{q}}_{3}^{2}}\,. (58)

Noting g^μν=uμuνbμbν{\hat{g}}^{{\mu}{\nu}}=u^{\mu}u^{\nu}-b^{\mu}b^{\nu} and q^μ=q¯0uμ+q¯3bμ{\hat{q}}^{\mu}={\bar{q}}_{0}u^{\mu}+{\bar{q}}_{3}b^{\mu} in (1+1)D, one finds that GVV,aG_{VV,a} agrees with PhysRevD.83.111501 . Beyond (1+1)D, the correlators for O(a)O(\partial a) currents are

GVV,𝒜μλ(q)=\displaystyle G_{VV,{\cal A}}^{{\mu}{\lambda}}(q)= iμ52π2(ϵμλρσq¯3b[μϵλ]νρσqνT)uρbσiμ2π2(ϵμλρσq¯0+u[μϵλ]νρσqνT)uρbσ,\displaystyle\frac{i\,{\mu}_{5}}{2{\pi}^{2}}\left({\epsilon}^{{\mu}{\lambda}{\rho}{\sigma}}{\bar{q}}_{3}-b^{[{\mu}}{\epsilon}^{{\lambda}]{\nu}{\rho}{\sigma}}q_{\nu}^{T}\right)u_{\rho}b_{\sigma}-\frac{i\,{\mu}}{2{\pi}^{2}}\left({\epsilon}^{{\mu}{\lambda}{\rho}{\sigma}}{\bar{q}}_{0}+u^{[{\mu}}{\epsilon}^{{\lambda}]{\nu}{\rho}{\sigma}}q_{\nu}^{T}\right)u_{\rho}b_{\sigma}\,,
GVA,𝒜μλ(q)=\displaystyle G_{VA,{\cal A}}^{{\mu}{\lambda}}(q)= iμ2π2(ϵμλρσq¯3b[μϵλ]νρσqνT)uρbσiμ52π2(ϵμλρσq¯0+u[μϵλ]νρσqνT)uρbσ,\displaystyle\frac{i\,{\mu}}{2{\pi}^{2}}\left({\epsilon}^{{\mu}{\lambda}{\rho}{\sigma}}{\bar{q}}_{3}-b^{[{\mu}}{\epsilon}^{{\lambda}]{\nu}{\rho}{\sigma}}q_{\nu}^{T}\right)u_{\rho}b_{\sigma}-\frac{i\,{\mu}_{5}}{2{\pi}^{2}}\left({\epsilon}^{{\mu}{\lambda}{\rho}{\sigma}}{\bar{q}}_{0}+u^{[{\mu}}{\epsilon}^{{\lambda}]{\nu}{\rho}{\sigma}}q_{\nu}^{T}\right)u_{\rho}b_{\sigma}\,, (59)

where one also has GVV,𝒜μλ(q)=GAA,𝒜μλ(q)G_{VV,{\cal A}}^{{\mu}{\lambda}}(q)=G_{AA,{\cal A}}^{{\mu}{\lambda}}(q) and GVA,𝒜μλ(q)=GAV,𝒜μλ(q)G_{VA,{\cal A}}^{{\mu}{\lambda}}(q)=G_{AV,{\cal A}}^{{\mu}{\lambda}}(q). Using the relations (II), one can easily get the consistent correlators 𝒢{\cal G} from the covariant ones GG. The only difference is in 𝒢VA,a{\cal G}_{VA,a} where the addition of the Chern-Simons current gives,

𝒢VA,aμλ(q)=B2π2q¯32uμbλ+q¯02bμuλ+q¯0q¯3(uμuλ+bμbλ)q¯02q¯32.\displaystyle{\cal G}_{VA,a}^{{\mu}{\lambda}}(q)=\frac{B}{2{\pi}^{2}}\frac{{\bar{q}}_{3}^{2}u^{\mu}b^{\lambda}+{\bar{q}}_{0}^{2}b^{\mu}u^{\lambda}+{\bar{q}}_{0}{\bar{q}}_{3}\left(u^{\mu}u^{\lambda}+b^{\mu}b^{\lambda}\right)}{{\bar{q}}_{0}^{2}-{\bar{q}}_{3}^{2}}\,. (60)

The resulting consistent correlators 𝒢=𝒢a+𝒢𝒜{\cal G}={\cal G}_{a}+{\cal G}_{{\cal A}} perfectly fit the derivative symmetry relations (10). This allows us to construct the effective action for the perturbtive gauge fields using (II). For the O(a)O(a) perturbations, one gets

a=\displaystyle{\cal L}_{a}= B8π21k^2[(fEμν(k)+2ik^ρaρ5(k)ϵμν)fμνE(k)+fE5μν(k)fμνE5(k)],\displaystyle\frac{B}{8{\pi}^{2}}\frac{1}{\hat{k}^{2}}\left[\left(f_{E\parallel}^{{\mu}{\nu}}(k)+2i\hat{k}^{\rho}a_{\rho}^{5}(k){\epsilon}^{{\mu}{\nu}}\right)f_{{\mu}{\nu}}^{E\parallel}(-k)+f_{E\parallel 5}^{{\mu}{\nu}}(k)f_{{\mu}{\nu}}^{E\parallel 5}(-k)\right]\,, (61)

where the Fourier transformed fρσE(k)f_{{\rho}{\sigma}}^{E\parallel}(k) and fρσE5(k)f_{{\rho}{\sigma}}^{E\parallel 5}(k) are defined in Appendix (B). It can be understood as the effective Lagrangian density of perturbative gauge fields in (1+1)D theory, where apart from the free terms (fE)2\left(f_{E\parallel}\right)^{2} and (fE5)2\left(f_{E\parallel 5}\right)^{2} for gauge fields, there is an anomalous term ^a5|fE|\hat{\partial}\cdot a_{5}\,|f_{E\parallel}| for the consistent anomaly (II). The density waves of charges are characterized by the non-locality 1/k^21/\hat{k}^{2}, which together with the Landau-level degeneracy B2π\frac{B}{2{\pi}} gives a dimensionless factor in (61). For O(a)O(\partial a) perturbations beyond (1+1)D, we get

𝒜=14π2ϵλνρσ[(fρσ(k)aλ(k)+fρσ5(k)aλ5(k))(μbν+μ5uν)\displaystyle{\cal L}_{{\cal A}}=\frac{1}{4{\pi}^{2}}{\epsilon}^{{\lambda}{\nu}{\rho}{\sigma}}\Big{[}\left(f_{{\rho}{\sigma}}(k)a_{\lambda}(-k)+f_{{\rho}{\sigma}}^{5}(k)a_{\lambda}^{5}(-k)\right)\left({\mu}b_{\nu}+{\mu}_{5}u_{\nu}\right)
+(fρσ(k)aλ5(k)+fρσ5(k)aλ(k))(μ5bν+μuν)].\displaystyle+\left(f_{{\rho}{\sigma}}(k)a_{\lambda}^{5}(-k)+f_{{\rho}{\sigma}}^{5}(k)a_{\lambda}(-k)\right)\left({\mu}_{5}\,b_{\nu}+{\mu}\,u_{\nu}\right)\Big{]}\,. (62)

The above terms do not contribute to chiral anomaly. If we treat A^νμbν+μ5uν\hat{A}_{\nu}\equiv{\mu}b_{\nu}+{\mu}_{5}u_{\nu} and A^ν5μ5bν+μuν=ϵνμA^μ\hat{A}_{\nu}^{5}\equiv{\mu}_{5}\,b_{\nu}+{\mu}\,u_{\nu}=-{\epsilon}_{{\nu}{\mu}}\hat{A}^{\mu} as effective vector and axial gauge potentials of the chiral medium, the terms in (IV.3) can be reckoned as Chern-Simons structures, like ϵλνρσaλA^νρaσ{\epsilon}^{{\lambda}{\nu}{\rho}{\sigma}}a_{\lambda}\hat{A}_{\nu}\partial_{\rho}a_{\sigma}, etc. The effective Lagrangian density (a,a5,k)=a+𝒜{\cal L}(a,a_{5},k)={\cal L}_{a}+{\cal L}_{{\cal A}}, as a generating functional, captures all the necessary information to regains the consistent currents 𝒥{\cal J} and correlators 𝒢{\cal G} in momentum space by noting (II) and

\displaystyle\int d4xaμ(x)𝒥μ(x)=d4k(2π)4aμ(k)𝒥μ(k)\displaystyle d^{4}x\,a^{\mu}(x){\cal J}_{\mu}(x)=\int\frac{d^{4}k}{(2{\pi})^{4}}a^{\mu}(k){\cal J}_{\mu}(-k)
\displaystyle\to δδaν(q)=𝒥ν(q),δδaν(q)=𝒥ν(q).\displaystyle\qquad\frac{{\delta}{\cal L}}{{\delta}a_{\nu}(q)}={\cal J}^{\nu}(-q)\,,\qquad\frac{{\delta}{\cal L}}{{\delta}a_{\nu}(-q)}={\cal J}^{\nu}(q)\,. (63)

The effective action as volume integral of {\cal L} writes

Γ(a,a5)=d4k(2π)4(a,a5,k)=d4x(a,a5,x),\displaystyle{\Gamma}(a,a_{5})=\int\frac{d^{4}k}{(2{\pi})^{4}}{\cal L}(a,a_{5},k)=\int d^{4}x\,{\cal L}(a,a_{5},x)\,, (64)

where (a,a5,x){\cal L}(a,a_{5},x) is the effective Lagrangian density in coordinate space. Noting the relations

d4xaλ(x)fρσ(x)=\displaystyle\int d^{4}x\,a_{\lambda}(x)f_{{\rho}{\sigma}}(x)= d4k(2π)4aλ(k)fρσ(k),\displaystyle\int\frac{d^{4}k}{(2{\pi})^{4}}a_{\lambda}(-k)f_{{\rho}{\sigma}}(k)\,,
d4xd4y𝒟(xy)fμν(x)fμν(y)=\displaystyle\int d^{4}x\,d^{4}y\,{\cal D}(x-y)f^{{\mu}{\nu}}(x)f_{{\mu}{\nu}}(y)= d4k(2π)41k^2fμν(k)fμν(k),\displaystyle\int\frac{d^{4}k}{(2{\pi})^{4}}\frac{1}{\hat{k}^{2}}f^{{\mu}{\nu}}(-k)f_{{\mu}{\nu}}(k)\,,
d4xd4y𝒟(xy)^ρaρ5(x)fμν(y)=\displaystyle\int d^{4}x\,d^{4}y\,{\cal D}(x-y)\hat{\partial}^{\rho}a_{\rho}^{5}(x)f_{{\mu}{\nu}}(y)= d4k(2π)41k^2ik^ρaρ5(k)fμν(k),\displaystyle\int\frac{d^{4}k}{(2{\pi})^{4}}\frac{1}{\hat{k}^{2}}i\hat{k}^{\rho}a_{\rho}^{5}(-k)f_{{\mu}{\nu}}(k)\,, (65)

we can write the effective action as

Γ=B8π2d4xd4y𝒟(xy)[(fEμν(x)+2^ρaρ5(x)ϵμν)fμνE(y)+fE5μν(x)fμνE5(y)]\displaystyle{\Gamma}=\frac{B}{8{\pi}^{2}}\int d^{4}xd^{4}y{\cal D}(x-y)\Big{[}\left(f_{E\parallel}^{{\mu}{\nu}}(x)+2\hat{\partial}^{\rho}a_{\rho}^{5}(x){\epsilon}^{{\mu}{\nu}}\right)f_{{\mu}{\nu}}^{E\parallel}(y)+f_{E\parallel 5}^{{\mu}{\nu}}(x)f_{{\mu}{\nu}}^{E\parallel 5}(y)\Big{]}
+14π2d4xϵλνρσ[(fρσ(x)aλ(x)+fρσ5(x)aλ5(x))(μbν+μ5uν)\displaystyle+\frac{1}{4{\pi}^{2}}\int d^{4}x{\epsilon}^{{\lambda}{\nu}{\rho}{\sigma}}\Big{[}\left(f_{{\rho}{\sigma}}(x)a_{\lambda}(x)+f_{{\rho}{\sigma}}^{5}(x)a_{\lambda}^{5}(x)\right)\left({\mu}b_{\nu}+{\mu}_{5}u_{\nu}\right)
+(fρσ(x)aλ5(x)+fρσ5(x)aλ(x))(μ5bν+μuν)].\displaystyle+\left(f_{{\rho}{\sigma}}(x)a_{\lambda}^{5}(x)+f_{{\rho}{\sigma}}^{5}(x)a_{\lambda}(x)\right)\left({\mu}_{5}\,b_{\nu}+{\mu}\,u_{\nu}\right)\Big{]}\,. (66)

Additionally, the correlators between stress tensor and currents also satisfy the derivative symmetry relations,

𝒢TVλν,μ(q)=𝒢VTμ,λν(q),𝒢TAλν,μ(q)=𝒢ATμ,λν(q),\displaystyle{\cal G}_{TV}^{{\lambda}{\nu},{\mu}}(q)={\cal G}_{VT}^{{\mu},{\lambda}{\nu}}(-q)\,,\qquad{\cal G}_{TA}^{{\lambda}{\nu},{\mu}}(q)={\cal G}_{AT}^{{\mu},{\lambda}{\nu}}(-q)\,, (67)

where the correlators are defined as

𝒢TVλν,μ\displaystyle{\cal G}_{TV}^{{\lambda}{\nu},{\mu}}\equiv δT𝒜λνδaμ,𝒢VTμ,λν2δJ𝒱μδgλν,\displaystyle\frac{{\delta}T_{{\cal A}}^{{\lambda}{\nu}}}{{\delta}a_{\mu}}\,,\qquad{\cal G}_{VT}^{{\mu},{\lambda}{\nu}}\equiv 2\frac{{\delta}J_{{\cal V}}^{\mu}}{{\delta}g_{{\lambda}{\nu}}}\,,
𝒢TAλν,μ\displaystyle{\cal G}_{TA}^{{\lambda}{\nu},{\mu}}\equiv δT𝒜λνδaμ5,𝒢ATμ,λν2δJ𝒱5μδgλν,\displaystyle\frac{{\delta}T_{{\cal A}}^{{\lambda}{\nu}}}{{\delta}a_{\mu}^{5}}\,,\qquad{\cal G}_{AT}^{{\mu},{\lambda}{\nu}}\equiv 2\frac{{\delta}J_{{\cal V}5}^{\mu}}{{\delta}g_{{\lambda}{\nu}}}\,, (68)

with the vortical solution derived in Lin:2021sjw ,

J𝒱μ=\displaystyle J_{{\cal V}}^{\mu}= ω2π2(2χ+B2)uμ+ω2π22χ5bμ,\displaystyle\frac{{\omega}}{2{\pi}^{2}}\left(2{\chi}+\frac{B}{2}\right)u^{\mu}+\frac{{\omega}}{2{\pi}^{2}}2{\chi}_{5}b^{\mu}\,,
J𝒱5μ=\displaystyle J_{{\cal V}5}^{\mu}= ω2π22χ5uμ+ω2π2(2χ+B2)bμ.\displaystyle\frac{{\omega}}{2{\pi}^{2}}2{\chi}_{5}u^{\mu}+\frac{{\omega}}{2{\pi}^{2}}\left(2{\chi}+\frac{B}{2}\right)b^{\mu}\,. (69)

We have assumed the vortical solution is immune to the distinction of consistent and covariant anomalies since the influence has been covered in the gauge field solution. The vector and axial currents in (IV.3) are also related by the leading order constitutive relation (8). The former implies the generation of charge density and longitudinal CVE current driven by a parallel vorticity, which is respectively reciprocal to that of the transverse heat flows along the Hall and CME currents induced by the perpendicular electromagnetic field. The latter as axial counterpart is similar. We then extract the relevant reciprocals from the stress tensor (57),

T𝒜μν=\displaystyle T_{{\cal A}}^{{\mu}{\nu}}= 12π2(B4+χ)u{μUν}+χ52π2u{μν}\displaystyle\frac{1}{2{\pi}^{2}}\left(\frac{B}{4}+{\chi}\right)u^{\{{\mu}}U^{{\nu}\}}+\frac{{\chi}_{5}}{2{\pi}^{2}}u^{\{{\mu}}{\cal B}_{\perp}^{{\nu}\}}
+χ52π2u{μU5ν}+12π2(B4+χ)u{μ5ν},\displaystyle+\frac{{\chi}_{5}}{2{\pi}^{2}}u^{\{{\mu}}U_{5}^{{\nu}\}}+\frac{1}{2{\pi}^{2}}\left(\frac{B}{4}+{\chi}\right)u^{\{{\mu}}{\cal B}_{\perp 5}^{{\nu}\}}\,, (70)

where we have taken the long wavelength limit q¯30{\bar{q}}_{3}\to 0 before the static limit q¯00{\bar{q}}_{0}\to 0. The variation of T𝒜T_{{\cal A}} (IV.3) is similar to the case of J𝒜J_{{\cal A}} (52). Using (IV.3), one gets

𝒢TVλν,μ(q)=12π2(B4+χ)u{λϵν}αρσuμiqαTuρbσ+χ52π2u{λϵν}αρσbμiqαTuρbσ,\displaystyle{\cal G}_{TV}^{{\lambda}{\nu},{\mu}}(q)=\frac{1}{2{\pi}^{2}}\left(\frac{B}{4}+{\chi}\right)u^{\{{\lambda}}{\epsilon}^{{\nu}\}{\alpha}{\rho}{\sigma}}u^{\mu}iq_{\alpha}^{T}u_{\rho}b_{\sigma}+\frac{{\chi}_{5}}{2{\pi}^{2}}u^{\{{\lambda}}{\epsilon}^{{\nu}\}{\alpha}{\rho}{\sigma}}b^{\mu}iq_{\alpha}^{T}u_{\rho}b_{\sigma}\,,
𝒢TAλν,μ(q)=χ52π2u{λϵν}αρσuμiqαTuρbσ+12π2(B4+χ)u{λϵν}αρσbμiqαTuρbσ.\displaystyle{\cal G}_{TA}^{{\lambda}{\nu},{\mu}}(q)=\frac{{\chi}_{5}}{2{\pi}^{2}}u^{\{{\lambda}}{\epsilon}^{{\nu}\}{\alpha}{\rho}{\sigma}}u^{\mu}iq_{\alpha}^{T}u_{\rho}b_{\sigma}+\frac{1}{2{\pi}^{2}}\left(\frac{B}{4}+{\chi}\right)u^{\{{\lambda}}{\epsilon}^{{\nu}\}{\alpha}{\rho}{\sigma}}b^{\mu}iq_{\alpha}^{T}u_{\rho}b_{\sigma}\,. (71)

In order to calculate 𝒢VTμ,λν(q){\cal G}_{VT}^{{\mu},{\lambda}{\nu}}(-q) and 𝒢ATμ,λν(q){\cal G}_{AT}^{{\mu},{\lambda}{\nu}}(-q) by the variation of (IV.3) with respect to δgλν{\delta}g_{{\lambda}{\nu}}, we note that the longitudinal vorticity ω{\omega} comes from the tranverse gradients of the metric, i.e., ω=bσωσ=12ϵσραβbσuραTδuβ12ϵσραβbσuρikαTδuβ(k)-{\omega}=b_{\sigma}{\omega}^{\sigma}=\frac{1}{2}{\epsilon}^{{\sigma}{\rho}{\alpha}{\beta}}b_{\sigma}u_{\rho}\partial_{\alpha}^{T}{\delta}u_{\beta}\to\frac{1}{2}{\epsilon}^{{\sigma}{\rho}{\alpha}{\beta}}b_{\sigma}u_{\rho}ik_{\alpha}^{T}{\delta}u_{\beta}(k) with δuβ(k)=uγδgγβ(k){\delta}u_{\beta}(k)=u^{\gamma}{\delta}g_{{\gamma}{\beta}}(k), and the λν{\lambda}{\nu} symmetrized variation writes,

δgγβ(k)δgλν(q)=d4k12(δγλδβν+δγνδβλ)δ(4)(kq).\displaystyle\frac{{\delta}g_{{\gamma}{\beta}}(k)}{{\delta}g_{{\lambda}{\nu}}(q)}=\int d^{4}k\frac{1}{2}\left({\delta}_{\gamma}^{\lambda}{\delta}_{\beta}^{\nu}+{\delta}_{\gamma}^{\nu}{\delta}_{\beta}^{\lambda}\right){\delta}^{(4)}(k-q)\,. (72)

Then one easily verifies the derivative symmetry relations (67). In principle, one can also construct the effective action with the coupling of the perturbative metric and gauge fields by repeating the generating functional procedure. However, we note the derivative symmetry is only fulfilled in the limit |q¯3|q¯00|{\bar{q}}_{3}|\ll{\bar{q}}_{0}\to 0, and the metric is designed for the longitudinal vorticity, which is a rather restricted situation. The effective action in such case does not have a general meaning.

Finally, we verify the two-point functions meet the Onsager relations,

𝒢ab(q0,𝐪,u0,𝐮,B~0,𝐁~)=γaγb𝒢ba(q0,𝐪,u0,𝐮,B~0,𝐁~),\displaystyle{\cal G}_{ab}(q_{0},{\bf q},u_{0},{\bf u},\tilde{B}_{0},\tilde{\bf B})={\gamma}_{a}{\gamma}_{b}{\cal G}_{ba}(q_{0},-{\bf q},u_{0},-{\bf u},\tilde{B}_{0},-\tilde{\bf B})\,, (73)

where γ=±1{\gamma}=\pm 1 is the time-reversal eigenvalue of the operator and a,ba\,,b are the two operators in the correlator. The signs flip under time-reversal in the spatial components of momentum 𝐪{\bf q}, fluid velocity 𝐮{\bf u} and magnetic field 𝐁~=𝐁+\tilde{\bf B}={\bf B}+{\cal B} (or its longitudinal 𝐛{\bf b} and transverse 𝐰n=1,2{\bf w}_{n=1,2} directions). In the local rest frame with uμu^{\mu}, wnμw_{n}^{\mu} and bμb^{\mu} given in Appendix (A), one readily reduces the derivative symmetry and Onsager relations to

𝒢ab(q0,𝐪,𝐁~)=𝒢ba(q0,𝐪,𝐁~)=γaγb𝒢ba(q0,𝐪,𝐁~),\displaystyle{\cal G}_{ab}(q_{0},{\bf q},\tilde{\bf B})={\cal G}_{ba}(-q_{0},-{\bf q},\tilde{\bf B})={\gamma}_{a}{\gamma}_{b}{\cal G}_{ba}(q_{0},-{\bf q},-\tilde{\bf B})\,, (74)

where, by taking the default parameters (q0,𝐪,𝐁~)(q_{0},{\bf q},\tilde{\bf B}), and noting the operators JnJ_{n}, J3J_{3}, Jn5J_{n}^{5}, J35J_{3}^{5}, T0nT_{0n}, T03T_{03} have γ=1{\gamma}=-1 while J0J_{0}, J05J_{0}^{5}, T00T_{00}, TnnT_{nn}, T33T_{33}, TnmT_{nm}, Tn3T_{n3} have γ=1{\gamma}=1, the non-trivial correlators write

𝒢[J0J0]=𝒢[J05J05]=𝒢[J0J35]=B2π2q32q02q32,𝒢[J3J3]=𝒢[J35J35]=𝒢[J3J05]=B2π2q02q02q32,\displaystyle{\cal G}_{[J_{0}J_{0}]}={\cal G}_{[J_{0}^{5}J_{0}^{5}]}={\cal G}_{[J_{0}J_{3}^{5}]}=\frac{B}{2{\pi}^{2}}\frac{q_{3}^{2}}{q_{0}^{2}-q_{3}^{2}}\,,\quad{\cal G}_{[J_{3}J_{3}]}={\cal G}_{[J_{3}^{5}J_{3}^{5}]}={\cal G}_{[J_{3}J_{0}^{5}]}=\frac{B}{2{\pi}^{2}}\frac{q_{0}^{2}}{q_{0}^{2}-q_{3}^{2}}\,,
𝒢[J0J3]=𝒢[J05J35]=𝒢[J0J05]=𝒢[J3J35]=B2π2q0q3q02q32,\displaystyle{\cal G}_{[J_{0}J_{3}]}={\cal G}_{[J_{0}^{5}J_{3}^{5}]}={\cal G}_{[J_{0}J_{0}^{5}]}={\cal G}_{[J_{3}J_{3}^{5}]}=\frac{B}{2{\pi}^{2}}\frac{q_{0}q_{3}}{q_{0}^{2}-q_{3}^{2}}\,,
𝒢{J0Jn}=𝒢{J05Jn5}=𝒢{J3Jn5}=𝒢{JnJ35}=iμ2π2ϵnmqm,\displaystyle{\cal G}_{\{J_{0}J_{n}\}}={\cal G}_{\{J_{0}^{5}J_{n}^{5}\}}={\cal G}_{\{J_{3}J_{n}^{5}\}}=-{\cal G}_{\{J_{n}J_{3}^{5}\}}=-\frac{i{\mu}}{2{\pi}^{2}}{\epsilon}^{nm}q_{m}\,,
𝒢{J3Jn}=𝒢{J35Jn5}=𝒢{J0Jn5}=𝒢{JnJ05}=iμ52π2ϵnmqm,\displaystyle{\cal G}_{\{J_{3}J_{n}\}}={\cal G}_{\{J_{3}^{5}J_{n}^{5}\}}={\cal G}_{\{J_{0}J_{n}^{5}\}}=-{\cal G}_{\{J_{n}J_{0}^{5}\}}=-\frac{i{\mu}_{5}}{2{\pi}^{2}}{\epsilon}^{nm}q_{m}\,,
𝒢{JnJm}=𝒢{Jn5Jm5}=i2π2ϵnm(μ5q3μq0),\displaystyle{\cal G}_{\{J_{n}J_{m}\}}={\cal G}_{\{J_{n}^{5}J_{m}^{5}\}}=\frac{i}{2{\pi}^{2}}{\epsilon}^{nm}\left({\mu}_{5}q_{3}-{\mu}q_{0}\right)\,,
𝒢{JnJm5}=𝒢{JmJn5}=i2π2ϵnm(μq3μ5q0),\displaystyle{\cal G}_{\{J_{n}J_{m}^{5}\}}=-{\cal G}_{\{J_{m}J_{n}^{5}\}}=\frac{i}{2{\pi}^{2}}{\epsilon}^{nm}\left({\mu}q_{3}-{\mu}_{5}q_{0}\right)\,,
𝒢{T0nJ0}=𝒢{T0nJ35}=i2π2ϵnmqm(B4+χ),𝒢{T0nJ3}=𝒢{T0nJ05}=i2π2ϵnmqmχ5,\displaystyle{\cal G}_{\{T_{0n}J_{0}\}}={\cal G}_{\{T_{0n}J_{3}^{5}\}}=\frac{i}{2{\pi}^{2}}{\epsilon}^{nm}q_{m}\left(\frac{B}{4}+{\chi}\right)\,,\quad{\cal G}_{\{T_{0n}J_{3}\}}={\cal G}_{\{T_{0n}J_{0}^{5}\}}=\frac{i}{2{\pi}^{2}}{\epsilon}^{nm}q_{m}{\chi}_{5}\,, (75)

where we have denoted 𝒢[ab]{\cal G}_{[ab]} as 𝒢ab=𝒢ba{\cal G}_{ab}={\cal G}_{ba} and 𝒢{ab}{\cal G}_{\{ab\}} as 𝒢ab=𝒢ba{\cal G}_{ab}=-{\cal G}_{ba}.

IV.4 Discussion

We have seen the CKT result satisfies the derivative symmetry and Onsager relations by taking the limit q¯30{\bar{q}}_{3}\to 0 before q¯00{\bar{q}}_{0}\to 0. However, another limit by taking q¯00{\bar{q}}_{0}\to 0 before q¯30{\bar{q}}_{3}\to 0 gives Δμ=a¯0{\Delta}{\mu}=-{\bar{a}}_{0} and Δμ5=a¯05{\Delta}{\mu}_{5}=-{\bar{a}}_{0}^{5} in (II), which yields the static-equilbrium condition λΔμ=Eλ\partial_{\lambda}{\Delta}{\mu}=E_{\lambda}. This means that a plasma subject to a static external electric field will develop a gradient in the chemical potential which compensates the applied field to maintain the static state. It seems that both of the two limits have physical validity in their own right, though they are non-commutable. For the former limit, one has to take an ad hoc constraint a5μ=ϵμνaνa_{5}^{\mu}=-{\epsilon}^{{\mu}{\nu}}a_{\nu} on the external gauge fields, which gives Δμ=a¯35=a¯0{\Delta}{\mu}=-{\bar{a}}_{3}^{5}=-{\bar{a}}_{0} and Δμ5=a¯05=a¯3{\Delta}{\mu}_{5}=-{\bar{a}}_{0}^{5}=-{\bar{a}}_{3} to arrive at static-equilbrium. A similar non-commutativity was also found in Son:2012zy , where the CKT result gives the correct conductivity of CME in the former limit. In fact, the non-commutativity is an artifact of the free fermion theory, as is pointed out in Satow:2014lva , which should vanish with finite interactions. While the CKT with collisional term is beyond the scope of this work, we expect the Onsager relations and static-equilbrium will consist with each other in the commutable limits of q¯00{\bar{q}}_{0}\to 0 and q¯30{\bar{q}}_{3}\to 0 for an interactive theory.

Another fact we would like to point out is that there is no general matching between the CKT result and magnetohydrodynamics (MHD) Hernandez:2017mch . It may be understood that in MHD the conservation of axial charge suffers from QCD anomaly, in which case the CKT solution will be modified nontrivially. However, since the conservation of electric charge survives from the anomaly, the matching can be done by considering electric charge only and omitting the chiral imbalance in CKT. One then has μ5=0{\mu}_{5}=0, a5=0a_{5}=0 and Δμ5=0{\Delta}{\mu}_{5}=0. In the limit |q¯3|q¯00|{\bar{q}}_{3}|\ll{\bar{q}}_{0}\to 0, Δμ{\Delta}{\mu} is also vanishing. The currents and stress tensor in CKT reduce to the simple case in Lin:2021sjw where a consistent matching with MHD has been done.

V Summary and Outlook

In summary, we have studied the two-point functions in the presence of perturbative vector and axial gauge fields with a strong background magnetic field. From the difference between consistent and covariant anomalies, we have obtained the relations of the correlators for consistent currents and covariant currents, which are non-trivial due to the addition of the Chern-Simons currents. The consistent correlators are constrained by the derivative symmetry while the covariant ones are gauge invariant. In the strong mangetic field limit, we have derived the density waves of electric and chiral charges which contain CMW from the effective (1+1)D anomaly equations.

We have also obtained the correlators from a Lorentz covariant CKT in the same external field configuration. The currents and stress tensor are derived by exhausting all the possible solutions to the CKE with general perturbative vector and axial gauge fields. We have written the constitutive relations of the currents and stress tensor which involve the same CMW as the above result from anomaly equations. We have confirmed that the CKT yields covariant currents, while the consistent currents have been calculated from the covariant ones by adding the Chern-Simons currents. The resulting consistent correlators satisfy the derivative symmetry and Onsager relations. The generating functional of the correlators have been constructed as the effective action for the perturbative gauge fields in the chiral plasma.

Note that we have solved the CKT in the LLLA and collisonless limit. When the background magnectic field is not strong enough, higher Landau levels should be considered. It would be interesting to see how they will contribute to the solutions and correlators. Furthermore, for a more accurate picture of the real world with dissipation, a collisonal term should be considered, where the dissipative effects such as Ohm current along electric field will emerge and the dynamical nature of the electromagnetic field will give a more physical description of the CMW. Also, the introducing of collision and interaction may resolve the non-commutativity of static and long wavelength limits and yield a more meaningful framework of the kinetic theory. We leave it for future work.

Acknowledgements.
I am grateful to the 14th workshop on QCD phase transition and relativistic heavy-ion physics for providing an stimulating environment in the final stage of this work. I also sincerely thank Prof. Shu Lin for useful discussions and collaborations on related works.

Appendix A Momenta Calculus

Upon solving the CKE, we do the momenta differentiation and integration with p¯μ=Λνμpν{\bar{p}}^{\mu}={\Lambda}_{\nu}^{\mu}p^{\nu} as independent variables with

Λνμ=(uν,wnν,bν)T,Λ1νμΛ¯νμ=(uμ,wnμ,bμ),\displaystyle{\Lambda}_{\nu}^{\mu}=\left(u^{\nu},\,-w_{n}^{\nu},\,-b^{\nu}\right)^{T}\,,\qquad{{\Lambda}^{{}^{-1}}}_{\nu}^{{\mu}}\equiv{\bar{\Lambda}}_{\nu}^{\mu}=\left(u^{\mu},\,w_{n}^{\mu},\,b^{\mu}\right)\,, (76)

being Lorentz transformations between pμp^{\mu} and p¯μ{\bar{p}}^{\mu}. Here uμu^{\mu} is the fluid velocity, while wnμw_{n}^{\mu} (with transverse index n=1,2n=1,2 ) and bμb^{\mu} are the direction vectors of transverse and longitudinal magnetic fields. One finds Λμ0=Λ¯0μ=uμ,Λμn=Λ¯nμ=wnμ{\Lambda}_{\mu}^{0}={\bar{\Lambda}}_{0}^{{\mu}}=u^{\mu},\,{\Lambda}_{\mu}^{n}={\bar{\Lambda}}_{n}^{{\mu}}=w_{n}^{\mu} and Λμ3=Λ¯3μ=bμ{\Lambda}_{\mu}^{3}={\bar{\Lambda}}_{3}^{{\mu}}=b^{\mu} are basis column vectors which are orthogonal to one another and normalized as u2=1,wn2=b2=1u^{2}=1,\,w_{n}^{2}=b^{2}=-1. The metric in the most minus signature can be written as gμν=uμuνwnμwnνbμbνg^{{\mu}{\nu}}=u^{\mu}u^{\nu}-w_{n}^{\mu}w_{n}^{\nu}-b^{\mu}b^{\nu} with summation over transverse index nn. Then p2=(pu)2(pwn)(pwn)(pb)2=p¯2p¯02p¯2p¯32p^{2}=(p\cdot u)^{2}-(p\cdot w_{n})(p\cdot w_{n})-(p\cdot b)^{2}={\bar{p}}^{2}\equiv{\bar{p}}_{0}^{2}-{\bar{p}}_{\perp}^{2}-{\bar{p}}_{3}^{2} with p¯0pu,p¯npwn,p¯3pb{\bar{p}}_{0}\equiv p\cdot u,\,{\bar{p}}_{n}\equiv-p\cdot w_{n},\,{\bar{p}}_{3}\equiv-p\cdot b, which gives pTμ=p¯nwnμp_{T}^{\mu}={\bar{p}}_{n}w_{n}^{\mu} and pT2=p¯2p_{T}^{2}=-{\bar{p}}_{\perp}^{2}. One also has δνμ=uμuνwnμwνnbμbν{\delta}_{\nu}^{\mu}=u^{\mu}u_{\nu}-w_{n}^{\mu}w_{\nu}^{n}-b^{\mu}b_{\nu}. In the local rest frame, we have uμ=(1,0,0,0)u^{\mu}=(1,0,0,0), w1μ=(0,1,0,0)w_{1}^{\mu}=(0,1,0,0), w2μ=(0,0,1,0)w_{2}^{\mu}=(0,0,1,0) and bμ=(0,0,0,1)b^{\mu}=(0,0,0,1).

For more details about momenta differentiation and integration, one can look up in the appendix of Lin:2021sjw where the component 𝒯𝒜μν{\cal T}_{{\cal A}}^{{\mu}{\nu}} of the stress tensor in the drift case is missed. We demonstrate the calculation of 𝒯𝒜μν{\cal T}_{{\cal A}}^{{\mu}{\nu}} as follows. Using ΔαβTαβE=0{\Delta}^{{\alpha}{\beta}}T_{{\alpha}{\beta}}^{E\perp}=0, one gets

𝒯Eμν\displaystyle{\cal T}_{E\perp}^{{\mu}{\nu}} =12(ΔμαΔνβ+ΔναΔμβ23ΔμνΔαβ)TαβE=ΔμαΔνβTαβE\displaystyle=\frac{1}{2}\left({\Delta}^{{\mu}{\alpha}}{\Delta}^{{\nu}{\beta}}+{\Delta}^{{\nu}{\alpha}}{\Delta}^{{\mu}{\beta}}-\frac{2}{3}{\Delta}^{{\mu}{\nu}}{\Delta}^{{\alpha}{\beta}}\right)T_{{\alpha}{\beta}}^{E\perp}={\Delta}^{{\mu}{\alpha}}{\Delta}^{{\nu}{\beta}}T_{{\alpha}{\beta}}^{E\perp}
=12d4ps=±[spUsBpT{μbν}((pu)js2puBjsjasa¯0s)pbUs{μbν}Bjs]\displaystyle=\frac{1}{2}\int d^{4}p\,\sum_{s=\pm}\left[s\frac{p\cdot U_{s}}{B}p_{T}^{\{{\mu}}b^{{\nu}\}}\left(\frac{\partial}{\partial(p\cdot u)}j_{s}-\frac{2p\cdot u}{B}j_{s}-\frac{\partial j_{as}}{\partial{\bar{a}}_{0}^{s}}\right)-p\cdot b\,\frac{U_{s}^{\{{\mu}}b^{{\nu}\}}}{B}j_{s}\right]
=12d4p¯s=±Us{μbν}B[sp¯22(p¯0js2p¯0Bjsjasa¯0s)+p¯3js]\displaystyle=\frac{1}{2}\int d^{4}{\bar{p}}\sum_{s=\pm}\frac{U_{s}^{\{{\mu}}b^{{\nu}\}}}{B}\left[-s\frac{{\bar{p}}_{\perp}^{2}}{2}\left(\frac{\partial}{\partial{\bar{p}}_{0}}j_{s}-\frac{2{\bar{p}}_{0}}{B}j_{s}-\frac{\partial j_{as}}{\partial{\bar{a}}_{0}^{s}}\right)+{\bar{p}}_{3}j_{s}\right]
=12π2(q¯0q¯3q¯02q¯32B4+χ5)U{μbν}+12π2[(1+q¯32q¯02q¯32)B4+χ]U5{μbν}.\displaystyle=\frac{1}{2{\pi}^{2}}\left(\frac{{\bar{q}}_{0}{\bar{q}}_{3}}{{\bar{q}}_{0}^{2}-{\bar{q}}_{3}^{2}}\frac{B}{4}+{\chi}_{5}\right)U^{\{{\mu}}b^{{\nu}\}}+\frac{1}{2{\pi}^{2}}\left[\left(1+\frac{{\bar{q}}_{3}^{2}}{{\bar{q}}_{0}^{2}-{\bar{q}}_{3}^{2}}\right)\frac{B}{4}+{\chi}\right]U_{5}^{\{{\mu}}b^{{\nu}\}}\,. (77)

In the absence of charge redistribution caused by longitudinal electric field, this component is vanishing with μ5=0{\mu}_{5}=0 and a5=0a_{5}=0. Therefore the matching with MHD in Lin:2021sjw is not affected by this missing part. The computation of another nontrivial part 𝒯μν{\cal T}_{{\cal B}\perp}^{{\mu}{\nu}} in the tilted case is similar,

𝒯μν\displaystyle{\cal T}_{{\cal B}\perp}^{{\mu}{\nu}} =12d4p¯s=±s{μbν}B[sp¯22(p¯3js2p¯3Bjs+jasa¯3s)+sp¯3js]\displaystyle=\frac{1}{2}\int d^{4}{\bar{p}}\sum_{s=\pm}\frac{{\cal B}_{\perp\,s}^{\{{\mu}}b^{{\nu}\}}}{B}\left[-s\frac{{\bar{p}}_{\perp}^{2}}{2}\left(-\frac{\partial}{\partial{\bar{p}}_{3}}j_{s}-\frac{2{\bar{p}}_{3}}{B}j_{s}+\frac{\partial j_{as}}{\partial{\bar{a}}_{3}^{s}}\right)+s{\bar{p}}_{3}j_{s}\right]
=12π2(q¯02q¯02q¯32B4+χ){μbν}+12π2(q¯0q¯3q¯02q¯32B4+χ5) 5{μbν}.\displaystyle=\frac{1}{2{\pi}^{2}}\left(\frac{{\bar{q}}_{0}^{2}}{{\bar{q}}_{0}^{2}-{\bar{q}}_{3}^{2}}\frac{B}{4}+{\chi}\right){\cal B}_{\perp}^{\{{\mu}}b^{{\nu}\}}+\frac{1}{2{\pi}^{2}}\left(\frac{{\bar{q}}_{0}{\bar{q}}_{3}}{{\bar{q}}_{0}^{2}-{\bar{q}}_{3}^{2}}\frac{B}{4}+{\chi}_{5}\right){\cal B}_{\perp\ 5}^{\{{\mu}}b^{{\nu}\}}\,. (78)

Appendix B Electromagnetic Field

We turn on an O(a)O(a) perturbation aμa^{\mu} in gauge field. For constant uu and bb, the perturbation fμνf^{{\mu}{\nu}} can also be Lorentz transformed into the local rest frame (LRF) as f¯μν=¯[μa¯ν]=ΛρμΛσν[ρaσ]=ΛρμΛσνfρσ{\bar{f}}^{{\mu}{\nu}}=\bar{\partial}^{[{\mu}}{\bar{a}}^{{\nu}]}={\Lambda}_{\rho}^{\mu}{\Lambda}_{\sigma}^{\nu}\partial^{[{\rho}}a^{{\sigma}]}={\Lambda}_{\rho}^{\mu}{\Lambda}_{\sigma}^{\nu}f^{{\rho}{\sigma}} with ¯μ=Λρμρ\bar{\partial}^{\mu}={\Lambda}_{\rho}^{\mu}\partial^{\rho} and a¯ν=Λσνaσ{\bar{a}}^{\nu}={\Lambda}_{\sigma}^{\nu}a^{\sigma}. Using aμ=Λ¯νμa¯νa^{\mu}={\bar{\Lambda}}_{\nu}^{\mu}{\bar{a}}^{\nu} and μ=Λ¯νμ¯ν\partial^{\mu}={\bar{\Lambda}}_{\nu}^{\mu}\bar{\partial}^{\nu}, we can decompose the O(a)O(\partial a) electromagnetic field into parallel and perpendicular parts in the LRF. To proceed, we define Λνμ=(Λu+Λ+Λb)νμ,Λ¯νμ=(Λ¯u+Λ¯+Λ¯b)νμ{\Lambda}_{\nu}^{\mu}=\left({\Lambda}_{u}+{\Lambda}_{\perp}+{\Lambda}_{b}\right)_{\nu}^{\mu},\,{\bar{\Lambda}}_{\nu}^{\mu}=\left({\bar{\Lambda}}_{u}+{\bar{\Lambda}}_{\perp}+{\bar{\Lambda}}_{b}\right)_{\nu}^{\mu} with Λν,uμ(uν,0kν,0ν)T,Λ¯ν,uμ(uμ, 0kμ, 0μ){\Lambda}_{{\nu},u}^{\mu}\equiv\left(u^{\nu},\,-0_{k}^{\nu},\,-0^{\nu}\right)^{T},\,{\bar{\Lambda}}_{{\nu},u}^{\mu}\equiv\left(u^{\mu},\,0_{k}^{\mu},\,0^{\mu}\right), Λν,μ(0ν,wkν,0ν)T,Λ¯ν,μ(0μ,wkμ, 0μ){\Lambda}_{{\nu},\perp}^{\mu}\equiv\left(0^{\nu},\,-w_{k}^{\nu},\,-0^{\nu}\right)^{T},\,{\bar{\Lambda}}_{{\nu},\perp}^{\mu}\equiv\left(0^{\mu},\,w_{k}^{\mu},\,0^{\mu}\right) and Λν,bμ(0ν,0kν,bν)T,Λ¯ν,bμ(0μ, 0kμ,bμ){\Lambda}_{{\nu},b}^{\mu}\equiv\left(0^{\nu},\,-0_{k}^{\nu},\,-b^{\nu}\right)^{T},\,{\bar{\Lambda}}_{{\nu},b}^{\mu}\equiv\left(0^{\mu},\,0_{k}^{\mu},\,b^{\mu}\right). We then have

fμν=[μaν]=Λ¯ρμΛ¯σν¯[ρa¯σ]=\displaystyle f^{{\mu}{\nu}}=\partial^{[{\mu}}a^{{\nu}]}={\bar{\Lambda}}_{\rho}^{\mu}{\bar{\Lambda}}_{\sigma}^{\nu}\bar{\partial}^{[{\rho}}{\bar{a}}^{{\sigma}]}= [(Λ¯ρ,uμΛ¯σ,bν+Λ¯ρ,bμΛ¯σ,uν)+(Λ¯ρ,uμΛ¯σ,ν+Λ¯ρ,μΛ¯σ,uν)\displaystyle\Big{[}\left({\bar{\Lambda}}_{{\rho},u}^{\mu}{\bar{\Lambda}}_{{\sigma},b}^{\nu}+{\bar{\Lambda}}_{{\rho},b}^{\mu}{\bar{\Lambda}}_{{\sigma},u}^{\nu}\right)+\left({\bar{\Lambda}}_{{\rho},u}^{\mu}{\bar{\Lambda}}_{{\sigma},\perp}^{\nu}+{\bar{\Lambda}}_{{\rho},\perp}^{\mu}{\bar{\Lambda}}_{{\sigma},u}^{\nu}\right)
+Λ¯ρ,μΛ¯σ,ν+(Λ¯ρ,bμΛ¯σ,ν+Λ¯ρ,μΛ¯σ,bν)]¯[ρa¯σ]\displaystyle+{\bar{\Lambda}}_{{\rho},\perp}^{\mu}{\bar{\Lambda}}_{{\sigma},\perp}^{\nu}+\left({\bar{\Lambda}}_{{\rho},b}^{\mu}{\bar{\Lambda}}_{{\sigma},\perp}^{\nu}+{\bar{\Lambda}}_{{\rho},\perp}^{\mu}{\bar{\Lambda}}_{{\sigma},b}^{\nu}\right)\Big{]}\bar{\partial}^{[{\rho}}{\bar{a}}^{{\sigma}]}
\displaystyle\equiv fEμν+fEμν+fμν+fμν,\displaystyle f_{E\parallel}^{{\mu}{\nu}}+f_{E\perp}^{{\mu}{\nu}}+f_{{\cal B}\parallel}^{{\mu}{\nu}}+f_{{\cal B}\perp}^{{\mu}{\nu}}\,, (79)

where the four cases in the last line are defined by the four terms in the bracket of the second to the last equality. Simialrly,

fμν=[μaν]=ΛμρΛνσ¯[ρa¯σ]=\displaystyle f_{{\mu}{\nu}}=\partial_{[{\mu}}a_{{\nu}]}={\Lambda}_{\mu}^{\rho}{\Lambda}_{\nu}^{\sigma}\bar{\partial}_{[{\rho}}{\bar{a}}_{{\sigma}]}= [(Λμ,uρΛν,bσ+Λμ,bρΛν,uσ)+(Λμ,uρΛν,σ+Λμ,ρΛν,uσ)\displaystyle\Big{[}\left({\Lambda}_{{\mu},u}^{\rho}{\Lambda}_{{\nu},b}^{\sigma}+{\Lambda}_{{\mu},b}^{\rho}{\Lambda}_{{\nu},u}^{\sigma}\right)+\left({\Lambda}_{{\mu},u}^{\rho}{\Lambda}_{{\nu},\perp}^{\sigma}+{\Lambda}_{{\mu},\perp}^{\rho}{\Lambda}_{{\nu},u}^{\sigma}\right)
+Λμ,ρΛν,σ+(Λμ,bρΛν,σ+Λμ,ρΛν,bσ)]¯[ρa¯σ]\displaystyle+{\Lambda}_{{\mu},\perp}^{\rho}{\Lambda}_{{\nu},\perp}^{\sigma}+\left({\Lambda}_{{\mu},b}^{\rho}{\Lambda}_{{\nu},\perp}^{\sigma}+{\Lambda}_{{\mu},\perp}^{\rho}{\Lambda}_{{\nu},b}^{\sigma}\right)\Big{]}\bar{\partial}_{[{\rho}}{\bar{a}}_{{\sigma}]}
\displaystyle\equiv fμνE+fμνE+fμν+fμν.\displaystyle f^{E\parallel}_{{\mu}{\nu}}+f^{E\perp}_{{\mu}{\nu}}+f^{{\cal B}\parallel}_{{\mu}{\nu}}+f^{{\cal B}\perp}_{{\mu}{\nu}}\,. (80)

Thus, we get E,μ=fE,μνuν,,μ=12ϵμνρσuνfρσ,E_{\parallel,\perp}^{\mu}=f_{E\parallel,\perp}^{{\mu}{\nu}}u_{\nu},\;{\cal B}_{\parallel,\perp}^{\mu}=\frac{1}{2}{\epsilon}^{{\mu}{\nu}{\rho}{\sigma}}u_{\nu}f_{{\rho}{\sigma}}^{{\cal B}\parallel,\perp}.

Accordingly, in momentum space, one has

fμνE\displaystyle f_{{\mu}{\nu}}^{E\parallel}\to i(q¯0a¯3q¯3a¯0)u[μbν],fEμνi(q¯0a¯3q¯3a¯0)u[μbν],\displaystyle i\left({\bar{q}}_{0}{\bar{a}}_{3}-{\bar{q}}_{3}{\bar{a}}_{0}\right)u_{[{\mu}}b_{{\nu}]}\,,\qquad f^{{\mu}{\nu}}_{E\parallel}\to i\left({\bar{q}}_{0}{\bar{a}}_{3}-{\bar{q}}_{3}{\bar{a}}_{0}\right)u^{[{\mu}}b^{{\nu}]}\,,
fμνE\displaystyle f_{{\mu}{\nu}}^{E\perp}\to i(q¯0a¯kq¯ka¯0)u[μwν]k,fEμνi(q¯0a¯kq¯ka¯0)u[μwkν],\displaystyle i\left({\bar{q}}_{0}{\bar{a}}_{k}-{\bar{q}}_{k}{\bar{a}}_{0}\right)u_{[{\mu}}w_{{\nu}]}^{k}\,,\qquad f^{{\mu}{\nu}}_{E\perp}\to i\left({\bar{q}}_{0}{\bar{a}}_{k}-{\bar{q}}_{k}{\bar{a}}_{0}\right)u^{[{\mu}}w^{{\nu}]}_{k}\,,
fμν\displaystyle f_{{\mu}{\nu}}^{{\cal B}\parallel}\to i(q¯1a¯2q¯2a¯1)w[μ1wν]2,fμνi(q¯1a¯2q¯2a¯1)w1[μw2ν],\displaystyle i\left({\bar{q}}_{1}{\bar{a}}_{2}-{\bar{q}}_{2}{\bar{a}}_{1}\right)w_{[{\mu}}^{1}w_{{\nu}]}^{2}\,,\qquad f^{{\mu}{\nu}}_{{\cal B}\parallel}\to i\left({\bar{q}}_{1}{\bar{a}}_{2}-{\bar{q}}_{2}{\bar{a}}_{1}\right)w^{[{\mu}}_{1}w^{{\nu}]}_{2}\,,
fμν\displaystyle f_{{\mu}{\nu}}^{{\cal B}\perp}\to i(q¯3a¯kq¯ka¯3)b[μwν]k,fμνi(q¯3a¯kq¯ka¯3)b[μwkν].\displaystyle i\left({\bar{q}}_{3}{\bar{a}}_{k}-{\bar{q}}_{k}{\bar{a}}_{3}\right)b_{[{\mu}}w_{{\nu}]}^{k}\,,\qquad f^{{\mu}{\nu}}_{{\cal B}\perp}\to i\left({\bar{q}}_{3}{\bar{a}}_{k}-{\bar{q}}_{k}{\bar{a}}_{3}\right)b^{[{\mu}}w^{{\nu}]}_{k}\,. (81)

Note we’ve suppressed helicity ss in the notation of the perturbative gauge field asλa_{s}^{\lambda} for simplicity. Upon summation a=(a++a)/2a=(a_{+}+a_{-})/2 and subtraction a5=(a+a)/2a_{5}=(a_{+}-a_{-})/2, one can easily generalize the above results into vectorial and axial gauge fields.

Appendix C Solving covariant CKE

For the constraints in EE_{\parallel} case, upon Fourier transformation, we have fμνEi(q¯0a¯3q¯3a¯0)u[μbν]f_{{\mu}{\nu}}^{E\parallel}\to i\left({\bar{q}}_{0}{\bar{a}}_{3}-{\bar{q}}_{3}{\bar{a}}_{0}\right)u_{[{\mu}}b_{{\nu}]}. Also, μEjaiq^μ(a¯0jaa¯0+a¯3jaa¯3)\partial_{\mu}^{E\parallel}j_{a}\to i\hat{q}_{\mu}\left({\bar{a}}_{0}\frac{\partial j_{a}}{\partial{\bar{a}}_{0}}+{\bar{a}}_{3}\frac{\partial j_{a}}{\partial{\bar{a}}_{3}}\right) using (IV). Then one gets constraints on jaj_{a} from the left hand side(LHS) and right hand side(RHS) of (31),

LHS=\displaystyle\text{LHS}= q(u+b)(a¯0jaa¯0+a¯3jaa¯3)\displaystyle q\cdot(u+b)\left({\bar{a}}_{0}\frac{\partial j_{a}}{\partial{\bar{a}}_{0}}+{\bar{a}}_{3}\frac{\partial j_{a}}{\partial{\bar{a}}_{3}}\right)
RHS=\displaystyle\text{RHS}= (q¯0a¯3q¯3a¯0)u[μbν](u+b)μpνj=(q¯0a¯3q¯3a¯0)(j(pu)j(pb)).\displaystyle\left({\bar{q}}_{0}{\bar{a}}_{3}-{\bar{q}}_{3}{\bar{a}}_{0}\right)u_{[{\mu}}b_{{\nu}]}(u+b)^{\mu}\frac{\partial}{\partial p_{\nu}}j=\left({\bar{q}}_{0}{\bar{a}}_{3}-{\bar{q}}_{3}{\bar{a}}_{0}\right)\left(\frac{\partial j}{\partial\left(p\cdot u\right)}-\frac{\partial j}{\partial\left(p\cdot b\right)}\right)\,. (82)

In (32), using ϵμνρσq^ρ(u+b)σ=ϵμνρσq(u+b)uρbσ{\epsilon}^{{\mu}{\nu}{\rho}{\sigma}}{\hat{q}}_{\rho}(u+b)_{\sigma}={\epsilon}^{{\mu}{\nu}{\rho}{\sigma}}q\cdot(u+b)u_{\rho}b_{\sigma}, one gets

LHS=\displaystyle\text{LHS}= ϵμνρσuρbσq(u+b)(a¯0jaa¯0+a¯3jaa¯3)\displaystyle{\epsilon}^{{\mu}{\nu}{\rho}{\sigma}}u_{\rho}b_{\sigma}q\cdot(u+b)\left({\bar{a}}_{0}\frac{\partial j_{a}}{\partial{\bar{a}}_{0}}+{\bar{a}}_{3}\frac{\partial j_{a}}{\partial{\bar{a}}_{3}}\right)
RHS=\displaystyle\text{RHS}= ϵμνρσ(q¯0a¯3q¯3a¯0)u[ρbλ](u+b)σpλj\displaystyle{\epsilon}^{{\mu}{\nu}{\rho}{\sigma}}\left({\bar{q}}_{0}{\bar{a}}_{3}-{\bar{q}}_{3}{\bar{a}}_{0}\right)u_{[{\rho}}b_{{\lambda}]}(u+b)_{\sigma}\frac{\partial}{\partial p_{\lambda}}j
=\displaystyle= ϵμνρσuρbσ(q¯0a¯3q¯3a¯0)(j(pu)j(pb)).\displaystyle{\epsilon}^{{\mu}{\nu}{\rho}{\sigma}}u_{\rho}b_{\sigma}\left({\bar{q}}_{0}{\bar{a}}_{3}-{\bar{q}}_{3}{\bar{a}}_{0}\right)\left(\frac{\partial j}{\partial\left(p\cdot u\right)}-\frac{\partial j}{\partial\left(p\cdot b\right)}\right). (83)

We can see both (31) and (32) give (IV.1) as the constraint on jaj_{a} in EE_{\parallel} case.

For EE_{\perp} and {\cal B}_{\perp}, noting

μEjai(uμq¯0a¯kjaa¯k+qμTa¯0jaa¯0)=iq¯0(uμa¯kjaa¯k+aμTjaa¯0)+fμνEuνjaa¯0,\displaystyle\partial_{\mu}^{E\perp}j_{a}\;\to\;i\left(u_{\mu}{\bar{q}}_{0}{\bar{a}}_{k}\frac{\partial j_{a}}{\partial{\bar{a}}_{k}}+q_{\mu}^{T}{\bar{a}}_{0}\frac{\partial j_{a}}{\partial{\bar{a}}_{0}}\right)=i{\bar{q}}_{0}\left(u_{\mu}{\bar{a}}_{k}\frac{\partial j_{a}}{\partial{\bar{a}}_{k}}+a_{\mu}^{T}\frac{\partial j_{a}}{\partial{\bar{a}}_{0}}\right)+f_{{\mu}{\nu}}^{E\perp}u^{\nu}\frac{\partial j_{a}}{\partial{\bar{a}}_{0}}\,,
μjai(bμq¯3a¯kjaa¯k+qμTa¯3jaa¯3)=iq¯3(bμa¯kjaa¯k+aμTjaa¯3)fμνbνjaa¯3.\displaystyle\partial_{\mu}^{{\cal B}\perp}j_{a}\;\to\;i\left(b_{\mu}{\bar{q}}_{3}{\bar{a}}_{k}\frac{\partial j_{a}}{\partial{\bar{a}}_{k}}+q_{\mu}^{T}{\bar{a}}_{3}\frac{\partial j_{a}}{\partial{\bar{a}}_{3}}\right)=i{\bar{q}}_{3}\left(b_{\mu}{\bar{a}}_{k}\frac{\partial j_{a}}{\partial{\bar{a}}_{k}}+a_{\mu}^{T}\frac{\partial j_{a}}{\partial{\bar{a}}_{3}}\right)-f_{{\mu}{\nu}}^{{\cal B}\perp}b^{\nu}\frac{\partial j_{a}}{\partial{\bar{a}}_{3}}\,. (84)

The scalar equations (27) and (28) give

(27)E\displaystyle\eqref{eom1E}\quad\xrightarrow{E\perp}\quad pup(u+b)((pu)G1+G2)+puG3=0\displaystyle p\cdot u_{\perp}\,p\cdot(u+b)\left(\frac{\partial}{\partial(p\cdot u)}G_{1}+G_{2}\right)+p\cdot u_{\perp}G_{3}=0 (85)
\displaystyle\xrightarrow{{\cal B}\perp}\quad pBp(u+b)((pu)H1+H2)+pBH3=0\displaystyle\frac{p\cdot{\cal B}_{\perp}}{B}p\cdot(u+b)\left(\frac{\partial}{\partial(p\cdot u)}H_{1}+H_{2}\right)+\frac{p\cdot{\cal B}_{\perp}}{B}H_{3}=0 (86)
(28)E\displaystyle\eqref{eom2E}\quad\xrightarrow{E\perp}\quad μEj(0)aμFμλpλjEμfμνEpνj(0)μ\displaystyle\partial_{\mu}^{E\perp}j_{(0)a}^{{\mu}}-F_{{\mu}{\lambda}}\frac{\partial}{\partial p_{\lambda}}j_{E\perp}^{{\mu}}-f_{{\mu}{\nu}}^{E\perp}\frac{\partial}{\partial p_{{\nu}}}j_{(0)}^{{\mu}}
=iq¯0a¯kjaa¯k+BϵμλαβbαuβϵμνρσfνρEbσ2B2pTλBG3(u+b)μfμνE2pTνBj\displaystyle=i{\bar{q}}_{0}{\bar{a}}_{k}\frac{\partial j_{a}}{\partial{\bar{a}}_{k}}+B{\epsilon}_{{\mu}{\lambda}{\alpha}{\beta}}b^{{\alpha}}u^{{\beta}}\frac{{\epsilon}^{{\mu}{\nu}{\rho}{\sigma}}f_{{\nu}{\rho}}^{E\perp}b_{{\sigma}}}{2B}\frac{2p_{T}^{{\lambda}}}{B}G_{3}-(u+b)^{{\mu}}f_{{\mu}{\nu}}^{E\perp}\frac{2p_{T}^{{\nu}}}{B}j
=iq¯0a¯kjaa¯k+pT[ρuν]fνρE1BG3pT[νuμ]fμνE1Bj=0,\displaystyle=i{\bar{q}}_{0}{\bar{a}}_{k}\frac{\partial j_{a}}{\partial{\bar{a}}_{k}}+p_{T}^{[{\rho}}u^{{\nu}]}f_{{\nu}{\rho}}^{E\perp}\frac{1}{B}G_{3}-p_{T}^{[{\nu}}u^{{\mu}]}f_{{\mu}{\nu}}^{E\perp}\frac{1}{B}j=0\,, (87)
\displaystyle\xrightarrow{{\cal B}\perp}\quad μj(0)aμFμλpλjμfμνpνj(0)μ\displaystyle\partial_{\mu}^{{\cal B}\perp}j_{(0)a}^{{\mu}}-F_{{\mu}{\lambda}}\frac{\partial}{\partial p_{\lambda}}j_{{\cal B}\perp}^{{\mu}}-f_{{\mu}{\nu}}^{{\cal B}\perp}\frac{\partial}{\partial p_{{\nu}}}j_{(0)}^{{\mu}}
=iq¯3a¯kjaa¯k+Bϵμλαβbαuβϵμνρσfνρuσ2B2pTλBH3(u+b)μfμν2pTνBj\displaystyle=-i{\bar{q}}_{3}{\bar{a}}_{k}\frac{\partial j_{a}}{\partial{\bar{a}}_{k}}+B{\epsilon}_{{\mu}{\lambda}{\alpha}{\beta}}b^{{\alpha}}u^{{\beta}}\frac{{\epsilon}^{{\mu}{\nu}{\rho}{\sigma}}f_{{\nu}{\rho}}^{{\cal B}\perp}u_{{\sigma}}}{2B}\frac{2p_{T}^{{\lambda}}}{B}H_{3}-(u+b)^{{\mu}}f_{{\mu}{\nu}}^{{\cal B}\perp}\frac{2p_{T}^{{\nu}}}{B}j
=iq¯3a¯kjaa¯k+pT[ρbν]fνρ1BH3pT[νbμ]fμν1Bj=0,\displaystyle=-i{\bar{q}}_{3}{\bar{a}}_{k}\frac{\partial j_{a}}{\partial{\bar{a}}_{k}}+p_{T}^{[{\rho}}b^{{\nu}]}f_{{\nu}{\rho}}^{{\cal B}\perp}\frac{1}{B}H_{3}-p_{T}^{[{\nu}}b^{{\mu}]}f_{{\mu}{\nu}}^{{\cal B}\perp}\frac{1}{B}j=0\,, (88)

where we have used bμfμνE=uμfμν=0b^{\mu}f_{{\mu}{\nu}}^{E\perp}=u^{\mu}f_{{\mu}{\nu}}^{{\cal B}\perp}=0 in (87) and (88). One finds (85) to (88) are satisfied by

a¯kjaa¯k=0,\displaystyle{\bar{a}}_{k}\frac{\partial j_{a}}{\partial{\bar{a}}_{k}}=0\,,\qquad G1=G3=j,G2δ(p(u+b)),\displaystyle G_{1}=G_{3}=j\,,\qquad G_{2}\propto{\delta}(p\cdot(u+b))\,,
H1=H3=j,H2δ(p(u+b)).\displaystyle H_{1}=H_{3}=j\,,\qquad H_{2}\propto{\delta}(p\cdot(u+b))\,. (89)

The anti-symmetric tensor equation (29) is simplified as follows. The two parts on the LHS give

p[μjEν]=pup[μ(u+b)ν]((pu)G1+G2)+p[μuν]G3\displaystyle p^{[{\mu}}j_{E\perp}^{{\nu}]}=p\cdot u_{\perp}p^{[{\mu}}(u+b)^{{\nu}]}\left(\frac{\partial}{\partial(p\cdot u)}G_{1}+G_{2}\right)+p^{[{\mu}}u_{\perp}^{{\nu}]}G_{3}
=pu(pT[μ(u+b)ν]p(u+b)b[μuν])((pu)G1+G2)+pT[μuν]G3+pu(u+b)[μuν]G3,\displaystyle=p\cdot u_{\perp}\left(p_{T}^{[{\mu}}(u+b)^{{\nu}]}-p\cdot(u+b)b^{[{\mu}}u^{{\nu}]}\right)\left(\frac{\partial}{\partial(p\cdot u)}G_{1}+G_{2}\right)+p_{T}^{[{\mu}}u_{\perp}^{{\nu}]}G_{3}+p\cdot u(u+b)^{[{\mu}}u_{\perp}^{{\nu}]}G_{3}\,, (90)
p[μjν]=pBp[μ(u+b)ν]((pu)H1+H2)+1Bp[μν]H3\displaystyle p^{[{\mu}}j_{{\cal B}\perp}^{{\nu}]}=\frac{p\cdot{\cal B}_{\perp}}{B}p^{[{\mu}}(u+b)^{{\nu}]}\left(\frac{\partial}{\partial(p\cdot u)}H_{1}+H_{2}\right)+\frac{1}{B}p^{[{\mu}}{\cal B}_{\perp}^{{\nu}]}H_{3}
=pB(pT[μ(u+b)ν]p(u+b)b[μuν])((pu)H1+H2)+1BpT[μν]H3+1Bpu(u+b)[μν]H3,\displaystyle=\frac{p\cdot{\cal B}_{\perp}}{B}\left(p_{T}^{[{\mu}}(u+b)^{{\nu}]}-p\cdot(u+b)b^{[{\mu}}u^{{\nu}]}\right)\left(\frac{\partial}{\partial(p\cdot u)}H_{1}+H_{2}\right)+\frac{1}{B}p_{T}^{[{\mu}}{\cal B}_{\perp}^{{\nu}]}H_{3}+\frac{1}{B}p\cdot u(u+b)^{[{\mu}}{\cal B}_{\perp}^{{\nu}]}H_{3}\,, (91)
12ϵμνρσFρλpλjσE=12ϵμνρσBϵρλαβbαuβpλ[pu(u+b)σ((pu)G1+G2)+uσG3]\displaystyle\frac{1}{2}{\epsilon}^{{\mu}{\nu}{\rho}{\sigma}}F_{{\rho}{\lambda}}\frac{\partial}{\partial p_{\lambda}}j^{E\perp}_{{\sigma}}=-\frac{1}{2}{\epsilon}^{{\mu}{\nu}{\rho}{\sigma}}B{\epsilon}_{{\rho}{\lambda}{\alpha}{\beta}}b^{{\alpha}}u^{{\beta}}\frac{\partial}{\partial p_{{\lambda}}}\left[p\cdot u_{\perp}(u+b)_{{\sigma}}\left(\frac{\partial}{\partial(p\cdot u)}G_{1}+G_{2}\right)+u_{\sigma}^{\perp}G_{3}\right]
=(pupT[μ(u+b)ν]+B2u[μ(u+b)ν])((pu)G1+G2)+b[μuν]puG3,\displaystyle=\left(p\cdot u_{\perp}p_{T}^{[{\mu}}(u+b)^{{\nu}]}+\frac{B}{2}u_{\perp}^{[{\mu}}(u+b)^{{\nu}]}\right)\left(\frac{\partial}{\partial(p\cdot u)}G_{1}+G_{2}\right)+b^{[{\mu}}u^{{\nu}]}p\cdot u_{\perp}G_{3}\,, (92)
12ϵμνρσFρλpλjσ=12ϵμνρσBϵρλαβbαuβpλ[pB(u+b)σ((pu)H1+H2)+σBH3]\displaystyle\frac{1}{2}{\epsilon}^{{\mu}{\nu}{\rho}{\sigma}}F_{{\rho}{\lambda}}\frac{\partial}{\partial p_{\lambda}}j^{{\cal B}\perp}_{{\sigma}}=-\frac{1}{2}{\epsilon}^{{\mu}{\nu}{\rho}{\sigma}}B{\epsilon}_{{\rho}{\lambda}{\alpha}{\beta}}b^{{\alpha}}u^{{\beta}}\frac{\partial}{\partial p_{{\lambda}}}\left[\frac{p\cdot{\cal B}_{\perp}}{B}(u+b)_{{\sigma}}\left(\frac{\partial}{\partial(p\cdot u)}H_{1}+H_{2}\right)+\frac{{\cal B}_{\sigma}^{\perp}}{B}H_{3}\right]
=(pBpT[μ(u+b)ν]+12[μ(u+b)ν])((pu)H1+H2)+b[μuν]pBH3.\displaystyle=\left(\frac{p\cdot{\cal B}_{\perp}}{B}p_{T}^{[{\mu}}(u+b)^{{\nu}]}+\frac{1}{2}{\cal B}_{\perp}^{[{\mu}}(u+b)^{{\nu}]}\right)\left(\frac{\partial}{\partial(p\cdot u)}H_{1}+H_{2}\right)+b^{[{\mu}}u^{{\nu}]}\frac{p\cdot{\cal B}_{\perp}}{B}H_{3}\,. (93)

Noting fρλEbλ=fρλuλ=0f_{{\rho}{\lambda}}^{E\perp}b^{\lambda}=f_{{\rho}{\lambda}}^{{\cal B}\perp}u^{\lambda}=0, the inhomogeneous terms on the RHS write

12ϵμνρσ(ρEjσafρλEpλjσ(0))\displaystyle-\frac{1}{2}{\epsilon}^{{\mu}{\nu}{\rho}{\sigma}}\left(\partial_{\rho}^{E\perp}j_{{\sigma}}^{a}-f_{{\rho}{\lambda}}^{E\perp}\frac{\partial}{\partial p_{{\lambda}}}j_{{\sigma}}^{(0)}\right)
=12ϵμνρσ[iq¯0(uρa¯kjaa¯k+aρTjaa¯0)+fρλEuλjaa¯0](u+b)σ+12ϵμνρσfρλE(u+b)σ(uλ(pu)+2pTλB)j\displaystyle=-\frac{1}{2}{\epsilon}^{{\mu}{\nu}{\rho}{\sigma}}\left[i{\bar{q}}_{0}\left(u_{\rho}{\bar{a}}_{k}\frac{\partial j_{a}}{\partial{\bar{a}}_{k}}+a_{\rho}^{T}\frac{\partial j_{a}}{\partial{\bar{a}}_{0}}\right)+f_{{\rho}{\lambda}}^{E\perp}u^{{\lambda}}\frac{\partial j_{a}}{\partial{\bar{a}}_{0}}\right](u+b)_{\sigma}+\frac{1}{2}{\epsilon}^{{\mu}{\nu}{\rho}{\sigma}}f_{{\rho}{\lambda}}^{E\perp}(u+b)_{{\sigma}}\left(u^{{\lambda}}\frac{\partial}{\partial(p\cdot u)}+\frac{2p_{T}^{{\lambda}}}{B}\right)j
=i2ϵμνρσ(uρbσjaa¯k+wρk(u+b)σjaa¯0)q¯0a¯k+B2(u+b)[μuν](j(pu)jaa¯0)+pT[μuν]j,\displaystyle=-\frac{i}{2}{\epsilon}^{{\mu}{\nu}{\rho}{\sigma}}\left(u_{\rho}b_{\sigma}\frac{\partial j_{a}}{\partial{\bar{a}}_{k}}+w_{\rho}^{k}(u+b)_{\sigma}\frac{\partial j_{a}}{\partial{\bar{a}}_{0}}\right){\bar{q}}_{0}{\bar{a}}_{k}+\frac{B}{2}(u+b)^{[{\mu}}u_{\perp}^{\nu]}\left(\frac{\partial j}{\partial(p\cdot u)}-\frac{\partial j_{a}}{\partial{\bar{a}}_{0}}\right)+p_{T}^{[{\mu}}u_{\perp}^{{\nu}]}j\,, (94)
12ϵμνρσ(ρjσafρλpλjσ(0))\displaystyle-\frac{1}{2}{\epsilon}^{{\mu}{\nu}{\rho}{\sigma}}\left(\partial_{\rho}^{{\cal B}\perp}j_{{\sigma}}^{a}-f_{{\rho}{\lambda}}^{{\cal B}\perp}\frac{\partial}{\partial p_{{\lambda}}}j_{{\sigma}}^{(0)}\right)
=12ϵμνρσ[iq¯3(bρa¯kjaa¯k+aρTjaa¯3)fρλbλjaa¯3](u+b)σ+12ϵμνρσfρλ(u+b)σ(bλ(pb)+2pTλB)j\displaystyle=-\frac{1}{2}{\epsilon}^{{\mu}{\nu}{\rho}{\sigma}}\left[i{\bar{q}}_{3}\left(b_{\rho}{\bar{a}}_{k}\frac{\partial j_{a}}{\partial{\bar{a}}_{k}}+a_{\rho}^{T}\frac{\partial j_{a}}{\partial{\bar{a}}_{3}}\right)-f_{{\rho}{\lambda}}^{{\cal B}\perp}b^{{\lambda}}\frac{\partial j_{a}}{\partial{\bar{a}}_{3}}\right](u+b)_{\sigma}+\frac{1}{2}{\epsilon}^{{\mu}{\nu}{\rho}{\sigma}}f_{{\rho}{\lambda}}^{{\cal B}\perp}(u+b)_{{\sigma}}\left(b^{{\lambda}}\frac{\partial}{\partial(p\cdot b)}+\frac{2p_{T}^{{\lambda}}}{B}\right)j
=i2ϵμνρσ(bρuσjaa¯k+wρk(u+b)σjaa¯3)q¯3a¯k+12(u+b)[μν](j(pb)+jaa¯3)+1BpT[μν]j,\displaystyle=-\frac{i}{2}{\epsilon}^{{\mu}{\nu}{\rho}{\sigma}}\left(b_{\rho}u_{\sigma}\frac{\partial j_{a}}{\partial{\bar{a}}_{k}}+w_{\rho}^{k}(u+b)_{\sigma}\frac{\partial j_{a}}{\partial{\bar{a}}_{3}}\right){\bar{q}}_{3}{\bar{a}}_{k}+\frac{1}{2}(u+b)^{[{\mu}}{\cal B}_{\perp}^{\nu]}\left(\frac{\partial j}{\partial(p\cdot b)}+\frac{\partial j_{a}}{\partial{\bar{a}}_{3}}\right)+\frac{1}{B}p_{T}^{[{\mu}}{\cal B}_{\perp}^{{\nu}]}j\,, (95)

where we have used the following identities,

ϵμνρσfρλE(u+b)σuλ=\displaystyle{\epsilon}^{{\mu}{\nu}{\rho}{\sigma}}f_{{\rho}{\lambda}}^{E\perp}(u+b)_{{\sigma}}u^{{\lambda}}= B(u+b)[μuν],ϵμνρσfρλE(u+b)σpTλ=BpT[μuν],\displaystyle B(u+b)^{[{\mu}}u_{\perp}^{{\nu}]}\,,\qquad\,{\epsilon}^{{\mu}{\nu}{\rho}{\sigma}}f_{{\rho}{\lambda}}^{E\perp}(u+b)_{{\sigma}}p_{T}^{{\lambda}}=Bp_{T}^{[{\mu}}u_{\perp}^{{\nu}]}\,,
ϵμνρσfρλ(u+b)σbλ=\displaystyle{\epsilon}^{{\mu}{\nu}{\rho}{\sigma}}f_{{\rho}{\lambda}}^{{\cal B}\perp}(u+b)_{{\sigma}}b^{{\lambda}}= (u+b)[μν],ϵμνρσfρλ(u+b)σpTλ=pT[μν].\displaystyle(u+b)^{[{\mu}}{\cal B}_{\perp}^{{\nu}]}\,,\qquad\quad{\epsilon}^{{\mu}{\nu}{\rho}{\sigma}}f_{{\rho}{\lambda}}^{{\cal B}\perp}(u+b)_{{\sigma}}p_{T}^{{\lambda}}=p_{T}^{[{\mu}}{\cal B}_{\perp}^{{\nu}]}\,. (96)

We collect the terms from (C) to (C) and group them into ϵμνρσuρbσ{\epsilon}^{{\mu}{\nu}{\rho}{\sigma}}u_{\rho}b_{\sigma}, ϵμνρσwρk(u+b)σ{\epsilon}^{{\mu}{\nu}{\rho}{\sigma}}w_{\rho}^{k}(u+b)_{\sigma}, b[μuν]b^{[{\mu}}u^{{\nu}]}, pT[μ(u+b)ν]p_{T}^{[{\mu}}(u+b)^{{\nu}]}, (u+b)[μuν](u+b)^{[{\mu}}u_{\perp}^{{\nu}]}, pT[μuν]p_{T}^{[{\mu}}u_{\perp}^{{\nu}]}, (u+b)[μν](u+b)^{[{\mu}}{\cal B}_{\perp}^{{\nu}]} and pT[μν]p_{T}^{[{\mu}}{\cal B}_{\perp}^{{\nu}]} terms to fix Gn,HnG_{n},H_{n} by comparing the coefficients of the groups. For ϵμνρσuρbσ{\epsilon}^{{\mu}{\nu}{\rho}{\sigma}}u_{\rho}b_{\sigma} and ϵμνρσwρk(u+b)σ{\epsilon}^{{\mu}{\nu}{\rho}{\sigma}}w_{\rho}^{k}(u+b)_{\sigma} terms, one gets

jaa¯ka¯k(q¯0q¯3)=0,(jaa¯0q¯0+jaa¯3q¯3)a¯k=0.\displaystyle\frac{\partial j_{a}}{\partial{\bar{a}}_{k}}{\bar{a}}_{k}\left({\bar{q}}_{0}-{\bar{q}}_{3}\right)=0\,,\qquad\left(\frac{\partial j_{a}}{\partial{\bar{a}}_{0}}{\bar{q}}_{0}+\frac{\partial j_{a}}{\partial{\bar{a}}_{3}}{\bar{q}}_{3}\right){\bar{a}}_{k}=0\,. (97)

For b[μuν]b^{[{\mu}}u^{{\nu}]} terms, one gets

pup(u+b)((pu)G1+G2)=puG3,\displaystyle-p\cdot u_{\perp}p\cdot(u+b)\left(\frac{\partial}{\partial(p\cdot u)}G_{1}+G_{2}\right)=p\cdot u_{\perp}G_{3}\,,
pp(u+b)((pu)H1+H2)=pH3,\displaystyle-p\cdot{\cal B}_{\perp}p\cdot(u+b)\left(\frac{\partial}{\partial(p\cdot u)}H_{1}+H_{2}\right)=p\cdot{\cal B}_{\perp}H_{3}\,, (98)

which holds by G1=G3=H1=H3=jG_{1}=G_{3}=H_{1}=H_{3}=j and G2,H2δ(p(u+b))G_{2},H_{2}\propto{\delta}(p\cdot(u+b)). The coefficients of pT[μ(u+b)ν]p_{T}^{[{\mu}}(u+b)^{{\nu}]} in two sides cancel out automatically. For the (u+b)[μuν](u+b)^{[{\mu}}u_{\perp}^{{\nu}]} and (u+b)[μν](u+b)^{[{\mu}}{\cal B}_{\perp}^{{\nu}]} terms, we get

puG3=B2((pu)G1+G2)B2jaa¯0+B2(pu)j,\displaystyle p\cdot u\,G_{3}=-\frac{B}{2}\left(\frac{\partial}{\partial(p\cdot u)}G_{1}+G_{2}\right)-\frac{B}{2}\frac{\partial j_{a}}{\partial{\bar{a}}_{0}}+\frac{B}{2}\frac{\partial}{\partial(p\cdot u)}j\,,
puH3=B2((pu)H1+H2)+B2jaa¯3+B2(pb)j.\displaystyle p\cdot u\,H_{3}=-\frac{B}{2}\left(\frac{\partial}{\partial(p\cdot u)}H_{1}+H_{2}\right)+\frac{B}{2}\frac{\partial j_{a}}{\partial{\bar{a}}_{3}}+\frac{B}{2}\frac{\partial}{\partial(p\cdot b)}j\,. (99)

which, by G1=G3=H1=H3=jG_{1}=G_{3}=H_{1}=H_{3}=j, gives

G2=2puBjjaa¯0,H2=j(pb)j(pu)2puBj+jaa¯3.\displaystyle G_{2}=-\frac{2p\cdot u}{B}j-\frac{\partial j_{a}}{\partial{\bar{a}}_{0}}\,,\qquad H_{2}=\frac{\partial j}{\partial(p\cdot b)}-\frac{\partial j}{\partial(p\cdot u)}-\frac{2p\cdot u}{B}j+\frac{\partial j_{a}}{\partial{\bar{a}}_{3}}\,. (100)

The coefficients of pT[μuν]p_{T}^{[{\mu}}u_{\perp}^{{\nu}]} and pT[μν]p_{T}^{[{\mu}}{\cal B}_{\perp}^{{\nu}]} give G3=H3=jG_{3}=H_{3}=j.

Appendix D Functional differentiation

In momentum space, the functional differential operators write

δaμ(k)δaν(q)=δaμ5(k)δaν5(q)=d4kδμνδ(4)(kq),δaμ(k)δaν5(q)=δaμ5(k)δaν(q)=0.\displaystyle\frac{{\delta}a_{\mu}(k)}{{\delta}a_{\nu}(q)}=\frac{{\delta}a_{\mu}^{5}(k)}{{\delta}a_{\nu}^{5}(q)}=\int d^{4}k\,{\delta}_{\mu}^{\nu}\,{\delta}^{(4)}(k-q)\,,\qquad\frac{{\delta}a_{\mu}(k)}{{\delta}a_{\nu}^{5}(q)}=\frac{{\delta}a_{\mu}^{5}(k)}{{\delta}a_{\nu}(q)}=0\,. (101)

The momentum integration involving δ{\delta} function is easy, which gives

𝒢VVμν(q)=δ𝒥μ(k)δaν(q)=δ2δaν(q)δaμ(k)=δ2δaμ(k)δaν(q)=δ𝒥ν(q)δaμ(k)=𝒢VVνμ(k),\displaystyle{\cal G}_{VV}^{{\mu}{\nu}}(q)=\frac{{\delta}{\cal J}^{\mu}(k)}{{\delta}a_{\nu}(q)}=\frac{{\delta}^{2}{\cal L}}{{\delta}a_{\nu}(q)\,{\delta}a_{\mu}(-k)}=\frac{{\delta}^{2}{\cal L}}{{\delta}a_{\mu}(-k)\,{\delta}a_{\nu}(q)}=\frac{{\delta}{\cal J}^{\nu}(-q)}{{\delta}a_{\mu}(-k)}={\cal G}_{VV}^{{\nu}{\mu}}(-k)\,, (102)

where we have taken 𝒢VV{\cal G}_{VV} for example. Note qq as the variable of the function 𝒢VVμν(q){\cal G}_{VV}^{{\mu}{\nu}}(q) can be renamed kk, one then gets the derivative symmetry 𝒢VVμν(k)=𝒢VVνμ(k){\cal G}_{VV}^{{\mu}{\nu}}(k)={\cal G}_{VV}^{{\nu}{\mu}}(-k). In the following processes, we will omit the trivial momentum integration to be concise. To get (IV.3), the variation of J(0)μJ_{(0)}^{{\mu}} and J(0)5μJ_{(0)5}^{{\mu}} with respect to aλa_{\lambda} and aλ5a_{\lambda}^{5} involves

δΔμδaλ=\displaystyle\frac{{\delta}{\Delta}{\mu}}{{\delta}a_{\lambda}}= δΔμ5δaλ5=(uλq¯3+bλq¯0)q¯3q¯02q¯32,\displaystyle\frac{{\delta}{\Delta}{\mu}_{5}}{{\delta}a_{\lambda}^{5}}=\frac{\left(u^{\lambda}{\bar{q}}_{3}+b^{\lambda}{\bar{q}}_{0}\right){\bar{q}}_{3}}{{\bar{q}}_{0}^{2}-{\bar{q}}_{3}^{2}}\,,
δΔμ5δaλ=\displaystyle\frac{{\delta}{\Delta}{\mu}_{5}}{{\delta}a_{\lambda}}= δΔμδaλ5=(uλq¯3+bλq¯0)q¯0q¯02q¯32.\displaystyle\frac{{\delta}{\Delta}{\mu}}{{\delta}a_{\lambda}^{5}}=\frac{\left(u^{\lambda}{\bar{q}}_{3}+b^{\lambda}{\bar{q}}_{0}\right){\bar{q}}_{0}}{{\bar{q}}_{0}^{2}-{\bar{q}}_{3}^{2}}\,. (103)

To derive (IV.3), we use Uμ=12ϵμνρσbνfρσEU^{\mu}=\frac{1}{2}{\epsilon}^{{\mu}{\nu}{\rho}{\sigma}}b_{\nu}f_{{\rho}{\sigma}}^{E\perp}, U5μ=12ϵμνρσbνfρσE5U_{5}^{\mu}=\frac{1}{2}{\epsilon}^{{\mu}{\nu}{\rho}{\sigma}}b_{\nu}f_{{\rho}{\sigma}}^{E\perp 5}, /μ=12ϵμνρσuνfρσ/{\cal B}_{\parallel/\perp}^{\mu}=\frac{1}{2}{\epsilon}^{{\mu}{\nu}{\rho}{\sigma}}u_{\nu}f_{{\rho}{\sigma}}^{{\cal B}\parallel/\perp} and /5μ=12ϵμνρσuνfρσ/5{\cal B}_{\parallel/\perp 5}^{\mu}=\frac{1}{2}{\epsilon}^{{\mu}{\nu}{\rho}{\sigma}}u_{\nu}f_{{\rho}{\sigma}}^{{\cal B}\parallel/\perp 5} together with (B). The variation of J𝒜μJ_{{\cal A}}^{{\mu}} and J𝒜5μJ_{{\cal A}5}^{{\mu}} with respect to aλa_{\lambda} and aλ5a_{\lambda}^{5} involves

δUμδaλ\displaystyle\frac{{\delta}U^{\mu}}{{\delta}a_{\lambda}} =12ϵμνρσbνi(q¯0δa¯kδaλq¯kδa¯0δaλ)u[ρwσ]k\displaystyle=\frac{1}{2}{\epsilon}^{{\mu}{\nu}{\rho}{\sigma}}b_{\nu}i\left({\bar{q}}_{0}\frac{{\delta}{\bar{a}}_{k}}{{\delta}a_{\lambda}}-{\bar{q}}_{k}\frac{{\delta}{\bar{a}}_{0}}{{\delta}a_{\lambda}}\right)u_{[{\rho}}w_{{\sigma}]}^{k}
=iϵμνρσ(q¯0wkλ+q¯kuλ)wνkuρbσ=i(ϵμλρσq¯0+ϵμνρσuλqνT)uρbσ,\displaystyle=i{\epsilon}^{{\mu}{\nu}{\rho}{\sigma}}\left({\bar{q}}_{0}w_{k}^{\lambda}+{\bar{q}}_{k}u^{\lambda}\right)w_{\nu}^{k}u_{\rho}b_{\sigma}=i\left(-{\epsilon}^{{\mu}{\lambda}{\rho}{\sigma}}{\bar{q}}_{0}+{\epsilon}^{{\mu}{\nu}{\rho}{\sigma}}u^{\lambda}q_{\nu}^{T}\right)u_{\rho}b_{\sigma},
δ(b)δaλ\displaystyle\frac{{\delta}\left(b\cdot{\cal B}_{\parallel}\right)}{{\delta}a_{\lambda}} =12ϵσρμνbσuρi(q¯1δa¯2δaλq¯2δa¯1δaλ)w[μ1wν]2\displaystyle=\frac{1}{2}{\epsilon}^{{\sigma}{\rho}{\mu}{\nu}}b_{\sigma}u_{\rho}i\left({\bar{q}}_{1}\frac{{\delta}{\bar{a}}_{2}}{{\delta}a_{\lambda}}-{\bar{q}}_{2}\frac{{\delta}{\bar{a}}_{1}}{{\delta}a_{\lambda}}\right)w_{[{\mu}}^{1}w_{{\nu}]}^{2}
=iϵμνρσ(q¯1w2λq¯2w1λ)wμ1wν2uρbσ=iϵλνρσqνTuρbσ,\displaystyle=i{\epsilon}^{{\mu}{\nu}{\rho}{\sigma}}\left({\bar{q}}_{1}w_{2}^{\lambda}-{\bar{q}}_{2}w_{1}^{\lambda}\right)w_{\mu}^{1}w_{\nu}^{2}u_{\rho}b_{\sigma}=i{\epsilon}^{{\lambda}{\nu}{\rho}{\sigma}}q_{\nu}^{T}u_{\rho}b_{\sigma}\,,
δμδaλ\displaystyle\frac{{\delta}{\cal B}_{\perp}^{\mu}}{{\delta}a_{\lambda}} =12ϵμνρσuνi(q¯3δa¯kδaλq¯kδa¯3δaλ)b[ρwσ]k\displaystyle=\frac{1}{2}{\epsilon}^{{\mu}{\nu}{\rho}{\sigma}}u_{\nu}i\left({\bar{q}}_{3}\frac{{\delta}{\bar{a}}_{k}}{{\delta}a_{\lambda}}-{\bar{q}}_{k}\frac{{\delta}{\bar{a}}_{3}}{{\delta}a_{\lambda}}\right)b_{[{\rho}}w_{{\sigma}]}^{k}
=iϵμνρσ(q¯3wkλ+q¯kbλ)wνkuρbσ=i(ϵμλρσq¯3+ϵμνρσbλqνT)uρbσ,\displaystyle=i{\epsilon}^{{\mu}{\nu}{\rho}{\sigma}}\left(-{\bar{q}}_{3}w_{k}^{\lambda}+{\bar{q}}_{k}b^{\lambda}\right)w_{\nu}^{k}u_{\rho}b_{\sigma}=i\left({\epsilon}^{{\mu}{\lambda}{\rho}{\sigma}}{\bar{q}}_{3}+{\epsilon}^{{\mu}{\nu}{\rho}{\sigma}}b^{\lambda}q_{\nu}^{T}\right)u_{\rho}b_{\sigma}\,,
δμδaλ\displaystyle\frac{{\delta}{\cal B}_{\parallel}^{\mu}}{{\delta}a_{\lambda}} =δ(bbμ)δaλiϵλνρσqνTuρbσbμ,\displaystyle=\frac{{\delta}\left(-b\cdot{\cal B}_{\parallel}b^{\mu}\right)}{{\delta}a_{\lambda}}\to-i{\epsilon}^{{\lambda}{\nu}{\rho}{\sigma}}q_{\nu}^{T}u_{\rho}b_{\sigma}b^{\mu}\,,
δU5μδaλ5=δUμδaλ,\displaystyle\frac{{\delta}U_{5}^{\mu}}{{\delta}a_{\lambda}^{5}}=\frac{{\delta}U^{\mu}}{{\delta}a_{\lambda}}\,, δ(b5)δaλ5=δ(b)δaλ,δ5μδaλ5=δμδaλ,δ5μδaλ5=δμδaλ,\displaystyle\qquad\frac{{\delta}\left(b\cdot{\cal B}_{\parallel 5}\right)}{{\delta}a_{\lambda}^{5}}=\frac{{\delta}\left(b\cdot{\cal B}_{\parallel}\right)}{{\delta}a_{\lambda}}\,,\qquad\frac{{\delta}{\cal B}_{\perp 5}^{\mu}}{{\delta}a_{\lambda}^{5}}=\frac{{\delta}{\cal B}_{\perp}^{\mu}}{{\delta}a_{\lambda}}\,,\qquad\frac{{\delta}{\cal B}_{\parallel 5}^{\mu}}{{\delta}a_{\lambda}^{5}}=\frac{{\delta}{\cal B}_{\parallel}^{\mu}}{{\delta}a_{\lambda}}\,,
δU5μδaλ=δUμδaλ5=\displaystyle\frac{{\delta}U_{5}^{\mu}}{{\delta}a_{\lambda}}=\frac{{\delta}U^{\mu}}{{\delta}a_{\lambda}^{5}}= δ(b5)δaλ=δ(b)δaλ5=δ5μδaλ=δμδaλ5=δ(5μ)δaλ=δ(μ)δaλ5=0,\displaystyle\frac{{\delta}\left(b\cdot{\cal B}_{\parallel 5}\right)}{{\delta}a_{\lambda}}=\frac{{\delta}\left(b\cdot{\cal B}_{\parallel}\right)}{{\delta}a_{\lambda}^{5}}=\frac{{\delta}{\cal B}_{\perp 5}^{\mu}}{{\delta}a_{\lambda}}=\frac{{\delta}{\cal B}_{\perp}^{\mu}}{{\delta}a_{\lambda}^{5}}=\frac{{\delta}\left({\cal B}_{\parallel 5}^{\mu}\right)}{{\delta}a_{\lambda}}=\frac{{\delta}\left({\cal B}_{\parallel}^{\mu}\right)}{{\delta}a_{\lambda}^{5}}=0\,, (104)

where we have used ϵμνρσwkλwνkuρbσ=ϵμλρσuρbσ{\epsilon}^{{\mu}{\nu}{\rho}{\sigma}}w_{k}^{\lambda}w_{\nu}^{k}u_{\rho}b_{\sigma}=-{\epsilon}^{{\mu}{\lambda}{\rho}{\sigma}}u_{\rho}b_{\sigma} and ϵμνρσwiλwμkwνiuρbσ=ϵλνρσwνkuρbσ{\epsilon}^{{\mu}{\nu}{\rho}{\sigma}}w_{i}^{\lambda}w_{\mu}^{k}w_{\nu}^{i}u_{\rho}b_{\sigma}={\epsilon}^{{\lambda}{\nu}{\rho}{\sigma}}w_{\nu}^{k}u_{\rho}b_{\sigma}.

References

  • [1] Dmitri E. Kharzeev and Ho-Ung Yee. Chiral Magnetic Wave. Phys. Rev. D, 83:085007, 2011.
  • [2] A. Vilenkin. EQUILIBRIUM PARITY VIOLATING CURRENT IN A MAGNETIC FIELD. Phys. Rev. D, 22:3080–3084, 1980.
  • [3] Dmitri Kharzeev. Parity violation in hot QCD: Why it can happen, and how to look for it. Phys. Lett. B, 633:260–264, 2006.
  • [4] D. Kharzeev and A. Zhitnitsky. Charge separation induced by P-odd bubbles in QCD matter. Nucl. Phys. A, 797:67–79, 2007.
  • [5] Kenji Fukushima, Dmitri E. Kharzeev, and Harmen J. Warringa. The Chiral Magnetic Effect. Phys. Rev. D, 78:074033, 2008.
  • [6] Dam T. Son and Piotr Surowka. Hydrodynamics with Triangle Anomalies. Phys. Rev. Lett., 103:191601, 2009.
  • [7] Yasha Neiman and Yaron Oz. Relativistic Hydrodynamics with General Anomalous Charges. JHEP, 03:023, 2011.
  • [8] Max A. Metlitski and Ariel R. Zhitnitsky. Anomalous axion interactions and topological currents in dense matter. Phys. Rev. D, 72:045011, 2005.
  • [9] D. T. Son and Ariel R. Zhitnitsky. Quantum anomalies in dense matter. Phys. Rev. D, 70:074018, 2004.
  • [10] A. Vilenkin. QUANTUM FIELD THEORY AT FINITE TEMPERATURE IN A ROTATING SYSTEM. Phys. Rev. D, 21:2260–2269, 1980.
  • [11] Johanna Erdmenger, Michael Haack, Matthias Kaminski, and Amos Yarom. Fluid dynamics of R-charged black holes. JHEP, 01:055, 2009.
  • [12] Nabamita Banerjee, Jyotirmoy Bhattacharya, Sayantani Bhattacharyya, Suvankar Dutta, R. Loganayagam, and P. Surowka. Hydrodynamics from charged black branes. JHEP, 01:094, 2011.
  • [13] Karl Landsteiner, Eugenio Megias, and Francisco Pena-Benitez. Gravitational Anomaly and Transport. Phys. Rev. Lett., 107:021601, 2011.
  • [14] Dam Thanh Son and Naoki Yamamoto. Berry Curvature, Triangle Anomalies, and the Chiral Magnetic Effect in Fermi Liquids. Phys. Rev. Lett., 109:181602, 2012.
  • [15] Dam Thanh Son and Naoki Yamamoto. Kinetic theory with Berry curvature from quantum field theories. Phys. Rev. D, 87(8):085016, 2013.
  • [16] M. A. Stephanov and Y. Yin. Chiral Kinetic Theory. Phys. Rev. Lett., 109:162001, 2012.
  • [17] Jian-Hua Gao, Zuo-Tang Liang, Shi Pu, Qun Wang, and Xin-Nian Wang. Chiral Anomaly and Local Polarization Effect from Quantum Kinetic Approach. Phys. Rev. Lett., 109:232301, 2012.
  • [18] Shi Pu, Jian-hua Gao, and Qun Wang. A consistent description of kinetic equation with triangle anomaly. Phys. Rev. D, 83:094017, 2011.
  • [19] Jiunn-Wei Chen, Shi Pu, Qun Wang, and Xin-Nian Wang. Berry Curvature and Four-Dimensional Monopoles in the Relativistic Chiral Kinetic Equation. Phys. Rev. Lett., 110(26):262301, 2013.
  • [20] Yoshimasa Hidaka, Shi Pu, and Di-Lun Yang. Relativistic Chiral Kinetic Theory from Quantum Field Theories. Phys. Rev. D, 95(9):091901, 2017.
  • [21] Cristina Manuel and Juan M. Torres-Rincon. Kinetic theory of chiral relativistic plasmas and energy density of their gauge collective excitations. Phys. Rev. D, 89(9):096002, 2014.
  • [22] Cristina Manuel and Juan M. Torres-Rincon. Chiral transport equation from the quantum Dirac Hamiltonian and the on-shell effective field theory. Phys. Rev. D, 90(7):076007, 2014.
  • [23] Yan Wu, Defu Hou, and Hai-cang Ren. Field theoretic perspectives of the Wigner function formulation of the chiral magnetic effect. Phys. Rev. D, 96(9):096015, 2017.
  • [24] Niklas Mueller and Raju Venugopalan. Worldline construction of a covariant chiral kinetic theory. Phys. Rev. D, 96(1):016023, 2017.
  • [25] Niklas Mueller and Raju Venugopalan. The chiral anomaly, Berry’s phase and chiral kinetic theory, from world-lines in quantum field theory. Phys. Rev. D, 97(5):051901, 2018.
  • [26] Anping Huang, Shuzhe Shi, Yin Jiang, Jinfeng Liao, and Pengfei Zhuang. Complete and Consistent Chiral Transport from Wigner Function Formalism. Phys. Rev. D, 98(3):036010, 2018.
  • [27] Jian-Hua Gao, Zuo-Tang Liang, Qun Wang, and Xin-Nian Wang. Disentangling covariant Wigner functions for chiral fermions. Phys. Rev. D, 98(3):036019, 2018.
  • [28] Stefano Carignano, Cristina Manuel, and Juan M. Torres-Rincon. Consistent relativistic chiral kinetic theory: A derivation from on-shell effective field theory. Phys. Rev. D, 98(7):076005, 2018.
  • [29] Shu Lin and Aradhya Shukla. Chiral Kinetic Theory from Effective Field Theory Revisited. JHEP, 06:060, 2019.
  • [30] Stefano Carignano, Cristina Manuel, and Juan M. Torres-Rincon. Chiral kinetic theory from the on-shell effective field theory: Derivation of collision terms. Phys. Rev. D, 102(1):016003, 2020.
  • [31] Yu-Chen Liu, Lan-Lan Gao, Kazuya Mameda, and Xu-Guang Huang. Chiral kinetic theory in curved spacetime. Phys. Rev. D, 99(8):085014, 2019.
  • [32] Nora Weickgenannt, Xin-Li Sheng, Enrico Speranza, Qun Wang, and Dirk H. Rischke. Kinetic theory for massive spin-1/2 particles from the Wigner-function formalism. Phys. Rev. D, 100(5):056018, 2019.
  • [33] Jian-Hua Gao and Zuo-Tang Liang. Relativistic Quantum Kinetic Theory for Massive Fermions and Spin Effects. Phys. Rev. D, 100(5):056021, 2019.
  • [34] Koichi Hattori, Yoshimasa Hidaka, and Di-Lun Yang. Axial Kinetic Theory and Spin Transport for Fermions with Arbitrary Mass. Phys. Rev. D, 100(9):096011, 2019.
  • [35] Ziyue Wang, Xingyu Guo, Shuzhe Shi, and Pengfei Zhuang. Mass Correction to Chiral Kinetic Equations. Phys. Rev. D, 100(1):014015, 2019.
  • [36] Di-Lun Yang, Koichi Hattori, and Yoshimasa Hidaka. Effective quantum kinetic theory for spin transport of fermions with collsional effects. JHEP, 07:070, 2020.
  • [37] Yu-Chen Liu, Kazuya Mameda, and Xu-Guang Huang. Covariant Spin Kinetic Theory I: Collisionless Limit. Chin. Phys. C, 44(9):094101, 2020.
  • [38] Tomoya Hayata, Yoshimasa Hidaka, and Kazuya Mameda. Second order chiral kinetic theory under gravity and antiparallel charge-energy flow. 12 2020.
  • [39] Shile Chen, Ziyue Wang, and Pengfei Zhuang. Equal-time kinetic equations in a rotational field, 2021.
  • [40] Shu Lin and Lixin Yang. Chiral kinetic theory from Landau level basis. Phys. Rev. D, 101(3):034006, 2020.
  • [41] Han Gao, Zonglin Mo, and Shu Lin. Photon self-energy in a magnetized chiral plasma from kinetic theory. Phys. Rev. D, 102(1):014011, 2020.
  • [42] Koichi Hattori, Shiyong Li, Daisuke Satow, and Ho-Ung Yee. Longitudinal Conductivity in Strong Magnetic Field in Perturbative QCD: Complete Leading Order. Phys. Rev. D, 95(7):076008, 2017.
  • [43] Xin-li Sheng, Dirk H. Rischke, David Vasak, and Qun Wang. Wigner functions for fermions in strong magnetic fields. Eur. Phys. J. A, 54(2):21, 2018.
  • [44] Kenji Fukushima and Yoshimasa Hidaka. Resummation for the Field-theoretical Derivation of the Negative Magnetoresistance. JHEP, 04:162, 2020.
  • [45] Shu Lin and Lixin Yang. Magneto-vortical effect in strong magnetic field. JHEP, 06:054, 2021.
  • [46] Zhou Chen and Shu Lin. Quantum Kinetic Theory with Vector and Axial Gauge Fields. 9 2021.
  • [47] Ulf H. Danielsson and Dario Grasso. The Polarization of a QED plasma in a strong magnetic field. Phys. Rev. D, 52:2533–2542, 1995.
  • [48] Kenji Fukushima. Magnetic-field induced screening effect and collective excitations. Phys. Rev. D, 83:111501, Jun 2011.
  • [49] Jingyi Chao, Lang Yu, and Mei Huang. Zeta function regularization of the photon polarization tensor for a magnetized vacuum. Phys. Rev. D, 90(4):045033, 2014. [Erratum: Phys.Rev.D 91, 029903 (2015)].
  • [50] Kenji Fukushima, Koichi Hattori, Ho-Ung Yee, and Yi Yin. Heavy Quark Diffusion in Strong Magnetic Fields at Weak Coupling and Implications for Elliptic Flow. Phys. Rev. D, 93(7):074028, 2016.
  • [51] Jingyi Chao and Mei Huang. Photon polarization tensor in a magnetized plasma system. Commun. Theor. Phys., 72(11):115301, 2020.
  • [52] Koichi Hattori and Daisuke Satow. Gluon spectrum in a quark-gluon plasma under strong magnetic fields. Phys. Rev. D, 97(1):014023, 2018.
  • [53] Balbeer Singh, Surasree Mazumder, and Hiranmaya Mishra. HQ Collisional energy loss in a magnetized medium. JHEP, 05:068, 2020.
  • [54] Xinyang Wang and Igor Shovkovy. Polarization tensor of magnetized quark-gluon plasma at nonzero baryon density. 6 2021.
  • [55] W. Heisenberg and H. Euler. Consequences of Dirac’s theory of positrons. Z. Phys., 98(11-12):714–732, 1936.
  • [56] William A. Bardeen and Bruno Zumino. Consistent and Covariant Anomalies in Gauge and Gravitational Theories. Nucl. Phys. B, 244:421–453, 1984.
  • [57] K. Landsteiner. Notes on Anomaly Induced Transport. Acta Physica Polonica B, 47(12):2617, January 2016.
  • [58] Juan Hernandez and Pavel Kovtun. Relativistic magnetohydrodynamics. JHEP, 05:001, 2017.
  • [59] Daisuke Satow and Ho-Ung Yee. Chiral Magnetic Effect at Weak Coupling with Relaxation Dynamics. Phys. Rev. D, 90(1):014027, 2014.