This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Two iterative formulas of largest and smallest singular value of nonsingular matrices

Shun Xu
School of Mathematical Sciences, Tongji University, Shanghai, 200092, China
e-mail: [email protected]
Abstract

We obtain an iterative formula that converges incrementally to the smallest singular value. Similarly, we obtain an iterative formula that converges decreasingly to the largest singular value.

Keywords: Singular values, Frobenius norm, Determinant.

1 Lower bound for the smallest singular value

Let Mn()(n2)M_{n}(\mathbb{C})(n\geqslant 2) be the space of n×nn\times n complex matrices. Let σi\sigma_{i} (i=1,,n)(i=1,\cdots,n) be the singular values of AMn()A\in M_{n}(\mathbb{C}) which is nonsingular and suppose that σ1σ2σn1σn>0\sigma_{1}\geqslant\sigma_{2}\geqslant\cdots\geqslant\sigma_{n-1}\geqslant\sigma_{n}>0. For A=[aij]Mn()A=\left[a_{ij}\right]\in M_{n}(\mathbb{C}), the Frobenius norm of AA is defined by

AF=(i,j=1n|aij|2)1/2=tr(AHA)12\|A\|_{F}=\left(\sum_{i,j=1}^{n}\left|a_{ij}\right|^{2}\right)^{1/2}={\rm tr}\left(A^{H}A\right)^{\frac{1}{2}}

where AHA^{H} is the conjugate transpose of AA. The relationship between the Frobenius norm and singular values is

AF2=σ12+σ22++σn2\|A\|_{F}^{2}=\sigma_{1}^{2}+\sigma_{2}^{2}+\cdots+\sigma_{n}^{2}

It is well known that lower bounds for the smallest singular value σn\sigma_{n} of a nonsingular matrix AMn()A\in M_{n}(\mathbb{C}) have many potential theoretical and practical applications [1, 2]. Yu and Gu [5] obtained a lower bound for σn\sigma_{n} as follows:

σn|detA|(n1AF2)(n1)/2=l>0\sigma_{n}\geqslant|\det A|\left(\frac{n-1}{\|A\|_{F}^{2}}\right)^{(n-1)/2}=l>0

The above inequality is also shown in [4]. In [6], Zou improved the above inequality by showing that

σn|detA|(n1AF2l2)(n1)/2=l0\sigma_{n}\geqslant|{\det}A|\left(\frac{n-1}{\|A\|_{F}^{2}-l^{2}}\right)^{(n-1)/2}=l_{0}

In [3], Lin and Xie improve a lower bound for smallest singular value of matrices by showing that aa is the smallest positive solution to the equation

x2(AF2x2)n1=|detA|2(n1)n1.x^{2}\left(\|A\|_{F}^{2}-x^{2}\right)^{n-1}=|{\det}A|^{2}(n-1)^{n-1}.

and σna>l0\sigma_{n}\geqslant a>l_{0}. Under certain conditions, σn=a\sigma_{n}=a will hold. However, in many cases, σn=a\sigma_{n}=a is not true. We give necessary and sufficient conditions such that σn=a\sigma_{n}=a in Proposition 1 .

2 Main results

Let

l=|detA|(n1AF2)(n1)/2,l0=|detA|(n1AF2l2)(n1)/2.\begin{gathered}l=|\operatorname{det}A|\left(\frac{n-1}{\|A\|_{F}^{2}}\right)^{(n-1)/2},\\ l_{0}=|\operatorname{det}A|\left(\frac{n-1}{\|A\|_{F}^{2}-l^{2}}\right)^{(n-1)/2}.\end{gathered}

And aa is the smallest positive solution to the equation

x2(AF2x2)n1=|detA|2(n1)n1.x^{2}\left(\|A\|_{F}^{2}-x^{2}\right)^{n-1}=|\operatorname{det}A|^{2}(n-1)^{n-1}.

From [3], we have σna>l0>l>0\sigma_{n}\geqslant a>l_{0}>l>0. Next, we give necessary and sufficient conditions such that a=σna=\sigma_{n}.

Proposition 1.

Let a be the smallest positive solution to the equation

x2(AF2x2)n1=|detA|2(n1)n1.x^{2}\left(\|A\|_{F}^{2}-x^{2}\right)^{n-1}=|\operatorname{det}A|^{2}(n-1)^{n-1}.

then a=σna=\sigma_{n} if and only if

σ1=σ2==σn1\sigma_{1}=\sigma_{2}=\cdots=\sigma_{n-1}
Proof.

:\Rightarrow: If a=σna=\sigma_{n}, then

σn2(AF2σn2)n1=|detA|2(n1)n1.\sigma_{n}^{2}\left(\|A\|_{F}^{2}-\sigma_{n}^{2}\right)^{n-1}=|\operatorname{det}A|^{2}(n-1)^{n-1}.

Since AF2=σ12+σ22++σn2\|A\|_{F}^{2}=\sigma_{1}^{2}+\sigma_{2}^{2}+\cdots+\sigma_{n}^{2} and |detA|2=σ12σ22σn2|\operatorname{det}A|^{2}=\sigma_{1}^{2}\sigma_{2}^{2}\cdots\sigma_{n}^{2}, we have

σn2(σ12+σ22++σn12)n1=σ12σ22σn2(n1)n1.(σ12+σ22++σn12n1)n1=σ12σ22σn12\begin{gathered}\sigma_{n}^{2}\left(\sigma_{1}^{2}+\sigma_{2}^{2}+\cdots+\sigma_{n-1}^{2}\right)^{n-1}=\sigma_{1}^{2}\sigma_{2}^{2}\cdots\sigma_{n}^{2}(n-1)^{n-1}.\\ \left(\frac{\sigma_{1}^{2}+\sigma_{2}^{2}+\cdots+\sigma_{n-1}^{2}}{n-1}\right)^{n-1}=\sigma_{1}^{2}\sigma_{2}^{2}\cdots\sigma_{n-1}^{2}\end{gathered}

By the arithmetic-geometric mean inequality, the above equation holds if and only if

σ12=σ22==σn12\sigma_{1}^{2}=\sigma_{2}^{2}=\cdots=\sigma_{n-1}^{2}

if and only if

σ1=σ2==σn1\sigma_{1}=\sigma_{2}=\cdots=\sigma_{n-1}

:\Leftarrow: Let

σ12=σ22==σn12=c2(c>0).\sigma_{1}^{2}=\sigma_{2}^{2}=\cdots=\sigma_{n-1}^{2}=c^{2}(c>0).

Then aa is the smallest positive solution to the equation

x2(c2(n1)+σn2x2)n1=c2(n1)σn2(n1)n1x^{2}\left(c^{2}(n-1)+\sigma_{n}^{2}-x^{2}\right)^{n-1}=c^{2(n-1)}\sigma_{n}^{2}(n-1)^{n-1}

if and only if aa is the smallest positive zero point of

f(x)=x2(1+σn2x2c2(n1))n1σn2.f(x)=x^{2}\left(1+\frac{\sigma_{n}^{2}-x^{2}}{c^{2}(n-1)}\right)^{n-1}-\sigma_{n}^{2}.

Next, we proof a=σna=\sigma_{n}. Obviously, we can see that f(σn)=0f\left(\sigma_{n}\right)=0 and f(0)=σn2<0f(0)=-\sigma_{n}^{2}<0. Next, we prove that f(x)f(x) is an strictly increasing function on [0,σn]\left[0,\sigma_{n}\right]. Taking the derivative of f(x)f(x), we can get

f(x)=(1+σn2x2c2(n1))n22xc2(n1)(c2(n1)+σn2nx2).f^{\prime}(x)=\left(1+\frac{\sigma_{n}^{2}-x^{2}}{c^{2}(n-1)}\right)^{n-2}\frac{2x}{c^{2}(n-1)}\left(c^{2}(n-1)+\sigma_{n}^{2}-nx^{2}\right).

x0(0,σn)\forall x_{0}\in\left(0,\sigma_{n}\right), we have

c2(n1)+σn2nx02nσn2nx02>0.c^{2}(n-1)+\sigma_{n}^{2}-nx_{0}^{2}\geqslant n\sigma_{n}^{2}-nx_{0}^{2}>0.

We have f(x0)>0f^{\prime}\left(x_{0}\right)>0. Therefore f(x)f(x) is an strictly increasing function on [0,σn]\left[0,\sigma_{n}\right] and σn\sigma_{n} is the smallest positive zero point of

f(x)=x2(1+σn2x2c2(n1))n1σn2f(x)=x^{2}\left(1+\frac{\sigma_{n}^{2}-x^{2}}{c^{2}(n-1)}\right)^{n-1}-\sigma_{n}^{2}

Therefore, σn\sigma_{n} is the smallest positive solution to the equation

x2(c2(n1)+σn2x2)n1=c2(n1)σn2(n1)n1.x^{2}\left(c^{2}(n-1)+\sigma_{n}^{2}-x^{2}\right)^{n-1}=c^{2(n-1)}\sigma_{n}^{2}(n-1)^{n-1}.

We get a=σn.a=\sigma_{n}.

In the above special condition, aa can be equal to σn\sigma_{n}, which is not general. Next, we give our main theorem. We give an iterative formula for the smallest singular value, which converges incrementally to the smallest singular value.

Theorem 1.

Let AMn()A\in M_{n}(\mathbb{C}) be nonsingular and 0<a1σn0<a_{1}\leqslant\sigma_{n} and

ak+1=(ak2+|det(ak2InAHA)|(n1AF2(n1)ak2)n1)1/2,k=1,2,.a_{k+1}=\left(a_{k}^{2}+\left|\operatorname{det}\left(a_{k}^{2}I_{n}-A^{H}A\right)\right|\left(\frac{n-1}{\|A\|_{F}^{2}-(n-1)a_{k}^{2}}\right)^{n-1}\right)^{1/2},k=1,2,\cdots.

Then σnak+1ak>0(k=1,2,)\sigma_{n}\geqslant a_{k+1}\geqslant a_{k}>0(k=1,2,\cdots) and limk+ak=σn\lim_{k\rightarrow+\infty}a_{k}=\sigma_{n}.

Proof.

Let 0λ<σn20\leqslant\lambda<\sigma_{n}^{2}, by the arithmetic-geometric mean inequality, we have

(σ12λ)(σ22λ)(σn12λ)(σ12++σn12(n1)λn1)n1\left(\sigma_{1}^{2}-\lambda\right)\left(\sigma_{2}^{2}-\lambda\right)\cdots\left(\sigma_{n-1}^{2}-\lambda\right)\leqslant\left(\frac{\sigma_{1}^{2}+\cdots+\sigma_{n-1}^{2}-(n-1)\lambda}{n-1}\right)^{n-1}

Since

(σ12λ)(σ22λ)(σn12λ)\displaystyle\left(\sigma_{1}^{2}-\lambda\right)\left(\sigma_{2}^{2}-\lambda\right)\cdots\left(\sigma_{n-1}^{2}-\lambda\right) =(σ12λ)(σ22λ)(σn2λ)σn2λ\displaystyle=\frac{\left(\sigma_{1}^{2}-\lambda\right)\left(\sigma_{2}^{2}-\lambda\right)\cdots\left(\sigma_{n}^{2}-\lambda\right)}{\sigma_{n}^{2}-\lambda}
=|det(λInAHA)|σn2λ\displaystyle=\frac{\left|\operatorname{det}\left(\lambda I_{n}-A^{H}A\right)\right|}{\sigma_{n}^{2}-\lambda}

we have

|det(λInAHA)|σn2λ(σ12++σn12(n1)λn1)n1\frac{\left|\operatorname{det}\left(\lambda I_{n}-A^{H}A\right)\right|}{\sigma_{n}^{2}-\lambda}\leqslant\left(\frac{\sigma_{1}^{2}+\cdots+\sigma_{n-1}^{2}-(n-1)\lambda}{n-1}\right)^{n-1}
σn2λ+|det(λInAHA)|(n1σ12++σn12(n1)λ)n1σn(λ+|det(λInAHA)|(n1σ12++σn12+σn2(n1)λ)n1)1/2σn(λ+|det(λInAHA)|(n1AF2(n1)λ)n1)1/2\begin{gathered}\sigma_{n}^{2}\geqslant\lambda+\left|\operatorname{det}\left(\lambda I_{n}-A^{H}A\right)\right|\left(\frac{n-1}{\sigma_{1}^{2}+\cdots+\sigma_{n-1}^{2}-(n-1)\lambda}\right)^{n-1}\\ \sigma_{n}\geqslant\left(\lambda+\left|\operatorname{det}\left(\lambda I_{n}-A^{H}A\right)\right|\left(\frac{n-1}{\sigma_{1}^{2}+\cdots+\sigma_{n-1}^{2}+\sigma_{n}^{2}-(n-1)\lambda}\right)^{n-1}\right)^{1/2}\\ \sigma_{n}\geqslant\left(\lambda+\left|\operatorname{det}\left(\lambda I_{n}-A^{H}A\right)\right|\left(\frac{n-1}{\|A\|_{F}^{2}-(n-1)\lambda}\right)^{n-1}\right)^{1/2}\end{gathered}

Let λσn2(λ\lambda\rightarrow\sigma_{n}^{2-}\left(\lambda\right. tends to σn2\sigma_{n}^{2} from the left). We get that the above inequality is also true for λ=σn2\lambda=\sigma_{n}^{2}. Therefore, for 0λσn20\leqslant\lambda\leqslant\sigma_{n}^{2}, we have

σn(λ+|det(λInAHA)|(n1AF2(n1)λ)n1)1/2\sigma_{n}\geqslant\left(\lambda+\left|\operatorname{det}\left(\lambda I_{n}-A^{H}A\right)\right|\left(\frac{n-1}{\|A\|_{F}^{2}-(n-1)\lambda}\right)^{n-1}\right)^{1/2} (1)

We show by induction on kk that

σnak+1ak>0\sigma_{n}\geqslant a_{k+1}\geqslant a_{k}>0

We have σna1>0\sigma_{n}\geqslant a_{1}>0. In equation 1, let λ=a12\lambda=a_{1}^{2}, we have

σna2=(a12+|det(a12InAHA)|(n1AF2(n1)a12)n1)1/2a1>0\sigma_{n}\geqslant a_{2}=\left(a_{1}^{2}+\left|\operatorname{det}\left(a_{1}^{2}I_{n}-A^{H}A\right)\right|\left(\frac{n-1}{\|A\|_{F}^{2}-(n-1)a_{1}^{2}}\right)^{n-1}\right)^{1/2}\geqslant a_{1}>0

Assume that our claim is true for k=mk=m, that is σnam+1am>0\sigma_{n}\geqslant a_{m+1}\geqslant a_{m}>0. Now we consider the case when k=m+1k=m+1. In equation 1, let λ=am+12\lambda=a_{m+1}^{2}, we have

σnam+2=(am+12+|det(am+12InAHA)|(n1AF2(n1)am+12)n1)1/2am+1>0\sigma_{n}\geqslant a_{m+2}=\left(a_{m+1}^{2}+\left|\operatorname{det}\left(a_{m+1}^{2}I_{n}-A^{H}A\right)\right|\left(\frac{n-1}{\|A\|_{F}^{2}-(n-1)a_{m+1}^{2}}\right)^{n-1}\right)^{1/2}\geqslant a_{m+1}>0

Hence σnam+2am+1>0\sigma_{n}\geqslant a_{m+2}\geqslant a_{m+1}>0. This proves σnak+1ak>0(k=1,2,)\sigma_{n}\geqslant a_{k+1}\geqslant a_{k}>0(k=1,2,\cdots). By the well known monotone convergence theorem, limkak\lim_{k\rightarrow\infty}a_{k} exists. Let limkak=\lim_{k\rightarrow\infty}a_{k}= σ\sigma, then

σ=(σ2+|det(σ2InAHA)|(n1AF2(n1)σ2)n1)1/2,k=1,2,\sigma=\left(\sigma^{2}+\left|\operatorname{det}\left(\sigma^{2}I_{n}-A^{H}A\right)\right|\left(\frac{n-1}{\|A\|_{F}^{2}-(n-1)\sigma^{2}}\right)^{n-1}\right)^{1/2},k=1,2,\cdots

We have

|det(σ2InAHA)|(n1AF2(n1)σ2)n1=0\left|\operatorname{det}\left(\sigma^{2}I_{n}-A^{H}A\right)\right|\left(\frac{n-1}{\|A\|_{F}^{2}-(n-1)\sigma^{2}}\right)^{n-1}=0

Since

n1AF2(n1)σ20\frac{n-1}{\|A\|_{F}^{2}-(n-1)\sigma^{2}}\neq 0

we have

det(σ2InAHA)=0.\operatorname{det}\left(\sigma^{2}I_{n}-A^{H}A\right)=0.

We get that σ2\sigma^{2} is the eigenvalue of AHAA^{H}A. Since σn2\sigma_{n}^{2} is the smallest eigenvalue of AHAA^{H}A, we have σ2σn2\sigma^{2}\geqslant\sigma_{n}^{2}. According to the definition of σ\sigma, we have σσn\sigma\leqslant\sigma_{n}. Therefore, σ2σn2\sigma^{2}\leqslant\sigma_{n}^{2} and we get σ=σn\sigma=\sigma_{n}. Hence limk+ak=σn\lim_{k\rightarrow+\infty}a_{k}=\sigma_{n}. ∎

From Theorem 1, we can see that as long as there is a lower bound of σn\sigma_{n} (we set it to bb ) and let a1=ba_{1}=b in Theorem 1 , we can get a better lower bound than bb. For example, we bring the lower bound of Lin and Xie [3] into our Theorem 1 to obtain the following results.

Corollary 1.

Let a be the smallest positive solution to the equation

x2(AF2x2)n1=|detA|2(n1)n1.x^{2}\left(\|A\|_{F}^{2}-x^{2}\right)^{n-1}=|\operatorname{det}A|^{2}(n-1)^{n-1}.

Let a1=aa_{1}=a and

ak+1=(ak2+|det(ak2InAHA)|(n1AF2(n1)ak2)n1)1/2,k=1,2,a_{k+1}=\left(a_{k}^{2}+\left|\operatorname{det}\left(a_{k}^{2}I_{n}-A^{H}A\right)\right|\left(\frac{n-1}{\|A\|_{F}^{2}-(n-1)a_{k}^{2}}\right)^{n-1}\right)^{1/2},k=1,2,\cdots

Then σnak+1aka>0(k=1,2,)\sigma_{n}\geqslant a_{k+1}\geqslant a_{k}\geqslant a>0(k=1,2,\cdots) and limk+ak=σn\lim_{k\rightarrow+\infty}a_{k}=\sigma_{n}.

Proof.

From [3], we have σna>0\sigma_{n}\geqslant a>0. We know Corollary 1 is a special case of Theorem 1. ∎

We give the iterative formula for the smallest singular value:

ak+1=(ak2+|det(ak2InAHA)|(n1AF2(n1)ak2)n1)1/2,k=1,2,,a_{k+1}=\left(a_{k}^{2}+|\det(a_{k}^{2}I_{n}-A^{H}A)|\left(\frac{n-1}{\|A\|_{F}^{2}-(n-1)a_{k}^{2}}\right)^{n-1}\right)^{1/2},k=1,2,\cdots,

where a1=aa_{1}=a, which converges incrementally to the smallest singular value. Similarly, we can give an iterative formula that converges decreasingly to the largest singular value.

Theorem 2.

Let AMn()A\in M_{n}(\mathbb{C}) be nonsingular, a1σ1a_{1}\geqslant\sigma_{1}. Assume

ak+1=(ak2|det(ak2InAHA)|(n1(n+1)ak2AF2)n1)1/2,k=1,2,.a_{k+1}=\left(a_{k}^{2}-|\det(a_{k}^{2}I_{n}-A^{H}A)|\left(\frac{n-1}{(n+1)a_{k}^{2}-\|A\|_{F}^{2}}\right)^{n-1}\right)^{1/2},k=1,2,\cdots.

Then σ1ak+1ak(k=1,2,)\sigma_{1}\leqslant a_{k+1}\leqslant a_{k}(k=1,2,\cdots) and limk+ak=σ1\lim_{k\to+\infty}a_{k}=\sigma_{1}.

Proof.

Set λ>σ12\lambda>\sigma_{1}^{2}, according to the arithmetic geometric mean inequality, we can get

(λσ22)(λσ32)(λσn2)((n1)λ(σ22++σn2)n1)n1.\left(\lambda-\sigma_{2}^{2}\right)\left(\lambda-\sigma_{3}^{2}\right)\cdots\left(\lambda-\sigma_{n}^{2}\right)\leqslant\left(\frac{(n-1)\lambda-(\sigma_{2}^{2}+\cdots+\sigma_{n}^{2})}{n-1}\right)^{n-1}.

Since

(λσ22)(λσ32)(λσn2)=(λσ12)(λσ22)(λσn2)λσ12=|det(λInAHA)|λσ12,\begin{aligned} \left(\lambda-\sigma_{2}^{2}\right)\left(\lambda-\sigma_{3}^{2}\right)\cdots\left(\lambda-\sigma_{n}^{2}\right)&=\frac{\left(\lambda-\sigma_{1}^{2}\right)\left(\lambda-\sigma_{2}^{2}\right)\cdots\left(\lambda-\sigma_{n}^{2}\right)}{\lambda-\sigma_{1}^{2}}\\ &=\frac{|\det(\lambda I_{n}-A^{H}A)|}{\lambda-\sigma_{1}^{2}}\end{aligned},

we can get

|det(λInAHA)|λσ12((n1)λ(σ22++σn2)n1)n1\frac{|\det(\lambda I_{n}-A^{H}A)|}{\lambda-\sigma_{1}^{2}}\leqslant\left(\frac{(n-1)\lambda-(\sigma_{2}^{2}+\cdots+\sigma_{n}^{2})}{n-1}\right)^{n-1}
σ12\displaystyle\sigma_{1}^{2} λ|det(λAHA)(n1(n1)λ+σ12AF2)n1\displaystyle\leqslant\lambda-|\operatorname{det}\left(\lambda-A^{H}A\right)\mid\left(\frac{n-1}{(n-1)\lambda+\sigma_{1}^{2}-\|A\|_{F}^{2}}\right)^{n-1}
λ|det(λAHA)|(n1(n+1)λAF2)n1\displaystyle\leqslant\lambda-\left|\operatorname{det}\left(\lambda-A^{H}A\right)\right|\left(\frac{n-1}{(n+1)\lambda-\|A\|_{F}^{2}}\right)^{n-1}
σ1(λ|det(λAHA)|(n1(n+1)λAF2)n1)1/2\sigma_{1}\leqslant\left(\lambda-\left|\operatorname{det}\left(\lambda-A^{H}A\right)\right|\left(\frac{n-1}{(n+1)\lambda-\|A\|_{F}^{2}}\right)^{n-1}\right)^{1/2}

Let λσ12+\lambda\to{\sigma_{1}^{2}}^{+}(λ\lambda tend to σ12\sigma_{1}^{2} from the right). We get that the above equation is also true for λ=σ12\lambda=\sigma_{1}^{2}. So, for λσ12\lambda\geqslant\sigma_{1}^{2}, we have

σ1(λ|det(λAHA)|(n1(n+1)λAF2)n1)1/2\sigma_{1}\leqslant\left(\lambda-\left|\operatorname{det}\left(\lambda-A^{H}A\right)\right|\left(\frac{n-1}{(n+1)\lambda-\|A\|_{F}^{2}}\right)^{n-1}\right)^{1/2} (2)

We use induction on kk to prove that:

σ1ak+1ak\sigma_{1}\leqslant a_{k+1}\leqslant a_{k}

For k=1k=1, σ1a1\sigma_{1}\leqslant a_{1} can be obtained from the condition. In the equation (2), taking λ=a12\lambda=a_{1}^{2}, we can get

σ1a2=(a12|det(a12AHA)|(n1(n+1)a12AF2)n1)1/2a1\sigma_{1}\leqslant a_{2}=\left(a_{1}^{2}-\left|\operatorname{det}\left(a_{1}^{2}-A^{H}A\right)\right|\left(\frac{n-1}{(n+1)a_{1}^{2}-\|A\|_{F}^{2}}\right)^{n-1}\right)^{1/2}\leqslant a_{1}

Suppose our conclusion holds for k=mk=m, that is, σ1am+1am\sigma_{1}\leqslant a_{m+1}\leqslant a_{m}. Now let’s consider the case of k=m+1k=m+1. In equation (2), let λ=am+12\lambda=a_{m+1}^{2}, we can get

σ1am+2=(am+12|det(am+12AHA)|(n1(n+1)am+12AF2)n1)1/2am+1\sigma_{1}\leqslant a_{m+2}=\left(a_{m+1}^{2}-\left|\operatorname{det}\left(a_{m+1}^{2}-A^{H}A\right)\right|\left(\frac{n-1}{(n+1)a_{m+1}^{2}-\|A\|_{F}^{2}}\right)^{n-1}\right)^{1/2}\leqslant a_{m+1}

So σ1ak+1ak\sigma_{1}\leqslant a_{k+1}\leqslant a_{k}. This proves that σ1ak+1ak(k=1,2,)\sigma_{1}\leqslant a_{k+1}\leqslant a_{k}(k=1,2,\cdots). From the monotone convergence theorem, limkak\lim_{k\to\infty}a_{k} exists. Let limkak=σ\lim_{k\to\infty}a_{k}=\sigma, then

σ=(σ2|det(σ2InAHA)|(n1(n+1)σ2AF2)n1)1/2\sigma=\left(\sigma^{2}-|\det(\sigma^{2}I_{n}-A^{H}A)|\left(\frac{n-1}{(n+1)\sigma^{2}-\|A\|_{F}^{2}}\right)^{n-1}\right)^{1/2}

We have

|det(σ2InAHA)|(n1(n+1)σ2AF2)n1=0.|\det(\sigma^{2}I_{n}-A^{H}A)|\left(\frac{n-1}{(n+1)\sigma^{2}-\|A\|_{F}^{2}}\right)^{n-1}=0.

because

n1(n+1)σ2AF20,\frac{n-1}{(n+1)\sigma^{2}-\|A\|_{F}^{2}}\not=0,

we can get

det(σ2InAHA)=0.\det(\sigma^{2}I_{n}-A^{H}A)=0.

So σ2\sigma^{2} is the eigenvalue of AHAA^{H}A. Because σ12\sigma_{1}^{2} is the largest eigenvalue of AHAA^{H}A, there is σ2σ12\sigma^{2}\leqslant\sigma_{1}^{2}. According to the definition of σ\sigma, we have σσ1\sigma\geqslant\sigma_{1}, so σ2σ12\sigma^{2}\geqslant\sigma_{1}^{2}. We get σ=σ1\sigma=\sigma_{1}, so limk+ak=σ1\lim_{k\to+\infty}a_{k}=\sigma_{1}. ∎

The largest singular value has an obvious upper bound. Because σ12σ12++σn2=AF2\sigma_{1}^{2}\leqslant\sigma_{1}^{2}+\cdots+\sigma_{n}^{2}=\|A\|_{F}^{2}, so σ1<AF\sigma_{1}<\|A\|_{F}. We give an iterative formula for the largest singular value:

ak+1=(ak2|det(ak2InAHA)|(n1(n+1)ak2AF2)n1)1/2,k=1,2,,a_{k+1}=\left(a_{k}^{2}-|\det(a_{k}^{2}I_{n}-A^{H}A)|\left(\frac{n-1}{(n+1)a_{k}^{2}-\|A\|_{F}^{2}}\right)^{n-1}\right)^{1/2},k=1,2,\cdots,

where a1=AFa_{1}=\|A\|_{F}, which converges decreasingly to σ1\sigma_{1}.

References

  • [1] R. A. Horn and C. R. Johnson. Matrix Analysis. Cambridge University Press, 1985.
  • [2] R. A. Horn and C. R. Johnson. Topics in matrix analysis. Cambridge University Press, 1994.
  • [3] Minghua Lin and Mengyan Xie. On some lower bounds for smallest singular value of matrices. Applied Mathematics Letters, 121:107411, 2021.
  • [4] G Piazza and T Politi. An upper bound for the condition number of a matrix in spectral norm. Journal of Computational and Applied Mathematics, 143(1):141–144, 2002.
  • [5] Yu Yisheng and Gu Dunhe. A note on a lower bound for the smallest singular value. Linear algebra and its Applications, 253(1-3):25–38, 1997.
  • [6] Limin Zou. A lower bound for the smallest singular value. Journal of Mathematical Inequalities, 6(4):625–629, 2012.