This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Two-body quench dynamics of harmonically trapped interacting particles

A. D. Kerin and A. M. Martin School of Physics, University of Melbourne, Parkville, VIC 3010, Australia
Abstract

We consider the quantum evolution of a pair of interacting atoms in a three dimensional isotropic trap where the interaction strength is quenched from one value to another. Using exact solutions of the static problem we are able to evaluate time-dependent observables such as the overlap between initial and final states and the expectation value of the separation between the two atoms. In the case where the interaction is quenched from the non-interacting regime to the strongly interacting regime, or vice versa, we are able to obtain analytic results. Examining the overlap between the initial and final states we show that when the interaction is quenched from the non-interacting to strongly interacting regimes the early time dependence dynamics are consistent with theoretical work in the single impurity many-body limit. When the system is quenched from the strongly to non-interacting regime we predict large oscillations in the separation between the two atoms, which arises from a logarithmic divergence due to the zero-range nature of the interaction potential.

I Introduction

Understanding the evolution of non-equilibrium quantum states is pertinent to a wide range of systems, such as, superfluid turbulence, mesoscopic electrical circuits and even neutron stars. Such systems typically involve many interacting components and as such it is essential to make appropriate approximations when trying to determine their non-equilibrium properties. Alternatively it is possible to construct few-body systems experimentally and probe their non-equilibrium quantum phenomena. For example harmonically trapped quantum gases can be constructed atom by atom Serwane et al. (2011); Murmann et al. (2015); Zürn et al. (2013, 2012). In such systems it is possible to precisely control the number of atoms and their interactions. In this context we focus on the quench dynamics of two atoms in a harmonic trap interacting via contact interactions.

The study of harmonically trapped few-body systems with contact interactions Busch et al. (1998); Fedorov and Jensen (2001); Werner and Castin (2006a, b); Kestner and Duan (2007); Daily and Blume (2010); Bradly et al. (2014); Daily et al. (2012) has previously been used to gain insight into the thermodynamic properties of quantum gases Liu et al. (2009, 2010); Stöferle et al. (2006); Cui (2012); Rakshit et al. (2012); Kaplan and Sun (2011); Mulkerin et al. (2012a, b); Nascimbène et al. (2010); Ku et al. (2012); Levinsen et al. (2017), particularly in the strongly interacting regime, and have been experimentally studied in their own right Stöferle et al. (2006). In this paper we focus using the solutions for two interacting atoms in a harmonic trap Busch et al. (1998), a regime which is experimentally achievable Murmann et al. (2015); Zürn et al. (2012), to determine the quench dynamics of such a system. Specifically, we consider scenarios where the zero-range s-wave scattering length (asa_{\rm s}) is quenched via Feshbach resonance Fano (1935); Feshbach (1958); Chin et al. (2010); Tiesinga et al. (1993) from one value to another. For such a system we determine the quantum dynamics of the state and evaluate the overlap between the initial and final states (Ramsey signal) and the expectation value of the separation between the atoms. There have been experimental measures of the Ramsey signal Cetina et al. (2016) in the regime of impurity atoms residing in a Fermi sea of other atoms and there have been experimental measures of the separation between 6Li atoms in a quenched anisotropic trap Guan et al. (2019). This experimental work has been complimented by theoretical work Goold et al. (2011); Knap et al. (2012); Parish and Levinsen (2016); Schmidt et al. (2018); Liu et al. (2019); Van Houcke et al. (2020); Bougas et al. (2020, 2019); Budewig et al. (2019); Kehrberger et al. (2018); Sykes et al. (2014); Corson and Bohn (2015); D’Incao et al. (2018). Our work is the trapped two-body limit of such systems. In this context we find that the evolution of the Ramsey signal aligns with equivalent many-body results in the short-time limit Cetina et al. (2016); Parish and Levinsen (2016), thus demonstrating that the early time many-body dynamics are governed by the two-body interactions as found in Refs. Parish and Levinsen (2016); Sykes et al. (2014); Corson and Bohn (2015) and are independent of trapping geometry. For the evaluation of the dynamics of the expectation value of the separation between the atoms, we find that when the initial state is strongly interacting and it is quenched to a non-interacting regime large oscillations are predicted.

II Overview of the Two-Body Problem

In this work we explore the quench dynamics of a two-body system residing in a harmonic potential. Specifically we consider two distinguishable particles with masses m1m_{1} and m2m_{2} at positions r1\vec{r}_{1} and r2\vec{r}_{2}. These particles interact via a contact interaction described by the Fermi pseudo-potential Huang and Yang (1957). The static properties of such a system can be described with the following two-body Hamiltonian

H^2b\displaystyle\hat{H}_{\rm 2b} =\displaystyle= 22MR222μr2+Mω2R22+μω2r22\displaystyle-\frac{\hbar^{2}}{2M}\nabla^{2}_{R}-\frac{\hbar^{2}}{2\mu}\nabla^{2}_{r}+\frac{M\omega^{2}R^{2}}{2}+\frac{\mu\omega^{2}r^{2}}{2} (1)
+\displaystyle+ 2π2asμδ3(r)r(r),\displaystyle\frac{2\pi\hbar^{2}a_{s}}{\mu}\delta^{3}(r)\frac{\partial}{\partial r}(r\mathchoice{\mathbin{\vbox{\hbox{\scalebox{0.5}{$\displaystyle\bullet$}}}}}{\mathbin{\vbox{\hbox{\scalebox{0.5}{$\textstyle\bullet$}}}}}{\mathbin{\vbox{\hbox{\scalebox{0.5}{$\scriptstyle\bullet$}}}}}{\mathbin{\vbox{\hbox{\scalebox{0.5}{$\scriptscriptstyle\bullet$}}}}}),

where we have used the following co-ordinate transformations,

R=m1r1+m2r2M\displaystyle\vec{R}=\frac{m_{1}\vec{r}_{1}+m_{2}\vec{r}_{2}}{M} ,r=r1r2.\displaystyle,\quad\vec{r}=\vec{r}_{1}-\vec{r}_{2}.

In the above M=m1+m2M=m_{1}+m_{2} and μ=m1m2/M\mu=m_{1}m_{2}/M, ω\omega is the harmonic trapping frequency and asa_{\rm s} is the s-wave scattering length which characterizes the strength of the contact interactions.

From Eq. (1) it is clear the the two-body Hamiltonian can be split into two parts,

H^CoM\displaystyle\hat{H}_{{\rm CoM}} =\displaystyle= 22MR2+Mω2R22,\displaystyle-\frac{\hbar^{2}}{2M}\nabla^{2}_{R}+\frac{M\omega^{2}R^{2}}{2}, (2)
H^Rel\displaystyle\hat{H}_{{\rm Rel}} =\displaystyle= 22μr2+μω2r22+2π2asμδ3(r)(r)(r),\displaystyle-\frac{\hbar^{2}}{2\mu}\nabla^{2}_{r}+\frac{\mu\omega^{2}r^{2}}{2}+\frac{2\pi\hbar^{2}a_{s}}{\mu}\delta^{3}(r)\frac{\partial}{\partial(r)}(r\mathchoice{\mathbin{\vbox{\hbox{\scalebox{0.5}{$\displaystyle\bullet$}}}}}{\mathbin{\vbox{\hbox{\scalebox{0.5}{$\textstyle\bullet$}}}}}{\mathbin{\vbox{\hbox{\scalebox{0.5}{$\scriptstyle\bullet$}}}}}{\mathbin{\vbox{\hbox{\scalebox{0.5}{$\scriptscriptstyle\bullet$}}}}}), (3)

such that H^2b=H^CoM+H^Rel\hat{H}_{\rm 2b}=\hat{H}_{{\rm CoM}}+\hat{H}_{{\rm Rel}}.

The solution to H^CoM\hat{H}_{{\rm CoM}} is a simple harmonic oscillator wavefunction ϕ(R)\phi(R). Additionally, the relative two-body wavefunction is well understood Busch et al. (1998):

ψ(ν,r)\displaystyle\psi(\nu,r) =\displaystyle= NνΓ(ν)er~2/2U(ν,3/2,r~2)\displaystyle N_{\nu}\Gamma(-\nu)e^{-\tilde{r}^{2}/2}U\left(-\nu,3/2,\tilde{r}^{2}\right) (4)
=\displaystyle= Nνer~2/2k=0Lk12(r~2)kν,\displaystyle N_{\nu}e^{-\tilde{r}^{2}/2}\sum_{k=0}^{\infty}\frac{L_{k}^{\frac{1}{2}}(\tilde{r}^{2})}{k-\nu}, (5)

where Lk12(r~2)L_{k}^{\frac{1}{2}}({\tilde{r}}^{2}) are the associated Laguerre polynomials, U(ν,3/2,r~2)U(-\nu,3/2,\tilde{r}^{2}) is Kummer’s function of the second kind, r~=r/aho\tilde{r}=r/a_{{\rm ho}} with aho=/μωa_{{\rm ho}}=\sqrt{\hbar/\mu\omega}, and ν\nu is the energy pseudo-quantum number of the relative wavefunction such that, ERel=(2ν+3/2)ωE_{{\rm Rel}}=(2\nu+3/2)\hbar\omega. The normalization, NνN_{\nu}, is given by Nν=(2πaho3Z(ν))12N_{\nu}=\left(2\pi a_{ho}^{3}Z(\nu)\right)^{-\frac{1}{2}} where

Z(ν)=πΓ(1ν)[ψ(0)(ν1/2)ψ(0)(ν)]νΓ(ν1/2),\displaystyle Z(\nu)=\frac{\pi\Gamma(1-\nu)\left[\psi^{(0)}(-\nu-1/2)-\psi^{(0)}(-\nu)\right]}{\nu\Gamma(-\nu-1/2)}, (6)

with ψ(0)\psi^{(0)} being the digamma function of degree 0 Abramowitz and Stegun (1964).

The values of the energy pseudo-quantum number, ν\nu, for a given interaction strength, asa_{\rm s}, can be determined by the following transcendental equation Busch et al. (1998)

ahoas=2Γ(ν)Γ(ν1/2).\displaystyle\frac{a_{{\rm ho}}}{a_{{\rm s}}}=\frac{2\Gamma(-\nu)}{\Gamma(-\nu-1/2)}. (7)

The solutions to Eq. (7) are plotted in Fig. 1. As one expects in the non-interacting limit, as/aho0a_{{\rm s}}/a_{{\rm ho}}\rightarrow 0, we recover the simple harmonic oscillator energy spectrum: ERel=(2n+3/2)ωE_{{\rm Rel}}=(2n+3/2)\hbar\omega with n0n\in\mathbb{Z}_{\geq 0}. In the strongly interacting (unitary) limit, as/aho±a_{\rm s}/a_{{\rm ho}}\rightarrow\pm\infty, it is found that ERel=(2n+1/2)ωE_{{\rm Rel}}=(2n+1/2)\hbar\omega with n0n\in\mathbb{Z}_{\geq 0} (solid horizontal red lines) i.e. νn1/2\nu\rightarrow n-1/2.

Refer to caption
Figure 1: Eigenenergies of H^Rel\hat{H}_{{\rm Rel}} as a function of the s-wave scattering length (blue dots). The red lines correspond to Erel=(2n+1/2)ωE_{rel}=(2n+1/2)\hbar\omega with n0n\in\mathbb{Z}_{\geq 0}, the eigenenergy of the relative Hamiltonian in the unitary limit (as/aho±a_{\rm s}/a_{{\rm ho}}\rightarrow\pm\infty).

III Quench Dynamics

In general if a system is initially in a state |Φ|\Phi\rangle and it is quenched then the state evolves as

|Ψ(t)=eiH^t/|Φ=j=0Φj|ΦeiEjt/|Φj,\displaystyle\ket{\Psi(t)}=e^{-i\hat{H^{\prime}}t/\hbar}\ket{\Phi}=\sum_{j=0}^{\infty}\bra{\Phi_{j}^{\prime}}\ket{\Phi}e^{-iE_{j}^{\prime}t/\hbar}\ket{\Phi_{j}^{\prime}}, (8)

where Φj\Phi_{j}^{\prime} are the eigenstates of the post-quench Hamiltonian H^\hat{H}^{\prime}, with corresponding eigenenergies EjE_{j}^{\prime} and the initial pre-quench eigenstate, associated with the Hamiltonian H^\hat{H}, is Φ\Phi.

In the context of the two-body system we are considering this implies

|Ψ(t)\displaystyle\ket{\Psi(t)} =\displaystyle= j,k=0ϕk(R)ψj(r)|ϕ(R)ψ(r)\displaystyle\sum_{j,k=0}^{\infty}\bra{\phi_{k}^{\prime}(R)\psi_{j}^{\prime}(r)}\ket{\phi(R)\psi(r)} (9)
×\displaystyle\times ei(Ej+Ek)t/|ϕk(R)ψj(r).\displaystyle e^{-i\left(E_{j}^{\prime}+E_{k}^{\prime}\right)t/\hbar}\ket{\phi_{k}^{\prime}(R)\psi_{j}^{\prime}(r)}.

Since the quenches considered in this work are in the s-wave scattering length the center of mass eigenstates remain unaffected and Eq. (9) reduces to

|Ψ(t)\displaystyle\ket{\Psi(t)} =\displaystyle= j=0ψj(r)|ψ(r)\displaystyle\sum_{j=0}^{\infty}\bra{\psi_{j}^{\prime}(r)}\ket{\psi(r)} (10)
×\displaystyle\times ei(Ej+ECoM)t/|ϕ(R)ψj(r).\displaystyle e^{-i\left(E^{\prime}_{j}+E_{\rm CoM}\right)t/\hbar}\ket{\phi(R)\psi_{j}^{\prime}(r)}.

Following this formalism we will calculate two observables. In each case we start from an initial state |Φ=|ϕ(R)ψ(r)\ket{\Phi}=\ket{\phi(R)\psi(r)} characterized by the s-wave scattering length, asa_{\rm s}. The system is then quenched to a new s-wave scattering length asa_{\rm s}^{\prime}. The two observables we consider are the Ramsey signal,

S(t)=Φ|Ψ(t),\displaystyle S(t)=\bra{\Phi}\ket{\Psi(t)}, (11)

the magnitude of which is the contrast, and the separation between the particles,

r(t)=Ψ(t)|r|Ψ(t).\displaystyle\langle r(t)\rangle=\bra{\Psi(t)}r\ket{\Psi(t)}. (12)

III.1 Contrast

After a quench the dynamics of the system can be probed through a Ramsey interferometric measurement Cetina et al. (2016); Goold et al. (2011); Knap et al. (2012); Parish and Levinsen (2016), which allows the contrast, to be measured. Previous work regarding the contrast (and other quantities) in one- and two-dimensional systems of two bosons has been undertaken Bougas et al. (2020, 2019); Budewig et al. (2019); Kehrberger et al. (2018).

For our three-dimension system, utilising Eq. (10), the Ramsey signal reduces to

S(t)=j=0|ψ(r)|ψj(r)|2ei(EjERel)t/,\displaystyle S(t)=\sum_{j=0}^{\infty}\left|\bra{\psi(r)}\ket{\psi_{j}^{\prime}(r)}\right|^{2}e^{-i\left(E^{\prime}_{j}-E_{{\rm Rel}}\right)t/\hbar}, (13)

where |ψ(r)\ket{\psi(r)} is the initial eigenstate, with eigenenergy ERelE_{{\rm Rel}}, of H^Rel\hat{H}_{{\rm Rel}}, with an s-wave scattering length asa_{\rm s} and the states |ψj(r)\ket{\psi_{j}^{\prime}(r)} are the eigenstates of H^Rel\hat{H}^{\prime}_{{\rm Rel}}, with an s-wave-scattering length asa_{\rm s}^{\prime}, with corresponding eigenenergies EjE_{j}^{\prime}. The general properties of Eq. (13) can be understood via the realization that |ψj(r)\ket{\psi_{j}^{\prime}(r)} rotates at an angular frequency EjE_{j}^{\prime} and |ψ(r)|ψj(r)|2\left|\bra{\psi(r)}\ket{\psi_{j}^{\prime}(r)}\right|^{2} determines the magnitude of the squared overlap of the pre-quench state and the jthj^{th} post-quench eigenstate.

In general the coefficients, |ψ(r)|ψj(r)|2\left|\bra{\psi(r)}\ket{\psi_{j}^{\prime}(r)}\right|^{2}, of the sum in Eq. (13) can be evaluated. Specifically, defining ν\nu to be the pseudo-quantum number for the initial state, |ψ(r)\ket{\psi(r)}, and νj\nu_{j}^{\prime} to be the energy pseudo-quantum numbers for the final states, |ψj(r)\ket{\psi_{j}^{\prime}(r)}, then

ψ(r)|ψj(r)\displaystyle\bra{\psi(r)}\ket{\psi_{j}^{\prime}(r)} =\displaystyle= 2πNνNνjaho3k=0Γ(k+3/2)(kν)(kνj)Γ(k+1)\displaystyle 2\pi N_{\nu}N_{\nu_{j}^{\prime}}a_{{\rm ho}}^{3}\sum_{k=0}^{\infty}\frac{\Gamma(k+3/2)}{(k-\nu)(k-\nu_{j}^{\prime})\Gamma(k+1)}
=\displaystyle= π2ννjF23(32,νj,ν;1νj,1ν;1)Z(ν)Z(νj)\displaystyle\frac{\sqrt{\pi}}{2\nu\nu_{j}^{\prime}}\frac{{}_{3}F_{2}\left(\frac{3}{2},-\nu_{j}^{\prime},-\nu;1-\nu_{j}^{\prime},1-\nu;1\right)}{\sqrt{Z(\nu)Z(\nu_{j}^{\prime})}}

where F23(a,b,c;d,e;f){}_{3}F_{2}(a,b,c;d,e;f) is a generalized hypergeometric function. From Eqs. (7,13,LABEL:eq:coefs) it is possible to numerically evaluate S(t)S(t) for any quench from asa_{\rm s} to asa_{\rm s}^{\prime}.

Below we consider two scenarios where the s-wave scattering length is quenched from as/aho=0a_{\rm s}/a_{{\rm ho}}=0 to as/aho=±a_{\rm s}^{\prime}/a_{{\rm ho}}=\pm\infty and from as/aho=±a_{\rm s}/a_{{\rm ho}}=\pm\infty to as/aho=0a_{\rm s}^{\prime}/a_{{\rm ho}}=0. In these cases exact closed form expressions for S(t)S(t) can be found. From Eq. (7), and as can be seen in Fig. 1, in the unitary limit νjj1/2\nu_{j}\rightarrow j-1/2. In the non-interacting to unitary case the initial state, |ψ(r)\ket{\psi(r)}, is the simple harmonic wavefunction with l=m=0l=m=0:

ψn00(r)\displaystyle\psi_{n00}(r) =\displaystyle= Nn0er~2/2Ln12(r~2)Y00(θ,ϕ),\displaystyle N_{n0}e^{-\tilde{r}^{2}/2}L_{n}^{\frac{1}{2}}(\tilde{r}^{2})Y_{00}(\theta,\phi), (15)
Nn0\displaystyle N_{n0} =\displaystyle= 14πaho62n+3n!(2n+1)!!,\displaystyle\sqrt{\sqrt{\frac{1}{4\pi a_{\rm ho}^{6}}}\frac{2^{n+3}n!}{(2n+1)!!}},

where Y00(θ,ϕ)Y_{00}(\theta,\phi) is the lowest order spherical harmonic.

For the case where as/aho=0a_{\rm s}/a_{{\rm ho}}=0 and as/aho=±a_{\rm s}^{\prime}/a_{{\rm ho}}=\pm\infty and the initial state has quantum number nn,

S(t)\displaystyle S(t) =\displaystyle= 4ei(2n+1)ωtΓ(n+3/2)(1+2n)2π32Γ(1+n)\displaystyle\frac{4e^{i(2n+1)\omega t}\Gamma(n+3/2)}{(1+2n)^{2}\pi^{\frac{3}{2}}\Gamma(1+n)}
×\displaystyle\times F23(12,12n,12n;12n,12n;e2iωt).\displaystyle{}_{3}F_{2}\left(\frac{1}{2},-\frac{1}{2}-n,-\frac{1}{2}-n;\frac{1}{2}-n,\frac{1}{2}-n;e^{-2i\omega t}\right).

In the case where the initial state is the ground state (n=0n=0) this reduces to

S(t)=2π[eiωt(1ei2ωt)+arcsin(eiωt)].\displaystyle S(t)=\frac{2}{\pi}\left[e^{i\omega t}\sqrt{(1-e^{-i2\omega t})}+\arcsin(e^{-i\omega t})\right]. (17)

The contrast is plotted in Fig. 2 (solid blue curve for Eq. (17) and dashed-dotted red curve for Eq. (LABEL:eq:S_full) with n=1n=1), with the upper figure showing the magnitude, |S(t)||S(t)|, and lower figure showing the phase, ϕ(t)\phi(t), where we have parameterized the Ramsey signal as S(t)=|S(t)|eiϕ(t)S(t)=|S(t)|e^{-i\phi(t)}. In general the contrast oscillates, with period π/ω\pi/\omega, whilst the phase exhibits a period of 2π/ω2\pi/\omega with a stepping behaviour (ωtπ/2\omega t\approx\pi/2) that is particularly pronounced in the n1n\geq 1 case. A similar phase feature has been experimentally and theoretically observed for the case of a single impurity in a uniform Fermi sea Cetina et al. (2016).

Refer to caption
Figure 2: Ramsey signal for as/aho=0a_{\rm s}/a_{{\rm ho}}=0 to as/aho=a_{\rm s}^{\prime}/a_{{\rm ho}}=\infty case as a function of tt. The upper (lower) panel plots |S(t)||S(t)| (ϕ(t)\phi(t)), where the Ramsey signal has been parameterized as S(t)=|S(t)|eiϕ(t)S(t)=|S(t)|e^{-i\phi(t)}. The blue solid curve corresponds to the exact ground state result, Eq. (17), the dashed-dotted red curve corresponds to the exact n=1n=1 result of Eq. (LABEL:eq:S_full), and the dashed green curve corresponds to the early time expansion for the ground state result, Eq. (18).

It is also informative to examine the short time dynamics of the contrast in the limit ωt1\omega t\ll 1. Expanding Eq. (17) we find

S(t)11132πeiπ/4(ωt)3/2,\displaystyle S(t)\approx 1-\frac{11}{3\sqrt{2}\pi}e^{-i\pi/4}(\omega t)^{3/2}, (18)

which is also plotted in Fig. 2 (dashed green curve).

Previous calculations which perturbatively evaluate the Ramsey signal for a single Fermi impurity in a uniform sea of fermions provide a useful comparison for the exact two-body results presented above. For such a case, where the interaction is quenched from as/aho=0a_{\rm s}/a_{{\rm ho}}=0 to as/aho=±a_{\rm s}^{\prime}/a_{{\rm ho}}=\pm\infty it has been shown that the short time dynamics follow Parish and Levinsen (2016)

S(t)189(3m12πμ)3/2eiπ/4(ωt)3/2,\displaystyle S(t)\approx 1-\frac{8}{9}\left(\frac{3m_{1}}{2\pi\mu}\right)^{3/2}e^{-i\pi/4}(\omega t)^{3/2}, (19)

where we have assumed that the Fermi energy is 3ω/23\hbar\omega/2.

Equations (18) and (19) show that the short time dynamics are dominated by 1αt3/21-\alpha t^{3/2} in each case. Perhaps what is more remarkable is that for m1=m2m_{1}=m_{2} we find that for perturbative calculation, Eq. (19), α=0.829eiπ/4ω3/2\alpha=0.829\dots e^{-i\pi/4}\omega^{3/2} as compared to α=0.825eiπ/4ω3/2\alpha=0.825\dots e^{-i\pi/4}\omega^{3/2} for the two-body calculation, Eq. (18). This supports the idea that the early time dynamics are dominated by two-body effects Sykes et al. (2014) and are independent of the trapping potential Corson and Bohn (2015).

We also consider the reverse case where the system is initially in the unitary limit and quenched to the non-interacting limit. In the unitary case (as/aho=±a_{\rm s}/a_{{\rm ho}}=\pm\infty) with pseudo-quantum number νj=j1/2\nu_{j}=j-1/2:

ψ(νj,r)=Nj1/2er~2/2n=0Ln12(r~2)nj+1/2,\displaystyle\psi(\nu_{j},r)=N_{j-1/2}e^{-\tilde{r}^{2}/2}\sum_{n=0}^{\infty}\frac{L_{n}^{\frac{1}{2}}(\tilde{r}^{2})}{n-j+1/2}, (20)

where

Nj1/2=Γ(1/2+j)2π3aho3Γ(1+j).\displaystyle N_{j-1/2}=\sqrt{\frac{\Gamma(1/2+j)}{2\pi^{3}a_{\rm ho}^{3}\Gamma(1+j)}}.

The final states are in the non-interacting limit (as/aho=0a_{\rm s}^{\prime}/a_{{\rm ho}}=0), and so are simple harmonic wavefunctions as defined in Eq. (15). As a result the Ramsey signal is evaluated as

S(t)\displaystyle S(t) =\displaystyle= 2ei(12j)Γ(j+1/2)(2j1)2π32Γ(j+1)\displaystyle\frac{2e^{-i(1-2j)}\Gamma(j+1/2)}{(2j-1)^{2}\pi^{\frac{3}{2}}\Gamma(j+1)}
×\displaystyle\times F23(32,12j.12j;32j,32j;e2iωt),\displaystyle{}_{3}F_{2}\left(\frac{3}{2},\frac{1}{2}-j.\frac{1}{2}-j;\frac{3}{2}-j,\frac{3}{2}-j;e^{-2i\omega t}\right),

where jj denotes the excitation of the initial state. In the case where the initial state is the ground state (j=0j=0) the Ramsey signal reduces to

S(t)=2πarcsin(eiωt).\displaystyle S(t)=\frac{2}{\pi}\arcsin(e^{-i\omega t}). (22)

For early times (ωt1\omega t\ll 1) this becomes

S(t)122πeiπ/4(1+eiπ/212ωt)(ωt)1/2.\displaystyle S(t)\approx 1-\frac{2\sqrt{2}}{\pi}e^{-i\pi/4}\left(1+\frac{e^{i\pi/2}}{12}\omega t\right)(\omega t)^{1/2}. (23)

The exact ground state result, Eq. (22) (solid blue curve), the early time dynamics, Eq. (23) (dashed green curve), and the exact first excited state result, Eq. (LABEL:eq:S2_full) with j=1j=1 (dashed-dotted red curve), are plotted in Fig. 3. In general the contrast oscillates, with period π/ω\pi/\omega, whilst the phase exhibits a period of 2π/ω2\pi/\omega with a stepping behaviour (ωtπ/2\omega t\approx\pi/2) that is again particularly pronounced in the n1n\geq 1 case. In contrast to the previous case, shown in Fig. 2, we find that when the system is quenched from unitarity to non-interacting S(t)S(t) exhibits non-analytic cusps at ωt=0,π,2π\omega t=0,\pi,2\pi\dots.

Refer to caption
Figure 3: Ramsey signal for as/aho=a_{\rm s}/a_{{\rm ho}}=\infty and as/aho=0a_{\rm s}^{\prime}/a_{{\rm ho}}=0 as a function of tt. The upper (lower) panel plots |S(t)||S(t)| (ϕ(t)\phi(t)), where the Ramsey signal has been parameterized as S(t)=|S(t)|eiϕ(t)S(t)=|S(t)|e^{-i\phi(t)}. The blue solid curve corresponds to the exact result, Eq. (22), the dashed-dotted red curve corresponds to the exact j=1j=1 result of Eq. (LABEL:eq:S2_full), and the dashed green curve corresponds to the early time expansion of the ground state result Eq. (23).

The Ramsey signal has been experimentally measured using Ramsey interferometry techniques Cetina et al. (2016). As outlined by Knap et al. (2012); Parish and Levinsen (2016) the Ramsey signal can be related to the difference in probabilities of different states.

Consider the two particles 11 and 22. Suppose that particle 11 has only one allowable state, |1\ket{1}, and particle 22 has two: |2\ket{2\uparrow} and |2\ket{2\downarrow}. We assume that |2\ket{2\downarrow} does not interact with |1\ket{1} but |2\ket{2\uparrow} can, the interactions are parameterized by asa_{\rm s}.
For a general initial state of the system

|Φ=(a|2+b|2)|1.\displaystyle\ket{\Phi}=(a\ket{2\uparrow}+b\ket{2\downarrow})\otimes\ket{1}. (24)

For such a state a Ramsey pulse sequence has the following form:

|Ψ(t)=Uπ/2ϕT(t)Uπ/2ϕ=0|Φ,\displaystyle\ket{\Psi(t)}=U_{\pi/2}^{\phi}T(t)U_{\pi/2}^{\phi=0}\ket{\Phi}, (25)

where

Uπ/2φ=12[1ieiφieiφ1],T(t)=[eiH^t/00eiH^t/],U_{\pi/2}^{\varphi}=\frac{1}{\sqrt{2}}\begin{bmatrix}1&-ie^{i\varphi}\\ -ie^{-i\varphi}&1\\ \end{bmatrix},\quad T(t)=\begin{bmatrix}e^{-i\hat{H}^{\prime}t/\hbar}&0\\ 0&e^{-i\hat{H}t/\hbar}\\ \end{bmatrix},

and ϕ\phi is the phase of the second π/2\pi/2 pulse relative to first. Evaluating the probability of particle 22 being in the |2\ket{2\uparrow} (PP_{\uparrow}) and |2\ket{2\downarrow} (PP_{\downarrow}) states given that the quench is applied after the first π/2\pi/2 pulse results in

P\displaystyle{\rm P}_{\uparrow} =\displaystyle= 12Ψ(0)|((a2+b2)+(b2a2)Re[eiϕei(H^H^)t/]\displaystyle\frac{1}{2}\bra{\Psi(0)}((a^{2}+b^{2})+(b^{2}-a^{2})\real[e^{-i\phi}e^{-i(\hat{H}^{\prime}-\hat{H})t/\hbar}] (26)
\displaystyle- 2abIm[eiϕei(H^H^)t/])|Ψ(0)\displaystyle 2ab\imaginary[e^{-i\phi}e^{-i(\hat{H}^{\prime}-\hat{H})t/\hbar}])\ket{\Psi(0)}
P\displaystyle{\rm P}_{\downarrow} =\displaystyle= 12Ψ(0)|((a2+b2)+(a2b2)Re[eiϕei(H^H^)t/]\displaystyle\frac{1}{2}\bra{\Psi(0)}((a^{2}+b^{2})+(a^{2}-b^{2})\real[e^{-i\phi}e^{-i(\hat{H}^{\prime}-\hat{H})t/\hbar}] (27)
+\displaystyle+ 2abIm[eiϕei(H^H^)t/])|Ψ(0)\displaystyle 2ab\imaginary[e^{-i\phi}e^{-i(\hat{H}^{\prime}-\hat{H})t/\hbar}])\ket{\Psi(0)}

and

PP\displaystyle{\rm P}_{\uparrow}-{\rm P}_{\downarrow} =\displaystyle= (b2a2)Re[eiϕS(t)]2abIm[eiϕS(t)].\displaystyle(b^{2}-a^{2})\real[e^{-i\phi}S(t)]-2ab\imaginary[e^{-i\phi}S(t)].

Hence we can connect an experimentally measurable quantity, PP{\rm P}_{\uparrow}-{\rm P}_{\downarrow}, to the Ramsey signal. In all the observables calculated in this paper we have assumed a=1a=1 and b=0b=0.

III.2 Particle Separation Expectation Value

Experiment has shown that it is possible to measure the separation of two trapped 6Li atoms following a quench in trap geometry Guan et al. (2019) we believe it is possible to extend this to a quench in interaction strength.

Following the same methodology as presented in the previous section it is possible to evaluate the expectation value of the inter-particle separation via,

r(t)\displaystyle\langle r(t)\rangle =\displaystyle= Ψ(t)|r|Ψ(t)\displaystyle\bra{\Psi(t)}r\ket{\Psi(t)} (29)
=\displaystyle= j,k=0ψn(r)|ψj(r)ψk(r)|ψn(r)\displaystyle\sum_{j,k=0}^{\infty}\bra{\psi_{n}(r)}\ket{\psi_{j}^{\prime}(r)}\bra{\psi_{k}^{\prime}(r)}\ket{\psi_{n}(r)}
×\displaystyle\times ψj(r)|r|ψk(r)ei(EkEj)t/.\displaystyle\bra{\psi_{j}^{\prime}(r)}r\ket{\psi_{k}^{\prime}(r)}e^{-i(E_{k}^{\prime}-E_{j}^{\prime})t/\hbar}.

We first consider the non-interacting (as/aho=0)(a_{\rm s}/a_{\rm ho}=0) to interacting (as/aho0)(a^{\prime}_{\rm s}/a_{\rm ho}\neq 0) case, where ψn(r)\psi_{n}(r) is the non-interacting simple harmonic oscillator wavefunction, Eq. (15), and ψj(r)\psi^{\prime}_{j}(r) is the interacting wavefunction, Eq. (5), with pseudo-quantum number νj\nu_{j}. In this case

ψn(r)|ψj(r)\displaystyle\bra{\psi_{n}(r)}\ket{\psi_{j}^{\prime}(r)} =\displaystyle= n+1/2(nνj)2Z(νj)Γ(n+1/2)Γ(n+1),\displaystyle\sqrt{\frac{n+1/2}{(n-\nu_{j})^{2}Z(\nu_{j})}}\sqrt{\frac{\Gamma(n+1/2)}{\Gamma(n+1)}},

and

ψk(r)|r|ψj(r)\displaystyle\bra{\psi^{\prime}_{k}(r)}r\ket{\psi^{\prime}_{j}(r)} =\displaystyle= NνjNνkrer~2Γ(νj)U(νj,3/2,r~2)\displaystyle N_{\nu_{j}}N_{\nu_{k}}\int re^{-\tilde{r}^{2}}\Gamma(-\nu_{j})U(-\nu_{j},3/2,\tilde{r}^{2})
×\displaystyle\times Γ(νk)U(νk,3/2,r~2)d3r\displaystyle\Gamma(-\nu_{k})U(-\nu_{k},3/2,\tilde{r}^{2})d^{3}r
=\displaystyle= aπ2Γ(j+12)Γ(k+12)Γ(j+1)Γ(k+1)m=0n=0[\displaystyle\frac{a}{\pi^{2}}\sqrt{\frac{\Gamma(j+\frac{1}{2})\Gamma(k+\frac{1}{2})}{\Gamma(j+1)\Gamma(k+1)}}\sum_{m=0}^{\infty}\sum_{n=0}^{\infty}\bigg{[}
(1)m+n(mνj)(nνk)(m+1/2n)(n+1/2m)]\displaystyle\frac{(-1)^{m+n}}{(m-\nu_{j})(n-\nu_{k})}\binom{m+1/2}{n}\binom{n+1/2}{m}\bigg{]}
Refer to caption
Figure 4: The expectation of the particle separation as a function of time, where as/aho=0a_{\rm s}/a_{\rm ho}=0 and as/aho=a^{\prime}_{\rm s}/a_{\rm ho}=\infty, for the n=0n=0 case, Eq. (32). Each curve corresponds to a different cut-off (NmaxN_{\rm max}) in the sum over mm and ll in Eq. (32). Specifically, the blue dotted curve corresponds to Nmax=160N_{\rm max}=160, the green solid curve corresponds to Nmax=80N_{\rm max}=80, the red dashed curve corresponds to Nmax=40N_{\rm max}=40 and the dot-dashed blue curve corresponds to Nmax=20N_{\rm max}=20. Because this sum is convergent all curves are overlaid on top of one another.

Note that by combining Eqs. (LABEL:eq:coefs29LABEL:eq:roverlap) one can calculate the expectation value of the particle separation for the general quench case. In the case where the initial state is the ground state (n=0)(n=0) and the system is quenched to unitarity (as/ahoa^{\prime}_{\rm s}/a_{\rm ho}\rightarrow\infty and νjj1/2\nu_{j}\rightarrow j-1/2) we find

r~(t)\displaystyle\langle\tilde{r}(t)\rangle =\displaystyle= 4π52m,l=0(1)m+l1+2mei(1+2l)ωt\displaystyle-\frac{4}{\pi^{\frac{5}{2}}}\sum_{m,l=0}^{\infty}\frac{(-1)^{m+l}}{1+2m}e^{-i(1+2l)\omega t} (32)
×\displaystyle\times (12+ml)(12+lm)β(e2iωt,12l,32)\displaystyle\binom{\frac{1}{2}+m}{l}\binom{\frac{1}{2}+l}{m}\beta\left(e^{-2i\omega t},-\frac{1}{2}-l,\frac{3}{2}\right)
×\displaystyle\times F12(12,12m,12m,e2iωt),\displaystyle{}_{2}F_{1}\left(-\frac{1}{2},-\frac{1}{2}-m,\frac{1}{2}-m,e^{2i\omega t}\right),

where β(z,a,b)\beta(z,a,b) is the incomplete beta function:

β(z,a,b)=0zta1(1t)b1𝑑t.\displaystyle\beta(z,a,b)=\int^{z}_{0}t^{a-1}(1-t)^{b-1}dt.

Evaluating r~(t)\langle\tilde{r}(t)\rangle in this case results in an oscillating form, with period π/ω\pi/\omega, as shown in Fig. 4.

We now turn our attention to the case where the initial state is in the unitary limit (as/aho=)(a_{\rm s}/a_{\rm ho}=\infty) and the quench is to the non-interacting limit (as/aho=0)(a^{\prime}_{\rm s}/a_{\rm ho}=0) where we find

r~(t)\displaystyle\langle\tilde{r}(t)\rangle =\displaystyle= m,l=016e2i(ml)ωtΓ(1+j)Γ(1+l)Γ(1+m)\displaystyle-\sum_{m,l=0}^{\infty}\frac{16e^{-2i(m-l)\omega t}}{\Gamma(1+j)\Gamma(1+l)\Gamma(1+m)}
×\displaystyle\times Γ(1/2+j)Γ(3/2+m)Γ(3/2+l)(1+4(ml)2)(12j+2m)(12j+2l),\displaystyle\frac{\Gamma(1/2+j)\Gamma(3/2+m)\Gamma(3/2+l)}{(-1+4(m-l)^{2})(1-2j+2m)(1-2j+2l)},

where jj denotes the initial state in the unitary limit. Eq. (LABEL:eq:divergent) is logarithmically divergent in the summation. This divergence is most clearly demonstrated in Figs. 5 and 6. Fig. 5 shows, for j=0j=0 that although r~(t)\langle\tilde{r}(t)\rangle is periodic, with period π/ω\pi/\omega and the sum converges for tω=kπt\omega=k\pi, where kk is an integer, it appears to diverge away from these points. Examining r~(t=π/2ω)\langle\tilde{r}(t=\pi/2\omega)\rangle elucidates this more clearly as demonstrated in Fig. 6, which plots r~(t=π/2ω)\langle\tilde{r}(t=\pi/2\omega)\rangle as a function of the maximum number of terms (NmaxN_{\rm max}) in the sum in Eq. (LABEL:eq:divergent). As can be seen r~(t=π/2ω)\langle\tilde{r}(t=\pi/2\omega)\rangle diverges logarithmically.

Refer to caption
Figure 5: The expectation of the particle separation as a function of time, where as/aho=a_{\rm s}/a_{\rm ho}=\infty and as/aho=0a^{\prime}_{\rm s}/a_{\rm ho}=0, for the j=0j=0 case, Eq. (LABEL:eq:divergent). Each curve corresponds to a different cut-off (NmaxN_{\rm max}) in the sum over mm and ll in Eq. (LABEL:eq:divergent). Specifically, the dotted blue curve corresponds to Nmax=80N_{\rm max}=80, the solid green curve corresponds to Nmax=40N_{\rm max}=40, the dashed red curve corresponds to Nmax=20N_{\rm max}=20 and the blue dot-dashed curve corresponds to Nmax=10N_{\rm max}=10.
Refer to caption
Figure 6: r~(t=π/2ω)\langle\tilde{r}(t=\pi/2\omega)\rangle for the j=0j=0 case as a function of the cut-off (NmaxN_{\rm max}) in the sum over mm and ll in Eq. (LABEL:eq:divergent).

The origins of this divergence can be understood by examining

In(r,t,Nmax)\displaystyle I_{n}(r,t,N_{\rm max}) =\displaystyle= l,m=0Nmaxψn(r)|ψl(r)ψm(r)|ψn(r)\displaystyle\sum_{l,m=0}^{N_{\rm max}}\bra{\psi_{n}(r)}\ket{\psi_{l}^{\prime}(r)}\bra{\psi_{m}^{\prime}(r)}\ket{\psi_{n}(r)} (35)
×\displaystyle\times ψl(r)r3ψm(r)e2i(ml)ωt,\displaystyle\psi_{l}^{\prime}(r)r^{3}\psi_{m}^{\prime}(r)e^{-2i(m-l)\omega t},

where for given initial state (nn)

r~(t)=4π0limNmaxIn(r,t,Nmax)dr.\displaystyle\langle\tilde{r}(t)\rangle=4\pi\int_{0}^{\infty}\lim_{N_{\rm max}\rightarrow\infty}I_{n}(r,t,N_{\rm max})dr. (36)

In the ground state (n=0n=0) this reduces to,

I0(r~,t,Nmax)\displaystyle I_{0}({\tilde{r}},t,N_{\rm max}) =\displaystyle= 8r~3er~2π52l,m=0Nmaxe2i(ml)ωtΓ(1+l)Γ(1+m)\displaystyle\frac{8\tilde{r}^{3}e^{-\tilde{r}^{2}}}{\pi^{\frac{5}{2}}}\sum_{l,m=0}^{N_{\rm max}}\frac{e^{-2i(m-l)\omega t}}{\Gamma(1+l)\Gamma(1+m)} (37)
×\displaystyle\times Γ(1/2+l)F11(l,3/2,r~2)\displaystyle\Gamma(1/2+l){}_{1}F_{1}(-l,3/2,\tilde{r}^{2})
×\displaystyle\times Γ(1/2+m)F11(m,3/2,r~2).\displaystyle\Gamma(1/2+m){}_{1}F_{1}(-m,3/2,\tilde{r}^{2}).

In Fig. 7 I0(r~,t=π/2ω,Nmax)I_{0}({\tilde{r}},t=\pi/2\omega,N_{\rm max}) is plotted for increasing values of the cut-off (NmaxN_{\rm max}) in the sum over mm and ll. From this it is clear that as NmaxN_{\rm max} increases there is 1/r~1/\tilde{r} tail in I0(r~,t=π/2ω,N)I_{0}({\tilde{r}},t=\pi/2\omega,N). A similar analysis for t=kπ/ωt=k\pi/\omega, where kk is an integer, reveals that at these specific times I0(r~,t=kπ/ω,Nmax)I_{0}({\tilde{r}},t=k\pi/\omega,N_{\rm max}) does not exhibit a 1/r~1/\tilde{r} tail and hence the sum is convergent. However, away from t=kπ/ωt=k\pi/\omega it is this 1/r~1/\tilde{r} dependence which leads to the divergence in r~(t)\langle\tilde{r}(t)\rangle.

This divergence naturally leads to three questions: where does it come from, what does it mean in the context of experiment and why does this not happen in the reverse case? Answering the second question first: in the context of an experiment this result shows that if the system started in the ground state, with as/aho±a_{\rm s}/a_{\rm ho}\rightarrow\pm\infty, and is quenched to the non-interacting regime an ensemble measurement of the separation between the two particles would exhibit a periodic structure but would also, away from t=kπ/ωt=k\pi/\omega, diverge. This is concerning on many levels and as such it is worth considering the first question which can be addressed by evaluating the wavefunction of the initial state (Eq. (5)), which in the limit r~0\tilde{r}\rightarrow 0 approaches 1/r~1/\tilde{r}. A careful analysis of this reveals that completing the sum to \infty in Eq. (5) is crucial in describing the properties of the interacting wavefunction as r~0\tilde{r}\rightarrow 0. This means that after the quench has occurred (to the non-interacting regime) this cusp leads to a divergence in momenta which can only be transferred into high-energy non-interacting states. Since this work considers a zero-range interaction this means a divergence in momenta and hence a 1/r~1/\tilde{r} dependence in I0(r~,t,N)I_{0}({\tilde{r}},t,N\rightarrow\infty). This then helps to understand what this means in the context of an actual experiment. In reality there is a cut-off, the interaction is not zero-range. However, this cut-off is short range and can be estimated to be of order <109<10^{-9}m and hence one expects that the oscillations in r~(t=π/2ω)\langle\tilde{r}(t=\pi/2\omega)\rangle should have an amplitude of order >7aho>7a_{\rm ho}. This is still a very large oscillation, an order of magnitude larger than the case where the interactions are quenched from as/aho0a_{\rm s}/a_{\rm ho}\rightarrow 0 to as/aho±a^{\prime}_{\rm s}/a_{\rm ho}\rightarrow\pm\infty, see Fig. 4. For the third question; in the non-interacting to unitary case we believe there is no divergence because the wavefunctions being projected onto (the non-interacting states) do not have a cusp at r~=0\tilde{r}=0 and so there is no corresponding divergence in momenta.

Refer to caption
Figure 7: I0(r~,t=π/2ω,Nmax)I_{0}({\tilde{r}},t=\pi/2\omega,N_{\rm max}) as a function of r~=r/aho{\tilde{r}}=r/a_{\rm ho} for Nmax=10N_{\rm max}=10 (solid green curve), Nmax=20N_{\rm max}=20 (dotted cyan curve), Nmax=40N_{\rm max}=40 (dashed red curve) and Nmax=80N_{\rm max}=80 (black dot-dashed curve). The thin solid blue curve is 1/r~1/\tilde{r}.

IV Conclusion

In this work we have considered the dynamical properties of a harmonically trapped interacting two-body system, where the contact interactions are quenched between two values. Our work has focused on determining the Ramsey signal and the expectation value of the inter-particle separation particle. Although the methodology in determining the dynamical properties of these quantities is general in this work we have chosen to focus on two quenches: (i) from a non-interacting (as/aho0a_{\rm s}/a_{\rm ho}\rightarrow 0) state to a unitary (as/aho±a^{\prime}_{\rm s}/a_{\rm ho}\rightarrow\pm\infty) regime and (ii) from a unitary (as/aho±a_{\rm s}/a_{\rm ho}\rightarrow\pm\infty) state to a non-interacting (as/aho0a^{\prime}_{\rm s}/a_{\rm ho}\rightarrow 0) regime. In these scenarios results for the Ramsey signal are exact closed form expressions, and when the system is initially in the ground state the Ramsey signal is given by elementary functions.

For the Ramsey signal calculations we found periodic behaviour, as one would expect, however, it is notable that for the case where the quench is from the non-interacting state to the unitary regime the results on short-time scales match closely previous theoretical work in the limit of a single impurity in a uniform Fermi sea Parish and Levinsen (2016). This originates from the feature that the short term behaviour of these systems is governed by the two-body dynamics, as found in Refs. Parish and Levinsen (2016); Sykes et al. (2014); Corson and Bohn (2015) and is therefore independent of the trapping potential.

For the calculations of the expectation value of the separation between the two particles the results for a quenches between non-interacting and unitary regimes exhibited expected periodic behaviour with an amplitude of 0.3aho\sim 0.3a_{\rm ho}, for quenches from the non-interacting to the unitary regimes. For quenches from the unitary regime to the non-interacting regime we find a logarithmic divergence in the separation, which arises due to the contact interaction breaking down at small length scales. By imposing a cut-off based on the length scale of the Van der Waals force we expect that the size of these oscillations can be considerably larger 7aho\sim 7a_{\rm ho}. Additionally given that the 7aho7a_{\rm ho} result is dependent on the interaction cut-off length scale this could open an avenue of investigation into the length scale of the inter-atomic interaction.

Finally we note that given experimental advances in the building of trapped few-atom systems Serwane et al. (2011); Murmann et al. (2015); Zürn et al. (2013, 2012) it should possible to experimentally investigate the dynamics discussed in this work. Specifically Ref. Guan et al. (2019) performed an experiment in which two trapped 6Li in distinct hyperfine states underwent a quench in trap geometry and the inter-atomic distant was measured. This is tantalizingly close to an experimental test of the results presented here, rather than a quench in trap geometry what is needed is a quench in interaction strength, which can and has been performed in other experiments Cetina et al. (2016). Additionally, we note that from the theoretical perspective this work can be extended to how the contact parameter Tan (2008a, b, c) which evolves as the two-body system is quenched and to the three-body problem Fedorov and Jensen (2001); Werner and Castin (2006a); Levinsen et al. (2017); Werner and Castin (2006b); Kestner and Duan (2007); D’Incao et al. (2018).

V Acknowledgements

A.D.K. is supported by an Australian Government Research Training Program Scholarship and by the University of Melbourne.

References

  • Serwane et al. (2011) F. Serwane, G. Zürn, T. Lompe, T. Ottenstein, A. Wenz,  and S. Jochim, Science 332, 336 (2011).
  • Murmann et al. (2015) S. Murmann, A. Bergschneider, V. M. Klinkhamer, G. Zürn, T. Lompe,  and S. Jochim, Physical Review Letters 114, 080402 (2015).
  • Zürn et al. (2013) G. Zürn, A. N. Wenz, S. Murmann, A. Bergschneider, T. Lompe,  and S. Jochim, Physical Review Letters 111, 175302 (2013).
  • Zürn et al. (2012) G. Zürn, F. Serwane, T. Lompe, A. N. Wenz, M. G. Ries, J. E. Bohn,  and S. Jochim, Physical Review Letters 108, 075303 (2012).
  • Busch et al. (1998) T. Busch, B.-G. Englert, K. Rzażewski,  and M. Wilkens, Foundations of Physics 28, 549 (1998).
  • Fedorov and Jensen (2001) D. V. Fedorov and A. Jensen, Journal of Physics A: Mathematical and General 34, 6003 (2001).
  • Werner and Castin (2006a) F. Werner and Y. Castin, Physical Review A 74, 053604 (2006a).
  • Werner and Castin (2006b) F. Werner and Y. Castin, Physical Review Letters 97, 150401 (2006b).
  • Kestner and Duan (2007) J. P. Kestner and L.-M. Duan, Physical Review A 76, 033611 (2007).
  • Daily and Blume (2010) K. M. Daily and D. Blume, Physical Review A 81, 053615 (2010).
  • Bradly et al. (2014) C. J. Bradly, B. C. Mulkerin, A. M. Martin,  and H. M. Quiney, Physical Review A 90, 023626 (2014).
  • Daily et al. (2012) K. M. Daily, X. Y. Yin,  and D. Blume, Physical Review A 85, 053614 (2012).
  • Liu et al. (2009) X.-J. Liu, H. Hu,  and P. D. Drummond, Physical Review Letters 102, 160401 (2009).
  • Liu et al. (2010) X.-J. Liu, H. Hu,  and P. D. Drummond, Physical Review A 82, 023619 (2010).
  • Stöferle et al. (2006) T. Stöferle, H. Moritz, K. Günter, M. Köhl,  and T. Esslinger, Physical Review Letters 96, 030401 (2006).
  • Cui (2012) X. Cui, Few Body Systems 52, 65 (2012).
  • Rakshit et al. (2012) D. Rakshit, K. M. Daily,  and D. Blume, Physical Review A 85, 033634 (2012).
  • Kaplan and Sun (2011) D. B. Kaplan and S. Sun, Physical Review Letters 107, 030601 (2011).
  • Mulkerin et al. (2012a) B. C. Mulkerin, C. J. Bradly, H. M. Quiney,  and A. M. Martin, Physical Review A 85, 053636 (2012a).
  • Mulkerin et al. (2012b) B. C. Mulkerin, C. J. Bradly, H. M. Quiney,  and A. M. Martin, Physical Review A 86, 053631 (2012b).
  • Nascimbène et al. (2010) S. Nascimbène, N. Navon, F. Jiang, K. Chevy,  and C. Salomon, Nature 463, 1057 (2010).
  • Ku et al. (2012) M. Ku, A. Sommer, L. Cheuk,  and M. Zwierlein, Science 335, 563 (2012).
  • Levinsen et al. (2017) J. Levinsen, P. Massignan, S. Endo,  and M. M. Parish, Journal of Physics B: Atomic, Molecular and Optical Physics 50, 072001 (2017).
  • Fano (1935) U. Fano, Il Nuovo Cimento 12, 154 (1935).
  • Feshbach (1958) H. Feshbach, Annals of Physics 5, 357 (1958).
  • Chin et al. (2010) C. Chin, R. Grimm, P. Julienne,  and E. Tiesinga, Reviews of Modern Physics 82, 1225 (2010).
  • Tiesinga et al. (1993) E. Tiesinga, B. J. Verhaar,  and H. T. C. Stoof, Physical Review A 47, 4114 (1993).
  • Cetina et al. (2016) M. Cetina, M. Jag, R. S. Lous, I. Fritsche, J. T. Walraven, R. Grimm, J. Levinsen, M. M. Parish, R. Schmidt, M. Knap, et al., Science 354, 96 (2016).
  • Guan et al. (2019) Q. Guan, V. Klinkhamer, R. Klemt, J. H. Becher, A. Bergschneider, P. M. Preiss, S. Jochim,  and D. Blume, Physical Review Letters 122, 083401 (2019).
  • Goold et al. (2011) J. Goold, T. Fogarty, N. Lo Gullo, M. Paternostro,  and T. Busch, Physical Review A 84, 063632 (2011).
  • Knap et al. (2012) M. Knap, A. Shashi, Y. Nishida, A. Imambekov, D. A. Abanin,  and E. Demler, Physical Review X 2, 041020 (2012).
  • Parish and Levinsen (2016) M. M. Parish and J. Levinsen, Physical Review B 94, 184303 (2016).
  • Schmidt et al. (2018) R. Schmidt, M. Knap, D. A. Ivanov, J.-S. You, M. Cetina,  and E. Demler, Reports on Progress in Physics 81, 024401 (2018).
  • Liu et al. (2019) W. E. Liu, J. Levinsen,  and M. M. Parish, Physical Review Letters 122, 205301 (2019).
  • Van Houcke et al. (2020) K. Van Houcke, F. Werner,  and R. Rossi, Physical Review B 101, 045134 (2020).
  • Bougas et al. (2020) G. Bougas, S. Mistakidis, G. Alshalan,  and P. Schmelcher, arXiv preprint arXiv:2001.10722  (2020).
  • Bougas et al. (2019) G. Bougas, S. I. Mistakidis,  and P. Schmelcher, Physical Review A 100, 053602 (2019).
  • Budewig et al. (2019) L. Budewig, S. Mistakidis,  and P. Schmelcher, Molecular Physics 117, 2043 (2019).
  • Kehrberger et al. (2018) L. M. A. Kehrberger, V. J. Bolsinger,  and P. Schmelcher, Physical Review A 97, 013606 (2018).
  • Sykes et al. (2014) A. G. Sykes, J. P. Corson, J. P. D’Incao, A. P. Koller, C. H. Greene, A. M. Rey, K. R. A. Hazzard,  and J. L. Bohn, Physical Review A 89, 021601 (2014).
  • Corson and Bohn (2015) J. P. Corson and J. L. Bohn, Physical Review A 91, 013616 (2015).
  • D’Incao et al. (2018) J. P. D’Incao, J. Wang,  and V. E. Colussi, Physical Review Letters 121, 023401 (2018).
  • Huang and Yang (1957) K. Huang and C. N. Yang, Physical Review 105, 767 (1957).
  • Abramowitz and Stegun (1964) M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, ninth Dover printing, tenth GPO printing edition (Dover, New York, 1964).
  • Tan (2008a) S. Tan, Annals of Physics 323, 2952 (2008a).
  • Tan (2008b) S. Tan, Annals of Physics 323, 2987 (2008b).
  • Tan (2008c) S. Tan, Annals of Physics 323, 2971 (2008c).