This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Twisted Fourier transforms on non-Kac compact quantum groups

Sang-Gyun Youn Sang-Gyun Youn, Department of Mathematics Education and NextQuantum, Seoul National University, Gwanak-Ro 1, Gwanak-Gu, Seoul 08826, Republic of Korea [email protected]
Abstract.

We introduce an analytic family of twisted Fourier transforms {p(x)}x,p[1,2)\left\{\mathcal{F}^{(x)}_{p}\right\}_{x\in\mathbb{R},p\in[1,2)} for non-Kac compact quantum groups and establish a sharpened form of the Hausdorff-Young inequality in the range 0x10\leq x\leq 1. As an application, we derive a stronger form of the twisted rapid decay property for polynomially growing non-Kac discrete quantum groups, including the duals of the Drinfeld-Jimbo qq-deformations. Furthermore, we prove that the range 0x10\leq x\leq 1 is both necessary and sufficient for the boundedness of p(x)\mathcal{F}^{(x)}_{p} under the assumption of sub-exponential growth on the dual discrete quantum group. We also show that the range of boundedness of p(x)\mathcal{F}^{(x)}_{p} can be strictly extended beyond [0,1][0,1] for certain non-Kac and non-coamenable free orthogonal quantum groups.

1. Introduction

Abstract harmonic analysis on nonabelian compact groups has a rich history, with a well-established generalization of the Fourier transform [HR63, HR70, Rud90, Fol95, RS00]. Although several formulations exist, they are essentially equivalent from the viewpoint of harmonic analysis. This theory has since been extended into the broader framework of noncommutative harmonic analysis, which encompasses various models of quantum spaces. Notable examples include quantum tori [Ric16, XXX16, XXY18], quantum Euclidean spaces [MSX20, GPJP21, JMPX21, HLW23], group von Neumann algebras [JMP14, JMP18, PRdlS22, CCAP22], and locally compact quantum groups [LWW17, CV22, HWW24].

While substantial progress has been made in settings where the associated noncommutative measure is tracial, we will focus on non-Kac compact quantum groups whose canonical noncommutative measure is non-tracial. This gives rise to fundamentally different analytic behavior compared to the tracial situation. For instance, recent studies have demonstrated that certain analytic results on non-Kac compact quantum groups are in sharp contrast with their classical counterparts [Wan17, BVY21, You22, You24].

Motivated by such contrasts, this paper investigates foundational aspects of harmonic analysis, such as the Fourier transform and the Hausdorff–Young inequality, to understand the fundamental structural origins of such unexpected phenomena. Let us denote by p(0)(f)=f^\mathcal{F}^{(0)}_{p}(f)=\widehat{f} the standard Fourier transform on a compact quantum group.

In Section 3, we introduce an analytic family of twisted Fourier transforms {p(x)}x,p[1,]\left\{\mathcal{F}^{(x)}_{p}\right\}_{x\in\mathbb{R},p\in[1,\infty]} defined by

p(x)(f)=Q(1p12)xf^Q(1p12)x\mathcal{F}^{(x)}_{p}(f)=Q^{-(\frac{1}{p}-\frac{1}{2})x}\widehat{f}Q^{(\frac{1}{p}-\frac{1}{2})x} (1.1)

where the modular operator Q=(Qα)αIrr(𝔾)Q=(Q_{\alpha})_{\alpha\in\text{Irr}(\mathbb{G})} is defined in Subsection 2.1. A central question addressed in this paper is whether the twisted Fourier transform p(x)\mathcal{F}^{(x)}_{p} extends to a bounded map from Lp(𝔾)L^{p}(\mathbb{G}) to p(𝔾^)\ell^{p^{\prime}}(\widehat{\mathbb{G}}) where 𝔾^\widehat{\mathbb{G}} denotes the dual discrete quantum group of 𝔾\mathbb{G}. The main result of this section is the establishment of the following strong Hausdorff-Young inequality (Theorem 3.6) for all 1p<21\leq p<2:

sup0x1Q(1p12)xf^Q(1p12)xp(𝔾^)fLp(𝔾).\displaystyle\sup_{0\leq x\leq 1}\left\|Q^{-(\frac{1}{p}-\frac{1}{2})x}\widehat{f}Q^{(\frac{1}{p}-\frac{1}{2})x}\right\|_{\ell^{p^{\prime}}(\widehat{\mathbb{G}})}\leq\left\|f\right\|_{L^{p}(\mathbb{G})}. (1.2)

In contrast, for p>2p>2, we show that the twisted Fourier transform p(x)\mathcal{F}^{(x)}_{p} extends to a bounded map from Lp(𝔾)L^{p}(\mathbb{G}) to p(𝔾^)\ell^{p^{\prime}}(\widehat{\mathbb{G}}) only when 𝔾\mathbb{G} is finite-dimensional (Proposition 3.3), similarly to the classical situation.

In Section 4, we establish the following dual formulation of the strong Hausdorff-Young inequality (Proposition 4.2) for 1p21\leq p\leq 2:

gLp(𝔾)inf0x1Q(1p12)xg^Q(1p12)xp(𝔾^).\left\|g\right\|_{L^{p^{\prime}}(\mathbb{G})}\leq\inf_{0\leq x\leq 1}\left\|Q^{(\frac{1}{p}-\frac{1}{2})x}\widehat{g}Q^{-(\frac{1}{p}-\frac{1}{2})x}\right\|_{\ell^{p}(\widehat{\mathbb{G}})}. (1.3)

In particular, we demonstrate that the inequality (1.3) for the case p=1p=1 is a strengthened form of the so-called twisted rapid decay property under the assumption of polynomial growth on 𝔾^\widehat{\mathbb{G}} (Corollary 4.5). For example, we establish this strengthened form of the twisted rapid decay property for the duals of Drinfeld-Jimbo qq-deformations.

In Section 5, we investigate whether the range 0x10\leq x\leq 1 is optimal for inequalities (1.2) and (1.3). More precisely, we define

I(𝔾,p)\displaystyle I(\mathbb{G},p) ={x|p(x):Lp(𝔾)p(𝔾^) is bounded}.\displaystyle=\left\{x\in\mathbb{R}~{}\Bigr{|}~{}\mathcal{F}^{(x)}_{p}:L^{p}(\mathbb{G})\rightarrow\ell^{p^{\prime}}(\widehat{\mathbb{G}})\text{ is bounded}\right\}. (1.4)

Note that Theorem 3.6 guarantees that [0,1]I(𝔾,p)[0,1]\subseteq I(\mathbb{G},p) for any compact quantum group 𝔾\mathbb{G} and 1p<21\leq p<2. Subsection 5.1 focuses on non-Kac and coamenable compact quantum groups, and shows that equality [0,1]=I(𝔾,p)[0,1]=I(\mathbb{G},p) holds for all 1p<21\leq p<2 under the assumption of sub-exponential growth on 𝔾^\widehat{\mathbb{G}} (Theorem 5.2). This class includes the Drinfeld-Jimbo qq-deformations GqG_{q}. Subsection 5.2 focuses on non-Kac and non-coamenable free orthogonal quantum groups OF+O_{F}^{+}. Using the recently established Haagerup inequality on OF+O_{F}^{+} [BVY21, You22], we show that the inclusion [0,1]I(OF+,p)[0,1]\subsetneq I(O_{F}^{+},p) is strict for certain non-Kac and non-coamenable free orthogonal quantum groups OF+O_{F}^{+} satisfying a technical assumption Fop6<d1+d1242\left\|F\right\|_{op}^{6}<\frac{d_{1}+\sqrt{d_{1}^{2}-4}}{2} where d1=Tr(FF)d_{1}=\text{Tr}(F^{*}F) (Corollary 5.7). A summary of the main conclusions regarding I(𝔾,p)I(\mathbb{G},p) is presented in the following table:

Kac non-Kac, coamenable non-Kac, non-coamenable
1p<21\leq p<2 I(𝔾,p)=I(\mathbb{G},p)=\mathbb{R} I(Gq,p)=[0,1]I(G_{q},p)=[0,1] I(OF+,p)[0,1]I(O_{F}^{+},p)\supsetneq[0,1]
(Trivial) (Corollary 5.3) (Corollary 5.7)
2<p2<p\leq\infty I(𝔾,p)={,𝔾 is finite-dimensional,𝔾 is infinite-dimensionalI(\mathbb{G},p)=\left\{\begin{array}[]{ll}\mathbb{R}&,~{}\mathbb{G}\text{ is finite-dimensional}\\ \emptyset&,~{}\mathbb{G}\text{ is infinite-dimensional}\end{array}\right. (Proposition 3.3)

2. Preliminaries

2.1. Compact quantum groups

Within the von Neumann algebraic framework, in the sense of [KV00, KV03], a compact quantum group 𝔾\mathbb{G} is given by a triple (L(𝔾),Δ,h)(L^{\infty}(\mathbb{G}),\Delta,h) where

  1. (1)

    L(𝔾)L^{\infty}(\mathbb{G}) is a von Neumann algebra,

  2. (2)

    Δ:L(𝔾)L(𝔾)¯L(𝔾)\Delta:L^{\infty}(\mathbb{G})\rightarrow L^{\infty}(\mathbb{G})\overline{\otimes}L^{\infty}(\mathbb{G}) is a normal unital *-homomorphism satisfying

    (idΔ)Δ=(Δid)Δ,(\text{id}\otimes\Delta)\Delta=(\Delta\otimes\text{id})\Delta, (2.1)
  3. (3)

    hh is a normal faithful state on L(𝔾)L^{\infty}(\mathbb{G}) satisfying

    (idh)Δ=h()1L(𝔾)=(hid)Δ.(\text{id}\otimes h)\Delta=h(\cdot)1_{L^{\infty}(\mathbb{G})}=(h\otimes\text{id})\Delta. (2.2)

    We call hh the Haar state on 𝔾\mathbb{G}.

A finite dimensional unitary representation of 𝔾\mathbb{G} is given by a unitary u=i,j=1nueijuijMnu()L(𝔾)u=\sum_{i,j=1}^{n_{u}}e_{ij}\otimes u_{ij}\in M_{n_{u}}(\mathbb{C})\otimes L^{\infty}(\mathbb{G}) satisfying

Δ(uij)=k=1nuuikukj\Delta(u_{ij})=\sum_{k=1}^{n_{u}}u_{ik}\otimes u_{kj} (2.3)

for all 1i,jnu1\leq i,j\leq n_{u}. In addition, uu is called irreducible if

(T1)u=u(T1)TIdnu.(T\otimes 1)u=u(T\otimes 1)\Rightarrow T\in\mathbb{C}\cdot\text{Id}_{n_{u}}. (2.4)

Finite dimensional unitary representations u,vMn()L(𝔾)u,v\in M_{n}(\mathbb{C})\otimes L^{\infty}(\mathbb{G}) are called unitarily equivalent if there exists an n×nn\times n unitary matrix WW such that

(W1)u=v(W1).(W\otimes 1)u=v(W\otimes 1). (2.5)

We denote by Irr(𝔾)\text{Irr}(\mathbb{G}) the set of all irreducible (finite dimensional) unitary representations of 𝔾\mathbb{G} up to the unitary equivalence.

For each αIrr(𝔾)\alpha\in\text{Irr}(\mathbb{G}), let us denote by uαMnα()L(𝔾)u^{\alpha}\in M_{n_{\alpha}}(\mathbb{C})\otimes L^{\infty}(\mathbb{G}) a representative irreducible unitary representation. The contragredient representation (uα)c=i,j=1nueij(uijα)Mnu()L(𝔾)(u^{\alpha})^{c}=\sum_{i,j=1}^{n_{u}}e_{ij}\otimes(u^{\alpha}_{ij})^{*}\in M_{n_{u}}(\mathbb{C})\otimes L^{\infty}(\mathbb{G}) is not a unitary, but there exists a unique positive invertible matrix QαMnα()Q_{\alpha}\in M_{n_{\alpha}}(\mathbb{C}) such that

(Qα121)(uα)c(Qα121)(Q_{\alpha}^{\frac{1}{2}}\otimes 1)(u^{\alpha})^{c}(Q_{\alpha}^{-\frac{1}{2}}\otimes 1) (2.6)

is a unitary and Tr(Qα)=Tr(Qα1)\text{Tr}(Q_{\alpha})=\text{Tr}(Q_{\alpha}^{-1}). We denote by

dα=Tr(Qα)=Tr(Qα1),d_{\alpha}=\text{Tr}(Q_{\alpha})=\text{Tr}(Q_{\alpha}^{-1}), (2.7)

and call it the quantum dimension of uαu^{\alpha}. We may assume that the matrices QαQ_{\alpha} are diagonal by taking suitable orthonormal bases of nα\mathbb{C}^{n_{\alpha}}. If Qα=IdnαQ_{\alpha}=\text{Id}_{n_{\alpha}} for all αIrr(𝔾)\alpha\in\text{Irr}(\mathbb{G}), then 𝔾\mathbb{G} is called Kac type. This is equivalent to that the Haar state hh is tracial, i.e.

h(ab)=h(ba),a,bL(𝔾).h(ab)=h(ba),~{}a,b\in L^{\infty}(\mathbb{G}). (2.8)

The space of polynomials is defined as

Pol(𝔾)=span{uijα:αIrr(𝔾),1i,jnα},\text{Pol}(\mathbb{G})=\text{span}\left\{u^{\alpha}_{ij}:\alpha\in\text{Irr}(\mathbb{G}),~{}1\leq i,j\leq n_{\alpha}\right\}, (2.9)

and we call uijαu^{\alpha}_{ij} a matrix element. For matrix elements uijαu^{\alpha}_{ij} and uklβu^{\beta}_{kl}, the Schur orthogonality relation states that

h((uklβ)uijα)\displaystyle h\left((u^{\beta}_{kl})^{*}u^{\alpha}_{ij}\right) =δαβδikδjl(Qα)ii1dα\displaystyle=\frac{\delta_{\alpha\beta}\delta_{ik}\delta_{jl}(Q_{\alpha})_{ii}^{-1}}{d_{\alpha}} (2.10)
h(uklβ(uijα))\displaystyle h\left(u^{\beta}_{kl}(u^{\alpha}_{ij})^{*}\right) =δαβδikδjl(Qα)jjdα.\displaystyle=\frac{\delta_{\alpha\beta}\delta_{ik}\delta_{jl}(Q_{\alpha})_{jj}}{d_{\alpha}}. (2.11)

A compact quantum group 𝔾\mathbb{G} is called a compact matrix quantum group if there exists a unitary representation uMn()L(𝔾)u\in M_{n}(\mathbb{C})\otimes L^{\infty}(\mathbb{G}) satisfying that

Pol(𝔾)=span{ui1j1ui2j2uikjk:k,1i,jn}.\text{Pol}(\mathbb{G})=\text{span}\left\{u_{i_{1}j_{1}}u_{i_{2}j_{2}}\cdots u_{i_{k}j_{k}}:k\in\mathbb{N},~{}1\leq i,j\leq n\right\}. (2.12)

If we write V0=1L(𝔾)V_{0}=\mathbb{C}\cdot 1_{L^{\infty}(\mathbb{G})} and Vk=span{ui1j1ui2j2uikjk:1is,jsn}V_{k}=\text{span}\left\{u_{i_{1}j_{1}}u_{i_{2}j_{2}}\cdots u_{i_{k}j_{k}}:~{}1\leq i_{s},j_{s}\leq n\right\} for all kk\in\mathbb{N}, then a natural length function on Irr(𝔾)\text{Irr}(\mathbb{G}) is defined by

|α|=inf{k0:{uijα}1i,jnαVk}.|\alpha|=\inf\left\{k\in\mathbb{N}_{0}:\left\{u^{\alpha}_{ij}\right\}_{1\leq i,j\leq n_{\alpha}}\subseteq V_{k}\right\}. (2.13)

Throughout this paper, we will use the following lemma frequently.

Lemma 2.1.

[KS18, Section 6] Let 𝔾\mathbb{G} be a compact matrix quantum group of non-Kac type and let |||\cdot| be the natural length function on Irr(𝔾)\text{Irr}(\mathbb{G}). Then there exists a sequence (αk)kIrr(𝔾)(\alpha_{k})_{k\in\mathbb{N}}\subseteq\text{Irr}(\mathbb{G}) such that

  • |αk+1|2|αk||\alpha_{k+1}|\leq 2|\alpha_{k}| for all kk\in\mathbb{N},

  • Qα1>1\left\|Q_{\alpha_{1}}\right\|>1,

  • Qαk+1=Qαk2\left\|Q_{\alpha_{k+1}}\right\|=\left\|Q_{\alpha_{k}}\right\|^{2} for all kk\in\mathbb{N}.

For more details of compact quantum groups, we refer the readers to [Wor87b, Wor87a, Tim08, NT13].

2.2. Noncommutative LpL^{p}-spaces

Let us denote by L1(𝔾)L^{1}(\mathbb{G}) the predual of the von Neumann algebra L(𝔾)L^{\infty}(\mathbb{G}). Since hh is faithful, we have a natural embedding ι:L(𝔾)L1(𝔾)\iota:L^{\infty}(\mathbb{G})\hookrightarrow L^{1}(\mathbb{G}) defined by ι(a)=h(a)\iota(a)=h(\cdot~{}a), i.e.

[ι(a)](x)=h(xa),xL(𝔾).[\iota(a)](x)=h(xa),~{}x\in L^{\infty}(\mathbb{G}). (2.14)

This allows us to understand (L(𝔾),L1(𝔾))(L^{\infty}(\mathbb{G}),L^{1}(\mathbb{G})) as a compatible pair of Banach spaces, so we can define the noncommutative LpL^{p}-space (1p)(1\leq p\leq\infty) as the complex interpolation space

Lp(𝔾)=(L(𝔾),L1(𝔾))θL^{p}(\mathbb{G})=(L^{\infty}(\mathbb{G}),L^{1}(\mathbb{G}))_{\theta} (2.15)

for θ=1p\theta=\frac{1}{p}. For any 1p<1\leq p<\infty, the space Pol(𝔾)\text{Pol}(\mathbb{G}) is dense in Lp(𝔾)L^{p}(\mathbb{G}).

From the Tomita-Takesaki theory, there exists a modular automorphism group (σz)z(\sigma_{z})_{z\in\mathbb{C}} on Pol(𝔾)\text{Pol}(\mathbb{G}) satisfying

h(ab)=h(bσi(a)),a,bPol(𝔾).h(ab)=h(b\sigma_{-i}(a)),~{}a,b\in\text{Pol}(\mathbb{G}). (2.16)

Specifically, for any zz\in\mathbb{C}, the modular automorphism σz\sigma_{z} is determined by

σz(uklα)=(Qα)kkiz(Qα)llizuklα\sigma_{z}\left(u^{\alpha}_{kl}\right)=(Q_{\alpha})_{kk}^{iz}(Q_{\alpha})_{ll}^{iz}u^{\alpha}_{kl} (2.17)

for all αIrr(𝔾)\alpha\in\text{Irr}(\mathbb{G}) and 1k,lnα1\leq k,l\leq n_{\alpha}.

For any 1p1\leq p\leq\infty, let us consider the conjugate pp^{\prime} such that 1p+1p=1\frac{1}{p}+\frac{1}{p^{\prime}}=1. Then a natural dual pairing between Lp(𝔾)L^{p^{\prime}}(\mathbb{G}) and Lp(𝔾)L^{p}(\mathbb{G}) is given by

f,gLp(𝔾),Lp(𝔾)=h(σip(f)g).\langle f,g\rangle_{L^{p^{\prime}}(\mathbb{G}),L^{p}(\mathbb{G})}=h\left(\sigma_{\frac{i}{p^{\prime}}}(f)g\right). (2.18)

Combining this with [Wan17, Lemma 3.4. (c)], we obtain

fLp(𝔾)=σip(f)Lp(𝔾)=supgPol(𝔾):gLp(𝔾)1h(fg).\left\|f\right\|_{L^{p^{\prime}}(\mathbb{G})}=\left\|\sigma_{-\frac{i}{p^{\prime}}}(f^{*})\right\|_{L^{p^{\prime}}(\mathbb{G})}=\sup_{g\in\text{Pol}(\mathbb{G}):\left\|g\right\|_{L^{p}(\mathbb{G})}\leq 1}h(f^{*}g). (2.19)

for all fPol(𝔾)f\in\text{Pol}(\mathbb{G}) with 1p1\leq p\leq\infty.

When we understand (Mn(),Tr)(M_{n}(\mathbb{C}),\text{Tr}) as a noncommutative measure space, we denote by SnpS^{p}_{n} the matrix algebra Mn()M_{n}(\mathbb{C}) with the norm structure

ASnp={Tr(|A|p)1p,1p<,Aop,p=.\left\|A\right\|_{S^{p}_{n}}=\left\{\begin{array}[]{cl}\text{Tr}(|A|^{p})^{\frac{1}{p}}&,~{}1\leq p<\infty,\\ \left\|A\right\|_{op}&,~{}p=\infty.\end{array}\right. (2.20)

Let us denote by S={z:0<Re(z)<1}S=\left\{z\in\mathbb{C}:0<\text{Re}(z)<1\right\} and by 𝒞(A)\mathcal{C}(A) the set of all continuous bounded functions f:S¯Mn()f:\overline{S}\rightarrow M_{n}(\mathbb{C}) such that f|S:SMnf|_{S}:S\rightarrow M_{n} is analytic and f(1p)=Af(\frac{1}{p})=A. The finite dimensional Schatten pp-space SnpS^{p}_{n} is the complex interpolation space (Mn,Sn1)θ(M_{n},S^{1}_{n})_{\theta} with θ=1p\theta=\frac{1}{p} in the sense that

ASnp=inff𝒞(A){supsf(is)Mn,supsf(1+is)Sn1}.\left\|A\right\|_{S^{p}_{n}}=\inf_{f\in\mathcal{C}(A)}\left\{\sup_{s\in\mathbb{R}}\left\|f(is)\right\|_{M_{n}},\sup_{s\in\mathbb{R}}\left\|f(1+is)\right\|_{S^{1}_{n}}\right\}. (2.21)

Let us consider the following weighted norm structure

AXn1=Tr(|GxAG1x|),AMn()\left\|A\right\|_{X^{1}_{n}}=\text{Tr}(|G^{x}AG^{1-x}|),~{}A\in M_{n}(\mathbb{C}) (2.22)

with an invertible positive n×nn\times n matrix GG. Then, by definition, the norm structure of the complex interpolation space Xnp=(Mn,Xn1)1pX^{p}_{n}=(M_{n},X^{1}_{n})_{\frac{1}{p}} is given by

AXnp=infg𝒞(A){supsg(is)Mn,supsg(1+is)Xn1}.\displaystyle\left\|A\right\|_{X^{p}_{n}}=\inf_{g\in\mathcal{C}(A)}\left\{\sup_{s\in\mathbb{R}}\left\|g(is)\right\|_{M_{n}},\sup_{s\in\mathbb{R}}\left\|g(1+is)\right\|_{X^{1}_{n}}\right\}. (2.23)

For any g𝒞(A)g\in\mathcal{C}(A), let us consider f(z)=Gzxg(z)Gz(1x)f(z)=G^{zx}g(z)G^{z(1-x)}. This defines an one-to-one correspondence between 𝒞(A)\mathcal{C}(A) and 𝒞(GxpAG1xp)\mathcal{C}(G^{\frac{x}{p}}AG^{\frac{1-x}{p}}) and we have

f(is)Mn=g(is)Mn,\displaystyle\left\|f(is)\right\|_{M_{n}}=\left\|g(is)\right\|_{M_{n}}, (2.24)
f(1+is)Sn1=Gxg(1+is)G1xSn1=g(1+is)Xn1.\displaystyle\left\|f(1+is)\right\|_{S^{1}_{n}}=\left\|G^{x}g(1+is)G^{1-x}\right\|_{S^{1}_{n}}=\left\|g(1+is)\right\|_{X^{1}_{n}}. (2.25)

Thus, we can see that

AXnp\displaystyle\left\|A\right\|_{X^{p}_{n}} =inff𝒞(GxpAG1xp){supsf(is)Mn,supsf(1+is)Sn1}\displaystyle=\inf_{f\in\mathcal{C}(G^{\frac{x}{p}}AG^{\frac{1-x}{p}})}\left\{\sup_{s\in\mathbb{R}}\left\|f(is)\right\|_{M_{n}},\sup_{s\in\mathbb{R}}\left\|f(1+is)\right\|_{S^{1}_{n}}\right\} (2.26)
=GxpAG1xpSnp.\displaystyle=\left\|G^{\frac{x}{p}}AG^{\frac{1-x}{p}}\right\|_{S^{p}_{n}}. (2.27)

For more general discussions, see Section 7 and Theorem 11.1 in [Kos84].

2.3. Discrete quantum group and Fourier transform

In view of the celebrated Pontryagin duality, each compact quantum group 𝔾\mathbb{G} admits a (dual) discrete quantum group 𝔾^\widehat{\mathbb{G}} whose associated function space is given by a direct sum of matrix algebras

(𝔾^)=αIrr(𝔾)Mnα().\ell^{\infty}(\widehat{\mathbb{G}})=\ell^{\infty}-\bigoplus_{\alpha\in\text{Irr}(\mathbb{G})}M_{n_{\alpha}}(\mathbb{C}). (2.28)

For p=p=\infty, we simply write Mn=SnM_{n}=S^{\infty}_{n}.

For any A=(A(α))αIrr(𝔾)(𝔾^)A=(A(\alpha))_{\alpha\in\text{Irr}(\mathbb{G})}\in\ell^{\infty}(\widehat{\mathbb{G}}), we denote the support of AA by

supp(A)={αIrr(𝔾):A(α)0},\text{supp}(A)=\left\{\alpha\in\text{Irr}(\mathbb{G}):A(\alpha)\neq 0\right\}, (2.29)

and define the following subspace

c00(𝔾^)={A(𝔾^):supp(A) is finite}.c_{00}(\widehat{\mathbb{G}})=\left\{A\in\ell^{\infty}(\widehat{\mathbb{G}}):\text{supp}(A)\text{ is finite}\right\}. (2.30)

The dual Haar weight h^:(𝔾^)+[0,]\widehat{h}:\ell^{\infty}(\widehat{\mathbb{G}})_{+}\rightarrow[0,\infty] is given by

h^(A)=αIrr(𝔾)dαTr(A(α)Qα)\widehat{h}(A)=\sum_{\alpha\in\text{Irr}(\mathbb{G})}d_{\alpha}\text{Tr}(A(\alpha)Q_{\alpha}) (2.31)

for all A=(A(α))αIrr(𝔾)(𝔾^)+A=(A(\alpha))_{\alpha\in\text{Irr}(\mathbb{G})}\in\ell^{\infty}(\widehat{\mathbb{G}})_{+}.

Let us denote by Q=(Qα)αIrr(𝔾)αIrr(𝔾)Mnα()Q=(Q_{\alpha})_{\alpha\in\text{Irr}(\mathbb{G})}\in\displaystyle\prod_{\alpha\in\text{Irr}(\mathbb{G})}M_{n_{\alpha}}(\mathbb{C}). The non-commutative p\ell^{p}-space (1p<1\leq p<\infty) on 𝔾^\widehat{\mathbb{G}} is explicitly defined as

p(𝔾^)={A(𝔾^):h^(|AQ1p|p)<}\ell^{p}(\widehat{\mathbb{G}})=\left\{A\in\ell^{\infty}(\widehat{\mathbb{G}}):\widehat{h}\left(\left|AQ^{\frac{1}{p}}\right|^{p}\right)<\infty\right\} (2.32)

and the p\ell^{p}-norm of A=(A(α))αIrr(𝔾)p(𝔾^)A=(A(\alpha))_{\alpha\in\text{Irr}(\mathbb{G})}\in\ell^{p}(\widehat{\mathbb{G}}) is explicitly given by

Ap(𝔾^)={(αIrr(𝔾)dαA(α)Qα1pSnαpp)1p,1p<,supαIrr(𝔾)A(α)op,p=.\displaystyle\left\|A\right\|_{\ell^{p}(\widehat{\mathbb{G}})}=\left\{\begin{array}[]{lll}\left(\sum_{\alpha\in\text{Irr}(\mathbb{G})}d_{\alpha}\left\|A(\alpha)Q_{\alpha}^{\frac{1}{p}}\right\|_{S^{p}_{n_{\alpha}}}^{p}\right)^{\frac{1}{p}}&,~{}1\leq p<\infty,\\ \sup_{\alpha\in\text{Irr}(\mathbb{G})}\left\|A(\alpha)\right\|_{op}&,~{}p=\infty.\end{array}\right. (2.35)

Similarly as in Subsection 2.2, a natural dual pairing between p(𝔾^)\ell^{p}(\widehat{\mathbb{G}}) and p(𝔾^)\ell^{p^{\prime}}(\widehat{\mathbb{G}}) is given by

B,Ap(𝔾^),p(𝔾^)=h^(σip(B)A),\displaystyle\langle B,A\rangle_{\ell^{p^{\prime}}(\widehat{\mathbb{G}}),\ell^{p}(\widehat{\mathbb{G}})}=\widehat{h}\left(\sigma_{\frac{i}{p^{\prime}}}(B)A\right), (2.36)

and we have

Bp(𝔾)=σip(B)p(𝔾^)=supAc00(𝔾^):Ap(𝔾^)1h^(BA).\displaystyle\left\|B\right\|_{\ell^{p^{\prime}}(\mathbb{G})}=\left\|\sigma_{-\frac{i}{p^{\prime}}}(B^{*})\right\|_{\ell^{p^{\prime}}(\widehat{\mathbb{G}})}=\sup_{A\in c_{00}(\widehat{\mathbb{G}}):\left\|A\right\|_{\ell^{p}(\widehat{\mathbb{G}})}\leq 1}\widehat{h}(B^{*}A). (2.37)

For any φL1(𝔾)\varphi\in L^{1}(\mathbb{G}), the Fourier coefficient at αIrr(𝔾)\alpha\in\text{Irr}(\mathbb{G}) is defined by

φ^(α)=(idφ)((uα)),\widehat{\varphi}(\alpha)=(\text{id}\otimes\varphi)((u^{\alpha})^{*}), (2.38)

and call φ^=(φ^(α))αIrr(𝔾)\widehat{\varphi}=(\widehat{\varphi}(\alpha))_{\alpha\in\text{Irr}(\mathbb{G})} the Fourier transform of φ\varphi. We call

αIrr(𝔾)i,j=1nαdα(φ^(α)Qα)ijujiα\sum_{\alpha\in\text{Irr}(\mathbb{G})}\sum_{i,j=1}^{n_{\alpha}}d_{\alpha}(\widehat{\varphi}(\alpha)Q_{\alpha})_{ij}u^{\alpha}_{ji} (2.39)

the Fourier series of φL1(𝔾)\varphi\in L^{1}(\mathbb{G}), and write

φαIrr(𝔾)i,j=1nαdα(φ^(α)Qα)ijujiα.\varphi\sim\sum_{\alpha\in\text{Irr}(\mathbb{G})}\sum_{i,j=1}^{n_{\alpha}}d_{\alpha}(\widehat{\varphi}(\alpha)Q_{\alpha})_{ij}u^{\alpha}_{ji}. (2.40)

In particular, for any fPol(𝔾)L1(𝔾)f\in\text{Pol}(\mathbb{G})\subseteq L^{1}(\mathbb{G}), we have

f=αIrr(𝔾)i,j=1nαdα(f^(α)Qα)ijujiα.f=\sum_{\alpha\in\text{Irr}(\mathbb{G})}\sum_{i,j=1}^{n_{\alpha}}d_{\alpha}(\widehat{f}(\alpha)Q_{\alpha})_{ij}u^{\alpha}_{ji}. (2.41)

3. Twisted Fourier transforms

In this section, let 𝔾\mathbb{G} be a general compact quantum group. The main goal is to study the linear maps p(x)\mathcal{F}^{(x)}_{p} defined below.

Definition 3.1.

For any xx\in\mathbb{R} and p[1,]p\in[1,\infty], let us consider a linear map p(x):Pol(𝔾)c00(𝔾^)\mathcal{F}^{(x)}_{p}:\text{Pol}(\mathbb{G})\rightarrow c_{00}(\widehat{\mathbb{G}}) given by

p(x)(f)=Q(1p12)xf^Q(1p12)x,fPol(𝔾).\mathcal{F}^{(x)}_{p}(f)=Q^{-(\frac{1}{p}-\frac{1}{2})x}\widehat{f}Q^{(\frac{1}{p}-\frac{1}{2})x},~{}f\in\text{Pol}(\mathbb{G}). (3.1)

We call these maps p(x)\mathcal{F}^{(x)}_{p} twisted Fourier transforms on 𝔾\mathbb{G}. In particular, we call p(0):ff^\mathcal{F}^{(0)}_{p}:f\mapsto\widehat{f} the standard Fourier transform.

In this paper, we will focus on the question of whether the twisted Fourier transform p(x)\mathcal{F}^{(x)}_{p} extends to a bounded map

p(x):Lp(𝔾)p(𝔾^).\mathcal{F}^{(x)}_{p}:L^{p}(\mathbb{G})\rightarrow\ell^{p^{\prime}}(\widehat{\mathbb{G}}). (3.2)

In other words, we study the Hausdorff-Young inequalities up to constants for the twisted Fourier transforms. Let us define

I(𝔾,p)={x:p(x):Lp(𝔾)p(𝔾^) is bounded}.I(\mathbb{G},p)=\left\{x\in\mathbb{R}:\mathcal{F}^{(x)}_{p}:L^{p}(\mathbb{G})\rightarrow\ell^{p^{\prime}}(\widehat{\mathbb{G}})\text{ is bounded}\right\}. (3.3)

3.1. Unboundedness for the cases p>2p>2

As in the classical situation, for the cases p>2p>2, let us demonstrate that there is no universal constant K=K(𝔾,p,x)K=K(\mathbb{G},p,x) such that

p(x)(f)p(𝔾^)KfLp(𝔾),fLp(𝔾),\left\|\mathcal{F}^{(x)}_{p}(f)\right\|_{\ell^{p^{\prime}}(\widehat{\mathbb{G}})}\leq K\left\|f\right\|_{L^{p}(\mathbb{G})},~{}f\in L^{p}(\mathbb{G}), (3.4)

i.e. I(𝔾,p)=I(\mathbb{G},p)=\emptyset if 𝔾\mathbb{G} is infinite-dimensional. To prove this, let us begin with the following Lemma, which will be used frequently throughout this paper.

Lemma 3.2.

Let τα\tau_{\alpha} be a bijective function on {1,2,,nα}\left\{1,2,\cdots,n_{\alpha}\right\} for each αIrr(𝔾)\alpha\in\text{Irr}(\mathbb{G}), and consider

f=αIrr(𝔾)i=1nαyiαuiτα(i)αPol(𝔾).f=\sum_{\alpha\in\text{Irr}(\mathbb{G})}\sum_{i=1}^{n_{\alpha}}y^{\alpha}_{i}u^{\alpha}_{i\tau_{\alpha}(i)}\in\text{Pol}(\mathbb{G}). (3.5)

Then, for p=1p=1, we have

1(x)(f)(𝔾^)=supαIrr(𝔾)sup1inα[(Qα)τα(i)τα(i)1(Qα)ii]x2(Qα)ii1dα|yiα|\left\|\mathcal{F}^{(x)}_{1}(f)\right\|_{\ell^{\infty}(\widehat{\mathbb{G}})}=\sup_{\alpha\in\text{Irr}(\mathbb{G})}\sup_{1\leq i\leq n_{\alpha}}\left[(Q_{\alpha})_{\tau_{\alpha}(i)\tau_{\alpha}(i)}^{-1}(Q_{\alpha})_{ii}\right]^{\frac{x}{2}}\cdot\frac{(Q_{\alpha})_{ii}^{-1}}{d_{\alpha}}|y^{\alpha}_{i}| (3.6)

and, for any 1<p1<p\leq\infty, we have

p(x)(f)p(𝔾^)\displaystyle\left\|\mathcal{F}^{(x)}_{p}(f)\right\|_{\ell^{p^{\prime}}(\widehat{\mathbb{G}})} (3.7)
=(αIrr(𝔾)i=1nα[(Qα)τα(i)τα(i)1(Qα)ii](p21)x[(Qα)ii1dα]p1|yiα|p)1p.\displaystyle=\left(\sum_{\alpha\in\text{Irr}(\mathbb{G})}\sum_{i=1}^{n_{\alpha}}\left[(Q_{\alpha})_{\tau_{\alpha}(i)\tau_{\alpha}(i)}^{-1}(Q_{\alpha})_{ii}\right]^{(\frac{p^{\prime}}{2}-1)x}\left[\frac{(Q_{\alpha})_{ii}^{-1}}{d_{\alpha}}\right]^{p^{\prime}-1}\left|y^{\alpha}_{i}\right|^{p^{\prime}}\right)^{\frac{1}{p^{\prime}}}. (3.8)

In particular, we have

p(x)(uijα)p(𝔾^)=[(Qα)jj1(Qα)ii](1p12)x((Qα)ii1dα)1p\displaystyle\left\|\mathcal{F}^{(x)}_{p}(u^{\alpha}_{ij})\right\|_{\ell^{p^{\prime}}(\widehat{\mathbb{G}})}=[(Q_{\alpha})_{jj}^{-1}(Q_{\alpha})_{ii}]^{(\frac{1}{p}-\frac{1}{2})x}\cdot\left(\frac{(Q_{\alpha})_{ii}^{-1}}{d_{\alpha}}\right)^{\frac{1}{p}} (3.9)

for any matrix element uijαu^{\alpha}_{ij} and 1p1\leq p\leq\infty.

Proof.

Note that the Fourier transform of f=αIrr(𝔾)i=1nαyiαuiτα(i)αPol(𝔾)f=\displaystyle\sum_{\alpha\in\text{Irr}(\mathbb{G})}\sum_{i=1}^{n_{\alpha}}y^{\alpha}_{i}u^{\alpha}_{i\tau_{\alpha}(i)}\in\text{Pol}(\mathbb{G}) is given by

f^=αIrr(𝔾)i=1nαyiα(Qα)ii1dαEτα(i)iα,\widehat{f}=\bigoplus_{\alpha\in\text{Irr}(\mathbb{G})}\sum_{i=1}^{n_{\alpha}}\frac{y^{\alpha}_{i}(Q_{\alpha})_{ii}^{-1}}{d_{\alpha}}E^{\alpha}_{\tau_{\alpha}(i)i}, (3.10)

so the twisted Fourier transform is given by

p(x)(f)=Q(1p12)xf^Q(1p12)x\displaystyle\mathcal{F}^{(x)}_{p}(f)=Q^{-(\frac{1}{p}-\frac{1}{2})x}\widehat{f}Q^{(\frac{1}{p}-\frac{1}{2})x} (3.11)
=αIrr(𝔾)i=1nα(Qα)τα(i)τα(i)(121p)x(Qα)ii(121p)xyiα(Qα)ii1dαEτα(i)iα.\displaystyle=\bigoplus_{\alpha\in\text{Irr}(\mathbb{G})}\sum_{i=1}^{n_{\alpha}}(Q_{\alpha})_{\tau_{\alpha}(i)\tau_{\alpha}(i)}^{-(\frac{1}{2}-\frac{1}{p^{\prime}})x}(Q_{\alpha})_{ii}^{(\frac{1}{2}-\frac{1}{p^{\prime}})x}\cdot\frac{y^{\alpha}_{i}(Q_{\alpha})_{ii}^{-1}}{d_{\alpha}}E^{\alpha}_{\tau_{\alpha}(i)i}. (3.12)

An important advantage from bijectivity of τα\tau_{\alpha} is the following identity:

|i=1nα(Qα)τα(i)τα(i)(121p)x(Qα)ii(121p)xyiα(Qα)ii1dαEτα(i)iαQα1p|\displaystyle\left|\sum_{i=1}^{n_{\alpha}}(Q_{\alpha})_{\tau_{\alpha}(i)\tau_{\alpha}(i)}^{-(\frac{1}{2}-\frac{1}{p^{\prime}})x}(Q_{\alpha})_{ii}^{(\frac{1}{2}-\frac{1}{p^{\prime}})x}\cdot\frac{y^{\alpha}_{i}(Q_{\alpha})_{ii}^{-1}}{d_{\alpha}}E^{\alpha}_{\tau_{\alpha}(i)i}Q_{\alpha}^{\frac{1}{p^{\prime}}}\right| (3.13)
=(i=1nα(Qα)τα(i)τα(i)(12p)x(Qα)ii(12p)x|yiα|2(Qα)ii2dα2Eiiα(Qα)ii2p)12\displaystyle=\left(\sum_{i=1}^{n_{\alpha}}(Q_{\alpha})_{\tau_{\alpha}(i)\tau_{\alpha}(i)}^{-(1-\frac{2}{p^{\prime}})x}(Q_{\alpha})_{ii}^{(1-\frac{2}{p^{\prime}})x}\frac{|y^{\alpha}_{i}|^{2}(Q_{\alpha})_{ii}^{-2}}{d_{\alpha}^{2}}E^{\alpha}_{ii}\cdot(Q_{\alpha})_{ii}^{\frac{2}{p^{\prime}}}\right)^{\frac{1}{2}} (3.14)
=i=1nα(Qα)τα(i)τα(i)(121p)x(Qα)ii(121p)x|yiα|(Qα)ii1+1pdαEiiα\displaystyle=\sum_{i=1}^{n_{\alpha}}(Q_{\alpha})_{\tau_{\alpha}(i)\tau_{\alpha}(i)}^{-(\frac{1}{2}-\frac{1}{p^{\prime}})x}(Q_{\alpha})_{ii}^{(\frac{1}{2}-\frac{1}{p^{\prime}})x}\frac{|y^{\alpha}_{i}|(Q_{\alpha})_{ii}^{-1+\frac{1}{p^{\prime}}}}{d_{\alpha}}E^{\alpha}_{ii} (3.15)

Thus, it is straightforward to see that

1(x)(f)(𝔾^)=supαIrr(𝔾)sup1inα[(Qα)τα(i)τα(i)1(Qα)ii]x2(Qα)ii1dα|yiα|\left\|\mathcal{F}^{(x)}_{1}(f)\right\|_{\ell^{\infty}(\widehat{\mathbb{G}})}=\sup_{\alpha\in\text{Irr}(\mathbb{G})}\sup_{1\leq i\leq n_{\alpha}}\left[(Q_{\alpha})_{\tau_{\alpha}(i)\tau_{\alpha}(i)}^{-1}(Q_{\alpha})_{ii}\right]^{\frac{x}{2}}\cdot\frac{(Q_{\alpha})_{ii}^{-1}}{d_{\alpha}}|y^{\alpha}_{i}| (3.16)

and, for any 1<p1<p\leq\infty, the pp^{\prime}-norm of p(x)(f)\mathcal{F}^{(x)}_{p}(f) is calculated as

(αIrr(𝔾)i=1nα[(Qα)τα(i)τα(i)1(Qα)ii](p21)x[(Qα)ii1dα]p1|yiα|p)1p.\displaystyle\left(\sum_{\alpha\in\text{Irr}(\mathbb{G})}\sum_{i=1}^{n_{\alpha}}\left[(Q_{\alpha})_{\tau_{\alpha}(i)\tau_{\alpha}(i)}^{-1}(Q_{\alpha})_{ii}\right]^{(\frac{p^{\prime}}{2}-1)x}\left[\frac{(Q_{\alpha})_{ii}^{-1}}{d_{\alpha}}\right]^{p^{\prime}-1}\left|y^{\alpha}_{i}\right|^{p^{\prime}}\right)^{\frac{1}{p^{\prime}}}. (3.17)

Applying the above Lemma 3.2, the boundedness of p(x)\mathcal{F}^{(x)}_{p} with p>2p>2 is completely answered in the following proposition.

Proposition 3.3.

For any p(2,]p\in(2,\infty], we have

I(𝔾,p)={,if 𝔾 is finite-dimensional,if 𝔾 is infinite-dimensional.I(\mathbb{G},p)=\left\{\begin{array}[]{ll}\mathbb{R}&,~{}\text{if }\mathbb{G}\text{ is finite-dimensional}\\ \emptyset&,~{}\text{if }\mathbb{G}\text{ is infinite-dimensional}\end{array}\right.. (3.18)
Proof.

It is clear that I(𝔾,p)=I(\mathbb{G},p)=\mathbb{R} if 𝔾\mathbb{G} is finite-dimensional, so let us suppose that 𝔾\mathbb{G} is infinite-dimensional and consider the following two situations: (1) 𝔾\mathbb{G} is of Kac type and (2) 𝔾\mathbb{G} is of non-Kac type.

(1) Let us suppose that 𝔾\mathbb{G} is of Kac type and p2p\geq 2. Then the Fourier transform fPol(𝔾)f^c00(𝔾^)f\in\text{Pol}(\mathbb{G})\mapsto\widehat{f}\in c_{00}(\widehat{\mathbb{G}}) extends to a bounded linear map from Lp(𝔾)L^{p}(\mathbb{G}) into p(𝔾^)\ell^{p^{\prime}}(\widehat{\mathbb{G}}) if and only if 𝔾\mathbb{G} is finite-dimensional by [You18, Subsection 3.5] whose arguments rely essentially on the theory of random Fourier series.

(2) Now, let us suppose that 𝔾\mathbb{G} is of non-Kac type. Note that it is enough to take indices i=i(α)i=i(\alpha) and j=j(α)j=j(\alpha) such that

supαIrr(𝔾)p(x)(uijα)p(𝔾^)uijαLp(𝔾)=.\sup_{\alpha\in\text{Irr}(\mathbb{G})}\frac{\left\|\mathcal{F}^{(x)}_{p}(u^{\alpha}_{ij})\right\|_{\ell^{p^{\prime}}(\widehat{\mathbb{G}})}}{\left\|u^{\alpha}_{ij}\right\|_{L^{p}(\mathbb{G})}}=\infty. (3.19)

In this case, the numerator is given by [(Qα)jj(Qα)ii1](121p)x((Qα)ii1dα)1p[(Q_{\alpha})_{jj}(Q_{\alpha})_{ii}^{-1}]^{(\frac{1}{2}-\frac{1}{p})x}\cdot\left(\frac{(Q_{\alpha})_{ii}^{-1}}{d_{\alpha}}\right)^{\frac{1}{p}} by Lemma 3.2, and we have

uijαLp(𝔾)uijαL2(𝔾)2puijαL(𝔾)12p=((Qα)ii1dα)1puijαL(𝔾)12p\left\|u^{\alpha}_{ij}\right\|_{L^{p}(\mathbb{G})}\leq\left\|u^{\alpha}_{ij}\right\|_{L^{2}(\mathbb{G})}^{\frac{2}{p}}\cdot\left\|u^{\alpha}_{ij}\right\|_{L^{\infty}(\mathbb{G})}^{1-\frac{2}{p}}=\left(\frac{(Q_{\alpha})_{ii}^{-1}}{d_{\alpha}}\right)^{\frac{1}{p}}\cdot\left\|u^{\alpha}_{ij}\right\|_{L^{\infty}(\mathbb{G})}^{1-\frac{2}{p}} (3.20)

since 2p2+12p=1p+0=1p\frac{\frac{2}{p}}{2}+\frac{1-\frac{2}{p}}{\infty}=\frac{1}{p}+0=\frac{1}{p}. Combining these observations, it is enough to prove

supαIrr(𝔾)[(Qα)jj(Qα)ii1](121p)xuijαL(𝔾)12p=.\sup_{\alpha\in\text{Irr}(\mathbb{G})}\frac{[(Q_{\alpha})_{jj}(Q_{\alpha})_{ii}^{-1}]^{(\frac{1}{2}-\frac{1}{p})x}}{\left\|u^{\alpha}_{ij}\right\|_{L^{\infty}(\mathbb{G})}^{1-\frac{2}{p}}}=\infty. (3.21)

Let us divide our discussions into the following two cases: (a) x>0x>0 and (b) x0x\leq 0. For the case (a), let us take the indices i=i(α)i=i(\alpha) and j=j(α)j=j(\alpha) such that (Qα)jj=Qαop(Q_{\alpha})_{jj}=\left\|Q_{\alpha}\right\|_{op} and (Qα)ii1=Qα1op(Q_{\alpha})_{ii}^{-1}=\left\|Q_{\alpha}^{-1}\right\|_{op}. Then we obtain

supαIrr(𝔾)[(Qα)jj(Qα)ii1](121p)xuijαL(𝔾)12psupαIrr(𝔾)[QαopQα1op](121p)x1=\displaystyle\sup_{\alpha\in\text{Irr}(\mathbb{G})}\frac{[(Q_{\alpha})_{jj}(Q_{\alpha})_{ii}^{-1}]^{(\frac{1}{2}-\frac{1}{p})x}}{\left\|u^{\alpha}_{ij}\right\|_{L^{\infty}(\mathbb{G})}^{1-\frac{2}{p}}}\geq\sup_{\alpha\in\text{Irr}(\mathbb{G})}\frac{[\left\|Q_{\alpha}\right\|_{op}\left\|Q_{\alpha}^{-1}\right\|_{op}]^{(\frac{1}{2}-\frac{1}{p})x}}{1}=\infty (3.22)

by Lemma 2.1. For the other case (b), let us take the indices i=i(α)i=i(\alpha) and j=j(α)j=j(\alpha) such that (Qα)jj1=Qα1op(Q_{\alpha})_{jj}^{-1}=\left\|Q_{\alpha}^{-1}\right\|_{op} and (Qα)ii=Qαop(Q_{\alpha})_{ii}=\left\|Q_{\alpha}\right\|_{op}. In this case, note that we have

uijαL(𝔾)=(uijα)L(𝔾)(Qα)ii12(Qα)jj12=[QαopQα1op]12\left\|u^{\alpha}_{ij}\right\|_{L^{\infty}(\mathbb{G})}=\left\|(u^{\alpha}_{ij})^{*}\right\|_{L^{\infty}(\mathbb{G})}\leq(Q_{\alpha})_{ii}^{-\frac{1}{2}}(Q_{\alpha})_{jj}^{\frac{1}{2}}=[\left\|Q_{\alpha}\right\|_{op}\left\|Q_{\alpha}^{-1}\right\|_{op}]^{-\frac{1}{2}} (3.23)

since (Qα121)(uα)c(Qα121)(Q_{\alpha}^{\frac{1}{2}}\otimes 1)(u^{\alpha})^{c}(Q_{\alpha}^{-\frac{1}{2}}\otimes 1) is a unitary. Thus, we obtain

supαIrr(𝔾)[(Qα)jj1(Qα)ii](121p)(x)uijαL(𝔾)12p\displaystyle\sup_{\alpha\in\text{Irr}(\mathbb{G})}\frac{[(Q_{\alpha})_{jj}^{-1}(Q_{\alpha})_{ii}]^{(\frac{1}{2}-\frac{1}{p})(-x)}}{\left\|u^{\alpha}_{ij}\right\|_{L^{\infty}(\mathbb{G})}^{1-\frac{2}{p}}} supαIrr(𝔾)[Qα1opQαop](121p)(x)[QαopQα1op](121p)\displaystyle\geq\sup_{\alpha\in\text{Irr}(\mathbb{G})}\frac{[\left\|Q_{\alpha}^{-1}\right\|_{op}\left\|Q_{\alpha}\right\|_{op}]^{(\frac{1}{2}-\frac{1}{p})(-x)}}{[\left\|Q_{\alpha}\right\|_{op}\left\|Q_{\alpha}^{-1}\right\|_{op}]^{-(\frac{1}{2}-\frac{1}{p})}} (3.24)
=\displaystyle= supαIrr(𝔾)[QαopQα1op](121p)(1x)=\displaystyle\sup_{\alpha\in\text{Irr}(\mathbb{G})}[\left\|Q_{\alpha}\right\|_{op}\left\|Q_{\alpha}^{-1}\right\|_{op}]^{(\frac{1}{2}-\frac{1}{p})(1-x)}=\infty (3.25)

again by Lemma 2.1.

3.2. Boundedness for the cases 1p<21\leq p<2 and 0x10\leq x\leq 1

In this Subsection, we will focus on the cases 1p<21\leq p<2. If 𝔾\mathbb{G} is of Kac type, then we have p(x)=p(0)\mathcal{F}^{(x)}_{p}=\mathcal{F}^{(0)}_{p} for all xx\in\mathbb{R}, so we obtain =I(𝔾,p)\mathbb{R}=I(\mathbb{G},p) for all 1p<21\leq p<2 thanks to the standard Hausdorff-Young inequality.

However, for any non-Kac compact quantum group 𝔾\mathbb{G}, the twisted Fourier transforms p(x)\mathcal{F}^{(x)}_{p} and p(y)\mathcal{F}^{(y)}_{p} (xyx\neq y) are not comparable to each other in the following sense.

Proposition 3.4.

Let 𝔾\mathbb{G} be a non-Kac compact quantum group, and fix p[1,2)p\in[1,2) and x,yx,y\in\mathbb{R}. If we suppose that there exists a universal constant K=K(𝔾,p,x,y)>0K=K(\mathbb{G},p,x,y)>0 such that

p(x)(f)p(𝔾^)Kp(y)(f)p(𝔾^)\left\|\mathcal{F}^{(x)}_{p}(f)\right\|_{\ell^{p^{\prime}}(\widehat{\mathbb{G}})}\leq K\left\|\mathcal{F}^{(y)}_{p}(f)\right\|_{\ell^{p^{\prime}}(\widehat{\mathbb{G}})} (3.26)

for all fPol(𝔾)f\in\text{Pol}(\mathbb{G}), then x=yx=y holds.

Proof.

Note that Lemma 3.2 implies

p(x)(uijα)p(𝔾^)p(y)(uijα)p(𝔾^)=[(Qα)ii(Qα)jj1](1p12)(xy),\frac{\left\|\mathcal{F}^{(x)}_{p}(u^{\alpha}_{ij})\right\|_{\ell^{p^{\prime}}(\widehat{\mathbb{G}})}}{\left\|\mathcal{F}^{(y)}_{p}(u^{\alpha}_{ij})\right\|_{\ell^{p^{\prime}}(\widehat{\mathbb{G}})}}=\left[(Q_{\alpha})_{ii}(Q_{\alpha})_{jj}^{-1}\right]^{(\frac{1}{p}-\frac{1}{2})(x-y)}, (3.27)

for any matrix elements uijαu^{\alpha}_{ij}. From now, let us assume xyx\neq y.

  • If x>yx>y, let us take indices i=i(α),j=j(α)i=i(\alpha),j=j(\alpha) such that (Qα)ii=Qαop(Q_{\alpha})_{ii}=\left\|Q_{\alpha}\right\|_{op} and (Qα)jj1=Qα1op(Q_{\alpha})_{jj}^{-1}=\left\|Q_{\alpha}^{-1}\right\|_{op}.

  • If x<yx<y, let us take indices i=i(α),j=j(α)i=i(\alpha),j=j(\alpha) such that (Qα1)ii=Qα1op(Q_{\alpha}^{-1})_{ii}=\left\|Q_{\alpha}^{-1}\right\|_{op} and (Qα)jj=Qαop(Q_{\alpha})_{jj}=\left\|Q_{\alpha}\right\|_{op}.

Then, in both cases, we obtain

p(x)(uijα)p(𝔾^)p(y)(uijα)p(𝔾^)=[QαopQα1op](1p12)|xy|\frac{\left\|\mathcal{F}^{(x)}_{p}(u^{\alpha}_{ij})\right\|_{\ell^{p^{\prime}}(\widehat{\mathbb{G}})}}{\left\|\mathcal{F}^{(y)}_{p}(u^{\alpha}_{ij})\right\|_{\ell^{p^{\prime}}(\widehat{\mathbb{G}})}}=\left[\left\|Q_{\alpha}\right\|_{op}\left\|Q_{\alpha}^{-1}\right\|_{op}\right]^{(\frac{1}{p}-\frac{1}{2})\left|x-y\right|} (3.28)

for all αIrr(𝔾)\alpha\in\text{Irr}(\mathbb{G}) by Lemma 3.2, so we can conclude that

supfLp(𝔾){0}p(x)(f)p(𝔾^)p(y)(f)p(𝔾^)[supαIrr(𝔾)QαopQα1op](1p12)|xy|=.\sup_{f\in L^{p}(\mathbb{G})\setminus\left\{0\right\}}\frac{\left\|\mathcal{F}^{(x)}_{p}(f)\right\|_{\ell^{p^{\prime}}(\widehat{\mathbb{G}})}}{\left\|\mathcal{F}^{(y)}_{p}(f)\right\|_{\ell^{p^{\prime}}(\widehat{\mathbb{G}})}}\geq\left[\sup_{\alpha\in\text{Irr}(\mathbb{G})}\left\|Q_{\alpha}\right\|_{op}\left\|Q_{\alpha}^{-1}\right\|_{op}\right]^{(\frac{1}{p}-\frac{1}{2})\left|x-y\right|}=\infty. (3.29)

The last equality is thanks to Lemma 2.1.

The main result of this Section is that [0,1]I(𝔾,p)[0,1]\subseteq I(\mathbb{G},p) for all 1p<21\leq p<2. Let us begin with the case p=1p=1 in the following theorem.

Theorem 3.5.

Let 𝔾\mathbb{G} be a general compact quantum group. For any φL1(𝔾)\varphi\in L^{1}(\mathbb{G}), we have

sup0x1Qx2φ^Qx2(𝔾^)φL1(𝔾).\sup_{0\leq x\leq 1}\left\|Q^{-\frac{x}{2}}\widehat{\varphi}Q^{\frac{x}{2}}\right\|_{\ell^{\infty}(\widehat{\mathbb{G}})}\leq\left\|\varphi\right\|_{L^{1}(\mathbb{G})}. (3.30)

In particular, we have [0,1]I(𝔾,1)[0,1]\subseteq I(\mathbb{G},1).

Proof.

Note that the inequality (3.30) for the case x=0x=0 is trivial, so let us focus on the other extremal case x=1x=1 as the first step. Recall that

  • (Qα121)(uα)c(Qα121)(Q_{\alpha}^{\frac{1}{2}}\otimes 1)(u^{\alpha})^{c}(Q_{\alpha}^{-\frac{1}{2}}\otimes 1) is unitary for any αIrr(𝔾)\alpha\in\text{Irr}(\mathbb{G}),

  • φ:L(𝔾)\varphi:L^{\infty}(\mathbb{G})\rightarrow\mathbb{C} is completely bounded with φcb=φL1(𝔾)\left\|\varphi\right\|_{cb}=\left\|\varphi\right\|_{L^{1}(\mathbb{G})}.

Thus, we have

Qα12(idφ)((uα)c)Qα12Mnα\displaystyle\left\|Q_{\alpha}^{\frac{1}{2}}(\text{id}\otimes\varphi)\left((u^{\alpha})^{c}\right)Q_{\alpha}^{-\frac{1}{2}}\right\|_{M_{n_{\alpha}}} (3.31)
=(idφ)((Qα121)(uα)c(Qα121))Mnα\displaystyle=\left\|(\text{id}\otimes\varphi)\left((Q_{\alpha}^{\frac{1}{2}}\otimes 1)(u^{\alpha})^{c}(Q_{\alpha}^{-\frac{1}{2}}\otimes 1)\right)\right\|_{M_{n_{\alpha}}} (3.32)
φcb(Qα121)(uα)c(Qα121)MnαminL(𝔾)=φL1(𝔾).\displaystyle\leq\left\|\varphi\right\|_{cb}\cdot\left\|(Q_{\alpha}^{\frac{1}{2}}\otimes 1)(u^{\alpha})^{c}(Q_{\alpha}^{-\frac{1}{2}}\otimes 1)\right\|_{M_{n_{\alpha}}\otimes_{min}L^{\infty}(\mathbb{G})}=\left\|\varphi\right\|_{L^{1}(\mathbb{G})}. (3.33)

Furthermore, (idφ)((uα)c)(\text{id}\otimes\varphi)\left((u^{\alpha})^{c}\right) is calculated as

i,j=1nαeijφ((uijα))=i,j=1nαeijφ^(α)ji=φ^(α)t,\sum_{i,j=1}^{n_{\alpha}}e_{ij}\cdot\varphi\left((u^{\alpha}_{ij})^{*}\right)=\sum_{i,j=1}^{n_{\alpha}}e_{ij}\cdot\widehat{\varphi}(\alpha)_{ji}=\widehat{\varphi}(\alpha)^{t}, (3.34)

so we can conclude that

Qα12φ^(α)Qα12Mnα=Qα12φ^(α)tQα12MnαφL1(𝔾)\displaystyle\left\|Q_{\alpha}^{-\frac{1}{2}}\widehat{\varphi}(\alpha)Q_{\alpha}^{\frac{1}{2}}\right\|_{M_{n_{\alpha}}}=\left\|Q_{\alpha}^{\frac{1}{2}}\widehat{\varphi}(\alpha)^{t}Q_{\alpha}^{-\frac{1}{2}}\right\|_{M_{n_{\alpha}}}\leq\left\|\varphi\right\|_{L^{1}(\mathbb{G})} (3.35)

for all αIrr(𝔾)\alpha\in\text{Irr}(\mathbb{G}).

As the second step, let us interpolate the two extremal cases x=0x=0 and x=1x=1 as follows. Let us fix αIrr(𝔾)\alpha\in\text{Irr}(\mathbb{G}) and consider linear operators Tz:Pol(𝔾)(𝔾^)T_{z}:\text{Pol}(\mathbb{G})\rightarrow\ell^{\infty}(\widehat{\mathbb{G}}) given by

Tz(f)=Qz2f^Qz2,z.T_{z}(f)=Q^{-\frac{z}{2}}\widehat{f}Q^{\frac{z}{2}},~{}z\in\mathbb{C}. (3.36)

Then, for any real number ss and fPol(𝔾)f\in\text{Pol}(\mathbb{G}), we have

Tis(f)(𝔾^)\displaystyle\left\|T_{is}(f)\right\|_{\ell^{\infty}(\widehat{\mathbb{G}})} =Qis2f^Qis2(𝔾^)=f^(𝔾^)fL1(𝔾)\displaystyle=\left\|Q^{-\frac{is}{2}}\widehat{f}Q^{\frac{is}{2}}\right\|_{\ell^{\infty}(\widehat{\mathbb{G}})}=\left\|\widehat{f}\right\|_{\ell^{\infty}(\widehat{\mathbb{G}})}\leq\left\|f\right\|_{L^{1}(\mathbb{G})} (3.37)
T1+is(f)(𝔾^)\displaystyle\left\|T_{1+is}(f)\right\|_{\ell^{\infty}(\widehat{\mathbb{G}})} =Q1+is2f^Q1+is2(𝔾^)=Q12f^Q12(𝔾^)fL1(𝔾)\displaystyle=\left\|Q^{-\frac{1+is}{2}}\widehat{f}Q^{\frac{1+is}{2}}\right\|_{\ell^{\infty}(\widehat{\mathbb{G}})}=\left\|Q^{-\frac{1}{2}}\widehat{f}Q^{\frac{1}{2}}\right\|_{\ell^{\infty}(\widehat{\mathbb{G}})}\leq\left\|f\right\|_{L^{1}(\mathbb{G})} (3.38)

by the extremal cases x=0x=0 and x=1x=1. Applying a general Stein interpolation theorem [Voi92, Theorem 2.1], we obtain

Tx(f)(𝔾^)=Qx2f^Qx2(𝔾^)fL1(𝔾)\left\|T_{x}(f)\right\|_{\ell^{\infty}(\widehat{\mathbb{G}})}=\left\|Q^{-\frac{x}{2}}\widehat{f}Q^{\frac{x}{2}}\right\|_{\ell^{\infty}(\widehat{\mathbb{G}})}\leq\left\|f\right\|_{L^{1}(\mathbb{G})} (3.39)

for all x[0,1]x\in[0,1] and fL1(𝔾)f\in L^{1}(\mathbb{G}).

As in the classical theory, let us apply the complex interpolation theorem between the above Theorem 3.5 and the Plancherel identity to obtain the following strong Hausdorff-Young inequality.

Theorem 3.6.

Let 𝔾\mathbb{G} be a general compact quantum group. If we suppose that xI(𝔾,1)x\in I(\mathbb{G},1) with a universal constant K=K(𝔾,x)K=K(\mathbb{G},x) such that

Qx2φ^Qx2(𝔾^)KφL1(𝔾),φL1(𝔾),\left\|Q^{-\frac{x}{2}}\widehat{\varphi}Q^{\frac{x}{2}}\right\|_{\ell^{\infty}(\widehat{\mathbb{G}})}\leq K\left\|\varphi\right\|_{L^{1}(\mathbb{G})},~{}\varphi\in L^{1}(\mathbb{G}), (3.40)

then we have xI(𝔾,p)x\in I(\mathbb{G},p) for any 1p21\leq p\leq 2 with the following inequality

Q(1p12)xf^Q(1p12)xp(𝔾^)K2p1fLp(𝔾),fLp(𝔾).\left\|Q^{-(\frac{1}{p}-\frac{1}{2})x}\widehat{f}Q^{(\frac{1}{p}-\frac{1}{2})x}\right\|_{\ell^{p^{\prime}}(\widehat{\mathbb{G}})}\leq K^{\frac{2}{p}-1}\left\|f\right\|_{L^{p}(\mathbb{G})},f\in L^{p}(\mathbb{G}). (3.41)

In particular, for general compact quantum group 𝔾\mathbb{G}, we have

sup0x1Q(1p12)xf^Q(1p12)xp(𝔾^)fLp(𝔾)\sup_{0\leq x\leq 1}\left\|Q^{-(\frac{1}{p}-\frac{1}{2})x}\widehat{f}Q^{(\frac{1}{p}-\frac{1}{2})x}\right\|_{\ell^{p^{\prime}}(\widehat{\mathbb{G}})}\leq\left\|f\right\|_{L^{p}(\mathbb{G})} (3.42)

for all fLp(𝔾)f\in L^{p}(\mathbb{G}) with 1p21\leq p\leq 2.

Proof.

For the given real number xI(𝔾,1)x\in I(\mathbb{G},1), let us consider a linear map Φx:Pol(𝔾)c00(𝔾^)\Phi_{x}:\text{Pol}(\mathbb{G})\rightarrow c_{00}(\widehat{\mathbb{G}}) given by

Φx(f)=Qx2f^Qx2,fPol(𝔾).\Phi_{x}(f)=Q^{-\frac{x}{2}}\widehat{f}Q^{\frac{x}{2}},~{}f\in\text{Pol}(\mathbb{G}). (3.43)

For each αIrr(𝔾)\alpha\in\text{Irr}(\mathbb{G}), let us denote by HαH_{\alpha} the matrix algebra Mnα()M_{n_{\alpha}}(\mathbb{C}) with the following norm structure

AHα=Qαx2AQα1x2Snα2,AMnα().\left\|A\right\|_{H_{\alpha}}=\left\|Q_{\alpha}^{\frac{x}{2}}AQ_{\alpha}^{\frac{1-x}{2}}\right\|_{S^{2}_{n_{\alpha}}},~{}A\in M_{n_{\alpha}}(\mathbb{C}). (3.44)

Then the Plancherel theorem tells us that

  • (A)

    Φx:L2(𝔾)2({Hα}αIrr(𝔾),μ)\Phi_{x}:L^{2}(\mathbb{G})\rightarrow\ell^{2}-(\left\{H_{\alpha}\right\}_{\alpha\in\text{Irr}(\mathbb{G})},\mu) is an onto isometry where a positive measure μ\mu is given by μ(α)=dα\mu(\alpha)=d_{\alpha} for all αIrr(𝔾)\alpha\in\text{Irr}(\mathbb{G}).

Moreover, the given assumption can be understood as that

  • (B)

    Φx:L1(𝔾)({Mnα}αIrr(𝔾),μ)\Phi_{x}:L^{1}(\mathbb{G})\rightarrow\ell^{\infty}-(\left\{M_{n_{\alpha}}\right\}_{\alpha\in\text{Irr}(\mathbb{G})},\mu) is bounded with the norm less than or equal to KK.

Then, the complex interpolation theorem with the above (A) and (B) implies that Φx\Phi_{x} extends to a bounded map

Φx:Lp(𝔾)p({Xα,p}αIrr(𝔾),μ)\Phi_{x}:L^{p}(\mathbb{G})\rightarrow\ell^{p^{\prime}}(\left\{X_{\alpha,p^{\prime}}\right\}_{\alpha\in\text{Irr}(\mathbb{G})},\mu)

with the norm less than or equal to K2p1K^{\frac{2}{p}-1}, where Xα,pX_{\alpha,p^{\prime}} is the complex interpolation space (Mnα,Hα)θ(M_{n_{\alpha}},H_{\alpha})_{\theta} for θ=2p\theta=\frac{2}{p^{\prime}}. Specifically, Xα,pX_{\alpha,p^{\prime}} is the matrix algebra Mnα()M_{n_{\alpha}}(\mathbb{C}) with the following norm structure

AXα,p=QαxpAQα1xpSnαp\left\|A\right\|_{X_{\alpha,p^{\prime}}}=\left\|Q_{\alpha}^{\frac{x}{p^{\prime}}}AQ_{\alpha}^{\frac{1-x}{p^{\prime}}}\right\|_{S^{p^{\prime}}_{n_{\alpha}}} (3.45)

by (2.27). Hence, we can conclude that

(αIrr(𝔾)dαTr(|QαxpQαx2f^(α)Qαx2Qα1xp|p))1pK2p1fLp(𝔾)\left(\sum_{\alpha\in\text{Irr}(\mathbb{G})}d_{\alpha}\text{Tr}\left(\left|Q_{\alpha}^{\frac{x}{p^{\prime}}}\cdot Q_{\alpha}^{-\frac{x}{2}}\widehat{f}(\alpha)Q_{\alpha}^{\frac{x}{2}}\cdot Q_{\alpha}^{\frac{1-x}{p^{\prime}}}\right|^{p^{\prime}}\right)\right)^{\frac{1}{p^{\prime}}}\leq K^{\frac{2}{p}-1}\left\|f\right\|_{L^{p}(\mathbb{G})} (3.46)

for all fLp(𝔾)f\in L^{p}(\mathbb{G}). The last conclusion for (3.42) follows from the above discussions and Theorem 3.5. ∎

Recall that the standard Hausdorff-Young inequality for p(0)\mathcal{F}^{(0)}_{p} is given by

p(0)(f)p(𝔾^)=f^p(𝔾^)fLp(𝔾).\left\|\mathcal{F}^{(0)}_{p}(f)\right\|_{\ell^{p^{\prime}}(\widehat{\mathbb{G}})}=\left\|\widehat{f}\right\|_{\ell^{p^{\prime}}(\widehat{\mathbb{G}})}\leq\left\|f\right\|_{L^{p}(\mathbb{G})}. (3.47)

We will demonstrate that our strong Hausdorff-Young inequality

sup0x1p(x)(f)p(𝔾^)=sup0x1Q(1p12)xf^Q(1p12)xp(𝔾^)fLp(𝔾)\sup_{0\leq x\leq 1}\left\|\mathcal{F}^{(x)}_{p}(f)\right\|_{\ell^{p^{\prime}}(\widehat{\mathbb{G}})}=\sup_{0\leq x\leq 1}\left\|Q^{-(\frac{1}{p}-\frac{1}{2})x}\widehat{f}Q^{(\frac{1}{p}-\frac{1}{2})x}\right\|_{\ell^{p^{\prime}}(\widehat{\mathbb{G}})}\leq\left\|f\right\|_{L^{p}(\mathbb{G})} (3.48)

is strictly sharper than (3.47) for some concrete examples. To do this, let us describe a situation where the left-hand side of (3.48) is computable.

Proposition 3.7.

Let 1p<21\leq p<2. For each αIrr(𝔾)\alpha\in\text{Irr}(\mathbb{G}), let us take indices i=i(α),j=j(α)i=i(\alpha),j=j(\alpha) such that (Qα)ii(Qα)jj(Q_{\alpha})_{ii}\geq(Q_{\alpha})_{jj}. Then, for any fαIrr(𝔾)aαuijαLp(𝔾)f\sim\sum_{\alpha\in\text{Irr}(\mathbb{G})}a_{\alpha}u^{\alpha}_{ij}\in L^{p}(\mathbb{G}) and xyx\leq y, we have

p(x)(f)p(𝔾^)p(y)(f)p(𝔾^).\left\|\mathcal{F}^{(x)}_{p}(f)\right\|_{\ell^{p^{\prime}}(\widehat{\mathbb{G}})}\leq\left\|\mathcal{F}^{(y)}_{p}(f)\right\|_{\ell^{p^{\prime}}(\widehat{\mathbb{G}})}. (3.49)

In particular, we have

sup0x1p(x)(f)p(𝔾^)=p(1)(f)p(𝔾^)fLp(𝔾).\displaystyle\sup_{0\leq x\leq 1}\left\|\mathcal{F}^{(x)}_{p}(f)\right\|_{\ell^{p^{\prime}}(\widehat{\mathbb{G}})}=\left\|\mathcal{F}^{(1)}_{p}(f)\right\|_{\ell^{p^{\prime}}(\widehat{\mathbb{G}})}\leq\left\|f\right\|_{L^{p}(\mathbb{G})}. (3.50)

and the left-hand side is computed as

p(1)(f)p(𝔾^)=Q(1p12)f^Q1p12p(𝔾^)\displaystyle\left\|\mathcal{F}^{(1)}_{p}(f)\right\|_{\ell^{p^{\prime}}(\widehat{\mathbb{G}})}=\left\|Q^{-(\frac{1}{p}-\frac{1}{2})}\widehat{f}Q^{\frac{1}{p}-\frac{1}{2}}\right\|_{\ell^{p^{\prime}}(\widehat{\mathbb{G}})} (3.51)
={(αIrr(𝔾)|aα|p[(Qα)ii1dα]p1[(Qα)jj1(Qα)ii]p21)1p,1<p<2supαIrr(𝔾)|aα|dα[(Qα)jj(Qα)ii]12,p=1.\displaystyle=\left\{\begin{array}[]{lll}\left(\sum_{\alpha\in\text{Irr}(\mathbb{G})}|a_{\alpha}|^{p^{\prime}}\left[\frac{(Q_{\alpha})_{ii}^{-1}}{d_{\alpha}}\right]^{p^{\prime}-1}\left[(Q_{\alpha})_{jj}^{-1}(Q_{\alpha})_{ii}\right]^{\frac{p^{\prime}}{2}-1}\right)^{\frac{1}{p^{\prime}}}&,~{}1<p<2\\ \sup_{\alpha\in\text{Irr}(\mathbb{G})}\frac{|a_{\alpha}|}{d_{\alpha}}[(Q_{\alpha})_{jj}(Q_{\alpha})_{ii}]^{-\frac{1}{2}}&,~{}p=1.\end{array}\right. (3.54)
Proof.

By Lemma 3.2, we have

p(x)(f)p(𝔾^)\displaystyle\left\|\mathcal{F}^{(x)}_{p}(f)\right\|_{\ell^{p^{\prime}}(\widehat{\mathbb{G}})} (3.55)
={(αIrr(𝔾)[(Qα)jj1(Qα)ii](p21)x[(Qα)ii1dα]p1|aα|p)1p,1<p<2supαIrr(𝔾)[(Qα)jj1(Qα)ii]x2(Qα)ii1dα|aα|p=1.\displaystyle=\left\{\begin{array}[]{ll}\left(\sum_{\alpha\in\text{Irr}(\mathbb{G})}\left[(Q_{\alpha})_{jj}^{-1}(Q_{\alpha})_{ii}\right]^{(\frac{p^{\prime}}{2}-1)x}\left[\frac{(Q_{\alpha})_{ii}^{-1}}{d_{\alpha}}\right]^{p^{\prime}-1}\left|a_{\alpha}\right|^{p^{\prime}}\right)^{\frac{1}{p^{\prime}}}&,~{}1<p<2\\ \sup_{\alpha\in\text{Irr}(\mathbb{G})}\left[(Q_{\alpha})_{jj}^{-1}(Q_{\alpha})_{ii}\right]^{\frac{x}{2}}\cdot\frac{(Q_{\alpha})_{ii}^{-1}}{d_{\alpha}}|a_{\alpha}|&p=1.\end{array}\right. (3.58)

Then the given assumption (Qα)jj1(Qα)ii1(Q_{\alpha})_{jj}^{-1}(Q_{\alpha})_{ii}\geq 1 implies that the pp^{\prime}-norms on (3.58) increase for xx, so the supremum

sup0x1p(x)(f)p(𝔾^)\sup_{0\leq x\leq 1}\left\|\mathcal{F}^{(x)}_{p}(f)\right\|_{\ell^{p^{\prime}}(\widehat{\mathbb{G}})} (3.59)

is attained when x=1x=1.

Example 3.8.

Let 𝔾=SUq(2)\mathbb{G}=SU_{q}(2) with 0<q<10<q<1. Then Irr(SUq(2))\text{Irr}(SU_{q}(2)) is identified with {u(k)}k0\left\{u^{(k)}\right\}_{k\in\mathbb{N}_{0}}, and the fundamental representation u(1)u^{(1)} is given by

u(1)=[aqcca]u^{(1)}=\left[\begin{array}[]{cc}a&-qc^{*}\\ c&a^{*}\end{array}\right] (3.60)

where a,ca,c are the standard generators of Pol(SUq(2))\text{Pol}(SU_{q}(2)). Note that u(k)Mk+1()L(𝔾)u^{(k)}\in M_{k+1}(\mathbb{C})\otimes L^{\infty}(\mathbb{G}) with u0k(k)=(qc)ku^{(k)}_{0k}=(-qc^{*})^{k}. Let us consider

fk=0qkxku0k(k)=k=0xk(c)kLp(𝔾)f\sim\sum_{k=0}^{\infty}q^{-k}x_{k}u^{(k)}_{0k}=\sum_{k=0}^{\infty}x_{k}(-c^{*})^{k}\in L^{p}(\mathbb{G}) (3.61)

whose Fourier transform is given by

f^=k=0qkxkdkEk0(k)Qk1=k=0xkdkEk0(k).\widehat{f}=\sum_{k=0}^{\infty}\frac{q^{-k}x_{k}}{d_{k}}E^{(k)}_{k0}Q_{k}^{-1}=\sum_{k=0}^{\infty}\frac{x_{k}}{d_{k}}E^{(k)}_{k0}. (3.62)

Then the standard Hausdorff-Young inequality implies

{supk0|xk|dk=1(0)(f)(𝔾^)fL1(𝔾),p=1(k=0qkdkp1|xk|p)1p,=p(0)(f)p(𝔾^)fLp(𝔾),1<p<2,\displaystyle\left\{\begin{array}[]{ll}&\displaystyle\sup_{k\in\mathbb{N}_{0}}\frac{|x_{k}|}{d_{k}}=\left\|\mathcal{F}^{(0)}_{1}(f)\right\|_{\ell^{\infty}(\widehat{\mathbb{G}})}\leq\left\|f\right\|_{L^{1}(\mathbb{G})},~{}p=1\\ &\displaystyle\left(\sum_{k=0}^{\infty}\frac{q^{-k}}{d_{k}^{p^{\prime}-1}}|x_{k}|^{p^{\prime}}\right)^{\frac{1}{p^{\prime}}},=\left\|\mathcal{F}^{(0)}_{p}(f)\right\|_{\ell^{p^{\prime}}(\widehat{\mathbb{G}})}\leq\left\|f\right\|_{L^{p}(\mathbb{G})},~{}1<p<2,\end{array}\right. (3.65)

whereas our strong Hausdorff-Young inequality induces a stronger inequality

{supk0qk|xk|dk=1(1)(f)(𝔾^)fL1(𝔾),p=1(k=0qk(p1)dkp1|xk|p)1p=p(1)(f)p(𝔾^)fLp(𝔾),1<p<2,\displaystyle\left\{\begin{array}[]{ll}&\displaystyle\sup_{k\in\mathbb{N}_{0}}\frac{q^{-k}|x_{k}|}{d_{k}}=\left\|\mathcal{F}^{(1)}_{1}(f)\right\|_{\ell^{\infty}(\widehat{\mathbb{G}})}\leq\left\|f\right\|_{L^{1}(\mathbb{G})},~{}p=1\\ &\displaystyle\left(\sum_{k=0}^{\infty}\frac{q^{-k(p^{\prime}-1)}}{d_{k}^{p^{\prime}-1}}|x_{k}|^{p^{\prime}}\right)^{\frac{1}{p^{\prime}}}=\left\|\mathcal{F}^{(1)}_{p}(f)\right\|_{\ell^{p^{\prime}}(\widehat{\mathbb{G}})}\leq\left\|f\right\|_{L^{p}(\mathbb{G})},~{}1<p<2,\end{array}\right. (3.68)

Additionally, we obtain

{(1q2)supk0|xk|fL1(𝔾),p=1,(1q2)1p(k=0|xk|p)1pfLp(𝔾),1<p<2,\left\{\begin{array}[]{ll}&\displaystyle(1-q^{2})\sup_{k\in\mathbb{N}_{0}}|x_{k}|\leq\left\|f\right\|_{L^{1}(\mathbb{G})},~{}p=1,\\ &\displaystyle(1-q^{2})^{\frac{1}{p}}\left(\sum_{k=0}^{\infty}|x_{k}|^{p^{\prime}}\right)^{\frac{1}{p^{\prime}}}\leq\left\|f\right\|_{L^{p}(\mathbb{G})},~{}1<p<2,\end{array}\right. (3.69)

thanks to (3.68) and the following inequality 1q2qkdk1-q^{2}\leq\frac{q^{-k}}{d_{k}}.

4. Application to twisted rapid decay properties

We begin this section by explaining how the standard Hausdorff-Young inequality relates to the twisted rapid decay property introduced in [BVZ15]. Our approach consists of two steps.

  • [Step 1]

    The first step is to formulate the dual form of the Hausdorff-Young inequality.

  • [Step 2]

    The second step is to prove that this dualized inequality implies the twisted property RD under a polynomial growth on 𝔾^\widehat{\mathbb{G}}.

Specifically, at [Step 1], the dual form of the standard Hausdorff-Young inequality φ^(𝔾^)φL1(𝔾)\left\|\widehat{\varphi}\right\|_{\ell^{\infty}(\widehat{\mathbb{G}})}\leq\left\|\varphi\right\|_{L^{1}(\mathbb{G})} is given by

fL(𝔾)f^1(𝔾^)=αIrr(𝔾)dαTr(|f^(α)Qα|),fPol(𝔾).\left\|f\right\|_{L^{\infty}(\mathbb{G})}\leq\left\|\widehat{f}\right\|_{\ell^{1}(\widehat{\mathbb{G}})}=\sum_{\alpha\in\text{Irr}(\mathbb{G})}d_{\alpha}\text{Tr}\left(\left|\widehat{f}(\alpha)Q_{\alpha}\right|\right),~{}f\in\text{Pol}(\mathbb{G}). (4.1)

Then, for [Step 2], thanks to a basic fact Tr(|AB|)ASn2BSn2\text{Tr}(|AB|)\leq\left\|A\right\|_{S^{2}_{n}}\left\|B\right\|_{S^{2}_{n}} on (4.1), we obtain

fL(𝔾)\displaystyle\left\|f\right\|_{L^{\infty}(\mathbb{G})} αIrr(𝔾)dαf^(α)QαSnα2IdnαSnα2\displaystyle\leq\sum_{\alpha\in\text{Irr}(\mathbb{G})}d_{\alpha}\left\|\widehat{f}(\alpha)Q_{\alpha}\right\|_{S^{2}_{n_{\alpha}}}\left\|\text{Id}_{n_{\alpha}}\right\|_{S^{2}_{n_{\alpha}}} (4.2)
=αIrr(𝔾)dαf^(α)QαSnα2nα\displaystyle=\sum_{\alpha\in\text{Irr}(\mathbb{G})}d_{\alpha}\left\|\widehat{f}(\alpha)Q_{\alpha}\right\|_{S^{2}_{n_{\alpha}}}\cdot\sqrt{n_{\alpha}} (4.3)
=αIrr(𝔾)dαf^(α)dαnαQα12Qα12Snα2nα.\displaystyle=\sum_{\alpha\in\text{Irr}(\mathbb{G})}\sqrt{d_{\alpha}}\left\|\widehat{f}(\alpha)\cdot\sqrt{\frac{d_{\alpha}}{n_{\alpha}}}Q_{\alpha}^{\frac{1}{2}}\cdot Q_{\alpha}^{\frac{1}{2}}\right\|_{S^{2}_{n_{\alpha}}}\cdot n_{\alpha}. (4.4)

Let us suppose that 𝔾\mathbb{G} is a matrix quantum group, and denote by |||\cdot| the natural length function on Irr(𝔾)\text{Irr}(\mathbb{G}) and by

Polk(𝔾)=span{uijα:|α|=k,1i,jnα}.\text{Pol}_{k}(\mathbb{G})=\text{span}\left\{u^{\alpha}_{ij}:|\alpha|=k,1\leq i,j\leq n_{\alpha}\right\}. (4.5)

Then, for any fPolk(𝔾)f\in\text{Pol}_{k}(\mathbb{G}), it is straightforward to see that

fL(𝔾)αIrr(𝔾):|α|=kdαf^(α)dαnαQα12Qα12Snα2nα\displaystyle\left\|f\right\|_{L^{\infty}(\mathbb{G})}\leq\sum_{\alpha\in\text{Irr}(\mathbb{G}):|\alpha|=k}\sqrt{d_{\alpha}}\left\|\widehat{f}(\alpha)\cdot\sqrt{\frac{d_{\alpha}}{n_{\alpha}}}Q_{\alpha}^{\frac{1}{2}}\cdot Q_{\alpha}^{\frac{1}{2}}\right\|_{S^{2}_{n_{\alpha}}}\cdot n_{\alpha} (4.6)
(αIrr(𝔾):|α|=kdαf^(α)dαnαQα12Qα12Snα22)12(αIrr(𝔾):|α|=knα2)12.\displaystyle\leq\left(\sum_{\alpha\in\text{Irr}(\mathbb{G}):|\alpha|=k}d_{\alpha}\cdot\left\|\widehat{f}(\alpha)\cdot\sqrt{\frac{d_{\alpha}}{n_{\alpha}}}Q_{\alpha}^{\frac{1}{2}}\cdot Q_{\alpha}^{\frac{1}{2}}\right\|_{S^{2}_{n_{\alpha}}}^{2}\right)^{\frac{1}{2}}\cdot\left(\sum_{\alpha\in\text{Irr}(\mathbb{G}):|\alpha|=k}n_{\alpha}^{2}\right)^{\frac{1}{2}}. (4.7)

Let us write D=(dαnαQα)αIrr(𝔾)D=(\frac{d_{\alpha}}{n_{\alpha}}Q_{\alpha})_{\alpha\in\text{Irr}(\mathbb{G})} and assume the existence of a polynomial PP satisfying

αIrr(𝔾):|α|=knα2P(k)2,k0.\sum_{\alpha\in\text{Irr}(\mathbb{G}):|\alpha|=k}n_{\alpha}^{2}\leq P(k)^{2},~{}k\in\mathbb{N}_{0}. (4.8)

Then the above (4.7) implies

fL(𝔾)P(k)f^D122(𝔾^),fPolk(𝔾),\left\|f\right\|_{L^{\infty}(\mathbb{G})}\leq P(k)\cdot\left\|\widehat{f}D^{\frac{1}{2}}\right\|_{\ell^{2}(\widehat{\mathbb{G}})},~{}f\in\text{Pol}_{k}(\mathbb{G}), (4.9)

hence we can recover [BVZ15, Proposition 4.2 (a)]. We call (4.9) the twisted property RD.

The main goal of this Section is to establish a stronger form of the twisted property RD. While the preceding discussion relies only on the standard Hausdorff-Young inequality, we now employ our strong Hausdorff-Young inequality and revisit [Step 1] and [Step 2]. For [Step 1], we begin with the following lemma, which enables us to derive the dual formulation of Theorem 3.6.

Lemma 4.1.

Let p[1,]p\in[1,\infty] and xx\in\mathbb{R}. Then we have

h(fg)=h^(p(x)(f)p(x)(g))h(f^{*}g)=\widehat{h}\left(\mathcal{F}^{(x)}_{p^{\prime}}(f)^{*}\mathcal{F}^{(x)}_{p}(g)\right) (4.10)

for all f,gPol(𝔾)f,g\in\text{Pol}(\mathbb{G}).

Proof.

First of all, we have

p(x)(f)p(x)(g)\displaystyle\mathcal{F}^{(x)}_{p^{\prime}}(f)^{*}\mathcal{F}^{(x)}_{p}(g) (4.11)
=[Q(1p12)xf^Q(1p12)x][Q(1p12)xg^Q(1p12)x]\displaystyle=\left[Q^{-(\frac{1}{p^{\prime}}-\frac{1}{2})x}\widehat{f}Q^{(\frac{1}{p^{\prime}}-\frac{1}{2})x}\right]^{*}\cdot\left[Q^{-(\frac{1}{p}-\frac{1}{2})x}\widehat{g}Q^{(\frac{1}{p}-\frac{1}{2})x}\right] (4.12)
=Q(1p12)xf^Q(1p12)xQ(1p12)xg^Q(1p12)x\displaystyle=Q^{(\frac{1}{p^{\prime}}-\frac{1}{2})x}\widehat{f}^{*}Q^{-(\frac{1}{p^{\prime}}-\frac{1}{2})x}\cdot Q^{-(\frac{1}{p}-\frac{1}{2})x}\widehat{g}Q^{(\frac{1}{p}-\frac{1}{2})x} (4.13)
=Q(1p12)xf^g^Q(1p12)x\displaystyle=Q^{(\frac{1}{p^{\prime}}-\frac{1}{2})x}\widehat{f}^{*}\widehat{g}Q^{(\frac{1}{p}-\frac{1}{2})x} (4.14)

by definition of the twisted Fourier transform, and this implies

Tr([p(x)(f)p(x)(g)](α)Qα)\displaystyle\text{Tr}\left(\left[\mathcal{F}^{(x)}_{p^{\prime}}(f)^{*}\mathcal{F}^{(x)}_{p}(g)\right](\alpha)\cdot Q_{\alpha}\right) (4.15)
=Tr(Qα(1p12)xf^(α)g^(α)Qα(1p12)xQα)=Tr(f^(α)g^(α)Qα).\displaystyle=\text{Tr}\left(Q_{\alpha}^{(\frac{1}{p^{\prime}}-\frac{1}{2})x}\widehat{f}(\alpha)^{*}\widehat{g}(\alpha)Q_{\alpha}^{(\frac{1}{p}-\frac{1}{2})x}\cdot Q_{\alpha}\right)=\text{Tr}(\widehat{f}(\alpha)^{*}\widehat{g}(\alpha)Q_{\alpha}). (4.16)

for each αIrr(𝔾)\alpha\in\text{Irr}(\mathbb{G}). Thus, we can conclude that

h^(p(x)(f)p(x)(g))=αIrr(𝔾)dαTr(f^(α)g^(α)Qα)=h(fg).\displaystyle\widehat{h}\left(\mathcal{F}^{(x)}_{p^{\prime}}(f)^{*}\mathcal{F}^{(x)}_{p}(g)\right)=\sum_{\alpha\in\text{Irr}(\mathbb{G})}d_{\alpha}\text{Tr}(\widehat{f}(\alpha)^{*}\widehat{g}(\alpha)Q_{\alpha})=h(f^{*}g). (4.17)

Now, let us exhibit a duality relation between the twisted Fourier transforms p(x)\mathcal{F}^{(x)}_{p} and p(x)\mathcal{F}^{(x)}_{p^{\prime}} in the following sense:

Proposition 4.2.

Let p[1,2)p\in[1,2) and xx\in\mathbb{R}. Then the following are equivalent.

  1. (1)

    p(x)(f)p(𝔾^)KfLp(𝔾)\left\|\mathcal{F}^{(x)}_{p}(f)\right\|_{\ell^{p^{\prime}}(\widehat{\mathbb{G}})}\leq K\left\|f\right\|_{L^{p}(\mathbb{G})} for all fPol(𝔾)f\in\text{Pol}(\mathbb{G}).

  2. (2)

    fLp(𝔾)Kp(x)(f)p(𝔾^)\left\|f\right\|_{L^{p^{\prime}}(\mathbb{G})}\leq K\cdot\left\|\mathcal{F}^{(x)}_{p^{\prime}}(f)\right\|_{\ell^{p}(\widehat{\mathbb{G}})} for all fPol(𝔾)f\in\text{Pol}(\mathbb{G}).

Proof.

Since the twisted Fourier transforms p(x),p(x):Pol(𝔾)c00(𝔾^)\mathcal{F}^{(x)}_{p},\mathcal{F}^{(x)}_{p^{\prime}}:\text{Pol}(\mathbb{G})\rightarrow c_{00}(\widehat{\mathbb{G}}) are bijective, we have

fLp(𝔾)\displaystyle\left\|f\right\|_{L^{p^{\prime}}(\mathbb{G})} =supAc00(𝔾):(p(x))1(A)Lp(𝔾)1h(f(p(x))1(A))\displaystyle=\sup_{A\in c_{00}(\mathbb{G}):\left\|\left(\mathcal{F}^{(x)}_{p}\right)^{-1}(A)\right\|_{L^{p}(\mathbb{G})}\leq 1}h(f^{*}\cdot\left(\mathcal{F}^{(x)}_{p}\right)^{-1}(A)) (4.18)
=supAc00(𝔾):(p(x))1(A)Lp(𝔾)1h(p(x)(f)A)\displaystyle=\sup_{A\in c_{00}(\mathbb{G}):\left\|\left(\mathcal{F}^{(x)}_{p^{\prime}}\right)^{-1}(A)\right\|_{L^{p}(\mathbb{G})}\leq 1}h(\mathcal{F}^{(x)}_{p^{\prime}}(f)^{*}\cdot A) (4.19)

by (2.19) and Lemma 4.1, and

Ap(𝔾)\displaystyle\left\|A\right\|_{\ell^{p^{\prime}}(\mathbb{G})} =supgPol(𝔾):p(x)(g)p(𝔾^)1h^(Ap(x)(g))\displaystyle=\sup_{g\in\text{Pol}(\mathbb{G}):\left\|\mathcal{F}^{(x)}_{p^{\prime}}(g)\right\|_{\ell^{p}(\widehat{\mathbb{G}})}\leq 1}\widehat{h}\left(A^{*}\cdot\mathcal{F}^{(x)}_{p^{\prime}}(g)\right) (4.20)
=supgPol(𝔾):p(x)(g)p(𝔾^)1h^((p(x))1(A)g)\displaystyle=\sup_{g\in\text{Pol}(\mathbb{G}):\left\|\mathcal{F}^{(x)}_{p^{\prime}}(g)\right\|_{\ell^{p}(\widehat{\mathbb{G}})}\leq 1}\widehat{h}\left(\left(\mathcal{F}^{(x)}_{p}\right)^{-1}(A)^{*}\cdot g\right) (4.21)

by (2.37) and Lemma 4.1.

If we suppose that (1) holds, then we obtain

{Ac00(𝔾):(p(x))1(A)Lp(𝔾)1}{Ac00(𝔾^):Ap(𝔾^)K},\displaystyle\left\{A\in c_{00}(\mathbb{G}):\left\|\left(\mathcal{F}^{(x)}_{p}\right)^{-1}(A)\right\|_{L^{p}(\mathbb{G})}\leq 1\right\}\subseteq\left\{A\in c_{00}(\widehat{\mathbb{G}}):\left\|A\right\|_{\ell^{p^{\prime}}(\widehat{\mathbb{G}})}\leq K\right\}, (4.22)

which implies

fLp(𝔾)supAc00(𝔾^):Ap(𝔾^)Kh^(p(x)(f)A)=Kp(x)(f)p(𝔾^)\displaystyle\left\|f\right\|_{L^{p^{\prime}}(\mathbb{G})}\leq\sup_{A\in c_{00}(\widehat{\mathbb{G}}):\left\|A\right\|_{\ell^{p^{\prime}}(\widehat{\mathbb{G}})}\leq K}\widehat{h}\left(\mathcal{F}^{(x)}_{p^{\prime}}(f)^{*}\cdot A\right)=K\left\|\mathcal{F}^{(x)}_{p^{\prime}}(f)\right\|_{\ell^{p}(\widehat{\mathbb{G}})} (4.23)

by (4.19). On the other hand, the condition (2) implies

{gPol(𝔾):p(x)(g)p(𝔾^)1}{gPol(𝔾):gLp(𝔾)K},\displaystyle\left\{g\in\text{Pol}(\mathbb{G}):\left\|\mathcal{F}^{(x)}_{p^{\prime}}(g)\right\|_{\ell^{p}(\widehat{\mathbb{G}})}\leq 1\right\}\subseteq\left\{g\in\text{Pol}(\mathbb{G}):\left\|g\right\|_{L^{p^{\prime}}(\mathbb{G})}\leq K\right\}, (4.24)

so we obtain

Ap(𝔾^)supgPol(𝔾):gLp(𝔾)Kh((p(x))1(A)g)=K(p(x))1(A)Lp(𝔾)\displaystyle\left\|A\right\|_{\ell^{p^{\prime}}(\widehat{\mathbb{G}})}\leq\sup_{g\in\text{Pol}(\mathbb{G}):\left\|g\right\|_{L^{p^{\prime}}(\mathbb{G})}\leq K}h\left(\left(\mathcal{F}^{(x)}_{p}\right)^{-1}(A)^{*}\cdot g\right)=K\left\|\left(\mathcal{F}^{(x)}_{p}\right)^{-1}(A)\right\|_{L^{p}(\mathbb{G})} (4.25)

by (4.21).

Combining Theorem 3.6 with the above Proposition 4.2, we obtain the following dual formulation of the strong Hausdorff-Young inequality.

Corollary 4.3.

Let 1p21\leq p\leq 2 and xI(𝔾,p)x\in I(\mathbb{G},p). Then there exists a universal constant K=K(𝔾,p,x)K=K(\mathbb{G},p,x) such that

fLp(𝔾)Kp(x)(f)p(𝔾^)\left\|f\right\|_{L^{p^{\prime}}(\mathbb{G})}\leq K\left\|\mathcal{F}^{(x)}_{p^{\prime}}(f)\right\|_{\ell^{p}(\widehat{\mathbb{G}})} (4.26)

for all fPol(𝔾)f\in\text{Pol}(\mathbb{G}).

Recall that the twisted property RD was defined by the following inequality

fL(𝔾)P(k)f^D122(𝔾^),fPolk(𝔾),\left\|f\right\|_{L^{\infty}(\mathbb{G})}\leq P(k)\cdot\left\|\widehat{f}D^{\frac{1}{2}}\right\|_{\ell^{2}(\widehat{\mathbb{G}})},~{}f\in\text{Pol}_{k}(\mathbb{G}), (4.27)

with a polynomial PP and D=(dαnαQα)αIrr(𝔾)D=\left(\frac{d_{\alpha}}{n_{\alpha}}Q_{\alpha}\right)_{\alpha\in\text{Irr}(\mathbb{G})}. With respect to this operator DD, our dualized strong Hausdorff-Young inequality (Corollary 4.3) induces a stronger form of the twisted property RD as follows.

Proposition 4.4.

Let 1p21\leq p\leq 2 and xI(𝔾,p)x\in I(\mathbb{G},p). Then there exists a universal constant K=K(𝔾,p,x)K=K(\mathbb{G},p,x) such that

fLp(𝔾)K(αsupp(f^)nα2)1p12D(1p12)xf^D(1p12)(1x)2(𝔾^)\displaystyle\left\|f\right\|_{L^{p^{\prime}}(\mathbb{G})}\leq K\left(\sum_{\alpha\in\text{supp}(\widehat{f})}n_{\alpha}^{2}\right)^{\frac{1}{p}-\frac{1}{2}}\cdot\left\|D^{(\frac{1}{p}-\frac{1}{2})x}\widehat{f}D^{(\frac{1}{p}-\frac{1}{2})(1-x)}\right\|_{\ell^{2}(\widehat{\mathbb{G}})} (4.28)

for all fPol(𝔾)f\in\text{Pol}(\mathbb{G}).

Proof.

First of all, by Corollary 4.3, we have

fLp(𝔾)pKpαsupp(f^)dαTr(|Qα(1p12)xf^(α)Qα(1p12)xQα1p|p)\displaystyle\left\|f\right\|_{L^{p^{\prime}}(\mathbb{G})}^{p}\leq K^{p}\sum_{\alpha\in\text{supp}(\widehat{f})}d_{\alpha}\text{Tr}\left(\left|Q_{\alpha}^{(\frac{1}{p}-\frac{1}{2})x}\widehat{f}(\alpha)Q_{\alpha}^{-(\frac{1}{p}-\frac{1}{2})x}\cdot Q_{\alpha}^{\frac{1}{p}}\right|^{p}\right) (4.29)
=Kpαsupp(f^)dαTr(|Qα(1p12)xf^(α)Qα(1p12)(1x)Qα12|p)\displaystyle=K^{p}\sum_{\alpha\in\text{supp}(\widehat{f})}d_{\alpha}\text{Tr}\left(\left|Q_{\alpha}^{(\frac{1}{p}-\frac{1}{2})x}\widehat{f}(\alpha)Q_{\alpha}^{(\frac{1}{p}-\frac{1}{2})(1-x)}\cdot Q_{\alpha}^{\frac{1}{2}}\right|^{p}\right) (4.30)

for all fPol(𝔾)f\in\text{Pol}(\mathbb{G}). Moreover, using the noncommutative Hölder inequality ABSnpASn2BSny\left\|AB\right\|_{S^{p}_{n}}\leq\left\|A\right\|_{S^{2}_{n}}\left\|B\right\|_{S^{y}_{n}} when 12+1y=1p\frac{1}{2}+\frac{1}{y}=\frac{1}{p}, we obtain

Qα(1p12)xf^(α)Qα(1p12)(1x)Qα12Snαp\displaystyle\left\|Q_{\alpha}^{(\frac{1}{p}-\frac{1}{2})x}\widehat{f}(\alpha)Q_{\alpha}^{(\frac{1}{p}-\frac{1}{2})(1-x)}\cdot Q_{\alpha}^{\frac{1}{2}}\right\|_{S^{p}_{n_{\alpha}}} (4.31)
Qα(1p12)xf^(α)Qα(1p12)(1x)Qα12Snα2IdnαSnαy\displaystyle\leq\left\|Q_{\alpha}^{(\frac{1}{p}-\frac{1}{2})x}\widehat{f}(\alpha)Q_{\alpha}^{(\frac{1}{p}-\frac{1}{2})(1-x)}\cdot Q_{\alpha}^{\frac{1}{2}}\right\|_{S^{2}_{n_{\alpha}}}\cdot\left\|\text{Id}_{n_{\alpha}}\right\|_{S^{y}_{n_{\alpha}}} (4.32)
=Qα(1p12)xf^(α)Qα(1p12)(1x)Qα12Snα2nα1p12\displaystyle=\left\|Q_{\alpha}^{(\frac{1}{p}-\frac{1}{2})x}\widehat{f}(\alpha)Q_{\alpha}^{(\frac{1}{p}-\frac{1}{2})(1-x)}\cdot Q_{\alpha}^{\frac{1}{2}}\right\|_{S^{2}_{n_{\alpha}}}\cdot n_{\alpha}^{\frac{1}{p}-\frac{1}{2}} (4.33)
=[D(1p12)xf^D(1p12)(1x)](α)Qα12Snα2(nα2dα)1p12.\displaystyle=\left\|\left[D^{(\frac{1}{p}-\frac{1}{2})x}\widehat{f}D^{(\frac{1}{p}-\frac{1}{2})(1-x)}\right](\alpha)\cdot Q_{\alpha}^{\frac{1}{2}}\right\|_{S^{2}_{n_{\alpha}}}\cdot\left(\frac{n_{\alpha}^{2}}{d_{\alpha}}\right)^{\frac{1}{p}-\frac{1}{2}}. (4.34)

Combining the above discussions, we obtain

fLp(𝔾)p\displaystyle\left\|f\right\|_{L^{p^{\prime}}(\mathbb{G})}^{p} (4.35)
Kpαsupp(f^)[dα12[D(1p12)xf^D(1p12)(1x)](α)Qα12Snα2nα2(1p12)]p.\displaystyle\leq K^{p}\sum_{\alpha\in\text{supp}(\widehat{f})}\left[d_{\alpha}^{\frac{1}{2}}\left\|\left[D^{(\frac{1}{p}-\frac{1}{2})x}\widehat{f}D^{(\frac{1}{p}-\frac{1}{2})(1-x)}\right](\alpha)\cdot Q_{\alpha}^{\frac{1}{2}}\right\|_{S^{2}_{n_{\alpha}}}\cdot n_{\alpha}^{2(\frac{1}{p}-\frac{1}{2})}\right]^{p}. (4.36)

Lastly, since 12+1y=1p\frac{1}{2}+\frac{1}{y}=\frac{1}{p}, applying the classical Hölder inequality once more, we can conclude that

fLp(𝔾)\displaystyle\left\|f\right\|_{L^{p^{\prime}}(\mathbb{G})} D(1p12)xf^D(1p12)(1x)2(𝔾^)(αsupp(f^)nα2(1p12)y)1y\displaystyle\leq\left\|D^{(\frac{1}{p}-\frac{1}{2})x}\widehat{f}D^{(\frac{1}{p}-\frac{1}{2})(1-x)}\right\|_{\ell^{2}(\widehat{\mathbb{G}})}\cdot\left(\sum_{\alpha\in\text{supp}(\widehat{f})}n_{\alpha}^{2(\frac{1}{p}-\frac{1}{2})y}\right)^{\frac{1}{y}} (4.37)
=D(1p12)xf^D(1p12)(1x)2(𝔾^)(αsupp(f^)nα2)1p12.\displaystyle=\left\|D^{(\frac{1}{p}-\frac{1}{2})x}\widehat{f}D^{(\frac{1}{p}-\frac{1}{2})(1-x)}\right\|_{\ell^{2}(\widehat{\mathbb{G}})}\cdot\left(\sum_{\alpha\in\text{supp}(\widehat{f})}n_{\alpha}^{2}\right)^{\frac{1}{p}-\frac{1}{2}}. (4.38)

Finally, we can demonstrate that our results (Theorem 3.6 and Proposition 4.4) induce a stronger and general form of the twisted property RD under the assumption of a polynomial growth.

Corollary 4.5.

Let us suppose that 𝔾\mathbb{G} is a compact matrix quantum group and |||\cdot| is the natural length function on Irr(𝔾)\text{Irr}(\mathbb{G}). If there exists a polynomial PP such that

αIrr(𝔾):|α|=knα2P(k)2\sum_{\alpha\in\text{Irr}(\mathbb{G}):|\alpha|=k}n_{\alpha}^{2}\leq P(k)^{2} (4.39)

for all k0k\in\mathbb{N}_{0}, then we have

fLp(𝔾)P(k)2p1infxI(𝔾,p)D(1p12)xf^D(1p12)(1x)2(𝔾^)\left\|f\right\|_{L^{p^{\prime}}(\mathbb{G})}\leq P(k)^{\frac{2}{p}-1}\cdot\inf_{x\in I(\mathbb{G},p)}\left\|D^{(\frac{1}{p}-\frac{1}{2})x}\widehat{f}D^{(\frac{1}{p}-\frac{1}{2})(1-x)}\right\|_{\ell^{2}(\widehat{\mathbb{G}})} (4.40)

for all fPolk(𝔾)f\in\text{Pol}_{k}(\mathbb{G}) with 1p21\leq p\leq 2. In particular, for p=1p=1, we have

fL(𝔾)P(k)inf0x1Dx2f^D1x22(𝔾^)\left\|f\right\|_{L^{\infty}(\mathbb{G})}\leq P(k)\cdot\inf_{0\leq x\leq 1}\left\|D^{\frac{x}{2}}\widehat{f}D^{\frac{1-x}{2}}\right\|_{\ell^{2}(\widehat{\mathbb{G}})} (4.41)

for all fPolk(𝔾)f\in\text{Pol}_{k}(\mathbb{G}).

5. Characterization of boundedness of p(x)\mathcal{F}^{(x)}_{p}

Recall that Theorem 3.6 implies [0,1]I(𝔾,p)[0,1]\subseteq I(\mathbb{G},p) for all 1p<21\leq p<2. This Section is devoted to characterizing I(𝔾,p)I(\mathbb{G},p) for non-Kac compact quantum groups 𝔾\mathbb{G}. Subsection 5.1 focuses on non-Kac and coamenable cases, and Subsection 5.2 focuses on non-Kac and non-coamenable free orthogonal quantum groups OF+O_{F}^{+}, respectively.

5.1. The case of non-Kac and coamenable compact quantum groups

The main result of this subsection is that [0,1]=I(𝔾,p)[0,1]=I(\mathbb{G},p) holds for all 1p<21\leq p<2 under the assumption that 𝔾\mathbb{G} is non-Kac with a polynomial growth on 𝔾^\widehat{\mathbb{G}}. To prove this, we begin with the following lemma.

Lemma 5.1.

Let 1p<21\leq p<2, xx\in\mathbb{R}, and αIrr(𝔾)\alpha\in\text{Irr}(\mathbb{G}). Suppose that

fLp(𝔾)w(α)D(1p12)xf^D(1p12)(1x)2(𝔾^)\left\|f\right\|_{L^{p^{\prime}}(\mathbb{G})}\leq w(\alpha)\cdot\left\|D^{(\frac{1}{p}-\frac{1}{2})x}\widehat{f}D^{(\frac{1}{p}-\frac{1}{2})(1-x)}\right\|_{\ell^{2}(\widehat{\mathbb{G}})} (5.1)

for all fspan{uijα}1i,jnαf\in\text{span}\left\{u^{\alpha}_{ij}\right\}_{1\leq i,j\leq n_{\alpha}}. Then we have

(nαQα1opdα)1p12[QαopQα1op](1p12)max{x,x1}w(α).\left(\frac{n_{\alpha}\left\|Q_{\alpha}^{-1}\right\|_{op}}{d_{\alpha}}\right)^{\frac{1}{p}-\frac{1}{2}}\cdot\left[\left\|Q_{\alpha}\right\|_{op}\left\|Q_{\alpha}^{-1}\right\|_{op}\right]^{(\frac{1}{p}-\frac{1}{2})\cdot\max\left\{-x,x-1\right\}}\leq w(\alpha). (5.2)
Proof.

For any matrix element f=uijαf=u^{\alpha}_{ij}, we have

D(1p12)xf^D(1p12)(1x)2(𝔾^)\displaystyle\left\|D^{(\frac{1}{p}-\frac{1}{2})x}\widehat{f}D^{(\frac{1}{p}-\frac{1}{2})(1-x)}\right\|_{\ell^{2}(\widehat{\mathbb{G}})} (5.3)
=(dα(dαnα)1p12Qα(1p12)x(Qα)ii1dαEjiαQα(1p12)(1x)Qα12Snα22)12\displaystyle=\left(d_{\alpha}\cdot\left\|\left(\frac{d_{\alpha}}{n_{\alpha}}\right)^{\frac{1}{p}-\frac{1}{2}}Q_{\alpha}^{(\frac{1}{p}-\frac{1}{2})x}\cdot\frac{(Q_{\alpha})_{ii}^{-1}}{d_{\alpha}}E^{\alpha}_{ji}\cdot Q_{\alpha}^{(\frac{1}{p}-\frac{1}{2})(1-x)}Q_{\alpha}^{\frac{1}{2}}\right\|_{S^{2}_{n_{\alpha}}}^{2}\right)^{\frac{1}{2}} (5.4)
=[dα(Qα)ii]1p1nα1p12[(Qα)jj(Qα)ii1](1p12)x,\displaystyle=\frac{\left[d_{\alpha}(Q_{\alpha})_{ii}\right]^{\frac{1}{p}-1}}{n_{\alpha}^{\frac{1}{p}-\frac{1}{2}}}[(Q_{\alpha})_{jj}(Q_{\alpha})_{ii}^{-1}]^{(\frac{1}{p}-\frac{1}{2})x}, (5.5)

and fLp(𝔾)fL2(𝔾)=((Qα)ii1dα)12\left\|f\right\|_{L^{p^{\prime}}(\mathbb{G})}\geq\left\|f\right\|_{L^{2}(\mathbb{G})}=\left(\frac{(Q_{\alpha})_{ii}^{-1}}{d_{\alpha}}\right)^{\frac{1}{2}}. Combining these calculations, our assumption implies

w(α)\displaystyle w(\alpha) ((Qα)ii1dα)12nα1p12[dα(Qα)ii]1p1[(Qα)jj(Qα)ii1](1p12)x\displaystyle\geq\left(\frac{(Q_{\alpha})_{ii}^{-1}}{d_{\alpha}}\right)^{\frac{1}{2}}\cdot\frac{n_{\alpha}^{\frac{1}{p}-\frac{1}{2}}}{\left[d_{\alpha}(Q_{\alpha})_{ii}\right]^{\frac{1}{p}-1}}[(Q_{\alpha})_{jj}(Q_{\alpha})_{ii}^{-1}]^{-(\frac{1}{p}-\frac{1}{2})x} (5.6)
=(nα(Qα)ii1dα)1p12[(Qα)jj(Qα)ii1](1p12)x.\displaystyle=\left(\frac{n_{\alpha}(Q_{\alpha})_{ii}^{-1}}{d_{\alpha}}\right)^{\frac{1}{p}-\frac{1}{2}}[(Q_{\alpha})_{jj}(Q_{\alpha})_{ii}^{-1}]^{-(\frac{1}{p}-\frac{1}{2})x}. (5.7)

Here, if we take indices i,ji,j such that (Qα)ii1=Qα1op(Q_{\alpha})_{ii}^{-1}=\left\|Q_{\alpha}^{-1}\right\|_{op} and (Qα)jj=Qαop(Q_{\alpha})_{jj}=\left\|Q_{\alpha}\right\|_{op}, then we obtain

(nαQα1opdα)1p12[QαopQα1op](1p12)xw(α).\left(\frac{n_{\alpha}\left\|Q_{\alpha}^{-1}\right\|_{op}}{d_{\alpha}}\right)^{\frac{1}{p}-\frac{1}{2}}\cdot\left[\left\|Q_{\alpha}\right\|_{op}\left\|Q_{\alpha}^{-1}\right\|_{op}\right]^{-(\frac{1}{p}-\frac{1}{2})x}\leq w(\alpha). (5.8)

On the other hand, (5.7) can be written as

w(α)\displaystyle w(\alpha)\geq (nα(Qα)ii1dα)1p12[(Qα)jj1(Qα)ii](1p12)(x1)[(Qα)jj1(Qα)ii]1p12\displaystyle\left(\frac{n_{\alpha}(Q_{\alpha})_{ii}^{-1}}{d_{\alpha}}\right)^{\frac{1}{p}-\frac{1}{2}}[(Q_{\alpha})_{jj}^{-1}(Q_{\alpha})_{ii}]^{(\frac{1}{p}-\frac{1}{2})(x-1)}\cdot[(Q_{\alpha})_{jj}^{-1}(Q_{\alpha})_{ii}]^{\frac{1}{p}-\frac{1}{2}} (5.9)
=(nα(Qα)jj1dα)1p12[(Qα)jj1(Qα)ii](1p12)(x1)\displaystyle=\left(\frac{n_{\alpha}(Q_{\alpha})_{jj}^{-1}}{d_{\alpha}}\right)^{\frac{1}{p}-\frac{1}{2}}[(Q_{\alpha})_{jj}^{-1}(Q_{\alpha})_{ii}]^{(\frac{1}{p}-\frac{1}{2})(x-1)} (5.10)

Thus, if we take indices i,ji,j satisfying (Qα)jj1=Qα1op(Q_{\alpha})_{jj}^{-1}=\left\|Q_{\alpha}^{-1}\right\|_{op} and (Qα)ii=Qαop(Q_{\alpha})_{ii}=\left\|Q_{\alpha}\right\|_{op}, then we obtain

(nαQα1opdα)1p12[Qα1opQαop](1p12)(x1)w(α).\left(\frac{n_{\alpha}\left\|Q_{\alpha}^{-1}\right\|_{op}}{d_{\alpha}}\right)^{\frac{1}{p}-\frac{1}{2}}\cdot\left[\left\|Q_{\alpha}^{-1}\right\|_{op}\left\|Q_{\alpha}\right\|_{op}\right]^{(\frac{1}{p}-\frac{1}{2})(x-1)}\leq w(\alpha). (5.11)

Now, let us combine some main results of Section 3 and Section 4 with the above Lemma 5.1 to obtain the following comprehensive theorem.

Theorem 5.2.

Let 𝔾\mathbb{G} be a general compact quantum group, 1p<21\leq p<2 and xx\in\mathbb{R}. Then (1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (4) \Rightarrow (5) holds in the following list.

  1. (1)

    0x10\leq x\leq 1.

  2. (2)

    p(x)(f)p(𝔾^)fLp(𝔾)\left\|\mathcal{F}^{(x)}_{p}(f)\right\|_{\ell^{p^{\prime}}(\widehat{\mathbb{G}})}\leq\left\|f\right\|_{L^{p}(\mathbb{G})} for all fPol(𝔾)f\in\text{Pol}(\mathbb{G}).

  3. (3)

    There exists a universal constant K=K(𝔾,p,x)K=K(\mathbb{G},p,x) such that

    p(x)(f)p(𝔾^)KfLp(𝔾)\left\|\mathcal{F}^{(x)}_{p}(f)\right\|_{\ell^{p^{\prime}}(\widehat{\mathbb{G}})}\leq K\left\|f\right\|_{L^{p}(\mathbb{G})} (5.12)

    for all fPol(𝔾)f\in\text{Pol}(\mathbb{G}).

  4. (4)

    There exists a universal constant K=K(𝔾,p,x)K=K(\mathbb{G},p,x) such that

    fLp(𝔾)K(αsupp(f^)nα2)1p12D(1p12)xf^D(1p12)(1x)2(𝔾^)\left\|f\right\|_{L^{p^{\prime}}(\mathbb{G})}\leq K\left(\sum_{\alpha\in\text{supp}(\widehat{f})}n_{\alpha}^{2}\right)^{\frac{1}{p}-\frac{1}{2}}\cdot\left\|D^{(\frac{1}{p}-\frac{1}{2})x}\widehat{f}D^{(\frac{1}{p}-\frac{1}{2})(1-x)}\right\|_{\ell^{2}(\widehat{\mathbb{G}})} (5.13)

    for all fPol(𝔾)f\in\text{Pol}(\mathbb{G}).

  5. (5)

    There exists a universal constant K=K(𝔾,p,x)K=K(\mathbb{G},p,x) satisfying

    nαQα1opdα[Qα1opQαop]max{x,x1}Knα2\displaystyle\frac{n_{\alpha}\left\|Q_{\alpha}^{-1}\right\|_{op}}{d_{\alpha}}\cdot\left[\left\|Q_{\alpha}^{-1}\right\|_{op}\left\|Q_{\alpha}\right\|_{op}\right]^{\max\left\{-x,x-1\right\}}\leq K\cdot n_{\alpha}^{2} (5.14)

    for all αIrr(𝔾)\alpha\in\text{Irr}(\mathbb{G}).

Additionally, if we suppose that 𝔾\mathbb{G} is a compact matrix quantum group of non-Kac type and if

lim infk(αIrr(𝔾):|α|knα2)1k=1,\liminf_{k\rightarrow\infty}\left(\sum_{\alpha\in\text{Irr}(\mathbb{G}):|\alpha|\leq k}n_{\alpha}^{2}\right)^{\frac{1}{k}}=1, (5.15)

then (5) \Rightarrow (1) holds.

Proof.

(1) \Rightarrow (2) is thanks to Theorem 3.6, (2) \Rightarrow (3) is clear, (3) \Rightarrow (4) \Rightarrow (5) is thanks to Proposition 4.4 and Lemma 5.1. Now, let us focus on (5) \Rightarrow (1). By Lemma 2.1, there exists a sequence (αn)nIrr(𝔾)(\alpha_{n})_{n\in\mathbb{N}}\subseteq\text{Irr}(\mathbb{G}) such that |αn|2n1|α1||\alpha_{n}|\leq 2^{n-1}\cdot|\alpha_{1}| and Qαnop=Qα1op2n1>1\left\|Q_{\alpha_{n}}\right\|_{op}=\left\|Q_{\alpha_{1}}\right\|_{op}^{2^{n-1}}>1 for all nn\in\mathbb{N}. Then the given assumption (5.14) implies

Qα1op2n1max{x,x1}=Qαnopmax{x,x1}KαIrr(𝔾):|α|2n1|α1|nα2,\left\|Q_{\alpha_{1}}\right\|_{op}^{2^{n-1}\cdot\max\left\{-x,x-1\right\}}=\left\|Q_{\alpha_{n}}\right\|_{op}^{\max\left\{-x,x-1\right\}}\leq K\sum_{\alpha\in\text{Irr}(\mathbb{G}):|\alpha|\leq 2^{n-1}|\alpha_{1}|}n_{\alpha}^{2}, (5.16)

so the assumption (5.15) implies

Qα1opmax{x,x1}lim infn(αIrr(𝔾):|α|2n1|α1|nα2)12n1=1,\left\|Q_{\alpha_{1}}\right\|_{op}^{\max\left\{-x,x-1\right\}}\leq\liminf_{n\rightarrow\infty}\left(\sum_{\alpha\in\text{Irr}(\mathbb{G}):|\alpha|\leq 2^{n-1}\cdot|\alpha_{1}|}n_{\alpha}^{2}\right)^{\frac{1}{2^{n-1}}}=1, (5.17)

which is true only when x0-x\leq 0 and x10x-1\leq 0, i.e. x[0,1]x\in[0,1]. ∎

The Drinfeld-Jimbo qq-deformations GqG_{q} are standard examples of non-Kac compact quantum groups whose duals have polynomial growth; hence, the following Corollary.

Corollary 5.3.

Let GG be a simply connected semisimple compact Lie group and 0<q<10<q<1. Then I(Gq,p)=[0,1]I(G_{q},p)=[0,1] holds for any 1p<21\leq p<2.

5.2. The case of non-Kac and non-coamenable free orthogonal quantum groups

We turn our attention to the cases where 𝔾\mathbb{G} is non-Kac and non-coamenable. A prototypical example is the so-called free orthogonal quantum group OF+O_{F}^{+}. We may assume that FF is of the form i=1Nλiei,N+1iMN()\sum_{i=1}^{N}\lambda_{i}e_{i,N+1-i}\in M_{N}(\mathbb{R}) satisfying that F2=±IdNF^{2}=\pm\text{Id}_{N} and (|λi|)1iN(|\lambda_{i}|)_{1\leq i\leq N} is monotone increasing. In this Section, let us suppose that N3N\geq 3 and FF is not a unitary. These conditions are equivalent to that OF+O_{F}^{+} is non-coamenable and non-Kac, respectively.

For any free orthogonal quantum groups OF+O_{F}^{+}, the space of irreducible unitary representations Irr(OF+)\text{Irr}(O_{F}^{+}) is identified with

{u(k)Mnk()L(ON+):k0}\left\{u^{(k)}\in M_{n_{k}}(\mathbb{C})\otimes L^{\infty}(O_{N}^{+}):k\in\mathbb{N}_{0}\right\} (5.18)

and Q1=FFQ_{1}=F^{*}F, Qk1op=Qkop=Q1opk=Fop2k\left\|Q_{k}^{-1}\right\|_{op}=\left\|Q_{k}\right\|_{op}=\left\|Q_{1}\right\|_{op}^{k}=\left\|F\right\|_{op}^{2k} for all k0k\in\mathbb{N}_{0}. Moreover, we have n0=1=d0n_{0}=1=d_{0}, n1=Nn_{1}=N, d1=Tr(FF)d_{1}=\text{Tr}(F^{*}F), and

{nk+2=n1nk+1nkdk+2=d1dk+1dk,k0.\displaystyle\left\{\begin{array}[]{ll}&n_{k+2}=n_{1}n_{k+1}-n_{k}\\ &d_{k+2}=d_{1}d_{k+1}-d_{k}\end{array}\right.,~{}k\in\mathbb{N}_{0}. (5.21)

This allows us to obtain the following asymptotic estimates

{nk(n1+n1242)kdk(d1+d1242)k.\displaystyle\left\{\begin{array}[]{ll}&n_{k}\sim\left(\frac{n_{1}+\sqrt{n_{1}^{2}-4}}{2}\right)^{k}\\ &d_{k}\sim\left(\frac{d_{1}+\sqrt{d_{1}^{2}-4}}{2}\right)^{k}\end{array}\right.. (5.24)

Here, CDC\lesssim D means that there is a universal constant KK, independent of C,DC,D, satisfying

CKD,C\leq K\cdot D, (5.25)

and we write ABA\sim B if ABA\lesssim B and BAB\lesssim A.

To demonstrate [0,1]I(OF+,p)[0,1]\subsetneq I(O_{F}^{+},p), our strategy is to apply a recently developed Haagerup inequality on non-Kac free orthogonal quantum groups [BVY21, You22] to establish the following lemma.

Lemma 5.4.

For any non-Kac free orthogonal quantum group OF+O_{F}^{+}, there exists a universal constant C=C(F)C=C(F) such that

Csupk0dkFop(max{|2x1|,1}+2)kQkx2f^(k)Qkx2opfL1(OF+)\displaystyle C\cdot\sup_{k\in\mathbb{N}_{0}}\frac{\sqrt{d_{k}}}{\left\|F\right\|_{op}^{(\max\left\{|2x-1|,1\right\}+2)k}}\left\|Q_{k}^{-\frac{x}{2}}\widehat{f}(k)Q_{k}^{\frac{x}{2}}\right\|_{op}\leq\left\|f\right\|_{L^{1}(O_{F}^{+})} (5.26)

for all fPol(OF+)f\in\text{Pol}(O_{F}^{+}) and xx\in\mathbb{R}.

Proof.

Let us fix xx\in\mathbb{R} and fPol(OF+)f\in\text{Pol}(O_{F}^{+}). Note that, for any k0k\in\mathbb{N}_{0}, we have

Qkx2f^(k)Qkx2opQkx2opf^(k)Qk12opQkx12op.\left\|Q_{k}^{-\frac{x}{2}}\widehat{f}(k)Q_{k}^{\frac{x}{2}}\right\|_{op}\leq\left\|Q_{k}^{-\frac{x}{2}}\right\|_{op}\left\|\widehat{f}(k)Q_{k}^{\frac{1}{2}}\right\|_{op}\left\|Q_{k}^{\frac{x-1}{2}}\right\|_{op}. (5.27)

Let us consider the following three distinct cases {(1)x>1(2)0x1(3)x<0\left\{\begin{array}[]{lll}(1)&x>1\\ (2)&0\leq x\leq 1\\ (3)&x<0\end{array}\right.. For each case, the right-hand side on (5.27) is given by

{(1)Qk12opxf^(k)Qk12opQk12opx1=Fop(2x1)kf^(k)Qk12op,(2)Qk12opxf^(k)Qk12opQk12op1x=Fopkf^(k)Qk12op,(3)Qk12opxf^(k)Qk12opQk12op1x=Fop(12x)kf^(k)Qk12op.\left\{\begin{array}[]{ll}(1)&\left\|Q_{k}^{-\frac{1}{2}}\right\|_{op}^{x}\left\|\widehat{f}(k)Q_{k}^{\frac{1}{2}}\right\|_{op}\left\|Q_{k}^{\frac{1}{2}}\right\|_{op}^{x-1}=\left\|F\right\|_{op}^{(2x-1)k}\left\|\widehat{f}(k)Q_{k}^{\frac{1}{2}}\right\|_{op},\\ (2)&\left\|Q_{k}^{-\frac{1}{2}}\right\|_{op}^{x}\left\|\widehat{f}(k)Q_{k}^{\frac{1}{2}}\right\|_{op}\left\|Q_{k}^{-\frac{1}{2}}\right\|_{op}^{1-x}=\left\|F\right\|_{op}^{k}\left\|\widehat{f}(k)Q_{k}^{\frac{1}{2}}\right\|_{op},\\ (3)&\left\|Q_{k}^{\frac{1}{2}}\right\|_{op}^{-x}\left\|\widehat{f}(k)Q_{k}^{\frac{1}{2}}\right\|_{op}\left\|Q_{k}^{-\frac{1}{2}}\right\|_{op}^{1-x}=\left\|F\right\|_{op}^{(1-2x)k}\left\|\widehat{f}(k)Q_{k}^{\frac{1}{2}}\right\|_{op}.\end{array}\right. (5.28)

To pursue simplicity, let us write γ=max{|2x1|,1}\gamma=\max\left\{|2x-1|,1\right\}. Then the discussion above can be summarized as

Qkx2f^(k)Qkx2opFopγkf^(k)Qk12op.\displaystyle\left\|Q_{k}^{-\frac{x}{2}}\widehat{f}(k)Q_{k}^{\frac{x}{2}}\right\|_{op}\leq\left\|F\right\|_{op}^{\gamma k}\left\|\widehat{f}(k)Q_{k}^{\frac{1}{2}}\right\|_{op}. (5.29)

Note that, by [You22, Proposition 4.4], there exists a universal constant C=C(F)C=C(F) such that

Csupk0dkf^(k)Qk12opFop2kCsupk0dkf^(k)Qk12Snk2Fop2kfL1(OF+)C\cdot\sup_{k\in\mathbb{N}_{0}}\frac{\sqrt{d_{k}}\left\|\widehat{f}(k)Q_{k}^{\frac{1}{2}}\right\|_{op}}{\left\|F\right\|_{op}^{2k}}\leq C\cdot\sup_{k\in\mathbb{N}_{0}}\frac{\sqrt{d_{k}}\left\|\widehat{f}(k)Q_{k}^{\frac{1}{2}}\right\|_{S^{2}_{n_{k}}}}{\left\|F\right\|_{op}^{2k}}\leq\left\|f\right\|_{L^{1}(O_{F}^{+})} (5.30)

for all k0k\in\mathbb{N}_{0} and fPol(OF+)f\in\text{Pol}(O_{F}^{+}). Thus, combining (5.29) and (5.30), we can conclude that

Csupk0dkFop(γ+2)kQkx2f^(k)Qkx2opfL1(𝔾).\displaystyle C\cdot\sup_{k\in\mathbb{N}_{0}}\frac{\sqrt{d_{k}}}{\left\|F\right\|_{op}^{(\gamma+2)k}}\left\|Q_{k}^{-\frac{x}{2}}\widehat{f}(k)Q_{k}^{\frac{x}{2}}\right\|_{op}\leq\left\|f\right\|_{L^{1}(\mathbb{G})}. (5.31)

While Lemma 5.4 will later serve as a sufficient condition for xI(OF+,p)x\in I(O_{F}^{+},p), the following Lemma provides a necessary condition for xI(𝔾,p)x\in I(\mathbb{G},p).

Lemma 5.5.

Let 𝔾\mathbb{G} be a compact quantum group satisfying Qαop=Qα1op\left\|Q_{\alpha}\right\|_{op}=\left\|Q_{\alpha}^{-1}\right\|_{op} for all αIrr(𝔾)\alpha\in\text{Irr}(\mathbb{G}). If xI(𝔾,p)x\in I(\mathbb{G},p) with 1p<21\leq p<2, then we have supαIrr(𝔾)Qαop|2x1|dα<\displaystyle\sup_{\alpha\in\text{Irr}(\mathbb{G})}\frac{\left\|Q_{\alpha}\right\|_{op}^{|2x-1|}}{d_{\alpha}}<\infty.

Proof.

For any matrix element f=uijαf=u^{\alpha}_{ij}, we have

p(x)(uijα)p(𝔾^)=[(Qα)jj1(Qα)ii](1p12)x((Qα)ii1dα)1p\displaystyle\left\|\mathcal{F}^{(x)}_{p}(u^{\alpha}_{ij})\right\|_{\ell^{p^{\prime}}(\widehat{\mathbb{G}})}=[(Q_{\alpha})_{jj}^{-1}(Q_{\alpha})_{ii}]^{(\frac{1}{p}-\frac{1}{2})x}\cdot\left(\frac{(Q_{\alpha})_{ii}^{-1}}{d_{\alpha}}\right)^{\frac{1}{p}} (5.32)

by Lemma 3.2. The assumption xI(𝔾,p)x\in I(\mathbb{G},p) implies that there exists a universal constant K=K(𝔾,p,x)K=K(\mathbb{G},p,x) such that

[(Qα)jj1(Qα)ii](1p12)x((Qα)ii1dα)1pKfL2(𝔾)=K(Qα)ii1dα.[(Q_{\alpha})_{jj}^{-1}(Q_{\alpha})_{ii}]^{(\frac{1}{p}-\frac{1}{2})x}\cdot\left(\frac{(Q_{\alpha})_{ii}^{-1}}{d_{\alpha}}\right)^{\frac{1}{p}}\leq K\cdot\left\|f\right\|_{L^{2}(\mathbb{G})}=K\cdot\sqrt{\frac{(Q_{\alpha})_{ii}^{-1}}{d_{\alpha}}}. (5.33)

This is equivalent to

supαIrr(𝔾)sup1i,jnα[(Qα)jj1(Qα)ii]x(Qα)ii1dα<.\sup_{\alpha\in\text{Irr}(\mathbb{G})}\sup_{1\leq i,j\leq n_{\alpha}}\frac{[(Q_{\alpha})_{jj}^{-1}(Q_{\alpha})_{ii}]^{x}(Q_{\alpha})_{ii}^{-1}}{d_{\alpha}}<\infty. (5.34)

If x12x\geq\frac{1}{2}, let us take i,ji,j such that

(Qα)jj1=Qα1op=Qαop=(Qα)ii.(Q_{\alpha})_{jj}^{-1}=\left\|Q_{\alpha}^{-1}\right\|_{op}=\left\|Q_{\alpha}\right\|_{op}=(Q_{\alpha})_{ii}. (5.35)

Then we obtain supαIrr(𝔾)Qαop2x1dα<\displaystyle\sup_{\alpha\in\text{Irr}(\mathbb{G})}\frac{\left\|Q_{\alpha}\right\|_{op}^{2x-1}}{d_{\alpha}}<\infty by (5.34).

If x<12x<\frac{1}{2}, let us take i,ji,j such that

(Qα)jj=Qαop=Qα1op=(Qα)ii1.(Q_{\alpha})_{jj}=\left\|Q_{\alpha}\right\|_{op}=\left\|Q_{\alpha}^{-1}\right\|_{op}=(Q_{\alpha})_{ii}^{-1}. (5.36)

Then we obtain supαIrr(𝔾)Qαop2x+1dα<\displaystyle\sup_{\alpha\in\text{Irr}(\mathbb{G})}\frac{\left\|Q_{\alpha}\right\|_{op}^{-2x+1}}{d_{\alpha}}<\infty by (5.34). ∎

Let us apply the above Lemma 5.4 and Lemma 5.5 to reach the following theorem.

Theorem 5.6.

Let OF+O_{F}^{+} be a non-Kac free orthogonal quantum group. Then

[0,1]{x:|2x1|log(d1+d1242)2logFop2}\displaystyle[0,1]\cup\left\{x\in\mathbb{R}:|2x-1|\leq\frac{\log\left(\frac{d_{1}+\sqrt{d_{1}^{2}-4}}{2}\right)}{2\log\left\|F\right\|_{op}}-2\right\} (5.37)
tttttI(OF+,p){x:|2x1|log(d1+d1242)2logFop}\displaystyle{\color[rgb]{1,1,1}\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@color@gray@fill{1}ttttt}\subseteq I(O_{F}^{+},p)\subseteq\left\{x\in\mathbb{R}:|2x-1|\leq\frac{\log\left(\frac{d_{1}+\sqrt{d_{1}^{2}-4}}{2}\right)}{2\log\left\|F\right\|_{op}}\right\} (5.38)

for all 1p<21\leq p<2.

Proof.

For the first inclusion, it is clear that [0,1]I(OF+,p)[0,1]\subseteq I(O_{F}^{+},p) by Theorem 3.6, so let us suppose that x[0,1]x\notin[0,1], i.e. |2x1|>1|2x-1|>1. Then, by Lemma 5.4, we obtain

supk0dkFop(|2x1|+2)kQkx2f^(k)Qkx2opfL1(OF+)\displaystyle\sup_{k\in\mathbb{N}_{0}}\frac{\sqrt{d_{k}}}{\left\|F\right\|_{op}^{(|2x-1|+2)k}}\left\|Q_{k}^{-\frac{x}{2}}\widehat{f}(k)Q_{k}^{\frac{x}{2}}\right\|_{op}\lesssim\left\|f\right\|_{L^{1}(O_{F}^{+})} (5.39)

for all fPol(OF+)f\in\text{Pol}(O_{F}^{+}). Let us further assume that

|2x1|log(d1+d1242)2logFop2,|2x-1|\leq\frac{\log\left(\frac{d_{1}+\sqrt{d_{1}^{2}-4}}{2}\right)}{2\log\left\|F\right\|_{op}}-2, (5.40)

which is equivalent to

Fop|2x1|+2(d1+d1242)12.\displaystyle\left\|F\right\|_{op}^{|2x-1|+2}\leq\left(\frac{d_{1}+\sqrt{d_{1}^{2}-4}}{2}\right)^{\frac{1}{2}}. (5.41)

Since dk(d1+d1242)k2\displaystyle\sqrt{d_{k}}\sim\left(\frac{d_{1}+\sqrt{d_{1}^{2}-4}}{2}\right)^{\frac{k}{2}} by (5.24), the above (5.41) implies

Qx2f^Qx2(OF+^)supk0dkFop(|2x1|+2)kQkx2f^(k)Qkx2opfL1(OF+).\displaystyle\left\|Q^{-\frac{x}{2}}\widehat{f}Q^{\frac{x}{2}}\right\|_{\ell^{\infty}(\widehat{O_{F}^{+}})}\lesssim\sup_{k\in\mathbb{N}_{0}}\frac{\sqrt{d_{k}}}{\left\|F\right\|_{op}^{(|2x-1|+2)k}}\left\|Q_{k}^{-\frac{x}{2}}\widehat{f}(k)Q_{k}^{\frac{x}{2}}\right\|_{op}\lesssim\left\|f\right\|_{L^{1}(O_{F}^{+})}. (5.42)

Thus, we can conclude that xI(OF+,1)x\in I(O_{F}^{+},1), and this implies xI(OF+,p)x\in I(O_{F}^{+},p) for all 1p<21\leq p<2 by Theorem 3.6.

(2) Conversely, for the second inclusion, let us suppose xI(OF+,p)x\in I(O_{F}^{+},p) with 1p<21\leq p<2. Then, Lemma 5.5 implies

supk0Fop|4x2|kdk<,\sup_{k\in\mathbb{N}_{0}}\frac{\left\|F\right\|_{op}^{|4x-2|k}}{d_{k}}<\infty, (5.43)

and this is equivalent to

Fop|4x2|d1+d1242\left\|F\right\|_{op}^{|4x-2|}\leq\frac{d_{1}+\sqrt{d_{1}^{2}-4}}{2} (5.44)

since dk(d1+d1242)k\displaystyle d_{k}\sim\left(\frac{d_{1}+\sqrt{d_{1}^{2}-4}}{2}\right)^{k} by (5.24). Thus, we can conclude that

|2x1|log(d1+d1242)2logFop.|2x-1|\leq\frac{\log\left(\frac{d_{1}+\sqrt{d_{1}^{2}-4}}{2}\right)}{2\log\left\|F\right\|_{op}}. (5.45)

The following Corollary is a direct consequence of Theorem 5.6, demonstrating that [0,1]I(𝔾,p)[0,1]\subsetneq I(\mathbb{G},p) can occur within the category of non-Kac and non-coamenable compact quantum groups.

Corollary 5.7.

Let OF+O_{F}^{+} be a non-Kac free orthogonal quantum group. If Fop6<d1+d1242\left\|F\right\|_{op}^{6}<\frac{d_{1}+\sqrt{d_{1}^{2}-4}}{2}, then [0,1]I(OF+,p)[0,1]\subsetneq I(O_{F}^{+},p) holds for all 1p<21\leq p<2.

Proof.

It is enough to prove that the given assumption implies

{x:|2x1|log(d1+d1242)2logFop2}[0,1]c.\left\{x\in\mathbb{R}:|2x-1|\leq\frac{\log\left(\frac{d_{1}+\sqrt{d_{1}^{2}-4}}{2}\right)}{2\log\left\|F\right\|_{op}}-2\right\}\cap[0,1]^{c}\neq\emptyset. (5.46)

Indeed, the given condition Fop6<d1+d1242\left\|F\right\|_{op}^{6}<\frac{d_{1}+\sqrt{d_{1}^{2}-4}}{2} is equivalent to

3<log(d1+d1242)2logFop,3<\frac{\log\left(\frac{d_{1}+\sqrt{d_{1}^{2}-4}}{2}\right)}{2\log\left\|F\right\|_{op}}, (5.47)

so we can take a real number xx satisfying

1<|2x1|<log(d1+d1242)2logFop2.1<|2x-1|<\frac{\log\left(\frac{d_{1}+\sqrt{d_{1}^{2}-4}}{2}\right)}{2\log\left\|F\right\|_{op}}-2. (5.48)

Then, the first inequality implies x[0,1]x\notin[0,1], and the second inequality implies xI(OF+,p)x\in I(O_{F}^{+},p) by Theorem 5.6.

Remark 5.8.

The condition Fop6<d1+d1242\left\|F\right\|_{op}^{6}<\frac{d_{1}+\sqrt{d_{1}^{2}-4}}{2} in Corollary 5.7 can be true only for non-coamenable free orthogonal quantum groups. Indeed, for non-Kac coamenable free orthogonal quantum groups, we may assume that OF+O_{F}^{+} is the twisted quantum group SUq(2)SU_{q}(2) with 0<q<10<q<1, and FF is canonically chosen to be [0q12q120]\left[\begin{array}[]{cc}0&-q^{\frac{1}{2}}\\ q^{-\frac{1}{2}}&0\end{array}\right]. Then, the condition Fop6<d1+d1242\left\|F\right\|_{op}^{6}<\frac{d_{1}+\sqrt{d_{1}^{2}-4}}{2} is equivalent to

q3<(q1+q)+(q1q)2=q1,q^{-3}<\frac{(q^{-1}+q)+(q^{-1}-q)}{2}=q^{-1}, (5.49)

implying a contradiction q>1q>1.

Acknowledgements: The author was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government(MSIT) (No.RS-2025-00561391 and No.RS-2024-00413957) and by Samsung Science and Technology Foundation under Project Number SSTF-BA2002-01.

References

  • [BVY21] Michael Brannan, Roland Vergnioux, and Sang-Gyun Youn. Property RD and hypercontractivity for orthogonal free quantum groups. Int. Math. Res. Not. IMRN, (2):1573–1601, 2021.
  • [BVZ15] Jyotishman Bhowmick, Christian Voigt, and Joachim Zacharias. Compact quantum metric spaces from quantum groups of rapid decay. J. Noncommut. Geom., 9(4):1175–1200, 2015.
  • [CCAP22] Léonard Cadilhac, José M. Conde-Alonso, and Javier Parcet. Spectral multipliers in group algebras and noncommutative Calderón-Zygmund theory. J. Math. Pures Appl. (9), 163:450–472, 2022.
  • [CV22] Martijn Caspers and Gerrit Vos. BMO spaces of σ\sigma-finite von Neumann algebras and Fourier-Schur multipliers on SUq(2){\rm SU}_{q}(2). Studia Math., 262(1):45–91, 2022.
  • [Fol95] Gerald B. Folland. A course in abstract harmonic analysis. Studies in Advanced Mathematics. CRC Press, Boca Raton, FL, 1995.
  • [GPJP21] Adrián Manuel González-Pérez, Marius Junge, and Javier Parcet. Singular integrals in quantum Euclidean spaces. Mem. Amer. Math. Soc., 272(1334):xiii+90, 2021.
  • [HLW23] Guixiang Hong, Xudong Lai, and Liang Wang. Fourier restriction estimates on quantum Euclidean spaces. Adv. Math., 430:Paper No. 109232, 24, 2023.
  • [HR63] Edwin Hewitt and Kenneth A. Ross. Abstract harmonic analysis. Vol. I: Structure of topological groups. Integration theory, group representations, volume Band 115 of Die Grundlehren der mathematischen Wissenschaften. Springer-Verlag, Berlin-Göttingen-Heidelberg; Academic Press, Inc., Publishers, New York, 1963.
  • [HR70] Edwin Hewitt and Kenneth A. Ross. Abstract harmonic analysis. Vol. II: Structure and analysis for compact groups. Analysis on locally compact Abelian groups. Die Grundlehren der mathematischen Wissenschaften, Band 152. Springer-Verlag, New York-Berlin, 1970.
  • [HWW24] Guixiang Hong, Simeng Wang, and Xumin Wang. Pointwise convergence of noncommutative Fourier series. Mem. Amer. Math. Soc., 302(1520):v+86, 2024.
  • [JMP14] Marius Junge, Tao Mei, and Javier Parcet. Smooth Fourier multipliers on group von Neumann algebras. Geom. Funct. Anal., 24(6):1913–1980, 2014.
  • [JMP18] Marius Junge, Tao Mei, and Javier Parcet. Noncommutative Riesz transforms—dimension free bounds and Fourier multipliers. J. Eur. Math. Soc. (JEMS), 20(3):529–595, 2018.
  • [JMPX21] Marius Junge, Tao Mei, Javier Parcet, and Runlian Xia. Algebraic Calderón-Zygmund theory. Adv. Math., 376:Paper No. 107443, 72, 2021.
  • [Kos84] Hideki Kosaki. Applications of the complex interpolation method to a von Neumann algebra: noncommutative LpL^{p}-spaces. J. Funct. Anal., 56(1):29–78, 1984.
  • [KS18] Jacek Krajczok and Piotr M. Sołtan. Compact quantum groups with representations of bounded degree. J. Operator Theory, 80(2):415–428, 2018.
  • [KV00] Johan Kustermans and Stefaan Vaes. Locally compact quantum groups. Ann. Sci. École Norm. Sup. (4), 33(6):837–934, 2000.
  • [KV03] Johan Kustermans and Stefaan Vaes. Locally compact quantum groups in the von Neumann algebraic setting. Math. Scand., 92(1):68–92, 2003.
  • [LWW17] Zhengwei Liu, Simeng Wang, and Jinsong Wu. Young’s inequality for locally compact quantum groups. J. Operator Theory, 77(1):109–131, 2017.
  • [MSX20] Edward McDonald, Fedor Sukochev, and Xiao Xiong. Quantum differentiability on noncommutative Euclidean spaces. Comm. Math. Phys., 379(2):491–542, 2020.
  • [NT13] Sergey Neshveyev and Lars Tuset. Compact quantum groups and their representation categories, volume 20 of Cours Spécialisés [Specialized Courses]. Société Mathématique de France, Paris, 2013.
  • [PRdlS22] Javier Parcet, Éric Ricard, and Mikael de la Salle. Fourier multipliers in SLn(𝐑){\rm SL}_{n}({\bf R}). Duke Math. J., 171(6):1235–1297, 2022.
  • [Ric16] Éric Ricard. LpL_{p}-multipliers on quantum tori. J. Funct. Anal., 270(12):4604–4613, 2016.
  • [RS00] Hans Reiter and Jan D. Stegeman. Classical harmonic analysis and locally compact groups, volume 22 of London Mathematical Society Monographs. New Series. The Clarendon Press, Oxford University Press, New York, second edition, 2000.
  • [Rud90] Walter Rudin. Fourier analysis on groups. Wiley Classics Library. John Wiley & Sons, Inc., New York, 1990. Reprint of the 1962 original, A Wiley-Interscience Publication.
  • [Tim08] Thomas Timmermann. An invitation to quantum groups and duality. EMS Textbooks in Mathematics. European Mathematical Society (EMS), Zürich, 2008. From Hopf algebras to multiplicative unitaries and beyond.
  • [Voi92] Jürgen Voigt. Abstract Stein interpolation. Math. Nachr., 157:197–199, 1992.
  • [Wan17] Simeng Wang. Lacunary Fourier series for compact quantum groups. Comm. Math. Phys., 349(3):895–945, 2017.
  • [Wor87a] Stanisław L. Woronowicz. Compact matrix pseudogroups. Comm. Math. Phys., 111(4):613–665, 1987.
  • [Wor87b] Stanisław L. Woronowicz. Twisted SU(2){\rm SU}(2) group. An example of a noncommutative differential calculus. Publ. Res. Inst. Math. Sci., 23(1):117–181, 1987.
  • [XXX16] Runlian Xia, Xiao Xiong, and Quanhua Xu. Characterizations of operator-valued Hardy spaces and applications to harmonic analysis on quantum tori. Adv. Math., 291:183–227, 2016.
  • [XXY18] Xiao Xiong, Quanhua Xu, and Zhi Yin. Sobolev, Besov and Triebel-Lizorkin spaces on quantum tori. Mem. Amer. Math. Soc., 252(1203):vi+118, 2018.
  • [You18] Sang-Gyun Youn. Multipliers and the Similarity Property for Topological Quantum Groups. Seoul National University Graduate School, 2018. Thesis (Ph.D.)–Seoul National University.
  • [You22] Sang-Gyun Youn. Strong Haagerup inequalities on non-Kac free orthogonal quantum groups. J. Funct. Anal., 283(5):Paper No. 109557, 24, 2022.
  • [You24] Sang-Gyun Youn. A khintchine inequality for central fourier series on non-kac compact quantum groups. arXiv preprint arXiv:2408.13519, 2024.