This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

thanks: These two authors contributed equally.thanks: These two authors contributed equally.

Turning Water to Wine With Polar Impostorons

Gerard McCaul [email protected] Department of Physics, Loughborough University, UK    Matthias Runge [email protected] Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie, 12489 Berlin, Germany    Michael Woerner Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie, 12489 Berlin, Germany    Diyar Talbayev Tulane University, New Orleans, Louisiana 70118, United States    Thomas Elsaesser Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie, 12489 Berlin, Germany    Denys I. Bondar Tulane University, New Orleans, Louisiana 70118, United States
Abstract

A surprising result from the theory of quantum control is the degree to which the properties of a physical system can be manipulated. Both atomic and many-body solid state models admit the possibility of creating a ‘driven imposter’, in which the optical response of one material mimics that of a dynamically distinct system. Here we apply these techniques to polarons in polar liquids. Such quasiparticles describe solvated electrons interacting with many-body degrees of freedom of their environment. The polaron frequency, which depends on the electron concentration in the liquid, is controlled with a pump field, rendering the polaron frequency of three different liquids identical. The experiments demonstrate the feasibility of ‘polar impostorons’, a so far purely theoretical phenomenon.

Introduction: Over the previous century, the fundamental principles governing physical systems have (at least in experimentally accessible regimes) been comprehensively uncovered. With a firm grasp of quantum dynamics in hand, a natural question becomes how microscopic behaviour might be exploited. In the present computational age, the dominating preoccupation has centred on how physical systems might themselves be forced to compute. The deep links between physical and informational dynamics [1, 2] means that the control of the former represents a route to mastery of the latter. Examples of this premise abound, where quantum control techniques can be employed in the development of variational quantum algorithms [3], combinatorial optimisation [4], and single-atom computation [5]. More broadly, while quantum control has applications in both information processing [6] and quantum technologies in general [7], it also enables investigations of a more fundamental nature. In particular, quantum control is a tool by which the ultimate limits of the malleability and manipulability of matter can be probed.

One particularly fruitful approach through which questions of this nature can be answered is quantum tracking control [8, 9, 10]. This technique seeks to calculate the driving field required such that the trajectory of some observable expectation conforms to a prespecified “track” [11]. When used in combination with other techniques [12, 13, 14], tracking control has successfully been implemented in a variety of contexts including for atomic [15], molecular [16, 17, 18] and solid-state systems [19, 20, 21].

In the case of these latter systems, microscopic models of strongly-interacting systems make explicit the large degree to which the response of driven systems can be tailored [20]. In particular, they demonstrate a number of intriguing (and potentially exploitable) phenomena. This includes the existence of “twinning fields”, a driving field which elicits an identical response from two dynamically distinct materials [22], and the non-uniqueness of driving fields in generating a given response [23]. Most suggestively, when an observable is a nonlinear function of driving, it is possible to create “driven imposters” where a given system’s response can be tailored to mimic that of an entirely different material [19]. This naturally presents an opportunity in both materials science and chemistry to use simpler and cheaper compounds in combination with driving to obtain some desired property that would otherwise be absent [24, 25, 26, 27, 28].

It is in this final possibility that tracking control has its most romantic potential application - the realisation of the alchemical dream of making lead look like gold. This objective is however also where the limitations of tracking control models considered to this point reveal themselves. In particular, to derive the driving fields necessary to induce whatever behaviour is desired from a system, a microscopic model linking driving field to observable is required. This together with the fact that these solutions for tracking tend to require broad-band control fields [20] have hampered experimental validation of the technique. This naturally raises the question of whether these drawbacks might be circumvented by applying the methodology of tracking control to models more tightly bound to observable behaviour in the laboratory.

This paper answers this question positively, with a novel application of tracking control techniques to an experimental scenario. We focus on manipulating the behavior of polarons – quasiparticles formed through electron-phonon interactions in polar liquids. The models describing the polaronic response are shown to admit the possibility of “polar impostorons” - where distinct liquids may be engineered to exhibit synchronized polaron frequencies. From this, it is possible to demonstrate experimentally the existence of said polar impostorons. Rather than making lead look like gold, polar impostorons allow us to perform the rather more biblical trick of giving water the appearance of wine (if we are broad enough in our definition of wine to include isopropyl alcohol).

Creating Polar Impostorons: Free electrons within a polar environment are prototypical quantum systems that are of interest in a broad range of scenarios [29, 30, 31]. While extensive research has addressed single-particle excitations of the solvated electron, recent experimental work has established its polaronic many-body response, which originates from the coupling of electronic and longitudinal nuclear degrees of freedom in the environment [32, 33, 34]. After (nonlinear) multiphoton ionization of solvent molecules by a femtosecond optical pulse, the subpicosecond relaxation of the generated free electrons into their solvated ground state launches long-lasting coherent polaron oscillations impulsively and with a frequency ν0\nu_{0} determined by the electron concentration cec_{e}. Similar to the impact of polarons in solids, [35, 36, 37], the dielectric response of the liquid is modified and a polaron resonance arises at ν0\nu_{0} in the terahertz (THz) frequency range.

Despite the fact that this scenario implies microscopic many-body, strongly interacting dynamics, the frequency of the polaronic response is defined by the zero point of the real part of the liquid’s dielectric function Re(ϵ(ν0,ce))=ϵ(ν0,ce)=0(\epsilon(\nu_{0},c_{e}))=\epsilon^{\prime}(\nu_{0},c_{e})=0 [32]. On a macrosopic level, this is well described by the local-field model of Clausius and Mossotti, in which electrons and solvent molecules are approximated as interacting point-like dipoles, leading to [38, 39]:

3ϵ(ν,ce)1ϵ(ν,ce)+2\displaystyle 3\dfrac{\epsilon(\nu,c_{e})-1}{\epsilon(\nu,c_{e})+2} =\displaystyle= 3ϵneat(ν)1ϵneat(ν)+2+ceNAαel(ν),\displaystyle 3\dfrac{\epsilon_{\text{neat}}(\nu)-1}{\epsilon_{\text{neat}}(\nu)+2}+c_{e}N_{A}\alpha_{\text{el}}(\nu), (1)
with αel(ν)\displaystyle\text{with }\alpha_{\text{el}}(\nu) =\displaystyle= e2ϵ0m[(2πν)2+iγ(2πν)]\displaystyle-\dfrac{e^{2}}{\epsilon_{0}m[(2\pi\nu)^{2}+i\gamma(2\pi\nu)]} (2)
=γ=0\displaystyle{\overset{\gamma=0}{=}} e2ϵ0m(2πν)2,\displaystyle-\dfrac{e^{2}}{\epsilon_{0}m(2\pi\nu)^{2}}, (3)

Here ϵ(ν,ce)=ϵ(ν,ce)+iϵ′′(ν,ce)\epsilon(\nu,c_{e})=\epsilon^{\prime}(\nu,c_{e})+i\epsilon^{\prime\prime}(\nu,c_{e}) and ϵneat(ν)=ϵneat(ν)+iϵneat′′(ν)\epsilon_{\text{neat}}(\nu)=\epsilon_{\text{neat}}^{\prime}(\nu)+i\epsilon_{\text{neat}}^{\prime\prime}(\nu) is the dielectric function of the liquid containing solvated electrons and of the neat liquid, respectively; NAN_{A} is Avogadro’s constant and αel\alpha_{\text{el}} is the polarizability of a solvated electron with the elementary charge ee and the electronic mass mm. The damping time of the polaron oscillations in alcohols is on the order of T2100T_{2}\geq 100 ps and, thus, the local friction rate γ\gamma is small compared to the damping of ϵneat\epsilon_{\text{neat}}. In the following, we set γ=0\gamma=0, making the polarizability αel\alpha_{\text{el}} a real quantity (Eq. (3)). The line shape of the polaron resonance is given by Im[ϵ(ν)1]=ϵ(ν)[ϵ(ν)2+ϵ′′(ν)2]1-\text{Im}[\epsilon(\nu)^{-1}]=\epsilon^{\prime}(\nu)[\epsilon^{\prime}(\nu)^{2}+\epsilon^{\prime\prime}(\nu)^{2}]^{-1}.

The fact that the frequency of the polaron response is directly dependent on ϵ(ν,ce)\epsilon(\nu,c_{e}), means that there is an indirect mechanism for manipulating polaronic behaviour via the electron concentration cec_{e}, which is itself directly controllable by the femtosecond ionization pulse. In this sense, it is possible to take two liquids with distinct dielectric functions, and drive them such that their polaron frequency is rendered indistinguishable. That is, we are able to create polar impostorons.

To analyze this scenario, we first invert Eq. (1) to express the electron concentration in terms of the dielectric functions and polarizability:

ce=3NAαel(ν)(ϵ(ν,ce)1ϵ(ν,ce)+2ϵneat(ν)1ϵneatν)+2).c_{e}=\dfrac{3}{N_{A}\alpha_{\text{el}}(\nu)}\left(\dfrac{\epsilon(\nu,c_{e})-1}{\epsilon(\nu,c_{e})+2}-\dfrac{\epsilon_{\text{neat}}(\nu)-1}{\epsilon_{\text{neat}}\nu)+2}\right). (4)

with αel\alpha_{\text{el}} given by Eq. (3). At the frequency ν=ν0\nu=\nu_{0}, ϵ(ν0,ce)=0\epsilon^{\prime}(\nu_{0},c_{e})=0, leading to

ce=3NAαel(ν0)(iϵ′′(ν0,ce)1iϵ′′(ν0,ce)+2ϵneat(ν0)1ϵneat(ν0)+2).c_{e}=\dfrac{3}{N_{A}\alpha_{\text{el}}(\nu_{0})}\left(\dfrac{i\epsilon^{\prime\prime}(\nu_{0},c_{e})-1}{i\epsilon^{\prime\prime}(\nu_{0},c_{e})+2}-\dfrac{\epsilon_{\text{neat}}(\nu_{0})-1}{\epsilon_{\text{neat}}(\nu_{0})+2}\right). (5)

or, after a separation of the real and imaginary parts,

Re(ce)\displaystyle\text{Re}(c_{e}) =\displaystyle= 3NAαel(ν0)(ϵ′′(ν0,ce)22ϵ′′(ν0,ce)2+4\displaystyle\dfrac{3}{N_{A}\alpha_{\text{el}}(\nu_{0})}\left(\dfrac{\epsilon^{\prime\prime}(\nu_{0},c_{e})^{2}-2}{\epsilon^{\prime\prime}(\nu_{0},c_{e})^{2}+4}-\right. (6)
Σneat+ϵneat(ν0)2Σneat+4ϵneat(ν0)+4)\displaystyle\hskip 71.13188pt\left.\dfrac{\Sigma_{\text{neat}}+\epsilon^{\prime}_{\text{neat}}(\nu_{0})-2}{\Sigma_{\text{neat}}+4\epsilon^{\prime}_{\text{neat}}(\nu_{0})+4}\right)
Im(ce)\displaystyle\text{Im}(c_{e}) =\displaystyle= 3NAαel(ν0)(3ϵ′′(ν0,ce)ϵ′′(ν0,ce)2+4\displaystyle\dfrac{3}{N_{A}\alpha_{\text{el}}(\nu_{0})}\left(\dfrac{3\epsilon^{\prime\prime}(\nu_{0},c_{e})}{\epsilon^{\prime\prime}(\nu_{0},c_{e})^{2}+4}-\right. (7)
3ϵneat′′(ν0)Σneat+4ϵneat(ν0)+4)\displaystyle\hskip 71.13188pt\left.\dfrac{3\epsilon^{\prime\prime}_{\text{neat}}(\nu_{0})}{\Sigma_{\text{neat}}+4\epsilon^{\prime}_{\text{neat}}(\nu_{0})+4}\right)

with Σneat=|ϵneat(ν0)|2\Sigma_{\text{neat}}=|\epsilon_{\text{neat}}(\nu_{0})|^{2}. Since the electron concentration cec_{e} is a real quantity (i.e. Im(ce)=0(c_{e})=0), equation (7) leads to

ϵ′′(ν0)ϵ′′(ν0)2+4=ϵneat′′(ν0)Σneat+4ϵneat(ν0)+4.\dfrac{\epsilon^{\prime\prime}(\nu_{0})}{\epsilon^{\prime\prime}(\nu_{0})^{2}+4}=\dfrac{\epsilon^{\prime\prime}_{\text{neat}}(\nu_{0})}{\Sigma_{\text{neat}}+4\epsilon^{\prime}_{\text{neat}}(\nu_{0})+4}. (8)

showing that the imaginary part ϵ′′(ν0)\epsilon^{\prime\prime}(\nu_{0}) is entirely determined by the dielectric function of the neat liquid and, consequently, independent from the electron concentration cec_{e}.

We now return to creating impostorons by making the polaron frequencies ν0\nu_{0} of two different liquids (1)(1) and (2)(2) identical by adjusting the electron concentrations ce(1)c_{e}^{(1)} and ce(2)c_{e}^{(2)} in a way that ϵ1(ν0)=ϵ2(ν0)=0\epsilon^{\prime}_{1}(\nu_{0})=\epsilon^{\prime}_{2}(\nu_{0})=0. Here the index (i=1,2)(i=1,2) in ϵi\epsilon_{i} designates the respective liquid. Eq. (6) gives the following relation for the concentration difference ce(1)ce(2)c_{e}^{(1)}-c_{e}^{(2)}:

ce(1)ce(2)\displaystyle c_{e}^{(1)}-c_{e}^{(2)} =\displaystyle= 3NAαel(ν0)[ϵ1′′(ν0)22ϵ1′′(ν0)2+4Σneat(1)+ϵ1,neat(ν0)2Σneat(1)+4ϵ1,neat(ν0)+4\displaystyle\dfrac{3}{N_{A}\alpha_{\text{el}}(\nu_{0})}\left[\dfrac{\epsilon^{\prime\prime}_{1}(\nu_{0})^{2}-2}{\epsilon^{\prime\prime}_{1}(\nu_{0})^{2}+4}-\dfrac{\Sigma_{\text{neat}}^{(1)}+\epsilon^{\prime}_{\text{1,neat}}(\nu_{0})-2}{\Sigma_{\text{neat}}^{(1)}+4\epsilon^{\prime}_{\text{1,neat}}(\nu_{0})+4}\right. (9)
ϵ2′′(ν0)22ϵ2′′(ν0)2+4+Σneat(2)+ϵ2,neat(ν0)2Σneat(2)+4ϵ2,neat(ν0)+4]\displaystyle\left.-\dfrac{\epsilon^{\prime\prime}_{2}(\nu_{0})^{2}-2}{\epsilon^{\prime\prime}_{2}(\nu_{0})^{2}+4}+\dfrac{\Sigma_{\text{neat}}^{(2)}+\epsilon^{\prime}_{\text{2,neat}}(\nu_{0})-2}{\Sigma_{\text{neat}}^{(2)}+4\epsilon^{\prime}_{\text{2,neat}}(\nu_{0})+4}\right]

Eq. (9) shows that an appropriate choice of the two electron concentrations results in an identical polaron frequency ν0\nu_{0}. The exact value of ν0\nu_{0} can be tuned via the absolute values of the two concentrations, while Eq. (9) sets the concentration difference. That is, setting the difference guarantees an identical response, while the individual concentrations determine the frequency at which this occurs. Notably, Eq. (8) is fulfilled at ν0\nu_{0} only, and identical polaron frequencies are not sufficient to imply an identical frequency dispersion of the dielectric functions of the two liquids around ν0\nu_{0}.

In general, the two imaginary parts ϵ1,2′′(ν)\epsilon^{\prime\prime}_{1,2}(\nu), which govern the polaronic line shape Im[ϵi(ν)1]-\text{Im}[\epsilon_{i}(\nu)^{-1}] are different, though their absolute value in the THz frequency range is small for liquids such as alcohols. In the vicinity of ν0\nu_{0}, the dielectric function ϵi(ν,ce(i))\epsilon_{i}(\nu,c_{e}^{(i)}) of liquid (i) can be well approximated by

ϵi(ν,ce(i))\displaystyle\epsilon_{i}(\nu,c_{e}^{(i)}) \displaystyle\approx Bi(ce(i))(νν0)+iϵi′′(ν0)\displaystyle B_{i}(c_{e}^{(i)})(\nu-\nu_{0})+i\epsilon_{i}^{\prime\prime}(\nu_{0})
Bi(ce(i))\displaystyle B_{i}(c_{e}^{(i)}) =\displaystyle= [ϵi(ν,ce(i))ν]ν=ν0\displaystyle\left[\frac{\partial\epsilon^{\prime}_{i}(\nu,c_{e}^{(i)})}{\partial\nu}\right]_{\nu=\nu_{0}} (10)
Im[ϵi(ν,ce(i))1])\displaystyle-\text{Im}[\epsilon_{i}(\nu,c_{e}^{(i)})^{-1}]) \displaystyle\approx 1ϵi′′(ν0)[1+[Bi(ce(i))(νν0)]2ϵi′′(ν0)2]1\displaystyle\frac{1}{\epsilon^{\prime\prime}_{i}(\nu_{0})}\left[1+\frac{[B_{i}(c_{e}^{(i)})(\nu-\nu_{0})]^{2}}{\epsilon^{\prime\prime}_{i}(\nu_{0})^{2}}\right]^{-1} (11)

Thus, the spectral profile of the polaron resonance Im[ϵi(ν,ce(i))1]-\text{Im}[\epsilon_{i}(\nu,c_{e}^{(i)})^{-1}] in two different liquids can be made similar by finding an appropriate ν0\nu_{0} for which the relation

B1(ce(1))ϵ1′′(ν0)\displaystyle\frac{B_{1}(c_{e}^{(1)})}{\epsilon^{\prime\prime}_{1}(\nu_{0})} =\displaystyle= B2(ce(2))ϵ2′′(ν0)\displaystyle\frac{B_{2}(c_{e}^{(2)})}{\epsilon^{\prime\prime}_{2}(\nu_{0})} (12)

is fulfilled in addition to the condition of Eq. (9) mentioned above. This means that if one wishes to match only the polaron frequency (given by ϵ(ν0,ce)=0\epsilon^{\prime}(\nu_{0},c_{e})=0), then only the difference on concentrations is constrained, and ν0\nu_{0} can be tuned over a range. If however we also wish to match the spectral profile, then Eq. (12) typically constrains the systems such that only a single ν0\nu_{0} satisfies both relations.

Experimental Results: For an experimental demonstration of the impostoron concept, we studied the polaronic response of the liquids 2-propanol (isopropanol, IPA), ethylene glycol (EG), and water. On the molecular level, such three liquids display a different molecular arrangement and hydrogen bond structure. Moreover, their polarity and, thus, static dielectric constants are different with values of ϵstatic=17.9\epsilon_{\text{static}}=17.9 for IPA, 37 for EG, and 81 for water. In the experiments, a gravity driven liquid jet with a thickness of about 100 μ\mum served as a sample. Electrons were generated by multiphoton ionization of solvent molecules with femtosecond pulses of a center wavelength of 800 nm, a pulse energy of 65120μ65-120~{}\muJ, a pulse duration of 66 fs and a repetition rate of 1 kHz. The excitation pulses are focused with a lens (focal length 1 m) to a spot size of about 200 μ\mum on the liquid. At a variable delay time τ\tau after electron generation, the liquid jet is probed with a THz pulse generated by difference-frequency mixing in a MgO-doped LiNbO3 crystal. The THz pulse has a center frequency of 0.7 THz, a spectral width of 0.5 THz (FWHM) and is focused to a spot size of about 700 μ\mum on the sample by an off-axis parabolic mirror (effective focal length 25.4 mm). The electric field of the THz pulse transmitted through the sample is detected as a function of real time tt by free-space electrooptic sampling. A mechanical chopper with a frequency of 500 Hz in the beam path of the excitation pulses allows for subsequent measurements of the THz probe electric fields EPrpumped(t,τ)E^{\text{pumped}}_{\text{Pr}}(t,\tau) and EPr(t,τ)E_{\text{Pr}}(t,\tau) with and without solvated electrons present. The nonlinear THz response of the photoexcited polar liquid is derived as ENL(t,τ)=EPrpumped(t,τ)EPr(t,τ)E_{\text{NL}}(t,\tau)=E^{\text{pumped}}_{\text{Pr}}(t,\tau)-E_{\text{Pr}}(t,\tau). Further details of the experimental method have been given in Refs. [32, 33].

Refer to caption
Figure 1: (a) THz probe electric field EPr(t,τ)E_{\text{Pr}}(t,\tau) as a function of real time tt (abscissa) and delay time τ\tau (ordinate) and temporal position of an intense 800-nm pulse (green line) to generate electrons via multiphoton ionization. (b) Nonlinear THz response ENL(t,τ)E_{\text{NL}}(t,\tau) as a function of real time tt and delay time τ\tau for IPA with an electron concentration of ce=25μc_{e}=25~{}\muM. (c) Cut along delay time τ\tau at the maximum of the nonlinear THz response ENL(t,τ)E_{\text{NL}}(t,\tau) indicated by the dashed line in panel (b).

Fig. 1 presents experimental results for an electron concentration of ce=25μc_{e}=25~{}\muM in IPA. In Fig. 1(a), the THz probe pulse EPr(t,τ)E_{\text{Pr}}(t,\tau) transmitted through the unexcited liquid jet is plotted as a function of real time tt and delay time τ\tau. The green line indicates the temporal position of the femtosecond pump pulse, generating electrons via multiphoton ionization. Figure 1(b) shows the nonlinear THz response ENL(t,τ)E_{\text{NL}}(t,\tau) of the excited sample. The data were filtered applying a 2D Fourier filter with a bandwidth of 4 THz in the 2D spectral domain. ENL(t,τ)E_{\text{NL}}(t,\tau) rises after excitation at τ=0\tau=0 with a step-like character, due to a sudden absorption change within the 0.5 THz bandwidth of the THz probe pulse after electron generation. Figure 1(c) displays a cut along delay time τ\tau through the maximum of ENL(t,τ)E_{\text{NL}}(t,\tau) at t=0t=0, which exhibits pronounced oscillations superimposed with the step-like signal. These oscillations arise from coherent polaron oscillations, impulsively excited during the ultrafast relaxation of the photogenerated electrons to a localized ground state.

The polaron consists of an electron which couples via the Coulomb interaction to electronic and nuclear degrees of freedom of the surrounding liquid. The relevant volume of the liquid is roughly set by the (Debye) screening length of Coulomb interaction and can be represented by a sphere of a nanometer diameter [33], containing up to tens of thousands of solvent molecules. The polaron oscillations represent longitudinal modulations of space charge within this volume leading to oscillations of the polaron size, which modify the transverse dielectric function. This mechanism makes the polaron oscillations accessible to optical probing with transverse electric fields. The frequency of the polaron oscillations is set by ϵ(ν0,ce)=0\epsilon^{\prime}(\nu_{0},c_{e})=0 of the longitudinal macroscopic dielectric function [40], which in the THz frequency range is almost identical to the transverse macroscopic dielectric function [41].

Refer to caption
Figure 2: Real part of the dielectric function of IPA, EG and water without electrons (dashed lines) and with an electron concentration of ce=25c_{e}=25, 30 and 40 μ\muM calculated from the Clausius Mossotti equation (solid lines).

In different polar liquids, the real parts Re(ϵi(ν,ce))=ϵi(ν,ce)\epsilon_{i}(\nu,c_{e}))=\epsilon^{\prime}_{i}(\nu,c_{e}) of the macroscopic dielectric functions according to Eq. (1) become very similar for appropriate choices of electron concentrations cec_{e}, as illustrated in Fig. 2 for electron concentrations of ce=25c_{e}=25, 30 and 40μ~{}\muM in IPA, EG and water. All three curves display a zero crossing at about ν0=0.7\nu_{0}=0.7 THz and very similar dispersion in the low-frequency THz range.

Figure 3(a) shows the polaron oscillations in IPA extracted by subtracting the step-like contribution from the cut in Fig. 1(c). In Figs. 1(b, c), the same procedure was applied to equivalent data sets measured in EG and water. All three transients are normalized to their maximum and show clear oscillations for delay times τ>0\tau>0, which span in the cases of IPA and EG [cf. Figs. 3(a, b)] the whole time range, reflecting the highly underdamped character of the polaron oscillations. The oscillations in water subside on a time scale of about 5 ps due to Debye relaxation of water molecules. In Figs. 3(d-f), the Fourier transforms of the oscillations are plotted as a function of frequency, exhibiting pronounced peaks at about 0.7 THz. The linewidth and center frequency of these peaks is well reproduced by the imaginary part of the reciprocal dielectric function Im[ϵi(ν)1]=ϵi′′(ν)[ϵi(ν)2+ϵi′′(ν)2]1-\text{Im}[\epsilon_{i}(\nu)^{-1}]=\epsilon^{\prime\prime}_{i}(\nu)[\epsilon^{\prime}_{i}(\nu)^{2}+\epsilon^{\prime\prime}_{i}(\nu)^{2}]^{-1} of the neat liquids around ν0\nu_{0} (cf. Eq. 8). The spectral widths of the spectra are large compared to a potential linewidth caused by the damping γ\gamma of the electron polarizability αe\alpha_{e} (Eq.2). For the current choice of electron concentrations cec_{e} in IPA and EG, relation (12) is approximately fulfilled, resulting in very similar line shapes of the polaron resonances [blue curves in Figs. 3(d) and (e)].

Refer to caption
Figure 3: Making the ultrafast polaronic THz response of solvated electrons in the polar liquids IPA, EG and Water indistinguishable. IPA, EG and water have electron concentrations of ce=25c_{e}=25, 30, and 40μ~{}\muM. (a-c) Pure oscillatory signals derived by a cut through the nonlinear signal ENL(t,τ)E_{\text{NL}}(t,\tau) at t=0t=0 along delay time τ\tau. (d-f) Fourier transforms of the oscillatory signals in panels (a-c) with maxima at an oscillation frequency of about 0.7 THz. The blue curves give the spectra Im[ϵ(ν)1]-\text{Im}[\epsilon(\nu)^{-1}] with the macroscopic dielectric function ϵ(ν)\epsilon(\nu) calculated by Eq. (1).

Conclusions and Outlook: The results presented here demonstrate the degree to which polaron response can be controlled both by a femtosecond nonlinear generation of free electron density (setting frequency), and THz probe pulse (controlling amplitude). From this perspective, it is possible for appropriate choices of electron concentration and THz probe frequency to create polar impostorons, where the polaron response of distinct liquids is rendered indistinguishable. The exception to this controllability is the damping, e.g., due to Debye relaxation, which manifests in the imaginary part of the dielectric function of the neat liquids. It is for this reason that in Figs. 3(a-c), the polaron oscillations in water decay on a faster time scale than in the alcohols and, thus, relation (12) cannot be fulfilled for a pair consisting of water and an alcohol. On the other hand, the small imaginary part of the THz dielectric function in alcohols can be made nearly identical in the frequency range between 1.0 and 1.5 THz, as is evident from the linear THz spectra reported in Ref. [42].

Since their inception, “driven imposters” [19] have been considered merely a theoretical curiosity – until now. This work marks a new direction in experimental quantum technology by demonstrating the unique possibilities predicted by quantum tracking control. The present experimental accessibility of polaron dynamics suggests that they are good candidates for the realisation of other exotic optical effects, beyond the creation of driven imposters. In particular, the tracking control formalism has recently been deployed to dynamically generate an epsilon near-zero (ENZ) response [43, 44] in a material [45]. An immediate future extension of the work presented here is therefore to extend it to this scenario, dynamically generating ENZ-like responses in polaronic systems.

Acknowledgments:

T.E. and D.I.B. are grateful to the Alexander von Humboldt Foundation for organizing the 11th Humboldt Award Winners’ Forum, where this collaboration was conceived. D.I.B. was supported by Army Research Office (ARO) (grant W911NF-23-1-0288; program manager Dr. James Joseph), while G.M. is supported by the European Research Council (ERC) under the European Union’s Horizon 2020 Research and Innovation Program (grant agreement 833365). The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of ARO or the U.S. Government. The U.S. Government is authorized to reproduce and distribute reprints for Government purposes notwithstanding any copyright notation herein. We thank A. Ghalgaoui, J. Zhang, and P. Singh for their contributions to the experimental work. This research has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 Research and Innovation Program (Grant No. 833365). D.I.B. and D.T. are also supported by by the W. M. Keck Foundation.

G.M. and M.R. contributed equally to this work.

References

  • Kieu [2003] T. D. Kieu, Quantum Algorithm for Hilbert’s Tenth Problem, International Journal of Theoretical Physics 42, 1461 (2003).
  • Bondar and Pechen [2020] D. I. Bondar and A. N. Pechen, Uncomputability and complexity of quantum control, Scientific Reports 10, 1195 (2020), publisher: Nature Publishing Group.
  • Magann et al. [2021] A. B. Magann, C. Arenz, M. D. Grace, T.-S. Ho, R. L. Kosut, J. R. McClean, H. A. Rabitz, and M. Sarovar, From Pulses to Circuits and Back Again: A Quantum Optimal Control Perspective on Variational Quantum Algorithms, PRX Quantum 2, 010101 (2021).
  • Magann et al. [2022a] A. B. Magann, K. M. Rudinger, M. D. Grace, and M. Sarovar, Lyapunov-control-inspired strategies for quantum combinatorial optimization, Physical Review A 106, 062414 (2022a).
  • McCaul et al. [2023] G. McCaul, K. Jacobs, and D. I. Bondar, Towards single atom computing via high harmonic generation, The European Physical Journal Plus 138, 123 (2023).
  • Glaser et al. [2015] S. J. Glaser, U. Boscain, T. Calarco, C. P. Koch, W. Köckenberger, R. Kosloff, I. Kuprov, B. Luy, S. Schirmer, T. Schulte-Herbrüggen, D. Sugny, and F. K. Wilhelm, Training Schrödinger’s cat: quantum optimal control, The European Physical Journal D 69, 279 (2015).
  • Koch [2016] C. P. Koch, Controlling open quantum systems: tools, achievements, and limitations, Journal of Physics: Condensed Matter 28, 213001 (2016), publisher: IOP Publishing.
  • Zhu and Rabitz [2003] W. Zhu and H. Rabitz, Quantum control design via adaptive tracking, The Journal of Chemical Physics 119, 3619 (2003).
  • Gross et al. [1993] P. Gross, H. Singh, H. Rabitz, K. Mease, and G. M. Huang, Inverse quantum-mechanical control: A means for design and a test of intuition, Physical Review A 47, 4593 (1993), publisher: American Physical Society.
  • Ong et al. [1984] C. K. Ong, G. M. Huang, T. J. Tarn, and J. W. Clark, Invertibility of quantum-mechanical control systems, Mathematical systems theory 17, 335 (1984).
  • Rothman et al. [2005] A. Rothman, T.-S. Ho, and H. Rabitz, Observable-preserving control of quantum dynamics over a family of related systems, Physical Review A 72, 023416 (2005).
  • Sahebi and Yarahmadi [2018] Z. Sahebi and M. Yarahmadi, Switching optimal adaptive trajectory tracking control of quantum systems, Optimal Control Applications and Methods 39, 1323 (2018), _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/oca.2412.
  • Mirrahimi et al. [2005] M. Mirrahimi, G. Turinici, and P. Rouchon, Reference Trajectory Tracking for Locally Designed Coherent Quantum Controls, The Journal of Physical Chemistry A 109, 2631 (2005).
  • Coron et al. [2009] J.-M. Coron, A. Grigoriu, C. Lefter, and G. Turinici, Quantum control design by Lyapunov trajectory tracking for dipole and polarizability coupling, New Journal of Physics 11, 105034 (2009).
  • Campos et al. [2017] A. G. Campos, D. I. Bondar, R. Cabrera, and H. A. Rabitz, How to Make Distinct Dynamical Systems Appear Spectrally Identical, Physical Review Letters 118, 083201 (2017), publisher: American Physical Society.
  • Magann et al. [2018] A. Magann, T.-S. Ho, and H. Rabitz, Singularity-free quantum tracking control of molecular rotor orientation, Physical Review A 98, 043429 (2018).
  • Magann et al. [2023] A. B. Magann, T.-S. Ho, C. Arenz, and H. A. Rabitz, Quantum tracking control of the orientation of symmetric-top molecules, Physical Review A 108, 033106 (2023).
  • Chen et al. [1995] Y. Chen, P. Gross, V. Ramakrishna, H. Rabitz, and K. Mease, Competitive tracking of molecular objectives described by quantum mechanics, The Journal of Chemical Physics 102, 8001 (1995).
  • McCaul et al. [2020a] G. McCaul, C. Orthodoxou, K. Jacobs, G. H. Booth, and D. I. Bondar, Driven Imposters: Controlling Expectations in Many-Body Systems, Physical Review Letters 124, 183201 (2020a).
  • McCaul et al. [2020b] G. McCaul, C. Orthodoxou, K. Jacobs, G. H. Booth, and D. I. Bondar, Controlling arbitrary observables in correlated many-body systems, Physical Review A 101, 053408 (2020b).
  • Magann et al. [2022b] A. B. Magann, G. McCaul, H. A. Rabitz, and D. I. Bondar, Sequential optical response suppression for chemical mixture characterization, Quantum 6, 626 (2022b), publisher: Verein zur Förderung des Open Access Publizierens in den Quantenwissenschaften.
  • McCaul et al. [2021] G. McCaul, A. F. King, and D. I. Bondar, Optical Indistinguishability via Twinning Fields, Physical Review Letters 127, 113201 (2021).
  • McCaul et al. [2022] G. McCaul, A. F. King, and D. I. Bondar, Non‐Uniqueness of Driving Fields Generating Non‐Linear Optical Response, Annalen der Physik 534, 2100523 (2022).
  • Zhang et al. [2005] Zhang, A. S. Keys, T. Chen, and S. C. Glotzer, Self-assembly of patchy particles into diamond structures through molecular mimicry, Langmuir 21, 11547 (2005).
  • Whitesell et al. [1994] J. K. Whitesell, R. E. Davis, M. S. Wong, and N. L. Chang, Molecular crystal engineering by shape mimicry, J. Am. Chem. Soc. 116, 523 (1994).
  • Gust et al. [1993] D. Gust, T. A. Moore, and A. L. Moore, Molecular mimicry of photosynthetic energy and electron transfer, Accs. Chem. Res. 26, 198 (1993).
  • Rabong et al. [2014] C. Rabong, C. Schuster, T. Liptaj, N. Pronayova, V. B. Delchev, U. Jordis, and J. Phopase, Nxo beta structure mimicry: an ultrashort turn/hairpin mimic that folds in water, RSC Adv. 4, 21351 (2014).
  • Della Gaspera et al. [2014] E. Della Gaspera, J. van Embden, A. S. R. Chesman, N. W. Duffy, and J. J. Jasieniak, Mimicry of sputtered i-zno thin films using chemical bath deposition for solution-processed solar cells, ACS Appl. Mater. Interfaces 6, 22519 (2014).
  • Marsalek et al. [2012] O. Marsalek, F. Uhlig, J. VandeVondele, and P. Jungwirth, Structure, Dynamics, and Reactivity of Hydrated Electrons by Ab Initio Molecular Dynamics, Accounts of Chemical Research 45, 23 (2012), publisher: American Chemical Society.
  • Turi and Rossky [2012] L. Turi and P. J. Rossky, Theoretical Studies of Spectroscopy and Dynamics of Hydrated Electrons, Chemical Reviews 112, 5641 (2012), publisher: American Chemical Society.
  • Herbert [2019] J. M. Herbert, Structure of the aqueous electron, Physical Chemistry Chemical Physics 21, 20538 (2019).
  • Ghalgaoui et al. [2021] A. Ghalgaoui, B. P. Fingerhut, K. Reimann, T. Elsaesser, and M. Woerner, Terahertz polaron oscillations of electrons solvated in liquid water, Phys. Rev. Lett. 126, 097401 (2021).
  • Singh et al. [2022] P. Singh, J. Zhang, A. Ghalgaoui, K. Reimann, B. P. Fingerhut, M. Woerner, and T. Elsaesser, Coherent polaron dynamics of electrons solvated in polar liquids, PNAS Nexus 1, pgac078 (2022).
  • Runge et al. [2023] M. Runge, K. Reimann, M. Woerner, and T. Elsaesser, Nonlinear terahertz polarizability of electrons solvated in a polar liquid, Phys. Rev. Lett. 131, 166902 (2023).
  • Gaal et al. [2007] P. Gaal, W. Kuehn, K. Reimann, M. Woerner, T. Elsaesser, and R. Hey, Internal motions of a quasiparticle governing its ultrafast nonlinear response, Nature 450, 1210 (2007), publisher: Nature Publishing Group.
  • Lee et al. [1953] T. D. Lee, F. E. Low, and D. Pines, The Motion of Slow Electrons in a Polar Crystal, Physical Review 90, 297 (1953), publisher: American Physical Society.
  • Fröhlich [1954] H. Fröhlich, Electrons in lattice fields, Advances in Physics 3, 325 (1954), publisher: Taylor & Francis _eprint: https://doi.org/10.1080/00018735400101213.
  • Hannay [1983] J. H. Hannay, The Clausius-Mossotti equation: an alternative derivation, Eur. J. Phys. 4, 141 (1983).
  • Kubo [1957] R. Kubo, Statistical-Mechanical Theory of Irreversible Processes. I. General Theory and Simple Applications to Magnetic and Conduction Problems, J. Phys. Soc. Jpn. 12, 570 (1957).
  • Fuchs and Kliewer [1968] R. Fuchs and K. L. Kliewer, Optical modes of vibration in an ionic crystal sphere, J. Opt. Soc. Am. 58, 319 (1968).
  • Bopp et al. [1998] P. A. Bopp, A. A. Kornyshev, and G. Sutmann, Frequency and wave-vector dependent dielectric function of water: Collective modes and relaxation spectra, J. Chem. Phys. 109, 1939 (1998).
  • Mazaheri et al. [2024] Z. Mazaheri, G. P. Papari, and A. Andreone, Dielectric response of different alcohols in water-rich binary mixtures from THz ellipsometry, Int. J. Mol. Sci. 25, 4240 (2024).
  • Wu et al. [2021] J. Wu, Z. T. Xie, Y. Sha, H. Y. Fu, and Q. Li, Epsilon-near-zero photonics: infinite potentials, Photon. Res. 9, 1616 (2021).
  • Niu et al. [2018] X. Niu, X. Hu, S. Chu, and Q. Gong, Epsilon-near-zero photonics: A new platform for integrated devices, Advanced Optical Materials 6, 1701292 (2018)https://onlinelibrary.wiley.com/doi/pdf/10.1002/adom.201701292 .
  • Masur et al. [2023] J. Masur, D. I. Bondar, and G. McCaul, Dynamical generation of epsilon-near-zero behaviour via tracking and feedback control (2023), arXiv:2301.12069 .