This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Truncated string state space approach and its application to nonintegrable spin-12\frac{1}{2} Heisenberg chain

Jiahao Yang (gbsn杨家豪) 0000-0001-7670-2218 Tsung-Dao Lee Institute, Shanghai Jiao Tong University, Shanghai 201210, China    Jianda Wu (gbsn吴建达) 0000-0002-3571-3348 [email protected] Tsung-Dao Lee Institute, Shanghai Jiao Tong University, Shanghai 201210, China School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China Shanghai Branch, Hefei National Laboratory, Shanghai 201315, China
Abstract

By circumventing the difficulty of obtaining exact string state solutions to Bethe ansatz equations, we devise a truncated string state space approach for investigating spin dynamics in a nonintegrable spin-12\frac{1}{2} Heisenberg chain subjected to a staggered field at various magnetizations. The obtained dynamical spectra reveal a series of elastic peaks at integer multiples of the ordering wave vector QQ, indicating the presence of multi-QQ Bethe string states within the ground state. The spectrum exhibits a separation between different string continua as the strength of the staggered field increases at low magnetization, reflecting the confinement of the Bethe strings. This approach provides a unified string-state-based framework for understanding spin dynamics in low-dimensional nonintegrable Heisenberg models, which has a successful application to observations across various phases of the quasi-one-dimensional antiferromagnet YbAlO3\rm YbAlO_{3}.

I Introduction

One-dimensional quantum systems characterized by exact solutions and quantum integrability offer a fascinating arena to study many-body physics. Notable examples include the one-dimensional (1D) spin-12\frac{1}{2} XXZ model [1, 2, 3, 4], Gaudin-Yang model [5, 6, 7], Lieb-Liniger model [8, 9], and quantum Ising models [10, 11, 12, 13]. Although these models have paved the way for determining the eigenstates and eigenenergies of those systems, it has long been a challenge to calculate their form factors and thus dynamical response, which was partly tackled recently [14, 7, 15, 16, 17, 18, 19, 20]. Empowered by the theoretical development, the spin dynamics of celebrated many-body quasiparticles, such as spinons [21, 22, 23], strings [24, 25, 26], E8E_{8} [27, 28, 29, 30, 31] and D8(1)D_{8}^{(1)} particles [32, 33, 34], have been extensively explored, providing crucial guidance for the experimental observations in quasi-1D materials [3, 35, 36, 37, 38, 39, 40, 30, 31]. This progress has led to the cooperative effort of both theorists and experimentalists to unveil the intricate nature of these exotic phenomena.

Bearing real materials in mind, it becomes crucial to ask how robust integrable physics is against nonintegrable perturbations that may partially or fully break the conservation laws of integrable systems. This has inspired extensive research focused on nonintegrable models such as spin-12\frac{1}{2} ladders [41, 42], chains with a staggered magnetic field [43, 44], frustrated spin chains [45], and dimerized spin chains [46, 47]. Most studies are performed by using effective field theory [43, 44] or numerical methods such as the exact diagonalization (ED) [45, 46], matrix product state [47], and quantum Monte Carlo methods [48]. However, on the one hand, numerical methods in general lack a clear understanding of the essential physical picture, on the other hand, the effective field theory can provide only limited insight within the low-energy and long-wavelength limit. Therefore, a method able to go beyond those limitations is always desired.

At first glance it may seem promising to apply Bethe states to study nonintegrable systems. However, a notorious open problem persists: finding the precise complex solutions of the Bethe ansatz equation (BAE) for string states [24, 49, 50, 51, 52, 53]. In the past few decades, many approaches have been explored, including a carefully-designed iterative method [54] and a rational QQ-system method [55, 56, 57]. The former can easily access large system size but suffers from many unphysical solutions with repeated roots. Although the latter can solve the BAE for all exact solutions simultaneously, it is limited to a small system size. Those shortcomings impede the practical application of Bethe states to understand nonintegrable systems of reasonable size.

In this paper, we first outline a solving machine for the spin-12\frac{1}{2} Heisenberg chain, which can obtain exact solutions for Bethe string states. Based on these string states, we develop a truncated string-state-space approach (TS3A) to study nonintegrable Hamiltonian, specifically the spin-12\frac{1}{2} Heisenberg chain with a staggered field. The TS3A can determine the eigenstate and eigenenergy for the nonintegrable Hamiltonian in the truncated Hilbert space. Additionally, we evaluate its efficiency for small systems under various truncation schemes, involving different energy cutoffs and string lengths, by comparing its performance to that of ED calculations.

Following the TS3A, we analyze the nonintegrable spin dynamics in the spin-12\frac{1}{2} Heisenberg chain with staggered field characterized by wavevector QQ. In addition to the QQ-ordering of the system, a series of elastic peaks appear at nQ(|n|=2,3,)nQ\ (|n|=2,3,\ldots), indicating the ground state contains multi-QQ Bethe string states. Moreover, the staggered field plays the role of the confining field for the Bethe string states, constraining the motion of spins along the chain. The confinement of Bethe strings results in two separated continua in dynamical spectra at low magnetization. Notably, the above results were successfully applied to experimental observations of the quasi-1D antiferromagnet YbAlO3\rm YbAlO_{3}, aligning with the unified Bethe-string-based framework provided by the TS3A [58].

The rest of this paper is organized as follows. Section II introduces the Hamiltonian of the 1D Heisenberg model with a staggered field. Section III illustrates the Bethe string state and then presents a method for obtaining exact solutions from the BAE. The framework of the TS3A is developed, and its efficiency is investigated in Sec. IV. Then Sec. V discusses the spin dynamics of the nonintegrable Hamiltonian. Section VI contains the conclusion and outlook.

II Model

Our parent Hamiltonian is the 1D Heisenberg spin-12\frac{1}{2} model with longitudinal field hzh_{z},

H0=Jn=1N𝐒n𝐒n+1hzSnzH_{0}=J\sum_{n=1}^{N}\mathbf{S}_{n}\cdot\mathbf{S}_{n+1}-h_{z}S_{n}^{z} (1)

with NN being the total number of sites, JJ being antiferromagnetic coupling, and 𝐒n\mathbf{S}_{n} being spin operators with components SnμS_{n}^{\mu} (μ=x,y,z\mu=x,y,z) at site nn. With the introduction of a staggered field 𝐡Q=hQicos(Qri)z^\mathbf{h}_{Q}=h_{Q}\sum_{i}\cos(Qr_{i})\hat{z} which couples to the spin chain, the total Hamiltonian becomes nonintegrable,

H=H0+H,H=H_{0}+H^{\prime}, (2)

where

H=n𝐡Q𝐒n=hQncos(Qrn)Snz.H^{\prime}=-\sum_{n}\mathbf{h}_{Q}\cdot\mathbf{S}_{n}=-h_{Q}\sum_{n}\cos(Qr_{n})S^{z}_{n}. (3)

hQh_{Q} is the strength of the staggered field, and the ordering wave vector Q=(1m)πQ=(1-m)\pi, where the magnetization density m=Mz/Msm=M_{z}/M_{s}, which is the ratio of magnetization MzM_{z} to its saturation value MsM_{s}. In practice, the staggered field can be effectively induced from three-dimensional (3D) magnetic ordering of quasi-1D materials, such as YbAlO3\rm YbAlO_{3} [59, 60, 61, 58], SrCo2V2O8\rm SrCo_{2}V_{2}O_{8} [62] and BaCo2V2O8\rm BaCo_{2}V_{2}O_{8} [30]. We note that the staggered field can be both commensurate and incommensurate, depending on whether 2π/Q2\pi/Q is a rational or irrational number, respectively.

Refer to caption
Figure 1: (a) The rapidities of Bethe strings with different lengths in the complex plane. (b)-(d) Pictorial spin configurations of the Bethe strings. View the down spin (red arrows) and up spin (blue arrows) as the magnon and vacuum, respectively. A single Bethe string χj\chi^{j} contains jj bounded magnons. (e) The energy-(quasi)momentum relation for Bethe strings χj\chi^{j}. (f) Illustration of the truncated string state space, where each ball denotes a jj-string state. The shaded region is separated by vertical and horizontal lines, representing the cutoffs for string length and the energy, respectively.

III Exact Bethe string state

In this section, we begin with an introduction to the coordinate Bethe ansatz and Bethe string states for the Hamiltonian H0H_{0} [Eq. (1)]. Then an efficient method is presented for obtaining the exact solutions from the BAE.

III.1 Bethe ansatz and the Bethe string state

Due to U(1) symmetry of H0H_{0} [Eq. (1)] the magnetization Mz=1/2M/NM_{z}=1/2-M/N is the conserved quantity, where MM is the number of down spins, i.e. magnons, with respect to the fully polarized state with all up spins ||\uparrow\cdots\uparrow\rangle. In the coordinate Bethe ansatz [63, 64, 65], the eigenstate of H0H_{0} [Eq. (1)] is the Bethe state with MM magnons, which is determined by a set of rapidities {λl}M\{\lambda_{l}\}_{M} satisfying the BAE,

(λl+i/2λli/2)N=kl(λlλk+iλlλki),\left(\frac{\lambda_{l}+i/2}{\lambda_{l}-i/2}\right)^{N}=\prod_{k\neq l}\left(\frac{\lambda_{l}-\lambda_{k}+i}{\lambda_{l}-\lambda_{k}-i}\right), (4)

with l=1,,Ml=1,\cdots,M. The corresponding quasi-momentum kl=π2arctan(2λl)k_{l}=\pi-2\arctan(2\lambda_{l}). These rapidities {λl}M\{\lambda_{l}\}_{M} manifest as either complex-conjugate pairs or real numbers [Fig. 1(a)] [66]. The pair of complex rapidities implies significant physical property: the corresponding magnons exhibit an intriguing phenomenon in coordinate space, forming effectively bounded magnons commonly known as “Bethe string” [24, 64, 67]. And the length of the string is determined by the number of rapidities with a common real center. Intuitively, Bethe string χj\chi^{j} (j2j\geq 2) of length jj is a “big” quasiparticle in which jj bounded magnons move coherently, referred to as a jj-string [Fig. 1(b)-(d)]. When j=1j=1, the 1-string χ1\chi^{1} is just the unbound magnon. Correspondingly, the rapidities of a string χj\chi^{j} takes the form [24, 49]

λj,αn=λj,α+i2(j+12n)+dj,αn,\lambda^{n}_{j,\alpha}=\lambda_{j,\alpha}+\frac{i}{2}(j+1-2n)+d^{n}_{j,\alpha}, (5)

where n=1,,jn=1,\ldots,j denotes the jjth magnon in the jj-string. The number of jj-strings is denoted as MjM_{j}, and α=1,,Mj\alpha=1,\ldots,M_{j} label different jj-strings with the same length jj. Thus we have jjMj=M\sum_{j}jM_{j}=M for an MM-magnon Bethe state. We refer to λj,α\lambda_{j,\alpha} as the string center which gives the real part of the jj-string if the deviation dj,αnd^{n}_{j,\alpha} is omitted. Under the assumption dj,αn=0d^{n}_{j,\alpha}=0, we obtain eigenenergy of a Bethe string state, E=j,αεj,αE=\sum_{j,\alpha}\varepsilon_{j,\alpha}, with εj,α=2jJ/(4λj,α2+j2)\varepsilon_{j,\alpha}={-2jJ}/{(4\lambda_{j,\alpha}^{2}+j^{2})}. Therefore, we can show the relation between energy and quasi-momentum for different strings in Fig. 1(e). For finite dj,αnd_{j,\alpha}^{n}, the eigenenergy becomes E=j,α,nεj,αnE=\sum_{j,\alpha,n}\varepsilon_{j,\alpha}^{n} with εj,αn=2J/[4(λj,αn)2+1]\varepsilon_{j,\alpha}^{n}={-2J}/{[4(\lambda^{n}_{j,\alpha})^{2}+1]}.

To ensure clarity in terminology, we refer to a Bethe state with all MM magnons being χ1\chi^{1} as the 1-string state. For j>1j>1, we classify an njn*j-string state with Mj=nM_{j}=n and M1=MnjM_{1}=M-n*j. When n=1n=1, it is simply referred to as the jj-string state. This convention can be consistently extended to cover other cases.

λ31\lambda_{3}^{1} λ32\lambda_{3}^{2} λ33\lambda_{3}^{3} λ11\lambda_{1}^{1} λ12\lambda_{1}^{2}
unphysical 0.4955+0.9622i0.4955+0.9622i 0.49550.9622i0.4955-0.9622i 0.4458 0.4458 0.1803
physical 0.4918+0.9615i0.4918+0.9615i 0.4918+0.9615i0.4918+0.9615i 0.4448+0.0188i0.4448+0.0188i 0.44480.0188i0.4448-0.0188i 0.1807
Table 1: The solutions of a 3-string state to Bethe ansatz equations Eq. (4) with N=12N=12 and M=5M=5. The solutions presented in the first row are obtained with the method in Ref. [54], while those in the second row are obtained with our method. Note that in the first row, λ33\lambda_{3}^{3} and λ11\lambda_{1}^{1} coincide, indicating an unphysical outcome.

III.2 Exact solution

To characterize Bethe string states, the initial step is to obtain rapidities {λj}\{\lambda_{j}\} (j=1,,Mj=1,\ldots,M) by solving the BAE [Eq. (4)]. This is commonly achieved by considering the logarithmic form of BAE,

2πNIj=Θ1(λj)1Nk=1MΘ2(λjλk),\frac{2\pi}{N}I_{j}=\Theta_{1}(\lambda_{j})-\frac{1}{N}\sum_{k=1}^{M}\Theta_{2}(\lambda_{j}-\lambda_{k}), (6)

where Θj(λ)=2arctan(2λ/j)\Theta_{j}(\lambda)=2\arctan\left(2\lambda/j\right), and IjI_{j} is the corresponding Bethe quantum number. Equation (6) is highly efficient for finding the real solutions using the iterative method [54, 68]. However, for complex solutions, we first need to consider the reduced Bethe equation with dj,αn0d_{j,\alpha}^{n}\to 0 [67],

2πNIj,α=Θj(λj,α)1Nk=1Mβ=1Mk(k,β)(j,α)Θjk(λj,αλk,β),\frac{2\pi}{N}I_{j,\alpha}=\Theta_{j}(\lambda_{j,\alpha})-\frac{1}{N}\underset{(k,\beta)\neq(j,\alpha)}{\sum_{k=1}^{M}\sum_{\beta=1}^{M_{k}}}\Theta_{jk}(\lambda_{j,\alpha}-\lambda_{k,\beta}), (7)

j\forall j with Mj0M_{j}\neq 0, and α=1,,Mj\alpha=1,\cdots,M_{j}, with Θn(λ)=2arctan(2λ/n)\Theta_{n}(\lambda)=2\arctan\left({2\lambda}/n\right), and Θnm=(1δnm)Θ|nm|+2Θ|nm|+2++2Θn+m2+Θn+m\Theta_{nm}=(1-\delta_{nm})\Theta_{|n-m|}+2\Theta_{|n-m|+2}+\cdots+2\Theta_{n+m-2}+\Theta_{n+m}. The Ij,αI_{j,\alpha} is referred to as the reduced Bethe quantum number. The Eq. (7) can also be tackled iteratively to obtain the string centers {λj,α}\{\lambda_{j,\alpha}\}, whose associated complex solutions are constructed from Eq. (5) with dj,αn=0d_{j,\alpha}^{n}=0. Nevertheless, these solutions are generally not exact because they disregard the finite deviation dj,αnd_{j,\alpha}^{n}. By utilizing the solutions obtained with Eq. (7) as an initial guess, the finite deviation is accessible for a majority of the string states following the method in Ref. [54]. A summary is presented in Appendix. A.

However, the strategy introduced above fails to generate all exact solutions when the number of lattice sites exceeds N12N\gtrsim 12, with example in Table 1 and details in Appendix A. The limitations arise from the generation of repeated real rapidities in string states which are physically forbidden [69, 70]. The key to solving the problem is that the repeated real rapidities actually form a complex conjugate pair with a minor imaginary part (typically 1/N\lesssim 1/N). To implement the observation into the algorithm, we divide and conquer, with details in Appendix A.3. For instance, for a 3-string state, the typical rapidity pattern is that three of them share a common real part up to a finite deviation dj,αnd_{j,\alpha}^{n}, while the remaining rapidities are all real. However, when we encounter repeated real rapidities (in first row of Table 1), usually involving the 3-string center and one real rapidity, we introduce a small imaginary part to create a complex conjugate pair. This pair and other rapidities are then treated as a new initial guess for the BAE, from which we are able to efficiently obtain the exact solution, the second row in Table 1.

Before ending this section, it is imperative to underscore the importance of exact solutions. As shown in the Appendix B, the determinant expression of μ|σz|λ\langle\mu|\sigma^{z}|\lambda\rangle becomes divergent when |λ|\lambda\rangle represents string states with zero deviation due to the failure of regularization. Therefore, assuming dj,αn=0d^{n}_{j,\alpha}=0 may not be appropriate for our subsequent TS3A approach. Therefore, the practical route is to consider the string states with finite dj,αnd_{j,\alpha}^{n}.

Refer to caption
Refer to caption
Refer to caption
Figure 2: (a) The absolute value of matrix entry 1-str|Sπz|Bb\langle\mbox{1-str}|S_{\pi}^{z}|B_{b}\rangle where Bethe string state |Bb|B_{b}\rangle ranges from 1-string to 222*2-string states. (b) Ground state energy EGSE_{GS} and (c) staggered magnetization MQzM_{Q}^{z} calculated with different energy cutoffs and combinations of string states at N=16N=16, depicted by dashed lines with symbols. Note that the gap of 3- and 222*2-string states are 2.88J\simeq 2.88J and 3.61J\simeq 3.61J, respectively. The green dashed line denotes the results from exact diagonalization.

IV Truncated string-state-space approach

In many physical problems, our focus is on the low-energy subspace rather than the entire Hilbert space [71, 72, 73]. In this study, we employ the TS3A method, as illustrated in [Fig. 1f], to gain insights into the low-energy physics of nonintegrable Heisenberg models Eq. (2). The detailed construction is as follows.

When considering a nonintegrable perturbation, such as HH^{\prime} [Eq. (3)], the Bethe string state is no longer the eigenstate. Therefore, it becomes necessary to find out the new ground state and low-energy excited states before conducting any calculations of physical quantities, such as correlation functions. The first step is to construct the matrix representation of the nonintegrable Hamiltonian HH [Eq. (2)] within a truncated low-energy subspace of Bethe string states, denoted as Habtr=δabEaB+Ba|H|BbH^{tr}_{ab}=\delta_{ab}E^{B}_{a}+\langle B_{a}|H^{\prime}|B_{b}\rangle, with EaBEcutBE^{B}_{a}\leq E^{B}_{cut}. The truncated dimension of HabtrH^{tr}_{ab} is typically much less than 2N2^{N}, which is determined by the energy cutoff EcutBE^{B}_{cut} and types of Bethe string states |Ba|B_{a}\rangle. Following the diagonalization of HtrH^{tr}, a new ground state |GS|GS\rangle and low-energy excited states are obtained, which are considered as approximate eigenstates of the Hamiltonian HH.

However, an immediate question arises: How do we select the types of Bethe string states and determine the energy cutoff? To answer the first question, we investigate the form factor between Bethe string states. It is evident from Fig. 2(a) that the form factors for string states generally diminish rapidly as the difference in string length increases. For instance, the ground state of H0H_{0} Eq. (1) is a 1-string state, and then we can safely truncate the string state space into relevant subspace in terms of string lengths. For the second issue, we study the asymptotic behavior of ground state energy EGSE_{GS} and the staggered magnetization MQz=jeiQjGS|Sjz|GS/NM^{z}_{Q}=\sum_{j}e^{-iQj}\langle GS|S_{j}^{z}|GS\rangle/\sqrt{N} as the energy cutoff of the truncated space increase. In Fig. 2(b,c), the calculation includes all allowed string states within a given EcutE_{cut}. As EcutE_{cut} increases the results converge rapidly and approach the exact values obtained from the ED calculation. Notably, even if only 1- and 2-string states are considered, the obtained results are already very close to the exact values, while the impact of 3- and 222*2-string states is marginal. This phenomenon confirms the suggestion that the relevant string states primarily arise from those with small length differences, as illustrated in Fig. 2(a).

V Spin dynamics

To investigate nonintegrable spin dynamics of HH [Eq. (2)], we focus on the zero-temperature dynamical structure factor (DSF) for spin along longitudinal (zz) direction (=1\hbar=1),

Dzz(q,ω)=2πμ|GS|Sqz|μ|2δ(ωEμ+EGS),D^{zz}(q,\omega)=2\pi\sum_{\mu}|\langle GS|S_{q}^{z}|\mu\rangle|^{2}\delta(\omega-E_{\mu}+E_{GS}), (8)

with qq being the transfer momentum and ω\omega being the transfer energy between the ground state |GS|GS\rangle and excited states |μ|\mu\rangle, whose energies are EGSE_{GS} and EμE_{\mu}, respectively. In the following calculation, the eigenstates |GS|GS\rangle and |μ|\mu\rangle are obtain by the TS3A developed in Sec. IV. The form factor GS|Sqz|μ\langle GS|S_{q}^{z}|\mu\rangle is deeply related to the form factor of Bethe string states, which can be elegantly expressed in terms of determinant [25, 74, 75, 22, 23, 26], with a summary in Appendix B.

Refer to caption
Refer to caption
Figure 3: Zero temperature DSF DzzD^{zz} at N=16N=16, m=12.5%m=12.5\%, hQ=0.4Jh_{Q}=0.4J under different truncation schemes: (a1-a4) Different selected string types with fixed energy cutoff Ecut=5JE_{cut}=5J; (b1-b4) Different energy cutoffs with 1-, 2-, 3-, and 222*2-string states. Note that the gap of 3 and 222*2 string states are 2.88J\simeq 2.88J and 3.61J\simeq 3.61J, respectively. The δ\delta function in the DSF is broadened via a Lorentzian function 1πγ/[(ωEμ+EGS)+γ2]\frac{1}{\pi}\gamma/[(\omega-E_{\mu}+E_{GS})+\gamma^{2}] with γ\gamma=0.02.
Refer to caption
Refer to caption
Figure 4: Zero temperature DSF Dzz(q,ω)D^{zz}(q,\omega) with different magnetization mm and staggered field hQh_{Q} with lattice site N=16N=16. (a1-d3) The results obtained from TS3A consider the string types including 1, 2, 3, and 222*2 string states with fixed energy cutoff Ecut=5JE_{cut}=5J. (e1-h3) ED results with the same lattice size. The δ\delta function in the DSF is broadened via a Lorentzian function 1πγ/[(ωEμ+EGS)+γ2]\frac{1}{\pi}\gamma/[(\omega-E_{\mu}+E_{GS})+\gamma^{2}] with γ\gamma=0.02.

To begin with, we investigate the TS3A results under different truncation schemes for N=16N=16, m=12.5%m=12.5\%, and hQ=0.4Jh_{Q}=0.4J. In Fig. 3(a1-a4), the DSF is calculated with different selected string types and fixed energy cutoff Ecut=5JE_{cut}=5J, showing that 1- and 2-strings are the dominant states in the spin dynamics. In Fig. 3(b1-b4), the DSF is calculated with different energy cutoff and fixed string types (including 1-, 2-, 3- and 222*2-string), showing that the dynamical spectrum converges quickly as EcutE_{cut} increases. Furthermore, we compare the DSF results at N=16N=16 obtained from TS3A to that of the ED method [76, 77], whose results reveal a remarkable agreement in Fig. 4. This excellent comparison suggests that the TS3A is a highly efficient method for studying the nonintegrable spin dynamics.

In the following, we present the DSF results obtained from the TS3A at N=48N=48. Due to the staggered field perturbation term HH^{\prime} [Eq. (3)], where ncos(Qrn)Snz(SQz+SQz)\sum_{n}\cos(Qr_{n})S^{z}_{n}\propto(S^{z}_{Q}+S^{z}_{-Q}), the non-vanishing matrix element of HH^{\prime} only appears between Bethe states with momentum difference Δq=±Q\Delta q=\pm Q. As a result, the ground state consists of Bethe states with momenta nQ(|n|=0,1,2,)nQ\ (|n|=0,1,2,\ldots). For static structure factor Dzz(q,ω=0)D^{zz}(q,\omega=0), a series of staggered-field-induced peaks appear at nQnQ (|n|=1,2,|n|=1,2,\ldots), manifesting the presence of multi-QQ Bethe states in the ground state. For instance, in Fig. 5(a-d), there are satellite peaks at q=2Q,2Q+2πq=2Q,-2Q+2\pi in addition to the predominant peaks at q=Q,Q+2πq=Q,-Q+2\pi, with Q=(1m)πQ=(1-m)\pi.

Refer to caption
Refer to caption
Figure 5: (a-d) The static structure factor Dzz(ω=0)D^{zz}(\omega=0) with N=48N=48, hQ=0Jh_{Q}=0J, 0.2J0.2J, and 0.4J0.4J, and magnetization density mm=12.5%, 25%, 50%, 75%, obtained from the TS3A. (e) Comparison between experimental data (filled circles) and theoretical predictions (dashed lines). The filled circles represent satellite peaks obtained from quasi-elastic neutron scattering data, as extracted from Ref. [61]. The dashed lines represent the theoretical prediction for the elastic peaks.
Refer to caption
Figure 6: Zero temperature DSF Dzz(q,ω)D^{zz}(q,\omega) with N=48N=48 obtained from the TS3A. The DSFs with hQ=0Jh_{Q}=0J, 0.2J0.2J, and 0.4J0.4J (from left to right), and magnetization density mm=12.5%, 25%, 50%, 75% (from top to bottom). The δ\delta function in the DSF is broadened via a Lorentzian function 1πγ/[(ωEμ+EGS)+γ2]\frac{1}{\pi}\gamma/[(\omega-E_{\mu}+E_{GS})+\gamma^{2}] with γ\gamma=0.12. The data are further interpolated along the horizontal direction for 800 query points with equal spacing.

In Fig. 6, when hQ=0h_{Q}=0, the dynamical spectra exhibit gapless excitations at q=(1±m)πq=(1\pm m)\pi, and the 2-string states are barely separated from the broad continuum of 1-string states. When hQ>0h_{Q}>0, an energy gap emerges both near the elastic line and between the continua of 1- and 2-string states. This phenomenon arises because the staggered field acts as a confining field for the Heisenberg spin chains, effectively restricting the motion of spins [78, 79, 80, 43, 44]. These induced gaps reflect the energy cost for the excitation of Bethe strings, which is known as the confinement of Bethe strings. At small magnetization [Fig. 6(a1-a3)], 2-string states are effectively confined and become separated from the 1-string continuum. However, as magnetization mm increases, the 2-string continuum gradually dissipates into higher energy ranges.

Notably, the capability for larger size calculation of TS3A not only reduces the finite size effect but also renders the characteristics of spectra more transparent and discernible. And, the TS3A offers two key advantages compared to the ED method: First, it has higher efficiency, facilitating much larger systems (N50N\gtrsim 50); second, it naturally provides a unified Bethe-string-based physical picture for understanding the underlying physics.

We conclude this section by emphasizing that our model and findings offer a direct application in comprehending the low-energy spin dynamics observed in the quasi-1D antiferromagnet YbAlO3\rm YbAlO_{3} [59, 61, 58]. In this material, the low-energy effective Hamiltonian is described by the 1D Heisenberg models Eq. (1), and Eq. (2) if the material is 3D ordered. In Fig. 5(e), the quasi-elastic signals obtained from neutron scattering align with the theoretical predictions, providing compelling evidence for the coexistence of multi-QQ Bethe states in the ordered phase of YbAlO3\rm YbAlO_{3}. Moreover, the staggered field, arising from the 3D ordering, plays the role of a confining field coupled with the spin chains within the material. As a result, the distinctive features characterizing the confined string states are observed through the inelastic neutron scattering spectra of YbAlO3\rm YbAlO_{3} [58].

VI Conclusion

We exploited an efficient routine to find exact solutions for the Bethe string states from the BAE of the spin-12\frac{1}{2} Heisenberg spin chain. Based on the exact solutions we further developed the TS3A which enabled us to determine eigenstates and eigenenergies of nonintegrable spin-12\frac{1}{2} Heisenberg systems with U(1) symmetry preserved. The method was then applied to systematically study the spin dynamics of the spin-12\frac{1}{2} Heisenberg spin chain under staggered field. In the dynamical spectra, we revealed a series of elastic peaks located at the integer multiples of the ordering wavevector QQ, signifying the existence of multi-QQ Bethe string states within the ground state. Moreover, the staggered field serves as a confining field for Bethe string states, inducing confinement gaps between the continua of 1- and 2-string states.

Our TS3A machine offers a Bethe-string-based scenario, contributing to a more comprehensive understanding of Heisenberg spin systems. We have demonstrated the efficiency and validity of this framework by interpreting experimental observations of the quasi-1D antiferromagnet YbAlO3\rm YbAlO_{3}. This intriguing consistency between theoretical predictions based on the TS3A and experimental results motivates its extended application to ladder and two-dimensional Heisenberg systems. This broadening of scope not only enhances the versatility of the Bethe string picture but also transcends its conventional one-dimensional limitations.

Acknowledgments

We thank Yunfeng Jiang for helpful discussion. This work is supported by National Natural Science Foundation of China No. 12274288 and the Innovation Program for Quantum Science and Technology Grant No. 2021ZD0301900, and the Natural Science Foundation of Shanghai with grant No. 20ZR1428400.

Appendix A Iterative method for exact solution

This appendix present the iterative method for solving the Bethe equation. Note that it’s sufficient to solve the highest weight state containing only finite rapidities, while other states can be obtained by adding infinite rapidities [54].

A.1 Deviation dj,αn=0d_{j,\alpha}^{n}=0

For the 1-string state, all rapidities are real, which can be directly solved from the iterative form of the Bethe equation,

λj=12tan[πNIj+1Nk=1Marctan(λjλk)]\lambda_{j}=\frac{1}{2}\tan\left[\frac{\pi}{N}I_{j}+\frac{1}{N}\sum_{k=1}^{M}\arctan(\lambda_{j}-\lambda_{k})\right] (9)

where {Ij}\{I_{j}\} is the corresponding Bethe quantum number for {λj}\{\lambda_{j}\}.

For the string state, there is at least one complex rapidity in the pattern of Eq. (5). To obtain the corresponding rapidities, we convert the reduced Bethe equation Eq. (7) into the iterative form,

λj,α=j2tan[πNIj,α+12Nk=1Mβ=1Mk(k,β)(j,α)Θjk(λj,αλk,β)],\lambda_{j,\alpha}=\frac{j}{2}\tan\left[\frac{\pi}{N}I_{j,\alpha}+\frac{1}{2N}\underset{(k,\beta)\neq(j,\alpha)}{\sum_{k=1}^{M}\sum_{\beta=1}^{M_{k}}}\Theta_{jk}(\lambda_{j,\alpha}-\lambda_{k,\beta})\right], (10)

where {Ij,α}\{I_{j,\alpha}\} is the corresponding reduced Bethe quantum number for string centers {λj,α}\{\lambda_{j,\alpha}\}. Following Eq. (5), the complex string states is constructed from {λj,α}\{\lambda_{j,\alpha}\} with dj,αn=0d_{j,\alpha}^{n}=0.

A.2 Deviation dj,αn0d_{j,\alpha}^{n}\neq 0

To determine the exact deviation {dj,αn}\{d_{j,\alpha}^{n}\}, the strategy becomes more intricate for the XXX model [54] and for the gapped XXZ model [26]. Here, we only consider 2- and 3-string states for illustration.

For a string with length j=2j=2, its two complex rapidities are λj+,=λj1,2=λj0±i2+dj1,2\lambda_{j}^{+,-}=\lambda_{j}^{1,2}=\lambda_{j}^{0}\pm\frac{i}{2}+d_{j}^{1,2}, where the deviations are purely imaginary, dj1=iδj1d_{j}^{1}=i\delta^{1}_{j} and dj2=iδj2=iδj1d_{j}^{2}=i\delta^{2}_{j}=-i\delta^{1}_{j}. Then we can have the first-order deviation,

δj=21(λj+i/2λj++i/2)N(krealλj+λk+iλj+λki).\delta_{j=2}^{1}\approx\left(\frac{\lambda_{j}^{+}-i/2}{\lambda_{j}^{+}+i/2}\right)^{N}\left(\prod_{k}^{real}\frac{\lambda_{j}^{+}-\lambda_{k}+i}{\lambda_{j}^{+}-\lambda_{k}-i}\right). (11)

Next, utilizing the first-order deviation, we can determine the true Bethe quantum number J1,2J^{1,2} from reduced one I2I_{2},

J1=J2ΘH(δ)=12(I2+N2sign(λj0)ΘH(δ))J^{1}=J^{2}-\Theta_{H}(\delta)=\frac{1}{2}\left(I_{2}+\frac{N}{2}\mbox{sign}(\lambda_{j}^{0})-\Theta_{H}(\delta)\right) (12)

where

ΘH(δ)=N2M+1+I2,mod 2.\Theta_{H}(\delta)=\frac{N}{2}-M+1+I_{2},\quad\mbox{mod 2}. (13)

Then, considering the sum of the logarithmic Bethe equations Eq. (6),

σ{+,}Θ1(λσ)=1Nσ{+,}(2πIσ+k=1MΘ2(λσλk)),\sum_{\sigma\in\{+,-\}}\Theta_{1}(\lambda^{\sigma})=\frac{1}{N}\sum_{\sigma\in\{+,-\}}\left(2\pi I_{\sigma}+\sum_{k=1}^{M}\Theta_{2}(\lambda^{\sigma}-\lambda_{k})\right), (14)

and the deformation of Bethe equation Eq. (4),

λ+λiλ+λ+i=(λ+i/2λ++i/2)Nkλ+λk+iλ+λki,\frac{\lambda^{+}-\lambda^{-}-i}{\lambda^{+}-\lambda^{-}+i}=\left(\frac{\lambda^{+}-i/2}{\lambda^{+}+i/2}\right)^{N}\prod_{k}\frac{\lambda^{+}-\lambda_{k}+i}{\lambda^{+}-\lambda_{k}-i}, (15)

we can solve for λ±\lambda^{\pm}, along with {λ1}M2\{\lambda_{1}\}_{M-2} from the Bethe equations Eq. (6) of 1-strings.

For a string with length j=3j=3, it contains three rapidities, λj0\lambda_{j}^{0}, λj+,=λj1,2=λj0±i+dj1,2\lambda_{j}^{+,-}=\lambda_{j}^{1,2}=\lambda_{j}^{0}\pm i+d_{j}^{1,2}, where dj1=(dj2)=ϵ1+iδ1d_{j}^{1}=(d_{j}^{2})^{*}=\epsilon^{1}+i\delta^{1}. Then we can have the first-order deviation,

dj=316i(λj1+i/2λj1i/2)N(krealλj1λk+iλj1λki).d_{j=3}^{1}\approx 6i\cdot\left(\frac{\lambda_{j}^{1}+i/2}{\lambda_{j}^{1}-i/2}\right)^{-N}\left(\prod_{k}^{real}\frac{\lambda_{j}^{1}-\lambda_{k}+i}{\lambda_{j}^{1}-\lambda_{k}-i}\right). (16)

We note that for the 3-string, Im(λ+)>1/2\mbox{Im}(\lambda^{+})>1/2 must hold, which leads to the fact that J±J^{\pm} must be a wide pair with JJ+=1J^{-}-J^{+}=1. Then, we still need two more equations to solve the true Bethe quantum numbers J0J^{0}, J±J^{\pm}. The first equation is the sum of the logarithmic Bethe equations Eq. (6),

J++J0+J=I312k=11-strsign(λλk).\begin{split}J^{+}+J^{0}+J^{-}&=I_{3}-\frac{1}{2}\sum_{k=1}^{\text{1-str}}\mbox{sign}(\lambda-\lambda_{k}).\end{split} (17)

Another necessary equation is the sum of logarithmic BAEs of λ±\lambda^{\pm}

2π(J++J)+Θ2(λ+λ0)+Θ2(λλ0)=N(Θ1(λ+)+Θ1(λ))Θ2(λ+λ)Θ2(λλ+)k=1,β(Θ2(λ+λk,β)+Θ2(λλk,β)),\begin{split}&2\pi(J^{+}+J^{-})+\Theta_{2}(\lambda^{+}-\lambda^{0})+\Theta_{2}(\lambda^{-}-\lambda^{0})\\ &\quad=N(\Theta_{1}(\lambda^{+})+\Theta_{1}(\lambda^{-}))-\Theta_{2}(\lambda^{+}-\lambda^{-})-\Theta_{2}(\lambda^{-}-\lambda^{+})\\ &\quad-\sum_{k=1,\beta}(\Theta_{2}(\lambda^{+}-\lambda_{k,\beta})+\Theta_{2}(\lambda^{-}-\lambda_{k,\beta})),\end{split} (18)

Let A be the right hand side of Eq. (18). Because Θ2(λ+λ0)+Θ2(λλ0)(2π,2π)\Theta_{2}(\lambda^{+}-\lambda^{0})+\Theta_{2}(\lambda^{-}-\lambda^{0})\in(-2\pi,2\pi), J++JJ^{+}+J^{-} is the even(odd) integer number in (A/2π1,A/2π+1)(A/2\pi-1,A/2\pi+1) when MM is even(odd). Therefore,

J++J=(1+(1)M)12(A2π+1)+(1(1)M)(12(A2π+1)+1212).\begin{split}J^{+}+J^{-}&=(1+(-1)^{M})\left\lfloor\frac{1}{2}\left(\frac{A}{2\pi}+1\right)\right\rfloor\\ &\quad+(1-(-1)^{M})\left(\left\lfloor\frac{1}{2}\left(\frac{A}{2\pi}+1\right)+\frac{1}{2}\right\rfloor-\frac{1}{2}\right).\end{split} (19)

Now combing the wide pair condition (JJ+=1J^{-}-J^{+}=1), Eqs. (17), and (19), J±J^{\pm} and J0J^{0} can be determined. The Bethe quantum number {Jk}\{J_{k}\} for real rapidities can be shown to be of the following expression,

Jk=Ik12sgn(λkλj=30).J_{k}=I_{k}-\frac{1}{2}\mbox{sgn}(\lambda_{k}-\lambda^{0}_{j=3}). (20)

To solve rapidities, we first need the sum of logarithmic BAE of J±J^{\pm} and J0J^{0} without setting ϵ\epsilon and δ\delta to be zero

2πN(J++J0+J)=Θ1(λ+)+Θ1(λ0)+Θ1(λ)1NkrealΘ2(λ+λk)+Θ2(λ0λk)+Θ2(λλk).\begin{split}&\frac{2\pi}{N}(J^{+}+J^{0}+J^{-})=\Theta_{1}(\lambda^{+})+\Theta_{1}(\lambda^{0})+\Theta_{1}(\lambda^{-})\\ &-\frac{1}{N}\sum_{k}^{real}\Theta_{2}(\lambda^{+}-\lambda_{k})+\Theta_{2}(\lambda^{0}-\lambda_{k})+\Theta_{2}(\lambda^{-}-\lambda_{k}).\end{split} (21)

The second equation is the sum of logarithmic BAE of J±J^{\pm} Eq. (18). The third one is obtained from Bethe equation Eq. (4) after some simple manipulation

(λ+λ0)i(λ+λ0)+i=(λ+λ)+i(λ+λ)ik(λ+λk)+i(λ+λk)i(λ+i/2λ++i/2)N.\begin{split}\frac{(\lambda^{+}-\lambda^{0})-i}{(\lambda^{+}-\lambda^{0})+i}&=\frac{(\lambda^{+}-\lambda^{-})+i}{(\lambda^{+}-\lambda^{-})-i}\cdot\prod_{k}\frac{(\lambda^{+}-\lambda_{k})+i}{(\lambda^{+}-\lambda_{k})-i}\\ &\quad\cdot\left(\frac{\lambda^{+}-i/2}{\lambda^{+}+i/2}\right)^{N}.\end{split} (22)

The logarithmic Bethe equations Eq. (6) are also needed for real rapidities.

{J}M=5\{J\}_{M=5} {I}M=5\{I\}_{M=5} {λ}M=5\{\lambda\}_{M=5} EnergyEnergy
1. unphysical 4 0.495521913637784 + 0.962224932131036i -3.632275481625215
3 131_{3} 0.445792844757107 + 0.000000000000000i
5 0.495521913637784 - 0.962224932131036i
2 3/213/2_{1} 0.180317318693691 + 0.000000000000000i
3 5/215/2_{1} 0.445792844757134 + 0.000000000000000i
2. physical 4 0.491814213695900 + 0.961471132379077i -3.60069325626932
3 131_{3} 0.444763506448628 + 0.018770199402376i
5 0.491814213695898 - 0.961471132379085i
2 3/213/2_{1} 0.180714318631831 + 0.000000000000000i
3 5/215/2_{1} 0.444763506448649 - 0.018770199402378i
Table 2: The solutions of a 3-string state to Bethe ansatz equations Eq. (4) with N=12N=12 and M=5M=5. The unphysical solutions with repeated rapidities are obtained from the method described in Appendix A.1 and A.2. The physical solutions are obtained from the method described in Appendix A.3.

Here, we present the 3-string state results of N=12N=12 and M=5M=5 obtained from the above iterative method in the first set of Table 2. We can observe that two real rapidities coincide, one is the string center and another is a 1-string. However, it is unphysical because of the incorrect eigenenergy and the absence of wave function under this set of solutions.

A.3 Repeated real rapidities

To tackle the issue of the repeated real rapidities of λ0\lambda^{0}, we introduce a small imaginary part to create a complex conjugate pair, as required by the BAE. Now, we have two complex conjugate pairs. The first pair has a small imaginary part, λ0±=λ0±iδ0\lambda^{0\pm}=\lambda_{0}\pm i\delta_{0}, while the second one has a larger imaginary part around ±i\pm i, λ3±=λ3±i(1+δ3)\lambda^{3\pm}=\lambda_{3}\pm i(1+\delta_{3}). Note that 4 complex rapidities need 4 equations to solve. The strategy is similar to the procedures mentioned above. Two equations come from the sum of logarithmic Bethe equations of λ0±\lambda^{0\pm} and λ3±\lambda^{3\pm}. Another two equations come from the original Bethe equations of λ0+\lambda^{0+} and λ3+\lambda^{3+}. Combining the logarithmic Bethe equations for real rapidity, we could solve λ0±\lambda^{0\pm}, λ3±\lambda^{3\pm}, and real rapidities {λ1}M4\{\lambda_{1}\}_{M-4}.

Then, we re-determine the 3-string state for N=12N=12 and M=5M=5 [in the 2nd set of Table 2]. Now, this set of rapidities is the exact solution of the original Bethe equation Eq. (4), which is consistent with Ref. [69], rational QQ-system method and ED calculation.

Appendix B The determinant formula

B.1 Norm of the Bethe state

Given a set of rapidities λj{\lambda_{j}} (j=1,,Mj=1,\ldots,M) representing exact solutions of the Bethe Ansatz equation Eq. (4), the norm of the corresponding Bethe state is expressed as [2, 54, 81],

M({λj})=(1)Mjk(λjλk+i)jk(λjλk)detΦ({λ}),\begin{split}\mathbb{N}_{M}(\{\lambda_{j}\})&=(-1)^{M}\frac{\prod_{j\neq k}(\lambda_{j}-\lambda_{k}+i)}{\prod_{j\neq k}(\lambda_{j}-\lambda_{k})}\det\Phi(\{\lambda\}),\end{split} (23)

where the matrix elements of Φ\Phi are

Φab=δab[N41+4λa2k21+(λaλk)2]+(1δab)21+(λaλb)2\begin{split}\Phi_{ab}&=\delta_{ab}\left[N\frac{4}{1+4\lambda_{a}^{2}}-\sum_{k}\frac{2}{1+(\lambda_{a}-\lambda_{k})^{2}}\right]\\ &+(1-\delta_{ab})\frac{2}{1+(\lambda_{a}-\lambda_{b})^{2}}\end{split} (24)

B.2 Form factors

The non-zero form factors associated with σz\sigma^{z} correspond to states characterized by equal magnon numbers,

Fjz({μ}M,{λ}M)={μ}M|σjz|{λ}M=ϕj1({μ}M)ϕj1({λ}M)l=1M(μl+i/2)(λl+i/2)iMdet(H2P)l>m(μlμm)l<m(λlλm).\begin{split}F_{j}^{z}(\{\mu\}_{M},\{\lambda\}_{M})&=\langle\{\mu\}_{M}|\sigma_{j}^{z}|\{\lambda\}_{M}\rangle\\ &=\frac{\phi_{j-1}(\{\mu\}_{M})}{\phi_{j-1}(\{\lambda\}_{M})}\prod_{l=1}^{M}\frac{(\mu_{l}+i/2)}{(\lambda_{l}+i/2)}\\ &\cdot\frac{i^{M}\det(H-2P)}{\prod_{l>m}(\mu_{l}-\mu_{m})\prod_{l<m}(\lambda_{l}-\lambda_{m})}.\end{split} (25)

where ϕj({λ}M)=eiqλrj\phi_{j}(\{\lambda\}_{M})=e^{-iq_{\lambda}r_{j}}, and qλq_{\lambda} is the eigen-momentum of Bethe state |{λ}M|\{\lambda\}_{M}\rangle. The matrix elements of HH and PP matrix are defined as

Hab=1(μaλb)(laM(μlλb+i)(λbi/2λb+i/2)NlaM(μlλbi)),\begin{split}H_{ab}&=\frac{1}{(\mu_{a}-\lambda_{b})}\left(\prod^{M}_{l\neq a}(\mu_{l}-\lambda_{b}+i)\right.\\ &\left.-\left(\frac{\lambda_{b}-i/2}{\lambda_{b}+i/2}\right)^{N}\prod^{M}_{l\neq a}(\mu_{l}-\lambda_{b}-i)\right),\end{split} (26)
Pab=l=1M(λlλb+i)(μa+i/2)(μai/2),P_{ab}=\frac{\prod_{l=1}^{M}(\lambda_{l}-\lambda_{b}+i)}{(\mu_{a}+i/2)(\mu_{a}-i/2)}, (27)

respectively. Here we note that both the 2- and 3-string states with dj,αn=0d_{j,\alpha}^{n}=0 can cause divergence in the PP matrix Eq. (27). However, the divergence can not be regularized since there are no common terms in HH matrix Eq. (26).

References

  • Jimbo and Miwa [1995] M. Jimbo and T. Miwa, Algebraic Analysis of Solvable Lattice Models (American Mathematical Society, 1995).
  • Franchini [2017] F. Franchini, An Introduction to Integrable Techniques for One-Dimensional Quantum Systems, Vol. 940 (Springer, Cham, 2017).
  • Yang et al. [2023a] J. Yang, X. Wang, and J. Wu, Magnetic excitations in the one-dimensional Heisenberg-Ising model with external fields and their experimental realizations, J. Phys. A: Math. Theor. 56, 013001 (2023a).
  • He et al. [2017] F. He, Y. Jiang, Y.-C. Yu, H.-Q. Lin, and X.-W. Guan, Quantum criticality of spinons, Phys. Rev. B 96, 220401 (2017).
  • Gaudin [1967] M. Gaudin, Un systeme a une dimension de fermions en interaction, Phys. Lett. A 24, 55 (1967).
  • Yang [1967] C. N. Yang, Some exact results for the many-body problem in one dimension with repulsive delta-function interaction, Phys. Rev. Lett. 19, 1312 (1967).
  • Guan et al. [2013] X.-W. Guan, M. T. Batchelor, and C. Lee, Fermi gases in one dimension: From bethe ansatz to experiments, Rev. Mod. Phys. 85, 1633 (2013).
  • Lieb and Liniger [1963] E. H. Lieb and W. Liniger, Exact Analysis of an Interacting Bose Gas. i. The General Solution and the Ground State, Phys. Rev. 130, 1605 (1963).
  • Lieb [1963] E. H. Lieb, Exact Analysis of an Interacting Bose Gas. II. The Excitation Spectrum, Phys. Rev. 130, 1616 (1963).
  • Pfeuty [1970] P. Pfeuty, The one-dimensional Ising model with a transverse field, Ann. Phys. 57, 79 (1970).
  • Niemeijer [1967] T. Niemeijer, Some exact calculations on a chain of spins 1/2, Physica 36, 377 (1967).
  • Boyanovsky [1989] D. Boyanovsky, Field theory of the two-dimensional Ising model: Conformal invariance, order and disorder, and bosonization, Phys. Rev. B 39, 6744 (1989).
  • A. B. Zamolodchikov [1989] A. B. Zamolodchikov, Integrables of motion and S-matrix of the (scaled) T = TcT_{c} Ising model with magnetic field, Int. J. Mod. Phys. A 4, 4235 (1989).
  • Li et al. [2023] R.-T. Li, S. Cheng, Y.-Y. Chen, and X.-W. Guan, Exact results of dynamical structure factor of Lieb-Liniger model, J. Phys. A: Math. Theor. 56, 335204 (2023).
  • Guan and Andrei [2018] H. Guan and N. Andrei, Quench Dynamics of the Gaudin-Yang Model, arXiv.1803.04846  (2018).
  • Kitanine et al. [1999] N. Kitanine, J. M. Maillet, and V. Terras, Form factors of the XXZ Heisenberg spin-1/2 finite chain, Nucl. Phys. B 554, 647 (1999).
  • Kitanine et al. [2000] N. Kitanine, J. M. Maillet, and V. Terras, Correlation functions of the XXZ Heisenberg spin-1/2 chain in a magnetic field, Nucl. Phys. B 567, 554 (2000).
  • Yang et al. [2022] J. Yang, W. Yuan, T. Imai, Q. Si, J. Wu, and M. Kormos, Local dynamics and thermal activation in the transverse-field ising chain, Phys. Rev. B 106, 125149 (2022).
  • Iorgov et al. [2011] N. Iorgov, V. Shadura, and Y. Tykhyy, Spin operator matrix elements in the quantum Ising chain: fermion approach, J. Stat. Mech. 2011, P02028 (2011).
  • Mussardo [2020] G. Mussardo, Statistical Field Theory: An Introduction to Exactly Solved Models in Statistical Physics (Oxford University Press, 2020).
  • Caux and Hagemans [2006a] J.-S. Caux and R. Hagemans, The four-spinon dynamical structure factor of the heisenberg chain, Journal of Statistical Mechanics: Theory and Experiment 2006, P12013 (2006a).
  • Caux et al. [2008a] J.-S. Caux, J. Mossel, and I. P. Castillo, The two-spinon transverse structure factor of the gapped heisenberg antiferromagnetic chain, Journal of Statistical Mechanics: Theory and Experiment 2008, P08006 (2008a).
  • Castillo [2020] I. P. Castillo, The exact two-spinon longitudinal dynamical structure factor of the anisotropic XXZ model, arXiv:2005.10729 [cond-mat]  (2020).
  • Takahashi [1971] M. Takahashi, One-Dimensional Heisenberg Model at Finite Temperature, Prog. Theor. Phys. 46, 401 (1971).
  • Kohno [2009] M. Kohno, Dynamically Dominant Excitations of String Solutions in the Spin-1/2 Antiferromagnetic Heisenberg Chain in a Magnetic Field, Phys. Rev. Lett. 102, 037203 (2009).
  • Yang et al. [2019] W. Yang, J. Wu, S. Xu, Z. Wang, and C. Wu, One-dimensional quantum spin dynamics of Bethe string states, Phys. Rev. B 100, 184406 (2019).
  • Coldea et al. [2010] R. Coldea, D. A. Tennant, E. M. Wheeler, E. Wawrzynska, D. Prabhakaran, M. Telling, K. Habicht, P. Smeibidl, and K. Kiefer, Quantum criticality in an Ising chain: Experimental evidence for emergent E8E_{8} symmetry, Science 327, 177 (2010).
  • Wu et al. [2014] J. Wu, M. Kormos, and Q. Si, Finite-temperature spin dynamics in a perturbed quantum critical ising chain with an E8{E}_{8} symmetry, Phys. Rev. Lett. 113, 247201 (2014).
  • Wang et al. [2021] X. Wang, H. Zou, K. Hódsági, M. Kormos, G. Takács, and J. Wu, Cascade of singularities in the spin dynamics of a perturbed quantum critical ising chain, Phys. Rev. B 103, 235117 (2021).
  • Zou et al. [2021] H. Zou, Y. Cui, X. Wang, Z. Zhang, J. Yang, G. Xu, A. Okutani, M. Hagiwara, M. Matsuda, G. Wang, G. Mussardo, K. Hódsági, M. Kormos, Z. He, S. Kimura, R. Yu, W. Yu, J. Ma, and J. Wu, E8\rm{E}_{8} spectra of quasi-one-dimensional antiferromagnet BaCo2V2O8{\mathrm{BaCo}}_{2}{\mathrm{V}}_{2}{\mathrm{O}}_{8} under transverse field, Phys. Rev. Lett. 127, 077201 (2021).
  • Wang et al. [2023] X. Wang, K. Puzniak, K. Schmalzl, C. Balz, M. Matsuda, A. Okutani, M. Hagiwara, J. Ma, J. Wu, and B. Lake, Spin dynamics of the e8e_{8} particles (2023), arXiv:2308.00249 [cond-mat.str-el] .
  • Gao et al. [2024] Y. Gao, X. Wang, N. Xi, Y. Jiang, R. Yu, and J. Wu, Spin dynamics and dark particle in a weak-coupled quantum ising ladder with 𝒟8(1)\mathcal{D}_{8}^{(1)} spectrum (2024), arXiv:2402.11229 [cond-mat.str-el] .
  • Xi et al. [2024] N. Xi, X. Wang, Y. Gao, Y. Jiang, R. Yu, and J. Wu, Emergent D8(1){D}_{8}^{(1)} spectrum and topological soliton excitation in CoNb2O6 (2024), arXiv:2403.10785 [cond-mat.str-el] .
  • LeClair et al. [1998] A. LeClair, A. Ludwig, and G. Mussardo, Integrability of coupled conformal field theories, Nucl. Phys. B 512, 523 (1998).
  • Lake et al. [2013] B. Lake, D. A. Tennant, J.-S. Caux, T. Barthel, U. Schollwöck, S. E. Nagler, and C. D. Frost, Multispinon Continua at Zero and Finite Temperature in a Near-Ideal Heisenberg Chain, Phys. Rev. Lett. 111, 137205 (2013).
  • Wang et al. [2018] Z. Wang, J. Wu, W. Yang, A. K. Bera, D. Kamenskyi, A. T. M. N. Islam, S. Xu, J. M. Law, B. Lake, C. Wu, and A. Loidl, Experimental observation of Bethe strings, Nature 554, 219 (2018).
  • Bera et al. [2020] A. K. Bera, J. Wu, W. Yang, R. Bewley, M. Boehm, J. Xu, M. Bartkowiak, O. Prokhnenko, B. Klemke, A. T. M. N. Islam, J. M. Law, Z. Wang, and B. Lake, Dispersions of many-body Bethe strings, Nat. Phys. 16, 625 (2020).
  • Wang et al. [2019] Z. Wang, M. Schmidt, A. Loidl, J. Wu, H. Zou, W. Yang, C. Dong, Y. Kohama, K. Kindo, D. I. Gorbunov, S. Niesen, O. Breunig, J. Engelmayer, and T. Lorenz, Quantum Critical Dynamics of a XXZ in a Longitudinal Field: Strings vs Fractional Excitations, Phys. Rev. Lett. 123, 067202 (2019).
  • Zhang et al. [2020] Z. Zhang, K. Amelin, X. Wang, H. Zou, J. Yang, U. Nagel, T. Rõõm, T. Dey, A. A. Nugroho, T. Lorenz, J. Wu, and Z. Wang, Observation of E8E_{8} particles in an Ising chain antiferromagnet, Phys. Rev. B 101, 220411 (2020).
  • Amelin et al. [2020] K. Amelin, J. Engelmayer, J. Viirok, U. Nagel, T. Rõõm, T. Lorenz, and Z. Wang, Experimental observation of quantum many-body excitations of E8E_{8} symmetry in the Ising chain ferromagnet CoNb2O6\rm CoNb_{2}O_{6}Phys. Rev. B 102, 104431 (2020).
  • Steinigeweg et al. [2016] R. Steinigeweg, J. Herbrych, X. Zotos, and W. Brenig, Heat Conductivity of the Heisenberg Spin-1/2 Ladder: From Weak to Strong Breaking of Integrability, Phys. Rev. Lett. 116, 017202 (2016).
  • Batchelor et al. [2007] M. T. Batchelor, X. W. Guan, N. Oelkers, and Z. Tsuboi, Integrable models and quantum spin ladders: comparison between theory and experiment for the strong coupling ladder compounds, Adv. Phys. 56, 465 (2007).
  • Essler et al. [1997] F. H. L. Essler, A. M. Tsvelik, and G. Delfino, Quasi-one-dimensional spin-1/2 Heisenberg magnets in their ordered phase: Correlation functions, Phys. Rev. B 56, 11001 (1997).
  • Starykh and Balents [2014] O. A. Starykh and L. Balents, Excitations and quasi-one-dimensionality in field-induced nematic and spin density wave states, Phys. Rev. B 89, 104407 (2014).
  • Bonča et al. [1994] J. Bonča, J. P. Rodriguez, J. Ferrer, and K. S. Bedell, Direct calculation of spin stiffness for spin-1/2 Heisenberg models, Phys. Rev. B 50, 3415 (1994).
  • Heidrich-Meisner et al. [2003] F. Heidrich-Meisner, A. Honecker, D. C. Cabra, and W. Brenig, Zero-frequency transport properties of one-dimensional spin-1/2 systems, Phys. Rev. B 68, 134436 (2003).
  • Keselman et al. [2020] A. Keselman, L. Balents, and O. A. Starykh, Dynamical Signatures of Quasiparticle Interactions in Quantum Spin Chains, Phys. Rev. Lett. 125, 187201 (2020).
  • Zhou et al. [2021] C. Zhou, Z. Yan, H.-Q. Wu, K. Sun, O. A. Starykh, and Z. Y. Meng, Amplitude Mode in Quantum Magnets via Dimensional Crossover, Phys. Rev. Lett. 126, 227201 (2021).
  • Takahashi and Suzuki [1972] M. Takahashi and M. Suzuki, One-Dimensional Anisotropic Heisenberg Model at Finite Temperatures, Prog. Theor. Phys. 48, 2187 (1972).
  • Fujita et al. [2003] T. Fujita, T. Kobayashi, and H. Takahashi, Large-N behaviour of string solutions in the Heisenberg model, J. Phys. A: Math. Gen. 36, 1553 (2003).
  • Ilakovac et al. [1999] A. Ilakovac, M. Kolanović, S. Pallua, and P. Prester, Violation of the string hypothesis and the Heisenberg XXZ spin chain, Phys. Rev. B 60, 7271 (1999).
  • Isler and Paranjape [1993] K. Isler and M. B. Paranjape, Violations of the string hypothesis in the solutions of the Bethe ansatz equations in the XXX-Heisenberg model, Phys. Lett. B 319, 209 (1993).
  • Essler et al. [1992] F. H. L. Essler, V. E. Korepin, and K. Schoutens, Fine structure of the Bethe ansatz for the spin-1/2 Heisenberg XXX model, J. Phys. A: Math. Gen. 25, 4115 (1992).
  • Hagemans and Caux [2007] R. Hagemans and J.-S. Caux, Deformed strings in the Heisenberg model, J. Phys. A: Math. Theor. 40, 14605 (2007).
  • Marboe and Volin [2017] C. Marboe and D. Volin, Fast analytic solver of rational Bethe equations, J. Phys. A: Math. Theor. 50, 204002 (2017).
  • Bajnok et al. [2020] Z. Bajnok, E. Granet, J. L. Jacobsen, and R. I. Nepomechie, On generalized Q-systems, J. High Energ. Phys. 2020 (3), 177.
  • Hou et al. [2024] J. Hou, Y. Jiang, and R.-D. Zhu, Spin-ss rational QQ-system, SciPost Phys. 16, 113 (2024).
  • Yang et al. [2023b] J. Yang, T. Xie, S. E. Nikitin, J. Wu, and A. Podlesnyak, Confinement of many-body bethe strings, Phys. Rev. B 108, L020402 (2023b).
  • Wu et al. [2019] L. S. Wu, S. E. Nikitin, Z. Wang, W. Zhu, C. D. Batista, A. M. Tsvelik, A. M. Samarakoon, D. A. Tennant, M. Brando, L. Vasylechko, M. Frontzek, A. T. Savici, G. Sala, G. Ehlers, A. D. Christianson, M. D. Lumsden, and A. Podlesnyak, Tomonaga-Luttinger liquid behavior and spinon confinement in YbAlO3\rm YbAlO_{3}Nat. Commun. 10, 698 (2019).
  • Fan et al. [2020] Y. Fan, J. Yang, W. Yu, J. Wu, and R. Yu, Phase diagram and quantum criticality of Heisenberg spin chains with Ising anisotropic interchain couplings, Phys. Rev. Res. 2, 013345 (2020).
  • Nikitin et al. [2021] S. E. Nikitin, S. Nishimoto, Y. Fan, J. Wu, L. S. Wu, A. S. Sukhanov, M. Brando, N. S. Pavlovskii, J. Xu, L. Vasylechko, R. Yu, and A. Podlesnyak, Multiple fermion scattering in the weakly coupled spin-chain compound YbAlO3\rm YbAlO_{3}Nat. Commun. 12, 3599 (2021).
  • Bera et al. [2014] A. K. Bera, B. Lake, W.-D. Stein, and S. Zander, Magnetic correlations of the quasi-one-dimensional half-integer spin-chain antiferromagnets SrM2{M}_{2}V2O8 (MM = Co, Mn), Phys. Rev. B 89, 094402 (2014).
  • Bethe [1931] H. Bethe, Zur Theorie der Metalle, Z. Physik 71, 205 (1931).
  • Karabach et al. [1997] M. Karabach, G. Müller, H. Gould, and J. Tobochnik, Introduction to the Bethe Ansatz I, Comput. Phys. 11, 36 (1997).
  • Karbach et al. [2000] M. Karbach, K. Hu, and G. Müller, Introduction to the Bethe Ansatz III, arXiv:cond-mat/0008018  (2000).
  • Vladimirov [1986] A. A. Vladimirov, Proof of the invariance of the Bethe-ansatz solutions under complex conjugation, Theor. Math. Phys. 66, 102 (1986).
  • Takahashi [1999] M. Takahashi, Thermodynamics of One-Dimensional Solvable Models (Cambridge University Press, 1999).
  • Press et al. [2007] W. Press, S. Teukolsky, W. Vetterling, and B. Flannery, Numerical recipes in C++: The art of scientific computing. (Cambridge Univ. Press, 2007).
  • Deguchi and Giri [2015] T. Deguchi and P. R. Giri, Non self-conjugate strings, singular strings and rigged configurations in the Heisenberg model, J. Stat. Mech.: Theory Exp. 2015 (2), P02004.
  • [70] In the spin-1/2 XXX chain, we can check this invalidity by inserting the unphysical solutions into the wavefunction.
  • James et al. [2018] A. J. A. James, R. M. Konik, P. Lecheminant, N. J. Robinson, and A. M. Tsvelik, Non-perturbative methodologies for low-dimensional strongly-correlated systems: From non-Abelian bosonization to truncated spectrum methods, Rep. Prog. Phys. 81, 046002 (2018).
  • Yurov and Zamolodchikov [1990] V. P. Yurov and A. B. Zamolodchikov, Truncated comformal space approach to scaling lee-yang model, International Journal of Modern Physics A 05, 3221 (1990), publisher: World Scientific Publishing Co.
  • Caux and Konik [2012] J.-S. Caux and R. M. Konik, Constructing the generalized gibbs ensemble after a quantum quench, Phys. Rev. Lett. 109, 175301 (2012).
  • Caux and Hagemans [2006b] J.-S. Caux and R. Hagemans, The four-spinon dynamical structure factor of the Heisenberg chain, J. Stat. Mech.: Theory Exp. 2006 (12), P12013.
  • Caux et al. [2008b] J.-S. Caux, J. Mossel, and I. P. Castillo, The two-spinon transverse structure factor of the gapped Heisenberg antiferromagnetic chain, J. Stat. Mech.: Theory Exp. 2008 (08), P08006.
  • Lin [1990] H. Q. Lin, Exact diagonalization of quantum-spin models, Phys. Rev. B 42, 6561 (1990).
  • Jung and Noh [2020] J.-H. Jung and J. D. Noh, Guide to exact diagonalization study of quantum thermalization, J. Korean Phys. Soc. 76, 670 (2020).
  • Lake et al. [2010] B. Lake, A. M. Tsvelik, S. Notbohm, D. Alan Tennant, T. G. Perring, M. Reehuis, C. Sekar, G. Krabbes, and B. Büchner, Confinement of fractional quantum number particles in a condensed-matter system, Nat. Phys. 6, 50 (2010).
  • Bera et al. [2017] A. K. Bera, B. Lake, F. H. L. Essler, L. Vanderstraeten, C. Hubig, U. Schollwöck, A. T. M. N. Islam, A. Schneidewind, and D. L. Quintero-Castro, Spinon confinement in a quasi-one-dimensional anisotropic Heisenberg magnet, Phys. Rev. B 96, 054423 (2017).
  • Wang et al. [2016] Z. Wang, J. Wu, S. Xu, W. Yang, C. Wu, A. K. Bera, A. T. M. N. Islam, B. Lake, D. Kamenskyi, P. Gogoi, H. Engelkamp, N. Wang, J. Deisenhofer, and A. Loidl, From confined spinons to emergent fermions: Observation of elementary magnetic excitations in a transverse-field Ising chain, Phys. Rev. B 94, 125130 (2016).
  • Slavnov [1989] N. A. Slavnov, Calculation of scalar products of wave functions and form factors in the framework of the alcebraic Bethe ansatz, Theor. Math. Phys. 79, 502 (1989).