This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Triple-charm molecular states composed of DDDD^{*}D^{*}D and DDDD^{*}D^{*}D^{*}

Si-Qiang Luo School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China School of mathematics and statistics, Lanzhou University, Lanzhou 730000, China    Tian-Wei Wu School of Fundamental Physics and Mathematical Sciences, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, 310024, China    Ming-Zhu Liu School of Space and Environment, Beihang University, Beijing 102206, China School of Physics, Beihang University, Beijing 102206, China    Li-Sheng Geng [email protected] School of Physics, Beihang University, Beijing 102206, China Beijing Key Laboratory of Advanced Nuclear Materials and Physics, Beihang University, Beijing, 102206, China School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, Henan 450001, China Lanzhou Center for Theoretical Physics, Lanzhou University, Lanzhou 730000, China    Xiang Liu [email protected] School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China Lanzhou Center for Theoretical Physics, Lanzhou University, Lanzhou 730000, China Research Center for Hadron and CSR Physics, Lanzhou University and Institute of Modern Physics of CAS, Lanzhou 730000, China Key Laboratory of Theoretical Physics of Gansu Province, and Frontiers Science Center for Rare Isotopes, Lanzhou University, Lanzhou 730000, China
Abstract

Inspired by the newly observed Tcc+T_{cc}^{+} state, we systematically investigate the SS-wave triple-charm molecular states composed of DDDD^{*}D^{*}D and DDDD^{*}D^{*}D^{*}. We employ the one-boson-exchange model to derive the interactions between D(D)D(D^{*}) and DD^{*} and solve the three-body Schrödinger equations with the Gaussian expansion method. The SS-DD mixing and coupled channel effects are carefully assessed in our study. Our results show that the I(JP)=12(0,1,2)I(J^{P})=\frac{1}{2}(0^{-},1^{-},2^{-}) DDDD^{*}D^{*}D and I(JP)=12(0,1,2,3)I(J^{P})=\frac{1}{2}(0^{-},1^{-},2^{-},3^{-}) DDDD^{*}D^{*}D^{*} systems could form bound states, which can be viewed as three-body hadronic molecules. We present not only the binding energies of the three-body bound states, but also the root-mean-square radii of DD-DD^{*} and DD^{*}-DD^{*}, which further corroborate the molecular nature of these states. These predictions could be tested in the future at LHC or HL-LHC.

I Introduction

As important members of the hadron family, exotic states have always interested both theoreticians and experimentalists. By definition, exotic states contain more complex quark and gluon contents than the conventional qq¯q\bar{q} mesons and qqqqqq baryons. Given their peculiar nature, studies of exotic states have been a hot topic in hadron physics.

Among the various exotic states, hadronic molecules are quite distinct. They are loosely bound states composed of two or several conventional hadrons and provide a good laboratory to study hadron structure and nonperturbative strong interactions at hadronic level. In 2003, the BABARBABAR Collaboration observed a charmed-strange state Ds0(2317)D_{s0}^{*}(2317) in the Dsπ0D_{s}\pi^{0} channel BaBar:2003oey . Soon after, the CLEO Collaboration not only confirmed its existence , but also found a new charmed-strange state Ds1(2460)D_{s1}^{\prime}(2460) in the Dsπ0D_{s}^{*}\pi^{0} mass spectrum CLEO:2003ggt . In the same year, the Belle Collaboration reported a hidden-charm state X(3872)X(3872) in the J/ψπ+πJ/\psi\pi^{+}\pi^{-} channel Belle:2003nnu . The Ds0(2317)D_{s0}^{*}(2317), Ds1(2460)D_{s1}^{\prime}(2460), and X(3872)X(3872) states have two peculiar features. The first is that their masses are about 100 MeV below the potential model predictions, which implies that it is difficult to categorize them as conventional mesons. The second is that Ds0(2317)D_{s0}^{*}(2317), Ds1(2460)D_{s1}^{\prime}(2460), and X(3872)X(3872) are close to and lower than the DKDK, DKD^{*}K, and DD¯D\bar{D}^{*} thresholds, which strongly hints at their molecular nature. Although there are still many controversies, hadronic molecules are one of the most popular interpretations of these exotic hadrons Barnes:2003dj ; Xie:2010zza ; Guo:2006fu ; Faessler:2007gv ; Feng:2012zze ; Faessler:2007us ; Zhang:2006ix ; Swanson:2003tb ; Wong:2003xk ; Liu:2009qhy ; Lee:2009hy ; Altenbuchinger:2013vwa . The observations of Ds0(2317)D_{s0}^{*}(2317), Ds1(2460)D_{s1}^{\prime}(2460), and X(3872)X(3872) opened a new era in searches for exotic states. In the following years, a plethora of hidden-charm XYZXYZ and PcP_{c} states were observed in experiments (for reviews, see Refs. Chen:2016qju ; Liu:2013waa ; Yuan:2018inv ; Olsen:2017bmm ; Guo:2017jvc ; Hosaka:2016pey ; Brambilla:2019esw ).

Very recently, the LHCb Collaboration observed a Tcc+T_{cc}^{+} state in the D0D0π+D^{0}D^{0}\pi^{+} channel LHCb:2021vvq ; LHCb:2021auc , whose mass and width obtained from a Breit-Wigner fit are

mBW=(mD++mD0)273±61±514+11keV,ΓBW=410±165±4338+18keV.\begin{split}m_{\rm BW}=&(m_{D^{*+}}+m_{D^{0}})-273\pm 61\pm 5^{+11}_{-14}\;{\rm keV},\\ \Gamma_{\rm BW}=&410\pm 165\pm 43^{+18}_{-38}\;{\rm keV}.\end{split} (1)

On the other hand, the pole position is given as LHCb:2021auc

mpole=(mD++mD0)360±400+4keV,Γpole=48±214+0keV.\begin{split}m_{\rm pole}=&(m_{D^{*+}}+m_{D^{0}})-360\pm 40^{+4}_{-0}\;{\rm keV},\\ \Gamma_{\rm pole}=&48\pm 2^{+0}_{-14}\;{\rm keV}.\end{split} (2)
Refer to caption
Figure 1: Various types of hadronic molecular candidates. Here, we choose Ds0(2317)D_{s0}^{*}(2317), X(3872)X(3872), and TccT_{cc} as examples.

From the decay products of Tcc+T_{cc}^{+}, one can infer its minimum quark component to be ccu¯d¯cc\bar{u}\bar{d}. Since the mass of the Tcc+T_{cc}^{+} is very close to the DDD^{*}D threshold, it could well be interpreted as a DDD^{*}D molecular state Li:2021zbw ; Ren:2021dsi ; Chen:2021vhg ; Dai:2021vgf ; Feijoo:2021ppq ; Wu:2021kbu as predicted in many previous works  Molina:2010tx ; Li:2012ss ; Liu:2019stu ; Xu:2017tsr . As early as in the 1980s, the likely existence of stable tetraquark states has attracted the interests of theorists Ader:1981db ; Ballot:1983iv ; Lipkin:1986dw ; Zouzou:1986qh ; Heller:1986bt ; Carlson:1987hh . Latter, various models with different quark-quark interactions were employed to study the mass spectrum of tetraquark states with the QQq¯q¯QQ\bar{q}\bar{q} configuration Manohar:1992nd ; Pepin:1996id ; Vijande:2006jf ; Ebert:2007rn ; Vijande:2013qr ; Karliner:2017qjm ; Eichten:2017ffp ; Richard:2018yrm ; Park:2018wjk ; Hernandez:2019eox . It should be noted that the Tcc+T_{cc}^{+} is the first observed double-charm exotic state. It is interesting to note that the decay width obtained from the Breit-Wigner fit and that derived from the pole position are quite different. The latter strongly supports its nature being a hadronic molecule of DDDD^{*}, as stressed, e.g., in Ref. Ling:2021bir .

The single-charm, hidden-charm, and double-charm molecular candidates have been established in experiments. In Fig. 1, we choose the Ds0(2317)D_{s0}^{*}(2317), X(3872)X(3872), and Tcc+T_{cc}^{+} states as examples and present the corresponding possible substructure. However, until now, there was no signal of triple-charm molecular states. In the future, experimental searches for triple-charm molecular states will be an interesting topic in exploring exotic hadrons.

In this work, we investigate the likely existences of triple-charm molecular states composed of DDDD^{*}D^{*}D and DDDD^{*}D^{*}D^{*}. There are three reasons for studying such systems. First, we notice that single- and double-charm molecular candidates in Fig. 1 contain one and two charmed mesons, respectively. Thus it is natural to ask whether there exist hadronic molecular states composed of three charmed mesons. Second, the observation of the Tcc+T_{cc}^{+} state provides a way to fix the interaction between two charmed mesons. In Ref. Wu:2021kbu , we successfully reproduced the binding energy of the Tcc+T_{cc}^{+} state, with the DDDD^{*} interaction provided by the one-boson-exchange (OBE) model. This makes the numerical results more reliable when dealing with systems containing more charmed mesons in the following study. Third, in Ref. Wu:2021kbu , we have studied the DDDDDD^{*} system and found that it has a I(JP)=12(1)I(J^{P})=\frac{1}{2}(1^{-}) bound state solution. Compared with the DDDDDD^{*} system, the DDDD^{*}D^{*}D and DDDD^{*}D^{*}D^{*} systems can have more spin configurations. Therefore, it is likely that there exist more hadronic molecular states in the DDDD^{*}D^{*}D and DDDD^{*}D^{*}D^{*} systems.

In the past several years, the LHCb Collaboration has achieved great success in discovering exotic states, including several PcP_{c} states LHCb:2015yax ; LHCb:2019kea , PcsP_{cs} LHCb:2020jpq , X0,1(2900)X_{0,1}(2900) LHCb:2020bls ; LHCb:2020pxc , and X(6900)X(6900) LHCb:2020bwg . These observations demonstrated the capacity of the LHCb detector in searching for exotic states. With the upgrade of the LHCb detector LHCb:2018roe , one can expect that more exotic states will be observed in the future. The predictions of molecular states with the configurations of DDDD^{*}D^{*}D and DDDD^{*}D^{*}D^{*} may inspire more experimental works along this line.

This paper is organized as follows. In Sec. II, we introduce the interactions between DD^{*} and D()D^{(*)} and present the details of the Gussian expansion method. Next in Sec. III, we present the binding energies and root-mean-square radii of the DDDD^{*}D^{*}D and DDDD^{*}D^{*}D^{*} systems. Finally, this paper ends with a short summary in Sec. IV.

II formalism

Refer to caption
Figure 2: The Feynman diagrams for the h1h2h3h4h_{1}h_{2}\to h_{3}h_{4} process. In this work, the h1h_{1}, h2h_{2}, h3h_{3}, and h4h_{4} are D()D^{(*)} mesons.

In order to study the DDDD^{*}D^{*}D and DDDD^{*}D^{*}D^{*} systems, we should first derive the effective potentials of the DD^{*}-DD^{*} and DD-DD^{*} pairs. For this purpose, we adopt the OBE model of Ref. Liu:2019stu . In the OBE model, the DD^{*}-D()D^{(*)} interactions occur by the scattering process as shown in Fig. 2, where we should consider the exchanges of π\pi, σ\sigma, ρ\rho, and ω\omega mesons. Then, in the momentum space, the effective potential related to the scatting amplitude can be written as

Vh1h2h3h4(𝐪)=h1h2h3h4(𝐪)i2mii2mf,V^{h_{1}h_{2}\to h_{3}h_{4}}({\bf q})=-\frac{{\cal M}^{h_{1}h_{2}\to h_{3}h_{4}}({\bf q})}{\sqrt{\prod_{i}2m_{i}\prod_{i}2m_{f}}}, (3)

where h1h2h3h4(𝐪){\cal M}^{h_{1}h_{2}\to h_{3}h_{4}}({\bf q}) is the scattering amplitude. The mim_{i} and mfm_{f} are masses of the initial and final states. To take into the finite size of the exchanged mesons, a monopole form factor is introduced

(q2,mE2)=Λ2mE2Λ2q2,{\cal F}(q^{2},m_{E}^{2})=\frac{\Lambda^{2}-m_{E}^{2}}{\Lambda^{2}-q^{2}}, (4)

where qq and mEm_{E} are the mass and momentum of the exchanged meson, respectively. The effective potentials in the coordinate space can be obtained by the following Fourier transformation

Vh1h2h3h4(𝐫)=d3𝐪(2π)3ei𝐪𝐫Vh1h2h3h4(𝐪)2(q2,mE2).V^{h_{1}h_{2}\to h_{3}h_{4}}({\bf r})=\int\frac{{\rm d}^{3}{\bf q}}{(2\pi)^{3}}{\rm e}^{i{\bf q}\cdot{\bf r}}V^{h_{1}h_{2}\to h_{3}h_{4}}({\bf q}){\cal F}^{2}(q^{2},m_{E}^{2}). (5)

In the following, we present the effective potentials of the DD^{*}-D()D^{(*)} interactions explicitly, i.e.,

VDDDD=gσ2𝒪1Yσ+12β2gV2𝒪1(𝒞1(I)Yρ+𝒞0(I)Yω),VDDDD=g23fπ2(𝒪2𝒫^+𝒪3𝒬^)𝒞1(I)Yπ1+23λ2gV2(2𝒪2𝒫^𝒪3𝒬^)(𝒞1(I)Yρ1+𝒞0(I)Yω1),VDDDD=g23fπ2(𝒪4𝒫^+𝒪5𝒬^)𝒞1(I)Yπ2+23λ2gV2(2𝒪4𝒫^𝒪5𝒬^)(𝒞1(I)Yρ2+𝒞0(I)Yω2),VDDDD=gσ2𝒪6Yσ+12β2gV2𝒪6(𝒞1(I)Yρ+𝒞0(I)Yω)g23fπ2(𝒪7𝒫^+𝒪8𝒬^)𝒞1(I)Yπ23λ2gV2(2𝒪7𝒫^𝒪8𝒬^)(𝒞1(I)Yρ+𝒞0(I)Yω).\begin{split}V^{DD^{*}\to DD^{*}}=&-g_{\sigma}^{2}{\cal O}_{1}Y_{\sigma}+\frac{1}{2}\beta^{2}g_{V}^{2}{\cal O}_{1}\left({\cal C}_{1}(I)Y_{\rho}+{\cal C}_{0}(I)Y_{\omega}\right),\\ V^{DD^{*}\to D^{*}D}=&\frac{g^{2}}{3f_{\pi}^{2}}({\cal O}_{2}\hat{\cal P}+{\cal O}_{3}\hat{\cal Q}){\cal C}_{1}^{\prime}(I)Y_{\pi 1}\\ &+\frac{2}{3}\lambda^{2}g_{V}^{2}(2{\cal O}_{2}\hat{\cal P}-{\cal O}_{3}\hat{\cal Q})\left({\cal C}_{1}^{\prime}(I)Y_{\rho 1}+{\cal C}_{0}^{\prime}(I)Y_{\omega 1}\right),\\ V^{DD^{*}\to D^{*}D^{*}}=&\frac{g^{2}}{3f_{\pi}^{2}}({\cal O}_{4}\hat{\cal P}+{\cal O}_{5}\hat{\cal Q}){\cal C}_{1}(I)Y_{\pi 2}\\ &+\frac{2}{3}\lambda^{2}g_{V}^{2}(2{\cal O}_{4}\hat{\cal P}-{\cal O}_{5}\hat{\cal Q})\left({\cal C}_{1}(I)Y_{\rho 2}+{\cal C}_{0}(I)Y_{\omega 2}\right),\\ V^{D^{*}D^{*}\to D^{*}D^{*}}=&-g_{\sigma}^{2}{\cal O}_{6}Y_{\sigma}+\frac{1}{2}\beta^{2}g_{V}^{2}{\cal O}_{6}\left({\cal C}_{1}(I)Y_{\rho}+{\cal C}_{0}(I)Y_{\omega}\right)\\ &-\frac{g^{2}}{3f_{\pi}^{2}}({\cal O}_{7}\hat{\cal P}+{\cal O}_{8}\hat{\cal Q}){\cal C}_{1}(I)Y_{\pi}\\ &-\frac{2}{3}\lambda^{2}g_{V}^{2}(2{\cal O}_{7}\hat{\cal P}-{\cal O}_{8}\hat{\cal Q})\left({\cal C}_{1}(I)Y_{\rho}+{\cal C}_{0}(I)Y_{\omega}\right).\\ \end{split} (6)

In Eq. (6), the 𝒪i{\cal O}_{i}’s are spin-dependent operators, which are defined as

𝒪1=ϵ4ϵ2,𝒪2=ϵ3ϵ2,𝒪3=S(𝐫,ϵ3,ϵ2),𝒪4=ϵ3(iϵ4×ϵ2),𝒪5=S(𝐫,ϵ3,iϵ4×ϵ2),𝒪6=(ϵ3ϵ1)(ϵ4ϵ2),𝒪7=(ϵ3×ϵ1)(ϵ4×ϵ2),𝒪8=S(𝐫,ϵ3×ϵ1,ϵ4×ϵ2),\begin{split}{\cal O}_{1}=&{\bm{\epsilon}}_{4}^{\dagger}\cdot{\bm{\epsilon}}_{2},\\ {\cal O}_{2}=&{\bm{\epsilon}}_{3}^{\dagger}\cdot{\bm{\epsilon}}_{2},\\ {\cal O}_{3}=&S({\bf r},{\bm{\epsilon}}_{3}^{\dagger},{\bm{\epsilon}}_{2}),\\ {\cal O}_{4}=&{\bm{\epsilon}}_{3}^{\dagger}\cdot(i{\bm{\epsilon}}_{4}^{\dagger}\times{\bm{\epsilon}}_{2}),\\ {\cal O}_{5}=&S({\bf r},{\bm{\epsilon}}_{3}^{\dagger},i{\bm{\epsilon}}_{4}^{\dagger}\times{\bm{\epsilon}}_{2}),\\ {\cal O}_{6}=&({\bm{\epsilon}}_{3}^{\dagger}\cdot{\bm{\epsilon}}_{1})({\bm{\epsilon}}_{4}^{\dagger}\cdot{\bm{\epsilon}}_{2}),\\ {\cal O}_{7}=&({\bm{\epsilon}}_{3}^{\dagger}\times{\bm{\epsilon}}_{1})\cdot({\bm{\epsilon}}_{4}^{\dagger}\times{\bm{\epsilon}}_{2}),\\ {\cal O}_{8}=&S({\bf r},{\bm{\epsilon}}_{3}^{\dagger}\times{\bm{\epsilon}}_{1},{\bm{\epsilon}}_{4}^{\dagger}\times{\bm{\epsilon}}_{2}),\\ \end{split} (7)

where

S(𝐫,𝐚,𝐛)=3(𝐚𝐫)(𝐛𝐫)r2𝐚𝐛S({\bf r},{\bf a},{\bf b})=\frac{3({\bf a}\cdot{\bf r})({\bf b}\cdot{\bf r})}{r^{2}}-{\bf a}\cdot{\bf b} (8)

is the tensor operator. Here, ϵi{\bm{\epsilon}}_{i} (i=1,2i=1,2) and ϵi{\bm{\epsilon}}^{\dagger}_{i} (i=3,4i=3,4) are initial and final polarization vectors of the DD^{*} mesons, respectively, and C0()(I)C_{0}^{(\prime)}(I) and C1()(I)C_{1}^{(\prime)}(I) are flavor-dependent factors given by

𝒞1(0)=32,𝒞1(0)=+32,𝒞0(0)=+12,𝒞0(0)=12,𝒞1(1)=+12,𝒞1(1)=+12,𝒞0(1)=+12,𝒞0(1)=+12.\begin{split}&{\cal C}_{1}(0)=-\frac{3}{2},~{}{\cal C}_{1}^{\prime}(0)=+\frac{3}{2},~{}{\cal C}_{0}(0)=+\frac{1}{2},~{}{\cal C}_{0}^{\prime}(0)=-\frac{1}{2},\\ &{\cal C}_{1}(1)=+\frac{1}{2},~{}{\cal C}_{1}^{\prime}(1)=+\frac{1}{2},~{}{\cal C}_{0}(1)=+\frac{1}{2},~{}{\cal C}_{0}^{\prime}(1)=+\frac{1}{2}.\end{split} (9)

The function YiY_{i} in Eq. (6) is written as111 In momentum space, the effective potentials share a common part, i.e., V(𝐪)=1𝐪2+mE2q02,V({\bf q})=\frac{1}{{\bf q}^{2}+m_{E}^{2}-{q^{0}}^{2}}, (10) where the q0q^{0} is energy component of the exchange momentum, whose explicit expression could be found in Ref. Li:2012ss . Without a form factor, the Fourier transformation of Eq. (10) is V(𝐫)=d3𝐪(2π)3ei𝐪𝐫1𝐪2+mE2q02=14πremE2q02r.\begin{split}V({\bf r})=&\int\frac{{\rm d}^{3}{\bf q}}{(2\pi)^{3}}{\rm e}^{i{\bf q}\cdot{\bf r}}\frac{1}{{\bf q}^{2}+m_{E}^{2}-{q^{0}}^{2}}\\ &=\frac{1}{4\pi r}{\rm e}^{-\sqrt{m_{E}^{2}-{q^{0}}^{2}}r}.\end{split} (11) After introducing the form factor, the Fourier transformation is V(𝐫)=d3𝐪(2π)3ei𝐪𝐫1𝐪2+mE2q022(q2,mE2).\begin{split}V({\bf r})=&\int\frac{{\rm d}^{3}{\bf q}}{(2\pi)^{3}}{\rm e}^{i{\bf q}\cdot{\bf r}}\frac{1}{{\bf q}^{2}+m_{E}^{2}-{q^{0}}^{2}}{\cal F}^{2}(q^{2},m_{E}^{2}).\end{split} (12) After performing the integration, one could obtain the function YiY_{i} given in Eq. (13).

Yi=emEir4πreΛir4πrΛi2eΛir8πΛi+mEi2eΛir8πΛiY_{i}=\frac{{\rm e}^{-m_{Ei}r}}{4\pi r}-\frac{{\rm e}^{-\Lambda_{i}r}}{4\pi r}-\frac{\Lambda_{i}^{2}{\rm e}^{-\Lambda_{i}r}}{8\pi\Lambda_{i}}+\frac{m_{Ei}^{2}{\rm e}^{-\Lambda_{i}r}}{8\pi\Lambda_{i}} (13)

with Λi=Λ2qi2\Lambda_{i}=\sqrt{\Lambda^{2}-q_{i}^{2}} and mEi=mE2qi2m_{Ei}=\sqrt{m_{E}^{2}-q_{i}^{2}}. The qiq_{i} is the energy component of the exchanged momentum. We employ q1=mDmDq_{1}=m_{D^{*}}-m_{D} and q2=(mD2mD2)/(4mD)q_{2}=(m_{D^{*}}^{2}-m_{D}^{2})/(4m_{D^{*}}) for the DDDDDD^{*}\to D^{*}D and DDDDDD^{*}\to D^{*}D^{*} processes, respectively. The operators 𝒫^\hat{\cal P} and 𝒬^\hat{\cal Q} only act on YiY_{i} and the expressions are

𝒫^=1r2rr2r,𝒬^=rr1rr.\hat{\cal P}=\frac{1}{r^{2}}\frac{\partial}{\partial r}r^{2}\frac{\partial}{\partial r},~{}~{}~{}\hat{\cal Q}=r\frac{\partial}{\partial r}\frac{1}{r}\frac{\partial}{\partial r}. (14)

To evaluate the above potentials, we also need the values of the coupling constants and the masses of the mesons, which are collected in Table 1.

Table 1: Values of the coupling constants Liu:2019stu ; Riska:2000gd ; Gell-Mann:1960mvl ; Isola:2003fh and meson masses ParticleDataGroup:2020ssz .
Coupling Constants Values     Mesons Mass (GeV)
gg 0.6     π\pi 0.140
fπf_{\pi} 0.132 GeV     σ\sigma 0.600
gσg_{\sigma} 3.4     ρ\rho 0.770
βgV\beta g_{V} 5.2     ω\omega 0.780
λgV\lambda g_{V} 3.133 GeV-1     DD 1.867
    DD^{*} 2.009
Refer to caption
Figure 3: Jacobi coordinates of the DDD()D^{*}D^{*}D^{(*)} systems.

To solve the three-body Schrödinger equation, we employ the Gaussian expansion method Hiyama:2003cu ; Hiyama:2012sma , which was widely used in studies of baryon systems Yoshida:2015tia ; Yang:2019lsg ; Yang:2017qan , multiquark states Yang:2021izl ; Yang:2020fou ; Wang:2019rdo ; Lu:2021kut ; Lu:2020cns , and multibody hadronic molecular states Wu:2019vsy ; Wu:2020rdg ; Wu:2020job ; Wu:2021kbu ; Wu:2021gyn (for reviews on this latter topic, see, e.g., Refs. Wu:2021ljz ; Wu:2021dwy ). The three-body Schrödinger equation reads

[T^+V(r1)+V(r2)+V(r3)]ΨJM=EΨJM,\left[\hat{T}+V(r_{1})+V(r_{2})+V(r_{3})\right]\Psi_{JM}=E\Psi_{JM}, (15)

where T^\hat{T} is the kinetic energy operator, and V(r1)V(r_{1}), V(r2)V(r_{2}), and V(r3)V(r_{3}) are pairwise potentials. ΨJM\Psi_{JM} is the total wave function, which can be written as

ΨJM=c,αCc,αΨJM(c,α),\Psi_{JM}=\sum_{c,\alpha}C_{c,\alpha}\Psi_{JM}^{(c,\alpha)}, (16)

where

ΨJM(c,α)=Ht,Tc[χs,Sc[ϕnl(𝐫c)ϕNL(𝐑c)]λ]JM\begin{split}\Psi_{JM}^{(c,\alpha)}=H_{t,T}^{c}\left[\chi_{s,S}^{c}\left[\phi_{nl}({\bf r}_{c})\phi_{NL}({\bf R}_{c})\right]_{\lambda}\right]_{JM}\end{split} (17)

is the basis, and Cc,αC_{c,\alpha} is the coefficient of the corresponding basis, which can be obtained by the Rayleigh-Ritz variational method. The cc (c=1,2,3c=1,2,3) represents the three channels in Fig. 3 and α={tT,sS,nN,lLλ}\alpha=\{tT,sS,nN,lL\lambda\} is the quantum number of the basis. Ht,TcH_{t,T}^{c} is the flavor wave function, where tt is isospin in the 𝐫c{\bf r}_{c} degree of freedom and TT is the total isospin. χs,Sc\chi_{s,S}^{c} is the spin wave function, where the ss, SS are spin in the 𝐫c{\bf r}_{c} degree of freedom and total spin, respectively. ϕnlml(𝐫c)\phi_{nlm_{l}}({\bf r}_{c}) and ϕNLML(𝐑c)\phi_{NLM_{L}}({\bf R}_{c}) are spatial wave functions, which read

ϕnlml(𝐫c)=Nnlrcleνnrc2Ylm(𝐫^c),ϕNLML(𝐑c)=NNLRcLeλNRc2YLM(𝐑^c),\begin{split}\phi_{nlm_{l}}({\bf r}_{c})=&N_{nl}r_{c}^{l}e^{-\nu_{n}r_{c}^{2}}Y_{lm}(\hat{\bf r}_{c}),\\ \phi_{NLM_{L}}({\bf R}_{c})=&N_{NL}R_{c}^{L}e^{-\lambda_{N}R_{c}^{2}}Y_{LM}(\hat{\bf R}_{c}),\\ \end{split} (18)

where NnlN_{nl} and NNLN_{NL} are normalization constants. In Eq. (18), The 𝐫c{\bf r}_{c} and 𝐑c{\bf R}_{c} are Jacobi coordinates, and νn\nu_{n} and λN\lambda_{N} are Gaussian ranges. After the above preparations, we can calculate the kinetic, potential, and normalization matrix elements (see Refs. Hiyama:2003cu ; Brink:1998as for more details), i.e.,

Tααab=ΨJM(a,α)|T^|ΨJM(b,α),Vααcab=ΨJM(a,α)|V(rc)|ΨJM(b,α),Nααab=ΨJM(a,α)|ΨJM(b,α).\begin{split}T^{ab}_{\alpha\alpha^{\prime}}=&\langle\Psi_{JM}^{(a,\alpha)}|\hat{T}|\Psi_{JM}^{(b,\alpha^{\prime})}\rangle,\\ V^{ab}_{\alpha\alpha^{\prime}c}=&\langle\Psi_{JM}^{(a,\alpha)}|V({r_{c}})|\Psi_{JM}^{(b,\alpha^{\prime})}\rangle,\\ N^{ab}_{\alpha\alpha^{\prime}}=&\langle\Psi_{JM}^{(a,\alpha)}|\Psi_{JM}^{(b,\alpha^{\prime})}\rangle.\end{split} (19)

Then, Eq. (15) could be further expressed as the following general eigenvalue equation:

(Tααab+c=13Vααcab)Cb,α=ENααabCb,α.\left(T^{ab}_{\alpha\alpha^{\prime}}+\sum\limits_{c=1}^{3}V^{ab}_{\alpha\alpha^{\prime}c}\right)C_{b,\alpha^{\prime}}=EN^{ab}_{\alpha\alpha^{\prime}}C_{b,\alpha^{\prime}}. (20)

III numerical results

Table 2: Configurations of the DDDD^{*}D^{*}D-DDDD^{*}D^{*}D^{*} systems. The RlLλc=[ϕnl(𝐫c)ϕNL(𝐑c)]λR_{lL\lambda}^{c}=\left[\phi_{nl}({\bf r}_{c})\phi_{NL}({\bf R}_{c})\right]_{\lambda}, χsSc\chi_{sS}^{c}, and HtTcH_{tT}^{c} represent the spatial, spin, and flavor wave functions, respectively.
II JPJ^{P}   DDDD^{*}D^{*}D   DDDD^{*}D^{*}D^{*}
5 
  c=1c=1   c=2,3c=2,~{}3   c=1,2,3c=1,~{}2,~{}3
12\frac{1}{2} 00^{-}  

R202cχ2,2cH1,12cR_{202}^{c}\chi_{2,2}^{c}H_{1,\frac{1}{2}}^{c}R022cχ2,2cH1,12cR_{022}^{c}\chi_{2,2}^{c}H_{1,\frac{1}{2}}^{c}, R112cχ2,2cH0,12cR_{112}^{c}\chi_{2,2}^{c}H_{0,\frac{1}{2}}^{c}R000cχ0,0cH1,12cR_{000}^{c}\chi_{0,0}^{c}H_{1,\frac{1}{2}}^{c}, R111cχ1,1cH1,12cR_{111}^{c}\chi_{1,1}^{c}H_{1,\frac{1}{2}}^{c}R110cχ0,0cH0,12cR_{110}^{c}\chi_{0,0}^{c}H_{0,\frac{1}{2}}^{c}

 

R202c{χ1,2cH0,12c,χ1,2cH1,12c}R_{202}^{c}\{\chi_{1,2}^{c}H_{0,\frac{1}{2}}^{c},\chi_{1,2}^{c}H_{1,\frac{1}{2}}^{c}\}R022c{χ1,2cH0,12c,χ1,2cH1,12c}R_{022}^{c}\{\chi_{1,2}^{c}H_{0,\frac{1}{2}}^{c},\chi_{1,2}^{c}H_{1,\frac{1}{2}}^{c}\}, R112c{χ1,2cH0,12c,χ1,2cH1,12c}R_{112}^{c}\{\chi_{1,2}^{c}H_{0,\frac{1}{2}}^{c},\chi_{1,2}^{c}H_{1,\frac{1}{2}}^{c}\}R000c{χ1,0cH0,12c,χ1,0cH1,12c}R_{000}^{c}\{\chi_{1,0}^{c}H_{0,\frac{1}{2}}^{c},\chi_{1,0}^{c}H_{1,\frac{1}{2}}^{c}\}, R111c{χ1,1cH0,12c,χ1,1cH1,12c}R_{111}^{c}\{\chi_{1,1}^{c}H_{0,\frac{1}{2}}^{c},\chi_{1,1}^{c}H_{1,\frac{1}{2}}^{c}\}R110c{χ1,0cH0,12c,χ1,0cH1,12c}R_{110}^{c}\{\chi_{1,0}^{c}H_{0,\frac{1}{2}}^{c},\chi_{1,0}^{c}H_{1,\frac{1}{2}}^{c}\}

 

R000cχ1,0cH0,12cR_{000}^{c}\chi_{1,0}^{c}H_{0,\frac{1}{2}}^{c}R110cχ1,0cH1,12cR_{110}^{c}\chi_{1,0}^{c}H_{1,\frac{1}{2}}^{c}R202c{χ1,2cH0,12c,χ2,2cH1,12c}R_{202}^{c}\{\chi_{1,2}^{c}H_{0,\frac{1}{2}}^{c},\chi_{2,2}^{c}H_{1,\frac{1}{2}}^{c}\}, R022c{χ1,2cH0,12c,χ2,2cH1,12c}R_{022}^{c}\{\chi_{1,2}^{c}H_{0,\frac{1}{2}}^{c},\chi_{2,2}^{c}H_{1,\frac{1}{2}}^{c}\}R112c{χ1,2cH1,12c,χ2,2cH0,12c}R_{112}^{c}\{\chi_{1,2}^{c}H_{1,\frac{1}{2}}^{c},\chi_{2,2}^{c}H_{0,\frac{1}{2}}^{c}\}, R111c{χ0,1cH0,12c,χ1,1cH1,12c,χ2,1cH0,12c}R_{111}^{c}\{\chi_{0,1}^{c}H_{0,\frac{1}{2}}^{c},\chi_{1,1}^{c}H_{1,\frac{1}{2}}^{c},\chi_{2,1}^{c}H_{0,\frac{1}{2}}^{c}\}

5 
11^{-}  

R000cχ1,1cH0,12cR_{000}^{c}\chi_{1,1}^{c}H_{0,\frac{1}{2}}^{c}R110cχ1,1cH1,12cR_{110}^{c}\chi_{1,1}^{c}H_{1,\frac{1}{2}}^{c}, R202c{χ1,1cH0,12c,χ2,2cH1,12c}R_{202}^{c}\{\chi_{1,1}^{c}H_{0,\frac{1}{2}}^{c},\chi_{2,2}^{c}H_{1,\frac{1}{2}}^{c}\}, R022c{χ1,1cH0,12c,χ2,2cH1,12c}R_{022}^{c}\{\chi_{1,1}^{c}H_{0,\frac{1}{2}}^{c},\chi_{2,2}^{c}H_{1,\frac{1}{2}}^{c}\}, R112c{χ1,1cH1,12c,χ2,2cH0,12c}R_{112}^{c}\{\chi_{1,1}^{c}H_{1,\frac{1}{2}}^{c},\chi_{2,2}^{c}H_{0,\frac{1}{2}}^{c}\}, R111c{χ0,0cH0,12c,χ1,1cH1,12c,χ2,2cH0,12c}R_{111}^{c}\{\chi_{0,0}^{c}H_{0,\frac{1}{2}}^{c},\chi_{1,1}^{c}H_{1,\frac{1}{2}}^{c},\chi_{2,2}^{c}H_{0,\frac{1}{2}}^{c}\}

 

R000c{χ1,1cH0,12c,χ1,1cH1,12c}R_{000}^{c}\{\chi_{1,1}^{c}H_{0,\frac{1}{2}}^{c},\chi_{1,1}^{c}H_{1,\frac{1}{2}}^{c}\}R110c{χ1,1cH0,12c,χ1,1cH1,12c}R_{110}^{c}\{\chi_{1,1}^{c}H_{0,\frac{1}{2}}^{c},\chi_{1,1}^{c}H_{1,\frac{1}{2}}^{c}\}, R202c{χ1,1cH0,12c,χ1,2cH0,12c,χ1,1cH1,12c,χ1,2cH1,12c}R_{202}^{c}\{\chi_{1,1}^{c}H_{0,\frac{1}{2}}^{c},\chi_{1,2}^{c}H_{0,\frac{1}{2}}^{c},\chi_{1,1}^{c}H_{1,\frac{1}{2}}^{c},\chi_{1,2}^{c}H_{1,\frac{1}{2}}^{c}\}, R022c{χ1,1cH0,12c,χ1,2cH0,12c,χ1,1cH1,12c,χ1,2cH1,12c}R_{022}^{c}\{\chi_{1,1}^{c}H_{0,\frac{1}{2}}^{c},\chi_{1,2}^{c}H_{0,\frac{1}{2}}^{c},\chi_{1,1}^{c}H_{1,\frac{1}{2}}^{c},\chi_{1,2}^{c}H_{1,\frac{1}{2}}^{c}\}, R112c{χ1,1cH0,12c,χ1,2cH0,12c,χ1,1cH1,12c,χ1,2cH1,12c}R_{112}^{c}\{\chi_{1,1}^{c}H_{0,\frac{1}{2}}^{c},\chi_{1,2}^{c}H_{0,\frac{1}{2}}^{c},\chi_{1,1}^{c}H_{1,\frac{1}{2}}^{c},\chi_{1,2}^{c}H_{1,\frac{1}{2}}^{c}\}, R111c{χ1,0cH0,12c,χ1,1cH0,12c,χ1,2cH0,12c,χ1,0cH1,12c,χ1,1cH1,12c,χ1,2cH1,12c}R_{111}^{c}\{\chi_{1,0}^{c}H_{0,\frac{1}{2}}^{c},\chi_{1,1}^{c}H_{0,\frac{1}{2}}^{c},\chi_{1,2}^{c}H_{0,\frac{1}{2}}^{c},\chi_{1,0}^{c}H_{1,\frac{1}{2}}^{c},\chi_{1,1}^{c}H_{1,\frac{1}{2}}^{c},\chi_{1,2}^{c}H_{1,\frac{1}{2}}^{c}\}

 

R000c{χ0,1cH1,12c,χ1,1cH0,12c,χ2,1cH1,12c}R_{000}^{c}\{\chi_{0,1}^{c}H_{1,\frac{1}{2}}^{c},\chi_{1,1}^{c}H_{0,\frac{1}{2}}^{c},\chi_{2,1}^{c}H_{1,\frac{1}{2}}^{c}\}, R110c{χ0,1cH0,12c,χ1,1cH1,12c,χ2,1cH0,12c}R_{110}^{c}\{\chi_{0,1}^{c}H_{0,\frac{1}{2}}^{c},\chi_{1,1}^{c}H_{1,\frac{1}{2}}^{c},\chi_{2,1}^{c}H_{0,\frac{1}{2}}^{c}\}, R202c{χ0,1cH1,12c,χ1,1cH0,12c,χ1,2cH0,12c,χ2,1cH1,12c,χ2,2cH1,12c,χ2,3cH1,12c}R_{202}^{c}\{\chi_{0,1}^{c}H_{1,\frac{1}{2}}^{c},\chi_{1,1}^{c}H_{0,\frac{1}{2}}^{c},\chi_{1,2}^{c}H_{0,\frac{1}{2}}^{c},\chi_{2,1}^{c}H_{1,\frac{1}{2}}^{c},\chi_{2,2}^{c}H_{1,\frac{1}{2}}^{c},\chi_{2,3}^{c}H_{1,\frac{1}{2}}^{c}\}, R022c{χ0,1cH1,12c,χ1,1cH0,12c,χ1,2cH0,12c,χ2,1cH1,12c,χ2,2cH1,12c,χ2,3cH1,12c}R_{022}^{c}\{\chi_{0,1}^{c}H_{1,\frac{1}{2}}^{c},\chi_{1,1}^{c}H_{0,\frac{1}{2}}^{c},\chi_{1,2}^{c}H_{0,\frac{1}{2}}^{c},\chi_{2,1}^{c}H_{1,\frac{1}{2}}^{c},\chi_{2,2}^{c}H_{1,\frac{1}{2}}^{c},\chi_{2,3}^{c}H_{1,\frac{1}{2}}^{c}\}, R112c{χ0,1cH0,12c,χ1,1cH1,12c,χ1,2cH1,12c,χ2,1cH0,12c,χ2,2cH0,12c,χ2,3cH0,12c}R_{112}^{c}\{\chi_{0,1}^{c}H_{0,\frac{1}{2}}^{c},\chi_{1,1}^{c}H_{1,\frac{1}{2}}^{c},\chi_{1,2}^{c}H_{1,\frac{1}{2}}^{c},\chi_{2,1}^{c}H_{0,\frac{1}{2}}^{c},\chi_{2,2}^{c}H_{0,\frac{1}{2}}^{c},\chi_{2,3}^{c}H_{0,\frac{1}{2}}^{c}\}, R111c{χ0,1cH0,12c,χ1,0cH1,12c,χ1,1cH1,12c,χ1,2cH1,12c,χ2,1cH0,12c,χ2,2cH0,12c}R_{111}^{c}\{\chi_{0,1}^{c}H_{0,\frac{1}{2}}^{c},\chi_{1,0}^{c}H_{1,\frac{1}{2}}^{c},\chi_{1,1}^{c}H_{1,\frac{1}{2}}^{c},\chi_{1,2}^{c}H_{1,\frac{1}{2}}^{c},\chi_{2,1}^{c}H_{0,\frac{1}{2}}^{c},\chi_{2,2}^{c}H_{0,\frac{1}{2}}^{c}\}

5 
22^{-}  

R000cχ2,2cH1,12cR_{000}^{c}\chi_{2,2}^{c}H_{1,\frac{1}{2}}^{c}R110cχ2,2cH0,12cR_{110}^{c}\chi_{2,2}^{c}H_{0,\frac{1}{2}}^{c}, R111c{χ1,1cH1,12c,χ2,2cH0,12c}R_{111}^{c}\{\chi_{1,1}^{c}H_{1,\frac{1}{2}}^{c},\chi_{2,2}^{c}H_{0,\frac{1}{2}}^{c}\}, R202c{χ0,0cH1,12c,χ1,1cH0,12c,χ2,2cH1,12c}R_{202}^{c}\{\chi_{0,0}^{c}H_{1,\frac{1}{2}}^{c},\chi_{1,1}^{c}H_{0,\frac{1}{2}}^{c},\chi_{2,2}^{c}H_{1,\frac{1}{2}}^{c}\}, R022c{χ0,0cH1,12c,χ1,1cH0,12c,χ2,2cH1,12c}R_{022}^{c}\{\chi_{0,0}^{c}H_{1,\frac{1}{2}}^{c},\chi_{1,1}^{c}H_{0,\frac{1}{2}}^{c},\chi_{2,2}^{c}H_{1,\frac{1}{2}}^{c}\}, R112c{χ0,0cH0,12c,χ1,1cH1,12c,χ2,2cH0,12c}R_{112}^{c}\{\chi_{0,0}^{c}H_{0,\frac{1}{2}}^{c},\chi_{1,1}^{c}H_{1,\frac{1}{2}}^{c},\chi_{2,2}^{c}H_{0,\frac{1}{2}}^{c}\}

 

R000c{χ1,2cH0,12c,χ1,2cH1,12c}R_{000}^{c}\{\chi_{1,2}^{c}H_{0,\frac{1}{2}}^{c},\chi_{1,2}^{c}H_{1,\frac{1}{2}}^{c}\}R110c{χ1,2cH0,12c,χ1,2cH1,12c}R_{110}^{c}\{\chi_{1,2}^{c}H_{0,\frac{1}{2}}^{c},\chi_{1,2}^{c}H_{1,\frac{1}{2}}^{c}\}, R111c{χ1,1cH0,12c,χ1,2cH0,12c,χ1,1cH1,12c,χ1,2cH1,12c}R_{111}^{c}\{\chi_{1,1}^{c}H_{0,\frac{1}{2}}^{c},\chi_{1,2}^{c}H_{0,\frac{1}{2}}^{c},\chi_{1,1}^{c}H_{1,\frac{1}{2}}^{c},\chi_{1,2}^{c}H_{1,\frac{1}{2}}^{c}\}, R202c{χ1,0cH0,12c,χ1,1cH0,12c,χ1,2cH0,12c,χ1,0cH1,12c,χ1,1cH1,12c,χ1,2cH1,12c}R_{202}^{c}\{\chi_{1,0}^{c}H_{0,\frac{1}{2}}^{c},\chi_{1,1}^{c}H_{0,\frac{1}{2}}^{c},\chi_{1,2}^{c}H_{0,\frac{1}{2}}^{c},\chi_{1,0}^{c}H_{1,\frac{1}{2}}^{c},\chi_{1,1}^{c}H_{1,\frac{1}{2}}^{c},\chi_{1,2}^{c}H_{1,\frac{1}{2}}^{c}\}, R022c{χ1,0cH0,12c,χ1,1cH0,12c,χ1,2cH0,12c,χ1,0cH1,12c,χ1,1cH1,12c,χ1,2cH1,12c}R_{022}^{c}\{\chi_{1,0}^{c}H_{0,\frac{1}{2}}^{c},\chi_{1,1}^{c}H_{0,\frac{1}{2}}^{c},\chi_{1,2}^{c}H_{0,\frac{1}{2}}^{c},\chi_{1,0}^{c}H_{1,\frac{1}{2}}^{c},\chi_{1,1}^{c}H_{1,\frac{1}{2}}^{c},\chi_{1,2}^{c}H_{1,\frac{1}{2}}^{c}\}, R112c{χ1,0cH0,12c,χ1,1cH0,12c,χ1,2cH0,12c,χ1,0cH1,12c,χ1,1cH1,12c,χ1,2cH1,12c}R_{112}^{c}\{\chi_{1,0}^{c}H_{0,\frac{1}{2}}^{c},\chi_{1,1}^{c}H_{0,\frac{1}{2}}^{c},\chi_{1,2}^{c}H_{0,\frac{1}{2}}^{c},\chi_{1,0}^{c}H_{1,\frac{1}{2}}^{c},\chi_{1,1}^{c}H_{1,\frac{1}{2}}^{c},\chi_{1,2}^{c}H_{1,\frac{1}{2}}^{c}\}

 

R000c{χ1,2cH0,12c,χ2,2cH1,12c}R_{000}^{c}\{\chi_{1,2}^{c}H_{0,\frac{1}{2}}^{c},\chi_{2,2}^{c}H_{1,\frac{1}{2}}^{c}\}R110c{χ1,2cH1,12c,χ2,2cH0,12c}R_{110}^{c}\{\chi_{1,2}^{c}H_{1,\frac{1}{2}}^{c},\chi_{2,2}^{c}H_{0,\frac{1}{2}}^{c}\}, R111c{χ0,1cH0,12c,χ1,1cH1,12c,χ1,2cH1,12c,χ2,1cH0,12c,χ2,2cH0,12c,χ2,3cH0,12c}R_{111}^{c}\{\chi_{0,1}^{c}H_{0,\frac{1}{2}}^{c},\chi_{1,1}^{c}H_{1,\frac{1}{2}}^{c},\chi_{1,2}^{c}H_{1,\frac{1}{2}}^{c},\chi_{2,1}^{c}H_{0,\frac{1}{2}}^{c},\chi_{2,2}^{c}H_{0,\frac{1}{2}}^{c},\chi_{2,3}^{c}H_{0,\frac{1}{2}}^{c}\}, R202c{χ0,1cH1,12c,χ1,0cH0,12c,χ1,1cH0,12c,χ1,2cH0,12c,χ2,1cH1,12c,χ2,2cH1,12c,χ2,3cH1,12c}R_{202}^{c}\{\chi_{0,1}^{c}H_{1,\frac{1}{2}}^{c},\chi_{1,0}^{c}H_{0,\frac{1}{2}}^{c},\chi_{1,1}^{c}H_{0,\frac{1}{2}}^{c},\chi_{1,2}^{c}H_{0,\frac{1}{2}}^{c},\chi_{2,1}^{c}H_{1,\frac{1}{2}}^{c},\chi_{2,2}^{c}H_{1,\frac{1}{2}}^{c},\chi_{2,3}^{c}H_{1,\frac{1}{2}}^{c}\}, R022c{χ0,1cH1,12c,χ1,0cH0,12c,χ1,1cH0,12c,χ1,2cH0,12c,χ2,1cH1,12c,χ2,2cH1,12c,χ2,3cH1,12c}R_{022}^{c}\{\chi_{0,1}^{c}H_{1,\frac{1}{2}}^{c},\chi_{1,0}^{c}H_{0,\frac{1}{2}}^{c},\chi_{1,1}^{c}H_{0,\frac{1}{2}}^{c},\chi_{1,2}^{c}H_{0,\frac{1}{2}}^{c},\chi_{2,1}^{c}H_{1,\frac{1}{2}}^{c},\chi_{2,2}^{c}H_{1,\frac{1}{2}}^{c},\chi_{2,3}^{c}H_{1,\frac{1}{2}}^{c}\}, R112c{χ0,1cH0,12c,χ1,0cH1,12c,χ1,1cH1,12c,χ1,2cH1,12c,χ2,1cH0,12c,χ2,2cH0,12c,χ2,3cH0,12c}R_{112}^{c}\{\chi_{0,1}^{c}H_{0,\frac{1}{2}}^{c},\chi_{1,0}^{c}H_{1,\frac{1}{2}}^{c},\chi_{1,1}^{c}H_{1,\frac{1}{2}}^{c},\chi_{1,2}^{c}H_{1,\frac{1}{2}}^{c},\chi_{2,1}^{c}H_{0,\frac{1}{2}}^{c},\chi_{2,2}^{c}H_{0,\frac{1}{2}}^{c},\chi_{2,3}^{c}H_{0,\frac{1}{2}}^{c}\}

5 
33^{-}      

R000cχ2,3cH1,12cR_{000}^{c}\chi_{2,3}^{c}H_{1,\frac{1}{2}}^{c}R110cχ2,3cH0,12cR_{110}^{c}\chi_{2,3}^{c}H_{0,\frac{1}{2}}^{c}R111c{χ1,2cH1,12c,χ2,2cH0,12c,χ2,3cH0,12c}R_{111}^{c}\{\chi_{1,2}^{c}H_{1,\frac{1}{2}}^{c},\chi_{2,2}^{c}H_{0,\frac{1}{2}}^{c},\chi_{2,3}^{c}H_{0,\frac{1}{2}}^{c}\}, R202c{χ0,1cH1,12c,χ1,1cH0,12c,χ1,2cH0,12c,χ2,1cH1,12c,χ2,2cH1,12c,χ2,3cH1,12c}R_{202}^{c}\{\chi_{0,1}^{c}H_{1,\frac{1}{2}}^{c},\chi_{1,1}^{c}H_{0,\frac{1}{2}}^{c},\chi_{1,2}^{c}H_{0,\frac{1}{2}}^{c},\chi_{2,1}^{c}H_{1,\frac{1}{2}}^{c},\chi_{2,2}^{c}H_{1,\frac{1}{2}}^{c},\chi_{2,3}^{c}H_{1,\frac{1}{2}}^{c}\}, R022c{χ0,1cH1,12c,χ1,1cH0,12c,χ1,2cH0,12c,χ2,1cH1,12c,χ2,2cH1,12c,χ2,3cH1,12c}R_{022}^{c}\{\chi_{0,1}^{c}H_{1,\frac{1}{2}}^{c},\chi_{1,1}^{c}H_{0,\frac{1}{2}}^{c},\chi_{1,2}^{c}H_{0,\frac{1}{2}}^{c},\chi_{2,1}^{c}H_{1,\frac{1}{2}}^{c},\chi_{2,2}^{c}H_{1,\frac{1}{2}}^{c},\chi_{2,3}^{c}H_{1,\frac{1}{2}}^{c}\}, R112c{χ0,1cH0,12c,χ1,1cH1,12c,χ1,2cH1,12c,χ2,1cH0,12c,χ2,2cH0,12c,χ2,3cH0,12c}R_{112}^{c}\{\chi_{0,1}^{c}H_{0,\frac{1}{2}}^{c},\chi_{1,1}^{c}H_{1,\frac{1}{2}}^{c},\chi_{1,2}^{c}H_{1,\frac{1}{2}}^{c},\chi_{2,1}^{c}H_{0,\frac{1}{2}}^{c},\chi_{2,2}^{c}H_{0,\frac{1}{2}}^{c},\chi_{2,3}^{c}H_{0,\frac{1}{2}}^{c}\}

32\frac{3}{2} 00^{-}  

R202cχ2,2cH1,32cR_{202}^{c}\chi_{2,2}^{c}H_{1,\frac{3}{2}}^{c}R000cχ0,0cH1,32cR_{000}^{c}\chi_{0,0}^{c}H_{1,\frac{3}{2}}^{c}, R022cχ2,2cH1,32cR_{022}^{c}\chi_{2,2}^{c}H_{1,\frac{3}{2}}^{c}R111cχ1,1cH1,32cR_{111}^{c}\chi_{1,1}^{c}H_{1,\frac{3}{2}}^{c}

 

R202cχ1,2cH1,32cR_{202}^{c}\chi_{1,2}^{c}H_{1,\frac{3}{2}}^{c}R022cχ1,2cH1,32cR_{022}^{c}\chi_{1,2}^{c}H_{1,\frac{3}{2}}^{c}R112cχ1,2cH1,32cR_{112}^{c}\chi_{1,2}^{c}H_{1,\frac{3}{2}}^{c}, R000cχ1,0cH1,32cR_{000}^{c}\chi_{1,0}^{c}H_{1,\frac{3}{2}}^{c}R111cχ1,1cH1,32cR_{111}^{c}\chi_{1,1}^{c}H_{1,\frac{3}{2}}^{c}R110cχ1,0cH1,32cR_{110}^{c}\chi_{1,0}^{c}H_{1,\frac{3}{2}}^{c}

 

R202cχ2,2cH1,32cR_{202}^{c}\chi_{2,2}^{c}H_{1,\frac{3}{2}}^{c}R022cχ2,2cH1,32cR_{022}^{c}\chi_{2,2}^{c}H_{1,\frac{3}{2}}^{c}R112cχ1,2cH1,32cR_{112}^{c}\chi_{1,2}^{c}H_{1,\frac{3}{2}}^{c}, R111cχ1,1cH1,32cR_{111}^{c}\chi_{1,1}^{c}H_{1,\frac{3}{2}}^{c}R110cχ1,0cH1,32cR_{110}^{c}\chi_{1,0}^{c}H_{1,\frac{3}{2}}^{c}

5 
11^{-}  

R202cχ2,2cH1,32cR_{202}^{c}\chi_{2,2}^{c}H_{1,\frac{3}{2}}^{c}R022cχ2,2cH1,32cR_{022}^{c}\chi_{2,2}^{c}H_{1,\frac{3}{2}}^{c}, R112cχ1,1cH1,32cR_{112}^{c}\chi_{1,1}^{c}H_{1,\frac{3}{2}}^{c}R111cχ1,1cH1,32cR_{111}^{c}\chi_{1,1}^{c}H_{1,\frac{3}{2}}^{c}, R110cχ1,1cH1,32cR_{110}^{c}\chi_{1,1}^{c}H_{1,\frac{3}{2}}^{c}

 

R000cχ1,1cH1,32cR_{000}^{c}\chi_{1,1}^{c}H_{1,\frac{3}{2}}^{c}R110cχ1,1cH1,32cR_{110}^{c}\chi_{1,1}^{c}H_{1,\frac{3}{2}}^{c}R202c{χ1,1cH1,32c,χ1,2cH1,32c}R_{202}^{c}\{\chi_{1,1}^{c}H_{1,\frac{3}{2}}^{c},\chi_{1,2}^{c}H_{1,\frac{3}{2}}^{c}\}, R022c{χ1,1cH1,32c,χ1,2cH1,32c}R_{022}^{c}\{\chi_{1,1}^{c}H_{1,\frac{3}{2}}^{c},\chi_{1,2}^{c}H_{1,\frac{3}{2}}^{c}\}R112c{χ1,1cH1,32c,χ1,2cH1,32c}R_{112}^{c}\{\chi_{1,1}^{c}H_{1,\frac{3}{2}}^{c},\chi_{1,2}^{c}H_{1,\frac{3}{2}}^{c}\}, R111c{χ1,0cH1,32c,χ1,1cH1,32c,χ1,2cH1,32c}R_{111}^{c}\{\chi_{1,0}^{c}H_{1,\frac{3}{2}}^{c},\chi_{1,1}^{c}H_{1,\frac{3}{2}}^{c},\chi_{1,2}^{c}H_{1,\frac{3}{2}}^{c}\}

 

R000c{χ0,1cH1,32c,χ2,1cH1,32c}R_{000}^{c}\{\chi_{0,1}^{c}H_{1,\frac{3}{2}}^{c},\chi_{2,1}^{c}H_{1,\frac{3}{2}}^{c}\}R110cχ1,1cH1,32cR_{110}^{c}\chi_{1,1}^{c}H_{1,\frac{3}{2}}^{c}, R112c{χ1,1cH1,32c,χ1,2cH1,32c}R_{112}^{c}\{\chi_{1,1}^{c}H_{1,\frac{3}{2}}^{c},\chi_{1,2}^{c}H_{1,\frac{3}{2}}^{c}\}R111c{χ1,0cH1,32c,χ1,1cH1,32c,χ1,2cH1,32c}R_{111}^{c}\{\chi_{1,0}^{c}H_{1,\frac{3}{2}}^{c},\chi_{1,1}^{c}H_{1,\frac{3}{2}}^{c},\chi_{1,2}^{c}H_{1,\frac{3}{2}}^{c}\}, R202c{χ0,1cH1,32c,χ2,1cH1,32c,χ2,2cH1,32c,χ2,3cH1,32c}R_{202}^{c}\{\chi_{0,1}^{c}H_{1,\frac{3}{2}}^{c},\chi_{2,1}^{c}H_{1,\frac{3}{2}}^{c},\chi_{2,2}^{c}H_{1,\frac{3}{2}}^{c},\chi_{2,3}^{c}H_{1,\frac{3}{2}}^{c}\}, R022c{χ0,1cH1,32c,χ2,1cH1,32c,χ2,2cH1,32c,χ2,3cH1,32c}R_{022}^{c}\{\chi_{0,1}^{c}H_{1,\frac{3}{2}}^{c},\chi_{2,1}^{c}H_{1,\frac{3}{2}}^{c},\chi_{2,2}^{c}H_{1,\frac{3}{2}}^{c},\chi_{2,3}^{c}H_{1,\frac{3}{2}}^{c}\}

5 
22^{-}  

R000cχ2,2cH1,32cR_{000}^{c}\chi_{2,2}^{c}H_{1,\frac{3}{2}}^{c}, R112cχ1,1cH1,32cR_{112}^{c}\chi_{1,1}^{c}H_{1,\frac{3}{2}}^{c}R111cχ1,1cH1,32cR_{111}^{c}\chi_{1,1}^{c}H_{1,\frac{3}{2}}^{c}, R202c{χ0,0cH1,32c,χ2,2cH1,32c}R_{202}^{c}\{\chi_{0,0}^{c}H_{1,\frac{3}{2}}^{c},\chi_{2,2}^{c}H_{1,\frac{3}{2}}^{c}\}, R022c{χ0,0cH1,32c,χ2,2cH1,32c}R_{022}^{c}\{\chi_{0,0}^{c}H_{1,\frac{3}{2}}^{c},\chi_{2,2}^{c}H_{1,\frac{3}{2}}^{c}\}

 

R000cχ1,2cH1,32cR_{000}^{c}\chi_{1,2}^{c}H_{1,\frac{3}{2}}^{c}R110cχ1,2cH1,32cR_{110}^{c}\chi_{1,2}^{c}H_{1,\frac{3}{2}}^{c}R111c{χ1,1cH1,32c,χ1,2cH1,32c}R_{111}^{c}\{\chi_{1,1}^{c}H_{1,\frac{3}{2}}^{c},\chi_{1,2}^{c}H_{1,\frac{3}{2}}^{c}\}, R202c{χ1,0cH1,32c,χ1,1cH1,32c,χ1,2cH1,32c}R_{202}^{c}\{\chi_{1,0}^{c}H_{1,\frac{3}{2}}^{c},\chi_{1,1}^{c}H_{1,\frac{3}{2}}^{c},\chi_{1,2}^{c}H_{1,\frac{3}{2}}^{c}\}, R022c{χ1,0cH1,32c,χ1,1cH1,32c,χ1,2cH1,32c}R_{022}^{c}\{\chi_{1,0}^{c}H_{1,\frac{3}{2}}^{c},\chi_{1,1}^{c}H_{1,\frac{3}{2}}^{c},\chi_{1,2}^{c}H_{1,\frac{3}{2}}^{c}\}, R112c{χ1,0cH1,32c,χ1,1cH1,32c,χ1,2cH1,32c}R_{112}^{c}\{\chi_{1,0}^{c}H_{1,\frac{3}{2}}^{c},\chi_{1,1}^{c}H_{1,\frac{3}{2}}^{c},\chi_{1,2}^{c}H_{1,\frac{3}{2}}^{c}\}

 

R000cχ2,2cH1,32cR_{000}^{c}\chi_{2,2}^{c}H_{1,\frac{3}{2}}^{c}R110cχ1,2cH1,32cR_{110}^{c}\chi_{1,2}^{c}H_{1,\frac{3}{2}}^{c}R111c{χ1,1cH1,32c,χ1,2cH1,32c}R_{111}^{c}\{\chi_{1,1}^{c}H_{1,\frac{3}{2}}^{c},\chi_{1,2}^{c}H_{1,\frac{3}{2}}^{c}\}, R112c{χ1,0cH1,32c,χ1,1cH1,32c,χ1,2cH1,32c}R_{112}^{c}\{\chi_{1,0}^{c}H_{1,\frac{3}{2}}^{c},\chi_{1,1}^{c}H_{1,\frac{3}{2}}^{c},\chi_{1,2}^{c}H_{1,\frac{3}{2}}^{c}\}, R202c{χ0,1cH1,32c,χ2,1cH1,32c,χ2,2cH1,32c,χ2,3cH1,32c}R_{202}^{c}\{\chi_{0,1}^{c}H_{1,\frac{3}{2}}^{c},\chi_{2,1}^{c}H_{1,\frac{3}{2}}^{c},\chi_{2,2}^{c}H_{1,\frac{3}{2}}^{c},\chi_{2,3}^{c}H_{1,\frac{3}{2}}^{c}\}, R022c{χ0,1cH1,32c,χ2,1cH1,32c,χ2,2cH1,32c,χ2,3cH1,32c}R_{022}^{c}\{\chi_{0,1}^{c}H_{1,\frac{3}{2}}^{c},\chi_{2,1}^{c}H_{1,\frac{3}{2}}^{c},\chi_{2,2}^{c}H_{1,\frac{3}{2}}^{c},\chi_{2,3}^{c}H_{1,\frac{3}{2}}^{c}\}

5 
33^{-}      

R000cχ2,3cH1,32cR_{000}^{c}\chi_{2,3}^{c}H_{1,\frac{3}{2}}^{c}R111cχ1,2cH1,32cR_{111}^{c}\chi_{1,2}^{c}H_{1,\frac{3}{2}}^{c}R112c{χ1,1cH1,32c,χ1,2cH1,32c}R_{112}^{c}\{\chi_{1,1}^{c}H_{1,\frac{3}{2}}^{c},\chi_{1,2}^{c}H_{1,\frac{3}{2}}^{c}\}, R202c{χ0,1cH1,32c,χ2,1cH1,32c,χ2,2cH1,32c,χ2,3cH1,32c}R_{202}^{c}\{\chi_{0,1}^{c}H_{1,\frac{3}{2}}^{c},\chi_{2,1}^{c}H_{1,\frac{3}{2}}^{c},\chi_{2,2}^{c}H_{1,\frac{3}{2}}^{c},\chi_{2,3}^{c}H_{1,\frac{3}{2}}^{c}\}, R022c{χ0,1cH1,32c,χ2,1cH1,32c,χ2,2cH1,32c,χ2,3cH1,32c}R_{022}^{c}\{\chi_{0,1}^{c}H_{1,\frac{3}{2}}^{c},\chi_{2,1}^{c}H_{1,\frac{3}{2}}^{c},\chi_{2,2}^{c}H_{1,\frac{3}{2}}^{c},\chi_{2,3}^{c}H_{1,\frac{3}{2}}^{c}\}

With the effective potentials of Eq. (6), we could solve the three-body Schrödinger equation with the Gaussian expansion method. We not only calculate the binding energies, but also obtain the root-mean-square radii of DD^{*}-DD^{*} and DD-DD^{*}. In general, orbitally excited hadronic molecular states are more difficult to be formed because of the repulsive centrifugal potential of the discussed systems. It is more likely to find bound state solutions from the SS-wave (l=L=0l=L=0) configurations in most situations. In the first step, we only consider the SS-wave contributions. Then the SS-DD mixing effect is included in the realistic calculation. When the SS-DD mixing effect is introduced, the tensor terms from the π\pi, ρ\rho, and ω\omega contribute to the potential matrix elements. In the nuclear system, the tensor terms play an important role in the nucleon-nucleon interactions Brown:1975di ; Green:1974kh ; Haapakoski:1974dr ; Green:1975zm . Similar results could be found in the charmed baryon-charmed baryon system Meguro:2011nr , where the tensor force from the SS-DD mixing is necessary for obtaining the bound state solutions. Thus, in this work, we also consider the tensor terms. Besides the SS-DD mixing and tensor terms, the coupled channel effect cannot be ignored when calculating the binding energy of a bound state Li:2012ss ; Tornqvist:1991ks . Since both the DDDD^{*}D^{*}D and DDDD^{*}D^{*}D^{*} systems can have the quantum numbers I(JP)=12(0,1,2)I(J^{P})=\frac{1}{2}(0^{-},1^{-},2^{-}) and I(JP)=32(0,1,2)I(J^{P})=\frac{3}{2}(0^{-},1^{-},2^{-}), we should consider the DDDD^{*}D^{*}D-DDDD^{*}D^{*}D^{*} coupled channel effect, which plays a role in the DDDDDD^{*}\to D^{*}D^{*} or the DDDDD^{*}D^{*}\to DD^{*} process.

In our approach, the cutoff Λ\Lambda is a crucial parameter when searching for the bound state solutions of these discussed systems. With the measured binding energy of the Tcc+T_{cc}^{+} state, we obtained Λ=0.976\Lambda=0.976, 0.9980.998, and 1.0131.013 GeV in Ref. Wu:2021kbu , which are close to the suggested values in previous works Li:2012ss ; Chen:2015loa ; Chen:2019asm ; Chen:2018pzd ; Chen:2017jjn ; Yasui:2009bz . The DDDD^{*}D^{*}D and DDDD^{*}D^{*}D^{*} systems can be related to the DDDDDD^{*} system via heavy quark spin symmetry. As a result, in this work we will take the same strategy as that of Ref. Wu:2021kbu , i.e., we scan the range of Λ\Lambda from 0.900.90 to 3.03.0 GeV to search for bound states of DDDD^{*}D^{*}D and DDDD^{*}D^{*}D^{*}. If a system has a bound state solution with Λ1\Lambda\approx 1 GeV, we view this state as a good molecular candidate.

In the study of hadronic molecular candidates composed of two charmed mesons Li:2012ss , it was found that systems with lower isospins are more likely to bind. In this work, we find that this is also true for systems composed of three charmed mesons.

III.1 DDDD^{*}D^{*}D system

Table 3: Binding energies, root-mean-square radii, and probabilities of the DDDD^{*}D^{*}D system.
II JPJ^{P}   SS-wave   SS-DD mixing   coupled channels
14 
  Λ\Lambda (GeV) BB (MeV) rDDr_{D^{*}D^{*}} (fm) rDDr_{D^{*}D} (fm)   Λ\Lambda (GeV) BB (MeV) rDDr_{D^{*}D^{*}} (fm) rDDr_{D^{*}D} (fm)   Λ\Lambda (GeV) BB (MeV) PDDDP_{D^{*}D^{*}D}(%) PDDDP_{D^{*}D^{*}D^{*}}(%)
12\frac{1}{2} 00^{-}   0.98 0.45 7.73 6.11   0.95 0.44 7.64 6.08   0.92 0.84 99.34 0.66
  1.03 3.60 3.91 3.03   1.00 3.38 3.81 2.98   0.97 5.44 97.95 2.05
  1.08 9.65 2.55 1.99   1.05 9.10 2.51 1.97   1.02 14.79 95.86 4.14
14 
11^{-}   0.98 0.86 3.52 3.88   0.95 0.44 5.11 5.25   0.93 0.81 99.29 0.71
  1.03 6.84 1.55 1.82   1.00 5.16 1.81 2.11   0.98 6.22 97.95 2.05
  1.08 17.43 1.10 1.31   1.05 14.21 1.23 1.46   1.03 18.03 95.50 4.50
14 
22^{-}   0.97 0.82 4.36 3.67   0.94 0.57 5.34 4.45   0.90 0.48 99.26 0.74
  1.02 6.30 2.00 1.71   0.99 5.04 2.28 1.94   0.95 7.05 96.32 3.68
  1.07 16.19 1.41 1.22   1.04 13.54 1.56 1.35   1.00 22.16 91.42 8.58
32\frac{3}{2} 00^{-}   1.76 0.41 5.26 4.44   1.75 0.37 5.33 4.52   1.76 0.63 99.99 0.01
  1.81 1.94 3.27 2.70   1.80 1.81 3.31 2.74   1.81 2.28 99.98 0.02
  1.86 4.48 2.50 2.03   1.85 4.21 2.52 2.06   1.86 4.91 99.98 0.02
14 
11^{-}   1.85 0.46 11.75 8.68   1.85 0.54 11.98 8.80   1.85 0.57 \sim100 \sim0
  1.90 2.20 11.23 8.09   1.90 2.41 1.88 14.38   1.90 2.41 \sim100 \sim0
  1.95 4.97 10.93 7.81   1.95 5.61 1.35 14.26   1.95 5.61 \sim100 \sim0
14 
22^{-}   1.49 0.86 2.26 2.29   1.48 0.66 2.48 2.51   1.47 0.31 99.97 0.03
  1.54 5.16 1.32 1.34   1.53 4.48 1.39 1.42   1.52 3.68 99.96 0.04
  1.59 12.46 0.98 1.00   1.58 11.10 1.03 1.04   1.57 9.70 99.96 0.04

For the SS-wave only DDDD^{*}D^{*}D system, allowed spin parities are 00^{-}, 11^{-}, and 22^{-} with I=12I=\frac{1}{2} and 32\frac{3}{2}. In the SS-DD mixing scheme, we require l+L2l+L\leq 2 to restrict the maximum orbital angular momentum. It should be noted that for the DD^{*}-DD^{*} pair, the sum of t+s+lt+s+l should be odd. In Table 2, we present the configurations of the DDDD^{*}D^{*}D-DDDD^{*}D^{*}D^{*} system. For the SS-wave only and the SS-DD mixing schemes of the DDDD^{*}D^{*}D system, we calculate the binding energies and root-mean-square radii for I(JP)=12(0,1,2)I(J^{P})=\frac{1}{2}(0^{-},1^{-},2^{-}) and I(JP)=32(0,1,2)I(J^{P})=\frac{3}{2}(0^{-},1^{-},2^{-}). In the coupled-channel case of DDDD^{*}D^{*}D-DDDD^{*}D^{*}D^{*}, we present the binding energies and probabilities of the DDDD^{*}D^{*}D and DDDD^{*}D^{*}D^{*}. The numerical results are shown in Table 3.

For the SS-wave only DDDD^{*}D^{*}D system with I(JP)=12(0)I(J^{P})=\frac{1}{2}(0^{-}), we can obtain bound state solutions when the cutoff Λ\Lambda reaches about 0.98 GeV. The binding energy is on the order of MeV and the root-mean-square radii are several fm. If we increase the cutoff Λ\Lambda, the binding energy increases while the root-mean-square radii decrease. We note that the consideration of SS-DD mixing and the coupled-channel (DDDD^{*}D^{*}D^{*}) effect increases the binding energy, which is reflected by the fact that a slightly smaller cutoff is needed to obtain a binding energy similar to the case for which only the SS-wave interaction is taken into account. For the cutoff range studied, the probability of the DDDD^{*}D^{*}D^{*} configuration is small and at the order of a few percent. Since the binding energy and root-mean-square radii are reasonable from the perspective of hadronic molecules, this state could be viewed as a good hadronic molecular candidate.

For the SS-wave only DDDD^{*}D^{*}D system with I(JP)=12(1)I(J^{P})=\frac{1}{2}(1^{-}), we can also obtain bound state solutions with the cutoff Λ=0.98\Lambda=0.98, 1.031.03, and 1.081.08 GeV. Further consideration of the SS-DD mixing and DDDD^{*}D^{*}D^{*} coupled-channel effect does not change the overall picture. According to the calculated binding energy and root-mean-square radii, this state could also be treated as an ideal hadronic molecular candidate.

For the SS-wave only DDDD^{*}D^{*}D system with I(JP)=12(2)I(J^{P})=\frac{1}{2}(2^{-}), one can also find weakly bound states for the same cutoff Λ\Lambda as that of I(JP)=12(0,1)I(J^{P})=\frac{1}{2}(0^{-},1^{-}). Similar to the case of Pc(4440)P_{c}(4440) and Pc(4457)P_{c}(4457), for the same cutoff, the 0,1,20^{-},1^{-},2^{-} states have different binding energies at the order of several hundred keV. With increased experimental precision, it is likely that these states can be distinguished from each other in future experiments. The contribution of the SS-DD mixing and coupled-channel effect is also similar to the case of I(JP)=12(0,1)I(J^{P})=\frac{1}{2}(0^{-},1^{-}).

We also study the DDDD^{*}D^{*}D system for I(JP)=32(0,1,2)I(J^{P})=\frac{3}{2}(0^{-},1^{-},2^{-}). There are no bound state solutions for a cutoff Λ\Lambda below 1.013 GeV. In order to obtain bound state solutions for the SS-wave only DDDD^{*}D^{*}D systems with I(JP)=32(0,12)I(J^{P})=\frac{3}{2}(0^{-},1^{-}2^{-}) , we increase the cutoff Λ\Lambda to 1.761.861.76\sim 1.86 GeV, 1.851.951.85\sim 1.95 GeV, and 1.491.591.49\sim 1.59 GeV, respectively. Here, we increase the cutoff in steps of 0.050.05 GeV when scanning the cutoff Λ\Lambda. Similar results are also obtained when the SS-DD mixing and coupled channel effect are taken into account. Considering that the needed cutoff Λ\Lambda is out of the range of 0.9761.0130.976\sim 1.013 GeV (the range determined in Ref. Wu:2021kbu ), we are a bit reluctant to view the I(JP)=32(0,1,2)I(J^{P})=\frac{3}{2}(0^{-},1^{-},2^{-}) DDDD^{*}D^{*}D bound states as good hadronic molecular candidates.

We note an interesting scenario in the SS-DD mixing scheme for the I(JP)=32(1)I(J^{P})=\frac{3}{2}(1^{-}) case. When the cutoff Λ\Lambda changes from 1.85 GeV to 1.90 GeV, rDDr_{D^{*}D^{*}} decreases from 11.98 fm to 1.88 fm, while rDDr_{D^{*}D} increases from 8.80 fm to 14.38 fm. For the SS-DD mixing I(JP)=32(1)I(J^{P})=\frac{3}{2}(1^{-}) DDDD^{*}D^{*}D state, there are more than one bound states. For convenience, we use s1s_{1} to denote the bound state solution with rDD11r_{D^{*}D^{*}}\approx 11 fm and rDD8r_{D^{*}D}\approx 8 fm, and s2s_{2} to label the bound state solution with rDD2r_{D^{*}D^{*}}\approx 2 fm and rDD14r_{D^{*}D}\approx 14 fm. The dependence of the two solutions s1s_{1} and s2s_{2} on the cutoff Λ\Lambda is found to be different. However, in Table 3, we only show the bound state solutions with the largest binding energy. With Λ=1.85\Lambda=1.85 GeV, we found that Bs1>Bs2B_{s1}>B_{s2}; thus, we show the bound state solution s1s_{1}. While for Λ=1.90\Lambda=1.90 and 1.951.95 GeV, we present the bound state solution s2s_{2} since Bs1<Bs2B_{s1}<B_{s2}.

If only the SS-wave interaction had been considered for the I(JP)=32(1)I(J^{P})=\frac{3}{2}(1^{-}) DDDD^{*}D^{*}D state, only the bound state solution s1s_{1} would have been obtained. Thus, the SS-DD mixing effect plays a significant role for this state. Further studies of the SS-DD mixing effect shows that the bound state solution s2s_{2} is highly correlated to the configuration R0221χ2,21H1,321R_{022}^{1}\chi_{2,2}^{1}H_{1,\frac{3}{2}}^{1} (see Table 2). This could be diagnosed in the following steps:

  1. 1.

    In the SS-DD mixing scheme without the R0221χ2,21H1,321R_{022}^{1}\chi_{2,2}^{1}H_{1,\frac{3}{2}}^{1} configuration, the bound state solution s1s_{1} exists but not the s2s_{2} solution.

  2. 2.

    In the SS-wave only combing with the R0221χ2,21H1,321R_{022}^{1}\chi_{2,2}^{1}H_{1,\frac{3}{2}}^{1} configuration, both solutions s1s_{1} and s2s_{2} exist.

  3. 3.

    If only the configuration R0221χ2,21H1,321R_{022}^{1}\chi_{2,2}^{1}H_{1,\frac{3}{2}}^{1} is considered, only the solution s2s_{2} exists.

From the above analysis, we conclude that the R0221χ2,21H1,321R_{022}^{1}\chi_{2,2}^{1}H_{1,\frac{3}{2}}^{1} configuration affects the results and contributes dominantly to the bound state solution s2s_{2}.

How to search for DDDD^{*}D^{*}D molecular candidates is also an interesting question. One possible decay mode is that the triple-charm molecules decay into a double-charm molecular state and a charmed meson. The other possible mode is that they directly decay into multibody final states bypassing intermediate states. Here, we summarize these channels as follows.

  • If the binding energies are extremely small, they could first decay into Tcc+DT_{cc}^{+}D^{*} , and then Tcc+T_{cc}^{+} can decay into DDπDD\pi, and DD^{*} could be seen in the DπD\pi and DγD\gamma channels. In this case, the molecular candidates may be observed in the DDDππDDD\pi\pi and DDDπγDDD\pi\gamma final states.

  • If the masses of the molecular candidates are below the Tcc+DT_{cc}^{+}D^{*} threshold, the kinematically allowed channel is Tcc+DT_{cc}^{+}D. The DDDD^{*}D^{*}D molecular candidates could be studied in the DDDπDDD\pi channel.

  • If the DDD^{*}D^{*} hadronic molecular state exists, the DDDD^{*}D^{*}D molecular candidates may decay into a DDD^{*}D^{*} molecular state and DD. The DDD^{*}D^{*} molecular state could be observed in the DDD^{*}D, DDπDD\pi, and DDγDD\gamma final states.

  • In the above three scenarios, the DDDD^{*}D^{*}D molecular candidates ultimately decay into three charmed mesons together with π\pi and γ\gamma. We should also emphasize that these final states can originate not only from the intermediate double-charm molecular states with D()D^{(*)}, but also from nonresonant processes.

  • In addition, the DDDD^{*}D^{*}D molecular candidates can also decay into three charmed mesons via fall apart or quark rearrangement mechanisms. The typical channels are DDDD^{*}DD and DDDDDD.

According to the discussions above, the DDDD^{*}D^{*}D molecular candidates could be studied with the three-, four-, and five-body final states in future experiments.

III.2 DDDD^{*}D^{*}D^{*} system

Table 4: Binding energies and root-mean-square radii of DDDD^{*}D^{*}D^{*} system.
II JPJ^{P}   SS-wave   SS-DD mixing
8 
  Λ\Lambda (GeV) BB (MeV) rDDr_{D^{*}D^{*}} (fm)   Λ\Lambda (GeV) BB (MeV) rDDr_{D^{*}D^{*}} (fm)
12\frac{1}{2} 00^{-}   1.02 0.67 9.75   1.00 0.84 9.92
  1.07 4.48 9.06   1.05 4.57 9.17
  1.12 10.72 8.81   1.10 10.63 8.88
8 
11^{-}   1.00 0.67 5.52   0.97 0.44 6.02
  1.05 5.02 2.51   1.02 4.30 2.61
  1.10 12.83 1.73   1.07 11.52 1.78
8 
22^{-}   0.98 0.37 4.71   0.96 0.51 4.53
  1.03 5.94 1.79   1.01 5.80 1.87
  1.08 16.33 1.25   1.06 15.55 1.31
8 
33^{-}   1.84 0.51 9.74   1.02 0.35 12.19
  1.89 2.39 9.18   1.07 4.03 11.72
  1.94 5.38 8.90   1.12 10.23 11.63
32\frac{3}{2} 11^{-}   1.80 0.20 7.82   1.81 0.46 7.21
  1.85 1.40 6.11   1.86 1.89 5.59
  1.90 3.59 4.92   1.91 4.37 4.45
8 
22^{-}   1.85 0.81 9.60   1.84 0.61 9.89
  1.90 2.89 9.13   1.89 2.51 9.29
  1.95 6.13 8.88   1.94 5.53 8.98
8 
33^{-}   1.48 0.23 2.95   1.48 0.78 2.31
  1.53 4.21 1.38   1.53 4.90 1.34
  1.58 11.28 1.00   1.58 11.93 1.00

Since the DDDD^{*}D^{*}D^{*} system contains three identical mesons, the c=1,2,3c=1,2,3 channels share the same configurations. In addition, for all the channels, (1)t+s+l+1=1(-1)^{t+s+l+1}=1, which restricts allowed combinations of tt, ss, and ll. For the SS-wave only DDDD^{*}D^{*}D^{*} system with I=12I=\frac{1}{2}, the allowed spin parities are 00^{-}, 11^{-}, 22^{-}, and 33^{-}. For I=32I=\frac{3}{2} in SS-wave, the allowed spin parities are 11^{-}, 22^{-}, and 33^{-}. For all the DDDD^{*}D^{*}D^{*} states, we also consider the SS-DD mixing effect. As shown in Table 3, the coupled-channel effects between DDDD^{*}D^{*}D-DDDD^{*}D^{*}D^{*} are small and thus could be neglected. We notice that the threshold of DDDD^{*}D^{*}D^{*} is about 140 MeV higher than that of DDDD^{*}D^{*}D, and therefore the DDDD^{*}D^{*}D component is difficult to be bounded in the DDDD^{*}D^{*}D^{*}-predominate states. In general, the coupled-channel effects of DDDD^{*}D^{*}D-DDDD^{*}D^{*}D^{*} mainly affect the decay behaviors of the DDDD^{*}D^{*}D^{*} states. Since we focus primarily on the existences of the bound states of DDDD^{*}D^{*}D^{*}, the coupled-channel effects of DDDD^{*}D^{*}D-DDDD^{*}D^{*}D^{*} are not considered here. The binding energies and root-mean-square radii are presented in Table 4.

For the SS-wave only DDDD^{*}D^{*}D^{*} system with I(JP)=12(0)I(J^{P})=\frac{1}{2}(0^{-}), we find a bound state solution for a cutoff Λ\Lambda larger than 1.02 GeV. The root-mean-square radii decrease slowly with the increase of the cutoff Λ\Lambda. The radius rDDr_{D^{*}D^{*}} is estimated to be about 9 fm with Λ1\Lambda\sim 1 GeV, which is a bit larger than that of Tcc+T_{cc}^{+} but similar to those of the DDDDDD^{*} states. Judging from the binding energy and root-mean-square radii, this state could be viewed as a good hadronic molecular candidate.

For the SS-wave only DDDD^{*}D^{*}D^{*} system with I(JP)=12(1)I(J^{P})=\frac{1}{2}(1^{-}), we obtain a binding energy in the range of 0.6712.830.67\sim 12.83 MeV for a cutoff Λ\Lambda between 1.00 and 1.10 GeV. While the root-mean-square radii decrease from 5.52 to 1.73 fm with the increase of the cutoff Λ\Lambda.

For the SS-wave only DDDD^{*}D^{*}D^{*} system with I(JP)=12(2)I(J^{P})=\frac{1}{2}(2^{-}), the system becomes bound when the cutoff Λ\Lambda reaches about 0.98 GeV. Since the obtained binding energy is on the order of MeV and the root-mean-square radii are several fm, this state is also an ideal hadronic molecular candidate.

For the three configurations studied, turning on the SS-DD mixing only has a small effect but, in general, slightly increases the binding energy of the system of interest (for the same cutoff).

For the SS-wave only DDDD^{*}D^{*}D^{*} system with I(JP)=12(3)I(J^{P})=\frac{1}{2}(3^{-}), there are no bound state solution with a Λ1\Lambda\approx 1 GeV. But if the SS-DD mixing is taken into account, we can obtain loosely bound state solutions for a cutoff Λ1\Lambda\approx 1 GeV. By carefully studying the configurations in the SS-DD mixing scheme for the case of I(JP)=12(3)I(J^{P})=\frac{1}{2}(3^{-}) DDDD^{*}D^{*}D^{*}, we find that the configurations of R022cχ1,1cH0,12cR_{022}^{c}\chi_{1,1}^{c}H_{0,\frac{1}{2}}^{c} and R022cχ1,2cH0,12cR_{022}^{c}\chi_{1,2}^{c}H_{0,\frac{1}{2}}^{c} (c=1,2,3c=1,2,3) play a key role in forming bound states. Similar to the analysis performed in studying the I(JP)=32(2)I(J^{P})=\frac{3}{2}(2^{-}) DDDD^{*}D^{*}D state, the above conclusion is obtained in the following way

  1. 1.

    In the SS-DD mixing scheme without R022cχ1,1cH0,12cR_{022}^{c}\chi_{1,1}^{c}H_{0,\frac{1}{2}}^{c} and R022cχ1,2cH0,12cR_{022}^{c}\chi_{1,2}^{c}H_{0,\frac{1}{2}}^{c} (c=1,2,3c=1,2,3), there is no bound state solutions with Λ1\Lambda\approx 1 GeV.

  2. 2.

    In the SS-wave only combing with R022cχ1,1cH0,12cR_{022}^{c}\chi_{1,1}^{c}H_{0,\frac{1}{2}}^{c} and R022cχ1,2cH0,12cR_{022}^{c}\chi_{1,2}^{c}H_{0,\frac{1}{2}}^{c} (c=1,2,3c=1,2,3), it is easy to find bound state solutions with Λ1\Lambda\approx 1 GeV and the binding energies are approximate to those in the SS-DD mixing scheme given in Table 4.

  3. 3.

    If the R022cχ1,1cH0,12cR_{022}^{c}\chi_{1,1}^{c}H_{0,\frac{1}{2}}^{c} or R022cχ1,2cH0,12cR_{022}^{c}\chi_{1,2}^{c}H_{0,\frac{1}{2}}^{c} (c=1,2,3c=1,2,3) configuration is considered, nearly the same binding energy is obtained as that of the SS-DD mixing scheme in Table 4 when Λ1\Lambda\approx 1 GeV.

Because of the complexity of the three-body problem, it is difficult to present a precise interpretation for this phenomenon, but some qualitative analyses are helpful to understand the numerical results. For the configurations R022cχ1,1cH0,12cR_{022}^{c}\chi_{1,1}^{c}H_{0,\frac{1}{2}}^{c} and R022cχ1,2cH0,12cR_{022}^{c}\chi_{1,2}^{c}H_{0,\frac{1}{2}}^{c} (c=1,2,3c=1,2,3), the isospin and spin in the 𝐫c{\bf r}_{c} degree of freedom are t=0t=0 and s=1s=1, respectively, and the flavor and spin factors of the π\pi exchange are 𝒞1(0)=3/2{\cal C}_{1}(0)=-3/2 and 𝒪7=1\langle{\cal O}_{7}\rangle=1 Liu:2019stu , respectively. In this spin-isospin configuration, the DD^{*}-DD^{*} force from the π\pi exchange is attractive and about 3 times of that in the SS-wave only scheme with t=1t=1 and s=2s=2. We notice that R0221χ2,21H1,321R_{022}^{1}\chi_{2,2}^{1}H_{1,\frac{3}{2}}^{1} in the DDDD^{*}D^{*}D system, and R022cχ1,1cH0,12cR_{022}^{c}\chi_{1,1}^{c}H_{0,\frac{1}{2}}^{c} and R022cχ1,2cH0,12cR_{022}^{c}\chi_{1,2}^{c}H_{0,\frac{1}{2}}^{c} (c=1,2,3c=1,2,3) in the DDDD^{*}D^{*}D^{*} system are 𝐑c{\bf R}_{c}-mode excited configurations, i.e., l=0l=0, L=2L=2 (l=2l=2, L=0L=0 for the 𝐫c{\bf r}_{c}-mode DD-wave excited configuration.) Since the reduced mass of the 𝐑c{\bf R}_{c} degree of freedom is larger than that of the 𝐫c{\bf r}_{c} degree of freedom, if we take the same Gaussian variational parameters as inputs, the 𝐑c{\bf R}_{c}-mode excited configuration has a smaller kinetic matrix element than that of the 𝐫c{\bf r}_{c}-mode excited configuration, which is beneficial to form a 𝐑c{\bf R}_{c}-mode excited state. This might be the reason why some 𝐑c{\bf R}_{c}-mode excited configurations in the DDDD^{*}D^{*}D and DDDD^{*}D^{*}D^{*} systems play a significant role in the SS-DD mixing scheme.

The three-body system contains two spatial degree of freedoms. If we introduce SS-DD mixing, a large number of configurations are included in the calculation. For some specific spin-isospin configurations, the π\pi exchange force is attractive. If such spin-flavor configurations emerge in the SS-DD mixing scheme but not in the SS-wave only scenario, we should carefully investigate the SS-DD mixing effect.

According to the above analysis, it is possible to find DD-wave bound state solutions. But in the present work, we mainly focus on molecular states in the SS-wave only or SS-DD mixing scenarios.

For the SS-wave only I(JP)=32(1,2,3)I(J^{P})=\frac{3}{2}(1^{-},2^{-},3^{-}) DDDD^{*}D^{*}D^{*} systems, a larger cutoff is needed for them to bind. More specifically, we only find bound state solutions when the cutoff Λ\Lambda reaches around 1.8 GeV for I(JP)=32(1,2)I(J^{P})=\frac{3}{2}(1^{-},2^{-}). We also obtain shallow bound states in the SS-wave only I(JP)=32(3)I(J^{P})=\frac{3}{2}(3^{-}) DDDD^{*}D^{*}D^{*} system if the cutoff Λ\Lambda is close to 1.5 GeV. Since the needed cutoff Λ\Lambda is much larger than our expectation, we prefer not to view these states as good hadronic molecular candidates. For all the I=3/2I=3/2 configurations, the SS-DD mixing effect is relatively small and plays a minor role.

Since the DDDD^{*}D^{*}D^{*} molecular candidates have larger masses than that of the DDDD^{*}D^{*}D system, much more complex decay modes can be anticipated. Here, the decay channels are summarized as the following:

  • In principle, all the decay modes of the DDDD^{*}D^{*}D molecular candidates are also kinematically allowed for the DDDD^{*}D^{*}D^{*} system.

  • There are also some modes specific for the DDDD^{*}D^{*}D^{*} system. For example, the channel of a DDD^{*}D^{*} molecular candidate with a DD^{*} meson is only kinematically allowed for the DDDD^{*}D^{*}D^{*} system.

However, although there are more decay channels for the DDDD^{*}D^{*}D^{*} system, the decay patterns are similar for the DDDDDD^{*} Wu:2021kbu , DDDD^{*}D^{*}D, and DDDD^{*}D^{*}D^{*} molecular states. In the future, these states could be searched for by measuring three charmed mesons together with pions and photons in the final states.

Table 5: Dependence of binding energies on the variation of the coupling constants by about 10% in the DDDD^{*}D^{*}D system. The cutoff Λ\Lambda, potential expectations V\langle V\rangle, and binding energies B()B^{(\prime)} are in units of GeV, MeV, and MeV, respectively. The binding energies BB are calculated with the values of the coupling constants given in the fifth column, and the BB^{\prime} are obtained within their uncertainties.
II JPJ^{P} exchanged mesons coupling constant reference value   SS-wave   SS-DD mixing   Coupled channel
20 
  Λ\Lambda BB V\langle V\rangle reference range BB^{\prime}   Λ\Lambda BB V\langle V\rangle reference range BB^{\prime}   Λ\Lambda BB V\langle V\rangle reference range BB^{\prime}
12\frac{1}{2} 00^{-} π\pi gg 0.6   1.03 3.60 -16.81 0.54\sim0.66 1.08\sim7.92   1.00 3.38 -19.16 0.54\sim0.66 0.68\sim8.51   0.97 5.44 -32.83 0.54\sim0.66 0.99\sim14.58
σ\sigma gσg_{\sigma} 3.4   -15.96 3.06\sim3.74 1.27\sim7.87   -13.73 3.06\sim3.74 1.34\sim6.99   -14.95 3.06\sim3.74 3.02\sim9.10
ρ,ω\rho,~{}\omega βgV\beta g_{V} 5.2   -3.98 4.68\sim5.72 2.87\sim4.47   -2.93 4.68\sim5.72 2.84\sim4.02   -3.15 4.68\sim5.72 4.86\sim6.12
ρ,ω\rho,~{}\omega λgV\lambda g_{V} (GeV-1) 3.133   -1.63 2.82\sim3.45 3.30\sim3.95   -0.84 2.82\sim3.45 3.22\sim3.56   -2.00 2.82\sim3.45 5.08\sim5.88
kinetic energy T\langle T\rangle (MeV)   34.78 \cdots \cdots   33.28 \cdots \cdots   47.48 \cdots \cdots
20 
11^{-} π\pi gg 0.6   1.03 6.84 -30.71 0.54\sim0.66 2.17\sim14.68   1.00 5.16 -28.87 0.54\sim0.66 1.01\sim12.76   0.98 6.22 -38.64 0.54\sim0.66 1.07\sim17.08
σ\sigma gσg_{\sigma} 3.4   -32.49 3.06\sim3.74 1.93\sim14.95   -24.40 3.06\sim3.74 1.52\sim11.34   -22.92 3.06\sim3.74 3.17\sim12.16
ρ,ω\rho,~{}\omega βgV\beta g_{V} 5.2   -3.83 4.68\sim5.72 6.14\sim7.68   -2.82 4.68\sim5.72 4.64\sim5.77   -3.08 4.68\sim5.72 5.66\sim6.89
ρ,ω\rho,~{}\omega λgV\lambda g_{V} (GeV-1) 3.133   -3.83 2.82\sim3.45 6.14\sim7.68   -1.98 2.82\sim3.45 4.79\sim5.59   -2.77 2.82\sim3.45 5.72\sim6.83
kinetic energy T\langle T\rangle (MeV)   64.02 \cdots \cdots   52.91 \cdots \cdots   61.19 \cdots \cdots
20 
22^{-} π\pi gg 0.6   1.02 6.30 -29.65 0.54\sim0.66 1.84\sim13.91   0.99 5.04 -28.61 0.54\sim0.66 0.95\sim12.58   0.95 7.05 -50.13 0.54\sim0.66 0.70\sim21.63
σ\sigma gσg_{\sigma} 3.4   -29.67 3.06\sim3.74 1.84\sim13.76   -22.48 3.06\sim3.74 1.66\sim10.74   -25.05 3.06\sim3.74 3.05\sim13.14
ρ,ω\rho,~{}\omega βgV\beta g_{V} 5.2   -3.34 4.68\sim5.72 5.69\sim7.03   -2.43 4.68\sim5.72 4.59\sim5.56   -2.28 4.68\sim5.72 6.63\sim7.54
ρ,ω\rho,~{}\omega λgV\lambda g_{V} (GeV-1) 3.133   -3.30 2.82\sim3.45 5.70\sim7.03   -1.67 2.82\sim3.45 4.73\sim5.40   -3.10 2.82\sim3.45 6.49\sim7.73
kinetic energy T\langle T\rangle (MeV)   59.65 \cdots \cdots   50.15 \cdots \cdots   73.51 \cdots \cdots
32\frac{3}{2} 00^{-} π\pi gg 0.6   1.90 7.31 -32.13 0.54\sim0.66 2.31\sim15.32   1.89 6.91 -31.98 0.54\sim0.66 2.09\sim15.20   1.89 7.01 -32.18 0.54\sim0.66 2.21\sim15.49
σ\sigma gσg_{\sigma} 3.4   -92.22 3.20\sim3.74 0.15\sim35.37   -88.94 3.20\sim3.74 0.07\sim34.14   -89.34 3.20\sim3.74 0.10\sim34.31
ρ,ω\rho,~{}\omega βgV\beta g_{V} 5.2   69.22 4.68\sim5.51 24.84\sim0.96   66.51 4.68\sim5.51 23.82\sim0.84   66.81 4.68\sim5.51 23.97\sim0.89
ρ,ω\rho,~{}\omega λgV\lambda g_{V} (GeV-1) 3.133   -54.62 2.82\sim3.45 0.51\sim23.34   -51.05 2.82\sim3.45 0.58\sim22.25   -51.41 2.82\sim3.45 0.67\sim22.65
kinetic energy T\langle T\rangle (MeV)   102.43 \cdots \cdots   98.56 \cdots \cdots   99.12 \cdots \cdots
20 
11^{-} π\pi gg 0.6   1.98 7.23 -34.29 0.54\sim0.66 2.05\sim16.04   1.98 8.19 -37.21 0.54\sim0.66 2.49\sim17.62   1.98 8.19 -37.21 0.54\sim0.66 2.49\sim17.62
σ\sigma gσg_{\sigma} 3.4   -73.64 3.20\sim3.74 0.66\sim27.31   -81.33 3.20\sim3.74 0.79\sim29.84   -81.33 3.20\sim3.74 0.80\sim29.84
ρ,ω\rho,~{}\omega βgV\beta g_{V} 5.2   58.45 4.68\sim5.62 21.03\sim0.20   64.81 4.68\sim5.62 23.20\sim0.29   64.81 4.68\sim5.62 23.20\sim0.33
ρ,ω\rho,~{}\omega λgV\lambda g_{V} (GeV-1) 3.133   -60.69 2.82\sim3.45 0.09\sim26.15   -68.38 2.82\sim3.45 0.20\sim29.03   -68.38 2.82\sim3.45 0.25\sim29.03
kinetic energy T\langle T\rangle (MeV)   102.95 \cdots \cdots   113.92 \cdots \cdots   113.92 \cdots \cdots
20 
22^{-} π\pi gg 0.6   1.62 18.54 -82.25 0.54\sim0.66 5.67\sim38.92   1.63 21.18 -89.63 0.54\sim0.66 7.14\sim43.46   1.62 19.01 -85.33 0.54\sim0.66 5.86\sim40.52
σ\sigma gσg_{\sigma} 3.4   -201.84 3.20\sim3.74 0.19\sim70.36   -212.12 3.20\sim3.74 1.32\sim74.98   -201.46 3.20\sim3.74 0.57\sim70.73
ρ,ω\rho,~{}\omega βgV\beta g_{V} 5.2   143.99 4.68\sim5.62 50.62\sim0.23   152.23 4.68\sim5.62 54.79\sim1.27   143.70 4.68\sim5.62 51.03\sim0.61
ρ,ω\rho,~{}\omega λgV\lambda g_{V} (GeV-1) 3.133   -108.11 2.82\sim3.45 3.62\sim48.58   -115.54 2.82\sim3.45 5.20\sim53.45   -105.39 2.82\sim3.45 4.61\sim48.87
kinetic energy T\langle T\rangle (MeV)   229.67 \cdots \cdots   243.87 \cdots \cdots   229.47 \cdots \cdots
Table 6: Dependence of binding energies on the variation of the coupling constants by about 10% for the DDDD^{*}D^{*}D^{*} system. The cutoff Λ\Lambda, potential expectations V\langle V\rangle, and binding energies B()B^{(\prime)} are in units of GeV, MeV, and MeV, respectively. The binding energies BB are calculated with the values of the coupling constant values given in the fifth column, and the BB^{\prime} are obtained within their uncertainties.
II JPJ^{P} exchanged mesons coupling constant reference value   SS-wave   SS-DD mixing
15 
  Λ\Lambda BB V\langle V\rangle reference range BB^{\prime}   Λ\Lambda BB V\langle V\rangle reference range BB^{\prime}
12\frac{1}{2} 00^{-} π\pi gg 0.6   1.07 4.48 -17.57 0.54\sim0.66 1.70\sim8.87   1.05 4.57 -20.01 0.54\sim0.66 1.47\sim9.64
σ\sigma gσg_{\sigma} 3.4   -15.00 3.06\sim3.74 1.94\sim7.97   -13.55 3.06\sim3.74 2.25\sim7.70
ρ,ω\rho,~{}\omega βgV\beta g_{V} 5.2   -6.49 4.68\sim5.72 3.30\sim5.91   -5.56 4.68\sim5.72 3.56\sim5.79
ρ,ω\rho,~{}\omega λgV\lambda g_{V} (GeV-1) 3.133   -2.40 2.82\sim3.45 4.03\sim5.00   -1.60 2.82\sim3.45 4.27\sim4.92
kinetic energy T\langle T\rangle (MeV)   36.99 \cdots \cdots   36.16 \cdots \cdots
15 
11^{-} π\pi gg 0.6   1.05 5.02 -20.15 0.54\sim0.66 1.88\sim10.07   1.02 4.30 -22.03 0.54\sim0.66 1.08\sim10.05
σ\sigma gσg_{\sigma} 3.4   -23.45 3.06\sim3.74 1.61\sim11.18   -19.51 3.06\sim3.74 1.44\sim9.40
ρ,ω\rho,~{}\omega βgV\beta g_{V} 5.2   -5.05 4.68\sim5.72 4.09\sim6.12   -3.73 4.68\sim5.72 3.62\sim5.12
ρ,ω\rho,~{}\omega λgV\lambda g_{V} (GeV-1) 3.133   -2.54 2.82\sim3.45 4.55\sim5.57   -1.35 2.82\sim3.45 4.05\sim4.59
kinetic energy T\langle T\rangle (MeV)   46.17 \cdots \cdots   42.31 \cdots \cdots
15 
22^{-} π\pi gg 0.6   1.03 5.94 -27.90 0.54\sim0.66 1.74\sim13.11   1.01 5.80 -30.15 0.54\sim0.66 1.36\sim13.62
σ\sigma gσg_{\sigma} 3.4   -31.72 3.06\sim3.74 1.29\sim13.98   -27.52 3.06\sim3.74 1.66\sim12.73
ρ,ω\rho,~{}\omega βgV\beta g_{V} 5.2   -3.71 4.68\sim5.72 5.27\sim6.76   -3.10 4.68\sim5.72 5.23\sim6.47
ρ,ω\rho,~{}\omega λgV\lambda g_{V} (GeV-1) 3.133   -3.66 2.82\sim3.45 5.28\sim6.75   -2.33 2.82\sim3.45 5.37\sim6.30
kinetic energy T\langle T\rangle (MeV)   61.04 \cdots \cdots   57.30 \cdots \cdots
15 
33^{-} π\pi gg 0.6   1.96 6.95 -32.88 0.54\sim0.66 1.98\sim15.40   1.07 4.03 -17.33 0.54\sim0.66 1.32\sim8.39
σ\sigma gσg_{\sigma} 3.4   -73.68 3.20\sim3.74 0.44\sim27.08   -14.81 3.06\sim3.74 1.55\sim7.49
ρ,ω\rho,~{}\omega βgV\beta g_{V} 5.2   58.27 4.68\sim5.62 20.73\sim0.02   -6.40 4.68\sim5.72 2.88\sim5.45
ρ,ω\rho,~{}\omega λgV\lambda g_{V} (GeV-1) 3.133   -59.30 2.88\sim3.45 0.71\sim25.39   -2.37 2.82\sim3.45 3.60\sim4.55
kinetic energy T\langle T\rangle (MeV)   100.65 \cdots \cdots   36.88 \cdots \cdots
32\frac{3}{2} 11^{-} π\pi gg 0.6   1.93 5.48 -27.36 0.54\sim0.66 1.46\sim12.64   1.94 6.45 -29.86 0.54\sim0.66 2.07\sim14.40
σ\sigma gσg_{\sigma} 3.4   -67.77 3.20\sim3.74 0.16\sim26.14   -73.22 3.20\sim3.74 0.46\sim28.15
ρ,ω\rho,~{}\omega βgV\beta g_{V} 5.2   52.33 4.68\sim5.51 18.73\sim0.72   56.68 4.68\sim5.62 20.49\sim0.19
ρ,ω\rho,~{}\omega λgV\lambda g_{V} (GeV-1) 3.133   -48.96 2.82\sim3.45 0.09\sim21.14   -54.19 2.82\sim3.45 0.35\sim23.87
kinetic energy T\langle T\rangle (MeV)   86.28 \cdots \cdots   94.14 \cdots \cdots
15 
22^{-} π\pi gg 0.6   1.97 7.81 -35.10 0.54\sim0.66 2.45\sim16.75   1.96 7.11 -32.58 0.54\sim0.66 2.25\sim15.67
σ\sigma gσg_{\sigma} 3.4   -77.67 3.20\sim3.74 0.80\sim28.71   -73.88 3.20\sim3.74 0.55\sim27.26
ρ,ω\rho,~{}\omega βgV\beta g_{V} 5.2   61.67 4.68\sim5.62 22.21\sim0.30   58.44 4.68\sim5.62 20.91\sim0.13
ρ,ω\rho,~{}\omega λgV\lambda g_{V} (GeV-1) 3.133   -63.91 2.82\sim3.45 0.19\sim27.45   -60.23 2.82\sim3.45 0.14\sim26.29
kinetic energy T\langle T\rangle (MeV)   107.21 \cdots \cdots   101.14 \cdots \cdots
15 
33^{-} π\pi gg 0.6   1.62 19.55 -83.42 0.54\sim0.66 6.40\sim40.13   1.62 20.12 -87.08 0.54\sim0.66 6.62\sim41.99
σ\sigma gσg_{\sigma} 3.4   -209.91 3.20\sim3.74 0.24\sim72.97   -209.40 3.20\sim3.74 0.71\sim73.41
ρ,ω\rho,~{}\omega βgV\beta g_{V} 5.2   150.08 4.68\sim5.62 52.77\sim0.26   149.69 4.68\sim5.62 53.25\sim0.72
ρ,ω\rho,~{}\omega λgV\lambda g_{V} (GeV-1) 3.133   -113.27 2.82\sim3.45 3.82\sim50.82   -109.99 2.82\sim3.45 4.98\sim51.12
kinetic energy T\langle T\rangle (MeV)   236.98 \cdots \cdots   236.67 \cdots \cdots

III.3 Sensitivity of binding energies to the coupling constants

In addition to the cutoff Λ\Lambda, the coupling constants which determine the strength of the potentials are also important to determine whether the three mesons can form bound states. In Eq. (6), there are five coupling constants, i.e., gg, gσg_{\sigma}, gVg_{V}, β\beta, and λ\lambda. Among them, only the coupling constant gg is determined by the experimental partial decay width DDπD^{*}\to D\pi. All the others are taken from models. For example, gσg_{\sigma} is estimated by the quark model Riska:2000gd , and β\beta is obtained from the vector meson dominance mechanism Isola:2003fh . Since there exist uncertainties for the involved coupling constants, it is relevant to study the sensitivity of our results to the adopted values of the coupling constants. We notice that the ρ\rho and ω\omega exchange potentials share a common coupling constant gVg_{V}. In order to study the sensitivity of the bound state solutions to the coupling constants, we introduce an about 10% uncertainty to them, which is somehow arbitrary but nevertheless reasonable.

The numerical results for the DDDD^{*}D^{*}D and DDDD^{*}D^{*}D^{*} systems are presented in Tables 5 and 6, respectively. We note that the binding energies are highly dependent on the square of the coupling constants, which is easy to understand since all the potentials in Eq. (6) are proportional to the square of the coupling constants. Meanwhile, since the changes of the coupling constants could be viewed as perturbations to the potentials, we estimate the binding energies in perturbation theory. Here, we employ the SS-wave only DDDD^{*}D^{*}D system with I(JP)=12(0)I(J^{P})=\frac{1}{2}(0^{-}) as an example to illustrate this point. As shown in Table 5, we obtain a binding energy B=3.60B=3.60 MeV with a cutoff Λ=1.03\Lambda=1.03 GeV. The expectation value of the potential from the π\pi exchange is 16.81-16.81 MeV. If we allow gg to vary by 10% (0.9\sim1.1), the square of the ratio is in the range 0.81\sim1.21. Then the expectation value of the π\pi exchange potential is estimated to be in the range of 13.6320.34-13.63\sim-20.34 MeV. The resulting binding energy is then 0.41\sim7.13 MeV, which is consistent with the exact result 1.08\sim7.92 MeV. Following the same approach, when gσg_{\sigma}, βgV\beta g_{V}, and λgV\lambda g_{V} are varied by 10%, the estimated binding energies in leading order perturbation theory are in the ranges of 0.57\sim6.95 MeV, 2.84\sim4.44 MeV, 3.29\sim3.94 MeV, respectively, which are all consistent with the exact values 1.27\sim7.87 MeV, 2.87\sim4.47 MeV, 3.30\sim3.95 MeV, respectively.

The message from the above sensitivity study is that although the exact binding energies are sensitive to the values of the coupling constants, the overall picture remains unchanged, i.e., whether there exist some good three-body hadronic molecules.

IV Summary

In recent years, the LHCb Collaboration achieved remarkable success in discovering new hadronic states, including many of exotic ones, which cannot fit into the conventional quark model. These observations enriched the members of the exotic hadronic family and improved our understandings of nonperturbative strong interactions. Very recently, the LHCb Collaboration observed a new state Tcc+T_{cc}^{+} in the D0D0π+D^{0}D^{0}\pi^{+} channel LHCb:2021auc . The Tcc+T_{cc}^{+} state could well be interpreted as a DDDD^{*} molecular state and it is the first double-charm exotic state ever observed.

The observation of the Tcc+T_{cc}^{+} state enabled us to derive the interaction between two charmed mesons. In Ref. Wu:2021kbu , by reproducing the binding energy of Tcc+T_{cc}^{+}, we determined the cutoff Λ\Lambda in the OBE model. This allows us to study hadronic molecular states composed of several charmed mesons. In this work, we studied the existence of triple-charm molecular states composed of DDDD^{*}D^{*}D and DDDD^{*}D^{*}D^{*}. Using the cutoff Λ\Lambda obtained by the binding energy of the Tcc+T_{cc}^{+}, we find that the I(JP)=12(0,1,2)I(J^{P})=\frac{1}{2}(0^{-},1^{-},2^{-}) DDDD^{*}D^{*}D and I(JP)=12(0,1,2,3)I(J^{P})=\frac{1}{2}(0^{-},1^{-},2^{-},3^{-}) DDDD^{*}D^{*}D systems have loosely bound state solutions, which could be viewed as good hadronic molecular candidates. We suggest to search for the DDDD^{*}D^{*}D and DDDD^{*}D^{*}D molecular states in the following decay modes:

  1. a.

    a double-charm molecular state and a charmed meson,

  2. b.

    three charmed mesons,

  3. c.

    three charmed mesons together with a number of pions and photons.

On the other hand, we find that the I(JP)=32(0,1,2)I(J^{P})=\frac{3}{2}(0^{-},1^{-},2^{-}) DDDD^{*}D^{*}D and I(JP)=32(1,2,3)I(J^{P})=\frac{3}{2}(1^{-},2^{-},3^{-}) DDDD^{*}D^{*}D^{*} systems are more difficult to form bound states.

The present framework can be extended to study the BBBBB^{*}B^{*}-BBBB^{*}B^{*}B^{*} and BBBBBB^{*} systems. The former has been studied in Ref. Garcilazo:2018rwu and a bound state with I(JP)=1/2(2)I(J^{P})=1/2(2^{-}) and a binding energy of 90 MeV below the lowest strong decay threshold was found. The latter has been studied in Ref. Ma:2018vhp , where loosely bound states were found for both I=12I=\frac{1}{2} and I=32I=\frac{3}{2}. The three-body systems studied in Ref. Garcilazo:2018rwu are similar to those of this work, but the number of bound state solutions is far fewer than that obtained in this work. It should be noted that in the present work, we deduced the meson-meson potentials in the one-boson-exchange model, while in Ref. Garcilazo:2018rwu , the two-body interactions are deduced from the tt matrices of Refs. Vijande:2009kj ; Vijande:2009zs ; Carames:2012th ; Garcilazo:2017ifi . The different meson-meson potentials are responsible for the different three-body results. In future experiments, searching for hadronic molecular candidates could help distinguish the different meson-meson interactions.

It is no doubt that the LHCb Collaboration has played an important role in searches for exotic states. The observation of the Tcc+T_{cc}^{+} state once again shows the capability of the LHCb detector in this area. With anticipated data accumulation LHCb:2018roe , more exotic states can be expected in the future.

ACKNOWLEDGEMENTS

This work is partly supported by the National Natural Science Foundation of China under Grants No.11735003, No.11975041, No.12147152, No.11961141004, and the fundamental Research Funds for the Central Universities. Ming-Zhu Liu acknowledges support from the National Natural Science Foundation of China under Grant No.1210050997. XL is supported by the China National Funds for Distinguished Young Scientists under Grant No. 11825503, National Key Research and Development Program of China under Contract No. 2020YFA0406400, the 111 Project under Grant No. B20063, the National Natural Science Foundation of China under Grant No. 12047501, and the Fundamental Research Funds for the Central Universities.

References

  • (1) B. Aubert et al. [BaBar], Observation of a narrow meson decaying to Ds+π0D_{s}^{+}\pi^{0} at a mass of 2.32 GeV/c2c^{2}, Phys. Rev. Lett. 90, 242001 (2003).
  • (2) D. Besson et al. [CLEO], Observation of a narrow resonance of mass 2.46 GeV/c2c^{2} decaying to Ds+π0D^{*+}_{s}\pi^{0} and confirmation of the DsJ(2317)D^{*}_{sJ}(2317) state, Phys. Rev. D 68, 032002 (2003), [erratum: Phys. Rev. D 75, 119908 (2007)].
  • (3) S. K. Choi et al. [Belle], Observation of a narrow charmonium-like state in exclusive B±K±π+πJ/ψB^{\pm}\to K^{\pm}\pi^{+}\pi^{-}J/\psi decays, Phys. Rev. Lett. 91, 262001 (2003).
  • (4) T. Barnes, F. E. Close and H. J. Lipkin, Implications of a DKDK molecule at 2.32 GeV, Phys. Rev. D 68, 054006 (2003).
  • (5) Z. X. Xie, G. Q. Feng and X. H. Guo, Analyzing Ds0(2317)+D_{s0}^{*}(2317)^{+} in the DKDK molecule picture in the Beth-Salpeter approach, Phys. Rev. D 81, 036014 (2010).
  • (6) F. K. Guo, P. N. Shen, H. C. Chiang, R. G. Ping and B. S. Zou, Dynamically generated 0+0^{+} heavy mesons in a heavy chiral unitary approach, Phys. Lett. B 641, 278-285 (2006).
  • (7) A. Faessler, T. Gutsche, V. E. Lyubovitskij and Y. L. Ma, Strong and radiative decays of the Ds0(2317)D_{s0}^{*}(2317) meson in the DKDK-molecule picture, Phys. Rev. D 76, 014005 (2007).
  • (8) G. Q. Feng, X. H. Guo and Z. H. Zhang, Studying the DKD^{*}K molecular structure of Ds1+(2460)D_{s1}^{+}(2460) in the Bethe-Salpeter approach, Eur. Phys. J. C 72, 2033 (2012).
  • (9) A. Faessler, T. Gutsche, V. E. Lyubovitskij and Y. L. Ma, DKD^{*}K molecular structure of the Ds1(2460)D_{s1}(2460) meson, Phys. Rev. D 76, 114008 (2007).
  • (10) Y. J. Zhang, H. C. Chiang, P. N. Shen and B. S. Zou, Possible SS-wave bound-states of two pseudoscalar mesons, Phys. Rev. D 74, 014013 (2006).
  • (11) E. S. Swanson, Short range structure in the X(3872)X(3872), Phys. Lett. B 588, 189-195 (2004).
  • (12) C. Y. Wong, Molecular states of heavy quark mesons, Phys. Rev. C 69, 055202 (2004).
  • (13) X. Liu, Z. G. Luo, Y. R. Liu and S. L. Zhu, X(3872)X(3872) and Other Possible Heavy Molecular States, Eur. Phys. J. C 61, 411-428 (2009).
  • (14) I. W. Lee, A. Faessler, T. Gutsche and V. E. Lyubovitskij, X(3872)X(3872) as a molecular DDDD^{*} state in a potential model, Phys. Rev. D 80, 094005 (2009).
  • (15) M. Altenbuchinger, L. S. Geng and W. Weise, Scattering lengths of Nambu-Goldstone bosons off DD mesons and dynamically generated heavy-light mesons, Phys. Rev. D 89, no.1, 014026 (2014).
  • (16) H. X. Chen, W. Chen, X. Liu and S. L. Zhu, The hidden-charm pentaquark and tetraquark states, Phys. Rept. 639, 1-121 (2016).
  • (17) X. Liu, An overview of XYZXYZ new particles, Chin. Sci. Bull. 59, 3815-3830 (2014).
  • (18) C. Z. Yuan, The XYZXYZ states revisited, Int. J. Mod. Phys. A 33, no.21, 1830018 (2018).
  • (19) S. L. Olsen, T. Skwarnicki and D. Zieminska, Nonstandard heavy mesons and baryons: Experimental evidence, Rev. Mod. Phys. 90, no.1, 015003 (2018).
  • (20) F. K. Guo, C. Hanhart, U. G. Meißner, Q. Wang, Q. Zhao and B. S. Zou, Hadronic molecules,” Rev. Mod. Phys. 90, no.1, 015004 (2018).
  • (21) A. Hosaka, T. Iijima, K. Miyabayashi, Y. Sakai and S. Yasui, Exotic hadrons with heavy flavors: XX, YY, ZZ, and related states, PTEP 2016, no.6, 062C01 (2016).
  • (22) N. Brambilla, S. Eidelman, C. Hanhart, A. Nefediev, C. P. Shen, C. E. Thomas, A. Vairo and C. Z. Yuan, The XYZXYZ states: experimental and theoretical status and perspectives, Phys. Rept. 873, 1-154 (2020).
  • (23) R. Aaij et al. [LHCb], Observation of an exotic narrow doubly charmed tetraquark, [arXiv:2109.01038 [hep-ex]].
  • (24) R. Aaij et al. [LHCb], Study of the doubly charmed tetraquark Tcc+T_{cc}^{+}, [arXiv:2109.01056 [hep-ex]].
  • (25) N. Li, Z. F. Sun, X. Liu and S. L. Zhu, Perfect DDDD^{*} molecular prediction matching the TccT_{cc} observation at LHCb, Chin. Phys. Lett. 38, 092001 (2021).
  • (26) H. Ren, F. Wu and R. Zhu, Hadronic Molecule Interpretation of Tcc+T_{cc}^{+} and Its Beauty Partners, Adv. High Energy Phys. 2022, 9103031 (2022).
  • (27) R. Chen, Q. Huang, X. Liu and S. L. Zhu, Predicting another doubly charmed molecular resonance Tcc+(3876)T_{cc}^{\prime+}(3876), Phys. Rev. D 104, no.11, 114042 (2021).
  • (28) L. R. Dai, R. Molina and E. Oset, Prediction of new TccT_{cc} states of DDD^{*}D^{*} and DsDD_{s}^{*}D^{*} molecular nature, Phys. Rev. D 105, no.1, 016029 (2022).
  • (29) A. Feijoo, W. H. Liang and E. Oset, D0D0π+D^{0}D^{0}\pi^{+} mass distribution in the production of the TccT_{cc} exotic state, Phys. Rev. D 104, no.11, 114015 (2021).
  • (30) T. W. Wu, Y. W. Pan, M. Z. Liu, S. Q. Luo, L. S. Geng and X. Liu, Discovery of the doubly charmed Tcc+T_{cc}^{+} state implies a triply charmed Hccc hexaquark state, Phys. Rev. D 105, no.3, L031505 (2022).
  • (31) R. Molina, T. Branz and E. Oset, A new interpretation for the Ds2(2573)D^{*}_{s2}(2573) and the prediction of novel exotic charmed mesons, Phys. Rev. D 82, 014010 (2010).
  • (32) N. Li, Z. F. Sun, X. Liu and S. L. Zhu, Coupled-channel analysis of the possible D()D(),B¯()B¯()D^{(*)}D^{(*)},\overline{B}^{(*)}\overline{B}^{(*)} and D()B¯()D^{(*)}\overline{B}^{(*)} molecular states, Phys. Rev. D 88, no.11, 114008 (2013).
  • (33) M. Z. Liu, T. W. Wu, M. Pavon Valderrama, J. J. Xie and L. S. Geng, Heavy-quark spin and flavor symmetry partners of the X(3872)X(3872) revisited: What can we learn from the one boson exchange model? Phys. Rev. D 99, no.9, 094018 (2019).
  • (34) H. Xu, B. Wang, Z. W. Liu and X. Liu, DDDD^{*} potentials in chiral perturbation theory and possible molecular states, Phys. Rev. D 99, no.1, 014027 (2019).
  • (35) J. P. Ader, J. M. Richard and P. Taxil, Do narrow heavy multiquark states exist? Phys. Rev. D 25, 2370 (1982).
  • (36) J. l. Ballot and J. M. Richard, Four quark states in additive potentials, Phys. Lett. B 123, 449-451 (1983).
  • (37) H. J. Lipkin, A model independent approach to multi - quark bound states, Phys. Lett. B 172, 242-247 (1986).
  • (38) S. Zouzou, B. Silvestre-Brac, C. Gignoux and J. M. Richard, Four quark bound states, Z. Phys. C 30, 457 (1986).
  • (39) L. Heller and J. A. Tjon, On the Existence of Stable Dimesons, Phys. Rev. D 35, 969 (1987).
  • (40) J. Carlson, L. Heller and J. A. Tjon, Stability of Dimesons, Phys. Rev. D 37, 744 (1988).
  • (41) A. V. Manohar and M. B. Wise, Exotic QQq¯q¯QQ\bar{q}\bar{q} states in QCD, Nucl. Phys. B 399, 17-33 (1993).
  • (42) S. Pepin, F. Stancu, M. Genovese and J. M. Richard, Tetraquarks with color blind forces in chiral quark models, Phys. Lett. B 393, 119-123 (1997).
  • (43) J. Vijande, A. Valcarce and K. Tsushima, Dynamical study of bf QQu¯d¯QQ\bar{u}\bar{d} mesons, Phys. Rev. D 74, 054018 (2006).
  • (44) D. Ebert, R. N. Faustov, V. O. Galkin and W. Lucha, Masses of tetraquarks with two heavy quarks in the relativistic quark model, Phys. Rev. D 76, 114015 (2007).
  • (45) J. Vijande, A. Valcarce and J. M. Richard, Adiabaticity and color mixing in tetraquark spectroscopy, Phys. Rev. D 87, no.3, 034040 (2013).
  • (46) M. Karliner and J. L. Rosner, Discovery of doubly-charmed Ξcc\Xi_{cc} baryon implies a stable (bbu¯d¯bb\bar{u}\bar{d}) tetraquark, Phys. Rev. Lett. 119, no.20, 202001 (2017).
  • (47) E. J. Eichten and C. Quigg, Heavy-quark symmetry implies stable heavy tetraquark mesons QiQjq¯kq¯lQ_{i}Q_{j}\bar{q}_{k}\bar{q}_{l}, Phys. Rev. Lett. 119, no.20, 202002 (2017).
  • (48) J. M. Richard, A. Valcarce and J. Vijande, Few-body quark dynamics for doubly heavy baryons and tetraquarks, Phys. Rev. C 97, no.3, 035211 (2018).
  • (49) W. Park, S. Noh and S. H. Lee, Masses of the doubly heavy tetraquarks in a constituent quark model, Nucl. Phys. A 983, 1-19 (2019).
  • (50) E. Hernández, J. Vijande, A. Valcarce and J. M. Richard, Spectroscopy, lifetime and decay modes of the TbbT^{-}_{bb} tetraquark, Phys. Lett. B 800, 135073 (2020).
  • (51) X. Z. Ling, M. Z. Liu, L. S. Geng, E. Wang and J. J. Xie, Can we understand the decay width of the Tcc+T_{cc}^{+} state? Phys. Lett. B 826, 136897 (2022).
  • (52) R. Aaij et al. [LHCb], Observation of J/ψpJ/\psi p Resonances Consistent with Pentaquark States in Λb0J/ψKp\Lambda_{b}^{0}\to J/\psi K^{-}p Decays, Phys. Rev. Lett. 115, 072001 (2015).
  • (53) R. Aaij et al. [LHCb], Observation of a narrow pentaquark state, Pc(4312)+P_{c}(4312)^{+}, and of two-peak structure of the Pc(4450)+P_{c}(4450)^{+}, Phys. Rev. Lett. 122, no.22, 222001 (2019).
  • (54) R. Aaij et al. [LHCb], Evidence of a J/ψΛJ/\psi\Lambda structure and observation of excited Ξ\Xi^{-} states in the ΞbJ/ψΛK\Xi^{-}_{b}\to J/\psi\Lambda K^{-} decay, Sci. Bull. 66, 1278-1287 (2021).
  • (55) R. Aaij et al. [LHCb], A model-independent study of resonant structure in B+D+DK+B^{+}\to D^{+}D^{-}K^{+} decays, Phys. Rev. Lett. 125, 242001 (2020).
  • (56) R. Aaij et al. [LHCb], Amplitude analysis of the B+D+DK+B^{+}\to D^{+}D^{-}K^{+} decay, Phys. Rev. D 102, 112003 (2020).
  • (57) R. Aaij et al. [LHCb], Observation of structure in the J/ψJ/\psi -pair mass spectrum, Sci. Bull. 65, no.23, 1983-1993 (2020).
  • (58) R. Aaij et al. [LHCb], Physics case for an LHCb Upgrade II - Opportunities in flavour physics, and beyond, in the HL-LHC era, [arXiv:1808.08865 [hep-ex]].
  • (59) D. O. Riska and G. E. Brown, Nucleon resonance transition couplings to vector mesons, Nucl. Phys. A 679, 577-596 (2001).
  • (60) M. Gell-Mann and M. Levy, The axial vector current in beta decay, Nuovo Cim. 16, 705 (1960).
  • (61) C. Isola, M. Ladisa, G. Nardulli and P. Santorelli, Charming penguins in BKπ,K(ρ,ω,ϕ)B\to K^{*}\pi,K(\rho,\omega,\phi) decays, Phys. Rev. D 68, 114001 (2003).
  • (62) P. A. Zyla et al. [Particle Data Group], Review of Particle Physics, PTEP 2020, no.8, 083C01 (2020).
  • (63) E. Hiyama, Y. Kino and M. Kamimura, Gaussian expansion method for few-body systems, Prog. Part. Nucl. Phys. 51, 223-307 (2003).
  • (64) E. Hiyama, Gaussian expansion method for few-body systems and its applications to atomic and nuclear physics, PTEP 2012, 01A204 (2012).
  • (65) T. Yoshida, E. Hiyama, A. Hosaka, M. Oka and K. Sadato, Spectrum of heavy baryons in the quark model, Phys. Rev. D 92, no.11, 114029 (2015).
  • (66) G. Yang, J. Ping, P. G. Ortega and J. Segovia, Triply heavy baryons in the constituent quark model, Chin. Phys. C 44, no.2, 023102 (2020).
  • (67) G. Yang, J. Ping and J. Segovia, The SS- and PP-Wave Low-Lying Baryons in the Chiral Quark Model, Few Body Syst. 59, no.6, 113 (2018).
  • (68) G. Yang, J. Ping and J. Segovia, sQq¯q¯sQ\bar{q}\bar{q} (q=u,d;Q=c,b)(q=u,\,d;\,Q=c,\,b) tetraquarks in the chiral quark model, Phys. Rev. D 103, no.7, 074011 (2021).
  • (69) G. Yang, J. Ping and J. Segovia, QQs¯s¯QQ\bar{s}\bar{s} tetraquarks in the chiral quark model, Phys. Rev. D 102, no.5, 054023 (2020).
  • (70) G. J. Wang, L. Meng and S. L. Zhu, Spectrum of the fully-heavy tetraquark state QQQ¯Q¯QQ\bar{Q}^{\prime}\bar{Q}^{\prime}, Phys. Rev. D 100, no.9, 096013 (2019).
  • (71) Q. F. Lü, D. Y. Chen, Y. B. Dong and E. Santopinto, Triply-heavy tetraquarks in an extended relativized quark model, Phys. Rev. D 104, no.5, 054026 (2021).
  • (72) Q. F. Lü, D. Y. Chen and Y. B. Dong, Masses of fully heavy tetraquarks QQQ¯Q¯QQ{\bar{Q}}{\bar{Q}} in an extended relativized quark model, Eur. Phys. J. C 80, no.9, 871 (2020).
  • (73) T. W. Wu, M. Z. Liu, L. S. Geng, E. Hiyama and M. P. Valderrama, DKDK, DDKDDK, and DDDKDDDK molecules–understanding the nature of the Ds0(2317)D_{s0}^{*}(2317), Phys. Rev. D 100, no.3, 034029 (2019).
  • (74) T. W. Wu, M. Z. Liu, L. S. Geng, E. Hiyama, M. P. Valderrama and W. L. Wang, Quadruply charmed dibaryons as heavy quark symmetry partners of the DDKDDK bound state, Eur. Phys. J. C 80, no.9, 901 (2020).
  • (75) T. W. Wu, M. Z. Liu and L. S. Geng, Excited KK meson, Kc(4180)K_{c}(4180) , with hidden charm as a DD¯KD\bar{D}K bound state, Phys. Rev. D 103, no.3, L031501 (2021).
  • (76) T. W. Wu, Y. W. Pan, M. Z. Liu, J. X. Lu, L. S. Geng and X. H. Liu, Hidden charm hadronic molecule with strangeness Pcs(4739)P_{cs}^{*}(4739) as a ΣcD¯K¯\Sigma_{c}\bar{D}\bar{K} bound state, Phys. Rev. D 104, no.9, 094032 (2021).
  • (77) T. W. Wu and L. S. Geng, Study on Triple-Hadron Bound States with Gaussian Expansion Method, Few Body Syst. 62, no.4, 89 (2021).
  • (78) T. W. Wu, M. Z. Liu and L. S. Geng, One Way to Verify the Molecular Picture of Exotic Hadrons: From from DKDK to DDK/DD¯()KDDK/D\bar{D}^{(*)}K, Few Body Syst. 62, no.3, 38 (2021).
  • (79) D. M. Brink and F. Stancu, Tetraquarks with heavy flavors, Phys. Rev. D 57, 6778-6787 (1998).
  • (80) G. E. Brown and W. Weise, Pion Scattering and Isobars in Nuclei, Phys. Rept. 22, 279-337 (1975).
  • (81) A. M. Green and P. Haapakoski, The effect of the Δ(1236)\Delta(1236) in the two-nucleon problem and in neutron matter, Nucl. Phys. A 221, 429-449 (1974).
  • (82) P. Haapakoski, A nucleon-nucleon potential that includes the effect of the N(1236)N^{*}(1236), Phys. Lett. B 48, 307-310 (1974).
  • (83) A. M. Green and J. A. Niskanen, The Saturating Effect of the Δ(1236)\Delta(1236) in Nuclear Matter, Nucl. Phys. A 249, 493-509 (1975).
  • (84) W. Meguro, Y. R. Liu and M. Oka, Possible ΛcΛc\Lambda_{c}\Lambda_{c} molecular bound state, Phys. Lett. B 704, 547-550 (2011).
  • (85) N. A. Tornqvist, Possible large deuteronlike meson-meson states bound by pions, Phys. Rev. Lett. 67, 556-559 (1991).
  • (86) R. Chen, X. Liu, X. Q. Li and S. L. Zhu, Identifying exotic hidden-charm pentaquarks, Phys. Rev. Lett. 115, no.13, 132002 (2015).
  • (87) R. Chen, Z. F. Sun, X. Liu and S. L. Zhu, Strong LHCb evidence supporting the existence of the hidden-charm molecular pentaquarks, Phys. Rev. D 100, no.1, 011502 (2019).
  • (88) R. Chen, F. L. Wang, A. Hosaka and X. Liu, Exotic triple-charm deuteronlike hexaquarks, Phys. Rev. D 97, no.11, 114011 (2018).
  • (89) R. Chen, A. Hosaka and X. Liu, Prediction of triple-charm molecular pentaquarks, Phys. Rev. D 96, no.11, 114030 (2017).
  • (90) S. Yasui and K. Sudoh, Exotic nuclei with open heavy flavor mesons, Phys. Rev. D 80, 034008 (2009).
  • (91) H. Garcilazo and A. Valcarce, TbbbT_{bbb}: a three BB-meson bound state, Phys. Lett. B 784, 169-172 (2018).
  • (92) L. Ma, Q. Wang and U. G. Meißner, Trimeson bound state BBBBBB^{*} via a delocalized π\pi bond, Phys. Rev. D 100, no.1, 014028 (2019).
  • (93) J. Vijande, A. Valcarce and N. Barnea, Exotic meson-meson molecules and compact four-quark states, Phys. Rev. D 79, 074010 (2009).
  • (94) J. Vijande and A. Valcarce, Probabilities in nonorthogonal basis: Four-quark systems, Phys. Rev. C 80, 035204 (2009).
  • (95) T. F. Carames, A. Valcarce and J. Vijande, Too many XsX^{\prime}s, YsY^{\prime}s and ZsZ^{\prime}s?, Phys. Lett. B 709, 358-361 (2012).
  • (96) H. Garcilazo, A. Valcarce and T. F. Caramés, Three-body systems with open flavor heavy mesons, Phys. Rev. D 96, no.7, 074009 (2017).