This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Trinomials, singular moduli and Riffaut’s conjecture

Yuri Bilu111Institut de Mathématiques de Bordeaux, Université de Bordeaux & CNRS; partially supported by the MEC CONICYT Project PAI80160038 (Chile), and by the SPARC Project P445 (India), Florian Luca222School of Mathematics, University of the Witwatersrand; Research Group in Algebraic Structures and Applications, King Abdulaziz University, Jeddah; Centro de Ciencias Matematicas, UNAM, Morelia; partially supported by the CNRS “Postes rouges” program, Amalia Pizarro-Madariaga333Instituto de Matemáticas, Universidad de Valparaíso; partially supported by the Ecos / CONICYT project ECOS170022 and by the MATH-AmSud project NT-ACRT 20-MATH-06
Abstract

Riffaut [22] conjectured that a singular modulus of degree h3{h\geq 3} cannot be a root of a trinomial with rational coefficients. We show that this conjecture follows from the GRH and obtain partial unconditional results.

1 Introduction

A singular modulus is the jj-invariant of an elliptic curve with complex multiplication. Given a singular modulus xx we denote by Δx\Delta_{x} the discriminant of the associated imaginary quadratic order. We denote by h(Δ)h(\Delta) the class number of the imaginary quadratic order of discriminant Δ\Delta. Recall that two singular moduli xx and yy are conjugate over {\mathbb{Q}} if and only if Δx=Δy{\Delta_{x}=\Delta_{y}}, and that there are h(Δ)h(\Delta) singular moduli of a given discriminant Δ\Delta. In particular, [(x):]=h(Δx){[{\mathbb{Q}}(x):{\mathbb{Q}}]=h(\Delta_{x})}. For all details, see, for instance, [12, §7 and §11].

In this article we study the following question.

Problem 1.1.

Can a singular modulus of degree h3{h\geq 3} be a root of a trinomial with rational coefficients?

Here and below a trinomial is an abbreviation for a monic trinomial non-vanishing at 0; in other words, a polynomial of the form tm+Atn+B{t^{m}+At^{n}+B} with m>n>0{m>n>0} and B0{B\neq 0}.

This problem emerged in the work of Riffaut [22] on the effective André-Oort conjecture. We invite the reader to consult the article of Riffaut for more context and motivation. Riffaut conjectured that the answer is negative, but, as he admits, “much about trinomials is known, but this knowledge is still insufficient to rule out such a possibility”.

We believe, however, that the problem is motivated on its own, independently of Riffaut’s work, because it is of interest to learn more about the relationship between two very classical objects like rational trinomials and singular moduli.

In Section 9 we prove that Riffaut’s conjecture follows from the GRH.

Theorem 1.2.

Assume the Generalized Riemann Hypothesis for the Dirichlet LL-functions. Then a singular modulus of degree at least 33 cannot be a root of a trinomial with rational coefficients.

We also obtain some partial unconditional results. To state them, we have to introduce some definitions that will be used throughout the article.

Let Δ\Delta be an imaginary quadratic discriminant. We call Δ\Delta trinomial discriminant if h(Δ)3{h(\Delta)\geq 3} and the singular moduli of discriminant Δ\Delta are roots of a trinomial with rational coefficients. If this trinomial is of the form tm+Atn+B{t^{m}+At^{n}+B} then we say that Δ\Delta is a trinomial discriminant of signature (m,n)(m,n).

Note that a trinomial discriminant may, a priori, admit several signatures. However, there can be at most finitely many of them, and all of them can be effectively computed in terms of Δ\Delta. This follows from the results of article [3] and the following property: for any singular modulus xx and positive integer kk we have (xk)=(x){{\mathbb{Q}}(x^{k})={\mathbb{Q}}(x)}, see [22, Lemma 2.6].

Now we are ready to state our unconditional results. First of all, in Sections 6 and 10 we show that a trinomial discriminant cannot be too small, and, with at most one exception, cannot be too large either.

Theorem 1.3.

Every trinomial discriminant Δ\Delta satisfies |Δ|>1011{|\Delta|>10^{11}}, and at most one trinomial discriminant Δ\Delta satisfies |Δ|10160{|\Delta|\geq 10^{160}}. In particular, the set of trinomial discriminants is finite.

Next, in Section 7 we show that trinomial discriminants are of rather special form.

Theorem 1.4.

Every trinomial discriminant is of the form p-p or pq-pq, where pp and qq are distinct odd prime numbers. In particular, trinomial discriminants are odd and fundamental.

Finally, in Section 12 we show that trinomials vanishing at singular moduli are themselves quite special.

Theorem 1.5.

Let Δ\Delta be a trinomial discriminant of signature (m,n)(m,n). Assume that |Δ|1040{|\Delta|\geq 10^{40}}. Then mn2{m-n\leq 2}.

Plan of the article.

In Section 2 we remind general facts about singular moduli, to be used throughout the article. In Section 3 we introduce and study the basic notion of suitable integer. A positive integer aa is called suitable for a discriminant Δ\Delta if there exists b{b\in{\mathbb{Z}}} such that b2Δmod 4a{b^{2}\equiv\Delta\bmod\,4a} and (b+Δ)/2a{(b+\sqrt{\Delta})/2a} belongs to the standard fundamental domain (plus a certain coprimality condition must be satisfied). We give various recipes for detecting suitable integers of arbitrary discriminants, so far without any reference to trinomials.

In Section 4 we obtain some metrical properties of roots of trinomials, both in the complex and non-archimedean setting. Applying them to singular moduli that are roots of a trinomial, we obtain the “principal inequality”, a basic tool instrumental for the rest of the article. In Section 5 we use the “principal inequality” to study suitable integers of trinomial discriminants: they turn out to be very large, of order of magnitude |Δ|1/2/log|Δ|{|\Delta|^{1/2}/\log|\Delta|}, and densely spaced.

In Section 6 we show that trinomial discriminants cannot be too small (the first statement of Theorem 1.3). The argument uses the results of the previous sections and computations with PARI [26] and SAGE [27].

In Section 7 we prove Theorem 1.4 on the structure of trinomial discriminants, using careful analysis of suitable integers. In the follow-up Section 8 we show that suitable integers of trinomial discriminants are prime numbers.

In Section 9 we obtain the conditional result (Theorem 1.2) and in Section 10 we obtain an unconditional upper bound for all but one trinomial discriminant (the second statement of Theorem 1.3). The principal arguments of these sections already appeared elsewhere [15, 17, 21], and we only had to adapt them to our situation.

In Section 11 we study the class number and other numerical characteristics of trinomial discriminants. Using the results from that section, we prove Theorem 1.5 in Section 12.

Acknowledgments.

We thank Michael Filaseta, Andrew Granville, Sanoli Gun, Tanmay Khale, Chazad Movahhedi, Olivier Ramaré, Igor Shparlinski and the mathoverflow user Lucia for helpful suggestions.

We are most grateful to the anonymous referees, who corrected several mistakes, and made many very useful comments that helped us to improve the presentation.

All calculations were performed using PARI [26] or SAGE [27]. We thank Bill Allombert and Karim Belabas for the PARI tutorial. The reader may consult https://github.com/yuribilu/trinomials to view the PARI script used for this article.

Yuri Bilu thanks the University of Valparaiso and the Institute of Mathematical Sciences (Chennai) for stimulating working conditions.

Florian Luca worked on this project during visits to the Institute of Mathematics of Bordeaux from March to June 2019, and to the Max Planck Institute for Mathematics in Bonn from September 2019 to February 2020. He thanks these institutions for hospitality and support.

Amalia Pizarro-Madariaga thanks the Max Planck Institute for Mathematics in Bonn for hospitality and stimulating working conditions.

1.1 Some general conventions

Throughout the article we use O1()O_{1}(\cdot) as a quantitative version of the familiar O()O(\cdot) notation: X=O1(Y){X=O_{1}(Y)} means that |X|Y{|X|\leq Y}.

We denote by (Δ/p)(\Delta/p) the Kronecker symbol. The general definition of the Kronecker symbol can be found, for instance, on page 202 of [14]. In this article, however, we will always use it in the special case when Δ\Delta is a discriminant (and, in particular, Δ0,1mod4{\Delta\equiv 0,1\bmod 4}) and pp is a prime number. In this case (Δ/p)(\Delta/p) is just the Legendre symbol modp\bmod p if pp is an odd prime, and

(Δ2)={1,Δ1mod8,1,Δ5mod8,0,Δ0mod4.\left(\frac{\Delta}{2}\right)=\begin{cases}1,&\Delta\equiv 1\bmod 8,\\ -1,&\Delta\equiv 5\bmod 8,\\ 0,&\Delta\equiv 0\bmod 4.\end{cases}

We use the standard notation ω()\omega(\cdot) for the number of prime divisors (counted without multiplicities). If 𝔭\mathfrak{p} is a prime of a number field then we denote ν𝔭(){\nu_{\mathfrak{p}}(\cdot)} the 𝔭\mathfrak{p}-adic valuation (normalized so that its group of values is {\mathbb{Z}}).

2 Generalities on singular moduli

In this section we summarize some properties of singular moduli used in the article. Unless the contrary is stated explicitly, everywhere below the letter Δ\Delta stands for an imaginary quadratic discriminant; that is, Δ<0{\Delta<0} and Δ0,1mod4{\Delta\equiv 0,1\bmod 4}.

Denote by \mathcal{F} the standard fundamental domain: the open hyperbolic triangle with vertices

ζ3=1+32,ζ6=1+32,i,\zeta_{3}=\frac{-1+\sqrt{-3}}{2},\qquad\zeta_{6}=\frac{1+\sqrt{-3}}{2},\qquad i\infty,

together with the geodesics [i,ζ6]{[i,\zeta_{6}]} and [ζ6,]{[\zeta_{6},\infty]}. It is well-known (see, for instance, [4, Proposition 2.5] and the references therein) that there is a one-to-one correspondence between the singular moduli of discriminant Δ\Delta and the set TΔT_{\Delta} of triples (a,b,c)(a,b,c) of integers with gcd(a,b,c)=1{\gcd(a,b,c)=1}, satisfying b24ac=Δ{b^{2}-4ac=\Delta} and

either a<ba<c or 0ba=c.\text{either\quad$-a<b\leq a<c$\quad or\quad$0\leq b\leq a=c$}.

If (a,b,c)TΔ{(a,b,c)\in T_{\Delta}} then (b+Δ)/2a{(b+\sqrt{\Delta})/2a} belongs to \mathcal{F}, and the corresponding singular modulus is j((b+Δ)/2a){j((b+\sqrt{\Delta})/2a)}.

We call a singular modulus dominant if in the corresponding triple (a,b,c)(a,b,c) we have a=1{a=1}. For every Δ\Delta there exists exactly one dominant singular modulus of discriminant Δ\Delta.

The inequality

||j(z)|e2πImz|2079,\bigl{|}|j(z)|-e^{2\pi\mathrm{Im}z}\bigr{|}\leq 2079,

holds true for every z{z\in\mathcal{F}}; see, for instance, [5, Lemma 1]. In particular, if xx is a singular modulus of discriminant Δ\Delta corresponding to the triple (a,b,c)TΔ{(a,b,c)\in T_{\Delta}} then

||x|eπ|Δ|1/2/a|2079.\bigl{|}|x|-e^{\pi|\Delta|^{1/2}/a}\bigr{|}\leq 2079.

This implies that

|x|\displaystyle|x| eπ|Δ|1/2+2079\displaystyle\leq e^{\pi|\Delta|^{1/2}}+2079 in any case;\displaystyle\text{in any case}; (2.1)
|x|\displaystyle|x| eπ|Δ|1/22079\displaystyle\geq e^{\pi|\Delta|^{1/2}}-2079 if x is dominant;\displaystyle\text{if $x$ is dominant}; (2.2)
|x|\displaystyle|x| eπ|Δ|1/2/2+2079\displaystyle\leq e^{\pi|\Delta|^{1/2}/2}+2079 if x is not dominant.\displaystyle\text{if $x$ is not dominant}. (2.3)

These inequalities will be systematically used in the sequel, sometimes without special reference.

3 Suitable integers

Everywhere in this section Δ\Delta is an imaginary quadratic discriminant and aa a positive integer.

Call an integer aa suitable for Δ\Delta if there exist b,c{b,c\in{\mathbb{Z}}} such that (a,b,c)TΔ{(a,b,c)\in T_{\Delta}}. Note that 11 is always suitable, and that a suitable aa satisfies |Δ|3a2{|\Delta|\geq 3a^{2}}: this follows from the fact that (b+Δ)/2a{(b+\sqrt{\Delta})/2a} belongs to the standard fundamental domain, or directly from the relation Δ=b24ac{\Delta=b^{2}-4ac} and the inequalities |b|ac{|b|\leq a\leq c}. Moreover, equality |Δ|=3a2{|\Delta|=3a^{2}} is possible only when Δ=3{\Delta=-3} and a=1{a=1}, and we have the strict inequality |Δ|>3a2{|\Delta|>3a^{2}} when Δ3{\Delta\neq-3}.

In the following proposition we collect some useful tools for detecting suitable integers.

Proposition 3.1.
  1. 1.

    Assume that gcd(a,Δ)=1{\gcd(a,\Delta)=1}, that Δ\Delta is a square mod 4a{\bmod\,4a}, and that |Δ|4a2{|\Delta|\geq 4a^{2}}. Then aa is suitable for Δ\Delta.

  2. 2.

    Let aa be suitable for Δ\Delta and aa^{\prime} a divisor of aa such that gcd(a,Δ)=1{\gcd(a^{\prime},\Delta)=1}. Then aa^{\prime} is suitable for Δ\Delta as well.

  3. 3.

    Let pp be a prime number satisfying (Δ/p)=1{(\Delta/p)=1} and |Δ|4p2{|\Delta|\geq 4p^{2}}. Then pp is suitable for Δ\Delta.

  4. 4.

    Assume that Δ\Delta is even, that Δ4mod 32{\Delta\not\equiv 4\bmod\,32}, and that |Δ|76{|\Delta|\geq 76}. Then 22 or 44 is suitable for Δ\Delta.

  5. 5.

    Assume that Δ4mod 32{\Delta\equiv 4\bmod\,32}. Let k3{k\geq 3} be an integer such that |Δ|22k+2{|\Delta|\geq 2^{2k+2}}. Then 2k2^{k} is suitable for Δ\Delta. In particular, if |Δ|210{|\Delta|\geq 2^{10}} then 88 and 1616 are suitable for Δ\Delta.

  6. 6.

    Assume that Δ=2νaa{\Delta=-2^{\nu}aa^{\prime}}, where ν=ν2(Δ){\nu=\nu_{2}(\Delta)} and a,a{a,a^{\prime}} are positive odd integers with gcd(a,a)=1{\gcd(a,a^{\prime})=1}. Then min{a,a,(a+a)/4}{\min\{a,a^{\prime},(a+a^{\prime})/4\}} is suitable for Δ\Delta if Δ\Delta is odd, and min{a,a}\min\{a,a^{\prime}\} is suitable if Δ\Delta is even.

The proof requires a simple lemma, telling that 02,12,,m20^{2},1^{2},\ldots,m^{2} exhaust all squares mod 4m\bmod\,4m.

Lemma 3.2.

Let mm be a positive integer and xx an integer. Then there exists an integer yy satisfying 0ym{0\leq y\leq m} and y2x2mod 4m{y^{2}\equiv x^{2}\bmod\,4m}.

Proof.

Since x1x2mod 2m{x_{1}\equiv x_{2}\bmod\,2m} implies that x12x22mod 4m{x_{1}^{2}\equiv x_{2}^{2}\bmod\,4m} we may assume that m<xm{-m<x\leq m}. Now set y=|x|{y=|x|}. ∎

Proof of Proposition 3.1.
  1. 1.

    If Δ\Delta is a square mod 4a\bmod\,4a then Lemma 3.2 produces b{b\in{\mathbb{Z}}} satisfying 0ba{0\leq b\leq a} and Δb2mod 4a{\Delta\equiv b^{2}\bmod\,4a}. If gcd(a,Δ)=1{\gcd(a,\Delta)=1} then we have gcd(a,b)=1{\gcd(a,b)=1}, and (a,b,(b2Δ)/4a)TΔ{(a,b,(b^{2}-\Delta)/4a)\in T_{\Delta}} when |Δ|4a2{|\Delta|\geq 4a^{2}}. This proves item 1.

  2. 2.

    If aa is suitable for Δ\Delta then |Δ|3a2{|\Delta|\geq 3a^{2}} and Δ\Delta is a square mod 4a{\bmod\,4a}. If aa^{\prime} is a proper divisor of aa then |Δ|12(a)2{|\Delta|\geq 12(a^{\prime})^{2}} and Δ\Delta is a square mod 4a{\bmod\,4a^{\prime}}. Hence item 2 follows from item 1.

  3. 3.

    Let pp a prime number (p=2{p=2} included). Then the condition (Δ/p)=1{(\Delta/p)=1} implies that Δ\Delta is a square mod 4p{\bmod\,4p} and is co-prime with pp. Hence item 3 follows from item 1 as well.

  4. 4.

    When 16Δ{16\mid\Delta}, select b{0,4}{b\in\{0,4\}} to satisfy ν2(Δb2)=4{\nu_{2}(\Delta-b^{2})=4}. Then we have (4,b,(b2Δ)/16)TΔ{\bigl{(}4,b,(b^{2}-\Delta)/16\bigr{)}\in T_{\Delta}} provided that |Δ|64{|\Delta|\geq 64}. Furthermore,

    (2,0,Δ/8)\displaystyle(2,0,-\Delta/8) TΔ\displaystyle\in T_{\Delta} if Δ8mod 16 and |Δ|24,\displaystyle\text{if ${\Delta\equiv 8\bmod\,16}$ and ${|\Delta|\geq 24}$},
    (2,2,(4Δ)/8)\displaystyle(2,2,(4-\Delta)/8) TΔ\displaystyle\in T_{\Delta} if Δ12mod 16 and |Δ|20,\displaystyle\text{if ${\Delta\equiv 12\bmod\,16}$ and ${|\Delta|\geq 20}$},
    (4,2,(4Δ)/16)\displaystyle(4,2,(4-\Delta)/16) TΔ\displaystyle\in T_{\Delta} if Δ20mod 32 and |Δ|76.\displaystyle\text{if ${\Delta\equiv 20\bmod\,32}$ and ${|\Delta|\geq 76}$}.

    This proves item 4.

  5. 5.

    If Δ4mod 32{\Delta\equiv 4\bmod\,32} then, by Hensel’s lemma, for k=3,4,{k=3,4,\ldots} there exists xk{x_{k}\in{\mathbb{Z}}} such that Δ/4xk2mod 2k{\Delta/4\equiv x_{k}^{2}\bmod\,2^{k}}. Hence, setting bk=2xk{b_{k}=2x_{k}}, we find bk{b_{k}\in{\mathbb{Z}}} with the property Δbk2mod 2k+2{\Delta\equiv b_{k}^{2}\bmod\,2^{k+2}}. Moreover, Lemma 3.2 implies that bkb_{k} can be chosen to satisfy 0bk2k{0\leq b_{k}\leq 2^{k}}. Note also that ν2(bk)=1{\nu_{2}(b_{k})=1}, which implies that ν2(bk2(2kbk)2)=k+2{\nu_{2}(b_{k}^{2}-(2^{k}-b_{k})^{2})=k+2}. Hence, replacing (if necessary) bkb_{k} by 2kbk{2^{k}-b_{k}} we may assume that ν2(bk2Δ)=k+2{\nu_{2}(b_{k}^{2}-\Delta)=k+2}. Then (2k,bk,(bk2Δ)/2k+2)TΔ{(2^{k},b_{k},(b_{k}^{2}-\Delta)/2^{k+2})\in T_{\Delta}} provided |Δ|22k+2{|\Delta|\geq 2^{2k+2}}. This proves item 5.

  6. 6.

    In item 6 we will assume that aa{a^{\prime}\geq a}. Then for odd Δ\Delta we have

    (a,a,a+a4)\displaystyle\left(a,a,\frac{a+a^{\prime}}{4}\right) TΔ\displaystyle\in T_{\Delta} when a3a,\displaystyle\text{when $a^{\prime}\geq 3a$},
    (a+a4,aa2,a+a4)\displaystyle\left(\frac{a+a^{\prime}}{4},\frac{a^{\prime}-a}{2},\frac{a+a^{\prime}}{4}\right) TΔ\displaystyle\in T_{\Delta} when aa3a,\displaystyle\text{when $a\leq a^{\prime}\leq 3a$},

    and for even Δ\Delta we have (a,0,2ν2a)TΔ{(a,0,2^{\nu-2}a^{\prime})\in T_{\Delta}}. This proves item 6. ∎

We want to extend item 6 to the case when aa and Δ/a\Delta/a are not coprime. This is possible in the special case when aa is an odd prime power with even exponent.

Proposition 3.3.

Let pp be an odd prime number and kk a positive integer such that p2k+1Δ{p^{2k+1}\mid\Delta}. Write Δ=p2km{\Delta=-p^{2k}m}. (In particular, pm{p\mid m}.) Define

δ={2,Δ is odd,1,Δ is even.\delta=\begin{cases}2,&\text{$\Delta$ is odd},\\ 1,&\text{$\Delta$ is even}.\end{cases}

Assume that m(4/9)p2k{m\geq(4/9)p^{2k}}. Then min{p2k,(m+(pkδ)2)/4}{\min\bigl{\{}p^{2k},(m+(p^{k}-\delta)^{2})/4\bigr{\}}} is suitable for Δ\Delta.

Proof.

Setting

A0=p2k+2δpk3δ23,A1=3p2k2δpkδ2,A2=3p2k+2δpkδ2,A_{0}=\frac{p^{2k}+2\delta p^{k}-3\delta^{2}}{3},\qquad A_{1}=3p^{2k}-2\delta p^{k}-\delta^{2},\qquad A_{2}=3p^{2k}+2\delta p^{k}-\delta^{2},

a routine verification shows that

(p2k,p2kδpk,m+(pkδ)24)\displaystyle\left(p^{2k},p^{2k}-\delta p^{k},\frac{m+(p^{k}-\delta)^{2}}{4}\right) TΔ\displaystyle\in T_{\Delta} when mA2,\displaystyle\text{when $m\geq A_{2}$}, (3.1)
(m+(pkδ)24,p2kδpk,p2k)\displaystyle\left(\frac{m+(p^{k}-\delta)^{2}}{4},p^{2k}-\delta p^{k},p^{2k}\right) TΔ\displaystyle\in T_{\Delta} when A1mA2,\displaystyle\text{when $A_{1}\leq m\leq A_{2}$}, (3.2)
(m+(pkδ)24,|mp2k+δ2|2,m+(pk+δ)24)\displaystyle\left(\frac{m+(p^{k}-\delta)^{2}}{4},\frac{|m-p^{2k}+\delta^{2}|}{2},\frac{m+(p^{k}+\delta)^{2}}{4}\right) TΔ\displaystyle\in T_{\Delta} when A0mA1,\displaystyle\text{when $A_{0}\leq m\leq A_{1}$}, (3.3)
m+(pkδ)24\displaystyle\frac{m+(p^{k}-\delta)^{2}}{4} p2k\displaystyle\leq p^{2k} mA2.\displaystyle\Longleftrightarrow m\leq A_{2}.

The only part of the verification which is not completely trivial is coprimality of the entries of the triple in (3.3). To see this, just note that the difference of the third and the first entry is δpk\delta p^{k}. This already proves coprimarity in the case of even Δ\Delta, when δ=1{\delta=1}, because none of the entries is divisible by pp. And if Δ\Delta is odd, in which case δ=2{\delta=2}, we simply note that the middle entry is odd, because m3mod 4{m\equiv 3\bmod\,4} (and this is because both Δ\Delta and p2kp^{2k} are 1mod 4{1\bmod\,4}).

Thus, we have proved that min{p2k,(m+(pkδ)2)/4}{\min\bigl{\{}p^{2k},(m+(p^{k}-\delta)^{2})/4\bigr{\}}} is suitable for Δ\Delta when mA0{m\geq A_{0}}. It remains to note that A0(4/9)p2k{A_{0}\leq(4/9)p^{2k}}. Indeed, for x1{x\geq 1} the function x(x2+2δx3δ2)/3x2{x\mapsto(x^{2}+2\delta x-3\delta^{2})/3x^{2}} admits global maximum at x=3δ{x=3\delta}, and this maximum is equal to 4/94/9. ∎

Proposition 3.4.

Let aa be a prime number or a=4{a=4}. If |Δ|1000{|\Delta|\geq 1000} then Δ\Delta admits a suitable integer distinct from 11 and aa.

Proof.

There can exist at most 22 integers bb satisfying

a<ba,b2Δmod 4a.-a<b\leq a,\qquad b^{2}\equiv\Delta\bmod\,4a.

Therefore if the only suitable integers for Δ\Delta are 11 and aa then the set TΔT_{\Delta} consists of at most 33 elements. Hence h(Δ)3{h(\Delta)\leq 3}. This contradicts the assumption |Δ|1000{|\Delta|\geq 1000}, because the largest discriminant with class number 33 is 907-907, see Subsection 6.2. ∎

4 Roots of trinomials and the principal inequality

In this section we establish some elementary metrical properties of roots of trinomials, both in the complex and pp-adic setting. The complex result, applied to singular moduli, will yield that non-dominant singular moduli of trinomial discriminant are very close to each other in absolute value. We call this the “principal inequality”; it will indeed be of crucial importance for the rest of the article.

Everything is based on the following property: if x0,x1,x2{x_{0},x_{1},x_{2}} are roots of a trinomial tm+Atn+B{t^{m}+At^{n}+B} then

|x0mx0n1x1mx1n1x2mx2n1|=0.\begin{vmatrix}x_{0}^{m}&x_{0}^{n}&1\\ x_{1}^{m}&x_{1}^{n}&1\\ x_{2}^{m}&x_{2}^{n}&1\end{vmatrix}=0. (4.1)

4.1 The complex case

We start from the following observation.

Proposition 4.1.

Let x0,x1,x2{x_{0},x_{1},x_{2}\in{\mathbb{C}}} be roots of a trinomial tm+Atn+B[t]{t^{m}+At^{n}+B\in{\mathbb{C}}[t]}. Assume that |x0||x1||x2|{|x_{0}|\geq|x_{1}|\geq|x_{2}|}. Then

|1(x2/x1)n|2|x1/x0|mn+2|x1/x0|m|1-(x_{2}/x_{1})^{n}|\leq 2|x_{1}/x_{0}|^{m-n}+2|x_{1}/x_{0}|^{m} (4.2)

and

1|x2/x1|2|x1/x0|+2|x1/x0|3.1-|x_{2}/x_{1}|\leq 2|x_{1}/x_{0}|+2|x_{1}/x_{0}|^{3}. (4.3)

While (4.3) is weaker than (4.2), it has the advantage that mm and nn are not involved. Hence it may be used to check whether given numbers are roots of some trinomial. This will be used in Section 6.

Proof.

We may assume that |x0|>|x1|{|x_{0}|>|x_{1}|} and x1x2{x_{1}\neq x_{2}}, otherwise both results are trivial; in particular, m3{m\geq 3}. Expanding the determinant in (4.1), we obtain

|x0|m|x1nx2n|\displaystyle|x_{0}|^{m}|x_{1}^{n}-x_{2}^{n}| |x0|n(|x1|m+|x2|m)+|x1|m|x2|n+|x1|n|x2|m\displaystyle\leq|x_{0}|^{n}\bigl{(}|x_{1}|^{m}+|x_{2}|^{m}\bigr{)}+|x_{1}|^{m}|x_{2}|^{n}+|x_{1}|^{n}|x_{2}|^{m}
2|x0|n|x1|m+2|x1|m+n.\displaystyle\leq 2|x_{0}|^{n}|x_{1}|^{m}+2|x_{1}|^{m+n}.

Now (4.2) follows dividing by |x0|m|x1|n{|x_{0}|^{m}|x_{1}|^{n}}, and (4.3) is immediate from (4.2). ∎

Recall that we call Δ\Delta a trinomial discriminant of signature (m,n)(m,n) if h(Δ)3{h(\Delta)\geq 3} and the singular moduli of discriminant Δ\Delta are roots of a trinomial of the form tm+Atn+B{t^{m}+At^{n}+B} with rational coefficients.

Corollary 4.2 (The “principal inequality”).

Let x1x_{1} and x2x_{2} be non-dominant singular moduli of trinomial discriminant Δ\Delta of signature (m,n)(m,n). Assume that |Δ|1000{|\Delta|\geq 1000} and |x1||x2|{|x_{1}|\geq|x_{2}|}. Then

|1(x2/x1)n|e(mn)(π|Δ|1/2+log|x1|+1020)+log2.|1-(x_{2}/x_{1})^{n}|\leq e^{(m-n)(-\pi|\Delta|^{1/2}+\log|x_{1}|+10^{-20})+\log 2}. (4.4)

In particular, we have the inequalities

1|x2/x1|\displaystyle 1-|x_{2}/x_{1}| e(mn)(π|Δ|1/2+log|x1|+1020)+log2,\displaystyle\leq e^{(m-n)(-\pi|\Delta|^{1/2}+\log|x_{1}|+10^{-20})+\log 2}, (4.5)
1|x2/x1|\displaystyle 1-|x_{2}/x_{1}| eπ|Δ|1/2+log|x1|+0.7,\displaystyle\leq e^{-\pi|\Delta|^{1/2}+\log|x_{1}|+0.7}, (4.6)
1|x2/x1|\displaystyle 1-|x_{2}/x_{1}| eπ|Δ|1/2/2+0.7.\displaystyle\leq e^{-\pi|\Delta|^{1/2}/2+0.7}. (4.7)
Proof.

Let x0x_{0} be the dominant singular modulus of discriminant Δ\Delta; in particular, |x0|>|x1||x2|{|x_{0}|>|x_{1}|\geq|x_{2}|}. Since |Δ|1000{|\Delta|\geq 1000}, we have

|x1x0|<eπ|Δ|1/2/2+2079eπ|Δ|1/22079<1021,|x0|>eπ|Δ|1/22079>eπ|Δ|1/21030.\displaystyle\left|\frac{x_{1}}{x_{0}}\right|<\frac{e^{\pi|\Delta|^{1/2}/2}+2079}{e^{\pi|\Delta|^{1/2}}-2079}<10^{-21},\qquad|x_{0}|>e^{\pi|\Delta|^{1/2}}-2079>e^{\pi|\Delta|^{1/2}-10^{-30}}.

Substituting this to (4.2), we obtain

|1(x2x1)n|\displaystyle\left|1-\left(\frac{x_{2}}{x_{1}}\right)^{n}\right| 2|x1x0|mn+2(1021)n|x1x0|mn\displaystyle\leq 2\left|\frac{x_{1}}{x_{0}}\right|^{m-n}+2\cdot(10^{-21})^{n}\left|\frac{x_{1}}{x_{0}}\right|^{m-n}
2(1+1021)e(mn)(π|Δ|1/2+log|x1|+1030)\displaystyle\leq 2(1+10^{-21})e^{(m-n)(-\pi|\Delta|^{1/2}+\log|x_{1}|+10^{-30})}
e(mn)(π|Δ|1/2+log|x1|+1020)+log2,\displaystyle\leq e^{(m-n)(-\pi|\Delta|^{1/2}+\log|x_{1}|+10^{-20})+\log 2},

which proves (4.4).

Inequality (4.5) follows from (4.4) and both (4.6) and (4.7) follow from (4.5), because mn1{m-n\geq 1} and

log|x1|<log(eπ|Δ|1/2/2+2079)<π|Δ|1/2/2+1017\log|x_{1}|<\log(e^{\pi|\Delta|^{1/2}/2}+2079)<\pi|\Delta|^{1/2}/2+10^{-17}

when |Δ|1000{|\Delta|\geq 1000}. ∎

4.2 The non-archimedean case

In this subsection KK is a field of characteristic 0 complete with respect to a non-archimedean absolute value ||{|\cdot|}. The results of this subsection will be used only in Subsection 6.2 and Section 12.

Proposition 4.3.
  1. 1.

    The roots of a trinomial f(t)=tm+Atn+BK[t]{f(t)=t^{m}+At^{n}+B\in K[t]} may have at most 22 distinct absolute values. In other words, the set {|x|:xK,f(x)=0}{\{|x|:x\in K,f(x)=0\}} consists of at most 22 elements.

  2. 2.

    Assume now this set has exactly 22 distinct elements aa and bb, with a>b{a>b}. Then for any roots x1,x2{x_{1},x_{2}} with |x1|=|x2|=b{|x_{1}|=|x_{2}|=b} we have

    |1(x2/x1)n|(b/a)mn,|1-(x_{2}/x_{1})^{n}|\leq(b/a)^{m-n}, (4.8)

    and for any roots x1,x2{x_{1},x_{2}} with |x1|=|x2|=a{|x_{1}|=|x_{2}|=a} we have

    |1(x2/x1)mn|(b/a)n,|1-(x_{2}/x_{1})^{m-n}|\leq(b/a)^{n}, (4.9)
Proof.

If x0,x1,x2x_{0},x_{1},x_{2} are roots with |x0|>|x1|>|x2|{|x_{0}|>|x_{1}|>|x_{2}|} then the determinant in (4.1) has the term x0mx1nx_{0}^{m}x_{1}^{n} which has a strictly larger absolute value than the other 55 terms. Hence the determinant cannot vanish. This proves item 1.

Now let x0,x1,x2x_{0},x_{1},x_{2} be roots with |x0|=a>|x1|=|x2|=b{|x_{0}|=a>|x_{1}|=|x_{2}|=b}. Again expanding the determinant, we obtain am|x1nx2n|anbm{a^{m}|x_{1}^{n}-x_{2}^{n}|\leq a^{n}b^{m}}, which proves (4.8).

Finally, let x0,x1,x2x_{0},x_{1},x_{2} be roots with |x0|=b<|x1|=|x2|=a{|x_{0}|=b<|x_{1}|=|x_{2}|=a}. Then the trinomial tm+B1Atmn+B1{t^{m}+B^{-1}At^{m-n}+B^{-1}} has roots x01,x11,x21x_{0}^{-1},x_{1}^{-1},x_{2}^{-1} satisfying

|x01|=b1>|x11|=|x21|=a1.|x_{0}^{-1}|=b^{-1}>|x_{1}^{-1}|=|x_{2}^{-1}|=a^{-1}.

Applying (4.8) in this this set-up, we obtain |1(x11/x21)mn|(a1/b1)n{|1-(x_{1}^{-1}/x_{2}^{-1})^{m-n}|\leq(a^{-1}/b^{-1})^{n}}, which is (4.9). ∎

It turns out that a trinomial having roots of 22 distinct absolute values must have, in the algebraic closure K¯\bar{K}, exactly nn “small” roots and mn{m-n} “big” roots.

Proposition 4.4.

In the set-up of item 2 of Proposition 4.3, the trinomial f(t)f(t) has exactly nn roots xK¯{x\in\bar{K}} with |x|=b{|x|=b} and exactly mn{m-n} roots xK¯{x\in\bar{K}} with |x|=a{|x|=a} (both counted with multiplicities).

Proof.

Denote x1,,xm{x_{1},\ldots,x_{m}} the roots of f(t)f(t) in K¯\bar{K} counted with multiplicities. Let kk be the number of roots of absolute value aa. The coefficient of tmkt^{m-k} in f(t)f(t) is given by

(1)k1i1<<ikmxi1xik.(-1)^{k}\sum_{1\leq i_{1}<\ldots<i_{k}\leq m}x_{i_{1}}\cdots x_{i_{k}}.

In this sum exactly one term is of absolute value aka^{k}, while the other terms are of strictly smaller absolute value. Hence the coefficient of tmkt^{m-k} does not vanish, which implies that mk=n{m-k=n}. ∎

Remark 4.5.

As the anonymous referees suggested, item 1 of Proposition 4.3, and Proposition 4.4 can be proved using the “Newton polygons”, as in Section 6.3 of [10]. While our proof of Proposition 4.4 does not use Newton polygons, the present simple argument was inspired by the referees’ comments. Our initial statement of Proposition 4.4 was weaker, and the proof was long and ugly.

5 Suitable integers for trinomial discriminants

In this section Δ\Delta denotes a trinomial discriminant unless the contrary is stated explicitly. The following property is crucial.

Proposition 5.1.

Let Δ\Delta be a trinomial discriminant admitting at least 22 distinct suitable integers other than 11. Let a>1{a>1} be suitable for Δ\Delta. Then we have a>3|Δ|1/2/log|Δ|{a>3|\Delta|^{1/2}/\log|\Delta|} if |Δ|105{|\Delta|\geq 10^{5}}, and a>4|Δ|1/2/log|Δ|{a>4|\Delta|^{1/2}/\log|\Delta|} if |Δ|1010{|\Delta|\geq 10^{10}}.

(It follows from the proof that, assuming |Δ||\Delta| large enough, 44 can be replaced by any c<2π{c<2\pi}.)

Here are some immediate consequences.

Corollary 5.2.

Let Δ\Delta be trinomial and pp a prime number such that (Δ/p)=1{(\Delta/p)=1}. Then p>3|Δ|1/2/log|Δ|{p>3|\Delta|^{1/2}/\log|\Delta|} if |Δ|105{|\Delta|\geq 10^{5}} and p>4|Δ|1/2/log|Δ|{p>4|\Delta|^{1/2}/\log|\Delta|} if |Δ|1010{|\Delta|\geq 10^{10}}.

Proof.

Assume that |Δ|105{|\Delta|\geq 10^{5}} and p3|Δ|1/2/log|Δ|{p\leq 3|\Delta|^{1/2}/\log|\Delta|}. Then p|Δ|1/2/2{p\leq|\Delta|^{1/2}/2}, which implies that pp is suitable for Δ\Delta by item 3 of Proposition 3.1. Proposition 3.4 implies now that Δ\Delta admits a suitable integer other than 11 and pp. Hence p>3|Δ|1/2/log|Δ|{p>3|\Delta|^{1/2}/\log|\Delta|} by Proposition 5.1, a contradiction. The case |Δ|1010{|\Delta|\geq 10^{10}} is treated similarly. ∎

Corollary 5.3.

Let Δ\Delta be trinomial, |Δ|105{|\Delta|\geq 10^{5}}, and a>1{a>1} suitable for Δ\Delta. Assume that gcd(a,Δ)=1{\gcd(a,\Delta)=1}. Then aa is a prime number, and a>3|Δ|1/2/log|Δ|{a>3|\Delta|^{1/2}/\log|\Delta|}. Moreover, if |Δ|1010{|\Delta|\geq 10^{10}} then a>4|Δ|1/2/log|Δ|{a>4|\Delta|^{1/2}/\log|\Delta|}.

Proof.

If aa is composite then it has a prime divisor pp satisfying pa1/2{p\leq a^{1/2}}. This pp is also suitable for Δ\Delta by item 2 of Proposition 3.1, and Proposition 5.1 implies that p>3|Δ|1/2/log|Δ|{p>3|\Delta|^{1/2}/\log|\Delta|}. Hence

|Δ|3a23p4243|Δ|2/(log|Δ)4,|\Delta|\geq 3a^{2}\geq 3p^{4}\geq 243|\Delta|^{2}/(\log|\Delta)^{4},

or (log|Δ|)4243|Δ|{(\log|\Delta|)^{4}\geq 243|\Delta|}, which is clearly impossible when |Δ|105{|\Delta|\geq 10^{5}}. Thus, aa is prime, and we complete the proof using Corollary 5.2. ∎

Before proving Proposition 5.1, we obtain the following preliminary statement.

Proposition 5.4.

Let Δ\Delta be a trinomial discriminant, |Δ|105{|\Delta|\geq 10^{5}}. Then it admits at most one suitable aa satisfying 1<a3.4|Δ|1/2/log|Δ|{1<a\leq 3.4|\Delta|^{1/2}/\log|\Delta|}. If |Δ|1010{|\Delta|\geq 10^{10}} then 3.43.4 can be replaced by 4.54.5.

Proof.

Assume that Δ\Delta admits suitable a1a_{1} and a2a_{2} satisfying

1<a1<a2κ|Δ|1/2log|Δ|,1<a_{1}<a_{2}\leq\kappa\frac{|\Delta|^{1/2}}{\log|\Delta|},

with κ\kappa to be specified later. Let (a1,b1,c1),(a2,b2,c2)TΔ{(a_{1},b_{1},c_{1}),(a_{2},b_{2},c_{2})\in T_{\Delta}} be triples where our a1,a2a_{1},a_{2} occur, and x1,x2x_{1},x_{2} the corresponding singular moduli. We have

|x1||x2|\displaystyle|x_{1}|-|x_{2}| eπ|Δ|1/2/a1eπ|Δ|1/2/a24158\displaystyle\geq e^{\pi|\Delta|^{1/2}/a_{1}}-e^{\pi|\Delta|^{1/2}/a_{2}}-4158
=eπ|Δ|1/2/a2(eπ|Δ|1/2(1/a11/a2)1)4158\displaystyle=e^{\pi|\Delta|^{1/2}/a_{2}}\bigl{(}e^{\pi|\Delta|^{1/2}(1/a_{1}-1/a_{2})}-1\bigr{)}-4158
eπlog|Δ|/κπ|Δ|1/2(1a11a2)4158\displaystyle\geq e^{\pi\log|\Delta|/\kappa}\cdot\pi|\Delta|^{1/2}\left(\frac{1}{a_{1}}-\frac{1}{a_{2}}\right)-4158
π|Δ|π/κ+1/2a1a24158\displaystyle\geq\frac{\pi|\Delta|^{\pi/\kappa+1/2}}{a_{1}a_{2}}-4158
πκ2|Δ|π/κ1/2(log|Δ|)24158.\displaystyle\geq\frac{\pi}{\kappa^{2}}|\Delta|^{\pi/\kappa-1/2}(\log|\Delta|)^{2}-4158.

A calculation shows that

πκ2|Δ|π/κ1/2(log|Δ|)24158500\frac{\pi}{\kappa^{2}}|\Delta|^{\pi/\kappa-1/2}(\log|\Delta|)^{2}-4158\geq 500

when κ=3.4{\kappa=3.4} and |Δ|105{|\Delta|\geq 10^{5}}, or when κ=4.5{\kappa=4.5} and |Δ|1010{|\Delta|\geq 10^{10}}. (In fact, in the latter case 500500 can be replaced by 36003600.) Hence 1|x2/x1|500|x1|1{1-|x_{2}/x_{1}|\geq 500|x_{1}|^{-1}}. Comparing this with the “principal inequality” (4.7), we obtain

|x1|500eπ|Δ|1/2/20.7,|x_{1}|\geq 500e^{\pi|\Delta|^{1/2}/2-0.7},

which is impossible because |x1|eπ|Δ|1/2/2+2079{|x_{1}|\leq e^{\pi|\Delta|^{1/2}/2}+2079}. ∎

Proof of Proposition 5.1.

Let 11 and a1>1{a_{1}>1} be the smallest suitable integers for Δ\Delta. By the assumption, Δ\Delta admits a suitable integer a2>a1{a_{2}>a_{1}}. Proposition 5.4 implies that a23.4|Δ|1/2/log|Δ|{a_{2}\geq 3.4|\Delta|^{1/2}/\log|\Delta|}, where 3.43.4 can be replaced by 4.54.5 if |Δ|1010{|\Delta|\geq 10^{10}}.

Now assume that a13|Δ|1/2/log|Δ|{a_{1}\leq 3|\Delta|^{1/2}/\log|\Delta|}. We will see that this leads to a contradiction. We again let x1x_{1} and x2x_{2} be singular moduli for a1a_{1} and a2a_{2}. Then

|x2||x1|π|Δ|π/3.4+2079π|Δ|π/32079|Δ|0.12+2079π1|Δ|π/312079π1|Δ|π/3.\frac{|x_{2}|}{|x_{1}|}\leq\frac{\pi|\Delta|^{\pi/3.4}+2079}{\pi|\Delta|^{\pi/3}-2079}\leq\frac{|\Delta|^{-0.12}+2079\pi^{-1}|\Delta|^{-\pi/3}}{1-2079\pi^{-1}|\Delta|^{-\pi/3}}. (5.1)

When |Δ|105{|\Delta|\geq 10^{5}}, the right-hand side of (5.1) does not exceed 0.30.3. Then

1|x2/x1|0.7,1-|x_{2}/x_{1}|\geq 0.7,

which clearly contradicts (4.7).

Now assume that |Δ|1010{|\Delta|\geq 10^{10}} and a14|Δ|1/2/log|Δ|{a_{1}\leq 4|\Delta|^{1/2}/\log|\Delta|}. Then instead of (5.1) we have

|x2||x1|π|Δ|π/4.5+2079π|Δ|π/42079=|Δ|π/36+2079π1|Δ|π/412079π1|Δ|π/4.\frac{|x_{2}|}{|x_{1}|}\leq\frac{\pi|\Delta|^{\pi/4.5}+2079}{\pi|\Delta|^{\pi/4}-2079}=\frac{|\Delta|^{-\pi/36}+2079\pi^{-1}|\Delta|^{-\pi/4}}{1-2079\pi^{-1}|\Delta|^{-\pi/4}}.

The right-hand side is again bounded by 0.30.3, and we complete the proof in the same way. ∎

Another important property of suitable integers is that they are of the same order of magnitude.

Proposition 5.5.

Let a1,a21a_{1},a_{2}\neq 1 be suitable integers for a trinomial discriminant Δ\Delta. Then a2<5a1{a_{2}<5a_{1}}.

Proof.

We assume that a25a1{a_{2}\geq 5a_{1}} and will obtain a contradiction arguing as in the proof of Proposition 5.4. Let x1x_{1} and x2x_{2} be singular moduli corresponding to a1a_{1} and a2a_{2}. Then

|x1||x2|eπ|Δ|1/2/a2π|Δ|1/2(1a11a2)4158.|x_{1}|-|x_{2}|\geq e^{\pi|\Delta|^{1/2}/a_{2}}\cdot\pi|\Delta|^{1/2}\left(\frac{1}{a_{1}}-\frac{1}{a_{2}}\right)-4158.

Using 5a1a2|Δ/3|1/2{5a_{1}\leq a_{2}\leq|\Delta/3|^{1/2}}, we obtain

|x1||x2|\displaystyle|x_{1}|-|x_{2}| eπ|Δ|1/2/a2π|Δ|1/24a24158\displaystyle\geq e^{\pi|\Delta|^{1/2}/a_{2}}\cdot\pi|\Delta|^{1/2}\cdot\frac{4}{a_{2}}-4158
eπ34π34158\displaystyle\geq e^{\pi\sqrt{3}}\cdot 4\pi\sqrt{3}-4158
>800.\displaystyle>800.

Hence 1|x2/x1|>800/|x1|{1-|x_{2}/x_{1}|>800/|x_{1}|}, which leads to a contradiction exactly as in the proof of Proposition 5.4. ∎

6 Small discriminants

Recall that we call a discriminant Δ\Delta trinomial if h(Δ)3{h(\Delta)\geq 3} and singular moduli of this discriminant are roots of a trinomial with rational coefficients.

In this section we show that trinomial discriminants must be odd and not too small.

Theorem 6.1.

Let Δ\Delta be trinomial discriminant. Then Δ\Delta is odd and satisfies |Δ|>1011{|\Delta|>10^{11}}.

This theorem is an immediate consequence of Theorem 6.2, Proposition 6.3 and Theorem 6.6 proved below.

Most of the arguments of this section are computer-assisted. We use packages PARI [26] and SAGE [27]. The reader may consult https://github.com/yuribilu/trinomials to view our PARI scripts. All computation were performed on a personal computer with 2.70 GHz processor and 16.0 GB RAM.

6.1 Small discriminants with class number larger than 33

In this subsection we prove the following.

Theorem 6.2.

There are no trinomial discriminants Δ\Delta with |Δ|1011{|\Delta|\leq 10^{11}} and h(Δ)>3{h(\Delta)>3}.

First of all, we show that sufficiently large trinomial discriminants must be odd.

Proposition 6.3.

Let Δ\Delta be a trinomial discriminant with |Δ|105{|\Delta|\geq 10^{5}}. Then Δ\Delta is odd.

Proof.

If Δ{\Delta} is even but Δ4mod 32{\Delta\not\equiv 4\bmod\,32} then, according to item 4 of Proposition 3.1, there is a{2,4}{a\in\{2,4\}} suitable for Δ\Delta. Proposition 3.4 implies that Δ\Delta admits a suitable integer other than 11 and aa, and Proposition 5.1 implies that 4a3|Δ|1/2/(log|Δ|){4\geq a\geq 3|\Delta|^{1/2}/(\log|\Delta|)}, which is impossible when |Δ|105{|\Delta|\geq 10^{5}}.

If Δ4mod 32{\Delta\equiv 4\bmod\,32} then item 5 of Proposition 3.1 tells us that 88 and 1616 are suitable for Δ\Delta. Hence 83|Δ|1/2/(log|Δ|){8\geq 3|\Delta|^{1/2}/(\log|\Delta|)} by Proposition 5.1, which is again impossible when |Δ|105{|\Delta|\geq 10^{5}}. ∎

Next, we dispose of the discriminants in the range |Δ|105{|\Delta|\leq 10^{5}}.

Proposition 6.4.

There are no trinomial discriminants Δ\Delta with |Δ|105{|\Delta|\leq 10^{5}} and h(Δ)>3{h(\Delta)>3}.

Proof.

The proof is by a PARI script. For every such Δ\Delta our script finds singular moduli x0,x1,x2{x_{0},x_{1},x_{2}} of discriminant Δ\Delta such that inequality (4.3) does not hold. More precisely, for every Δ\Delta in the range |Δ|105{|\Delta|\leq 10^{5}}, except Δ=1467{\Delta=-1467}, our script finds x0,x1,x2{x_{0},x_{1},x_{2}} satisfying

1|x2/x1|>2|x1/x0|+2|x1/x0|3+0.15.1-|x_{2}/x_{1}|>2|x_{1}/x_{0}|+2|x_{1}/x_{0}|^{3}+0.15.

For the exceptional Δ=1467{\Delta=-1467} one has the same inequality, but with 0.001 instead of 0.150.15.

The total running time was less than 6 minutes. ∎

Unfortunately, this method fails for discriminants with class number 33. Each of those admits one real singular modulus x0x_{0} (the dominant one) and two complex conjugate singular moduli x1,x2=x¯1{x_{1},x_{2}=\bar{x}_{1}}; for them inequality (4.3) is trivially true. In Subsection 6.2 we use a totally different method to show that discriminants with h=3{h=3} cannot be trinomial.

To dismiss larger discriminants, we show that they admit a small prime pp with (Δ/p)=1{(\Delta/p)=1}.

Proposition 6.5.
  1. 1.

    Every odd discriminant Δ\Delta with |Δ|1011{|\Delta|\leq 10^{11}} admits a prime p163{p\leq 163} such that (Δ/p)=1{(\Delta/p)=1}.

  2. 2.

    Every odd discriminant Δ\Delta with |Δ|106{|\Delta|\leq 10^{6}} admits a prime p79{p\leq 79} such that (Δ/p)=1{(\Delta/p)=1}.

Proof.

We use again a PARI script. It works in 3 steps. In what follows XX is a (large) positive number and p0p_{0} is the largest prime number such that

N0=83pp0p<X,N_{0}=8\prod_{3\leq p\leq p_{0}}p<X,

the product being over primes pp in the indicated range. Let also p1,p2p_{1},p_{2} be the first two primes larger than p0p_{0}. We have p0=29{p_{0}=29}, p1=31{p_{1}=31}, p2=37{p_{2}=37} for X=1011{X=10^{11}} and p0=13{p_{0}=13}, p1=17{p_{1}=17}, p2=19{p_{2}=19} for X=106{X=10^{6}}.

Building the list of residues

In the first step we use successively the Chinese Remainder Theorem to generate the list of residues nmodN0{n\bmod\,N_{0}} such that n5mod8{n\equiv 5\bmod 8} and (n/p)1{(n/p)\neq 1} for every odd prime pp0{p\leq p_{0}}. There are

3pp0p+12\prod_{3\leq p\leq p_{0}}\frac{p+1}{2}

such residues altogether, which gives 1632960016329600 residues for X=1011{X=10^{11}} and 10081008 residues for X=106{X=10^{6}}.

Building the list of discriminants

For every residue class nmodN0{n\bmod\,N_{0}} from the previous list, and every residue class mmodp1{m\bmod\,p_{1}} with (m/p1)1{(m/p_{1})\neq 1} we find the smallest negative number Δ\Delta belonging to both, and we include this Δ\Delta in the list only if |Δ|X{|\Delta|\leq X}. We obtain the full list of odd discriminants Δ\Delta with the properties |Δ|X{|\Delta|\leq X} and (Δ/p)1{(\Delta/p)\neq 1} for all pp1{p\leq p_{1}} (including p=2{p=2}). We end up with 32567861 discriminants for X=1011{X=10^{11}} and with 4450 discriminants for X=106{X=10^{6}}.

Sieving

Now we sieve our list modulo every prime pp2{p\geq p_{2}}, by deleting from the list the discriminants Δ\Delta with (Δ/p)=1{(\Delta/p)=1}. The list was emptied after p=163{p=163} for X=1011{X=10^{11}} and after p=79{p=79} for X=106{X=10^{6}}.


The bottleneck steps are building the list of discriminants and sieving modulo p2p_{2}: they require most of processor time and memory. The total running time was less than 5 minutes for X=1011{X=10^{11}} and less than 0.1 second for X=106{X=10^{6}}. ∎

Now we are ready to prove Theorem 6.2.

Proof of Theorem 6.2.

The range |Δ|105{|\Delta|\leq 10^{5}} is Proposition 6.4. Now assume that Δ\Delta is trinomial in the range 105|Δ|1011{10^{5}\leq|\Delta|\leq 10^{11}}. Then Δ\Delta is odd by Proposition 6.3. If 106|Δ|1011{10^{6}\leq|\Delta|\leq 10^{11}} then (Δ/p)=1{(\Delta/p)=1} for some prime p163{p\leq 163}. Corollary 5.2 implies that 163>3|Δ|1/2/log|Δ|{163>3|\Delta|^{1/2}/\log|\Delta|}, which is impossible when |Δ|106{|\Delta|\geq 10^{6}}.

Similarly, if 105|Δ|106{10^{5}\leq|\Delta|\leq 10^{6}} then (Δ/p)=1{(\Delta/p)=1} for some prime p79{p\leq 79}. Hence 79>3|Δ|1/2/log|Δ|{79>3|\Delta|^{1/2}/\log|\Delta|}, which is impossible when |Δ|105{|\Delta|\geq 10^{5}}. ∎

6.2 Discriminants with class number 33

In this subsection we prove the following theorem.

Theorem 6.6.

There are no trinomial discriminants with class number 33.

There are 25 discriminants with class number 33: the full list of them, found by SAGE command cm_orders, is the top row of Table 1 below. As we have seen, they cannot be dismissed using the method of Proposition 6.4. Instead, we use a version of the argument from [19].

We start by some general discussion. Assume that we are in the following situation: F(t)=t3+at2+bt+c[t]{F(t)=t^{3}+at^{2}+bt+c\in{\mathbb{Z}}[t]} is a {\mathbb{Q}}-irreducible polynomial with splitting field LL of degree 66, and pp is a prime number such that

pc{p\mid c}, but pb{p\nmid b}. (6.1)

Assume further that

pp is unramified in LL and inert in the quadratic subfield of LL. (6.2)

(The latter assumption can be suppressed, but it holds in all cases that interest us, and many arguments below simplify when it is imposed.)

Let x0,x1,x2L{x_{0},x_{1},x_{2}\in L} be the roots of FF. Since pc{p\mid c}, every xix_{i} must be divisible by a prime ideal above pp. Since pb{p\nmid b}, these ideals must be distinct. Hence pp splits in LL in at least 33 distinct primes. Since pp is inert in the quadratic subfield, it splits in exactly 33 primes: p=𝔭0𝔭1𝔭2{p=\mathfrak{p}_{0}\mathfrak{p}_{1}\mathfrak{p}_{2}}, with 𝔭ixi{\mathfrak{p}_{i}\mid x_{i}}. Since pp is unramified, we have ν𝔭i(xi)=νp(c){\nu_{\mathfrak{p}_{i}}(x_{i})=\nu_{p}(c)} for i=0,1,2{i=0,1,2}.

Now assume that F(t)F(t) divides a trinomial tm+Atn+B[t]{t^{m}+At^{n}+B\in{\mathbb{Q}}[t]}. Then, setting θ=x2/x1{\theta=x_{2}/x_{1}}, Proposition 4.3 implies that

ν𝔭0(1θmn)nν𝔭0(x0)=nνp(c).\nu_{\mathfrak{p}_{0}}(1-\theta^{m-n})\geq n\nu_{\mathfrak{p}_{0}}(x_{0})=n\nu_{p}(c). (6.3)

To make use of this, we need the following classical fact. Some versions of it were known already to Lucas [20] or even earlier, but we prefer to include the proof for the reader’s convenience.

Proposition 6.7.

Let pp be a prime number, LL a number field, 𝔭p{\mathfrak{p}\mid p} a prime of LL and θL{\theta\in L} a 𝔭\mathfrak{p}-adic unit, but not a root of unity. Assume that 𝔭\mathfrak{p} is unramified over pp. Let rr be the order of θmod𝔭{\theta\bmod\mathfrak{p}} (the smallest positive integer such that θr1mod𝔭{\theta^{r}\equiv 1\bmod\,\mathfrak{p}}). Then for every positive integer kk such that θk1mod𝔭{\theta^{k}\equiv 1\bmod\,\mathfrak{p}} we have rk{r\mid k}. Furthermore, for p>2{p>2} we have

νp(k)=ν𝔭(1θk)ν𝔭(1θr),\nu_{p}(k)=\nu_{\mathfrak{p}}(1-\theta^{k})-\nu_{\mathfrak{p}}(1-\theta^{r}), (6.4)

and for p=2{p=2} we have

ν2(k)={ν𝔭(1θk)ν𝔭(1θr),2k,ν𝔭(1θk)ν𝔭(1θ2r)+1,2k.\nu_{2}(k)=\begin{cases}\nu_{\mathfrak{p}}(1-\theta^{k})-\nu_{\mathfrak{p}}(1-\theta^{r}),&2\nmid k,\\ \nu_{\mathfrak{p}}(1-\theta^{k})-\nu_{\mathfrak{p}}(1-\theta^{2r})+1,&2\mid k.\end{cases} (6.5)
Proof.

We only have to prove (6.4) and (6.5), because rk{r\mid k} is obvious. Note also that rr divides 𝒩𝔭1{\mathcal{N}\mathfrak{p}-1}, the order of the multiplicative group mod𝔭\bmod\mathfrak{p}; in particular, pr{p\nmid r}.

Assume first that pk{p\nmid k}. Then

1θk=(1θr)(1+θr+θ2r++θkr).1-\theta^{k}=(1-\theta^{r})(1+\theta^{r}+\theta^{2r}+\cdots+\theta^{k-r}).

Since θr1mod𝔭{\theta^{r}\equiv 1\bmod\,\mathfrak{p}}, the second factor is congruent to k/rk/r modulo 𝔭\mathfrak{p}. In particular, it is not divisible by 𝔭\mathfrak{p}. Hence ν𝔭(1θk)=ν𝔭(1θr){\nu_{\mathfrak{p}}(1-\theta^{k})=\nu_{\mathfrak{p}}(1-\theta^{r})}, and both (6.4), (6.5) are true in this case.

Now assume that pk{p\mid k} and p>2{p>2}. Write θk/p=1+β{\theta^{k/p}=1+\beta}. Since rk/p{r\mid k/p}, we have ν𝔭(β)1{\nu_{\mathfrak{p}}(\beta)\geq 1}. Hence

θk=1+pβ+βp+(terms of 𝔭-adic valuation >ν𝔭(pβ)).\theta^{k}=1+p\beta+\beta^{p}+(\text{terms of $\mathfrak{p}$-adic valuation $>\nu_{\mathfrak{p}}(p\beta)$}).

Since 𝔭\mathfrak{p} is unramified and p>2{p>2}, we have ν𝔭(βp)>ν𝔭(pβ){\nu_{\mathfrak{p}}(\beta^{p})>\nu_{\mathfrak{p}}(p\beta)} as well. Hence

ν𝔭(1θk)=ν𝔭(pβ)=1+ν𝔭(1θk/p),\nu_{\mathfrak{p}}(1-\theta^{k})=\nu_{\mathfrak{p}}(p\beta)=1+\nu_{\mathfrak{p}}(1-\theta^{k/p}),

and (6.4) follows by induction in νp(k)\nu_{p}(k).

Now let p=2{p=2}. When 2k{2\,\|\,k} we can prove that ν𝔭(1θk)=ν𝔭(1θ2r){\nu_{\mathfrak{p}}(1-\theta^{k})=\nu_{\mathfrak{p}}(1-\theta^{2r})} in the same way as we proved ν𝔭(1θk)=ν𝔭(1θr){\nu_{\mathfrak{p}}(1-\theta^{k})=\nu_{\mathfrak{p}}(1-\theta^{r})} when pk{p\nmid k}. Hence (6.5) is true is this case. Now assume that 4k{4\mid k} and write

θk/4=1+α,θk/2=1+β.\theta^{k/4}=1+\alpha,\qquad\theta^{k/2}=1+\beta.

Since rk/4{r\mid k/4}, we have ν𝔭(α)1{\nu_{\mathfrak{p}}(\alpha)\geq 1} and ν𝔭(β)=ν𝔭(2α+α2)2{\nu_{\mathfrak{p}}(\beta)=\nu_{\mathfrak{p}}(2\alpha+\alpha^{2})\geq 2}. Since 𝔭\mathfrak{p} is unramified, this implies that ν2(2β+β2)=1+ν2(β){\nu_{2}(2\beta+\beta^{2})=1+\nu_{2}(\beta)}, or, in other words,

ν𝔭(1θk)=1+ν𝔭(1θk/2),\nu_{\mathfrak{p}}(1-\theta^{k})=1+\nu_{\mathfrak{p}}(1-\theta^{k/2}),

and we complete the proof by induction as before. ∎

Comparing Proposition 6.7 and inequality (6.3), we obtain the following consequence.

Corollary 6.8.

Let F(t)F(t) be as above and let pp satisfy (6.1) and (6.2). Define θ\theta and 𝔭0\mathfrak{p}_{0} as above. Assume that F(t)F(t) divides a trinomial tm+Atn+B[t]{t^{m}+At^{n}+B\in{\mathbb{Q}}[t]}. Then

mnr0pνp(c)nν0,m-n\geq r_{0}p^{\nu_{p}(c)n-\nu_{0}}, (6.6)

where r0r_{0} is the order of θ=x2/x1{\theta=x_{2}/x_{1}} modulo 𝔭0\mathfrak{p}_{0}, and

ν0={ν𝔭0(1θr0),p>2,ν𝔭0(1θ2r0)1,p=2.\nu_{0}=\begin{cases}\nu_{\mathfrak{p}_{0}}(1-\theta^{r_{0}}),&p>2,\\ \nu_{\mathfrak{p}_{0}}(1-\theta^{2r_{0}})-1,&p=2.\end{cases}
Proof.

We have ν𝔭0(1θmn)>0{\nu_{\mathfrak{p}_{0}}(1-\theta^{m-n})>0} by (6.1) and (6.3). Proposition 6.7 implies that r0mn{r_{0}\mid m-n}. Furthermore, for p>2{p>2} we use (6.1) and (6.4) to obtain

νp(mn)=ν𝔭0(1θmn)ν𝔭0(1θr0)nνp(c)ν0.\nu_{p}(m-n)=\nu_{\mathfrak{p}_{0}}(1-\theta^{m-n})-\nu_{\mathfrak{p}_{0}}(1-\theta^{r_{0}})\geq n\nu_{p}(c)-\nu_{0}.

Thus, both r0r_{0} and pnνp(c)ν0{p^{n\nu_{p}(c)-\nu_{0}}} divide mn{m-n}. Since pr0{p\nmid r_{0}}, this proves (6.6) in the case p>2{p>2}.

In the case p=2{p=2} the same argument gives

ν2(mn)nν2(c)max{ν𝔭0(1θr0),ν𝔭0(1θ2r0)1}.\nu_{2}(m-n)\geq n\nu_{2}(c)-\max\{\nu_{\mathfrak{p}_{0}}(1-\theta^{r_{0}}),\nu_{\mathfrak{p}_{0}}(1-\theta^{2r_{0}})-1\}.

We have clearly ν𝔭0(1θ2r0)ν𝔭0(1θr0)+1{\nu_{\mathfrak{p}_{0}}(1-\theta^{2r_{0}})\geq\nu_{\mathfrak{p}_{0}}(1-\theta^{r_{0}})+1}, which implies that the maximum above is ν0\nu_{0}. ∎

Remark 6.9.
  1. 1.

    The lower bound (6.6) is quite strong, but to profit from it in practical situations, we must be able to calculate r0r_{0} and ν0\nu_{0}. We do it as follows. Let Fk(t)F_{k}(t) be the monic polynomial of degree 33 whose roots are x0k,x1k,x2kx_{0}^{k},x_{1}^{k},x_{2}^{k}, and 𝒟k\mathcal{D}_{k} its discriminant. Then ν𝔭0(1θk)=νp(𝒟k)/2{\nu_{\mathfrak{p}_{0}}(1-\theta^{k})=\nu_{p}(\mathcal{D}_{k})/2}, because 𝒩L/(x1kx2k)=𝒟k{\mathcal{N}_{L/{\mathbb{Q}}}(x_{1}^{k}-x_{2}^{k})=\mathcal{D}_{k}} and 𝒩L/𝔭0=p2{\mathcal{N}_{L/{\mathbb{Q}}}\mathfrak{p}_{0}=p^{2}}. In particular, r0r_{0} is the smallest positive kk for which p𝒟k{p\mid\mathcal{D}_{k}} and

    ν0={νp(𝒟r0)/2,p>2,ν2(𝒟2r0)/21,p=2.\nu_{0}=\begin{cases}\nu_{p}(\mathcal{D}_{r_{0}})/2,&p>2,\\ \nu_{2}(\mathcal{D}_{2r_{0}})/2-1,&p=2.\end{cases}
  2. 2.

    Polynomials Fk(t)=t3+akt2+bkt+ck{F_{k}(t)=t^{3}+a_{k}t^{2}+b_{k}t+c_{k}} are very easy to calculate consecutively. Indeed,

    F0(t)=t33t2+3t1,F1(t)=F(t),\displaystyle F_{0}(t)=t^{3}-3t^{2}+3t-1,\qquad F_{1}(t)=F(t),
    F2(t)=t3+(a2+2b)t2+(b22ac)tc2,\displaystyle F_{2}(t)=t^{3}+(-a^{2}+2b)t^{2}+(b^{2}-2ac)t-c^{2},

    and for general kk we have ck=(c)k{c_{k}=-(-c)^{k}},

    ak=x0kx1kx2k,bk=(c/x0)k+(c/x1)k+(c/x2)k,a_{k}=-x_{0}^{k}-x_{1}^{k}-x_{2}^{k},\qquad b_{k}=(-c/x_{0})^{k}+(-c/x_{1})^{k}+(-c/x_{2})^{k},

    which implies the recurrence relations

    ak+3=aak+2bak+1cak,bk+3=bbk+2acbk+1+c2bk.a_{k+3}=-aa_{k+2}-ba_{k+1}-ca_{k},\qquad b_{k+3}=bb_{k+2}-acb_{k+1}+c^{2}b_{k}.

Theorem 6.6 is an easy consequence of the following statement.

Proposition 6.10.

Let Δ\Delta be a discriminant with class number 33. Assume that Δ\Delta is trinomial of signature (m,n)(m,n). Then p3n<λn+μ{p^{3n}<\lambda n+\mu}, where p,λ,μp,\lambda,\mu can be found in Table 1.

Table 1: Data for Proposition 6.10
Δ23314459768392107108124139172211p17232911532531717892311329r0111118111111381ν01112121111111λ5491831936.44.6150253420934649μ6.47.55.8230.60.87.52.42.18.82.40.32.4\displaystyle\begin{array}[]{c|ccccccccccccc}\Delta&-23&-31&-44&-59&-76&-83&-92&-107&-108&-124&-139&-172&-211\\ \hline\cr p&17&23&29&11&53&2&53&17&17&89&23&113&29\\ r_{0}&1&1&1&1&18&1&1&1&1&1&1&38&1\\ \nu_{0}&1&1&1&2&1&2&1&1&1&1&1&1&1\\ \lambda&54&91&83&193&6.4&4.6&150&25&34&209&34&6&49\\ \mu&6.4&7.5&5.8&23&0.6&0.8&7.5&2.4&2.1&8.8&2.4&0.3&2.4\end{array}
Δ243268283307331379499547643652883907p231975347597183101113389113167r0111181112811923856ν0111121111111λ354146564471386.21528.14805.14.7μ1.71.50.232154.20.34.40.59.20.20.2\displaystyle\begin{array}[]{c|cccccccccccc}\Delta&-243&-268&-283&-307&-331&-379&-499&-547&-643&-652&-883&-907\\ \hline\cr p&23&197&53&47&59&71&83&101&113&389&113&167\\ r_{0}&1&11&18&1&1&1&28&1&19&2&38&56\\ \nu_{0}&1&1&1&1&2&1&1&1&1&1&1&1\\ \lambda&35&41&4&65&6447&138&6.2&152&8.1&480&5.1&4.7\\ \mu&1.7&1.5&0.2&3&215&4.2&0.3&4.4&0.5&9.2&0.2&0.2\end{array}
Proof.

It is again by a PARI script. Let H(t)H(t) be the Hilbert Class Polynomial of Δ\Delta (the monic polynomial whose roots are the singular moduli of discriminant Δ\Delta). A verification with PARI shows that, for each of the 25 possible Δ\Delta, it has one real root (the dominant one) and two complex conjugate roots.

Let dd be the largest positive integer such that d3H(dt)[t]{d^{-3}H(dt)\in{\mathbb{Z}}[t]}. We want to apply Corollary 6.8 to the polynomial

F(t)=d3H(dt)=t3+at2+bt+c.F(t)=d^{-3}H(dt)=t^{3}+at^{2}+bt+c.

We pick a prime number pp such that pc{p\mid c}, but pb{p\nmid b}; our script shows the existence of at least one such pp in all the 25 cases. If there are several pp with this property, we take the largest of them. The prime chosen for each Δ\Delta can be seen in Table 1. As we verified, each of our primes satisfies (Δ/p)=1{(\Delta/p)=-1}, which means that it is unramified in LL (the splitting field of FF) and inert in (Δ){{\mathbb{Q}}(\sqrt{\Delta})}, the quadratic subfield of LL, so we are indeed in the set-up of Corollary 6.8.

We calculate r0r_{0} and ν0\nu_{0} as defined in Corollary 6.8, using the method outlined in Remark 6.9. Their values are in Table 1 as well. Corollary 6.8 implies that (6.6) holds true. As our script verified, we always have νp(c)=3{\nu_{p}(c)=3}. This implies the lower bound

mnr0p3nν0,m-n\geq r_{0}p^{3n-\nu_{0}}, (6.7)

Now let us bound mn{m-n} in terms of nn from above. Let x0x_{0} be the real root of FF and x1,x2=x¯1{x_{1},x_{2}=\bar{x}_{1}} the complex conjugate roots. (Our definition of FF implies that dx0,dx1,dx2{dx_{0},dx_{1},dx_{2}} are the singular moduli of discriminant Δ\Delta, of which one is real and the other two are complex conjugates.) Set θ=x2/x1{\theta=x_{2}/x_{1}}. Then we have inequality (4.2):

|1θn|2|x1/x0|mn+2|x1/x0|m.|1-\theta^{n}|\leq 2|x_{1}/x_{0}|^{m-n}+2|x_{1}/x_{0}|^{m}.

A quick calculation with PARI shows that |x1/x0|<0.001{|x_{1}/x_{0}|<0.001}, which implies that

|1θn|<2.01|x1/x0|mn.|1-\theta^{n}|<2.01|x_{1}/x_{0}|^{m-n}. (6.8)

On the other hand, we can estimate |1θn|{|1-\theta^{n}|} from below using the classical Liouville inequality: if α\alpha is a non-zero complex algebraic number of degree δ\delta, then

|α|{eδ0pt(α),α,e(δ/2)0pt(α),α.|\alpha|\geq\begin{cases}e^{-\delta 0pt(\alpha)},&\alpha\in{\mathbb{R}},\\ e^{-(\delta/2)0pt(\alpha)},&\alpha\notin{\mathbb{R}}.\end{cases}

Here 0pt(){0pt(\cdot)} is the usual absolute logarithmic height444There is no risk of confusing the height 0pt()0pt(\cdot) and the class number h()h(\cdot), not only because the former is roman and the latter is italic, but also because the class number notation h()h(\cdot) does not occur in this subsection, and heights do not occur outside this subsection..

Our θ\theta is an algebraic number of degree 66, and not a root of unity, because among its {\mathbb{Q}}-conjugates there is x0/x1{x_{0}/x_{1}}, of absolute value distinct from 11. Hence we may apply the Liouville inequality to α=1θn{\alpha=1-\theta^{n}}.

We have clearly 0pt(α)n0pt(θ)+log2{0pt(\alpha)\leq n0pt(\theta)+\log 2}. To estimate 0pt(θ)0pt(\theta), note that the {\mathbb{Q}}-conjugates of θ\theta are the 66 numbers xi/xj{x_{i}/x_{j}} with 1ij3{1\leq i\neq j\leq 3}. Of them, only x0/x1{x_{0}/x_{1}} and x0/x2{x_{0}/x_{2}} are greater than 11 in absolute value. Also, θ\theta is a root of the polynomial

c2ij(txi/xj)[t],c^{2}\prod_{i\neq j}(t-x_{i}/x_{j})\in{\mathbb{Z}}[t],

where c=x0x1x2=x0|x1|2{c=-x_{0}x_{1}x_{2}=-x_{0}|x_{1}|^{2}} is the free term of F(t)F(t). Hence

0pt(θ)16(2log|x0/x1|+2log|x0x12|)=23log|x0|+13log|x1|.0pt(\theta)\leq\frac{1}{6}(2\log|x_{0}/x_{1}|+2\log|x_{0}x_{1}^{2}|)=\frac{2}{3}\log|x_{0}|+\frac{1}{3}\log|x_{1}|.

It follows that

|1θn|e(6/2)(n0pt(θ)+log2)en(2log|x0|+log|x1|)3log2.|1-\theta^{n}|\geq e^{-(6/2)(n0pt(\theta)+\log 2)}\geq e^{-n(2\log|x_{0}|+\log|x_{1}|)-3\log 2}.

Together with (6.8) this implies that

mn<2log|x0|+log|x1|log|x0/x1|n+3log2+log2.01log|x0/x1|.m-n<\frac{2\log|x_{0}|+\log|x_{1}|}{\log|x_{0}/x_{1}|}n+\frac{3\log 2+\log 2.01}{\log|x_{0}/x_{1}|}.

Comparing this with the lower bound (6.7), we obtain p3n<λn+μ{p^{3n}<\lambda n+\mu} with

λ=2log|x0|+log|x1|log|x0/x1|pν0r0,μ=3log2+log2.01log|x0/x1|pν0r0.\lambda=\frac{2\log|x_{0}|+\log|x_{1}|}{\log|x_{0}/x_{1}|}\frac{p^{\nu_{0}}}{r_{0}},\qquad\mu=\frac{3\log 2+\log 2.01}{\log|x_{0}/x_{1}|}\frac{p^{\nu_{0}}}{r_{0}}.

Upper bounds for λ\lambda and μ\mu produced by our script can be found in Table 1.

The total running time was less than 2 seconds. ∎

Proof of Theorem 6.6.

When Δ83,331{\Delta\neq-83,-331}, inequality p3n<λn+μ{p^{3n}<\lambda n+\mu}, where p,λ,μp,\lambda,\mu are as in Table 1, cannot hold for n1{n\geq 1}. Indeed, for these 23 values of Δ\Delta we have p11{p\geq 11}, λ480{\lambda\leq 480} and μ23{\mu\leq 23}. Hence we have 113n<480n+23{11^{3n}<480n+23}, which is impossible for n1{n\geq 1}. For the remaining two values of Δ\Delta we have

23n\displaystyle 2^{3n} <4.6n+0.8\displaystyle<4.6n+0.8 (Δ=83),\displaystyle(\Delta=-83),
593n\displaystyle 59^{3n} <6447n+215\displaystyle<6447n+215 (Δ=331).\displaystyle(\Delta=-331).

These inequalities are impossible for n1{n\geq 1} as well. The theorem is proved. ∎

7 Structure of trinomial discriminants

In this section we prove Theorem 1.4. For convenience, we reproduce the statement here.

Theorem 7.1.

A trinomial discriminant must be of the form p-p or pq{-pq}, where p,qp,q are distinct odd prime numbers, pqmod 4{p\not\equiv q\bmod\,4}. In particular, a trinomial discriminant is fundamental.

In this section Δ\Delta denotes a trinomial discriminant; in particular, Δ\Delta is odd and |Δ|1011{|\Delta|\geq 10^{11}} by Theorem 6.1. The proof is split into many steps which correspond to Subsection 7.17.6 below.

7.1 Δ\Delta may have at most 22 prime divisors

Assume that Δ\Delta has 33 distinct (odd) prime divisors p1,p2,p3{p_{1},p_{2},p_{3}}. Set ai=piνpi(Δ){a_{i}=p_{i}^{\nu_{p_{i}}(\Delta)}} and ai=|Δ/ai|{a_{i}^{\prime}=|\Delta/a_{i}|}. We may assume that 3a1<a2<a3{3\leq a_{1}<a_{2}<a_{3}}. We have clearly ai3ai{a_{i}^{\prime}\geq 3a_{i}} for i=1,2{i=1,2}. Item 6 of Proposition 3.1 implies that both a1a_{1} and a2a_{2} are suitable for Δ\Delta. Using Proposition 5.1 we obtain |Δ|1/3a1>4|Δ|1/2/log|Δ|{|\Delta|^{1/3}\geq a_{1}>4|\Delta|^{1/2}/\log|\Delta|}, which is impossible when |Δ|1011{|\Delta|\geq 10^{11}}.

.

7.2 Δ-\Delta is not a square

Assume that Δ=m2{\Delta=-m^{2}}, with m{m\in{\mathbb{Z}}}. Among the three primes 5,13,17{5,13,17} there is one, call it qq, which does not divide Δ\Delta. This qq must be suitable, because (Δ/q)=1{(\Delta/q)=1}. Corollary 5.2 implies now that 17q4|Δ|1/2/log|Δ|{17\geq q\geq 4|\Delta|^{1/2}/\log|\Delta|}, which is impossible when |Δ|1011{|\Delta|\geq 10^{11}}.

7.3 If Δ=pk{\Delta=-p^{k}} then Δ=p{\Delta=-p}

Assume that Δ=pk{\Delta=-p^{k}}, where pp is a prime number and kk a positive integer. Since Δ-\Delta is not a square, kk must be odd. Assume that k3{k\geq 3}. Let qq be an odd prime divisor of p+4{p+4}. Then (p/q)=1{(-p/q)=1}, which implies that (Δ/q)=1{(\Delta/q)=1}. In addition to this, |Δ|1011{|\Delta|\geq 10^{11}} implies that |Δ|4(|Δ|1/3+4)24q2{|\Delta|\geq 4(|\Delta|^{1/3}+4)^{2}\geq 4q^{2}}. Hence qq is suitable for Δ\Delta, and Corollary 5.3 implies now that

|Δ|1/3+4q4|Δ|1/2/log|Δ|,|\Delta|^{1/3}+4\geq q\geq 4|\Delta|^{1/2}/\log|\Delta|,

which is impossible when |Δ|1011{|\Delta|\geq 10^{11}}. Thus, k=1{k=1} and Δ=p{\Delta=-p}.


We are left with the case when Δ\Delta has exactly two odd prime divisors p1p_{1} and p2p_{2}, with p1<p2{p_{1}<p_{2}}. In the sequel we write

Δ=p1k1p2k2.\Delta=-p_{1}^{k_{1}}p_{2}^{k_{2}}.

We want to show that k1=k2=1{k_{1}=k_{2}=1}.

7.4 We have k12{k_{1}\leq 2}

Assume that k13{k_{1}\geq 3}. Let us show first of all that we must have (k1,k2)=(3,1){(k_{1},k_{2})=(3,1)}. Indeed, assume the contrary: k13{k_{1}\geq 3} and k1+k25{k_{1}+k_{2}\geq 5}. Writing Δ=p12m{\Delta=-p_{1}^{2}m}, Proposition 3.3 implies that min{p12,(m+(p12)2)/4}{\min\{p_{1}^{2},(m+(p_{1}-2)^{2})/4\}} is suitable for Δ\Delta. However, since k1+k25{k_{1}+k_{2}\geq 5}, we have m>4p12{m>4p_{1}^{2}}, which implies that the minimum is, actually, p12p_{1}^{2}. Thus, p12p_{1}^{2} is suitable for Δ\Delta. Item 6 of Proposition 3.1 implies that one of the three numbers

p1k1,p2k2,(p1k1+p2k2)/4p_{1}^{k_{1}},\quad p_{2}^{k_{2}},\quad(p_{1}^{k_{1}}+p_{2}^{k_{2}})/4

is suitable as well. Since none of these numbers is equal to p12p_{1}^{2}, Proposition 5.1 applies, and we obtain

|Δ|2/5p124|Δ|1/2/log|Δ|,|\Delta|^{2/5}\geq p_{1}^{2}\geq 4|\Delta|^{1/2}/\log|\Delta|, (7.1)

which is impossible when |Δ|1011{|\Delta|\geq 10^{11}}.

Thus, we have (k1,k2)=(3,1){(k_{1},k_{2})=(3,1)}, that is, Δ=p13p2{\Delta=-p_{1}^{3}p_{2}}. In this case we have suitable integers

a1=min{p12,(p1p2+(p12)2)/4},a2=min{p13,p2,(p13+p2)/4}.a_{1}=\min\{p_{1}^{2},(p_{1}p_{2}+(p_{1}-2)^{2})/4\},\qquad a_{2}=\min\{p_{1}^{3},p_{2},(p_{1}^{3}+p_{2})/4\}.

Let us show that a1a2{a_{1}\neq a_{2}}. If a1=a2{a_{1}=a_{2}} then we must have

a1=(p1p2+(p12)2)/4<p12,a2=(p13+p2)/4.a_{1}=(p_{1}p_{2}+(p_{1}-2)^{2})/4<p_{1}^{2},\qquad a_{2}=(p_{1}^{3}+p_{2})/4.

It follows that p13<4a2=4a1<4p12{p_{1}^{3}<4a_{2}=4a_{1}<4p_{1}^{2}}, which implies that p1=3{p_{1}=3}. Furthermore, p1p2<4a1<4p12{p_{1}p_{2}<4a_{1}<4p_{1}^{2}}, which implies that p211{p_{2}\leq 11}. Hence

|Δ|=p13p23311<1011,|\Delta|=p_{1}^{3}p_{2}\leq 3^{3}\cdot 11<10^{11},

a contradiction.

Thus, a1a2{a_{1}\neq a_{2}}, and Proposition 5.1 applies. If p2<p12{p_{2}<p_{1}^{2}} then a2=p2{a_{2}=p_{2}}, and we have |Δ|2/5p24|Δ|1/2/log|Δ|{|\Delta|^{2/5}\geq p_{2}\geq 4|\Delta|^{1/2}/\log|\Delta|}, which is impossible. Now assume that

p2>p12,p_{2}>p_{1}^{2}, (7.2)

in which case

p1p2+(p12)24>p14p12.\frac{p_{1}p_{2}+(p_{1}-2)^{2}}{4}>\frac{p_{1}}{4}p_{1}^{2}.

When p15{p_{1}\geq 5} this implies that a1=p12{a_{1}=p_{1}^{2}}. When p1=3{p_{1}=3} we have p2101133{p_{2}\geq 10^{11}3^{-3}} which again implies a1=p12{a_{1}=p_{1}^{2}}. Thus, a1=p12{a_{1}=p_{1}^{2}} in any case. From (7.2) we deduce that |Δ|>p15{|\Delta|>p_{1}^{5}}, and we end up with (7.1).

This shows that (k1,k2)(3,1){(k_{1},k_{2})\neq(3,1)}. Hence we proved that k12{k_{1}\leq 2}.

7.5 We have k2=1{k_{2}=1}

Assume that k22{k_{2}\geq 2}. If k1=1{k_{1}=1} then p1p_{1} is suitable for Δ\Delta by item 6 of Proposition 3.1. Proposition 3.4 implies that there must be a suitable integer distinct from 11 and p1p_{1}. Proposition 5.1 implies now that

|Δ|1/3>p14|Δ|1/2/log|Δ|,|\Delta|^{1/3}>p_{1}\geq 4|\Delta|^{1/2}/\log|\Delta|,

which is impossible when |Δ|1011{|\Delta|\geq 10^{11}}.

Thus, k1=2{k_{1}=2}. Hence k23{k_{2}\geq 3}, because Δ-\Delta is not a square.

Item 6 of Proposition 3.1 implies that p12p_{1}^{2} is suitable. We want to show that there is one more suitable integer, distinct from 11 and p12p_{1}^{2}. If k24{k_{2}\geq 4} then an easy application of Proposition 3.3 implies that p22p_{2}^{2} is suitable, so in the sequel we will assume that k2=3{k_{2}=3}, that is, Δ=p12p23{\Delta=-p_{1}^{2}p_{2}^{3}}. Note that we must have p1p26000{p_{1}p_{2}\geq 6000}: otherwise |Δ|<(p1p2)3/3<1011{|\Delta|<(p_{1}p_{2})^{3}/3<10^{11}}, a contradiction.

We consider two cases.

7.5.1 The case p21.1p12{p_{2}\geq 1.1p_{1}^{2}}

Pick {3,5}{\ell\in\{3,5\}} to have p1{\ell\neq p_{1}}. Since p12p2>3p1p2>104{p_{1}^{2}p_{2}>3p_{1}p_{2}>10^{4}}, the numbers p12p2+1{p_{1}^{2}p_{2}+1} and p12p2+2{p_{1}^{2}p_{2}+\ell^{2}} cannot be both powers of 22. Hence there exists an odd prime qq dividing one of them. This qq satisfies

qp12p2+252<0.502p12p2.q\leq\frac{p_{1}^{2}p_{2}+25}{2}<0.502p_{1}^{2}p_{2}.

Using the assumption p21.1p12{p_{2}\geq 1.1p_{1}^{2}}, we obtain

|Δ|=p22p12p21.1(p12p2)2>4q2.|\Delta|=p_{2}^{2}\cdot p_{1}^{2}p_{2}\geq 1.1(p_{1}^{2}p_{2})^{2}>4q^{2}.

We have clearly (Δ/q)=(p12p2/q)=1{(\Delta/q)=(p_{1}^{2}p_{2}/q)=1}. Hence qq is suitable by item 3 of Proposition 3.1.

7.5.2 The case p21.1p12{p_{2}\leq 1.1p_{1}^{2}}

Write Δ=p22m{\Delta=-p_{2}^{2}m}, where m=p12p2>0.9p22{m=p_{1}^{2}p_{2}>0.9p_{2}^{2}}. Proposition 3.3 implies that a=min{p22,(m+(p22)2)/4}{a=\min\{p_{2}^{2},(m+(p_{2}-2)^{2})/4\}} is suitable for Δ\Delta. We have clearly p22>p12{p_{2}^{2}>p_{1}^{2}}, and also

m+(p22)24>m4p12p24>p12.\frac{m+(p_{2}-2)^{2}}{4}>\frac{m}{4}\geq\frac{p_{1}^{2}p_{2}}{4}>p_{1}^{2}.

Hence a>p12{a>p_{1}^{2}}.


We have showed that in any case Δ\Delta admits a suitable integer distinct from 11 and p12p_{1}^{2}. Hence Proposition 5.1 applies, and we again have (7.1), which leads to a contradiction. Thus, we must have k2=1{k_{2}=1}.

7.6 We have k1=1{k_{1}=1}

The only remaining possibilities are Δ=p12p2{\Delta=-p_{1}^{2}p_{2}} and Δ=p1p2{\Delta=-p_{1}p_{2}}, and we have to dismiss the former. Thus, let us assume that Δ=p12p2{\Delta=-p_{1}^{2}p_{2}}. Defining

a=min{p12,p2,(p12+p2)/4},a=\min\{p_{1}^{2},p_{2},(p_{1}^{2}+p_{2})/4\}, (7.3)

item 6 of Proposition 3.1 implies that aa is suitable for Δ\Delta.

Since p12p2{-p_{1}^{2}p_{2}} is a discriminant, p2{-p_{2}} is a discriminant as well, and we have two possible cases.

Case 1: The discriminant p2-p_{2} admits a suitable integer which is not a power of p1p_{1}

Item 2 of Proposition 3.1 implies that p2-p_{2} admits a suitable prime qp1{q\neq p_{1}}. Then (p2/q)=1{(-p_{2}/q)=1} and p23q2{p_{2}\geq 3q^{2}}, which implies that (Δ/q)=1{(\Delta/q)=1} and |Δ|9p227q2{|\Delta|\geq 9p_{2}\geq 27q^{2}}. Item 3 of Proposition 3.1 implies that qq is suitable for Δ\Delta as well.

Now if p23p14{p_{2}\geq 3p_{1}^{4}} then aa, defined in (7.3), satisfies

a=p12q,|Δ|3a3.a=p_{1}^{2}\neq q,\qquad|\Delta|\geq 3a^{3}.

Proposition 5.1 implies that |Δ/3|1/3a4|Δ|1/2/log|Δ|{|\Delta/3|^{1/3}\geq a\geq 4|\Delta|^{1/2}/\log|\Delta|}, which is impossible when |Δ|1011{|\Delta|\geq 10^{11}}.

And if p23p14{p_{2}\leq 3p_{1}^{4}} then from p23q2{p_{2}\geq 3q^{2}} we deduce |Δ|3q3{|\Delta|\geq 3q^{3}}. Now Corollary 5.3 implies that |Δ/3|1/3q4|Δ|1/2/log|Δ|{|\Delta/3|^{1/3}\geq q\geq 4|\Delta|^{1/2}/\log|\Delta|}, which is again impossible.

Case 2: Every integer suitable for p2-p_{2} is a power of p1p_{1}

Item 2 of Proposition 3.1 implies that in this case the list of suitable integers for p2-p_{2} consists of consecutive powers of p1p_{1}:

1,p1,p12,,p1.1,p_{1},p_{1}^{2},\ldots,p_{1}^{\ell}.

The suitable integer 11 occurs in only one triple in Tp2{T_{-p_{2}}}, and each of the suitable integers p1,p12,,p1{p_{1},p_{1}^{2},\ldots,p_{1}^{\ell}} occurs in exactly 22 triples. Hence h(p2)=2+1{h(-p_{2})=2\ell+1}.

On the other hand, from p23|Δ|1011{p_{2}^{3}\geq|\Delta|\geq 10^{11}} we deduce that p24000{p_{2}\geq 4000}, which implies that h(p2)>6{h(-p_{2})>6} (the largest fundamental discriminant of class number not exceeding 66 is 3763-3763, see [29, Table 4 on page 936]). Hence 3{\ell\geq 3}, or, equivalently, p13{p_{1}^{3}} must be suitable for p2-p_{2}. This implies, in particular, that p23p16{p_{2}\geq 3p_{1}^{6}}. Hence aa, defined in (7.3), is equal to p12p_{1}^{2}. This shows that p12p_{1}^{2} is suitable for Δ\Delta.

We claim that p13{p_{1}^{3}} is suitable for Δ\Delta as well. Indeed, since p1p_{1} is suitable for p2-p_{2}, there exist b1,c1{b_{1},c_{1}\in{\mathbb{Z}}} such that b124p1c1=p2{b_{1}^{2}-4p_{1}c_{1}=-p_{2}} and 0<b1<p1{0<b_{1}<p_{1}}. Using p23p16{p_{2}\geq 3p_{1}^{6}} we obtain

c1=p2+b124p134p15.c_{1}=\frac{p_{2}+b_{1}^{2}}{4p_{1}}\geq\frac{3}{4}p_{1}^{5}.

Now a routine verification shows that

(p13,b1p1,c1)\displaystyle(p_{1}^{3},b_{1}p_{1},c_{1}) TΔ\displaystyle\in T_{\Delta} when p1c1,\displaystyle\text{when ${p_{1}\nmid c_{1}}$},
(p13,(2p1b1)p1,c1b1+p1)\displaystyle(p_{1}^{3},(2p_{1}-b_{1})p_{1},c_{1}-b_{1}+p_{1}) TΔ\displaystyle\in T_{\Delta} when p1c1.\displaystyle\text{when ${p_{1}\mid c_{1}}$}.

This proves that p13p_{1}^{3} is suitable for Δ\Delta.

Thus, both p12p_{1}^{2} and p13p_{1}^{3} are suitable for Δ\Delta. Since p23p16{p_{2}\geq 3p_{1}^{6}}, we have |Δ|3p18{|\Delta|\geq 3p_{1}^{8}}. Hence |Δ/3|1/4p12{|\Delta/3|^{1/4}\geq p_{1}^{2}}. Proposition 5.1 implies that

|Δ/3|1/4p124|Δ|1/2/log|Δ|,|\Delta/3|^{1/4}\geq p_{1}^{2}\geq 4|\Delta|^{1/2}/\log|\Delta|,

which is impossible when |Δ|1011{|\Delta|\geq 10^{11}}.


This completes the proof of Theorem 7.1. ∎

8 Primality of suitable integers

As before, Δ\Delta denotes a trinomial discriminant unless the contrary is stated explicitly. In particular, |Δ|>1011{|\Delta|>10^{11}} by Theorem 6.1, and, according to Theorem 7.1, we have Δ=p{\Delta=-p} or Δ=pq{\Delta=-pq} where p,qp,q are distinct odd prime numbers.

As we have seen in Corollary 5.3, suitable integers for trinomial discriminants are prime numbers with some rare exceptions. It turns out that there are no exceptions at all.

Proposition 8.1.

Let Δ\Delta be a trinomial discriminant and a>1{a>1} suitable for Δ\Delta. Then aa is prime and satisfies a>4|Δ|1/2/log|Δ|{a>4|\Delta|^{1/2}/\log|\Delta|}.

Remark 8.2.

Since |Δ|1011{|\Delta|\geq 10^{11}}, this implies, in particular, that a>104{a>10^{4}}.

Before proving Proposition 8.1, observe that, in the case Δ=pq{\Delta=-pq}, the primes p,qp,q are of the same order of magnitude up to a logarithmic factor.

Proposition 8.3.

If Δ=pq{\Delta=-pq} then

4|Δ|1/2log|Δ|<p,q<|Δ|1/2log|Δ|4.\frac{4|\Delta|^{1/2}}{\log|\Delta|}<p,q<\frac{|\Delta|^{1/2}\log|\Delta|}{4}. (8.1)
Proof.

It suffices to prove the lower estimate in (8.1); the upper estimate will then follow automatically. Thus, let us assume that p<q{p<q} and prove that p>4|Δ|1/2/log|Δ|{p>4|\Delta|^{1/2}/\log|\Delta|}.

Since |Δ|>1011{|\Delta|>10^{11}} we have 4|Δ|1/2/log|Δ|<|Δ|1/2/3{4|\Delta|^{1/2}/\log|\Delta|<|\Delta|^{1/2}/\sqrt{3}}. Hence we may assume that p<q/3{p<q/3}, in which case pp is suitable for Δ\Delta by item 6 of Proposition 3.1. Proposition 3.4 implies that Δ\Delta has a suitable integer other than 11 and pp, and Proposition 5.1 implies that p>4|Δ|1/2/log|Δ|{p>4|\Delta|^{1/2}/\log|\Delta|}. ∎

Proof of Proposition 8.1.

If gcd(a,Δ)=1{\gcd(a,\Delta)=1} then Corollary 5.3 does the job. In particular, this completes the proof in the case Δ=p{\Delta=-p}. Now assume that Δ=pq{\Delta=-pq} with p<q{p<q} and gcd(a,Δ)>1{\gcd(a,\Delta)>1}. Since a|Δ/3|1/2{a\leq|\Delta/3|^{1/2}}, the only possibility is gcd(a,Δ)=p{\gcd(a,\Delta)=p}, and we claim that a=p{a=p}.

Indeed, assume that a>p{a>p}, and let \ell be a prime divisor of a/p{a/p}. From a|Δ/3|1/2{a\leq|\Delta/3|^{1/2}} and p>4|Δ|1/2/log|Δ|{p>4|\Delta|^{1/2}/\log|\Delta|} we deduce

<0.2log|Δ|<4|Δ|1/2/log|Δ|<p.\ell<0.2\log|\Delta|<4|\Delta|^{1/2}/\log|\Delta|<p.

Hence \ell is coprime with Δ\Delta, which implies that it is suitable for Δ\Delta, see item 2 of Proposition 3.1. Now Corollary 5.3 implies that >4|Δ|1/2/log|Δ|{\ell>4|\Delta|^{1/2}/\log|\Delta|}, a contradiction. ∎

9 A conditional result

In this section we prove Theorem 1.2. Let us reproduce it here for convenience.

Theorem 9.1.

Assume GRH. Then a singular modulus of degree at least 33 cannot be a root of a trinomial with rational coefficients. In other words, GRH implies that trinomial discriminants do not exist.

In this section, by the RH we mean the Riemann Hypothesis for the Riemann ζ\zeta-function, and by GRH the Generalized Riemann Hypothesis for Dirichlet LL-functions.

Due to the results of the previous sections, Theorem 9.1 is an easy consequence of the following statement.

Proposition 9.2.

Assume GRH. Let m1010{m\geq 10^{10}} be an integer with ω(m)2{\omega(m)\leq 2}, and χ\chi a primitive odd real Dirichlet character modulo mm. Then there exists a prime number pp such that χ(p)=1{\chi(p)=1} and

p4m1/2/logm.p\leq 4m^{1/2}/\log m. (9.1)

Recall that a real character χ\chi is called odd if χ(1)=1{\chi(-1)=-1}. Restricting to odd characters is purely opportunistic here: the same argument, with very insignificant changes, applies to even real primitive characters as well. But we apply estimate (9.1) only to real odd characters, and making this assumption allows us to shorten the proof. The assumption ω(m)2{\omega(m)\leq 2} is of similar nature: it can be dropped, making the proof a bit more complicated, but this is unnecessary because we will apply (9.1) only to mm with at most 22 prime divisors.

Remark 9.3.

Unconditionally, the bound pεm1/4+ε{p\ll_{\varepsilon}m^{1/4+\varepsilon}} holds for every ε>0{\varepsilon>0}; this is a classical result of Linnik and Vinogradov. Unfortunately, the implied constant in this estimate depends ineffectively on ε\varepsilon, because of ineffectiveness of Siegel’s bound for the exception real zero of L(s,χ)L(s,\chi). In Section 10 we imitate the Linnik-Vinogradov argument in the form given in [21], but with Siegel’s Theorem replaced by Tatuzawa’s Theorem [25], obtaining this way an unconditional explicit upper bound for all but one trinomial discriminants.

Proof of Theorem 9.1 (assuming Proposition 9.2).

Let Δ\Delta be a trinomial discriminant. Theorem 6.1 implies that |Δ|1010{|\Delta|\geq 10^{10}}. We apply Proposition 9.2 with the character (Δ/)(\Delta/\cdot), which is an odd real Dirichlet character mod|Δ|\bmod\,|\Delta|. Moreover, it is primitive because Δ\Delta is fundamental, see Theorem 7.1. Note also that ω(|Δ|)2{\omega(|\Delta|)\leq 2}, again by Theorem 7.1. We find (assuming GRH) a prime pp satisfying (Δ/p)=1{(\Delta/p)=1} and p4|Δ|1/2/log|Δ|{p\leq 4|\Delta|^{1/2}/\log|\Delta|}, which contradicts Corollary 5.2. ∎

The proof of Proposition 9.2 is an adaptation of the argument developed by Lamzouri et al. in [17]. Their Theorem 1.4 implies, in our case, the estimate

pmax{109,(logm+52(loglogm)2+6)2}.p\leq\max\left\{10^{9},\left(\log m+\frac{5}{2}(\log\log m)^{2}+6\right)^{2}\right\}. (9.2)

Of course, it is asymptotically much sharper than (9.1), but (9.2) is not suitable for our purposes because of the term 10910^{9}.

We prove Proposition 9.2 in Subsection 9.2, after some preparatory work in Subsection 9.1.

9.1 Lemmas from [17]

In this subsection we recall some technical lemmas proved in [17], and give simplified versions of them. We use the notation of [17] whenever possible; our only major deviation from the set-up of [17] is that we denote the modulus by mm, while it is usually denoted by qq therein.

For x>1{x>1} and a Dirichlet character χ\chi define

S(x)\displaystyle S(x) =1nxΛ(n)logxn,\displaystyle=\sum_{1\leq n\leq x}\Lambda(n)\log\frac{x}{n}, S(x,χ)\displaystyle S(x,\chi) =1nxχ(n)Λ(n)logxn,\displaystyle=\sum_{1\leq n\leq x}\chi(n)\Lambda(n)\log\frac{x}{n},
T(x)\displaystyle T(x) =1nxΛ(n)n(1nx),\displaystyle=\sum_{1\leq n\leq x}\frac{\Lambda(n)}{n}\left(1-\frac{n}{x}\right), T(x,χ)\displaystyle T(x,\chi) =1nxχ(n)Λ(n)n(1nx).\displaystyle=\sum_{1\leq n\leq x}\chi(n)\frac{\Lambda(n)}{n}\left(1-\frac{n}{x}\right).

Here Λ()\Lambda(\cdot) is, of course, the von Mangoldt function.

Denote by γ\gamma the Euler–Mascheroni constant, and define

B=12log(4π)1γ2=0.02309B=\frac{1}{2}\log(4\pi)-1-\frac{\gamma}{2}=-0.02309\ldots (9.3)

(see equation (2.2) on [17, page 2395]). The following is combination of Lemmas 2.1 and 2.4 from [17].

Lemma 9.4.

Assume RH. Then for x>1{x>1} we have

S(x)\displaystyle S(x) =x(log2π)logx1+k=11x2k4k2+O1(2|B|(x1/2+1)),\displaystyle=x-(\log 2\pi)\log x-1+\sum_{k=1}^{\infty}\frac{1-x^{-2k}}{4k^{2}}+O_{1}\bigl{(}2|B|(x^{1/2}+1)\bigr{)},
T(x)\displaystyle T(x) =logx(1+γ)+log(2π)xn=1x2n12n(2n+1)+O1(2|B|x1/2),\displaystyle=\log x-(1+\gamma)+\frac{\log(2\pi)}{x}-\sum_{n=1}^{\infty}\frac{x^{-2n-1}}{2n(2n+1)}+O_{1}\left(\frac{2|B|}{x^{1/2}}\right),

where BB is defined in (9.3).

Recall (see Subsection 1.1) that X=O1(Y){X=O_{1}(Y)} means that |X|Y{|X|\leq Y}.

We will use the following simplified version of this lemma for large xx.

Lemma 9.5.

In the set-up of Lemma 9.4, for x100{x\geq 100} we have

S(x)=x(log2π)logx+O1(0.16x1/2)1.02x.S(x)=x-(\log 2\pi)\log x+O_{1}\bigl{(}0.16x^{1/2}\bigr{)}\\ \leq 1.02x. (9.4)

For x104{x\geq 10^{4}} we have

S(x)\displaystyle S(x) =x(log2π)logx+O1(0.06x1/2),\displaystyle=x-(\log 2\pi)\log x+O_{1}\bigl{(}0.06x^{1/2}\bigr{)}, (9.5)
T(x)\displaystyle T(x) =logx(1+γ)+O1(0.07x1/2)logx1.576.\displaystyle=\log x-(1+\gamma)+O_{1}\left(\frac{0.07}{x^{1/2}}\right)\leq\log x-1.576. (9.6)

The proof of this lemma is left out, being an easy calculation.


For x>1{x>1} define

E~1(x)\displaystyle{\widetilde{E}}_{1}(x) =π28(log2+γ2)logxk=0x2k1(2k+1)2,\displaystyle=\frac{\pi^{2}}{8}-\left(\log 2+\frac{\gamma}{2}\right)\log x-\sum_{k=0}^{\infty}\frac{x^{-2k-1}}{(2k+1)^{2}},
E1(x)\displaystyle E_{1}(x) =k=0x2k2(2k+1)(2k+2)γ2(11x)+log2x.\displaystyle=-\sum_{k=0}^{\infty}\frac{x^{-2k-2}}{(2k+1)(2k+2)}-\frac{\gamma}{2}\Big{(}1-\frac{1}{x}\Big{)}+\frac{\log 2}{x}.

The next lemma combines Lemmas 2.2 and 2.3 from [17], in the special case of odd real characters.

Lemma 9.6.

Let m3{m\geq 3} be an integer and χ\chi be a primitive real odd Dirichlet character modulo mm. Assume GRH. Then for x>1{x>1} we have

S(x,χ)=R(χ)(logx+O1(2x1/2+2))+12(logmπ)logx+E~1(x),S(x,\chi)=R(\chi)\bigl{(}\log x+O_{1}(2x^{1/2}+2)\bigr{)}+\frac{1}{2}\Big{(}\log\frac{m}{\pi}\Big{)}\log x+{\widetilde{E}}_{1}(x), (9.7)

where

R(χ)=(1+1x+O1(2x1/2))1(12(11x)logmπT(x,χ)+E1(x)).R(\chi)=\left(1+\frac{1}{x}+O_{1}\left(\frac{2}{x^{1/2}}\right)\right)^{-1}\left(\frac{1}{2}\left(1-\frac{1}{x}\right)\log\frac{m}{\pi}-T(x,\chi)+E_{1}(x)\right).

Note that we denote by R(χ)R(\chi) the quantity |Re(B(χ))|{|\mathrm{Re}(B(\chi))|} from [17].

We again give a simplified version (of the lower bound only, we do not need the upper bound).

Lemma 9.7.

In the set-up of Lemma 9.6 assume that

m1010,104x0.2m1/2.m\geq 10^{10},\qquad 10^{4}\leq x\leq 0.2m^{1/2}.

Then

S(x,χ)2.1x1/2(logm4)(0.53logm1.9)logx.S(x,\chi)\geq-2.1x^{1/2}(\log m-4)-(0.53\log m-1.9)\log x. (9.8)
Proof.

We have E1(x)0.288{E_{1}(x)\leq-0.288} and

|T(x,χ)|T(x)logx1.57612logm3.185,|T(x,\chi)|\leq T(x)\leq\log x-1.576\leq\frac{1}{2}\log m-3.185,

see (9.6). Hence

12(11x)logmπT(x,χ)+E1(x)\displaystyle\frac{1}{2}\left(1-\frac{1}{x}\right)\log\frac{m}{\pi}-T(x,\chi)+E_{1}(x) logm12logπ3.1850.288\displaystyle\leq\log m-\frac{1}{2}\log\pi-3.185-0.288
logm4,\displaystyle\leq\log m-4,
R(χ)\displaystyle R(\chi) 1.021(logm4).\displaystyle\leq 1.021(\log m-4). (9.9)

Furthermore, we have E~1(x)(γ/2+log2)logx{{\widetilde{E}}_{1}(x)\geq-(\gamma/2+\log 2)\log x}. Hence

12(logmπ)logx+E~1(x)(12logmlog(2π)γ2)logx.\frac{1}{2}\Big{(}\log\frac{m}{\pi}\Big{)}\log x+{\widetilde{E}}_{1}(x)\geq\left(\frac{1}{2}\log m-\log(2\pi)-\frac{\gamma}{2}\right)\log x. (9.10)

Substituting (9.9) and (9.10) into (9.7), we obtain (9.8). ∎

Finally, the following is (a consequence of) Lemma 3.1 from [17] (which is unconditional, unlike the previous lemmas).

Lemma 9.8.

Let m3{m\geq 3} be an integer and x2{x\geq 2} be a real number. Then

1nx(n,m)>1Λ(n)log(x/n)12ω(m)(logx)2.\sum_{\begin{subarray}{c}1\leq n\leq x\\ (n,m)>1\end{subarray}}\Lambda(n)\log(x/n)\leq\frac{1}{2}\omega(m)(\log x)^{2}.

9.2 Proof of Proposition 9.2

Assume the contrary: χ(p)1{\chi(p)\neq 1} for every p4m1/2/logm{p\leq 4m^{1/2}/\log m}. Since χ\chi is a real character, this implies that

S(x,χ)S(x)px1/2logplog(x/p2)1nx(n,m)>1Λ(n)log(x/n).-S(x,\chi)\geq S(x)-\sum_{p\leq x^{1/2}}\log p\log(x/p^{2})-\sum_{\begin{subarray}{c}1\leq n\leq x\\ (n,m)>1\end{subarray}}\Lambda(n)\log(x/n).

where we set x=4m1/2/logm{x=4m^{1/2}/\log m}. Since m1010{m\geq 10^{10}}, we have 104x0.2m1/2{10^{4}\leq x\leq 0.2m^{1/2}}, which means that we may use estimates (9.5) and (9.8). We may also use (9.4) with xx replaced by x1/2x^{1/2}, which gives

px1/2logplog(x/p2)2S(x1/2)2.04x1/2.\sum_{p\leq x^{1/2}}\log p\log(x/p^{2})\leq 2S(x^{1/2})\leq 2.04x^{1/2}.

Finally, Lemma 9.8 and the assumption ω(m)2{\omega(m)\leq 2} imply that

1nx(n,m)>1Λ(n)log(x/n)(logx)2log(0.2m1/2)logx(0.5logm1.6)logx.\sum_{\begin{subarray}{c}1\leq n\leq x\\ (n,m)>1\end{subarray}}\Lambda(n)\log(x/n)\leq(\log x)^{2}\leq\log(0.2m^{1/2})\log x\leq(0.5\log m-1.6)\log x.

Combining all these estimates, we obtain

2.1x1/2(logm4)+(0.53logm1.9)logx\displaystyle 2.1x^{1/2}(\log m-4)+(0.53\log m-1.9)\log x x(log2π)logx0.06x1/2\displaystyle\geq x-(\log 2\pi)\log x-0.06x^{1/2}
2.04x1/2(0.5logm1.6)logx,\displaystyle\hphantom{\geq}-2.04x^{1/2}-(0.5\log m-1.6)\log x,

which can be re-written as

2.1x1/2(logm3)+(1.03logm1.6)logx\displaystyle 2.1x^{1/2}(\log m-3)+(1.03\log m-1.6)\log x x.\displaystyle\geq x.

When x104{x\geq 10^{4}} the left-hand side does not exceed (2.2logm6)x1/2{(2.2\log m-6)x^{1/2}}, which implies the inequality x1/22.2logm6{x^{1/2}\leq 2.2\log m-6}. Substituting x=4m1/2/logm{x=4m^{1/2}/\log m}, we obtain

m1/4(1.1logm3)(logm)1/2.m^{1/4}\leq(1.1\log m-3)(\log m)^{1/2}.

This inequality is impossible when m1010{m\geq 10^{10}}. ∎

10 Bounding all but one trinomial discriminants

In this section we prove the following theorem.

Theorem 10.1.

There exists at most one trinomial discriminant Δ\Delta satisfying |Δ|10160{|\Delta|\geq 10^{160}}.

Call a positive integer mm coarse555as opposed to smooth if mm is either prime or a product of two distinct primes each exceeding m3/8logm{m^{3/8}\log m}. We deduce Theorem 10.1 from the following statement.

Theorem 10.2.

With at most one exception, every coarse integer m>10160{m>10^{160}} has the following property. Let χ\chi be a primitive real Dirichlet character modm\bmod\,m. Then there exists a prime p4m1/2/logm{p\leq 4m^{1/2}/\log m} such that χ(p)=1{\chi(p)=1}.

Proof of Theorem 10.1 (assuming Theorem 10.2).

Let Δ\Delta be a trinomial discriminant satisfying |Δ|10160{|\Delta|\geq 10^{160}}. Then m=|Δ|{m=|\Delta|} is either prime or product of two distinct primes both exceeding 4m1/2/logm{4m^{1/2}/\log m}, see Proposition 8.3. Since m10160{m\geq 10^{160}}, it must be coarse. Let χ()\chi(\cdot) be the Kronecker (Δ/)(\Delta/\cdot); then, unless mm is the exceptional one from Theorem 10.2, there exists p4m1/2/logm{p\leq 4m^{1/2}/\log m} such that χ(p)=1{\chi(p)=1}, contradicting Corollary 5.2. ∎

Theorem 10.2 will be proved in Subsection 10.2, after we establish, in Subsection 10.1, an explicit version of the Burgess estimate for coarse moduli.

10.1 Explicit Burgess for coarse moduli

Everywhere in this subsection mm is a positive integer and χ\chi a primitive Dirichlet character modm\bmod\,m. For M,N{M,N\in{\mathbb{Z}}} with N>0{N>0} denote

S(N,M)=M<nM+Nχ(n).S(N,M)=\sum_{M<n\leq M+N}\chi(n).

A classical result of Burgess [8, 9] implies that |S(M,N)|εN1/2m3/16+ε{|S(M,N)|\ll_{\varepsilon}N^{1/2}m^{3/16+\varepsilon}}. We need a version of this inequality explicit in all parameters. Such a version is available in the case of prime modulus [6, 15, 28], but we need a slightly more general version of it, for coarse moduli, as defined in the beginning of Section 10.

Theorem 10.3.

Let m>1011{m>10^{11}} be a coarse integer. Then for every M,NM,N as above we have

|S(N,M)|<10N1/2m3/16(logm)1/2.|S(N,M)|<10N^{1/2}m^{3/16}(\log m)^{1/2}.

Note that we did not try to optimize the numerical constant 1010. Probably, sharper constants are possible, as the work of Booker [6] and Treviño [28] suggests.

Remark 10.4.

After this article was submitted, fully explicit versions of the Burgess inequality with arbitrary composite moduli emerged, see [7, Theorem 1.1] or [16, Theorem 1.1 and Corollary 1.2]. However, for the sake of consistency, we prefer to use our Theorem 10.3.

The following lemma is quite standard, but we did not find a suitable reference.

Lemma 10.5.

Assume that mm is square-free, and let f(x)[x]{f(x)\in{\mathbb{Z}}[x]} be a polynomial with the following property: there exists b{b\in{\mathbb{Z}}} such that

mf(b),gcd(f(b),m)=1.m\mid f(b),\qquad\gcd(f^{\prime}(b),m)=1.

Then the sum

Sχ(f)=xmodmχ(f(x))S_{\chi}(f)=\sum_{x\bmod m}\chi(f(x))

satisfies |Sχ(f)|(μ1)ω(m)m1/2{|S_{\chi}(f)|\leq(\mu-1)^{\omega(m)}m^{1/2}}, where μ\mu is the number of distinct roots of ff modulo mm.

Proof.

Let m=p1pk{m=p_{1}\cdots p_{k}} be the prime factorization of mm (recall that mm is square-free), and set mi=m/pi{m_{i}=m/p_{i}}. Our character χ\chi has a unique presentation as χ1χk{\chi_{1}\cdots\chi_{k}}, where each χi\chi_{i} is a primitive character modpi\bmod\,p_{i}. Then

Sχ(f)=Sχ1(f1)Sχk(fk),S_{\chi}(f)=S_{\chi_{1}}(f_{1})\cdots S_{\chi_{k}}(f_{k}),

where fi(x)=f(mix){f_{i}(x)=f(m_{i}x)}; see, for instance, equation (12.21) in [15]. Since each fif_{i} has a simple root modulo pip_{i}, the Hasse-Weil bound |Sχi(fi)|(μ1)pi1/2{|S_{\chi_{i}}(f_{i})|\leq(\mu-1)p_{i}^{1/2}} applies (see, for instance, [24], Theorem 2C on page 43). The result follows. ∎

Proof of Theorem 10.3.

Denote E(N)=max{|S(N,M)|:M}{E(N)=\max\{|S(N,M)|:M\in{\mathbb{Z}}\}}. We want to prove that

E(N)<10N1/2m3/16(logm)1/2.E(N)<10N^{1/2}m^{3/16}(\log m)^{1/2}. (10.1)

We follow rather closely the argument from the book of Iwaniec and Kowalski [15, pages 327–329], where we set r=2{r=2}. In particular, we will use induction in NN.

If N<100m3/8logm{N<100m^{3/8}\log m} then (10.1) follows from the trivial estimate E(N)N{E(N)\leq N}, and if Nm5/8logm{N\geq m^{5/8}\log m} then (10.1) follows from the Pólya-Vinogradov inequality E(N)6m1/2logm{E(N)\leq 6m^{1/2}\log m}, see [15, Theorem 12.5]. Hence we may assume in the sequel that

100m3/8logmN<m5/8logm.100m^{3/8}\log m\leq N<m^{5/8}\log m. (10.2)

We fix positive integers A,BA,B, to be specified later, such that

3A,B<m3/8logm,AB<N.3\leq A,B<m^{3/8}\log m,\qquad AB<N. (10.3)

Since mm is coarse,

gcd(a,m)=1(1amax{A,B}).\gcd(a,m)=1\qquad(1\leq a\leq\max\{A,B\}). (10.4)

For a residue class xmodmx\bmod m denote by ν(x)\nu(x) the number of presentation of xx as a¯n{\bar{a}n}, where

1aA,M<nM+N,1\leq a\leq A,\qquad M<n\leq M+N,

and a¯\bar{a} denote the inverse of aa modulo mm.

Arguing as in [15, page 327], we find

|S(M,N)|V/H+2E(H),|S(M,N)|\leq V/H+2E(H), (10.5)

where

H=AB,V=xmodmν(x)|1bBχ(x+b)|.H=AB,\qquad V=\sum_{x\bmod m}\nu(x)\left|\sum_{1\leq b\leq B}\chi(x+b)\right|.

Using Hölder’s inequality, we estimate

VV11/2V21/4W1/4,V\leq V_{1}^{1/2}V_{2}^{1/4}W^{1/4},

where

V1=xmodmν(x),V2=xmodmν(x)2,W=xmodm|1bBχ(x+b)|4.V_{1}=\sum_{x\bmod m}\nu(x),\quad V_{2}=\sum_{x\bmod m}\nu(x)^{2},\quad W=\sum_{x\bmod m}\left|\sum_{1\leq b\leq B}\chi(x+b)\right|^{4}.

We have the following estimates:

V1NA,V28NA(NAm+log(3A)),W9B4m1/2+3B2m.V_{1}\leq NA,\qquad V_{2}\leq 8NA\left(\frac{NA}{m}+\log(3A)\right),\qquad W\leq 9B^{4}m^{1/2}+3B^{2}m. (10.6)

Now we are going to complete the proof, assuming them. Estimates (10.6) themselves will be proved afterwards.

Set

A=0.04Nm1/4,B=m1/4.A=\lfloor 0.04Nm^{-1/4}\rfloor,\qquad B=\lfloor m^{1/4}\rfloor.

From the hypotheses m>1011{m>10^{11}} and the inequality (10.2) we deduce that (10.3) indeed holds. Moreover, H=AB{H=AB} satisfies 0.03N<H0.04N{0.03N<H\leq 0.04N}.

Since H<N{H<N}, estimate (10.1) holds true, by induction, with NN replaced by HH:

E(H)<10H1/2m3/16(logm)1/22N1/2m3/16(logm)1/2.E(H)<10H^{1/2}m^{3/16}(\log m)^{1/2}\leq 2N^{1/2}m^{3/16}(\log m)^{1/2}.

Now let us estimate VV. We have clearly

V1NA0.04N2m1/4,W12m3/2.V_{1}\leq NA\leq 0.04N^{2}m^{-1/4},\qquad W\leq 12m^{3/2}.

Furthermore, using (10.2) and m>1011{m>10^{11}}, we obtain

log(3A)0.5logm,NA/m0.04(logm)2.\log(3A)\leq 0.5\log m,\qquad NA/m\leq 0.04(\log m)^{2}.

It follows that V20.5NA(logm)2{V_{2}\leq 0.5NA(\log m)^{2}}. We obtain

V\displaystyle V (NA)1/2(0.5NA(logm)2)1/4(12m3/2)1/4\displaystyle\leq(NA)^{1/2}(0.5NA(\log m)^{2})^{1/4}(12m^{3/2})^{1/4}
<0.14N3/2m3/16(logm)1/4.\displaystyle<0.14N^{3/2}m^{3/16}(\log m)^{1/4}.

Substituting all this in (10.5), we obtain

|S(M,N)|\displaystyle|S(M,N)| <0.14N3/2m3/16(logm)1/40.03N+22N1/2m3/16(logm)1/2\displaystyle<\frac{0.14N^{3/2}m^{3/16}(\log m)^{1/4}}{0.03N}+2\cdot 2N^{1/2}m^{3/16}(\log m)^{1/2}
<9N1/2m3/16(logm)1/2,\displaystyle<9N^{1/2}m^{3/16}(\log m)^{1/2},

as wanted.

We are left with the estimates from (10.6). The estimate V1NA{V_{1}\leq NA} is obvious. The estimate for V2V_{2} is Lemma 12.7 from [15, page 328]. The only difference is that in [15] mm is a prime number (and denoted pp). However, it is only needed therein that every integer between 11 and AA is co-prime with mm, which is true in our case, see (10.4).

Finally, let us prove the estimate for WW. The proof is very similar to that of [15, Lemma 12.8]. We write

W=1b1b4Bxmodmχ((x+b1)(x+b2))χ¯((x+b3)(x+b4)).W=\sum_{1\leq b_{1}\ldots b_{4}\leq B}\sum_{x\bmod m}\chi\bigl{(}(x+b_{1})(x+b_{2})\bigr{)}\bar{\chi}\bigl{(}(x+b_{3})(x+b_{4})\bigr{)}.

Note that bibj{b_{i}\neq b_{j}} implies that gcd(bibj,m)=1{\gcd(b_{i}-b_{j},m)=1}, see (10.4). Now if a quadruple (b1,,b4)(b_{1},\ldots,b_{4}) has the property that

some bi is distinct from all other bj,\text{some~{}$b_{i}$ is distinct from all other~{}$b_{j}$}, (10.7)

then

|xmodmχ((x+b1)(x+b2))χ¯((x+b3)(x+b4))|9m1/2\left|\sum_{x\bmod m}\chi\bigl{(}(x+b_{1})(x+b_{2})\bigr{)}\bar{\chi}\bigl{(}(x+b_{3})(x+b_{4})\bigr{)}\right|\leq 9m^{1/2}

by Lemma 10.5 applied to the polynomial

f(x)=(x+b1)(x+b2)((x+b3)(x+b4))φ(m)1.f(x)=(x+b_{1})(x+b_{2})\bigl{(}(x+b_{3})(x+b_{4})\bigr{)}^{\varphi(m)-1}.

(Here, the bb from Lemma 10.5 is the bib_{i} that is distinct from all other bjb_{j}.) And a simple combinatorial argument shows that exactly 3B22B{3B^{2}-2B} quadruples do not satisfy (10.7). Hence

W9m1/2(B43B2+2B)+m(3B22B),W\leq 9m^{1/2}(B^{4}-3B^{2}+2B)+m(3B^{2}-2B),

which is slightly sharper than wanted. The theorem is proved. ∎

10.2 Proof of Theorem 10.2

Set

ρ(n)=dnχ(d).\rho(n)=\sum_{d\mid n}\chi(d). (10.8)

Note that ρ()\rho(\cdot) is a multiplicative function.

The following statement is a version of Proposition 3.1 from Pollack [21].

Proposition 10.6.

Let mm and χ\chi be as in Theorem 10.3 (in particular, mm is coarse). Then for x104m3/8logm{x\geq 10^{4}m^{3/8}\log m} we have

1nxρ(n)=xL(1,χ)+O1(50m1/8(logm)1/3x2/3).\sum_{1\leq n\leq x}\rho(n)=xL(1,\chi)+O_{1}\bigl{(}50m^{1/8}(\log m)^{1/3}x^{2/3}\bigr{)}. (10.9)

(Recall that A=O1(B){A=O_{1}(B)} means |A|B{|A|\leq B}.)

Proof.

Set Θ=10m3/16(logm)1/2{\Theta=10m^{3/16}(\log m)^{1/2}}, so that (10.1) can be written as

|M<nM+Nχ(n)|ΘN1/2.\left|\sum_{M<n\leq M+N}\chi(n)\right|\leq\Theta N^{1/2}. (10.10)

Let yy be a real number satisfying 1y<x{1\leq y<x}, to be specified later, and set z=x/y{z=x/y}. Intuitively, one should think of yy as “large” (not much smaller than xx) and zz “small”. As in [21], we use the “Dirichlet hyperbola formula”

1nxρ(n)=1dyχ(d)1ex/d1+1ez1dx/eχ(d)1dyχ(d)1ez1.\sum_{1\leq n\leq x}\rho(n)=\sum_{1\leq d\leq y}\chi(d)\sum_{1\leq e\leq x/d}1+\sum_{1\leq e\leq z}\sum_{1\leq d\leq x/e}\chi(d)-\sum_{1\leq d\leq y}\chi(d)\sum_{1\leq e\leq z}1.

Here the first double sum will give the main contribution, while the second and the third double sums will be absorbed in the error term.

Using (10.10), we estimate the last two double sums:

|1ez1dx/eχ(d)|\displaystyle\Bigl{|}\sum_{1\leq e\leq z}\sum_{1\leq d\leq x/e}\chi(d)\Bigr{|} Θx1/21ez1e1/22Θx1/2(1+z1/2)4Θx1/2z1/2,\displaystyle\leq\Theta x^{1/2}\sum_{1\leq e\leq z}\frac{1}{e^{1/2}}\leq 2\Theta x^{1/2}(1+z^{1/2})\leq 4\Theta x^{1/2}z^{1/2},
|1dyχ(d)1ez1|\displaystyle\Bigl{|}\sum_{1\leq d\leq y}\chi(d)\sum_{1\leq e\leq z}1\Bigr{|} Θy1/2z=Θx1/2z1/2.\displaystyle\leq\Theta y^{1/2}z=\Theta x^{1/2}z^{1/2}.

For the first double sum we have the expression

1dyχ(d)1ex/d1=1dyχ(d)xd=xL(1,χ)+R1+R2,\sum_{1\leq d\leq y}\chi(d)\sum_{1\leq e\leq x/d}1=\sum_{1\leq d\leq y}\chi(d)\left\lfloor\frac{x}{d}\right\rfloor=xL(1,\chi)+R_{1}+R_{2}, (10.11)

where

R1=1dyχ(d)(xdxd),R2=xd>yχ(d)d.R_{1}=\sum_{1\leq d\leq y}\chi(d)\left(\left\lfloor\frac{x}{d}\right\rfloor-\frac{x}{d}\right),\qquad R_{2}=-x\sum_{d>y}\frac{\chi(d)}{d}.

We have clearly |R1|y{|R_{1}|\leq y}. To estimate R2R_{2} we use partial summation. For an integer k>y{k>y} set Sk=y<nkχ(n){S_{k}=\sum_{y<n\leq k}\chi(n)}. Using (10.10) we estimate

|Sk|Θ(ky)1/2Θk1/2.|S_{k}|\leq\Theta(k-y)^{1/2}\leq\Theta k^{1/2}.

Hence

|R2|=x|k>ySk(1k1k+1)|Θxk>y1k1/2(k+1)3Θxy1/2.|R_{2}|=x\Bigl{|}\sum_{k>y}S_{k}\Bigl{(}\frac{1}{k}-\frac{1}{k+1}\Bigr{)}\Bigr{|}\leq\Theta x\sum_{k>y}\frac{1}{k^{1/2}(k+1)}\leq 3\Theta xy^{-1/2}.

Combining all these estimates, we obtain

1nxρ(n)=xL(1,χ)+R\sum_{1\leq n\leq x}\rho(n)=xL(1,\chi)+R

with

|R|4Θx1/2z1/2+Θx1/2z1/2+y+3Θxy1/2=8Θxy1/2+y.|R|\leq 4\Theta x^{1/2}z^{1/2}+\Theta x^{1/2}z^{1/2}+y+3\Theta xy^{-1/2}=8\Theta xy^{-1/2}+y.

We set the “optimal” y=4Θ2/3x2/3{y=4\Theta^{2/3}x^{2/3}}. Our assumption x104m3/8logm{x\geq 10^{4}m^{3/8}\log m} implies that indeed 1y<x{1\leq y<x}. We obtain

|R|8Θ2/3x2/3<50m1/8(logm)1/3x2/3,|R|\leq 8\Theta^{2/3}x^{2/3}<50m^{1/8}(\log m)^{1/3}x^{2/3},

as wanted. ∎

The following lemma is the classical theorem of Tatuzawa [25].

Lemma 10.7.

Let 0<ε<1/11.2{0<\varepsilon<1/11.2}. Then, with at most one exception, for every positive integer m>e1/ε{m>e^{1/\varepsilon}} the following holds. Let χ\chi be a primitive real character modm\bmod\,m. Then L(1,χ)>0.655εmε{L(1,\chi)>0.655\varepsilon m^{-\varepsilon}}.

Proof of Theorem 10.2.

We assume that m10160{m\geq 10^{160}} is coarse and not the exceptional one from Lemma 10.7, where we set ε=1/360{\varepsilon=1/360}. Set x=4m1/2/logm{x=4m^{1/2}/\log m}. We have m>e360{m>e^{360}} and x104m3/8logm{x\geq 10^{4}m^{3/8}\log m}. Hence, combining Proposition 10.6 and Lemma 10.7 with ε=1/360{\varepsilon=1/360}, we obtain

1nxρ(n)0.655360xm1/36050m1/8(logm)1/3x2/3.\sum_{1\leq n\leq x}\rho(n)\geq\frac{0.655}{360}xm^{-1/360}-50m^{1/8}(\log m)^{1/3}x^{2/3}. (10.12)

On the other hand, if pp is such that χ(p)1{\chi(p)\neq 1} then

ρ(pk)=1χ(p)k+11χ(p)={1,χ(p)=0,1,χ(p)=1, 2k,0,χ(p)=1, 2k.\rho(p^{k})=\frac{1-\chi(p)^{k+1}}{1-\chi(p)}=\begin{cases}1,\chi(p)=0,\\ 1,\chi(p)=-1,\ 2\mid k,\\ 0,\chi(p)=-1,\ 2\nmid k.\end{cases} (10.13)

Now assume that χ(p)1{\chi(p)\neq 1} for all primes px{p\leq x}. We have two cases.

If mm is prime, then, by (10.13) and the multiplicativity of ρ()\rho(\cdot), for 1n<x{1\leq n<x} we have ρ(n)=1{\rho(n)=1} when nn is a full square, and ρ(n)=0{\rho(n)=0} otherwise.

Now assume that mm is a product of two primes, \ell being the smallest of them; in particular, ρ()=1{\rho(\ell)=1}. Since x<m1/2{x<m^{1/2}}, we have gcd(n,m){1,}{\gcd(n,m)\in\{1,\ell\}} for any nn in the range 1n<x{1\leq n<x}. It follows that ρ(n)=1{\rho(n)=1} when nn is a full square or \ell times a full square, and ρ(n)=0{\rho(n)=0} otherwise.

Thus, in any case

1nxρ(n)2x1/2.\sum_{1\leq n\leq x}\rho(n)\leq 2x^{1/2}.

Together with (10.12) this implies m7/18030000(logm)2/3{m^{7/180}\leq 30000(\log m)^{2/3}}. This inequality is contradictory for m10160{m\geq 10^{160}}. ∎

Remark 10.8.

At present, numerical refinements of Tatuzawa’s theorem are available, see [11] and the references therein. In particular, using the main result of [11], one can reduce the numerical bound in Theorem 10.2 to 1014010^{140}.

11 The quantities h(Δ)h(\Delta), ρ(Δ)\rho(\Delta) and N(Δ)N(\Delta)

This section is preparatory for the “signature theorem”, proved in Section 12. As before, Δ\Delta denotes a trinomial discriminant unless the contrary is stated explicitly. The following three quantities will play a crucial role in the sequel:

  • h(Δ)h(\Delta), the class number;

  • ρ(Δ)\rho(\Delta), the largest absolute value of a non-dominant singular modulus of discriminant Δ\Delta;

  • N(Δ)N(\Delta), the absolute norm |𝒩(x)/(x)|{|\mathcal{N}_{{\mathbb{Q}}(x)/{\mathbb{Q}}}(x)|}, where xx is a singular modulus of discriminant Δ\Delta; it clearly depends only on Δ\Delta and not on the particular choice of xx.

For an arbitrary (not necessarily trinomial) discriminant we have upper estimates

h(Δ)π1|Δ|1/2(2+log|Δ|),ρ(Δ)eπ|Δ|1/2/2+2079h(\Delta)\leq\pi^{-1}|\Delta|^{1/2}(2+\log|\Delta|),\qquad\rho(\Delta)\leq e^{\pi|\Delta|^{1/2}/2}+2079

(for the first one see, for instance, Theorems 10.1 and 14.3 in [13, Chapter 12]). It turns out that for trinomial discriminants one can do much better.

Proposition 11.1.

Let Δ\Delta be a trinomial discriminant. Then

101h(Δ)<3|Δ|1/2/log|Δ|,700|Δ|3ρ(Δ)<|Δ|0.8.101\leq h(\Delta)<3|\Delta|^{1/2}/\log|\Delta|,\qquad 700|\Delta|^{-3}\leq\rho(\Delta)<|\Delta|^{0.8}. (11.1)

An immediate application is the following much sharper form of Corollary 4.2 (the “principal inequality”).

Corollary 11.2 (refined “principal inequality”).

Let Δ\Delta be a trinomial discriminant of signature (m,n)(m,n) and x1,x2x_{1},x_{2} non-dominant singular moduli of discriminant Δ\Delta. Then

|1(x2/x1)n|\displaystyle|1-(x_{2}/x_{1})^{n}| e(mn)(π|Δ|1/2+log|Δ|),\displaystyle\leq e^{(m-n)(-\pi|\Delta|^{1/2}+\log|\Delta|)},
||x1||x2||\displaystyle\bigl{|}|x_{1}|-|x_{2}|\bigr{|} ρ(Δ)e(mn)(π|Δ|1/2+log|Δ|),\displaystyle\leq\rho(\Delta)e^{(m-n)(-\pi|\Delta|^{1/2}+\log|\Delta|)},
||x1||x2||\displaystyle\bigl{|}|x_{1}|-|x_{2}|\bigr{|} ρ(Δ)eπ|Δ|1/2+log|Δ|,\displaystyle\leq\rho(\Delta)e^{-\pi|\Delta|^{1/2}+\log|\Delta|},
||x1||x2||\displaystyle\bigl{|}|x_{1}|-|x_{2}|\bigr{|} eπ|Δ|1/2+2log|Δ|.\displaystyle\leq e^{-\pi|\Delta|^{1/2}+2\log|\Delta|}.

For subsequent applications we need to estimate the product h(Δ)logρ(Δ){h(\Delta)\log\rho(\Delta)}. Proposition 11.1 implies the estimate

9|Δ|1/2<h(Δ)logρ(Δ)2.4|Δ|1/2.-9|\Delta|^{1/2}<h(\Delta)\log\rho(\Delta)\leq 2.4|\Delta|^{1/2}.

However, this is insufficient for us: we need an estimate of the shape o(|Δ|1/2)o(|\Delta|^{1/2}) on both sides.

Proposition 11.3.

Let Δ\Delta be a trinomial discriminant. Then

31|Δ|1/2/log|Δ|<h(Δ)logρ(Δ)<120|Δ|1/2/log|Δ|.-31|\Delta|^{1/2}/\log|\Delta|<h(\Delta)\log\rho(\Delta)<120|\Delta|^{1/2}/\log|\Delta|.

Finally, we need an estimate for N(Δ)N(\Delta). It is known that N(Δ)>1{N(\Delta)>1} for any discriminant Δ\Delta, see [2, 18]. For trinomial discriminants one can say much more.

Proposition 11.4.

Let Δ\Delta be a trinomial discriminant. Then

logN(Δ)=π|Δ|1/2+(h(Δ)1)logρ(Δ)+O1(eπ|Δ|1/2+2log|Δ|).\log N(\Delta)=\pi|\Delta|^{1/2}+(h(\Delta)-1)\log\rho(\Delta)+O_{1}(e^{-\pi|\Delta|^{1/2}+2\log|\Delta|}). (11.2)

In particular,

logN(Δ)>π|Δ|1/232|Δ|1/2/log|Δ|.\log N(\Delta)>\pi|\Delta|^{1/2}-32|\Delta|^{1/2}/\log|\Delta|. (11.3)

Propositions 11.111.3 and 11.4 are proved in the subsequent subsections. Since Δ\Delta is fixed, we may omit it in the sequel and write simply hhρ\rho and NN.

11.1 Proof of Proposition 11.1

According to Proposition 8.1, all suitable integers except 11 are prime numbers not exceeding |Δ/3|1/2{|\Delta/3|^{1/2}}. Each of them occurs in most 22 triples (a,b,c)TΔ{(a,b,c)\in T_{\Delta}} (see the proof of Proposition 3.4). Hence h1+2π(|Δ/3|1/2){h\leq 1+2\pi(|\Delta/3|^{1/2})}. Theorem 2 in [23, page 69] states that

XlogX1/2π(X)XlogX3/2(X67).\frac{X}{\log X-1/2}\leq\pi(X)\leq\frac{X}{\log X-3/2}\qquad(X\geq 67). (11.4)

Since |Δ|1011{|\Delta|\geq 10^{11}}, we can apply this with X=|Δ/3|1/2{X=|\Delta/3|^{1/2}}. We obtain

h1+4|Δ/3|1/2log|Δ/3|3<3|Δ|1/2log|Δ|,h\leq 1+4\frac{|\Delta/3|^{1/2}}{\log|\Delta/3|-3}<3\frac{|\Delta|^{1/2}}{\log|\Delta|},

which proves the upper estimate for hh.

The lower bound for hh follows from the work of Watkins [29], which implies that a fundamental discriminant Δ\Delta with h(Δ)100{h(\Delta)\leq 100} satisfies |Δ|2383747{|\Delta|\leq 2383747}: see Table 4 on page 936 of [29]. But |Δ|1011{|\Delta|\geq 10^{11}}, a contradiction.

Now let xx be a non-dominant singular modulus of discriminant Δ\Delta and aa the corresponding suitable integer. Since xx is not dominant, we have a>1{a>1}, which implies that a>4|Δ|1/2/log|Δ|{a>4|\Delta|^{1/2}/\log|\Delta|}. Hence

|x|eπ|Δ|1/2/a+2079<e(π/4)log|Δ|+2079<|Δ|0.8,|x|\leq e^{\pi|\Delta|^{1/2}/a}+2079<e^{(\pi/4)\log|\Delta|}+2079<|\Delta|^{0.8},

which proves the upper estimate for ρ\rho.

As for the lower estimate ρ700|Δ|3{\rho\geq 700|\Delta|^{-3}}, it holds true for any discriminant Δ3{\Delta\neq-3}, not only trinomial discriminants, due to the following lemma.

Lemma 11.5.

Let xx be a singular modulus of discriminant Δ3{\Delta\neq-3} (not necessarily trinomial). Then |x|700|Δ|3{|x|\geq 700|\Delta|^{-3}}.

For the proof see [1, Corollary 5.3].

11.2 Proof of Proposition 11.3: the upper estimate

Let 1<a1<<ak{1<a_{1}<\ldots<a_{k}} be all suitable integers for Δ\Delta. Since 11 occurs in one triple from TΔT_{\Delta} and each aia_{i} in at most two triples, we have

h2k+12π(ak)+1h\leq 2k+1\leq 2\pi(a_{k})+1

Now note that ak5a1{a_{k}\leq 5a_{1}} by Proposition 5.5, and a1104{a_{1}\geq 10^{4}}, see Remark 8.2. Hence we may use (11.4) with X=5a1{X=5a_{1}}. We obtain

h25a1log(5a1)3/2+1<10a1loga1.h\leq 2\frac{5a_{1}}{\log(5a_{1})-3/2}+1<10\frac{a_{1}}{\log a_{1}}.

Now, using that 4|Δ|1/2/log|Δ|<a1<|Δ/3|1/2{4|\Delta|^{1/2}/\log|\Delta|<a_{1}<|\Delta/3|^{1/2}}, we obtain

hlogρ<10a1loga1log(eπ|Δ|1/2/a1+2079)<50|Δ|1/2loga1<120|Δ|1/2log|Δ|,h\log\rho<10\frac{a_{1}}{\log a_{1}}\log\bigl{(}e^{\pi|\Delta|^{1/2}/a_{1}}+2079\bigr{)}<50\frac{|\Delta|^{1/2}}{\log a_{1}}<120\frac{|\Delta|^{1/2}}{\log|\Delta|},

as wanted.

(Note that our argument is quite loose: the numerical constant 120120 can be easily improved.)

11.3 Proof of Proposition 11.3: the lower estimate

We need a lemma. Recall (see Section 2) that \mathcal{F} denotes the standard fundamental domain, and that

ζ3=1+32,ζ6=1+32.\zeta_{3}=\frac{-1+\sqrt{-3}}{2},\qquad\zeta_{6}=\frac{1+\sqrt{-3}}{2}.
Lemma 11.6.

For z{z\in\mathcal{F}} the following is true.

  1. 1.

    If min{|zζ3|,|zζ6|}103{\min\{|z-\zeta_{3}|,|z-\zeta_{6}|\}\geq 10^{-3}} then |j(z)|4.4105{|j(z)|\geq 4.4\cdot 10^{-5}}.

  2. 2.

    If min{|zζ3|,|zζ6|}103{\min\{|z-\zeta_{3}|,|z-\zeta_{6}|\}\leq 10^{-3}} then

    |j(z)|44000min{|zζ3|,|zζ6|}3.|j(z)|\geq 44000\min\{|z-\zeta_{3}|,|z-\zeta_{6}|\}^{3}.

The proof can be found in [4, Proposition 2.2].

Now we are ready to prove the lower estimate from Proposition 11.3. We consider two cases. Assume first that there exists (a,b,c)TΔ{(a,b,c)\in T_{\Delta}} with a>1{a>1} such that τ=(b+Δ)/2a{\tau=(b+\sqrt{\Delta})/2a} satisfies

min{|τζ3|,|τζ6|}103.\min\{|\tau-\zeta_{3}|,|\tau-\zeta_{6}|\}\geq 10^{-3}.

Lemma 11.6 implies that the non-dominant singular modulus x=j(τ){x=j(\tau)} satisfies |x|4.4105{|x|\geq 4.4\cdot 10^{-5}}. Hence ρ4.4105{\rho\geq 4.4\cdot 10^{-5}}. Using Proposition 11.1, we obtain

hlogρ3|Δ|1/2log|Δ|log(4.4105)>31|Δ|1/2log|Δ|,h\log\rho\geq 3\frac{|\Delta|^{1/2}}{\log|\Delta|}\log(4.4\cdot 10^{-5})>-31\frac{|\Delta|^{1/2}}{\log|\Delta|},

as wanted.

Now assume that for every (a,b,c)TΔ{(a,b,c)\in T_{\Delta}} with a>1{a>1} the number τ\tau as above satisfies min{|τζ3|,|τζ6|}<103{\min\{|\tau-\zeta_{3}|,|\tau-\zeta_{6}|\}<10^{-3}}. Let ε\varepsilon be the smallest real number such that

min{|τζ3|,|τζ6|}ε\min\{|\tau-\zeta_{3}|,|\tau-\zeta_{6}|\}\leq\varepsilon

for every τ\tau like this. In particular, 0<ε<103{0<\varepsilon<10^{-3}}.

Lemma 11.6 implies that

ρ44000ε3.\rho\geq 44000\varepsilon^{3}.

Now let us estimate hh. Note that for τ=(b+Δ)/2a{\tau=(b+\sqrt{\Delta})/2a} we have

Im(τζ3)=Im(τζ6)=|Δ|1/22a32.\mathrm{Im}(\tau-\zeta_{3})=\mathrm{Im}(\tau-\zeta_{6})=\frac{|\Delta|^{1/2}}{2a}-\frac{\sqrt{3}}{2}.

Hence every suitable a>1{a>1} satisfies

32<|Δ|1/22a32+ε,\frac{\sqrt{3}}{2}<\frac{|\Delta|^{1/2}}{2a}\leq\frac{\sqrt{3}}{2}+\varepsilon,

which can be rewritten as

|Δ|1/23+2εa<|Δ|1/23.\frac{|\Delta|^{1/2}}{\sqrt{3}+2\varepsilon}\leq a<\frac{|\Delta|^{1/2}}{\sqrt{3}}.

Since all such aa are prime and each occurs in at most 22 triples (a,b,c)TΔ{(a,b,c)\in T_{\Delta}}, we have

h2(π(|Δ|1/23)π(|Δ|1/23+2ε))+3.h\leq 2\left(\pi\left(\frac{|\Delta|^{1/2}}{\sqrt{3}}\right)-\pi\left(\frac{|\Delta|^{1/2}}{\sqrt{3}+2\varepsilon}\right)\right)+3.

(We have to add 33 rather than 11 because |Δ|1/2/(3+2ε){|\Delta|^{1/2}/(\sqrt{3}+2\varepsilon)} can accidentally be a prime number.) Using (11.4), we estimate

π(|Δ|1/23)\displaystyle\pi\left(\frac{|\Delta|^{1/2}}{\sqrt{3}}\right) 23|Δ|1/2log|Δ|log33\displaystyle\leq\frac{2}{\sqrt{3}}\frac{|\Delta|^{1/2}}{\log|\Delta|-\log 3-3}
<23|Δ|1/2log|Δ|+6|Δ|1/2(log|Δ|)2,\displaystyle<\frac{2}{\sqrt{3}}\frac{|\Delta|^{1/2}}{\log|\Delta|}+6\frac{|\Delta|^{1/2}}{(\log|\Delta|)^{2}},
π(|Δ|1/23+2ε)\displaystyle\pi\left(\frac{|\Delta|^{1/2}}{\sqrt{3}+2\varepsilon}\right) 23+2ε|Δ|1/2log|Δ|log31\displaystyle\geq\frac{2}{\sqrt{3}+2\varepsilon}\frac{|\Delta|^{1/2}}{\log|\Delta|-\log 3-1}
>(234ε3)|Δ|1/2log|Δ|2|Δ|1/2(log|Δ|)2,\displaystyle>\left(\frac{2}{\sqrt{3}}-\frac{4\varepsilon}{3}\right)\frac{|\Delta|^{1/2}}{\log|\Delta|}-2\frac{|\Delta|^{1/2}}{(\log|\Delta|)^{2}},

which implies that

h\displaystyle h <8ε3|Δ|1/2log|Δ|+9|Δ|1/2(log|Δ|)2,\displaystyle<\frac{8\varepsilon}{3}\frac{|\Delta|^{1/2}}{\log|\Delta|}+9\frac{|\Delta|^{1/2}}{(\log|\Delta|)^{2}},
hlogρ\displaystyle h\log\rho >(8ε3|Δ|1/2log|Δ|+9|Δ|1/2(log|Δ|)2)log(44000ε3)\displaystyle>\left(\frac{8\varepsilon}{3}\frac{|\Delta|^{1/2}}{\log|\Delta|}+9\frac{|\Delta|^{1/2}}{(\log|\Delta|)^{2}}\right)\log(44000\varepsilon^{3})

We will estimate each of the terms

8ε3|Δ|1/2log|Δ|log(44000ε3),9|Δ|1/2(log|Δ|)2log(44000ε3)\frac{8\varepsilon}{3}\frac{|\Delta|^{1/2}}{\log|\Delta|}\log(44000\varepsilon^{3}),\qquad 9\frac{|\Delta|^{1/2}}{(\log|\Delta|)^{2}}\log(44000\varepsilon^{3})

separately.

The function εεlog(44000ε3){\varepsilon\mapsto\varepsilon\log(44000\varepsilon^{3})} is strictly decreasing on (0,103]{(0,10^{-3}]}, which implies that

8ε3|Δ|1/2log|Δ|log(44000ε3)81033|Δ|1/2log|Δ|log(4.4105)>|Δ|1/2log|Δ|.\frac{8\varepsilon}{3}\frac{|\Delta|^{1/2}}{\log|\Delta|}\log(44000\varepsilon^{3})\geq\frac{8\cdot 10^{-3}}{3}\frac{|\Delta|^{1/2}}{\log|\Delta|}\log(4.4\cdot 10^{-5})>-\frac{|\Delta|^{1/2}}{\log|\Delta|}.

To estimate the second term, note that, since a<|Δ/3|1/2{a<|\Delta/3|^{1/2}}, we have

ε|Δ|1/22a32=|Δ|3a22a(|Δ|1/2+a3)12a(|Δ|1/2+a3)>34|Δ|.\varepsilon\geq\frac{|\Delta|^{1/2}}{2a}-\frac{\sqrt{3}}{2}=\frac{|\Delta|-3a^{2}}{2a(|\Delta|^{1/2}+a\sqrt{3})}\geq\frac{1}{2a(|\Delta|^{1/2}+a\sqrt{3})}>\frac{\sqrt{3}}{4|\Delta|}.

Hence log(44000ε3)>3log|Δ|{\log(44000\varepsilon^{3})>-3\log|\Delta|}, and

9|Δ|1/2(log|Δ|)2log(44000ε3)>27|Δ|1/2(log|Δ|).9\frac{|\Delta|^{1/2}}{(\log|\Delta|)^{2}}\log(44000\varepsilon^{3})>-27\frac{|\Delta|^{1/2}}{(\log|\Delta|)}.

This proves that

hlogρ>28|Δ|1/2log|Δ|,h\log\rho>-28\frac{|\Delta|^{1/2}}{\log|\Delta|},

better than wanted.

11.4 Proof of Proposition 11.4

Let x0,x1,,xh1x_{0},x_{1},\ldots,x_{h-1} be the singular moduli of discriminant Δ\Delta, with x0x_{0} dominant. Then

log(1eπ|Δ|1/2+log2079)log|x0|π|Δ|1/2log(1+eπ|Δ|1/2+log2079),\displaystyle\log\left(1-e^{-\pi|\Delta|^{1/2}+\log 2079}\right)\leq\log|x_{0}|-\pi|\Delta|^{1/2}\leq\log\left(1+e^{-\pi|\Delta|^{1/2}+\log 2079}\right),
log(1eπ|Δ|1/2+log|Δ|)log|xi|logρ0(i=1,,h1),\displaystyle\log\left(1-e^{-\pi|\Delta|^{1/2}+\log|\Delta|}\right)\leq\log|x_{i}|-\log\rho\leq 0\qquad(i=1,\ldots,h-1),

where the second inequality follows from Corollary 11.2.

Summing up, we obtain

logN(Δ)=π|Δ|1/2+(h1)logρ+O1(h|log(1eπ|Δ|1/2+log|Δ|)|).\log N(\Delta)=\pi|\Delta|^{1/2}+(h-1)\log\rho+O_{1}\left(h\left|\log\left(1-e^{-\pi|\Delta|^{1/2}+\log|\Delta|}\right)\right|\right).

Since |Δ|1011{|\Delta|\geq 10^{11}} and h3|Δ|1/2/log|Δ|{h\leq 3|\Delta|^{1/2}/\log|\Delta|}, we may bound the error term by eπ|Δ|1/2+2log|Δ|{e^{-\pi|\Delta|^{1/2}+2\log|\Delta|}}, which proves (11.2). And (11.3) follows from (11.2) and Proposition 11.3.

12 The signature theorem

In this section we prove Theorem 1.5. Let us reproduce the statement here.

Theorem 12.1.

Let Δ\Delta be a trinomial discriminant of signature (m,n)(m,n). Assume that |Δ|1040{|\Delta|\geq 10^{40}}. Then mn2{m-n\leq 2}.

As before, in this section we assume that Δ\Delta is a trinomial discriminant. In particular, Δ\Delta is odd, square-free and has at most 22 prime divisors. We also use the notation h,ρ,Nh,\rho,N, etc. from Section 11. Throughout this section LL is the Hilbert Class Field of (Δ){\mathbb{Q}}(\sqrt{\Delta}). It is an unramified abelian extension of (Δ){\mathbb{Q}}(\sqrt{\Delta}) of degree hh, generated over (Δ){\mathbb{Q}}(\sqrt{\Delta}) by any singular modulus of discriminant Δ\Delta. It is also Galois over {\mathbb{Q}}, of degree 2h2h. Denoting

H=Gal(L/(Δ)),G=Gal(L/),H=\mathrm{Gal}(L/{\mathbb{Q}}(\sqrt{\Delta})),\qquad G=\mathrm{Gal}(L/{\mathbb{Q}}),

we have G=HHι{G=H\cup H\iota}, where ιG{\iota\in G} denotes the complex conjugation. Note that σι=ισ1{\sigma\iota=\iota\sigma^{-1}} for every σH{\sigma\in H}; see, for instance, [12, Lemma 9.3].

We denote by 𝒩()\mathcal{N}(\cdot) the absolute norm on LL; that is, for yL{y\in L} we set

𝒩(y)=|𝒩L/(y)|=σG|yσ|=σH|yσ|2.\mathcal{N}(y)=\left|\mathcal{N}_{L/{\mathbb{Q}}}(y)\right|=\prod_{\sigma\in G}|y^{\sigma}|=\prod_{\sigma\in H}|y^{\sigma}|^{2}.

If xx is a singular modulus of discriminant Δ\Delta then 𝒩(x)=N(Δ)2{\mathcal{N}(x)=N(\Delta)^{2}}. Indeed, N(Δ)=|𝒩(x)/(x)|{N(\Delta)=\bigl{|}\mathcal{N}_{{\mathbb{Q}}(x)/{\mathbb{Q}}}(x)\bigr{|}}, and (x){\mathbb{Q}}(x) is a subfield of LL of degree 22.

The strategy is as follows. We introduce a certain non-zero algebraic integer zL{z\in L} and estimate 𝒩(z)\mathcal{N}(z) from above using the “principal inequality” as given in Corollary 11.2. Compared with the trivial lower estimate 𝒩(z)1{\mathcal{N}(z)\geq 1}, this would imply the following weaker version of Theorem 12.1: when |Δ||\Delta| is large we have mn4{m-n\leq 4}.

Using this, and applying Proposition 4.4, we obtain a non-trivial lower bound for 𝒩(z)\mathcal{N}(z). Comparing it with the previously obtained upper bound, we prove Theorem 12.1.

We start with some lemmas.

Lemma 12.2.

Let Δ\Delta be a trinomial discriminant and x1,,x4x_{1},\ldots,x_{4} distinct singular moduli of discriminant Δ\Delta. Then x1x2x3x4{x_{1}x_{2}\neq x_{3}x_{4}}.

Proof.

Applying Galois conjugation, we may assume that x1x_{1} is dominant. Then neither of x2,x3,x4x_{2},x_{3},x_{4} is. From Proposition 11.1 and Lemma 11.5, we have

|x2|700|Δ|3,|x3|,|x4|<|Δ|0.8.|x_{2}|\geq 700|\Delta|^{-3},\qquad|x_{3}|,|x_{4}|<|\Delta|^{0.8}.

It follows that

eπ|Δ|1/22079<|x1|=|x21x3x4|<|Δ|4.6/700,e^{\pi|\Delta|^{1/2}}-2079<|x_{1}|=|x_{2}^{-1}x_{3}x_{4}|<|\Delta|^{4.6}/700,

which is impossible for |Δ|1011{|\Delta|\geq 10^{11}}. ∎

Lemma 12.3.

A trinomial tm+Atn+B[t]{t^{m}+At^{n}+B\in{\mathbb{R}}[t]} may have at most 44 real roots.

Proof.

The derivative mtm1+nAtn1{mt^{m-1}+nAt^{n-1}} may have at most 33 real roots, and the result follows by the Theorem of Rolle.

Alternatively, one may use the “Descartes’ rule of signs”, which implies that the trinomial may have at most 22 positive and at most 22 negative roots. ∎

Since h(Δ)101>6{h(\Delta)\geq 101>6} by Proposition 11.1, Lemma 12.3 implies that there must exist at least 33 non-real singular moduli of discriminant Δ\Delta. In particular, there exist two singular moduli x1,x2{x_{1},x_{2}\notin{\mathbb{R}}} such that x1x2{x_{1}\neq x_{2}} and x¯1x2{\bar{x}_{1}\neq x_{2}}. (We denote by x¯\bar{x} the complex conjugate of xx.) Thus, x1,x¯1,x2,x¯2{x_{1},\bar{x}_{1},x_{2},\bar{x}_{2}} are distinct non-dominant singular moduli of discriminant Δ\Delta. We set

z=x1x¯1x2x¯2=|x1|2|x2|2.z=x_{1}\bar{x}_{1}-x_{2}\bar{x}_{2}=|x_{1}|^{2}-|x_{2}|^{2}.

This zz is a non-zero (by Lemma 12.2) real algebraic integer.

Proposition 12.4.

Let Δ\Delta be a trinomial discriminant of signature (m,n)(m,n). Then

log𝒩(z)π|Δ|1/2(82(mn))+2(mn)log|Δ|+243|Δ|1/2/log|Δ|\log\mathcal{N}(z)\leq\pi|\Delta|^{1/2}(8-2(m-n))+2(m-n)\log|\Delta|+243|\Delta|^{1/2}/\log|\Delta|
Proof.

Using Corollary 11.2, we estimate

|z|<2ρ2e(mn)(π|Δ|1/2+log|Δ|).|z|<2\rho^{2}e^{(m-n)(-\pi|\Delta|^{1/2}+\log|\Delta|)}.

Let us split GG into three subsets.

  1. 1.

    For σ=id{\sigma=\mathrm{id}} or σ=ι{\sigma=\iota} we have zσ=z{z^{\sigma}=z}. Hence in these two cases

    |zσ|<2ρ2e(mn)(π|Δ|1/2+log|Δ|).|z^{\sigma}|<2\rho^{2}e^{(m-n)(-\pi|\Delta|^{1/2}+\log|\Delta|)}. (12.1)
  2. 2.

    For every singular modulus xx of discriminant Δ\Delta there exists exactly one element σH{\sigma\in H} such that xσx^{\sigma} is dominant. We claim that x¯σ1\bar{x}^{\sigma^{-1}} is then dominant as well. Indeed, since xσ{x^{\sigma}\in{\mathbb{R}}} (the dominant singular modulus is real), we have x¯σ1=xισ1=xσι=xσ{\bar{x}^{\sigma^{-1}}=x^{\iota\sigma^{-1}}=x^{\sigma\iota}=x^{\sigma}}, as wanted.

    Now let σ1,σ2H{\sigma_{1},\sigma_{2}\in H} be such that x1σ1x_{1}^{\sigma_{1}} is dominant, and so is x2σ2x_{2}^{\sigma_{2}}. Then there exist exactly 88 elements σG{\sigma\in G} such that one of x1σ,x¯1σ,x2σ,x¯2σ{x_{1}^{\sigma},\bar{x}_{1}^{\sigma},x_{2}^{\sigma},\bar{x}_{2}^{\sigma}} is dominant: they are

    σ1,σ1ι,σ11,σ11ι,σ2,σ2ι,σ21,σ21ι.\sigma_{1},\sigma_{1}\iota,\sigma_{1}^{-1},\sigma_{1}^{-1}\iota,\sigma_{2},\sigma_{2}\iota,\sigma_{2}^{-1},\sigma_{2}^{-1}\iota.

    For these σ\sigma we have the upper estimate

    |zσ|<ρ(eπ|Δ|1/2+2079)+ρ2<2ρeπ|Δ|1/2.|z^{\sigma}|<\rho(e^{\pi|\Delta|^{1/2}}+2079)+\rho^{2}<2\rho e^{\pi|\Delta|^{1/2}}. (12.2)
  3. 3.

    For the remaining 2h10{2h-10} elements σG{\sigma\in G} none of x1σ,x¯1σ,x2σ,x¯2σ{x_{1}^{\sigma},\bar{x}_{1}^{\sigma},x_{2}^{\sigma},\bar{x}_{2}^{\sigma}} is dominant. Hence for those σ\sigma we have

    |zσ|2ρ2.|z^{\sigma}|\leq 2\rho^{2}. (12.3)

It follows that

𝒩(z)\displaystyle\mathcal{N}(z) <(2ρ2e(mn)(π|Δ|1/2+log|Δ|))2(2ρeπ|Δ|1/2)8(2ρ2)2h10\displaystyle<\bigl{(}2\rho^{2}e^{(m-n)(-\pi|\Delta|^{1/2}+\log|\Delta|)}\bigr{)}^{2}\bigl{(}2\rho e^{\pi|\Delta|^{1/2}}\bigr{)}^{8}(2\rho^{2})^{2h-10}
eπ|Δ|1/2(82(mn))+4hlogρ+2hlog2+2(mn)log|Δ|,\displaystyle\leq e^{\pi|\Delta|^{1/2}(8-2(m-n))+4h\log\rho^{\ast}+2h\log 2+2(m-n)\log|\Delta|},

where ρ=max{ρ,1}{\rho^{\ast}=\max\{\rho,1\}}. Using Propositions 11.1 and 11.3, we estimate

2hlogρ+hlog2243|Δ|1/2/log|Δ|.2h\log\rho^{\ast}+h\log 2\leq 243|\Delta|^{1/2}/\log|\Delta|.

Whence the result. ∎

Corollary 12.5.

We have either |Δ|<1030{|\Delta|<10^{30}} or mn4{m-n\leq 4}.

Proof.

Since 𝒩(z)1{\mathcal{N}(z)\geq 1}, Proposition 12.4 implies that

(mn)(1log|Δ|π|Δ|1/2)4130|Δ|1/2/log|Δ|π|Δ|1/2.(m-n)\left(1-\frac{\log|\Delta|}{\pi|\Delta|^{1/2}}\right)-4\leq\frac{130|\Delta|^{1/2}/\log|\Delta|}{\pi|\Delta|^{1/2}}.

Hence

mn<(4+50log|Δ|)(1log|Δ|π|Δ|1/2)1.m-n<\left(4+\frac{50}{\log|\Delta|}\right)\left(1-\frac{\log|\Delta|}{\pi|\Delta|^{1/2}}\right)^{-1}.

When |Δ|1030{|\Delta|\geq 10^{30}} this implies that mn<4.8{m-n<4.8}. Hence mn4{m-n\leq 4}, as wanted. ∎

To improve on this, we need a non-trivial lower estimate for 𝒩(z)\mathcal{N}(z).

Proposition 12.6.

Assume that |Δ|1030{|\Delta|\geq 10^{30}}. Then log𝒩(z)>3.36logN(Δ){\log\mathcal{N}(z)>3.36\log N(\Delta)}.

Proof.

For every rational prime number pp we want to estimate νp(𝒩(z)){\nu_{p}(\mathcal{N}(z))} from below. Let 𝔭p{\mathfrak{p}\mid p} be an LL-prime above pp and epe_{p} the ramification index of pp in LL. Note that

ep={1,pΔ,2,pΔ,e_{p}=\begin{cases}1,&p\nmid\Delta,\\ 2,&p\mid\Delta,\end{cases} (12.4)

because LL is unramified over (Δ){\mathbb{Q}}(\sqrt{\Delta}). We denote by ν𝔭()\nu_{\mathfrak{p}}(\cdot) the 𝔭\mathfrak{p}-adic valuation and define ν𝔭()=ν𝔭()/ep{\nu_{\mathfrak{p}}^{\prime}(\cdot)=\nu_{\mathfrak{p}}(\cdot)/e_{p}}. Then, clearly, νp(m)=ν𝔭(m){\nu_{p}(m)=\nu_{\mathfrak{p}}^{\prime}(m)} for any m{m\in{\mathbb{Z}}}.

Proposition 4.3 implies that the set

Sp=Sp(Δ)={ν𝔭(x):x singular modulus of discriminant Δ}.S_{p}=S_{p}(\Delta)=\{\nu_{\mathfrak{p}}^{\prime}(x):\text{$x$ singular modulus of discriminant~{}$\Delta$}\}.

may consist of at most 22 elements. In case it consists of just one element, this element is ν𝔭(N)/h=νp(N)/h{\nu_{\mathfrak{p}}^{\prime}(N)/h=\nu_{p}(N)/h}, where, as before, we use notation h=h(Δ){h=h(\Delta)} and N=N(Δ){N=N(\Delta)}. Hence for every σG{\sigma\in G} we have

ν𝔭(x1σ)=ν𝔭(x¯1σ)=ν𝔭(x2σ)=ν𝔭(x¯2σ)=νp(N)/h,\nu_{\mathfrak{p}}^{\prime}(x_{1}^{\sigma})=\nu_{\mathfrak{p}}^{\prime}(\bar{x}_{1}^{\sigma})=\nu_{\mathfrak{p}}^{\prime}(x_{2}^{\sigma})=\nu_{\mathfrak{p}}^{\prime}(\bar{x}_{2}^{\sigma})=\nu_{p}(N)/h,

which implies that ν𝔭(zσ)2νp(N)/h{\nu_{\mathfrak{p}}^{\prime}(z^{\sigma})\geq 2\nu_{p}(N)/h}. Therefore in this case

νp(𝒩(z))=ν𝔭(𝒩(z))2h2νp(N)/h=4νp(N).\nu_{p}(\mathcal{N}(z))=\nu_{\mathfrak{p}}^{\prime}(\mathcal{N}(z))\geq 2h\cdot 2\nu_{p}(N)/h=4\nu_{p}(N). (12.5)

Now assume that SpS_{p} consists of 22 distinct elements: Sp={αp,βp}{S_{p}=\{\alpha_{p},\beta_{p}\}}, with

αp<νp(N)/h<βp.\alpha_{p}<\nu_{p}(N)/h<\beta_{p}.

Since mn4{m-n\leq 4}, Proposition 4.4 implies that at most 44 singular moduli of discriminant Δ\Delta have ν𝔭\nu_{\mathfrak{p}}^{\prime}-valuation αp\alpha_{p}. It follows that there exist at most 3232 elements σG{\sigma\in G} such that one of x1σ,x¯1σ,x2σ,x¯2σ{x_{1}^{\sigma},\bar{x}_{1}^{\sigma},x_{2}^{\sigma},\bar{x}_{2}^{\sigma}} has ν𝔭\nu_{\mathfrak{p}}^{\prime}-valuation αp\alpha_{p}. For the remaining 2h32{2h-32} elements σG{\sigma\in G} we have

ν𝔭(x1σ)=ν𝔭(x¯1σ)=ν𝔭(x2σ)=ν𝔭(x¯2σ)=βp>νp(N)/h,\nu_{\mathfrak{p}}^{\prime}(x_{1}^{\sigma})=\nu_{\mathfrak{p}}^{\prime}(\bar{x}_{1}^{\sigma})=\nu_{\mathfrak{p}}^{\prime}(x_{2}^{\sigma})=\nu_{\mathfrak{p}}^{\prime}(\bar{x}_{2}^{\sigma})=\beta_{p}>\nu_{p}(N)/h,

which implies that for these σ\sigma we have ν𝔭(zσ)>2νp(N)/h{\nu_{\mathfrak{p}}^{\prime}(z^{\sigma})>2\nu_{p}(N)/h}. Therefore

νp(𝒩(z))>(2h32)2νp(N)/h>3.36νp(N),\nu_{p}(\mathcal{N}(z))>(2h-32)\cdot 2\nu_{p}(N)/h>3.36\nu_{p}(N), (12.6)

where the last inequality follows from h101{h\geq 101}.

Thus, for every pp we have either (12.5) or (12.6). This proves the wanted lower bound log𝒩(z)>3.36logN{\log\mathcal{N}(z)>3.36\log N}. ∎

We are now ready to prove Theorem 12.1.

Proof of Theorem 12.1.

Combining the lower estimate from Propositions 12.6 with (11.3), we obtain

log𝒩(z)3.36π|Δ|1/2110|Δ|1/2/log|Δ|.\log\mathcal{N}(z)\geq 3.36\pi|\Delta|^{1/2}-110|\Delta|^{1/2}/\log|\Delta|.

Comparing this with the upper estimate from Proposition 12.4, we obtain

π|Δ|1/2(4.642(mn))+8log|Δ|+360|Δ|1/2/log|Δ|>0.\pi|\Delta|^{1/2}(4.64-2(m-n))+8\log|\Delta|+360|\Delta|^{1/2}/\log|\Delta|>0.

If mn3{m-n\geq 3} then this implies that |Δ|<1040{|\Delta|<10^{40}} after a trivial calculation. ∎

References

  • [1] Yuri Bilu, Bernadette Faye, and Huilin Zhu, Separating singular moduli and the primitive element problem, Q. J. Math. 71 (2020), no. 4, 1253–1280. MR 4186519
  • [2] Yuri Bilu, Philipp Habegger, and Lars Kühne, No singular modulus is a unit, Int. Math. Res. Not. IMRN (2020), no. 24, 10005–10041. MR 4190395
  • [3] Yuri Bilu and Florian Luca, Trinomials with given roots, Indag. Math. (N.S.) 31 (2020), no. 1, 33–42. MR 4052259
  • [4] Yuri Bilu, Florian Luca, and Amalia Pizarro-Madariaga, Rational products of singular moduli, J. Number Theory 158 (2016), 397–410. MR 3393559
  • [5] Yuri Bilu, David Masser, and Umberto Zannier, An effective “theorem of André” for CMCM-points on a plane curve, Math. Proc. Cambridge Philos. Soc. 154 (2013), no. 1, 145–152. MR 3002589
  • [6] Andrew R. Booker, Quadratic class numbers and character sums, Math. Comp. 75 (2006), no. 255, 1481–1492. MR 2219039
  • [7] Matteo Bordignon, Partial Gaussian sums and the Pólya–Vinogradov inequality for primitive characters, arXiv:2001.05114 (2020).
  • [8] D. A. Burgess, On character sums and LL-series, Proc. London Math. Soc. (3) 12 (1962), 193–206. MR 0132733
  • [9]  , On character sums and LL-series. II, Proc. London Math. Soc. (3) 13 (1963), 524–536. MR 0148626
  • [10] J. W. S. Cassels, Local Fields, London Mathematical Society Student Texts, vol. 3, Cambridge University Press, Cambridge, 1986. MR 861410
  • [11] Yong-Gao Chen, On the Siegel-Tatuzawa-Hoffstein theorem, Acta Arith. 130 (2007), no. 4, 361–367. MR 2365711
  • [12] David A. Cox, Primes of the Form x2+ny2x^{2}+ny^{2}, second ed., Pure and Applied Mathematics (Hoboken), John Wiley & Sons, Inc., Hoboken, NJ, 2013, Fermat, class field theory, and complex multiplication. MR 3236783
  • [13] Loo Keng Hua, Introduction to Number Theory, Springer-Verlag, Berlin-New York, 1982, Translated from the Chinese by Peter Shiu. MR 665428
  • [14] Kenneth Ireland and Michael Rosen, A classical introduction to modern number theory, second ed., Graduate Texts in Mathematics, vol. 84, Springer-Verlag, New York, 1990. MR 1070716
  • [15] Henryk Iwaniec and Emmanuel Kowalski, Analytic Number Theory, American Mathematical Society Colloquium Publications, vol. 53, American Mathematical Society, Providence, RI, 2004. MR 2061214
  • [16] Niraek Jain-Sharma, Tanmay Khale, and Mengzhen Liu, Explicit burgess bound for composite moduli, Int. J. Number Theory, to appear, arXiv:2010.09530.
  • [17] Youness Lamzouri, Xiannan Li, and Kannan Soundararajan, Conditional bounds for the least quadratic non-residue and related problems, Math. Comp. 84 (2015), no. 295, 2391–2412. MR 3356031
  • [18] Yingkun Li, Singular units and isogenies between CM elliptic curves, Compos. Math. 157 (2021), no. 5, 1022–1035. MR 4251608
  • [19] Florian Luca and Antonin Riffaut, Linear independence of powers of singular moduli of degree three, Bull. Aust. Math. Soc. 99 (2019), no. 1, 42–50. MR 3896878
  • [20] Edouard Lucas, Theorie des Fonctions Numeriques Simplement Periodiques, Amer. J. Math. 1 (1878), no. 4, 289–321. MR 1505176
  • [21] Paul Pollack, Bounds for the first several prime character nonresidues, Proc. Amer. Math. Soc. 145 (2017), no. 7, 2815–2826. MR 3637932
  • [22] Antonin Riffaut, Equations with powers of singular moduli, Int. J. Number Theory 15 (2019), no. 3, 445–468. MR 3925747
  • [23] J. Barkley Rosser and Lowell Schoenfeld, Approximate formulas for some functions of prime numbers, Illinois J. Math. 6 (1962), 64–94. MR 0137689
  • [24] Wolfgang M. Schmidt, Equations over Finite Fields. An Elementary Approach, Lecture Notes in Mathematics, Vol. 536, Springer-Verlag, Berlin-New York, 1976. MR 0429733
  • [25] Tikao Tatuzawa, On a theorem of Siegel, Jap. J. Math. 21 (1951), 163–178. MR 0051262
  • [26] The PARI Group, PARI/GP (Version 2.11.0), 2018, Bordeaux, http://pari.math.u-bordeaux.fr/.
  • [27] The Sage Developers, Sagemath, the Sage Mathematics Software System (Version 8.6), 2019, https://www.sagemath.org.
  • [28] Enrique Treviño, The Burgess inequality and the least kkth power non-residue, Int. J. Number Theory 11 (2015), no. 5, 1653–1678. MR 3376232
  • [29] Mark Watkins, Class numbers of imaginary quadratic fields, Math. Comp. 73 (2004), no. 246, 907–938. MR 2031415