This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

thanks: These authors contributed equally to this work.thanks: These authors contributed equally to this work.

Trapping and acceleration of spin-polarized positrons from γ\gamma photon splitting in wakefields

Wei-Yuan Liu Key Laboratory for Laser Plasmas (MOE), School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240, China Collaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiao Tong University, Shanghai 200240, China    Kun Xue Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter (MOE), School of Physics, Xi’an Jiaotong University, Xi’an 710049, China    Feng Wan Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter (MOE), School of Physics, Xi’an Jiaotong University, Xi’an 710049, China    Min Chen [email protected] Key Laboratory for Laser Plasmas (MOE), School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240, China Collaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiao Tong University, Shanghai 200240, China    Jian-Xing Li [email protected] Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter (MOE), School of Physics, Xi’an Jiaotong University, Xi’an 710049, China    Feng Liu Key Laboratory for Laser Plasmas (MOE), School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240, China Collaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiao Tong University, Shanghai 200240, China    Su-Ming Weng Key Laboratory for Laser Plasmas (MOE), School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240, China Collaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiao Tong University, Shanghai 200240, China    Zheng-Ming Sheng Key Laboratory for Laser Plasmas (MOE), School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240, China Collaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiao Tong University, Shanghai 200240, China SUPA, Department of Physics, University of Strathclyde, Glasgow G40NG, UK    Jie Zhang Key Laboratory for Laser Plasmas (MOE), School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240, China Collaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiao Tong University, Shanghai 200240, China
Abstract

Energetic spin-polarized positrons are extremely demanded for forefront researches, such as ee+e^{-}e^{+} collider physics, but making compact positron sources is still very challenging. Here we put forward an efficient scheme of trapping and acceleration of polarized positrons in plasma wakefields. Seed electrons colliding with a bichromatic laser create polarized γ\gamma photons which then split into ee+e^{-}e^{+} pairs via nonlinear Breit-Wheeler process with an average (partial) positron polarization above 30% (70%). Over 70% positrons are trapped and accelerated in recovered wakefields driven by a hollow electron beam, obtaining an energy gain of 3.5 GeV/cm with slight depolarization. This scheme provides a potential for constructing compact and economical positron sources for future applications.

Plasma-based wakefield accelerators have attracted worldwide attentions in recent years due to their capability of providing acceleration gradients three orders of magnitude higher than conventional radio-frequency accelerators Tajima and Dawson (1979); Chen et al. (1985); Nakajima et al. (1995). Over the past decades, the wakefield acceleration of electrons has been developed rapidly Esarey et al. (2009); Downer et al. (2018). This promises a new possibility for future electron-positron (ee+e^{-}e^{+}) colliders with relatively compact size and low cost Leemans and Esarey (2009); Schroeder et al. (2010); Nakajima et al. (2019). To this end, trapping and acceleration of polarized positron beams are highly demanded on top of the advantage of high acceleration gradient for electrons in wakefields Artru et al. (2008); Clarke et al. (2008). However, generation, polarization, trapping and acceleration of such positron beams in plasma wakefields are still quite challenging.

Although plenty of schemes Esarey et al. (2009) have been proposed and studied for the effective trapping and acceleration of electrons in plasma wakefields Pukhov and Meyer-ter Vehn (2002); Lu et al. (2006), those schemes are not applicable for positrons since the transverse fields in nonlinear wakes usually defocus positrons, which makes continuous positron acceleration impossible. To overcome this issue, an amount of theoretical schemes have been proposed to simultaneously accelerate and focus positrons by using special driver or plasma structures, such as Laguerre-Gaussian laser pulses Vieira and Mendonça (2014), hollow electron beam drivers Jain et al. (2015), and finite-radius plasma columns Diederichs et al. (2019). But, unfortunately, in those studies the generation and injection of positrons have to be pre-provided. In recent FACET experiments, the positron accelerations have been demonstrated to run in a self-loaded plasma wakefield Corde et al. (2015) or a hollow plasma channel Gessner et al. (2016); Yakimenko et al. (2016). However, a pre-accelerated relativistic positron beam is also required and the beam polarization has not been studied yet.

Positrons are commonly polarized either via radiative process (Sokolov-Ternov effect) in a storage ring Sokolov and Ternov (1964); Baier and Katkov (1967); Baier (1972) or via high-energy polarized γ\gamma photons interacting with a high ZZ-target (Bethe-Heitler pair production) Variola (2014). For the former the polarization time is rather long since the magnetic fields of a synchrotron are quite weak; for the latter the positron density is limited by the low photon luminosity Omori et al. (2006); Scott et al. (2011); Abbott et al. (2016). Recently, the state-of-the-art laser pulses with peak intensities up to 102210^{22} W/cm2 Gales et al. (2018); Shen et al. (2018); Yoon et al. (2019); Danson et al. (2019) enable to excite nonlinear quantum electrodynamics (QED) processes Ritus (1985); Xie et al. (2017) in laser-matter interaction Di Piazza et al. (2012); Sarri et al. (2015); Cole et al. (2018); Poder et al. (2018). And, polarized GeV-level positron beams can be created via employing asymmetric spin-resolved probabilities of nonlinear Breit-Wheeler (BW) pair production in a bichromatic Chen et al. (2019) or elliptically-polarized laser pulse Wan et al. (2020) (transverse polarization; the polarization of intermediate photons was not considered therein), or via the helicity transfer from polarized electrons (longitudinal polarization) Li et al. (2020a). However, in those methods the positron energies are limited by those of the scattering electrons via intermediate photons and impossible to achieve the level of hundreds of GeVs, and the beam qualities, such as the energy spread and emittance, are far worse than those of the beams from conventional accelerators, which severely restrict the applications in high-energy and particle physics (e.g. the polarized ee+e^{-}e^{+} collider Clarke et al. (2008)).

Refer to caption
Figure 1: Interaction scenario of polarization, trapping and acceleration of positrons. (a) A hollow electron beam copropagates with a seed electron beam along +z+z direction with a separation distance dd. A LP bichromatic laser pulse, polarizing in xzx^{\prime}-z^{\prime} plane, collides with the seed beam with a collision angle θL\theta_{L}. (b) When the laser leaves, the bubble gradually recovers and traps the positrons. During the bubble closing, [(b1) and (b2)] the transverse fields (red-black gradients) near the bubble axis can focus the positrons and repel the electrons, and the outer fields act reversely; [(b3) and (b4)] the front part of the longitudinal fields (orange-blue gradients) accelerate the positrons and decelerate the electrons. The black arrows indicate the force felt by the positrons due to the wakefields.

In this Letter, we propose a compact scheme to generate polarized positrons and inject them into plasma wakefields with further acceleration to high energies. The positron generation and polarization are studied quantum mechanically, while the bubble-recovery-based positron trapping and following acceleration and depolarization in wakefields semi-classically. The interaction schematic is shown in Fig. 1. A hollow electron beam working as a wake driver propagates into a low-density plasma and excites nonlinear wakefields (bubbles). Behind it, another copropagating seed electron beam collides with an ultra-intense linearly-polarized (LP) bichromatic laser pulse to emit abundant LP γ\gamma photons via nonlinear Compton scattering, which could further decay into transversely polarized pairs through nonlinear BW process [see Fig. 1(a)] due to the asymmetric pair production and polarization probabilities in the laser positive and negative half cycles. We underline that in this study the polarization of intermediate γ\gamma photons has been taken into account, otherwise the yield and polarization of the positrons will be remarkably overestimated. During the collision of the laser and seed beam, the wake structure driven by the driver beam is first destroyed and then gradually self-recovers at the downstream of the laser-seed-beam collision point. Some of the created high-energy polarized positrons can be trapped in the recovered wakefields [see Figs. 1(b1) and (b2)] and then accelerated by the wakefields [see Figs. 1(b3) and (b4)]. In our simulations over 70% positrons are finally injected into the wake and get further acceleration to an average energy beyond 1.2 GeV in 1 millimeter, with an average polarization exceeding 30%. The partial polarization of the positrons within the full width at half maximum (FWHM) of the energy spectrum can exceed 70% [see Fig. 2(c)]. The detailed injection and acceleration processes are discussed in the following.

We develope a Monte Carlo algorithm and implement it into two-dimensional QED particle-in-cell (PIC) code (benchmarked by EPOCH code Arber et al. (2015)) to describe the creation and polarization of the pairs quantum mechanically by using spin-resolved probabilities of nonlinear BW pair production sup , which are derived from the QED operator method Baier et al. (1973) in the local constant field approximation (valid at the invariant laser field parameter a0=|e|E0/mω1a_{0}=|e|E_{0}/m\omega\gg 1) Ritus (1985); Baier et al. (1998); Ilderton (2019); Di Piazza et al. (2019). To efficiently generate γ\gamma photons and pairs requires the nonlinear QED parameters χe|e|(Fμvpev)2/m31\chi_{e}\equiv|e|\sqrt{-(F_{\mu v}p_{e}^{v})^{2}}/m^{3}\gtrsim 1 (for electrons) and χγ|e|(Fμvkγv)2/m31\chi_{\gamma}\equiv|e|\sqrt{-(F_{\mu v}k_{\gamma}^{v})^{2}}/m^{3}\gtrsim 1 (for γ\gamma photons) Ritus (1985); Baier et al. (1998). Here, FμvF_{\mu v} is the field tensor, pevp_{e}^{v} and kγvk_{\gamma}^{v} the 4-momenta of electron and γ\gamma photon, respectively, ee and mm the electron charge and mass, respectively, and E0E_{0} and ω\omega the laser amplitude and frequency, respectively. Relativistic units with c==1c=\hbar=1 are used throughout. The simulations of spin-resolved electron (positron) dynamics and photon emission and polarization follow the semi-classical algorithms in Refs. Li et al. (2019, 2020b); Wan et al. (2020). See more details of our simulation method in sup .

The simulation parameters of the laser pulse, electron beams and plasma are summarized as follows. A tightly-focused LP Gaussian bichromatic laser pulse propagates along z-z^{\prime} direction with θL=105\theta_{L}=105^{\circ} and polarizes in xzx^{\prime}-z^{\prime} plane, with wavelengths λ1=1μ\lambda_{1}=1\mum (period T1T_{1}) and λ2=0.5μ\lambda_{2}=0.5\mum, pulse durations τ1=τ2=6T1\tau_{1}=\tau_{2}=6T_{1}, focal radii w1=w2=2μw_{1}=w_{2}=2\mum, and peak amplitudes a1=4a267a_{1}=4a_{2}\approx 67 (corresponding to the peak intensities I1=4I26.15×1021I_{1}=4I_{2}\approx 6.15\times 10^{21} W/cm2). An unpolarized elliptical seed beam propagates along +z+z direction, with an average energy εs,0=4\varepsilon_{s,0}=4 GeV, major axis Lmaj=7μL_{maj}=7\mum, and minor axis Lmin=2μL_{min}=2\mum. A hollow driver beam is initially placed at the entrance of the plasma, with an average energy εd,0=1\varepsilon_{d,0}=1 GeV, outer radius wout=3μw_{out}=3\mum, inner radius win=1.5μw_{in}=1.5\mum, and length Lh=9μL_{h}=9\mum. The density, energy spread and angular divergence of the two electron beams are ns,0=nd,0=0.1ncn_{s,0}=n_{d,0}=0.1n_{c} with a Gaussian distribution (the critical density nc=1.1×1021n_{c}=1.1\times 10^{21} cm-3 with respect to the laser pulse with wavelength of λ1\lambda_{1}), Δεs,0/εs,0=Δεd,0/εd,0=0.1\Delta\varepsilon_{s,0}/\varepsilon_{s,0}=\Delta\varepsilon_{d,0}/\varepsilon_{d,0}=0.1, and Δθs=Δθd=0.1\Delta\theta_{s}=\Delta\theta_{d}=0.1 mrad, respectively. Here the delay distance of the two electron beams is d=0μd=0\mum. More parameter scans for the driver beam size and other effects are shown in Fig. 4. The density of the background plasma (composed of H+H^{+} and electrons) is np,0=0.01ncn_{p,0}=0.01n_{c}. Note that the efficient excitation of a wakefield with central focusing fields for the positrons requires the driver beam satisfying win/σx3w_{in}/\sigma_{x}\geq 3 and kpσz2k_{p}\sigma_{z}\leq 2 Jain et al. (2015); Rosenzweig et al. (2004), where σx\sigma_{x} and σz\sigma_{z} are the transverse and longitudinal sizes of the driver beam and kp=2π/λpk_{p}=2\pi/\lambda_{p} with λp=πm/np,0e2\lambda_{p}=\sqrt{\pi m/n_{p,0}e^{2}}. Here we use win/σx=3w_{in}/\sigma_{x}=3 and kpσz1.8k_{p}\sigma_{z}\approx 1.8, and the simulation domain is 60λ1(x)×80λ1(z)60\lambda_{1}(x)\times 80\lambda_{1}(z) with grid resolutions dxx = dz=λ1/50z=\lambda_{1}/50.

Refer to caption
Figure 2: Evolutions of the total positron number N+Tot.N_{+}^{Tot.} inside the first bubble (black-dotted), captured positron number inside the focusing region N+Cap.N_{+}^{Cap.} (black-solid) and average polarization of captured positrons S¯+\overline{S}_{+} (blue-solid) with considering the polarization of intermediate γ\gamma photons, respectively. The blue-dash-dotted curve (“S¯+No\overline{S}_{+}^{No}”) indicates the average polarization of captured positrons for the case of artificially neglecting the polarization of intermediate γ\gamma photons. (b) Average energy of captured positrons ε¯+\overline{\varepsilon}_{+} (red-circles) and its linear profit (black-dashed) vs the interaction time tt, respectively, with an acceleration gradient G3.58G\approx 3.58 GV/cm. (c) Energy spectra of captured positrons dN+N_{+}/dε+\varepsilon_{+} [at the instant of finishing of pair creation ti=40T1t_{i}=40T_{1} (black-dash-dotted) and at the end of the simulation tf=1000T1t_{f}=1000T_{1} (black-solid)] and S¯+\overline{S}_{+} at tft_{f} (blue-solid) vs the positron energy ε+\varepsilon_{+}, respectively. (d) Normalized angular distributions of positrons at tit_{i} (black-dash-dotted) and tft_{f} (black-solid), and S¯+\overline{S}_{+} at tft_{f} (blue-solid) vs the transverse angular divergence of the positrons θ+=\theta_{+}=arctan(p+,x/p+,z)(p_{+,x}/p_{+,z}), respectively. Initial parameters of the laser pulse, electron beams and plasma are given in the text.
Refer to caption
Figure 3: (a) Analytical value of S¯+\overline{S}_{+} with respect to χγ\chi_{\gamma} and ε+/εγ\varepsilon_{+}/\varepsilon_{\gamma}; see the analytical expression in sup . (b) χ¯+\overline{\chi}_{+} vs tt. (c) [(d)] Focusing fields Wx=ExByW_{x}=E_{x}-B_{y} felt by positrons normalized by E0,1=2πm/λ1eE_{0,1}=2\pi m/\lambda_{1}e (red-black gradients) and positron density contours log(n+/np,0)10{}_{10}(n_{+}/n_{p,0}) (cyan-blue gradients) with respect to the co-moving frame variable ξ=zt\xi=z-t and xx. The green curve represents the longitudinal distribution of WxW_{x} (with x=xwakex=x_{wake}+dxx and t=100T1t=100T_{1} [t=1000T1t=1000T_{1}], where the bubble axis is at xwake0.03λ1x_{wake}\approx-0.03\lambda_{1} [xwake0.34λ1x_{wake}\approx-0.34\lambda_{1}]). ExE_{x} and ByB_{y} are transverse components of the wakefields, respectively. (e) [(f)] Distribution of the positron number (logN+10{}_{10}N_{+}) with respect to p+,xp_{+,x} and xx. The blue line represents WxW_{x} at ξ=3.5λ1\xi=3.5\lambda_{1} vs xx at t=100T1t=100T_{1} [t=1000T1t=1000T_{1}]. (g) [(h)] Distributions of background electron density np/np,0n_{p}/n_{p,0} (white-blue gradients) and contours of seed electron density log(ns/np,0)10{}_{10}(n_{s}/n_{p,0}) (white-magnet gradients) with respect to ξ\xi and xx. The green curve represents the longitudinal electric field EzE_{z} at x=xwakex=x_{wake}+dxx vs ξ\xi at t=100T1t=100T_{1} [t=1000T1t=1000T_{1}]. (i) [(j)] Distributions of S¯+\overline{S}_{+} with respect to p+,zp_{+,z} and xx. The blue curve represents EzE_{z} at ξ=3.5λ1\xi=3.5\lambda_{1} vs xx, at t=100T1t=100T_{1} [t=1000T1t=1000T_{1}]. Other parameters are the same with those in Fig. 2.

The main results of the positron trapping, acceleration and polarization are shown in Figs. 2 and 3. The pair production process is completed at the distance of ti40T1t_{i}\approx 40T_{1}, where the bubble has not fully recovered yet, and nearly 4×1064\times 10^{6} positrons are created with a yield ratio N+/Ns0.4%N_{+}/N_{s}\approx 0.4\% (corresponding to a density of n+104ncn_{+}\sim 10^{-4}n_{c}) and an average polarization (mainly along the magnetic field direction yy) S¯+33.52%\overline{S}_{+}\approx 33.52\% [see Fig. 2(a)]. As we mentioned before, if the polarization of intermediate γ\gamma photons is artificially neglected as usual, S¯+\overline{S}_{+} will be considerably overestimated by exceeding 68% [see the blue-dash-dotted line in Fig. 2(a), S¯+No\overline{S}_{+}^{No}\approx 53.5% at tft_{f}]. Therefore we include this effects in our simulations and the analytical calculation of positron polarization is shown in Fig. 3(a). The polarization degree is inversely proportional to the positron energy, which affects the final polarization distribution of the accelerated positrons [see Fig. 2(c)]. Since in our case the QED parameter of the positron χ+awakeγ+[1cos(θL)]1\chi_{+}\propto a_{wake}\gamma_{+}[1-{\rm cos}(\theta_{L})]\ll 1 [see Fig. 3(b)], the radiative depolarization effect is very weak, where awakea_{wake} represents the invariant field parameter and γ+\gamma_{+} the Lorentz factor of positron. The depolarization effect derived from the spin procession in the wakefield govern by the Thomas-Bargmann-Michel-Telegdi equation Thomas (1926); A. (1927); Bargmann et al. (1959) is also quite weak Vieira et al. (2011); Wen et al. (2019). Consequently, the final positron polarization distribution mainly depends on the initial pair creation process and the conditions for the positron selection during the trapping and continuous acceleration processes. The last two processes rely on the wakefield structure. The positrons inherit transverse momenta p+,xp_{+,x} from the seed electrons via intermediate γ\gamma photons. During acceleration, the positrons with large-p+,xp_{+,x} may escape from the central focusing region and are then expelled out of the bubble by the outer defocusing transverse field. The positrons with low-p+,xp_{+,x} can be continuously trapped in the acceleration phase [see Figs. 3(c)-(f)]. Finally at tf=1000T1t_{f}=1000T_{1} about 74.12% positrons are accelerated with an average energy increase of about 350 MeV in a distance 1\lesssim 1 mm, reaching ε¯+1.24\overline{\varepsilon}_{+}\approx 1.24 GeV [see Fig. 2(b)], and the acceleration gradient is G3.53G\approx 3.53 GV/cm [see Figs. 3(g) and (h)]. The final average positron polarization is S¯+31.77%\overline{S}_{+}\approx 31.77\%, which is only slightly depolarized after acceleration [see Fig. 2(a)]. In the period of 200T1t1000T1200T_{1}\lesssim t\lesssim 1000T_{1} some high-energy positrons with low polarization gradually escape from the focusing region [see Fig. 3(j)], therefore, the polarization increases a little. At tft_{f} the positron polarization distribution around the peak area of the energy spectrum within the FWHM declines approximately from 70% to 15%. Such distribution provides a possible way to further increase the polarization by the energy-selection technique Alexander et al. (2009).

Besides the trapping ratio and polarization degree, the energy spread and divergence are also important factors for future applications. In Fig. 2(c), we find that the relative energy spread of the positrons decreases by about 26% after the wake acceleration compared to the instant of the pair creation tit_{i}. While, the absolute energy spread does not increase during the acceleration, because the seed beam not only ‘provides’ the pairs but also flattens the local acceleration field [see Figs. 3(g)-(j)] assuring uniform acceleration and avoiding energy dispersion. The angular divergence of the positron beam is also improved by the focusing field to Δθ+20\Delta\theta_{+}\approx 20 mrad, which is about 50% lower than that at tit_{i} [see Fig. 2(d), the polarization is nearly uniform (S¯+32.67%\overline{S}_{+}\approx 32.67\%) within the FWHM labelled by the two dashed purple lines]. One can see that there is an asymmetric angular distribution at tft_{f} in Fig. 2(d). This is induced by the unbalanced plasma perturbations [indicated in Figs. 3(d) and (f)], originating from the laser incidence from one side.

Refer to caption
Figure 4: (a)-(d): Variations of N+Cap.N_{+}^{Cap.} (black, square-mark), S¯+\overline{S}_{+} (blue, triangle-mark) and ε¯+\overline{\varepsilon}_{+} (red, circle-mark) of captured positrons at tft_{f} with respect to θL\theta_{L}, w1w_{1} (w1=w2w_{1}=w_{2} with a fixed laser energy), dd and winw_{in} respectively. Other parameters are the same with those in Fig. 2.

Finally, we study the impact of the initial parameters on the trapping, acceleration and polarization of the positrons in Fig. 4. As the collision angle θL\theta_{L} increases from 9595^{\circ} to 125125^{\circ} [see the interaction scenario in Fig. 1], the probabilities of photon emission and pair production (determined by χea0γe\chi_{e}\propto a_{0}\gamma_{e}[1-cos(θL\theta_{L})] and χγa0kγ\chi_{\gamma}\propto a_{0}k_{\gamma}[1-cos(θL\theta_{L})], respectively) are both enhanced, thus, N+Cap.N_{+}^{Cap.} increases. At the same time the average energy decreases due to ε¯+εγ/N+Cap.εs,0/N+Cap.\overline{\varepsilon}_{+}\propto\sum\varepsilon_{\gamma}/N_{+}^{Cap.}\propto\sum\varepsilon_{s,0}/N_{+}^{Cap.}. S¯+\overline{S}_{+} decreases as well since the asymmetry of the spin-resolved pair production probabilities in the laser positive and negative half cycles is weakened and the radiative depolarization effect is enhanced [see Fig. 4(a)]. As the laser focal radius w1(w2)w_{1}(w_{2}) increases with a fixed laser energy JJ, the laser peak amplitude a0J/w1a_{0}\propto\sqrt{J}/w_{1} and N+Cap.a02J/w12N_{+}^{Cap.}\propto a_{0}^{2}\propto J/w_{1}^{2} decrease, and accordingly, S¯+\overline{S}_{+} and ε¯+\overline{\varepsilon}_{+} are both enhanced [see Fig. 4(b)]. As the distance between the seed and driver beams dd rises up, more low-energy positrons with high polarization cannot enter the focusing region to be steadily accelerated (i.e. N+Cap.N_{+}^{Cap.} and S¯+\overline{S}_{+} both decrease), and the enhancement of the acceleration field by the seed beam [indicated in Figs. 3(g) and (h)] is weakened (i.e. ε¯+\overline{\varepsilon}_{+} decreases) [see Fig. 4(c)]. Thus, the condition of dλp/2d\lesssim\lambda_{p}/2 should be satisfied. As the inner radius of the driver beam winw_{in} increases (more feasible in experiments), more plasma electrons converge into the hollow region to create a larger transverse size of the focusing region Jain et al. (2015); sup , therefore, more positrons can be trapped and the depolarization effect induced by the escape of high-polarization positrons is weakened (i.e. S¯+\overline{S}_{+} increases) [see Fig. 4(d) and more details in Ref. sup ]. We underline that in our scheme the positrons are transversely polarized and can be used to investigate specific Triple Gauge Couplings and WW-physics, and to test the validity of the standard model and discovering new physics Fleischer et al. (1994). In further, the arbitrary spin orientation can be realized through a proper spin rotator Moortgat-Pick et al. (2008).

In conclusion, utilizing both advantages of laser-driven QED process and plasma wakefield acceleration we have proposed a compact scheme for positron polarization, trapping and acceleration. Dense GeV positron beams with a spin polarization up to 70% and improved beam quality compared with the scheme of single laser-electron collision can be achieved. By using multi-staged wakefield acceleration with currently achievable laser facilities, this scheme also provides a possible way to generate highly-polarized positron beams with hundreds of GeVs energy for future compact research and application platforms of high-energy and particle physics.

Acknowledgement: This work was supported by National Natural Science Foundation of China (Grants No. 11991074, 11721091, 11874295, 11804269 and 11905169), the National Key R&D Program of China (Grant No. 2018YFA0404801), and the Science Challenge Project of China (Grants No. TZ2016099 and TZ2018005).

References

  • Tajima and Dawson (1979) T. Tajima and J. M. Dawson, “Laser electron accelerator,” Phys. Rev. Lett. 43, 267–270 (1979).
  • Chen et al. (1985) P. Chen, J. M. Dawson, R. W. Huff,  and T. Katsouleas, “Acceleration of electrons by the interaction of a bunched electron beam with a plasma,” Phys. Rev. Lett. 54, 693–696 (1985).
  • Nakajima et al. (1995) K. Nakajima, D. Fisher, T. Kawakubo, H. Nakanishi, A. Ogata, Y. Kato, Y. Kitagawa, R. Kodama, K. Mima, H. Shiraga, K. Suzuki, K. Yamakawa, T. Zhang, Y. Sakawa, T. Shoji, Y. Nishida, N. Yugami, M. Downer,  and T. Tajima, “Observation of ultrahigh gradient electron acceleration by a self-modulated intense short laser pulse,” Phys. Rev. Lett. 74, 4428–4431 (1995).
  • Esarey et al. (2009) E. Esarey, C. B. Schroeder,  and W. P. Leemans, “Physics of laser-driven plasma-based electron accelerators,” Rev. Mod. Phys. 81, 1229–1285 (2009).
  • Downer et al. (2018) M. C. Downer, R. Zgadzaj, A. Debus, U. Schramm,  and M. C. Kaluza, “Diagnostics for plasma-based electron accelerators,” Rev. Mod. Phys. 90, 035002 (2018).
  • Leemans and Esarey (2009) W. Leemans and E. Esarey, “Laser-driven plasma-wave electron accelerators,” Physics Today 62, 44–49 (2009).
  • Schroeder et al. (2010) C. B. Schroeder, E. Esarey, C. G. R. Geddes, C. Benedetti,  and W. P. Leemans, “Physics considerations for laser-plasma linear colliders,” Phys. Rev. ST Accel. Beams 13, 101301 (2010).
  • Nakajima et al. (2019) K. Nakajima, J. Wheeler, G. Mourou,  and T. Tajima, “Novel laser-plasma tev electron-positron linear colliders,” International Journal of Modern Physics A 34, 1943003 (2019).
  • Artru et al. (2008) X. Artru, R. Chehab, M. Chevallier, V.M. Strakhovenko, A. Variola,  and A. Vivoli, “Polarized and unpolarized positron sources for electron–positron colliders,” Nucl. Instrum. Methods Phys. Res. Sect. B 266, 3868 – 3875 (2008).
  • Clarke et al. (2008) J. A. Clarke, L. I. Malysheva, R. Dollan, J. B. Dainton, J. Sheppard, W. T. Piggott, W. Gai, J. Groberg, A. A. Mikhailichenko,  and et al. A. F. Hartin, “The design of the positron source for the international linear collider,” Conf. Proc. C0806233, WEOBG03 (2008).
  • Pukhov and Meyer-ter Vehn (2002) A. Pukhov and J. Meyer-ter Vehn, “Laser wake field acceleration: the highly non-linear broken-wave regime,” Appl. Phys. B 74, 355–361 (2002).
  • Lu et al. (2006) W. Lu, C. Huang, M. Zhou, W. B. Mori,  and T. Katsouleas, “Nonlinear theory for relativistic plasma wakefields in the blowout regime,” Phys. Rev. Lett. 96, 165002 (2006).
  • Vieira and Mendonça (2014) J. Vieira and J. T. Mendonça, “Nonlinear laser driven donut wakefields for positron and electron acceleration,” Phys. Rev. Lett. 112, 215001 (2014).
  • Jain et al. (2015) N. Jain, T. M. Antonsen,  and J. P. Palastro, “Positron acceleration by plasma wakefields driven by a hollow electron beam,” Phys. Rev. Lett. 115, 195001 (2015).
  • Diederichs et al. (2019) S. Diederichs, T. J. Mehrling, C. Benedetti, C. B. Schroeder, A. Knetsch, E. Esarey,  and J. Osterhoff, “Positron transport and acceleration in beam-driven plasma wakefield accelerators using plasma columns,” Phys. Rev. Accel. Beams 22, 081301 (2019).
  • Corde et al. (2015) S. Corde, E. Adli, J. M. Allen, W. An, C. I. Clarke, C. E. Clayton, J. P. Delahaye, J. Frederico, S. Gessner, S. Z. Green, M. J. Hogan, C. Joshi, N. Lipkowitz, M. Litos, W. Lu, K. A. Marsh, W. B. Mori, M. Schmeltz, N. Vafaei-Najafabadi, D. Walz, V. Yakimenko,  and G. Yocky, “Multi-gigaelectronvolt acceleration of positrons in a self-loaded plasma wakefield,” Nature 524, 442–445 (2015).
  • Gessner et al. (2016) S. Gessner, E. Adli, J. M. Allen, W. An, C. I. Clarke, C. E. Clayton, S. Corde, J. P. Delahaye, J. Frederico, S. Z. Green, C. Hast, M. J. Hogan, C. Joshi, C. A. Lindstrøm, N. Lipkowitz, M. Litos, W. Lu, K. A. Marsh, W. B. Mori, B. O’Shea, N. Vafaei-Najafabadi, D. Walz, V. Yakimenko,  and G. Yocky, “Demonstration of a positron beam-driven hollow channel plasma wakefield accelerator,” Nat. Commun. 7, 11785 (2016).
  • Yakimenko et al. (2016) V. Yakimenko, Y. Cai, C. I. Clarke, S. Z. Green, C. Hast, M. J. Hogan, N. Lipkowitz, N. Phinney, G. R. White,  and G. Yocky, “Facet-ii accelerator research with beams of extreme intensities,” in Proceedings of the 7th International Particle Accelerator Conference (Korea, 2016) pp. 1067–1070.
  • Sokolov and Ternov (1964) A. A. Sokolov and I. M. Ternov, “On polarization and spin effects in the theory of synchrotron radiation,” Sov. Phys. Dokl. 8, 1203–1205 (1964).
  • Baier and Katkov (1967) V. N. Baier and V. M. Katkov, “Radiational polarization of electrons in inhomogeneous magnetic field,” Phys. Lett. A 24, 327 – 329 (1967).
  • Baier (1972) V. N. Baier, “Radiative polarization of electrons in storage rings,” Sov. Phys. Usp. 14, 695–714 (1972).
  • Variola (2014) A. Variola, “Advanced positron sources,” Nucl. Instrum. Methods Phys. Res. A 740, 21 – 26 (2014).
  • Omori et al. (2006) T. Omori, M. Fukuda, T. Hirose, Y. Kurihara, R. Kuroda, M. Nomura, A. Ohashi, T. Okugi, K. Sakaue, T. Saito, J. Urakawa, M. Washio,  and I. Yamazaki, “Efficient propagation of polarization from laser photons to positrons through compton scattering and electron-positron pair creation,” Phys. Rev. Lett. 96, 114801 (2006).
  • Scott et al. (2011) D. J. Scott, J. A. Clarke, D. E. Baynham, V. Bayliss, T. Bradshaw, G. Burton, A. Brummitt, S. Carr, A. Lintern, J. Rochford, O. Taylor,  and Y. Ivanyushenkov, “Demonstration of a high-field short-period superconducting helical undulator suitable for future tev-scale linear collider positron sources,” Phys. Rev. Lett. 107, 174803 (2011).
  • Abbott et al. (2016) D. Abbott, P. Adderley, A. Adeyemi, P. Aguilera, M. Ali, H. Areti, M. Baylac, J. Benesch, G. Bosson, B. Cade, A. Camsonne, L. S. Cardman, J. Clark, P. Cole, S. Covert, C. Cuevas, O. Dadoun, D. Dale, H. Dong, J. Dumas, E. Fanchini, T. Forest, E. Forman, A. Freyberger, E. Froidefond, S. Golge, J. Grames, P. Guèye, J. Hansknecht, P. Harrell, J. Hoskins, C. Hyde, B. Josey, R. Kazimi, Y. Kim, D. Machie, K. Mahoney, R. Mammei, M. Marton, J. McCarter, M. McCaughan, M. McHugh, D. McNulty, K. E. Mesick, T. Michaelides, R. Michaels, B. Moffit, D. Moser, C. Muñoz Camacho, J.-F. Muraz, A. Opper, M. Poelker, J.-S. Réal, L. Richardson, S. Setiniyaz, M. Stutzman, R. Suleiman, C. Tennant, C. Tsai, D. Turner, M. Ungaro, A. Variola, E. Voutier, Y. Wang,  and Y. Zhang (PEPPo Collaboration), “Production of highly polarized positrons using polarized electrons at mev energies,” Phys. Rev. Lett. 116, 214801 (2016).
  • Gales et al. (2018) S. Gales, K. A. Tanaka, D. L. Balabanski, F. Negoita, D. Stutman, O. Tesileanu, C. A. Ur, D. Ursescu, I. An-drei, S. Ataman, M. O. Cernaianu, L. DAlessi, I. Dancus, B. Diaconescu, N. Djourelov, D. Filipescu, P. Ghenuche, D. G. Ghita, C. Matei, K. Seto, M. Zeng,  and N. V. Zamfir, “The extreme light infrastructure-nuclear physics (eli-np) facility: new horizons in physics with 10 pw ultra-intense lasers and 20 mev brilliant gamma beams,” Rep. Prog. Phys. 81, 094301 (2018).
  • Shen et al. (2018) B. F. Shen, Z. G. Bu, J. C. Xu, T. J. Xu, L. L. Ji, R. X. Li,  and Z. Z. Xu, “Exploring vacuum birefringence based on a 100 PW laser and an x-ray free electron laser beam,” Plasma Phys. Control. Fusion 60, 044002 (2018).
  • Yoon et al. (2019) J. W. Yoon, C. H. Jeon, J. H. Shin, S. K. Lee, H. W. Lee, I. W. Choi, H. T. Kim, J. H. Sung,  and C. H. Nam, “Achieving the laser intensity of 5.5×10225.5\times 10^{22} w/cm2 with a wavefront-corrected multi-pw laser,” Opt. Express 27, 20412–20420 (2019).
  • Danson et al. (2019) C. N. Danson, C. Haefner, J. Bromage, T. Butcher, J.-C. F. Chanteloup, E. A. Chowdhury, A. Galvanauskas, L. A. Gizzi, J. Hein, D. I. Hillier,  and et al., “Petawatt and exawatt class lasers worldwide,” High Power Laser Sci. Eng. 7, e54 (2019).
  • Ritus (1985) V. I. Ritus, “Quantum effects of the interaction of elementary particles with an intense electromagnetic field,” J. Sov. Laser Res. 6, 497 (1985).
  • Xie et al. (2017) B. S. Xie, Z. L. Li,  and S. Tang, “Electron-positron pair production in ultrastrong laser fields,” Matter Radiat. at Extremes 2, 225–242 (2017).
  • Di Piazza et al. (2012) A. Di Piazza, C. Müller, K. Z. Hatsagortsyan,  and C. H. Keitel, “Extremely high-intensity laser interactions with fundamental quantum systems,” Rev. Mod. Phys. 84, 1177–1228 (2012).
  • Sarri et al. (2015) G. Sarri, K. Poder, J. M. Cole, W. Schumaker, A. Di Piazza, B. Reville, T. Dzelzainis, D. Doria, L. A. Gizzi, G. Grittani, S. Kar, C. H. Keitel, K. Krushelnick, S. Kuschel, S. P. D. Mangles, Z. Najmudin, N. Shukla, L. O. Silva, D. Symes, A. G. R. Thomas, M. Vargas, J. Vieira,  and M. Zepf, “Generation of neutral and high-density electron-positron pair plasmas in the laboratory.” Nat. Commun. 6, 6747 (2015).
  • Cole et al. (2018) J. M. Cole, K. T. Behm, E. Gerstmayr, T. G. Blackburn, J. C. Wood, C. D. Baird, M. J. Duff, C. Harvey, A. Ilderton, A. S. Joglekar, K. Krushelnick, S. Kuschel, M. Marklund, P. McKenna, C. D. Murphy, K. Poder, C. P. Ridgers, G. M. Samarin, G. Sarri, D. R. Symes, A. G. R. Thomas, J. Warwick, M. Zepf, Z. Najmudin,  and S. P. D. Mangles, “Experimental evidence of radiation reaction in the collision of a high-intensity laser pulse with a laser-wakefield accelerated electron beam,” Phys. Rev. X 8, 011020 (2018).
  • Poder et al. (2018) K. Poder, M. Tamburini, G. Sarri, A. Di Piazza, S. Kuschel, C. D. Baird, K. Behm, S. Bohlen, J. M. Cole, D. J. Corvan, M. Duff, E. Gerstmayr, C. H. Keitel, K. Krushelnick, S. P. D. Mangles, P. McKenna, C. D. Murphy, Z. Najmudin, C. P. Ridgers, G. M. Samarin, D. R. Symes, A. G. R. Thomas, J. Warwick,  and M. Zepf, “Experimental signatures of the quantum nature of radiation reaction in the field of an ultraintense laser,” Phys. Rev. X 8, 031004 (2018).
  • Chen et al. (2019) Y.-Y. Chen, P.-L. He, R. Shaisultanov, K. Z. Hatsagortsyan,  and C. H. Keitel, “Polarized positron beams via intense two-color laser pulses,” Phys. Rev. Lett. 123, 174801 (2019).
  • Wan et al. (2020) F. Wan, R. Shaisultanov, Y.-F. Li, K. Z. Hatsagortsyan, C. H. Keitel,  and J.-X. Li, “Ultrarelativistic polarized positron jets via collision of electron and ultraintense laser beams,” Phys. Lett. B 800, 135120 (2020).
  • Li et al. (2020a) Y.-F. Li, Y.-Y. Chen, W.-M. Wang,  and H.-S. Hu, “Production of highly polarized positron beams via helicity transfer from polarized electrons in a strong laser field,” Phys. Rev. Lett. 125, 044802 (2020a).
  • Arber et al. (2015) T. D. Arber, K. Bennett, C. S. Brady, A. Lawrence-Douglas, M. G. Ramsay, N. J. Sircombe, P. Gillies, R. G. Evans, H. Schmitz, A. R. Bell,  and C. P. Ridgers, “Contemporary particle-in-cell approach to laser-plasma modelling,” Plasma Phys. Control. Fusion 57, 113001 (2015).
  • (40)  See Supplemental Materials for details on the employed laser fields, on the applied theoretical model, and on the simulation results for other parameters.
  • Baier et al. (1973) V. N. Baier, V. M. Katov,  and V. S. Fadin, Radiation from Relativistic Electrons (Atomizdat, Moscow, 1973).
  • Baier et al. (1998) V. N. Baier, V. M. Katkov,  and V. M. Strakhovenko, Electromagnetic processes at high energies in oriented single crystals (World Scientific, Singapore, 1998).
  • Ilderton (2019) A. Ilderton, “Note on the conjectured breakdown of qed perturbation theory in strong fields,” Phys. Rev. D 99, 085002 (2019).
  • Di Piazza et al. (2019) A. Di Piazza, M. Tamburini, S. Meuren,  and C. H. Keitel, “Improved local-constant-field approximation for strong-field qed codes,” Phys. Rev. A 99, 022125 (2019).
  • Li et al. (2019) Y.-F. Li, R. Shaisultanov, K. Z. Hatsagortsyan, F. Wan, C. H. Keitel,  and J.-X. Li, “Ultrarelativistic electron-beam polarization in single-shot interaction with an ultraintense laser pulse,” Phys. Rev. Lett. 122, 154801 (2019).
  • Li et al. (2020b) Y.-F. Li, R. Shaisultanov, Y.-Y. Chen, F. Wan, K. Z. Hatsagortsyan, C. H. Keitel,  and J.-X. Li, “Polarized ultrashort brilliant multi-gev γ\gamma rays via single-shot laser-electron interaction,” Phys. Rev. Lett. 124, 014801 (2020b).
  • Rosenzweig et al. (2004) J. B. Rosenzweig, N. Barov, M. C. Thompson,  and R. B. Yoder, “Energy loss of a high charge bunched electron beam in plasma: Simulations, scaling, and accelerating wakefields,” Phys. Rev. ST Accel. Beams 7, 061302 (2004).
  • Thomas (1926) L. H. Thomas, “The motion of the spinning electron,” Nature 117, 514–514 (1926).
  • A. (1927) L. H. Thomas B. A., “I. the kinematics of an electron with an axis,” London Edinb. Dublin Philos. J. Sci. 3, 1–22 (1927).
  • Bargmann et al. (1959) V. Bargmann, L. Michel,  and V. L. Telegdi, “Precession of the polarization of particles moving in a homogeneous electromagnetic field,” Phys. Rev. Lett. 2, 435–436 (1959).
  • Vieira et al. (2011) J. Vieira, C.-K. Huang, W. B. Mori,  and L. O. Silva, “Polarized beam conditioning in plasma based acceleration,” Phys. Rev. ST Accel. Beams 14, 071303 (2011).
  • Wen et al. (2019) M. Wen, M. Tamburini,  and C. H. Keitel, “Polarized laser-wakefield-accelerated kiloampere electron beams,” Phys. Rev. Lett. 122, 214801 (2019).
  • Alexander et al. (2009) G. Alexander, J. Barley, Y. Batygin, S. Berridge, V. Bharadwaj, G. Bower, W. Bugg, F.-J. Decker, R. Dollan, Y. Efremenko, K. Flöttmann, V. Gharibyan, C. Hast, R. Iverson, H. Kolanoski, J.W. Kovermann, K. Laihem, T. Lohse, K.T. McDonald, A.A. Mikhailichenko, G.A. Moortgat-Pick, P. Pahl, R. Pitthan, R. Pöschl, E. Reinherz-Aronis, S. Riemann, A. Schälicke, K.P. Schüler, T. Schweizer, D. Scott, J.C. Sheppard, A. Stahl, Z. Szalata, D.R. Walz,  and A. Weidemann, “Undulator-based production of polarized positrons,” Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 610, 451 – 487 (2009).
  • Fleischer et al. (1994) J. Fleischer, K. Kołodziej,  and F. Jegerlehner, “Transverse versus longitudinal polarization effects in e+eW+W{e}^{+}{e}^{-}\rightarrow{W}^{+}{W}^{-},” Phys. Rev. D 49, 2174–2187 (1994).
  • Moortgat-Pick et al. (2008) G. Moortgat-Pick, T. Abe, G. Alexander, B. Ananthanarayan, A. A. Babich, V. Bharadwaj, D. Barber, A. Bartl, A. Brachmann, S. Chen, J. Clarke, J.E. Clendenin, J. Dainton, K. Desch, M. Diehl, B. Dobos, T. Dorland, H.K. Dreiner, H. Eberl, J. Ellis, K. Flöttmann, H. Fraas, F. Franco-Sollova, F. Franke, A. Freitas, J. Goodson, J. Gray, A. Han, S. Heinemeyer, S. Hesselbach, T. Hirose, K. Hohenwarter-Sodek, A. Juste, J. Kalinowski, T. Kernreiter, O. Kittel, S. Kraml, U. Langenfeld, W. Majerotto, A. Martinez, H.-U. Martyn, A. Mikhailichenko, C. Milstene, W. Menges, N. Meyners, K. Mönig, K. Moffeit, S. Moretti, O. Nachtmann, F. Nagel, T. Nakanishi, U. Nauenberg, H. Nowak, T. Omori, P. Osland, A.A. Pankov, N. Paver, R. Pitthan, R. Pöschl, W. Porod, J. Proulx, P. Richardson, S. Riemann, S. D. Rindani, T. G. Rizzo, A. Schälicke, P. Schüler, C. Schwanenberger, D. Scott, J. Sheppard, R.K. Singh, A. Sopczak, H. Spiesberger, A. Stahl, H. Steiner, A. Wagner, A.M. Weber, G. Weiglein, G.W. Wilson, M. Woods, P. Zerwas, J. Zhang,  and F. Zomer, “Polarized positrons and electrons at the linear collider,” Phys. Rep. 460, 131 – 243 (2008).