This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Transverse single spin asymmetry AUTsin(ϕhϕS)A_{UT}^{\sin(\phi_{h}-\phi_{S})} for single hadron production in semi-inclusive DIS

Xuan Luo    Hao Sun111Corresponding author: [email protected]    [email protected] Institute of Theoretical Physics, School of Physics, Dalian University of Technology,
No.2 Linggong Road, Dalian, Liaoning, 116024, People’s Republic of China
Abstract

In this paper, we study the single spin asymmetry AUTsin(ϕhϕS)A_{UT}^{\sin(\phi_{h}-\phi_{S})} of a single hadron production in semi-inclusive deep inelastic scattering within the framework of transverse momentum dependent factorization up to the next-to-leading logarithmic order of QCD. The asymmetry is a contribution of the convolution of the Sivers function and the unpolarized fragmentation function. Specifically, the Sivers function in the coordinate space and perturbative region can represent the convolution of the CC coefficients and the corresponding collinear correlation functions, among which the Qiu-Sterman function is the most relevant one. We perform a detailed phenomenological analysis of the Sivers asymmetry at the kinematics of the HERMES and the COMPASS measurements. It is found that the obtained xBx_{B}-, zhz_{h}-, and PhP_{h\perp}-dependent asymmetries are basically consistent with the HERMES and the COMPASS measurements.

I introduction

Since they were first observed, transverse single spin asymmetries (SSA) are a topic in spin physics of significant theoretical and experimental interest Adams et al. (1991a, b); Arsene et al. (2008). SSA appear in a scattering process when one of the colliding proton or the target is transversely polarized with respect to the scattering plane. They can provide information on the three-dimensional structure of the nucleons. From the theoretical point of view, to explain the SSA, one requires the nonperturbative correlators of a quark or gluon, and there are two methods for this purpose. The first one is the transverse momentum dependent (TMD) factorization approach Ji et al. (2004, 2005), where the inclusive cross section is written as a convolution of transverse momentum dependent partonic distribution functions (TMD-PDFs), transverse momentum dependent fragmentation functions (TMD-FFs), and QCD partonic cross sections. This method is phenomenologically well studied in Refs. Ji et al. (2004, 2005); Echevarria et al. (2012); Bacchetta et al. (2007); Anselmino et al. (2003); Boer (1999); Arnold et al. (2009); Boer et al. (1997); Anselmino et al. (2007). The second approach describes the SSA as a twist-3 effect in the collinear factorization and is suited for describing SSA in the large pTp_{T} region. This formalism was originally proposed and further developed by Refs.Efremov and Teryaev (1985); Qiu and Sterman (1999); Kanazawa and Koike (2000); Kouvaris et al. (2006); Eguchi et al. (2007); Kanazawa et al. (2014).

Among the single spin asymmetries, the Sivers asymmetry plays a vital important role. The Sivers function Sivers (1990), contributing to the Sivers asymmetry, represents an azimuthal dependence on the number density of unpolarized quarks inside a transversely polarized proton. It has been found that the initial and the final state interactions (gauge links) contribute to the Sivers asymmetry significantly; therefore, the Sivers function is process dependent Boer et al. (2003). For example, the Sivers function probed in semi-inclusive deep inelastic scattering (SIDIS) are expected to be the same in magnitude but opposite in sign compared to the one probed in the Drell-Yan process. The Sivers asymmetry has been measured in SIDIS by HERMES Airapetian et al. (2009), JLAB Qian et al. (2011), and COMPASS Alekseev et al. (2009); Adolph et al. (2012, 2015) experiments. To obtain reliable theoretical estimate of the Sivers asymmetry, the scale evolution effects should be included. Since most of the data from above experiments are at a low transverse momentum (PhP_{h\perp}) of the hadron, a natural choice for the analysis is the TMD factorization, which is valid in the region where the hadron PhP_{h\perp} is much smaller than the hard scale QQ. The Sivers asymmetry in Drell-Yan process within TMD factorization has been studied in Ref.Wang and Lu (2018).

In Ref.Echevarria et al. (2014), the authors study the Sivers asymmetry in SIDIS considering TMD evolution. Following factorization theorems, the so-called TMD evolution based on the previous works by Collins-Soper-Sterman (CSS) Collins and Soper (1981); Collins et al. (1985), has been well boosted in recent years. After working out the evolution equation, the evolution from one energy scale to another, is described by the Sudakov form factor Collins et al. (1985); Collins (2011); Collins and Hautmann (2000) which can be divided into a perturbatively calculable part SPS_{\rm P} and a nonperturbative part SNPS_{\rm NP}. Concretely, TMD evolution is performed in coordinate bb space which is related to momentum (kk_{\perp}) space via a Fourier transformation. In bb space the cross sections can be expressed by simple products of bb dependent TMDs, in contrast to convolutions in momentum space. Then the Sudakov form factor becomes nonperturbative at large separation distances bb; while at small b1/ΛQCDb\ll 1/\Lambda_{\rm QCD}, it is perturbative and therefore, can be worked out order by order in a strong coupling constant αs\alpha_{s}. The bb dependence of TMDs related to their collinear counterparts, such as collinear parton distribution functions (PDFs), fragmentation functions (FFs), or multiparton correlation functions, can be calculated in perturbation theory. Specifically, the Sivers function in the bb space and perturbative region can be represented as the convolution of the CC coefficients and the corresponding collinear correlation functions. Among different collinear correlation functions, the Qiu-Sterman function Tq,F(x,x)T_{q,F}(x,x) appearing in the structure function F~UTα(Q,b)\widetilde{F}_{UT}^{\alpha}(Q,b) (introduced in Sec.II) at the leading order, is the most relevant one Kang et al. (2011). Other twist-3 correlation functions that appear in the next-to-leading order corrections are ignored in this paper. In order to get trustworthy results, in this paper we consider the perturbative Sudakov form factors and the CC coefficients up to the next-to-leading logarithmic (NLL) accuracy. We perform the TMD evolution to reach the fragmentation function and Qiu-Sterman function at an initial scale μb=c/b\mu_{b}=c/b^{*} by the evolution package QCDNUM Botje (2011). These are different from Ref.Echevarria et al. (2014) where the authors approximately adopt the Qiu-Sterman function at Q0=2.4Q_{0}=2.4GeV and the C coefficients up to leading order. Considering all the details above, in this paper we estimate the Sivers asymmetry within the TMD factorization and provide some updated phenomenological applications. Typically, we also have compared the results with the HERMES and COMPASS measurements.

The paper is organized as follows. In Sec.II, we review the basic framework of TMD evolution for accessing the Sivers asymmetry in the SIDIS process. In Sec.III, we present the numerical calculation of the asymmetry for the underlying process at the kinematics of HERMES and COMPASS Collaborations, respectively. The conclusion of the paper is given in Sec.IV.

II framework

In this section we reach the AUTsin(ϕhϕS)A_{UT}^{\sin(\phi_{h}-\phi_{S})} asymmetry in SIDIS following the TMD factorization procedure in Ref.Wang and Lu (2018). We consider the single hadron production in SIDIS by exchanging a virtual photon qμ=lμlμq_{\mu}=l_{\mu}-l_{\mu}^{\prime} with an invariant mass Q2=q2Q^{2}=-q^{2},

e(l)+p(P)e(l)+h(Ph)+X,\displaystyle\begin{aligned} e(l)+p(P)\to e(l^{\prime})+h(P_{h})+X,\end{aligned} (1)

where a lepton scatters off a target nucleon with a polarization SS and momentum PP. We adopt the usual SIDIS variables Meng et al. (1992),

Sep=(l+P)2,xB=Q22Pq,y=PqPl=Q2xBSep,zh=PPhPq.\displaystyle\begin{aligned} S_{ep}=(l+P)^{2},\qquad x_{B}=\frac{Q^{2}}{2P\cdot q},\qquad y=\frac{P\cdot q}{P\cdot l}=\frac{Q^{2}}{x_{B}S_{ep}},\qquad z_{h}=\frac{P\cdot P_{h}}{P\cdot q}.\end{aligned} (2)

The Sivers asymmetry of the SIDIS process where a unpolarized lepton scattering off a transversely polarized proton, can be defined as

AUTsin(ϕhϕS)=d5ΔσdxBdydzhd2Phd5σdxBdydzhd2Ph,\displaystyle\begin{aligned} \displaystyle A_{UT}^{\sin(\phi_{h}-\phi_{S})}=\frac{\frac{d^{5}\Delta\sigma}{dx_{B}dydz_{h}d^{2}P_{h\perp}}}{\frac{d^{5}\sigma}{dx_{B}dydz_{h}d^{2}P_{h\perp}}},\end{aligned} (3)

where d5σdxBdydzhd2Ph\frac{d^{5}\sigma}{dx_{B}dydz_{h}d^{2}P_{h\perp}} and d5ΔσdxBdydzhd2Ph\frac{d^{5}\Delta\sigma}{dx_{B}dydz_{h}d^{2}P_{h\perp}} represent the spin-averaged and spin-dependent differential cross section, respectively. When PhQP_{h\perp}\ll Q, the TMD factorization applies and the differential SIDIS cross section could be written as Sun and Yuan (2013)

d5σ(S)dxBdydzhd2Ph=σ0[FUU+εαβSαFUTβ],\displaystyle\begin{aligned} &\frac{d^{5}\sigma(S_{\perp})}{dx_{B}dydz_{h}d^{2}P_{h\perp}}=\sigma_{0}[F_{UU}+\varepsilon_{\alpha\beta}S_{\perp}^{\alpha}F_{UT}^{\beta}],\end{aligned} (4)

where

σ0=2παem2Q21+(1y)2y\displaystyle\begin{aligned} \sigma_{0}=\frac{2\pi\alpha_{em}^{2}}{Q^{2}}\frac{1+(1-y)^{2}}{y}\end{aligned} (5)

and PhP_{h\perp} is the transverse momentum of the final state hadron with respect to the lepton plane. We introduce ϕS\phi_{S} and ϕh\phi_{h} as the azimuthal angles of the proton’s transverse polarization vector and the transverse momentum vector of the final-state hadron. These angles are defined in the target rest frame with the z^\hat{z} axis along the virtual-photon momentum and the x^\hat{x} axis along the lepton transverse momentum, which follows the Trento conventions Bacchetta et al. (2004). We have only kept the terms we are interested in.

At the low transverse momentum (PhQ)(P_{h\perp}\ll Q) region the structure functions can be expressed in terms of the TMD factorization as Sun and Yuan (2013); Kang et al. (2016)

FUU(Q;Ph)=1zh2d2b(2π)2eiPhb/zhF~UU(Q;b)+YUU(Q;Ph)FUTα(Q;Ph)=1zh2d2b(2π)2eiPhb/zhF~UTα(Q;b)+YUTα(Q;Ph).\displaystyle\begin{aligned} F_{UU}(Q;P_{h\perp})=\frac{1}{z_{h}^{2}}\int\frac{d^{2}b}{(2\pi)^{2}}e^{i\vec{P}_{h\perp}\cdot\vec{b}/z_{h}}\widetilde{F}_{UU}(Q;b)+Y_{UU}(Q;P_{h\perp})\\ F_{UT}^{\alpha}(Q;P_{h\perp})=\frac{1}{z_{h}^{2}}\int\frac{d^{2}b}{(2\pi)^{2}}e^{i\vec{P}_{h\perp}\cdot\vec{b}/z_{h}}\widetilde{F}_{UT}^{\alpha}(Q;b)+Y_{UT}^{\alpha}(Q;P_{h\perp}).\end{aligned} (6)

In the expressions of both the structure functions, the first term dominates in PhQP_{h\perp}\ll Q region, and the second term dominates in the region of PhQP_{h\perp}\geq Q. Since we focus on the region PhQP_{h\perp}\ll Q, where the TMD factorization approximatively applies, we only reserve the FF terms and neglect the YY terms. However, in practice, it is desirable to stress that the contribution of the YY terms might not be negligible in the kinematical regions of the HERMES and part of the COMPASS experiments, where the Q2Q^{2} of data might not be that large. This point has been discussed, e.g., in Ref.Sun et al. (2018).

Therefore, the spin-averaged differential cross section can be written as

d5σdxBdydzhd2Ph=1zh2σ0d2b(2π)2eiPhb/zhF~UU(Q;b),\displaystyle\begin{aligned} \frac{d^{5}\sigma}{dx_{B}dydz_{h}d^{2}P_{h\perp}}=\frac{1}{z_{h}^{2}}\sigma_{0}\int\frac{d^{2}b}{(2\pi)^{2}}e^{i\vec{P}_{h\perp}\cdot\vec{b}/z_{h}}\widetilde{F}_{UU}(Q;b),\end{aligned} (7)

and the spin-dependent differential cross section has the form,

sin(ϕhϕS)d5ΔσdxBdydzhd2Ph=1zh2σ0εαβSαd2b(2π)2eiPhb/zhF~UTβ(Q;b).\displaystyle\begin{aligned} \sin(\phi_{h}-\phi_{S})\frac{d^{5}\Delta\sigma}{dx_{B}dydz_{h}d^{2}P_{h\perp}}=\frac{1}{z_{h}^{2}}\sigma_{0}\varepsilon_{\alpha\beta}S_{\perp}^{\alpha}\int\frac{d^{2}b}{(2\pi)^{2}}e^{i\vec{P}_{h\perp}\cdot\vec{b}/z_{h}}\widetilde{F}_{UT}^{\beta}(Q;b).\end{aligned} (8)

According to the TMD factorization, the structure functions F~UU\widetilde{F}_{UU} and F~UTα\widetilde{F}_{UT}^{\alpha} can be written as

F~UU(Q;b)=HUU(Q;μ)qeq2f~1q(xB,b;ζF,μ)D~1h/q(zh,b;ζD,μ)F~UTα(Q;b)=HUT(Q;μ)qeq2f~1Tα,q(DIS)(xB,b;ζF,μ)D~1h/q(zh,b;ζD,μ)\displaystyle\begin{aligned} &\widetilde{F}_{UU}(Q;b)=H_{UU}(Q;\mu)\sum_{q}e_{q}^{2}\widetilde{f}_{1}^{q}(x_{B},b;\zeta_{F},\mu)\widetilde{D}_{1}^{h/q}(z_{h},b;\zeta_{D},\mu)\\ &\widetilde{F}_{UT}^{\alpha}(Q;b)=H_{UT}(Q;\mu)\sum_{q}e_{q}^{2}\widetilde{f}_{1T}^{\perp\alpha,q(DIS)}(x_{B},b;\zeta_{F},\mu)\widetilde{D}_{1}^{h/q}(z_{h},b;\zeta_{D},\mu)\end{aligned} (9)

where HUUH_{UU} and HUTH_{UT} are the hard factors associated with the corresponding hard scatterings. ζF(ζD)\zeta_{F}(\zeta_{D}) is the energy scale acting as a cutoff to regularize the light cone singularity of the TMD distributions. f~1q\widetilde{f}_{1}^{q}(D~1h/q\widetilde{D}_{1}^{h/q}) denotes the subtracted unpolarized distribution (fragmentation) function, and f~1Tα,q(DIS)(xB,b;ζF,μ)\widetilde{f}_{1T}^{\perp\alpha,q(DIS)}(x_{B},b;\zeta_{F},\mu) is the subtracted Sivers function in the bb space defined as Wang and Lu (2018)

f~1Tα,q(DIS)(xB,b;ζF,μ)=d2keikbkαMpf1T,q(DIS)(xB,k;μ).\displaystyle\begin{aligned} \widetilde{f}_{1T}^{\perp\alpha,q(DIS)}(x_{B},b;\zeta_{F},\mu)=\int d^{2}\vec{k}_{\perp}e^{-i\vec{k}_{\perp}\cdot\vec{b}}\frac{k_{\perp}^{\alpha}}{M_{p}}f_{1T}^{\perp,q(DIS)}(x_{B},\vec{k}_{\perp};\mu).\end{aligned} (10)

Here we have the relation f1T,q(DIS)=f1T,q(DY)f_{1T}^{\perp,q(DIS)}=-f_{1T}^{\perp,q(DY)}. The hard factors HUU(Q;μ)H_{UU}(Q;\mu) and HUT(Q;μ)H_{UT}(Q;\mu) are scheme dependent and can be obtained by three different schemes: the Ji-Ma-Yuan scheme Ji et al. (2005), the CSS scheme Collins and Soper (1981); Collins et al. (1985), and the Collins-11 scheme Collins (2011) in the literature. It is worth noticing that HH factor is absorbed in the CSS formulation into the definition of Wilson coefficient functions, and the final results of the structure function are scheme independent.

II.1 The unpolarized differential cross section

From Eq.(9), we can find that there are two scale parameters named ζF\zeta_{F}(or ζD\zeta_{D}) and μ\mu in a general TMD PDF. The corresponding evolution equations describe these scale dependences. The ζ\zeta scale evolution is presented with the Collins-Soper (CS) equation Collins and Soper (1981),

lnf~1q(xB,b;ζF,μ)lnζF=lnD~1h/q(zh,b;ζD,μ)lnζD=K~(b,μ),\displaystyle\begin{aligned} \frac{\partial\ln\widetilde{f}_{1}^{q}(x_{B},b;\zeta_{F},\mu)}{\partial\ln\sqrt{\zeta_{F}}}=\frac{\partial\ln\widetilde{D}_{1}^{h/q}(z_{h},b;\zeta_{D},\mu)}{\partial\ln\sqrt{\zeta_{D}}}=\widetilde{K}(b,\mu),\end{aligned} (11)

where K~(b,μ)\widetilde{K}(b,\mu) denotes the CS kernel. The μ\mu dependence originates from renormalization group equations for f~1q\widetilde{f}_{1}^{q}, D~1h/q\widetilde{D}_{1}^{h/q}, and K~\widetilde{K}

dK~(b,μ)dlnμ=γK(αs(μ))dlnf~1q(xB,b;ζF,μ)dlnμ=γF(αs(μ),ζF/μ2)dlnD~1h/q(zh,b;ζD,μ)dlnμ=γD(αs(μ),ζD/μ2),\displaystyle\begin{aligned} \frac{d\widetilde{K}(b,\mu)}{d\ln\mu}&=-\gamma_{K}(\alpha_{s}(\mu))\\ \frac{d\ln\widetilde{f}_{1}^{q}(x_{B},b;\zeta_{F},\mu)}{d\ln\mu}&=\gamma_{F}(\alpha_{s}(\mu),\zeta_{F}/\mu^{2})\\ \frac{d\ln\widetilde{D}_{1}^{h/q}(z_{h},b;\zeta_{D},\mu)}{d\ln\mu}&=\gamma_{D}(\alpha_{s}(\mu),\zeta_{D}/\mu^{2}),\end{aligned} (12)

where γK\gamma_{K}, γF\gamma_{F}, and γD\gamma_{D} are anomalous dimensions of K~\widetilde{K}, f~1q\widetilde{f}_{1}^{q}, and D~1h/q\widetilde{D}_{1}^{h/q}, respectively. On the grounds of many of the previous discussions on the solutions of the above equations in Refs.Collins and Soper (1981); Collins et al. (1985); Collins (2011); Ji et al. (2005); Collins and Rogers (2015); Ji et al. (2004), for a numerical calculation we have to make a choice for the values of ζF\zeta_{F} and ζD\zeta_{D}. As stated in Ref.Aybat and Rogers (2011), we will treat the PDFs and FFs symmetrically and use ζF=ζD=Q\sqrt{\zeta_{F}}=\sqrt{\zeta_{D}}=Q. Then, we can express f~(x,b;ζF=Q2,μ=Q)\widetilde{f}(x,b;\zeta_{F}=Q^{2},\mu=Q) as f~(x,b,Q)\widetilde{f}(x,b,Q) for simplicity. Therefore, we can summarize that the energy evolution of TMDs (f~)(\widetilde{f}) from an initial energy μ\mu to another energy QQ can be represented by the Sudakov form factor in the exponential form exp(S)\exp(-S),

f~(x,b,Q)=eSf~(x,b,μ),\displaystyle\begin{aligned} \widetilde{f}(x,b,Q)=\mathcal{F}\cdot e^{-S}\cdot\widetilde{f}(x,b,\mu),\end{aligned} (13)

where \mathcal{F} is the hard factor depending on the scheme one chooses.

We consider the evolution of a TMD function f~(x,k;Q)\widetilde{f}(x,\vec{k}_{\perp};Q) probed at an energy scale QQ carrying a collinear momentum fraction xx and a transverse momentum k\vec{k}_{\perp}. It is convenient to reach an energy evolution in the coordinate space; thus, we adopt the Fourier transform of f~(x,k;Q)\widetilde{f}(x,\vec{k}_{\perp};Q) in the two-dimensional bb space listed as

f~(x,b;Q)=d2keikbf~(x,k;Q).\displaystyle\begin{aligned} \widetilde{f}(x,b;Q)=\int d^{2}\vec{k}_{\perp}e^{-i\vec{k}_{\perp}\cdot\vec{b}}\widetilde{f}(x,\vec{k}_{\perp};Q).\end{aligned} (14)

In this paper, we employ the Collins-Soper-Sterman(CSS) formalsim and pick an initial scale Qi=c/bQ_{i}=c/b for energy evolution. Here, c=2eγEc=2e^{-\gamma_{E}}, and γE0.577\gamma_{E}\approx 0.577 is the Euler’s constant. The energy evolution of TMD in the bb space from an initial scale QiQ_{i} up to the scale Qf=QQ_{f}=Q is represented by Collins (2011); Aybat and Rogers (2011); Aybat et al. (2012); Echevarria et al. (2013)

f~(x,b;Q)=f~(x,b;c/b)exp{c/bQdμμ(AlnQ2μ2+B)}(Q2(c/b)2)D.\displaystyle\begin{aligned} \widetilde{f}(x,b;Q)=\widetilde{f}(x,b;c/b)\exp\left\{-\int_{c/b}^{Q}\frac{d\mu}{\mu}\left(A\ln\frac{Q^{2}}{\mu^{2}}+B\right)\right\}\left(\frac{Q^{2}}{(c/b)^{2}}\right)^{-D}.\end{aligned} (15)

The coefficients AA, BB and DD can be expanded as a αs/π\alpha_{s}/\pi series,

A=n=1A(n)(αsπ)nB=n=1B(n)(αsπ)nD=n=1D(n)(αsπ)n.\displaystyle\begin{aligned} &A=\sum_{n=1}^{\infty}A^{(n)}\left(\frac{\alpha_{s}}{\pi}\right)^{n}\\ &B=\sum_{n=1}^{\infty}B^{(n)}\left(\frac{\alpha_{s}}{\pi}\right)^{n}\\ &D=\sum_{n=1}^{\infty}D^{(n)}\left(\frac{\alpha_{s}}{\pi}\right)^{n}.\end{aligned} (16)

In our calculation, we will take A(1)A^{(1)}, A(2)A^{(2)}, and B(1)B^{(1)} up to the NLL accuracy,

A(1)=CFA(2)=CF2[CA(6718π26)109TRnf]B(1)=32CFD(1)=0,\displaystyle\begin{aligned} &A^{(1)}=C_{F}\\ &A^{(2)}=\frac{C_{F}}{2}\left[C_{A}\left(\frac{67}{18}-\frac{\pi^{2}}{6}\right)-\frac{10}{9}T_{R}n_{f}\right]\\ &B^{(1)}=-\frac{3}{2}C_{F}\\ &D^{(1)}=0,\end{aligned} (17)

where CF=43C_{F}=\frac{4}{3}, CA=3C_{A}=3, and TR=12T_{R}=\frac{1}{2} are color factors, nf=5n_{f}=5 is the the quark-antiquark active number of flavors into which the gluon may split. By Fourier transforming back in the transverse momentum space, one obtains

f~(x,k;Q)=d2b(2π)2eikbf~(x,b;Q)=12π0𝑑bbJ0(kb)f~(x,b;Q)\displaystyle\begin{aligned} \widetilde{f}(x,k_{\perp};Q)=\int\frac{d^{2}b}{(2\pi)^{2}}e^{i\vec{k}_{\perp}\cdot\vec{b}}\widetilde{f}(x,b;Q)=\frac{1}{2\pi}\int_{0}^{\infty}dbbJ_{0}(k_{\perp}b)\widetilde{f}(x,b;Q)\end{aligned} (18)

where J0J_{0} is the Bessel function of the zeroth order. We should handle the details of the whole b[0,]b\in[0,\infty] region; i.e, we have to extrapolate to the nonperturbative large-bb region. A nonperturbative Sudakov factor RNP(x,b;Q)=exp(SNP)R_{\rm NP}(x,b;Q)=\exp(-S_{\rm NP}) is introduced by

f~(x,b;Q)=f~pert(x,b;Q)RNP(x,b;Q),\displaystyle\begin{aligned} \widetilde{f}(x,b;Q)=\widetilde{f}_{\rm pert}(x,b_{*};Q)R_{\rm NP}(x,b;Q),\end{aligned} (19)

where the perturbative part of the TMD f~(x,b;Q)\widetilde{f}(x,b_{*};Q) comes to be

f~pert(x,b;Q)=f~(x,b;cb)Spert(Q;b),\displaystyle\begin{aligned} \widetilde{f}_{\rm pert}(x,b_{*};Q)=\widetilde{f}\left(x,b;\frac{c}{b_{*}}\right)S_{\rm pert}(Q;b),\end{aligned} (20)

which is valid only when 1/bΛQCD1/b\ll\Lambda_{QCD} and b=b1+(b/bmax)2b_{*}=\frac{b}{\sqrt{1+(b/b_{\rm max})^{2}}}. It has the property that bbb_{*}\approx b at low values of bb and bbmaxb_{*}\approx b_{\rm max} at the large bb values. The typical value of bmaxb_{\rm max} is chosen about 1 GeV-1 so that bb_{*} is always in the perturbative region. This bb_{*}-prescription introduces a cutoff value bmaxb_{\rm max} and allows for a smooth transition from the perturbative region and avoids the Landau pole singularity in αs\alpha_{s}. Then the total Sudakov-like form factor can be written as the sum of the perturbatively calculable part and the nonperturbative contribution

S(Q;b)=Spert(Q;b)+SNP(Q;b),\displaystyle\begin{aligned} S(Q;b)=S_{\rm pert}(Q;b_{*})+S_{\rm NP}(Q;b),\end{aligned} (21)

and the perturbative part of the Sudakov form factor can be written as

Spert(Q;b)=c/bQdμμ[AlnQ2μ2+B].\displaystyle\begin{aligned} S_{\rm pert}(Q;b_{*})=\int_{c/b^{*}}^{Q}\frac{d\mu}{\mu}\left[A\ln\frac{Q^{2}}{\mu^{2}}+B\right].\end{aligned} (22)

In the region where 1/bΛQCD1/b\gg\Lambda_{\rm QCD}, the TMD PDF(FF) at a fixed scale in bb space can be expanded as the convolution of perturbatively calculable hard coefficients and the corresponding collinear PDFs(FFs) Collins and Soper (1981); Bacchetta and Prokudin (2013),

f~q/H(x,b;μ)=iCqifi/H(x,μ)D~H/q(z,b;μ)=jC^jqDH/j(z,μ),\displaystyle\begin{aligned} \widetilde{f}_{q/H}(x,b;\mu)&=\sum_{i}C_{q\leftarrow i}\otimes f^{i/H}(x,\mu)\\ \widetilde{D}_{H/q}(z,b;\mu)&=\sum_{j}\hat{C}_{j\leftarrow q}\otimes D^{H/j}(z,\mu),\end{aligned} (23)

where \otimes appears for the convolution in the momentum fraction xx(zz),

Cqifi/H(x,μ)x1dξξCqi(xξ,b;μ,ζF)fi/H(ξ,μ)C^jqDH/j(z,μ)z1dξξC^jq(zξ,b;μ,ζD)DH/j(ξ,μ).\displaystyle\begin{aligned} C_{q\leftarrow i}\otimes f^{i/H}(x,\mu)\equiv\int_{x}^{1}\frac{d\xi}{\xi}C_{q\leftarrow i}\left(\frac{x}{\xi},b;\mu,\zeta_{F}\right)f^{i/H}(\xi,\mu)\\ \hat{C}_{j\leftarrow q}\otimes D^{H/j}(z,\mu)\equiv\int_{z}^{1}\frac{d\xi}{\xi}\hat{C}_{j\leftarrow q}\left(\frac{z}{\xi},b;\mu,\zeta_{D}\right)D^{H/j}(\xi,\mu).\end{aligned} (24)

Therefore, including the TMD evolution, the considered TMDs can be expressed as

f~1q(xB,b;Q2)=eSpert(Q,b)SNPf1(Q,b)~qiCqif1i(xB,μb)D~1q(zh,b;Q2)=eSpert(Q,b)SNPD1(Q,b)𝒟~qjC^jqD1h/j(zh,μb).\displaystyle\begin{aligned} &\widetilde{f}_{1}^{q}(x_{B},b;Q^{2})=e^{-S_{\rm pert}(Q,b_{*})-S_{\rm NP}^{f_{1}}(Q,b)}\widetilde{\mathcal{F}}_{q}\sum_{i}C_{q\leftarrow i}\otimes f_{1}^{i}(x_{B},\mu_{b})\\ &\widetilde{D}_{1}^{q}(z_{h},b;Q^{2})=e^{-S_{\rm pert}(Q,b_{*})-S_{\rm NP}^{D_{1}}(Q,b)}\widetilde{\mathcal{D}}_{q}\sum_{j}\hat{C}_{j\leftarrow q}\otimes D_{1}^{h/j}(z_{h},\mu_{b}).\end{aligned} (25)

We adopt the CSS scheme in which the hard factor in Eq.(9) together with the functions ~q\widetilde{\mathcal{F}}_{q} and 𝒟~q\widetilde{\mathcal{D}}_{q} are absorbed into the CC functions by applying the renormalization group equation for the running coupling constant in these two factors. We can write down F~UU(b)\widetilde{F}_{UU}(b_{*}) as

F~UU(b)=q,i,jeq2(Cqi(DIS)f1i(xB,μb))(C^jq(DIS)D1h/j(zh,μb)),\displaystyle\begin{aligned} \widetilde{F}_{UU}(b_{*})=\sum_{q,i,j}e_{q}^{2}\left(C_{q\leftarrow i}^{(DIS)}\otimes f_{1}^{i}(x_{B},\mu_{b})\right)\left(\hat{C}_{j\leftarrow q}^{(DIS)}\otimes D_{1}^{h/j}(z_{h},\mu_{b})\right),\end{aligned} (26)

where f1i(xB,μb)f_{1}^{i}(x_{B},\mu_{b}) and D1h/j(zh,μb)D_{1}^{h/j}(z_{h},\mu_{b}) are the usual unpolarized collinear PDF and FF at the scale μb=c/b\mu_{b}=c/b_{*} and the CC functions become process dependent. The final expressions for C(DIS)C^{(DIS)} and C^(DIS)\hat{C}^{(DIS)} have been reached in the literature, Nadolsky et al. (2000); Koike et al. (2006)

Cqq(DIS)(x,μb)=δqq[δ(1x)+αsπ(CF2(1x)2CFδ(1x))]Cqg(DIS)(x,μb)=αsπTRx(1x)C^qq(DIS)(z,μb)=δqq[δ(1z)+αsπ(CF2(1z)2CFδ(1z)+Pqq(z)lnz)]Cgq(DIS)(z,μb)=αsπ(CF2z+Pgq(z)lnz)\displaystyle\begin{aligned} &C_{q\leftarrow q^{\prime}}^{(DIS)}(x,\mu_{b})=\delta_{qq^{\prime}}\left[\delta(1-x)+\frac{\alpha_{s}}{\pi}\left(\frac{C_{F}}{2}(1-x)-2C_{F}\delta(1-x)\right)\right]\\ &C_{q\leftarrow g}^{(DIS)}(x,\mu_{b})=\frac{\alpha_{s}}{\pi}T_{R}x(1-x)\\ &\hat{C}_{q^{\prime}\leftarrow q}^{(DIS)}(z,\mu_{b})=\delta_{qq^{\prime}}\left[\delta(1-z)+\frac{\alpha_{s}}{\pi}\left(\frac{C_{F}}{2}(1-z)-2C_{F}\delta(1-z)+P_{q\leftarrow q}(z)\ln z\right)\right]\\ &C_{g\leftarrow q}^{(DIS)}(z,\mu_{b})=\frac{\alpha_{s}}{\pi}\left(\frac{C_{F}}{2}z+P_{g\leftarrow q}(z)\ln z\right)\end{aligned} (27)

with the usual splitting functions PqqP_{q\leftarrow q} and PgqP_{g\leftarrow q} given by

Pqq(z)=CF[1+z2(1z)++32δ(1z)]Pgq(z)=CF1+(1z)2z,\displaystyle\begin{aligned} &P_{q\leftarrow q}(z)=C_{F}\left[\frac{1+z^{2}}{(1-z)_{+}}+\frac{3}{2}\delta(1-z)\right]\\ &P_{g\leftarrow q}(z)=C_{F}\frac{1+(1-z)^{2}}{z},\end{aligned} (28)

where the ”+” prescription acts in an integral from xx to 1 as (see, e.g., Koike et al. (2006)),

x1𝑑yf(y)(1y)+=x1𝑑yf(y)f(1)1y+f(1)ln(1x).\displaystyle\begin{aligned} \int_{x}^{1}dy\frac{f(y)}{(1-y)_{+}}=\int_{x}^{1}dy\frac{f(y)-f(1)}{1-y}+f(1)\ln(1-x).\end{aligned} (29)

Substituting the relations of Eq.(25) into the factorization formula Eq.(9), we can write down the F~UU\widetilde{F}_{UU} in the bb space as

F~UU(Q;b)=e2Spert(Q,b)SNPDIS(Q,b)qeq2(Cqi(DIS)f1i(xB,μb))(C^jq(DIS)D1h/j(zh,μb))\displaystyle\begin{aligned} \widetilde{F}_{UU}(Q;b)=e^{-2S_{\rm pert}(Q,b_{*})-S_{\rm NP}^{DIS}(Q,b)}\sum_{q}e_{q}^{2}\left(C_{q\leftarrow i}^{(DIS)}\otimes f_{1}^{i}(x_{B},\mu_{b})\right)\left(\hat{C}_{j\leftarrow q}^{(DIS)}\otimes D_{1}^{h/j}(z_{h},\mu_{b})\right)\end{aligned} (30)

where the nonperturbative form factor originates from the distribution and fragmentation contributions

SNPDIS(Q,b)=SNPf1(Q,b)+SNPD1(Q,b),\displaystyle\begin{aligned} S_{\rm NP}^{DIS}(Q,b)=S_{\rm NP}^{f_{1}}(Q,b)+S_{\rm NP}^{D_{1}}(Q,b),\end{aligned} (31)

and we will follow the parametrization of Ref. Sun et al. (2018),

SNPDIS(Q,b)=g12b2+g2lnbblnQQ0+g3b2(x0xB)λ+ghzh2b2\displaystyle\begin{aligned} S_{\rm NP}^{DIS}(Q,b)=\frac{g_{1}}{2}b^{2}+g_{2}\ln\frac{b}{b_{*}}\ln\frac{Q}{Q_{0}}+g_{3}b^{2}\left(\frac{x_{0}}{x_{B}}\right)^{\lambda}+\frac{g_{h}}{z_{h}^{2}}b^{2}\end{aligned} (32)

where the initial scale Q02=2.4Q_{0}^{2}=2.4GeV2. The parameters are fitted to the experimental data at this initial scale as g1=0.212g_{1}=0.212, g2=0.84g_{2}=0.84, g3=0g_{3}=0, gh=0.042g_{h}=0.042, x0=0.01x_{0}=0.01 and λ=0.2\lambda=0.2. Thus, the spin-averaged differential cross section can be cast into

d5σdxBdydzhd2Ph=1zh2σ0d2b(2π)2eiPhb/zhF~UU(Q;b)=1zh2σ02π0𝑑bbJ0(Phbzh)q,i,jCqiDISf1i/p(xB,μb)C^jqDISD1h/j(zh,μb)e2SpertSNPDIS.\displaystyle\begin{aligned} \frac{d^{5}\sigma}{dx_{B}dydz_{h}d^{2}P_{h\perp}}&=\frac{1}{z_{h}^{2}}\sigma_{0}\int\frac{d^{2}b}{(2\pi)^{2}}e^{i\vec{P}_{h\perp}\cdot\vec{b}/z_{h}}\widetilde{F}_{UU}(Q;b)\\ &=\frac{1}{z_{h}^{2}}\frac{\sigma_{0}}{2\pi}\int_{0}^{\infty}dbbJ_{0}\left(\frac{P_{h\perp}b}{z_{h}}\right)\sum_{q,i,j}C_{q\leftarrow i}^{DIS}\otimes f_{1}^{i/p}(x_{B},\mu_{b})\hat{C}_{j\leftarrow q}^{DIS}\otimes D_{1}^{h/j}(z_{h},\mu_{b})e^{-2S_{\rm pert}-S_{\rm NP}^{DIS}}.\end{aligned} (33)

II.2 The Sivers differential cross section

Now we turn to the spin-dependent differential cross section in SIDIS contributed by the Sivers function. The Sivers function f~1T,q/pα(DIS)\widetilde{f}_{1T,q/p}^{\perp\alpha(DIS)} can be specified by the convolution of the corresponding CC coefficients and the collinear correlation functions as Kang et al. (2011); Sun et al. (2018); Wang and Lu (2018)

f~1T,q/pα(DIS)(x,b;μ)=ibα2iΔCqiTfi/p(3)(x,x′′;μ).\displaystyle\begin{aligned} \widetilde{f}_{1T,q/p}^{\perp\alpha(DIS)}(x,b;\mu)=\frac{ib^{\alpha}}{2}\sum_{i}\Delta C_{q\leftarrow i}^{T}\otimes f_{i/p}^{(3)}(x^{\prime},x^{\prime\prime};\mu).\end{aligned} (34)

Here ΔCqiT\Delta C_{q\leftarrow i}^{T} represents the hard coefficients, and fi/p(3)(x,x′′;μ)f_{i/p}^{(3)}(x^{\prime},x^{\prime\prime};\mu) acts as the twist-three quark-gluon-quark or trigluon correlation function. Assuming that the Qiu-Sterman function Tq,F(x,x)T_{q,F}(x,x) is the main contribution of the correlation function, in bb space the Sivers function can be expressed as

f~1T,q/pα(DIS)(x,b;Q)=(ibα2)~Siv,qiΔCqiT,DISTi,F(xB,xB,μb)eSpertSNPSiv,\displaystyle\begin{aligned} \widetilde{f}_{1T,q/p}^{\perp\alpha(DIS)}(x,b;Q)=\left(\frac{-ib^{\alpha}}{2}\right)\widetilde{\mathcal{F}}_{{\rm Siv},q}\sum_{i}\Delta C_{q\leftarrow i}^{T,DIS}\otimes T_{i,F}(x_{B},x_{B},\mu_{b})e^{-S_{\rm pert}-S_{\rm NP}^{\rm Siv}},\end{aligned} (35)

where ~Siv,q\widetilde{\mathcal{F}}_{{\rm Siv},q} is the factor related to the hard scattering. The relation between the Qiu-Sterman function Tq,F(x,x)T_{q,F}(x,x) and the quark Sivers funtion is given by

Tq,F(x,x)=d2k|k2|Mf1T,q/pDIS(x,k)=2Mf1T,q/p(1)DIS(x).\displaystyle\begin{aligned} T_{q,F}(x,x)=-\int d^{2}k_{\perp}\frac{|k_{\perp}^{2}|}{M}f_{1T,q/p}^{\perp DIS}(x,k_{\perp})=-2Mf_{1T,q/p}^{\perp(1)DIS}(x).\end{aligned} (36)

Here f1T,q/p(1)DIS(x)=d2k|k2|2M2f1T,q/pDIS(x,k)f_{1T,q/p}^{\perp(1)DIS}(x)=-\int d^{2}k_{\perp}\frac{|k_{\perp}^{2}|}{2M^{2}}f_{1T,q/p}^{\perp DIS}(x,k_{\perp}) is the first transverse moment of the Sivers function and MM is the mass of the colliding hadron. Similarly, the ΔC\Delta C coefficients are calculated as Sun and Yuan (2013)

ΔCqqT=δqq[δ(1x)+αsπ(14Nc(1x)2CFδ(1x))].\displaystyle\begin{aligned} \Delta C_{q\leftarrow q^{\prime}}^{T}=\delta_{qq^{\prime}}\left[\delta(1-x)+\frac{\alpha_{s}}{\pi}\left(-\frac{1}{4N_{c}}(1-x)-2C_{F}\delta(1-x)\right)\right].\end{aligned} (37)

In addition, we adopt the nonperturbative Sudakov form factor SNPSivS_{\rm NP}^{\rm Siv} in Ref. Echevarria et al. (2014) for the Sivers function

SNPSiv(b,Q)=b2(g1Siv+g22lnQQ0).\displaystyle\begin{aligned} S_{\rm NP}^{\rm Siv}(b,Q)=b^{2}\left(g_{1}^{\rm Siv}+\frac{g_{2}}{2}\ln\frac{Q}{Q_{0}}\right).\end{aligned} (38)

Since the fragmentation part of the Sivers asymmetry is not polarized, the nonperturbative Sudakov form factor for the fragmentation function SNPD1S_{\rm NP}^{D_{1}} should be the same as the one in unpolarized cross section case. However, SNPD1S_{\rm NP}^{D_{1}} can not be separated from Eq.(32), which gives the total nonperturbative Sudakov form factor in the unpolarized case. Alternatively, we use the SNPD1S_{\rm NP}^{D_{1}} coming from the reference paper Echevarria et al. (2014) for consistency, which can be parametrized as

SNPD1(b,Q)=b2(g1ff+g22lnQQ0).\displaystyle\begin{aligned} S_{\rm NP}^{D_{1}}(b,Q)=b^{2}\left(g_{1}^{\rm ff}+\frac{g_{2}}{2}\ln\frac{Q}{Q_{0}}\right).\end{aligned} (39)

The parameters have been obtained as

g1Siv=0.0705GeV2g1ff=0.0475zh2GeV2g2=0.16GeV2.\displaystyle\begin{aligned} g_{1}^{\rm Siv}=0.0705\text{GeV}^{2}\qquad g_{1}^{\rm ff}=\frac{0.0475}{z_{h}^{2}}\text{GeV}^{2}\qquad g_{2}=0.16\text{GeV}^{2}.\end{aligned} (40)

Since we adopt the Trento convention for angle definitions, which is consistent with the COMPASS experiment Adolph et al. (2015), the spin dependent differential cross section can be written as

sin(ϕhϕS)d5ΔσdxBdydzhd2Ph=1zh2σ0εαβSαd2b(2π)2eiPhb/zhF~UTβ(Q;b)=εαβSα1zh2σ0d2b(2π)2eiPhb/zhibβ2q,i,jΔCqiT,DISTi,F(xB,xB,μb)C^jqDISD1h/j(zh,μb)e2SpertSNPSivSNPD1=sin(ϕhϕS)1zh2σ04π0𝑑bb2J1(Phbzh)q,i,jΔCqiT,DISTi,F(xB,xB,μb)C^jqDISD1h/j(zh,μb)e2SpertSNPSivSNPD1.\displaystyle\begin{aligned} &\sin(\phi_{h}-\phi_{S})\frac{d^{5}\Delta\sigma}{dx_{B}dydz_{h}d^{2}P_{h\perp}}=\frac{1}{z_{h}^{2}}\sigma_{0}\varepsilon_{\alpha\beta}S_{\perp}^{\alpha}\int\frac{d^{2}b}{(2\pi)^{2}}e^{i\vec{P}_{h\perp}\cdot\vec{b}/z_{h}}\widetilde{F}_{UT}^{\beta}(Q;b)\\ &=\varepsilon_{\alpha\beta}S_{\perp}^{\alpha}\frac{1}{z_{h}^{2}}\sigma_{0}\int\frac{d^{2}b}{(2\pi)^{2}}e^{i\vec{P}_{h\perp}\cdot\vec{b}/z_{h}}\frac{ib^{\beta}}{2}\sum_{q,i,j}\Delta C_{q\leftarrow i}^{T,DIS}\otimes T_{i,F}(x_{B},x_{B},\mu_{b})\hat{C}_{j\leftarrow q}^{DIS}\otimes D_{1}^{h/j}(z_{h},\mu_{b})e^{-2S_{\rm pert}-S_{\rm NP}^{\rm Siv}-S_{\rm NP}^{D_{1}}}\\ &=\sin(\phi_{h}-\phi_{S})\frac{1}{z_{h}^{2}}\frac{\sigma_{0}}{4\pi}\int_{0}^{\infty}dbb^{2}J_{1}\bigg{(}\frac{P_{h\perp}b}{z_{h}}\bigg{)}\sum_{q,i,j}\Delta C_{q\leftarrow i}^{T,DIS}\otimes T_{i,F}(x_{B},x_{B},\mu_{b})\hat{C}_{j\leftarrow q}^{DIS}\otimes D_{1}^{h/j}(z_{h},\mu_{b})e^{-2S_{\rm pert}-S_{\rm NP}^{\rm Siv}-S_{\rm NP}^{D_{1}}}.\end{aligned} (41)

Thus,

d5ΔσdxBdydzhd2Ph=1zh2σ04π0𝑑bb2J1(Phbzh)q,i,jΔCqiT,DISTi,F(xB,xB,μb)C^jqDISD1h/j(zh,μb)e2SpertSNPSivSNPD1.\displaystyle\begin{aligned} &\frac{d^{5}\Delta\sigma}{dx_{B}dydz_{h}d^{2}P_{h\perp}}=\frac{1}{z_{h}^{2}}\frac{\sigma_{0}}{4\pi}\int_{0}^{\infty}dbb^{2}J_{1}\bigg{(}\frac{P_{h\perp}b}{z_{h}}\bigg{)}\sum_{q,i,j}\Delta C_{q\leftarrow i}^{T,DIS}\otimes T_{i,F}(x_{B},x_{B},\mu_{b})\hat{C}_{j\leftarrow q}^{DIS}\otimes D_{1}^{h/j}(z_{h},\mu_{b})e^{-2S_{\rm pert}-S_{\rm NP}^{\rm Siv}-S_{\rm NP}^{D_{1}}}.\end{aligned} (42)

III Numerical calculation

In this section, we present the numerical results of the AUTsin(ϕhϕS)A_{UT}^{\sin(\phi_{h}-\phi_{S})} in SIDIS with the unpolarized lepton scattering off the transversely polarized proton at the kinematics of COMPASS and HERMES experiments, respectively. In order to obtain the numerical estimate of the denominator in the asymmetry given in Eq.(3), we employ the NLO set of the CT10 parametrization Lai et al. (2010) for the unpolarized distribution function f1(x)f_{1}(x) of the proton. To get reliable results, we use the NLO fit de Florian et al. (2015) for the unpolarized parton-to-pion fragmentation function since we apply the TMD evolution at NLL accuracy. Meanwhile, we adopt a recent NLO fit de Florian et al. (2017) for the unpolarized parton-to-Kaon fragmentation function. For the Sivers differential cross section in SIDIS, we apply the TMD evolution. The CSS evolution of the Qiu-Sterman function has been studied extensively in the literature e.g. Sun and Yuan (2013); Kang and Qiu (2009, 2012); Zhou et al. (2009). Following CSS evolution formlism, we have to parametrize the Qiu-Sterman function Tq,F(x,x,μ)T_{q,F}(x,x,\mu) in a properly initial scale μ\mu and then evolve it to the scale μb=c/b\mu_{b}=c/b^{*}. For this part, we employ a recent parametrization Echevarria et al. (2014) which assummes that the Qiu-Sterman function is proportional to the usual unpolarized collinear PDFs as

Tq,F(x,x,μ)=Nq(αq+βq)(αq+βq)αqαqβqβqxαq(1x)βqf1q(x,μ),\displaystyle\begin{aligned} T_{q,F}(x,x,\mu)=N_{q}\frac{(\alpha_{q}+\beta_{q})^{(\alpha_{q}+\beta_{q})}}{\alpha_{q}^{\alpha_{q}}\beta_{q}^{\beta_{q}}}x^{\alpha_{q}}(1-x)^{\beta_{q}}f_{1}^{q}(x,\mu),\end{aligned} (43)

where μ=2.4\mu=2.4GeV, NqN_{q}, αq\alpha_{q} and βq\beta_{q} are given in Table 1 of Ref.Echevarria et al. (2014). Following Ref.Wang and Lu (2018) and Ref.Kang et al. (2016), where only the homogeneous terms of the evolution kernel are kept in order to reach the evolution of the Qiu-Sterman function and twist-3 fragmentation function H^(3)\hat{H}^{(3)}, respectively. in this paper, we keep the same. This homogeneous term of the Qiu-Sterman function evolution kernel is written as

PqqQSPqqf1Nc21+z21zNcδ(1z),\displaystyle\begin{aligned} P_{qq}^{QS}\approx P_{qq}^{f_{1}}-\frac{N_{c}}{2}\frac{1+z^{2}}{1-z}-N_{c}\delta(1-z),\end{aligned} (44)

where Pqqf1P_{qq}^{f_{1}} is the evolution kernel of the unpolarized PDF and has the same form as the PqqP_{q\leftarrow q} in Eq.(28).

The numerical solution of Qiu-Sterman function’s evolution equation is performed by the QCDNUM evolution package Botje (2011). The energy evolution of fragmentation function is performed by the built-in timelike evolution in QCDNUM. The QCD coupling constant using in the evolution package and CSS evolution is

αs(Q2)=12π(332nf)ln(Q2/ΛQCD2)[16(15319nf)lnln(Q2/ΛQCD2)(332nf)2ln(Q2/ΛQCD2)].\displaystyle\begin{aligned} \alpha_{s}(Q^{2})=\frac{12\pi}{(33-2n_{f})\ln(Q^{2}/\Lambda_{\rm QCD}^{2})}\left[1-\frac{6(153-19n_{f})\ln\ln(Q^{2}/\Lambda_{\rm QCD}^{2})}{(33-2n_{f})^{2}\ln(Q^{2}/\Lambda_{\rm QCD}^{2})}\right].\end{aligned} (45)

The original code of QCDNUM is modified by us so that the Qiu-Sterman function evolution kernel is added; the initial scale for the evolution is chosen to be Q02=2.4Q_{0}^{2}=2.4GeV2. The QCDNUM code is executed with αs(Q0)=0.327\alpha_{s}(Q_{0})=0.327.

Refer to caption
Refer to caption
Refer to caption
Figure 1: The Sivers asymmetry calculated within TMD factorization, compared with the HERMES measurement Airapetian et al. (2009) for π0\pi^{0} production.
Refer to caption
Refer to caption
Refer to caption
Figure 2: The Sivers asymmetry calculated within TMD factorization, compared with the HERMES measurement Airapetian et al. (2009) for π\pi^{-} production.
Refer to caption
Refer to caption
Refer to caption
Figure 3: The Sivers asymmetry calculated within TMD factorization, compared with the HERMES measurement Airapetian et al. (2009) for π+\pi^{+} production.
Refer to caption
Refer to caption
Refer to caption
Figure 4: The Sivers asymmetry calculated within TMD factorization, compared with the HERMES measurement Airapetian et al. (2009) for K+K^{+} production.
Refer to caption
Refer to caption
Refer to caption
Figure 5: The Sivers asymmetry calculated within TMD factorization, compared with the HERMES measurement Airapetian et al. (2009) for KK^{-} production.

To perform numerical calculations for AUTsin(ϕhϕS)A_{UT}^{\sin(\phi_{h}-\phi_{S})} in SIDIS at HERMES, we adopt the following kinematical cuts Airapetian et al. (2009)

0.023<xB<0.40.1<y<0.950.2<zh<0.7Ph>0.1GeVQ2>1GeV2W2>10GeV2\displaystyle\begin{aligned} &0.023<x_{B}<0.4\qquad 0.1<y<0.95\qquad 0.2<z_{h}<0.7\qquad P_{h\perp}>0.1\text{GeV}\\ &Q^{2}>1\text{GeV}^{2}\qquad W^{2}>10\text{GeV}^{2}\end{aligned} (46)

where WW is the invariant mass of photon-nucleon system with W2=(P+q)21xBxBQ2W^{2}=(P+q)^{2}\approx\frac{1-x_{B}}{x_{B}}Q^{2}. Furthermore, like Ref.Echevarria et al. (2014), we choose Ph0.5P_{h\perp}\leq 0.5GeV for hadron production at HERMES since we focus on the region PhQP_{h\perp}\leq Q region where the TMD factorization applies. In Figs.1-5, we show the results for pion and kaon production. The xBx_{B}-, zhz_{h}-, and PhP_{h\perp}-dependent asymmetries are depicted in the left, central, and right panels of the figure, respectively. The dashed lines represent our predictions. The full circles with error bars show the preliminary HERMES data for comparison. For the pion production, Figs.1-3 give a good description for the HERMES data. The similar conclusion could be reached from Fig. 6 of Ref.Echevarria et al. (2014) where the authors did not consider the effects of resummation. Furthermore, the authors parametrize the Qiu-Sterman function by Eq.(43) for all of the energy scales. However, as for the kaon (especially KK^{-}) production, theoretical results in Fig. 7 of Ref.Echevarria et al. (2014) underestimate the HERMES data. On the contrary, the theoretical predictions in this paper shown in Fig. 4-5 give a rather good description of the HERMES data, where xBx_{B}-, zhz_{h}-, and PhP_{h\perp}-dependent asymmetries are basically distributed within the allowable range of experimental error. In Fig.4, both the obtained zhz_{h}- and PhP_{h\perp}-dependent asymmetries for K+K^{+} production increase as zhz_{h} and PhP_{h\perp} increase, and the largest asymmetry could arrive at 0.1. Both the obtained zhz_{h}- and PhP_{h\perp}-dependent asymmetries for KK^{-} production also increase as zhz_{h} and PhP_{h\perp} increase, and the largest asymmetry could arrive at 0.05. Then we can reach the conclusion that also after adding the resummation effect and evolving exactly the Qiu-Sterman function using the corresponding evolution kernel, the asymmetry results could be improved to a certain extent.

Refer to caption
Refer to caption
Refer to caption
Figure 6: The Sivers asymmetry calculated within TMD factorization, compared with the COMPASS measurement Adolph et al. (2015) for π+\pi^{+} production.
Refer to caption
Refer to caption
Refer to caption
Figure 7: The Sivers asymmetry calculated within TMD factorization, compared with the COMPASS measurement Adolph et al. (2015) for π\pi^{-} production.
Refer to caption
Refer to caption
Refer to caption
Figure 8: The Sivers asymmetry calculated within TMD factorization, compared with the COMPASS measurement Adolph et al. (2015) for K+K^{+} production.
Refer to caption
Refer to caption
Refer to caption
Figure 9: The Sivers asymmetry calculated within TMD factorization, compared with the COMPASS measurement Adolph et al. (2015) for KK^{-} production.

We also make predictions for Sivers asymmetries at COMPASS, with a muon beam of 160 GeV scattered off a proton target. The kinematical cuts we employ in the calculation are Adolph et al. (2015)

0.004<xB<0.70.1<y<0.90.2<zh<1Ph>0.1GeVQ2>1GeV2W>5GeV\displaystyle\begin{aligned} &0.004<x_{B}<0.7\qquad 0.1<y<0.9\qquad 0.2<z_{h}<1\qquad P_{h\perp}>0.1\text{GeV}\\ &Q^{2}>1\text{GeV}^{2}\qquad W>5\text{GeV}\end{aligned} (47)

The obtained xBx_{B}-, zhz_{h}-, and PhP_{h\perp}-dependent asymmetries for pion and kaon production are compared with the COMPASS data in Figs.6-9. As shown in Figs.6 and 8 ,in all cases, the asymmetries for π+\pi^{+} and K+K^{+} production acquired from our calculations are positive, which is consistent with the COMPASS data, whereas, the zhz_{h}-dependent asymmetry for π\pi^{-} production in Figs.7 is positive in the region zh<0.72z_{h}<0.72 and is negative in the region zh>0.72z_{h}>0.72. In conclusion, the Sivers asymmetries reached within the TMD factorization and evolution at the corresponding kinematics are basically consistent with the HERMES and COMPASS measurements.

IV Conclusion

In this paper, we study the single spin asymmetry AUTsin(ϕhϕS)A_{UT}^{\sin(\phi_{h}-\phi_{S})} of a single hadron production in SIDIS within the framework of TMD factorization up to NLL order of QCD. We work out the energy evolutions of the Qiu-Sterman function by taking the parametrization at an initial energy Q0Q_{0} and evolving it to another energy μb\mu_{b} through an approximation evolution kernel for the Qiu-Sterman function, including only the homogenous terms. Similarly, the timelike evolution of the unpolarized fragmentation function is also performed by QCDNUM. Then we reach the xBx_{B}-, zhz_{h}-, and PhP_{h\perp}-dependent Sivers asymmetries for the pion and kaon production at the kinematics of HERMES and COMPASS experiments, respectively. The results are compared with the corresponding HERMES and COMPASS measurements. It is found that most of the Sivers asymmetries reached are basically consistent with the HERMES and COMPASS measurements. However, there are still some reached Sivers asymmetries (e.g., in the three panel of Fig.7 ) that compare not so well with experimental data.

Acknowledgements.
Hao Sun is supported by the National Natural Science Foundation of China (Grant No. 11675033) and by the Fundamental Research Funds for the Central Universities (Grant No. DUT18LK27).

References

  • Adams et al. (1991a) D. L. Adams et al. (E581, E704), Phys. Lett. B261, 201 (1991a).
  • Adams et al. (1991b) D. L. Adams et al. (FNAL-E704), Phys. Lett. B264, 462 (1991b).
  • Arsene et al. (2008) I. Arsene et al. (BRAHMS), Phys. Rev. Lett. 101, 042001 (2008), eprint 0801.1078.
  • Ji et al. (2004) X.-d. Ji, J.-P. Ma, and F. Yuan, Phys. Lett. B597, 299 (2004), eprint hep-ph/0405085.
  • Ji et al. (2005) X.-d. Ji, J.-p. Ma, and F. Yuan, Phys. Rev. D71, 034005 (2005), eprint hep-ph/0404183.
  • Echevarria et al. (2012) M. G. Echevarria, A. Idilbi, and I. Scimemi, JHEP 07, 002 (2012), eprint 1111.4996.
  • Bacchetta et al. (2007) A. Bacchetta, M. Diehl, K. Goeke, A. Metz, P. J. Mulders, and M. Schlegel, JHEP 02, 093 (2007), eprint hep-ph/0611265.
  • Anselmino et al. (2003) M. Anselmino, U. D’Alesio, and F. Murgia, Phys. Rev. D67, 074010 (2003), eprint hep-ph/0210371.
  • Boer (1999) D. Boer, Phys. Rev. D60, 014012 (1999), eprint hep-ph/9902255.
  • Arnold et al. (2009) S. Arnold, A. Metz, and M. Schlegel, Phys. Rev. D79, 034005 (2009), eprint 0809.2262.
  • Boer et al. (1997) D. Boer, R. Jakob, and P. J. Mulders, Nucl. Phys. B504, 345 (1997), eprint hep-ph/9702281.
  • Anselmino et al. (2007) M. Anselmino, M. Boglione, U. D’Alesio, A. Kotzinian, F. Murgia, A. Prokudin, and C. Turk, Phys. Rev. D75, 054032 (2007), eprint hep-ph/0701006.
  • Efremov and Teryaev (1985) A. V. Efremov and O. V. Teryaev, Phys. Lett. 150B, 383 (1985).
  • Qiu and Sterman (1999) J.-w. Qiu and G. F. Sterman, Phys. Rev. D59, 014004 (1999), eprint hep-ph/9806356.
  • Kanazawa and Koike (2000) Y. Kanazawa and Y. Koike, Phys. Lett. B478, 121 (2000), eprint hep-ph/0001021.
  • Kouvaris et al. (2006) C. Kouvaris, J.-W. Qiu, W. Vogelsang, and F. Yuan, Phys. Rev. D74, 114013 (2006), eprint hep-ph/0609238.
  • Eguchi et al. (2007) H. Eguchi, Y. Koike, and K. Tanaka, Nucl. Phys. B763, 198 (2007), eprint hep-ph/0610314.
  • Kanazawa et al. (2014) K. Kanazawa, Y. Koike, A. Metz, and D. Pitonyak, Phys. Rev. D89, 111501 (2014), eprint 1404.1033.
  • Sivers (1990) D. W. Sivers, Phys. Rev. D41, 83 (1990).
  • Boer et al. (2003) D. Boer, P. J. Mulders, and F. Pijlman, Nucl. Phys. B667, 201 (2003), eprint hep-ph/0303034.
  • Airapetian et al. (2009) A. Airapetian et al. (HERMES), Phys. Rev. Lett. 103, 152002 (2009), eprint 0906.3918.
  • Qian et al. (2011) X. Qian et al. (Jefferson Lab Hall A), Phys. Rev. Lett. 107, 072003 (2011), eprint 1106.0363.
  • Alekseev et al. (2009) M. Alekseev et al. (COMPASS), Phys. Lett. B673, 127 (2009), eprint 0802.2160.
  • Adolph et al. (2012) C. Adolph et al. (COMPASS), Phys. Lett. B717, 383 (2012), eprint 1205.5122.
  • Adolph et al. (2015) C. Adolph et al. (COMPASS), Phys. Lett. B744, 250 (2015), eprint 1408.4405.
  • Wang and Lu (2018) X. Wang and Z. Lu, Phys. Rev. D97, 054005 (2018), eprint 1801.00660.
  • Echevarria et al. (2014) M. G. Echevarria, A. Idilbi, Z.-B. Kang, and I. Vitev, Phys. Rev. D89, 074013 (2014), eprint 1401.5078.
  • Collins and Soper (1981) J. C. Collins and D. E. Soper, Nucl. Phys. B193, 381 (1981), [Erratum: Nucl. Phys.B213,545(1983)].
  • Collins et al. (1985) J. C. Collins, D. E. Soper, and G. F. Sterman, Nucl. Phys. B250, 199 (1985).
  • Collins (2011) J. Collins, Camb. Monogr. Part. Phys. Nucl. Phys. Cosmol. 32, 1 (2011).
  • Collins and Hautmann (2000) J. C. Collins and F. Hautmann, Phys. Lett. B472, 129 (2000), eprint hep-ph/9908467.
  • Kang et al. (2011) Z.-B. Kang, B.-W. Xiao, and F. Yuan, Phys. Rev. Lett. 107, 152002 (2011), eprint 1106.0266.
  • Botje (2011) M. Botje, Comput. Phys. Commun. 182, 490 (2011), eprint 1005.1481.
  • Meng et al. (1992) R.-b. Meng, F. I. Olness, and D. E. Soper, Nucl. Phys. B371, 79 (1992).
  • Sun and Yuan (2013) P. Sun and F. Yuan, Phys. Rev. D88, 114012 (2013), eprint 1308.5003.
  • Bacchetta et al. (2004) A. Bacchetta, U. D’Alesio, M. Diehl, and C. A. Miller, Phys. Rev. D70, 117504 (2004), eprint hep-ph/0410050.
  • Kang et al. (2016) Z.-B. Kang, A. Prokudin, P. Sun, and F. Yuan, Phys. Rev. D93, 014009 (2016), eprint 1505.05589.
  • Sun et al. (2018) P. Sun, J. Isaacson, C. P. Yuan, and F. Yuan, Int. J. Mod. Phys. A33, 1841006 (2018), eprint 1406.3073.
  • Collins and Rogers (2015) J. Collins and T. Rogers, Phys. Rev. D91, 074020 (2015), eprint 1412.3820.
  • Aybat and Rogers (2011) S. M. Aybat and T. C. Rogers, Phys. Rev. D83, 114042 (2011), eprint 1101.5057.
  • Aybat et al. (2012) S. M. Aybat, J. C. Collins, J.-W. Qiu, and T. C. Rogers, Phys. Rev. D85, 034043 (2012), eprint 1110.6428.
  • Echevarria et al. (2013) M. G. Echevarria, A. Idilbi, A. Schäfer, and I. Scimemi, Eur. Phys. J. C73, 2636 (2013), eprint 1208.1281.
  • Bacchetta and Prokudin (2013) A. Bacchetta and A. Prokudin, Nucl. Phys. B875, 536 (2013), eprint 1303.2129.
  • Nadolsky et al. (2000) P. M. Nadolsky, D. R. Stump, and C. P. Yuan, Phys. Rev. D61, 014003 (2000), [Erratum: Phys. Rev.D64,059903(2001)], eprint hep-ph/9906280.
  • Koike et al. (2006) Y. Koike, J. Nagashima, and W. Vogelsang, Nucl. Phys. B744, 59 (2006), eprint hep-ph/0602188.
  • Lai et al. (2010) H.-L. Lai, M. Guzzi, J. Huston, Z. Li, P. M. Nadolsky, J. Pumplin, and C. P. Yuan, Phys. Rev. D82, 074024 (2010), eprint 1007.2241.
  • de Florian et al. (2015) D. de Florian, R. Sassot, M. Epele, R. J. Hernández-Pinto, and M. Stratmann, Phys. Rev. D91, 014035 (2015), eprint 1410.6027.
  • de Florian et al. (2017) D. de Florian, M. Epele, R. J. Hernandez-Pinto, R. Sassot, and M. Stratmann, Phys. Rev. D95, 094019 (2017), eprint 1702.06353.
  • Kang and Qiu (2009) Z.-B. Kang and J.-W. Qiu, Phys. Rev. D79, 016003 (2009), eprint 0811.3101.
  • Kang and Qiu (2012) Z.-B. Kang and J.-W. Qiu, Phys. Lett. B713, 273 (2012), eprint 1205.1019.
  • Zhou et al. (2009) J. Zhou, F. Yuan, and Z.-T. Liang, Phys. Rev. D79, 114022 (2009), eprint 0812.4484.