This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Transvections and Hecke algebras

Persi Diaconis  email:[email protected]   
Arun Ram    email: [email protected]      
Mackenzie Simper email: [email protected]    

Abstract

We set up the double coset walk corresponding to the transvection class for GLn(|FFq)GL_{n}(|FF_{q}).

Key words— ???????? 111AMS Subject Classifications: Primary ???; Secondary ???.

0 Introduction

1 Persi’s 26 July note

(1) Let G=GLn(𝔽q)G=GL_{n}(\mathbb{F}_{q}). Let a,v𝔽qna,v\in\mathbb{F}^{n}_{q} (I think of them as column vectors). Have atv=0a^{t}v=0. These determine a transvection

T=TavSLn(q)asT=I+vatorT(x)=x+v(atx).T=T_{av}\in SL_{n}(q)\qquad\hbox{as}\qquad T=I+va^{t}\quad\hbox{or}\quad T(x)=x+v(a^{t}x).

Thus you add a multiple of vv to xx. If you multiply vv by θ\theta and divide aa by θ\theta that doesn’t change TT so lets agree that v0v\neq 0 and the last nonzero coordinate of vv is a 11. Since the case a=0a=0 is the identity lets exclude that too.

(2) A flag C=(C1,,Cn)C=(C_{1},\dots,C_{n}) is a chain of subspaces with dim(Ci)=i\mathrm{dim}(C_{i})=i. Of course C1C2Cn=𝔽qnC_{1}\subseteq C_{2}\subseteq\cdots\subseteq C_{n}=\mathbb{F}^{n}_{q}. The distance between two flags CC and DD is a permutation π=πCDSn\pi=\pi_{CD}\in S_{n} defined as follows

π(i)=j,if j is smallest with Di1+CjDi.\pi(i)=j,\qquad\hbox{if $j$ is smallest with $D_{i-1}+C_{j}\supseteq D_{i}$.}

Its not obvious but π\pi is a permutation and the map

GLnSngπC0gC0is a bijection from B\G/BSn\begin{matrix}GL_{n}&\to&S_{n}\\ g&\mapsto&\pi_{C_{0}gC_{0}}\end{matrix}\qquad\hbox{is a bijection from $B\backslash G/B\to S_{n}$}

with inverse given by σ=BσB\sigma=B\sigma B. All of this is in Abel’s paper on the Jordan-Holder permutation.

(3) Example. Lets fix vv with vn0v_{n}\neq 0 and aa with ai0a_{i}\neq 0 for any ii. Let CC be the standard flag (Ci=e1,e2,,eiC_{i}=\langle e_{1},e_{2},\ldots,e_{i}\rangle). Let

D=Tav(C).D=T_{av}(C).

I claim πCD=(1,n)\pi_{CD}=(1,n).

Proof.

What is π(i)\pi(i)? We need the smallest jj so that D0+CjDD_{0}+C_{j}\supseteq D. Well D0=0D_{0}=0 and D1=T(e1)=e1+va1D_{1}=T(e_{1})=e_{1}+va_{1}. The smallest jj with Cje1+va1C_{j}\supseteq e_{1}+va_{1} is j=nj=n so π(1)=n\pi(1)=n.

What is π(2)\pi(2)? We need D1+CjD2D_{1}+C_{j}\supseteq D_{2}. That is

e1+va1,CjC1+va1,C2+va2.\langle e_{1}+va_{1},C_{j}\rangle\supseteq\langle C_{1}+va_{1},C_{2}+va_{2}\rangle.

Clearly j=2j=2 does the job (from e1+va1e_{1}+va_{1} and C1C_{1} get vv and so e1+va1,e2+va2]\langle e_{1}+va_{1},e_{2}+va_{2}]\rangle.

Similarly π(i)=i\pi(i)=i for 2in12\leq i\leq n-1.

Finally, what about π(n)\pi(n)? Need Dn1+CjDnD_{n-1}+C_{j}\supseteq D_{n}. But Dn1=e1+va1,,en1+van1D_{n-1}=\langle e_{1}+va_{1},\ldots,e_{n-1}+va_{n-1}\rangle. With e1e_{1} get vv and so all of DnD_{n}. ∎

(4)

Proposition 1.1.

Let a,va,v have vj=1v_{j}=1 and vk=0v_{k}=0 for kjk\neq j and a1=a2=ai1=0a_{1}=a_{2}=\cdots a_{i-1}=0 and ai0a_{i}\neq 0. Then, with CC the standard flag and D=Tav(C)D=T_{av}(C),

πCD=(i,j).\pi_{CD}=(i,j).
Proof.

For k<ik<i, ak=0a_{k}=0, so T(ek)=ekT(e_{k})=e_{k} so π(k)=k\pi(k)=k. What is π(i)\pi(i)? We need e1,,ei1+CkDi=e1,,ei1,ei+vei\langle e_{1},\ldots,e_{i-1}+C_{k}\rangle\supseteq D_{i}=\langle e_{1},\ldots,e_{i-1},e_{i}+ve_{i}\rangle. Since vCjv\in C_{j} (and no smaller jj will do) then π(i)=j\pi(i)=j.

What is π(i+1)\pi(i+1)? Need Di+CkDi+1D_{i}+C_{k}\supseteq D_{i+1}. The LHS is

e1,e2,,ei1,ei+vai,Ck.\langle e_{1},e_{2},\ldots,e_{i-1},e_{i}+va_{i},C_{k}\rangle.

The RHS is

e1,e2,,ei1,ei+vai,ei+1+vai+1.\langle e_{1},e_{2},\ldots,e_{i-1},e_{i}+va_{i},e_{i+1}+va_{i+1}\rangle.

We have vLHSv\in LHS and so k=i+1k=i+1.

Similarly π(k)=k\pi(k)=k for k<jk<j.

Lets do π(j)\pi(j). Need

e1,,ei1,ei+vai,,ej1+vaj,CkDj.\langle e_{1},\ldots,e_{i-1},e_{i}+va_{i},\ldots,e_{j-1}+va_{j},C_{k}\rangle\supseteq D_{j}.

Clearly k=ik=i does the job (vCjv\in C_{j}).

For k>jk>j, π(k)=k\pi(k)=k. ∎

(5) It’s important to note that TavT_{av} can give the identity. This will happen if say vj=1v_{j}=1 has all vk=0v_{k}=0 for k>jk>j if and only if ai=0a_{i}=0 for 1ij11\leq i\leq j-1.

Proof.

    π(1)=1\pi(1)=1 needs C1e1+va1C_{1}\supseteq e_{1}+va_{1}, eg a1=0a_{1}=0, π(2)=2\pi(2)=2 needs C2e1,e2+va2C_{2}\supseteq\langle e_{1},e_{2}+va_{2}, eg a2=0a_{2}=0, (for j>2j>2) \vdots π(j)=j\pi(j)=j needs Cj1+Cjej1+vajC_{j-1}+C_{j}\supseteq\langle e_{j-1}+va_{j}. This holds for all aa. Similarly, π(k)=k\pi(k)=k for all kk. ∎

(6) I think that the same thing holds for any flag FF and T(F)T(F), πF,T(F)\pi_{F,T(F)} can only be the identity or a transposition!

2 parsing Persi’s note

Let u=u(21n)=x12(1)u=u_{(21^{n})}=x_{12}(1). For y=(y1,,yn)ny=(y_{1},\ldots,y_{n})\in\mathbb{C}^{n} let y2y_{2} denote the second entry of yy. Then

uy=x12(1)y=y+y2e1uy=x_{12}(1)y=y+y_{2}e_{1}

since x12(1)x_{12}(1) adds the second entry of yy to the first entry and leaves all other entries of yy the same.

Let gGLn()g\in GL_{n}(\mathbb{C}) so that gug1gug^{-1} is in the same conjugacy class as uu. Then

gug1x=g(g1x+(g1x)2e1)=x+(g1x)2ge1.gug^{-1}x=g(g^{-1}x+(g^{-1}x)_{2}e_{1})=x+(g^{-1}x)_{2}ge_{1}.

So let v=ge1v=ge_{1}. We want to say atx=((g1)tx)2a^{t}x=((g^{-1})^{t}x)_{2}. This is ok since

(g1x)2=e2,g1x=(g1)te2,x=a,x=atx,(g^{-1}x)_{2}=\langle e_{2},g^{-1}x\rangle=\langle(g^{-1})^{t}e_{2},x\rangle=\langle a,x\rangle=a^{t}x,

provided a=(g1)te2a=(g^{-1})^{t}e_{2}. In other words, aa is the second column of (g1)t(g^{-1})^{t}. So letting vv be the first column of gg and aa the second column of (g1)t(g^{-1})^{t} then atat is the second row of g1g^{-1} and so

atv=0.a^{t}v=0.

Probably there are no other restrictions on aa and vv other than they be nonzero.

3 Character computation for the coefficient of TγμT_{\gamma_{\mu}} in DD

3.1 Symmetric functions

For λ=(λ1,,λn)0n\lambda=(\lambda_{1},\ldots,\lambda_{n})\in\mathbb{Z}_{\geq 0}^{n} with λ1λn0\lambda_{1}\geq\cdots\geq\lambda_{n}\geq 0 define the Hall-Littlewood polynomial by

Pλ=Pλ(x;0,t)=1vλ(t)wSnw(x1λ1xnλn1i<jnxitxjxixj)P_{\lambda}=P_{\lambda}(x;0,t)=\frac{1}{v_{\lambda}(t)}\sum_{w\in S_{n}}w\Big{(}x_{1}^{\lambda_{1}}\cdots x_{n}^{\lambda_{n}}\prod_{1\leq i<j\leq n}\frac{x_{i}-tx_{j}}{x_{i}-x_{j}}\Big{)}

where vλ(t)v_{\lambda}(t) is the normalization that make the coefficient of xλx^{\lambda} in PλP_{\lambda} equal to 11. For λ=(1m12m2)\lambda=(1^{m_{1}}2^{m_{2}}\ldots) define

Qλ=bλ(t)Pλwherebλ(t)=i=1φmi(t)withφm(t)=(1t)(1t2)(1tm).Q_{\lambda}=b_{\lambda}(t)P_{\lambda}\qquad\hbox{where}\qquad b_{\lambda}(t)=\prod_{i=1}^{\ell}\varphi_{m_{i}}(t)\quad\hbox{with}\quad\varphi_{m}(t)=(1-t)(1-t^{2})\cdots(1-t^{m}).

The monomial symmetric functions mλm_{\lambda} and the Schur functions sλs_{\lambda} are given by

mλ=Pλ(x;0,1)andsλ=Pλ(x;0,0),m_{\lambda}=P_{\lambda}(x;0,1)\qquad\hbox{and}\qquad s_{\lambda}=P_{\lambda}(x;0,0),

the evaluations of PλP_{\lambda} at t=1t=1 and t=0t=0, respectively. For r0r\in\mathbb{Z}_{\geq 0} define qrq_{r} by the generating function

r0qrzr=i=1n1txiz1xizand defineqν=qμ1qμn,for ν=(ν1,,νn)0n.\sum_{r\in\mathbb{Z}_{\geq 0}}q_{r}z^{r}=\prod_{i=1}^{n}\frac{1-tx_{i}z}{1-x_{i}z}\qquad\hbox{and define}\qquad q_{\nu}=q_{\mu_{1}}\cdots q_{\mu_{n}},\qquad\hbox{for $\nu=(\nu_{1},\ldots,\nu_{n})\in\mathbb{Z}_{\geq 0}^{n}$.}

The Big Schurs are defined by the n×nn\times n determinant (see [Mac, Ch. III (4.5)])

Sλ=Sλ(x;t)=det(qλii+j).S_{\lambda}=S_{\lambda}(x;t)=\det(q_{\lambda_{i}-i+j}).

Define aμν(t)a_{\mu\nu}(t), Kλμ(0,t)K_{\lambda\mu}(0,t) and Lνλ(t)L_{\nu\lambda}(t) by

Qμ(x;0,t)=νaμν(t)mνQμ(x;0,t)=λKλμ(0,t)Sλandqν(x;t)=λLνλ(t)sλ.Q_{\mu}(x;0,t)=\sum_{\nu}a_{\mu\nu}(t)m_{\nu}\qquad Q_{\mu}(x;0,t)=\sum_{\lambda}K_{\lambda\mu}(0,t)S_{\lambda}\qquad\hbox{and}\qquad q_{\nu}(x;t)=\sum_{\lambda}L_{\nu\lambda}(t)s_{\lambda}.

By [Mac, (4,8) and (4.10)], qν,mμ0,t=δνμ\langle q_{\nu},m_{\mu}\rangle_{0,t}=\delta_{\nu\mu} and sλ,Sμ=δλμ\langle s_{\lambda},S_{\mu}\rangle=\delta_{\lambda\mu} in the inner product ,0,t\langle,\rangle_{0,t} of [Mac, Ch. III] so that

Lνλ(t)=qν,Sλwhich givesSλ=νLνλ(t)mν.L_{\nu\lambda}(t)=\langle q_{\nu},S_{\lambda}\rangle\qquad\hbox{which gives}\qquad S_{\lambda}=\sum_{\nu}L_{\nu\lambda}(t)m_{\nu}.

Thus

Qμ=ν(λKλμ(0,t)Lνλ(t))mν.Q_{\mu}=\sum_{\nu}\Big{(}\sum_{\lambda}K_{\lambda\mu}(0,t)L_{\nu\lambda}(t)\Big{)}m_{\nu}.

We have

s(1n)\displaystyle s_{(1^{n})} =m(1n)=P(1n)and\displaystyle=m_{(1^{n})}=P_{(1^{n})}\qquad\hbox{and}
s(21n)\displaystyle s_{(21^{n})} =P(21n)+(t+t2++tn1)P(1n)=m(21n)+(n1)m(1n)\displaystyle=P_{(21^{n})}+(t+t^{2}+\cdots+t^{n-1})P_{(1^{n})}=m_{(21^{n})}+(n-1)m_{(1^{n})}

giving

P(1n)=m(1n)andP(21n2)=m(21n2)+((n1)(t+t2++tn1))m(1n).P_{(1^{n})}=m_{(1^{n})}\qquad\hbox{and}\qquad P_{(21^{n-2})}=m_{(21^{n-2})}+((n-1)-(t+t^{2}+\cdots+t^{n-1}))m_{(1^{n})}.

Thus

Q(1n)\displaystyle Q_{(1^{n})} =b(1n)(t)m(1n)and\displaystyle=b_{(1^{n})}(t)m_{(1^{n})}\qquad\hbox{and}
Q(21n2)\displaystyle Q_{(21^{n-2})} =b(21n2)(t)(m(21n2])+((n1)(t+t2++tn1))m(1n)),\displaystyle=b_{(21^{n-2})}(t)\big{(}m_{(21^{n-2}])}+((n-1)-(t+t^{2}+\cdots+t^{n-1}))m_{(1^{n})}\big{)},

and so a(21n2)ν(t)=b(21n2)(t)a~(21n2)νa_{(21^{n-2})\nu}(t)=b_{(21^{n-2})}(t)\tilde{a}_{(21^{n-2})\nu}, where

a~(21n2)ν(t)=λKλμ(0,t)Lνλ(t)={1,if ν=(21n2),(n1)(t+t2++tn1),if ν=(1n),0,otherwise.\tilde{a}_{(21^{n-2})\nu}(t)=\sum_{\lambda}K_{\lambda\mu}(0,t)L_{\nu\lambda}(t)=\begin{cases}1,&\hbox{if $\nu=(21^{n-2})$,}\\ (n-1)-(t+t^{2}+\cdots+t^{n-1}),&\hbox{if $\nu=(1^{n})$,}\\ 0,&\hbox{otherwise.}\end{cases} (3.1)

3.2 A character computation

Let 𝔽q\mathbb{F}_{q} be the finite field with qq elements, G=GLn(𝔽q)G=GL_{n}(\mathbb{F}_{q}) the group of n×nn\times n invertible matrices with entries in 𝔽\mathbb{F} and let BB be the subgroup of upper triangular matrices. Then

Card(B)\displaystyle\mathrm{Card}(B) =(q1)nq12n(n1)and\displaystyle=(q-1)^{n}q^{\frac{1}{2}n(n-1)}\quad\hbox{and}
Card(G)\displaystyle\mathrm{Card}(G) =(qn1)(qnq)(qnqn1)=q12n(n1)(q1)(q21)(qn1)\displaystyle=(q^{n}-1)(q^{n}-q)\cdots(q^{n}-q^{n-1})=q^{\frac{1}{2}n(n-1)}(q-1)(q^{2}-1)\cdots(q^{n}-1)

By [Mac, Ch. II (1.6) and Ch. IV (2.7)],

Card(ZG(u(21n2)))\displaystyle\mathrm{Card}(Z_{G}(u_{(21^{n-2})})) =q|(21n2)|+2n(21n2)(1q1)(1q1)(1q2)(1q(n2))\displaystyle=q^{|(21^{n-2})|+2n(21^{n-2})}(1-q^{-1})\cdot(1-q^{-1})(1-q^{-2})\cdots(1-q^{-(n-2)})
=qn+(n1)(n2)q112(n1)(n2)(q1)2(q21)(q31)(qn21)\displaystyle=q^{n+(n-1)(n-2)}q^{-1-\frac{1}{2}(n-1)(n-2)}(q-1)^{2}(q^{2}-1)(q^{3}-1)\cdots(q^{n-2}-1)
=qn1+12(n1)(n2)(q1)2(q21)(q31)(qn21)\displaystyle=q^{n-1+\frac{1}{2}(n-1)(n-2)}(q-1)^{2}(q^{2}-1)(q^{3}-1)\cdots(q^{n-2}-1)
=q12n(n1)(q1)2(q21)(q31)(qn21),\displaystyle=q^{\frac{1}{2}n(n-1)}(q-1)^{2}(q^{2}-1)(q^{3}-1)\cdots(q^{n-2}-1),

so that

Card(𝒞)=Card(G)|ZG(u(21n2))|=(qn11)(qn1)(q1)=(qn11)(qn1)(q1).\mathrm{Card}(\mathcal{C})=\frac{\mathrm{Card}(G)}{|Z_{G}(u_{(21^{n-2})})|}=\frac{(q^{n-1}-1)(q^{n}-1)}{(q-1)}=\frac{(q^{n-1}-1)(q^{n}-1)}{(q-1)}.

and

|B||ZG(u(21n1))|=(q1)[n2]!,where[n2]!=(1q)(1qn2)(1q)n2.\frac{|B|}{|Z_{G}(u_{(21^{n-1})})|}=\frac{(q-1)}{[n-2]!},\qquad\hbox{where}\quad[n-2]!=\frac{(1-q)\cdots(1-q^{n-2})}{(1-q)^{n-2}}.

Let 𝟏BG=IndBG(triv)\mathbf{1}_{B}^{G}=\mathrm{Ind}_{B}^{G}(triv) be the representation of GG obtained by inducing the trivial representation from BB to GG. The Hecke algebra is H=EndG(𝟏BG)H=\mathrm{End}_{G}(\mathbf{1}_{B}^{G}). The algebra HH has basis {Tw|wSn}\{T_{w}\ |\ w\in S_{n}\} with multiplication determined by

TskTw={(q1)Tw+qTskw,if (skw)<(w),Tskw,if (skw)>(w).T_{s_{k}}T_{w}=\begin{cases}(q-1)T_{w}+qT_{s_{k}w},&\hbox{if $\ell(s_{k}w)<\ell(w)$,}\\ T_{s_{k}w},&\hbox{if $\ell(s_{k}w)>\ell(w)$.}\end{cases}

As a (G,H)(G,H)-bimodule,

𝟏BGλGλHλ,\mathbf{1}_{B}^{G}\cong\bigoplus_{\lambda}G^{\lambda}\otimes H^{\lambda},

where the sum is over partitions of nn, GλG^{\lambda} is the irreducible GG-module indexed by λ\lambda and HλH^{\lambda} is the irreducible HH-module indexed by λ\lambda.

Let 𝒞\mathcal{C} be the conjugacy class of transvections in G=GLn(𝔽q)G=GL_{n}(\mathbb{F}_{q}). A favorite representative of 𝒞\mathcal{C} is u(21n2)=I+E12u_{(21^{n-2})}=I+E_{12}, where II denotes the identity matrix and E12E_{12} is the matrix with 11 in the (1,2)(1,2) entry and 0 elsewhere. Let

C=g𝒞g,an element of Z([G]),C=\sum_{g\in\mathcal{C}}g,\qquad\quad\hbox{an element of $Z(\mathbb{C}[G])$,}

where Z(G)Z(\mathbb{C}G) denotes the center of the group algebra of GG. The element CC acts on 𝟏BG\mathbf{1}_{B}^{G} by

λχGλ(C)χGλ(1)idGλHλ,\sum_{\lambda}\frac{\chi^{\lambda}_{G}(C)}{\chi^{\lambda}_{G}(1)}\cdot\mathrm{id}_{G^{\lambda}\otimes H^{\lambda}}\ ,

where idGλHλ\mathrm{id}_{G^{\lambda}\otimes H^{\lambda}} is the operator that acts by the identity on the component GλHλG^{\lambda}\otimes H^{\lambda} and by 0 on GμHμG^{\mu}\otimes H^{\mu} for μλ\mu\neq\lambda.

Let zλz_{\lambda} be the element of HH that acts on HλH^{\lambda} by the identity and by 0 on HμH^{\mu} for μλ\mu\neq\lambda. Let DHD\in H be given by

D=λχGλ(C)χGλ(1)zλ,so that D acts on 𝟏BG the same way that C does.D=\sum_{\lambda}\frac{\chi^{\lambda}_{G}(C)}{\chi^{\lambda}_{G}(1)}z_{\lambda},\qquad\hbox{so that $D$ acts on $\mathbf{1}_{B}^{G}$ the same way that $C$ does.}

Use cycle notation for permutations in SnS_{n} so that (i,j)(i,j) denotes the transposition in SnS_{n} that switches ii and jj.

D(21n2)=i<jq(n1)(ji)T(i,j).D_{(21^{n-2})}=\sum_{i<j}q^{(n-1)-(j-i)}T_{(i,j)}.

Note that at q=1q=1 this specializes to the sum of the transpositions in the group algebra of the symmetric group. Use cycle notation for permutations. Then

Tsk(T(k,j)+qT(k+1,j))=qT(k,k+1,j)+q(q1)T(k,j)+qT(k+1,k,j)=(T(k,j)+qT(k+1,j))Tsk,if k+1<j,T_{s_{k}}(T_{(k,j)}+qT_{(k+1,j)})=qT_{(k,k+1,j)}+q(q-1)T_{(k,j)}+qT_{(k+1,k,j)}=(T_{(k,j)}+qT_{(k+1,j)})T_{s_{k}},\qquad\hbox{if $k+1<j$,}
Tsk(qT(i,k)+T(i,k+1))=qT(i,k,k+1)+q(q1)T(i,k+1)+qT(i,k+1,k)=(qT(i,k)+T(i,k+1))Tsk,if i<k,T_{s_{k}}(qT_{(i,k)}+T_{(i,k+1)})=qT_{(i,k,k+1)}+q(q-1)T_{(i,k+1)}+qT_{(i,k+1,k)}=(qT_{(i,k)}+T_{(i,k+1)})T_{s_{k}},\qquad\hbox{if $i<k$,}

and TskT(k,k+1)=T(k,k+1)TskT_{s_{k}}T_{(k,k+1)}=T_{(k,k+1)}T_{s_{k}} so that

if k{1,,n1}k\in\{1,\ldots,n-1\} then TskD(21n2)=D(21n2)TskT_{s_{k}}D_{(21^{n-2})}=D_{(21^{n-2})}T_{s_{k}}.

So D(21n2)Z(H)D_{(21^{n-2})}\in Z(H).

Theorem 3.1.

Assume n2n\geq 2. Then

D=(n1)qn1[n1]+(q1)D(21n2).D=(n-1)q^{n-1}-[n-1]+(q-1)D_{(21^{n-2})}.
Proof.

In terms of the favorite basis {Tw|wSn}\{T_{w}\ |\ w\in S_{n}\} of HH, the element zλz_{\lambda} is given by (see [CR81, (68.29)] or [HLR, (1.6)])

zλ=1|G/B|wSnχGλ(1)q(w)χHλ(Tw1)Tw.z_{\lambda}=\frac{1}{|G/B|}\sum_{w\in S_{n}}\chi^{\lambda}_{G}(1)q^{-\ell(w)}\chi^{\lambda}_{H}(T_{w^{-1}})T_{w}.

Thus, the expansion of DD in terms of the basis {Tw|wSn}\{T_{w}\ |\ w\in S_{n}\} of HH is

D\displaystyle D =1|G/B|λwSnχGλ(C)χGλ(1)χGλ(1)q(w)χHλ(Tw1)Tw\displaystyle=\frac{1}{|G/B|}\sum_{\lambda}\sum_{w\in S_{n}}\frac{\chi^{\lambda}_{G}(C)}{\chi^{\lambda}_{G}(1)}\chi^{\lambda}_{G}(1)q^{-\ell(w)}\chi^{\lambda}_{H}(T_{w^{-1}})T_{w}
=|B||G|wSn(λχGλ(C)χHλ(Tw1))q(w)Tw\displaystyle=\frac{|B|}{|G|}\sum_{w\in S_{n}}\Big{(}\sum_{\lambda}\chi^{\lambda}_{G}(C)\chi^{\lambda}_{H}(T_{w^{-1}})\Big{)}q^{-\ell(w)}T_{w}
=|B||G|Card(𝒞)wSn(λχGλ(u21n2)χHλ(Tw1))q(w)Tw\displaystyle=\frac{|B|}{|G|}\mathrm{Card}(\mathcal{C})\sum_{w\in S_{n}}\Big{(}\sum_{\lambda}\chi^{\lambda}_{G}(u_{21^{n-2}})\chi^{\lambda}_{H}(T_{w^{-1}})\Big{)}q^{-\ell(w)}T_{w}
=|B||ZG(u(21n1))|wSn(λχGλ(u21n2)χHλ(Tw1))q(w)Tw.\displaystyle=\frac{|B|}{|Z_{G}(u_{(21^{n-1})})|}\sum_{w\in S_{n}}\Big{(}\sum_{\lambda}\chi^{\lambda}_{G}(u_{21^{n-2}})\chi^{\lambda}_{H}(T_{w^{-1}})\Big{)}q^{-\ell(w)}T_{w}. (3.2)

For a partition ν\nu let γν\gamma_{\nu} be the favorite permutation of cycle type ν\nu (a minimal length permutation which has cycle type ν\nu). By [Ra91, Th. 4.14],

qn(q1)(ν)qν(0;q1)=λχHλ(Tγν1)sλso thatχHλ(Tγν1)=qn(q1)(ν)Lνλ(q1),\frac{q^{n}}{(q-1)^{\ell(\nu)}}q_{\nu}(0;q^{-1})=\sum_{\lambda}\chi^{\lambda}_{H}(T_{\gamma_{\nu}^{-1}})s_{\lambda}\qquad\hbox{so that}\qquad\chi^{\lambda}_{H}(T_{\gamma_{\nu}^{-1}})=\frac{q^{n}}{(q-1)^{\ell(\nu)}}L_{\nu\lambda}(q^{-1}),

since ν\nu is a partition of nn. By [HR99, Theorem 4.9(c)],

χGλ(uμ)=qn(μ)Kλμ(0,q1)\chi^{\lambda}_{G}(u_{\mu})=q^{n(\mu)}K_{\lambda\mu}(0,q^{-1})

Thus

λ\displaystyle\sum_{\lambda} χGλ(u21n2)χHλ(Tγν1)=λqn(21n2)Kλ(21n2)(0,q1)qn(q1)(ν)Lνλ(q1)\displaystyle\chi^{\lambda}_{G}(u_{21^{n-2}})\chi^{\lambda}_{H}(T_{\gamma_{\nu}^{-1}})=\sum_{\lambda}q^{n(21^{n-2})}K_{\lambda(21^{n-2})}(0,q^{-1})\frac{q^{n}}{(q-1)^{\ell(\nu)}}L_{\nu\lambda}(q^{-1})
=λq12(n1)(n2)+n(q1)(ν)Kλ(21n2)(0,q1)Lνλ(q1)=q12(n1)(n2)+n(q1)(ν)a(21n2)ν(q1).\displaystyle=\sum_{\lambda}\frac{q^{\frac{1}{2}(n-1)(n-2)+n}}{(q-1)^{\ell(\nu)}}K_{\lambda(21^{n-2})}(0,q^{-1})L_{\nu\lambda}(q^{-1})=\frac{q^{\frac{1}{2}(n-1)(n-2)+n}}{(q-1)^{\ell(\nu)}}a_{(21^{n-2})\nu}(q^{-1}).

Plugging this into (3.2), the coefficient of TγνT_{\gamma_{\nu}} in DD is

|B||ZG(u(21n1))|q12(n1)(n2)+n(q1)(ν)\displaystyle\frac{|B|}{|Z_{G}(u_{(21^{n-1})})|}\frac{q^{\frac{1}{2}(n-1)(n-2)+n}}{(q-1)^{\ell(\nu)}} a(21n2)ν(q1)q(γν)=(q1)[n2]!q12(n1)(n2)+n(q1)(ν)a(21n2)ν(q1)q(|ν|(ν))\displaystyle a_{(21^{n-2})\nu}(q^{-1})q^{-\ell(\gamma_{\nu})}=\frac{(q-1)}{[n-2]!}\frac{q^{\frac{1}{2}(n-1)(n-2)+n}}{(q-1)^{\ell(\nu)}}a_{(21^{n-2})\nu}(q^{-1})q^{-(|\nu|-\ell(\nu))}
=q12(n1)(n2)(q1)[n2]!q(ν)(q1)(ν)a(21n2)ν(q1)\displaystyle=\frac{q^{\frac{1}{2}(n-1)(n-2)}(q-1)}{[n-2]!}\frac{q^{\ell(\nu)}}{(q-1)^{\ell(\nu)}}a_{(21^{n-2})\nu}(q^{-1})

Now use (3.1),

b(21n2)(q1)=(1q1)(1q1)(1q(n2))=q112(n1)(n2)(q1)n1[n2]!,b_{(21^{n-2})}(q^{-1})=(1-q^{-1})(1-q^{-1})\cdots(1-q^{-(n-2)})=q^{-1-\frac{1}{2}(n-1)(n-2)}(q-1)^{n-1}[n-2]!,

and

a~(21n2)ν(q1)={1,if ν=(21n2),(n1)q1n(qn11)q1,if ν=(1n),0,otherwise,\tilde{a}_{(21^{n-2})\nu}(q^{-1})=\begin{cases}1,&\hbox{if $\nu=(21^{n-2})$,}\\ \displaystyle{(n-1)-q^{1-n}\frac{(q^{n-1}-1)}{q-1},}&\hbox{if $\nu=(1^{n})$},\\ 0,&\hbox{otherwise},\end{cases}

to get that the coefficient of TγνT_{\gamma_{\nu}} in DD is

(q1)[n2]!\displaystyle\frac{(q-1)}{[n-2]!} q12(n1)(n2)q(ν)(q1)(ν)q112(n1)(n2)(q1)n1[n2]!a~(21n2)ν(q1)\displaystyle q^{\frac{1}{2}(n-1)(n-2)}\frac{q^{\ell(\nu)}}{(q-1)^{\ell(\nu)}}q^{-1-\frac{1}{2}(n-1)(n-2)}(q-1)^{n-1}[n-2]!\cdot\tilde{a}_{(21^{n-2})\nu}(q^{-1})
=(q1)n(ν)q(ν)1a~(21n2)ν(q1)={(q1)qn2,if ν=(21n2),(n1)qn1[n1],if ν=(1n),0,otherwise,\displaystyle=(q-1)^{n-\ell(\nu)}q^{\ell(\nu)-1}\tilde{a}_{(21^{n-2})\nu}(q^{-1})=\begin{cases}(q-1)q^{n-2},&\hbox{if $\nu=(21^{n-2})$,}\\ \displaystyle{(n-1)q^{n-1}-[n-1],}&\hbox{if $\nu=(1^{n})$},\\ 0,&\hbox{otherwise},\end{cases}

Since a~(21n2)ν(q1)\tilde{a}_{(21^{n-2})\nu}(q^{-1}) is 0 unless ν=(1n)\nu=(1^{n}) or ν=(21n)\nu=(21^{n}) and since the coefficient of Tγ(21n2)=Ts1T_{\gamma_{(21^{n-2})}}=T_{s_{1}} in D(21n2)D_{(21^{n-2})} is qn2q^{n-2} then it follows from [Fr99, (2.2) Main Theorem] that

D=(n1)qn1[n1]+(q1)D(21n2).D=(n-1)q^{n-1}-[n-1]+(q-1)D_{(21^{n-2})}.

The following corollary provides the connection to [Ra97, (3.16),(3.18),(3.20)] and [DR00, Proposition 4.9].

Corollary 3.2.

Let M1=1M_{1}=1 and let Mk=Tsk1Ts2Ts1Ts1Ts2Tsk1M_{k}=T_{s_{k-1}}\cdots T_{s_{2}}T_{s_{1}}T_{s_{1}}T_{s_{2}}\cdots T_{s_{k-1}}, for k{2,,n}k\in\{2,\ldots,n\}. Then

D=k=1nqnk(Mk1).D=\sum_{k=1}^{n}q^{n-k}(M_{k}-1).
Proof.

Using that Mk=Tsk1Mk1Tsk1M_{k}=T_{s_{k-1}}M_{k-1}T_{s_{k-1}}, check, by induction, that

Mk=qk1+(q1)j=1k1qj1T(j,k).M_{k}=q^{k-1}+(q-1)\sum_{j=1}^{k-1}q^{j-1}T_{(j,k)}.

Thus

k=1nqnk(Mk1)\displaystyle\sum_{k=1}^{n}q^{n-k}(M_{k}-1) =0+k=2n(qnk+(k1)qnk+(q1)j=1k1qnk+j1T(j,k))\displaystyle=0+\sum_{k=2}^{n}\big{(}q^{n-k+(k-1)}-q^{n-k}+(q-1)\sum_{j=1}^{k-1}q^{n-k+j-1}T_{(j,k)}\big{)}
=(n1)qn1[n1]+(q1)D(21n2)=D.\displaystyle=(n-1)q^{n-1}-[n-1]+(q-1)D_{(21^{n-2})}=D.

3.3 The example for n=2n=2

If n=2n=2 then H=span{1,Ts1}H=\hbox{span}\{1,T_{s_{1}}\} with (1+Ts1)(qTs1)=0(1+T_{s_{1}})(q-T_{s_{1}})=0 and

z(2)=11+q(1+Ts1)andz(12)=q1+q(1q1Ts1).z_{(2)}=\frac{1}{1+q}(1+T_{s_{1}})\qquad\hbox{and}\qquad z_{(1^{2})}=\frac{q}{1+q}(1-q^{-1}T_{s_{1}}).

In this case Z(H)=HZ(H)=H and D(2)=T(1,2)=Ts1=qz(2)z(12).D_{(2)}=T_{(1,2)}=T_{s_{1}}=qz_{(2)}-z_{(1^{2})}.

So D(2)=Ts1D_{(2)}=T_{s_{1}} and HH has basis {1,Ts1}\{1,T_{s_{1}}\} and

1D(2)=1Ts1=Ts1,Ts1D(2)=Ts1Ts1=(q1)Ts1+q,so that(0q1q1)\displaystyle\begin{array}[]{rl}1\cdot D_{(2)}&=1\cdot T_{s_{1}}=T_{s_{1}},\\ T_{s_{1}}\cdot D_{(2)}&=T_{s_{1}}\cdot T_{s_{1}}=(q-1)T_{s_{1}}+q,\end{array}\qquad\hbox{so that}\qquad\begin{pmatrix}0&q\\ 1&q-1\end{pmatrix}

is the matrix for multiplying by D(2)D_{(2)}. The character values are

χG(12)(u(12))=qn(12)K(12)(12)(0,q1)=q11=q,\displaystyle\chi^{(1^{2})}_{G}(u_{(1^{2})})=q^{n(1^{2})}K_{(1^{2})(1^{2})}(0,q^{-1})=q^{1}\cdot 1=q,
χG(12)(u(2))=qn(2)K(12)(2)(0,q1)=q00=0,\displaystyle\chi^{(1^{2})}_{G}(u_{(2)})=q^{n(2)}K_{(1^{2})(2)}(0,q^{-1})=q^{0}\cdot 0=0,
χG(2)(u(12))=qn(12)K(2)(12)(0,q1)=q1q1=1,\displaystyle\chi^{(2)}_{G}(u_{(1^{2})})=q^{n(1^{2})}K_{(2)(1^{2})}(0,q^{-1})=q^{1}\cdot q^{-1}=1,
χG(2)(u(2))=qn(2)K(2)(2)(0,q1)=q01=1,\displaystyle\chi^{(2)}_{G}(u_{(2)})=q^{n(2)}K_{(2)(2)}(0,q^{-1})=q^{0}\cdot 1=1,

giving that CC acts on 𝟏BG\mathbf{1}_{B}^{G} the same way as

D\displaystyle D =Card(𝒞)(χ(12)(u(2))χ(12)(u(12))z(12)+χ(2)(u(2))χ(2)(u(12))z(2))=Card(G)Card(ZG(u(2)))(0qz(12)+11z(2))\displaystyle=\mathrm{Card}(\mathcal{C})\Big{(}\frac{\chi^{(1^{2})}(u_{(2)})}{\chi^{(1^{2})}(u_{(1^{2})})}z_{(1^{2})}+\frac{\chi^{(2)}(u_{(2)})}{\chi^{(2)}(u_{(1^{2})})}z_{(2)}\Big{)}=\frac{\mathrm{Card}(G)}{\mathrm{Card}(Z_{G}(u_{(2)}))}\Big{(}\frac{0}{q}z_{(1^{2})}+\frac{1}{1}z_{(2)}\Big{)}
=(q21)(q2q)q2+0(1q1)z(2)=(q21)(q1)q1z(2)=(q21)11+q(1+Ts1)\displaystyle=\frac{(q^{2}-1)(q^{2}-q)}{q^{2+0}(1-q^{-1})}z_{(2)}=\frac{(q^{2}-1)(q-1)}{q-1}z_{(2)}=(q^{2}-1)\frac{1}{1+q}(1+T_{s_{1}})
=(q1)(1+D(2)).\displaystyle=(q-1)(1+D_{(2)}).

and the matrix for multiplying by DD in the basis {1,Ts1}\{1,T_{s_{1}}\} is

(q1)((1001)+(0q1q1))=(q1)(1q1q).(q-1)\left(\begin{pmatrix}1&0\\ 0&1\end{pmatrix}+\begin{pmatrix}0&q\\ 1&q-1\end{pmatrix}\right)=(q-1)\begin{pmatrix}1&q\\ 1&q\end{pmatrix}.

In this case |B|=(q1)2q|B|=(q-1)^{2}q and |ZG(u2)|=q(q1)|Z_{G}(u_{2})|=q(q-1) so that

|B||ZG(u2)|=(q1).\frac{|B|}{|Z_{G}(u_{2})|}=(q-1).

Then

χ(12)(Tγ(12))=χ(12)(1)=1,χ(12)(Tγ(2))=χ(12)(Ts1)=1,χ(2)(Tγ(12))=χ(2)(1)=1,χ(2)(Tγ(2))=χ(2)(Ts1)=q,\begin{array}[]{ll}\chi^{(1^{2})}(T_{\gamma_{(1^{2})}})=\chi^{(1^{2})}(1)=1,&\chi^{(1^{2})}(T_{\gamma_{(2)}})=\chi^{(1^{2})}(T_{s_{1}})=-1,\\ \chi^{(2)}(T_{\gamma_{(1^{2})}})=\chi^{(2)}(1)=1,&\chi^{(2)}(T_{\gamma_{(2)}})=\chi^{(2)}(T_{s_{1}})=q,\end{array}

so that

λχGλ(u2)χHλ(1)\displaystyle\sum_{\lambda}\chi^{\lambda}_{G}(u_{2})\chi^{\lambda}_{H}(1) =χG(2)(u2)χH(2)(Tγ(12))+χG(12)(u2)χH(12)(Tγ(12))=11+01=1,\displaystyle=\chi^{(2)}_{G}(u_{2})\chi^{(2)}_{H}(T_{\gamma_{(1^{2})}})+\chi^{(1^{2})}_{G}(u_{2})\chi^{(1^{2})}_{H}(T_{\gamma_{(1^{2})}})=1\cdot 1+0\cdot 1=1,
λχGλ(u2)χHλ(Ts1)\displaystyle\sum_{\lambda}\chi^{\lambda}_{G}(u_{2})\chi^{\lambda}_{H}(T_{s_{1}}) =χG(2)(u2)χH(2)(Tγ(2))+χG(12)(u2)χH(12)(Tγ(2))=1q+0(1)=q,\displaystyle=\chi^{(2)}_{G}(u_{2})\chi^{(2)}_{H}(T_{\gamma_{(2)}})+\chi^{(1^{2})}_{G}(u_{2})\chi^{(1^{2})}_{H}(T_{\gamma_{(2)}})=1\cdot q+0\cdot(-1)=q,

so that the coefficient of 11 in DD is (q1)1q(1)=(q1)11=(q1)(q-1)\cdot 1\cdot q^{\ell(1)}=(q-1)\cdot 1\cdot 1=(q-1) and the coefficient of Ts1T_{s_{1}} is (q1)qq(s1)=(q1)(q-1)\cdot q\cdot q^{-\ell(s_{1})}=(q-1). Thus

D=(q1)(1+Ts1).D=(q-1)(1+T_{s_{1}}).

For n=2n=2, Theorem 3.1 says that

D\displaystyle D =(q1)((q1)2q2a(2)(12)(q1)+(q1)1qD(2))=q2((q1)2(1q1)+(q1)D(2))\displaystyle=(q-1)\big{(}(q-1)^{-2}q^{2}a_{(2)(1^{2})}(q^{-1})+(q-1)^{-1}qD_{(2)}\big{)}=q^{-2}\big{(}(q-1)^{2}(1-q^{-1})+(q-1)D_{(2)}\big{)}

3.4 The example of n=3n=3

If n=3n=3 then H=span{1,Ts1,Ts2,Ts1s2,Ts2s1,Ts1s2s1}H=\mathrm{span}\{1,T_{s_{1}},T_{s_{2}},T_{s_{1}s_{2}},T_{s_{2}s_{1}},T_{s_{1}s_{2}s_{1}}\} with

(1+Ts1)(qTs1)=0,(1+Ts2)(qTs2)=0andTs1Ts2Ts1=Ts2Ts1Ts2.(1+T_{s_{1}})(q-T_{s_{1}})=0,\quad(1+T_{s_{2}})(q-T_{s_{2}})=0\quad\hbox{and}\quad T_{s_{1}}T_{s_{2}}T_{s_{1}}=T_{s_{2}}T_{s_{1}}T_{s_{2}}.

Then

z(3)\displaystyle z_{(3)} =1[3]!(1+Ts1+Ts2+Ts2s1+Ts1s2+Ts1s2s1),\displaystyle=\frac{1}{[3]!}(1+T_{s_{1}}+T_{s_{2}}+T_{s_{2}s_{1}}+T_{s_{1}s_{2}}+T_{s_{1}s_{2}s_{1}}),
z(13)\displaystyle z_{(1^{3})} =q3[3]!(1q1Ts1q1Ts2+q2Ts2s1+q2Ts1s2q3Ts1s2s1)\displaystyle=\frac{q^{3}}{[3]!}(1-q^{-1}T_{s_{1}}-q^{-1}T_{s_{2}}+q^{-2}T_{s_{2}s_{1}}+q^{-2}T_{s_{1}s_{2}}-q^{-3}T_{s_{1}s_{2}s_{1}})
z(21)\displaystyle z_{(21)} =1z(3)z(13).\displaystyle=1-z_{(3)}-z_{(1^{3})}.

Then

(q+1)D(21)\displaystyle(q+1)D_{(21)} =(q+q2)Ts1+(q+q2)Ts2+(q+1)Ts1s2s1=[3]!(qz(3)z(12))(qq3)1\displaystyle=(q+q^{2})T_{s_{1}}+(q+q^{2})T_{s_{2}}+(q+1)T_{s_{1}s_{2}s_{1}}=[3]!(qz_{(3)}-z_{(1^{2})})-(q-q^{3})\cdot 1
=[3]![3]!((qq3)+(q+q2)Ts1+(q+q2)Ts2+0+0+(q+1)Ts1s2s1)(qq3)\displaystyle=\frac{[3]!}{[3]!}((q-q^{3})+(q+q^{2})T_{s_{1}}+(q+q^{2})T_{s_{2}}+0+0+(q+1)T_{s_{1}s_{2}s_{1}})-(q-q^{3})
=(q+1)(qTs1+qTs2+Ts1s2s1)\displaystyle=(q+1)(qT_{s_{1}}+qT_{s_{2}}+T_{s_{1}s_{2}s_{1}})

and the brute force computation showing that D(21)=qTs1+qTs2+Ts1s2s1D_{(21)}=qT_{s_{1}}+qT_{s_{2}}+T_{s_{1}s_{2}s_{1}} commutes with Ts1T_{s_{1}} is

Ts1D(21)\displaystyle T_{s_{1}}D_{(21)} =q(q1)Ts1+q2+qTs1s2+(q1)Ts1s2s1+qTs2s1\displaystyle=q(q-1)T_{s_{1}}+q^{2}+qT_{s_{1}s_{2}}+(q-1)T_{s_{1}s_{2}s_{1}}+qT_{s_{2}s_{1}}
D(21)Ts1\displaystyle D_{(21)}T_{s_{1}} =q(q1)Ts1+q2+qTs2s1+(q1)Ts1s2s1+qTs1s2.\displaystyle=q(q-1)T_{s_{1}}+q^{2}+qT_{s_{2}s_{1}}+(q-1)T_{s_{1}s_{2}s_{1}}+qT_{s_{1}s_{2}}.

In this computation already, some flags in Bs1BBs_{1}B are ending up in Bs1s2s1BBs_{1}s_{2}s_{1}B after the application of D(21)D_{(21)}.

In the basis {1,Ts1,Ts2,Ts1s2,Ts2s1,Ts1s2s1}\{1,T_{s_{1}},T_{s_{2}},T_{s_{1}s_{2}},T_{s_{2}s_{1}},T_{s_{1}s_{2}s_{1}}\}, the matrices of multiplication by Ts1T_{s_{1}} and Ts2T_{s_{2}} are

(0q00001q10000000q00001q10000000q00001q1)and(00q0000000q010q100000000q0100q1000010q1)\begin{pmatrix}0&q&0&0&0&0\\ 1&q-1&0&0&0&0\\ 0&0&0&q&0&0\\ 0&0&1&q-1&0&0\\ 0&0&0&0&0&q\\ 0&0&0&0&1&q-1\end{pmatrix}\qquad\hbox{and}\qquad\begin{pmatrix}0&0&q&0&0&0\\ 0&0&0&0&q&0\\ 1&0&q-1&0&0&0\\ 0&0&0&0&0&q\\ 0&1&0&0&q-1&0\\ 0&0&0&1&0&q-1\end{pmatrix}

The matrix of multiplication by Ts1s2s1T_{s_{1}s_{2}s_{1}} is

(00000q30000q2q2(q1)000q20q2(q1)00qq(q1)q(q1)q(q1)20q0q(q1)q(q1)q(q1)21q1q1(q1)2(q1)2(q1)3+q(q1))\begin{pmatrix}0&0&0&0&0&q^{3}\\ 0&0&0&0&q^{2}&q^{2}(q-1)\\ 0&0&0&q^{2}&0&q^{2}(q-1)\\ 0&0&q&q(q-1)&q(q-1)&q(q-1)^{2}\\ 0&q&0&q(q-1)&q(q-1)&q(q-1)^{2}\\ 1&q-1&q-1&(q-1)^{2}&(q-1)^{2}&(q-1)^{3}+q(q-1)\end{pmatrix}

where the last column comes from the computation

Ts1s2s1Ts1Ts2Ts1\displaystyle T_{s_{1}s_{2}s_{1}}T_{s_{1}}T_{s_{2}}T_{s_{1}} =((q1)Ts1s2s1+qTs1s2)Ts2s1\displaystyle=\big{(}(q-1)T_{s_{1}s_{2}s_{1}}+qT_{s_{1}s_{2}}\big{)}T_{s_{2}s_{1}}
=(((q1)2Ts1s2s1+q(q1)Ts2s1)+(q(q1)Ts1s2+q2Ts1))Ts1\displaystyle=\big{(}((q-1)^{2}T_{s_{1}s_{2}s_{1}}+q(q-1)T_{s_{2}s_{1}})+(q(q-1)T_{s_{1}s_{2}}+q^{2}T_{s_{1}})\big{)}T_{s_{1}}
=((q1)3Ts1s2s1+q(q1)2Ts1s2)+(q(q1)2Ts2s1+q2(q1)Ts2)\displaystyle=((q-1)^{3}T_{s_{1}s_{2}s_{1}}+q(q-1)^{2}T_{s_{1}s_{2}})+(q(q-1)^{2}T_{s_{2}s_{1}}+q^{2}(q-1)T_{s_{2}})
+q(q1)Ts1s2s1+(q2(q1)Ts1+q3)\displaystyle\qquad+q(q-1)T_{s_{1}s_{2}s_{1}}+(q^{2}(q-1)T_{s_{1}}+q^{3})

Thus the matrix of multiplication by D21=qTs1+qTs2+Ts1s2s1D_{21}=qT_{s_{1}}+qT_{s_{2}}+T_{s_{1}s_{2}s_{1}} is

(0q2q200q3qq(q1)002q2q2(q1)q0q(q1)2q20q2(q1)002q2q(q1)q(q1)q2+q(q1)202q0q(q1)2q(q1)q2+q(q1)21q1q1q+(q1)2q+(q1)2(q1)3+3q(q1))\begin{pmatrix}0&q^{2}&q^{2}&0&0&q^{3}\\ q&q(q-1)&0&0&2q^{2}&q^{2}(q-1)\\ q&0&q(q-1)&2q^{2}&0&q^{2}(q-1)\\ 0&0&2q&2q(q-1)&q(q-1)&q^{2}+q(q-1)^{2}\\ 0&2q&0&q(q-1)&2q(q-1)&q^{2}+q(q-1)^{2}\\ 1&q-1&q-1&q+(q-1)^{2}&q+(q-1)^{2}&(q-1)^{3}+3q(q-1)\end{pmatrix}

with 1+2(q1)+2q+2(q1)2=2q24q+2+4q2+1=2q2+11+2(q-1)+2q+2(q-1)^{2}=2q^{2}-4q+2+4q-2+1=2q^{2}+1 and (q1)3+3q(q1)=q33q2+3q1+3q23q=q31(q-1)^{3}+3q(q-1)=q^{3}-3q^{2}+3q-1+3q^{2}-3q=q^{3}-1 so that the bottom row sums to q31+2q2+1=q3+2q2q^{3}-1+2q^{2}+1=q^{3}+2q^{2} Thus the matrix of D=(n1)qn1[n1]+(q1)D(21)=2q2(q+1)+(q1)D=(q1)(2q+1)+(q1)DD=(n-1)q^{n-1}-[n-1]+(q-1)D_{(21)}=2q^{2}-(q+1)+(q-1)D=(q-1)(2q+1)+(q-1)D which has row sums

(q1)((2q+1)+(2q2+q3)(2q+1)+(2q2+q3)(2q+1)+(2q2+q3)(2q+1)+(2q+3q(q1)+q2+q32q2+q)(2q+1)+(2q+3q(q1)+q2+q32q2+q)(2q+1)+(q3+2q2)))(q-1)\begin{pmatrix}(2q+1)+(2q^{2}+q^{3})\\ (2q+1)+(2q^{2}+q^{3})\\ (2q+1)+(2q^{2}+q^{3})\\ (2q+1)+(2q+3q(q-1)+q^{2}+q^{3}-2q^{2}+q)\\ (2q+1)+(2q+3q(q-1)+q^{2}+q^{3}-2q^{2}+q)\\ (2q+1)+(q^{3}+2q^{2}))\end{pmatrix}

and

Card(𝒞)=(qn11)(qn1)q1=(q21)(q31)q1=(q1)(q+1)(q2+q+1)=(q1)(q3+2q2+2q+1).\mathrm{Card}(\mathcal{C})=\frac{(q^{n-1}-1)(q^{n}-1)}{q-1}=\frac{(q^{2}-1)(q^{3}-1)}{q-1}=(q-1)(q+1)(q^{2}+q+1)=(q-1)(q^{3}+2q^{2}+2q+1).

Let

M2=Ts1Ts1andM3=Ts2Ts1Ts1Ts2M_{2}=T_{s_{1}}T_{s_{1}}\qquad\hbox{and}\qquad M_{3}=T_{s_{2}}T_{s_{1}}T_{s_{1}}T_{s_{2}}

so that

M2=(q1)Ts1+qandM3=Ts2((q1)Ts1+q)Ts2=(q1)Ts2s1s2+q(q1)Ts2+q2,M_{2}=(q-1)T_{s_{1}}+q\qquad\hbox{and}\qquad M_{3}=T_{s_{2}}((q-1)T_{s_{1}}+q)T_{s_{2}}=(q-1)T_{s_{2}s_{1}s_{2}}+q(q-1)T_{s_{2}}+q^{2},

giving

q(M21)+(M31)\displaystyle q(M_{2}-1)+(M_{3}-1) =(q1)(Ts1s2s1+qTs2+qTs1)+2q2q1\displaystyle=(q-1)(T_{s_{1}s_{2}s_{1}}+qT_{s_{2}}+qT_{s_{1}})+2q^{2}-q-1
=(31)q31[31]+(q1)D(21)=D.\displaystyle=(3-1)q^{3-1}-[3-1]+(q-1)D_{(21)}=D.

Let’s work out the qμq_{\mu} and the matrix LL. By definition

rqr(x;t)zr\displaystyle\sum_{r}q_{r}(x;t)z^{r} =i=1n1txiz1xiz(k(1)kektkzk)(hz)\displaystyle=\prod_{i=1}^{n}\frac{1-tx_{i}z}{1-x_{i}z}\Big{(}\sum_{k}(-1)^{k}e_{k}t^{k}z_{k}\Big{)}\big{(}\sum_{\ell}h_{\ell}z^{\ell}\big{)}
=(1zte1+z2t2e2t3z3e3+)(1+h1z+h2z2+)\displaystyle=(1-zte_{1}+z^{2}t^{2}e_{2}-t^{3}z^{3}e_{3}+\cdots)(1+h_{1}z+h_{2}z^{2}+\cdots)

giving q0=1q_{0}=1, q1=h1te1=(1t)s(1)q_{1}=h_{1}-te_{1}=(1-t)s_{(1)},

q2=t2e2tzh1e1+h2=t2(s(12)t(s(12)+s(2))+s(2)=(1t)((t)s(12)+s(2))q_{2}=t^{2}e_{2}-tzh_{1}e_{1}+h_{2}=t^{2}(s_{(1^{2})}-t(s_{(1^{2})}+s_{(2)})+s_{(2)}=(1-t)\big{(}(-t)s_{(1^{2})}+s_{(2)}\big{)}

and

q3\displaystyle q_{3} =(t)3e3+(t)2h1e2+(t)h2e1+h3\displaystyle=(-t)^{3}e_{3}+(-t)^{2}h_{1}e_{2}+(-t)h_{2}e_{1}+h_{3}
=(t)3s(13)+(t)2(s(21)+s(13))+(t)(s(3)+s(21)+s(3))\displaystyle=(-t)^{3}s_{(1^{3})}+(-t)^{2}(s_{(21)}+s^{(1^{3})})+(-t)(s_{(3)}+s_{(21)}+s_{(3)})
=(1t)((t)2s(13)+(t)s(21)+s(3)).\displaystyle=(1-t)\big{(}(-t)^{2}s_{(1^{3})}+(-t)s_{(21)}+s_{(3)}\big{)}.

Thus

q(12)\displaystyle q_{(1^{2})} =q12=(1t)2(s(12)+s(2)),q(2)=(1t)((t)s(12)+s(2))\displaystyle=q_{1}^{2}=(1-t)^{2}(s_{(1^{2})}+s_{(2)}),\qquad\qquad q_{(2)}=(1-t)\big{(}(-t)s_{(1^{2})}+s_{(2)}\big{)}
q(13)\displaystyle q_{(1^{3})} =q13=(1t)3(s(13)+2s(21)+s(3)),\displaystyle=q_{1}^{3}=(1-t)^{3}(s_{(1^{3})}+2s_{(21)}+s_{(3)}\big{)},
q(21)\displaystyle q_{(21)} =q2q1=(1t)2((t)(s(13)+s(21))+(s(3)+s(21)))=(1t)2((t)s(13)+(1t)s(21)+s(3)),\displaystyle=q_{2}q_{1}=(1-t)^{2}((-t)(s_{(1^{3})}+s_{(21)})+(s_{(3)}+s_{(21)}))=(1-t)^{2}((-t)s_{(1^{3})}+(1-t)s_{(21)}+s_{(3)}),
q3\displaystyle q_{3} =(1t)((t)2s(13)+(t)s(21)+s(3)).\displaystyle=(1-t)\big{(}(-t)^{2}s_{(1^{3})}+(-t)s_{(21)}+s_{(3)}\big{)}.

Then

χH(12)(Tγ(12))\displaystyle\chi^{(1^{2})}_{H}(T_{\gamma_{(1^{2})}}) =1=1(1q1)2(1q1)2=q2(q1)2L(12)(12)(q1),\displaystyle=1=\frac{1}{(1-q^{-1})^{2}}(1-q^{-1})^{2}=\frac{q^{2}}{(q-1)^{2}}L_{(1^{2})(1^{2})}(q^{-1}),
χH(2)(Tγ(12))\displaystyle\chi^{(2)}_{H}(T_{\gamma_{(1^{2})}}) =1=1(1q1)2(1q1)2=q2(q1)2L(12)(2)(q1),\displaystyle=1=\frac{1}{(1-q^{-1})^{2}}(1-q^{-1})^{2}=\frac{q^{2}}{(q-1)^{2}}L_{(1^{2})(2)}(q^{-1}),
χH(12)(Tγ(2))\displaystyle\chi^{(1^{2})}_{H}(T_{\gamma_{(2)}}) =1=q(1q1)(1q1)(q1)=q2(q1)L(2)(12)(q1),\displaystyle=-1=\frac{q}{(1-q^{-1})}(1-q^{-1})(-q^{-1})=\frac{q^{2}}{(q-1)}L_{(2)(1^{2})}(q^{-1}),
χH(2)(Tγ(2))\displaystyle\chi^{(2)}_{H}(T_{\gamma_{(2)}}) =q=q(1q1)(1q1)=q2(q1)L(2)(2)(q1),\displaystyle=q=\frac{q}{(1-q^{-1})}(1-q^{-1})=\frac{q^{2}}{(q-1)}L_{(2)(2)}(q^{-1}),
χH(13)(Tγ(13))\displaystyle\chi^{(1^{3})}_{H}(T_{\gamma_{(1^{3})}}) =1=1(1q1)3(1q1)3=1(1q1)3L(13)(3)(q1),\displaystyle=1=\frac{1}{(1-q^{-1})^{3}}(1-q^{-1})^{3}=\frac{1}{(1-q^{-1})^{3}}L_{(1^{3})(3)}(q^{-1}),
χH(21)(Tγ(13))\displaystyle\chi^{(21)}_{H}(T_{\gamma_{(1^{3})}}) =2=1(1q1)3(1q1)32=1(1q1)3L(13)(21)(q1),\displaystyle=2=\frac{1}{(1-q^{-1})^{3}}(1-q^{-1})^{3}\cdot 2=\frac{1}{(1-q^{-1})^{3}}L_{(1^{3})(21)}(q^{-1}),
χH(3)(Tγ(13))\displaystyle\chi^{(3)}_{H}(T_{\gamma_{(1^{3})}}) =1=1(1q1)3(1q1)3=1(1q1)3L(13)(3)(q1),\displaystyle=1=\frac{1}{(1-q^{-1})^{3}}(1-q^{-1})^{3}=\frac{1}{(1-q^{-1})^{3}}L_{(1^{3})(3)}(q^{-1}),
χH(13)(Tγ(21))\displaystyle\chi^{(1^{3})}_{H}(T_{\gamma_{(21)}}) =1=q(1q1)2(1q1)2(q1)=q3(q1)2L(21)(13)(q1),\displaystyle=-1=\frac{q}{(1-q^{-1})^{2}}(1-q^{-1})^{2}(-q^{-1})=\frac{q^{3}}{(q-1)^{2}}L_{(21)(1^{3})}(q^{-1}),
χH(21)(Tγ(21))\displaystyle\chi^{(21)}_{H}(T_{\gamma_{(21)}}) =1q=q(1q1)2(1q1)2(1q1)=q3(q1)2L(21)(21)(q1),\displaystyle=1-q=\frac{q}{(1-q^{-1})^{2}}(1-q^{-1})^{2}(1-q^{-1})=\frac{q^{3}}{(q-1)^{2}}L_{(21)(21)}(q^{-1}),
χH(3)(Tγ(21))\displaystyle\chi^{(3)}_{H}(T_{\gamma_{(21)}}) =q=q(1q1)2(1q1)21=q3(q1)2L(21)(3)(q1),\displaystyle=q=\frac{q}{(1-q^{-1})^{2}}(1-q^{-1})^{2}\cdot 1=\frac{q^{3}}{(q-1)^{2}}L_{(21)(3)}(q^{-1}),
χH(13)(Tγ(3))\displaystyle\chi^{(1^{3})}_{H}(T_{\gamma_{(3)}}) =1=q2(1q1)(1q1)(q1)2=q3(q1)L(3)(13)(q1),\displaystyle=1=\frac{q^{2}}{(1-q^{-1})}(1-q^{-1})(-q^{-1})^{2}=\frac{q^{3}}{(q-1)}L_{(3)(1^{3})}(q^{-1}),
χH(21)(Tγ(3))\displaystyle\chi^{(21)}_{H}(T_{\gamma_{(3)}}) =q=q2(1q1)(1q1)(q1)=q3(q1)L(3)(21)(q1),\displaystyle=-q=\frac{q^{2}}{(1-q^{-1})}(1-q^{-1})(-q^{-1})=\frac{q^{3}}{(q-1)}L_{(3)(21)}(q^{-1}),
χH(3)(Tγ(3))\displaystyle\chi^{(3)}_{H}(T_{\gamma_{(3)}}) =q2=q2(1q1)(1q1)1=q3(q1)L(3)(21)(q1),\displaystyle=q^{2}=\frac{q^{2}}{(1-q^{-1})}(1-q^{-1})\cdot 1=\frac{q^{3}}{(q-1)}L_{(3)(21)}(q^{-1}),

Since

χG(13)(u(21))\displaystyle\chi^{(1^{3})}_{G}(u_{(21)}) =qn(21)K(13)(21)(0,q1)=q0=0,\displaystyle=q^{n(21)}K_{(1^{3})(21)}(0,q^{-1})=q\cdot 0=0,
χG(21)(u(21))\displaystyle\chi^{(21)}_{G}(u_{(21)}) =qn(21)K(21)(21)(0,q1)=q1=q,\displaystyle=q^{n(21)}K_{(21)(21)}(0,q^{-1})=q\cdot 1=q,
χG(3)(u(21))\displaystyle\chi^{(3)}_{G}(u_{(21)}) =qn(21)K(3)(21)(0,q1)=qq1=1,\displaystyle=q^{n(21)}K_{(3)(21)}(0,q^{-1})=q\cdot q^{-1}=1,

and

χG(13)(u(13))\displaystyle\chi^{(1^{3})}_{G}(u_{(1^{3})}) =qn(13)K(13)(13)(0,q1)=q31=q3,\displaystyle=q^{n(1^{3})}K_{(1^{3})(1^{3})}(0,q^{-1})=q^{3}\cdot 1=q^{3},
χG(21)(u(13))\displaystyle\chi^{(21)}_{G}(u_{(1^{3})}) =qn(13)K(21)(13)(0,q1)=q3(q1+q2)=q2+q,\displaystyle=q^{n(1^{3})}K_{(21)(1^{3})}(0,q^{-1})=q^{3}\cdot(q^{-1}+q^{-2})=q^{2}+q,
χG(3)(u(13))\displaystyle\chi^{(3)}_{G}(u_{(1^{3})}) =qn(13)K(3)(13)(0,q1)=q3q3=1,\displaystyle=q^{n(1^{3})}K_{(3)(1^{3})}(0,q^{-1})=q^{3}\cdot q^{-3}=1,

then CC acts the same way as

D\displaystyle D =(qn11)(qn1)(q1)(0q3z(13)+qq2+qz(21)+z(3))=(q21)(q31)(q1)(1q+1z(21)+z(3))\displaystyle=\frac{(q^{n-1}-1)(q^{n}-1)}{(q-1)}\big{(}\frac{0}{q^{3}}z_{(1^{3})}+\frac{q}{q^{2}+q}z_{(21)}+z_{(3)}\big{)}=\frac{(q^{2}-1)(q^{3}-1)}{(q-1)}\big{(}\frac{1}{q+1}z_{(21)}+z_{(3)}\big{)}
=(q21)(q31)(q1)(q1)(q21)(1z(3)z(13)+(q+1)z(3))=(q31)(1z(13)+qz(3))\displaystyle=\frac{(q^{2}-1)(q^{3}-1)(q-1)}{(q-1)(q^{2}-1)}\big{(}1-z_{(3)}-z_{(1^{3})}+(q+1)z_{(3)}\big{)}=(q^{3}-1)\big{(}1-z_{(1^{3})}+qz_{(3)}\big{)}
=(q31)[3]!([3]!(q3q2Ts1q2Ts2+qTs1s2+qTs2s1Ts1s2s1)+q(1+Ts1+Ts2+Ts1s2+Ts2s1+Ts1s2s1))\displaystyle=\frac{(q^{3}-1)}{[3]!}\left(\begin{array}[]{l}[3]!-(q^{3}-q^{2}T_{s_{1}}-q^{2}T_{s_{2}}+qT_{s_{1}s_{2}}+qT_{s_{2}s_{1}}-T_{s_{1}s_{2}s_{1}})\\ +q(1+T_{s_{1}}+T_{s_{2}}+T_{s_{1}s_{2}}+T_{s_{2}s_{1}}+T_{s_{1}s_{2}s_{1}})\end{array}\right)
=(q31)[3]!(([3]!q3+q)+(q2+q)Ts1+(q2+q)Ts2+(1+q)Ts1s2s1)\displaystyle=\frac{(q^{3}-1)}{[3]!}\big{(}([3]!-q^{3}+q)+(q^{2}+q)T_{s_{1}}+(q^{2}+q)T_{s_{2}}+(1+q)T_{s_{1}s_{2}s_{1}}\big{)}
=(q31)[3]!([3]!q3+q)+(q31)[3]!(1+q)D(21)=(q31)+(q1)(1+q)(qq3)+(q31)[3]!(q21)(q1)D(21)\displaystyle=\frac{(q^{3}-1)}{[3]!}([3]!-q^{3}+q)+\frac{(q^{3}-1)}{[3]!}(1+q)D_{(21)}=(q^{3}-1)+\frac{(q-1)}{(1+q)}(q-q^{3})+\frac{(q^{3}-1)}{[3]!}\frac{(q^{2}-1)}{(q-1)}D_{(21)}
=(q31)q(q1)2+(q1)D(21)=2q2q1+(q1)D(21)\displaystyle=(q^{3}-1)-q(q-1)^{2}+(q-1)D_{(21)}=2q^{2}-q-1+(q-1)D_{(21)}
=(31)q31(q+1)+(q1)D(21).\displaystyle=(3-1)q^{3-1}-(q+1)+(q-1)D_{(21)}.

Then

λ\displaystyle\sum_{\lambda} χλ(u(21))χHλ(Tγ(13))=χ(13)(u(21))χH(13)(Tγ(13))+χ(21)(u(21))χH(21)(Tγ(13))+χ(3)(u(21))χH(3)(Tγ(13))\displaystyle\chi^{\lambda}(u_{(21)})\chi^{\lambda}_{H}(T_{\gamma_{(1^{3})}})=\chi^{(1^{3})}(u_{(21)})\chi^{(1^{3})}_{H}(T_{\gamma_{(1^{3})}})+\chi^{(21)}(u_{(21)})\chi^{(21)}_{H}(T_{\gamma_{(1^{3})}})+\chi^{(3)}(u_{(21)})\chi^{(3)}_{H}(T_{\gamma_{(1^{3})}})
=01+q2+11=2q+1,\displaystyle=0\cdot 1+q\cdot 2+1\cdot 1=2q+1,
λ\displaystyle\sum_{\lambda} χλ(u(21))χHλ(Tγ(21))=χ(13)(u(21))χH(13)(Tγ(21))+χ(21)(u(21))χH(21)(Tγ(21))+χ(3)(u(21))χH(3)(Tγ(21))\displaystyle\chi^{\lambda}(u_{(21)})\chi^{\lambda}_{H}(T_{\gamma_{(21)}})=\chi^{(1^{3})}(u_{(21)})\chi^{(1^{3})}_{H}(T_{\gamma_{(21)}})+\chi^{(21)}(u_{(21)})\chi^{(21)}_{H}(T_{\gamma_{(21)}})+\chi^{(3)}(u_{(21)})\chi^{(3)}_{H}(T_{\gamma_{(21)}})
=0(1)+q(1q)+1q=2qq2,\displaystyle=0\cdot(-1)+q\cdot(1-q)+1\cdot q=2q-q^{2},
λ\displaystyle\sum_{\lambda} χλ(u(21))χHλ(Tγ(3))=χ(13)(u(21))χH(13)(Tγ(3))+χ(21)(u(21))χH(21)(Tγ(3))+χ(3)(u(21))χH(3)(Tγ(3))\displaystyle\chi^{\lambda}(u_{(21)})\chi^{\lambda}_{H}(T_{\gamma_{(3)}})=\chi^{(1^{3})}(u_{(21)})\chi^{(1^{3})}_{H}(T_{\gamma_{(3)}})+\chi^{(21)}(u_{(21)})\chi^{(21)}_{H}(T_{\gamma_{(3)}})+\chi^{(3)}(u_{(21)})\chi^{(3)}_{H}(T_{\gamma_{(3)}})
=01+q(q)+1q2=0,\displaystyle=0\cdot 1+q\cdot(-q)+1\cdot q^{2}=0,

References

  • [CR81] C.W. Curtis and I. Reiner, Methods of Representation Theory: With Applications to Finite Groups and Orders, Wiley Classics Lib. I and II, John Wiley & Sons, New York, 1981. MR0892316.
  • [DR00] P. Diaconis and A. Ram, Analysis of systematic scan Metropolis algorithms using Iwahori-Hecke algebra techniques, Michigan Mathematical Journal 48 (2000), 157–190. MR1786485
  • [Fr99] A. Francis, The minimal basis for the centre of an Iwahori-Hecke algebra, J. Algebra 221 (1999) 1–28, MR1722901.
  • [Mac] I.G. Macdonald, Symmetric functions and Hall polynomials, Second edition, Oxford Mathematical Monographs, Oxford University Press, New York, 1995. ISBN: 0-19-853489-2, MR1354144.
  • [HR99] T. Halverson and A. Ram, Bitraces for GLn(𝔽q)GL_{n}(\mathbb{F}_{q}) and the Iwahori-Hecke algebra of type An1A_{n-1}, Indag. Mathem. N.S. 10 (1999) 247–268, MR1816219.
  • [HLR] T. Halverson, R. Leduc and A. Ram, Iwahori-Hecke algebras of type A, bitraces and symmetric functions, Int. Math. Research Notices (1997) 401–416. MR1443319.
  • [Ra91] A. Ram, A Frobenius formula for the characters of the Hecke algebras, Invent. Math. 106 (1991), 461-488, MR1134480.
  • [Ra97] A. Ram, Seminormal representations of Weyl groups and Iwahori-Hecke algebras, Proceedings of the London Math. Soc. (3) 75 (1997), 99–133, MR1444315.

4 Some Hecke algebra multiplications

The Hecke algebra is H=EndG(𝟏BG)H=\mathrm{End}_{G}(\mathbf{1}_{B}^{G}). The algebra HH has basis {Tw|wSn}\{T_{w}\ |\ w\in S_{n}\} with multiplication determined by

TskTw={qTskw+(q1)Tw,if (skw)<(w),Tskw,if (skw)>(w).T_{s_{k}}T_{w}=\begin{cases}qT_{s_{k}w}+(q-1)T_{w},&\hbox{if $\ell(s_{k}w)<\ell(w)$,}\\ T_{s_{k}w},&\hbox{if $\ell(s_{k}w)>\ell(w)$.}\end{cases}

Take n=3n=3. We have Ts1s2s1=Ts2s1s2T_{s_{1}s_{2}s_{1}}=T_{s_{2}s_{1}s_{2}}.

Ts11\displaystyle T_{s_{1}}\cdot 1 =Ts1\displaystyle=T_{s_{1}} =01+1Ts1+0Ts2+0Ts1s2+0Ts2s1+0Ts1s2s1,\displaystyle=0\cdot 1+1\cdot T_{s_{1}}+0\cdot T_{s_{2}}+0\cdot T_{s_{1}s_{2}}+0\cdot T_{s_{2}s_{1}}+0\cdot T_{s_{1}s_{2}s_{1}},
Ts1Ts1\displaystyle T_{s_{1}}\cdot T_{s_{1}} =q+(q1)Ts1\displaystyle=q+(q-1)T_{s_{1}} =q1+(q1)Ts1+0Ts2+0Ts1s2+0Ts2s1+0Ts1s2s1,\displaystyle=q\cdot 1+(q-1)\cdot T_{s_{1}}+0\cdot T_{s_{2}}+0\cdot T_{s_{1}s_{2}}+0\cdot T_{s_{2}s_{1}}+0\cdot T_{s_{1}s_{2}s_{1}},
Ts1Ts2\displaystyle T_{s_{1}}\cdot T_{s_{2}} =Ts1s2\displaystyle=T_{s_{1}s_{2}} =01+0Ts1+0Ts2+1Ts1s2+0Ts2s1+0Ts1s2s1,\displaystyle=0\cdot 1+0\cdot T_{s_{1}}+0\cdot T_{s_{2}}+1\cdot T_{s_{1}s_{2}}+0\cdot T_{s_{2}s_{1}}+0\cdot T_{s_{1}s_{2}s_{1}},
Ts1Ts1s2\displaystyle T_{s_{1}}\cdot T_{s_{1}s_{2}} =qTs2+(q1)Ts1s2\displaystyle=qT_{s_{2}}+(q-1)T_{s_{1}s_{2}} =01+0Ts1+qTs2+(q1)Ts1s2+0Ts2s1+0Ts1s2s1,\displaystyle=0\cdot 1+0\cdot T_{s_{1}}+q\cdot T_{s_{2}}+(q-1)\cdot T_{s_{1}s_{2}}+0\cdot T_{s_{2}s_{1}}+0\cdot T_{s_{1}s_{2}s_{1}},
Ts1Ts2s1\displaystyle T_{s_{1}}\cdot T_{s_{2}s_{1}} =Ts1s2s1\displaystyle=T_{s_{1}s_{2}s_{1}} =01+0Ts1+0Ts2+0Ts1s2+0Ts2s1+1Ts1s2s1,\displaystyle=0\cdot 1+0\cdot T_{s_{1}}+0\cdot T_{s_{2}}+0\cdot T_{s_{1}s_{2}}+0\cdot T_{s_{2}s_{1}}+1\cdot T_{s_{1}s_{2}s_{1}},
Ts1Ts1s2s1\displaystyle T_{s_{1}}\cdot T_{s_{1}s_{2}s_{1}} =qTs2s1+(q1)Ts1s2s1\displaystyle=qT_{s_{2}s_{1}}+(q-1)T_{s_{1}s_{2}s_{1}} =01+0Ts1+0Ts2+0Ts1s2+qTs2s1+(q1)Ts1s2s1,\displaystyle=0\cdot 1+0\cdot T_{s_{1}}+0\cdot T_{s_{2}}+0\cdot T_{s_{1}s_{2}}+q\cdot T_{s_{2}s_{1}}+(q-1)\cdot T_{s_{1}s_{2}s_{1}},

This gives the matrrix for multiplication by Ts1T_{s_{1}}:

(0q00001q10000000q00001q10000000q00001q1)\begin{pmatrix}0&q&0&0&0&0\\ 1&q-1&0&0&0&0\\ 0&0&0&q&0&0\\ 0&0&1&q-1&0&0\\ 0&0&0&0&0&q\\ 0&0&0&0&1&q-1\end{pmatrix}

Then, prodcuts by Ts2T_{s_{2}} are

Ts21\displaystyle T_{s_{2}}\cdot 1 =Ts2\displaystyle=T_{s_{2}} =01+0Ts1+1Ts2+0Ts1s2+0Ts2s1+0Ts1s2s1,\displaystyle=0\cdot 1+0\cdot T_{s_{1}}+1\cdot T_{s_{2}}+0\cdot T_{s_{1}s_{2}}+0\cdot T_{s_{2}s_{1}}+0\cdot T_{s_{1}s_{2}s_{1}},
Ts2Ts1\displaystyle T_{s_{2}}\cdot T_{s_{1}} =Ts2s1\displaystyle=T_{s_{2}s_{1}} =01+0Ts1+0Ts2+0Ts1s2+1Ts2s1+0Ts1s2s1,\displaystyle=0\cdot 1+0\cdot T_{s_{1}}+0\cdot T_{s_{2}}+0\cdot T_{s_{1}s_{2}}+1\cdot T_{s_{2}s_{1}}+0\cdot T_{s_{1}s_{2}s_{1}},
Ts2Ts2\displaystyle T_{s_{2}}\cdot T_{s_{2}} =q+(q1)Ts2\displaystyle=q+(q-1)T_{s_{2}} =q1+0Ts1+(q1)Ts2+0Ts1s2+0Ts2s1+0Ts1s2s1,\displaystyle=q\cdot 1+0\cdot T_{s_{1}}+(q-1)\cdot T_{s_{2}}+0\cdot T_{s_{1}s_{2}}+0\cdot T_{s_{2}s_{1}}+0\cdot T_{s_{1}s_{2}s_{1}},
Ts2Ts1s2\displaystyle T_{s_{2}}\cdot T_{s_{1}s_{2}} =Ts2s1s2\displaystyle=T_{s_{2}s_{1}s_{2}} =01+0Ts1+0Ts2+0Ts1s2+0Ts2s1+1Ts1s2s1,\displaystyle=0\cdot 1+0\cdot T_{s_{1}}+0\cdot T_{s_{2}}+0\cdot T_{s_{1}s_{2}}+0\cdot T_{s_{2}s_{1}}+1\cdot T_{s_{1}s_{2}s_{1}},
Ts2Ts2s1\displaystyle T_{s_{2}}\cdot T_{s_{2}s_{1}} =qTs1+(q1)Ts2s1\displaystyle=qT_{s_{1}}+(q-1)T_{s_{2}s_{1}} =01+qTs1+0Ts2+0Ts1s2+(q1)Ts2s1+0Ts1s2s1,\displaystyle=0\cdot 1+q\cdot T_{s_{1}}+0\cdot T_{s_{2}}+0\cdot T_{s_{1}s_{2}}+(q-1)\cdot T_{s_{2}s_{1}}+0\cdot T_{s_{1}s_{2}s_{1}},
Ts2Ts2s1s2\displaystyle T_{s_{2}}\cdot T_{s_{2}s_{1}s_{2}} =qTs1s2+(q1)Ts1s2s1\displaystyle=qT_{s_{1}s_{2}}+(q-1)T_{s_{1}s_{2}s_{1}} =01+0Ts1+0Ts2+qTs1s2+0Ts2s1+(q1)Ts1s2s1,\displaystyle=0\cdot 1+0\cdot T_{s_{1}}+0\cdot T_{s_{2}}+q\cdot T_{s_{1}s_{2}}+0\cdot T_{s_{2}s_{1}}+(q-1)\cdot T_{s_{1}s_{2}s_{1}},

This gives the matrrix for multiplication by Ts2T_{s_{2}}

(00q0000000q010q100000000q0100q1000010q1)\begin{pmatrix}0&0&q&0&0&0\\ 0&0&0&0&q&0\\ 1&0&q-1&0&0&0\\ 0&0&0&0&0&q\\ 0&1&0&0&q-1&0\\ 0&0&0&1&0&q-1\end{pmatrix}

Then products with Ts1s2s1T_{s_{1}s_{2}s_{1}}

Ts1s2s11\displaystyle T_{s_{1}s_{2}s_{1}}\cdot 1 =Ts1s2s1\displaystyle=T_{s_{1}s_{2}s_{1}}
=01+0Ts1+0Ts2+0Ts1s2+0Ts2s1+1Ts1s2s1,\displaystyle=0\cdot 1+0\cdot T_{s_{1}}+0\cdot T_{s_{2}}+0\cdot T_{s_{1}s_{2}}+0\cdot T_{s_{2}s_{1}}+1\cdot T_{s_{1}s_{2}s_{1}},
Ts1s2s1Ts1\displaystyle T_{s_{1}s_{2}s_{1}}\cdot T_{s_{1}} =qTs1s2+(q1)Ts1s2s1\displaystyle=qT_{s_{1}s_{2}}+(q-1)T_{s_{1}s_{2}s_{1}}
=01+0Ts1+0Ts2+qTs1s2+0Ts2s1+(q1)Ts1s2s1,\displaystyle=0\cdot 1+0\cdot T_{s_{1}}+0\cdot T_{s_{2}}+q\cdot T_{s_{1}s_{2}}+0\cdot T_{s_{2}s_{1}}+(q-1)\cdot T_{s_{1}s_{2}s_{1}},
Ts1s2s1Ts2\displaystyle T_{s_{1}s_{2}s_{1}}\cdot T_{s_{2}} =qTs2s1+(q1)Ts1s2s1\displaystyle=qT_{s_{2}s_{1}}+(q-1)T_{s_{1}s_{2}s_{1}}
=01+0Ts1+0Ts2+0Ts1s2+qTs2s1+(q1)Ts1s2s1,\displaystyle=0\cdot 1+0\cdot T_{s_{1}}+0\cdot T_{s_{2}}+0\cdot T_{s_{1}s_{2}}+q\cdot T_{s_{2}s_{1}}+(q-1)\cdot T_{s_{1}s_{2}s_{1}},
Ts1s2s1Ts1s2\displaystyle T_{s_{1}s_{2}s_{1}}\cdot T_{s_{1}s_{2}} =(qTs1s2+(q1)Ts1s2s1)Ts2\displaystyle=(qT_{s_{1}s_{2}}+(q-1)T_{s_{1}s_{2}s_{1}})T_{s_{2}}
=q2Ts1+q(q1)Ts1s2+q(q1)Ts2s1+(q1)2Ts1s2s1\displaystyle=q^{2}T_{s_{1}}+q(q-1)T_{s_{1}s_{2}}+q(q-1)T_{s_{2}s_{1}}+(q-1)^{2}T_{s_{1}s_{2}s_{1}}
=01+q2Ts1+0Ts2+q(q1)Ts1s2+q(q1)Ts2s1+(q1)2Ts1s2s1,\displaystyle=0\cdot 1+q^{2}\cdot T_{s_{1}}+0\cdot T_{s_{2}}+q(q-1)\cdot T_{s_{1}s_{2}}+q(q-1)\cdot T_{s_{2}s_{1}}+(q-1)^{2}\cdot T_{s_{1}s_{2}s_{1}},
Ts1s2s1Ts2s1\displaystyle T_{s_{1}s_{2}s_{1}}\cdot T_{s_{2}s_{1}} =(qTs2s1+(q1)Ts1s2s1)Ts1\displaystyle=(qT_{s_{2}s_{1}}+(q-1)T_{s_{1}s_{2}s_{1}})T_{s_{1}}
=q2Ts2+q(q1)Ts2s1+q(q1)Ts1s2+(q1)2Ts1s2s1\displaystyle=q^{2}T_{s_{2}}+q(q-1)T_{s_{2}s_{1}}+q(q-1)T_{s_{1}s_{2}}+(q-1)^{2}T_{s_{1}s_{2}s_{1}}
=01+0Ts1+q2Ts2+q(q1)Ts1s2+q(q1)Ts2s1+(q1)2Ts1s2s1,\displaystyle=0\cdot 1+0\cdot T_{s_{1}}+q^{2}\cdot T_{s_{2}}+q(q-1)\cdot T_{s_{1}s_{2}}+q(q-1)\cdot T_{s_{2}s_{1}}+(q-1)^{2}\cdot T_{s_{1}s_{2}s_{1}},
Ts1s2s1Ts2s1s2\displaystyle T_{s_{1}s_{2}s_{1}}\cdot T_{s_{2}s_{1}s_{2}} =((q1)Ts1s2s1+qTs1s2)Ts2s1\displaystyle=\big{(}(q-1)T_{s_{1}s_{2}s_{1}}+qT_{s_{1}s_{2}}\big{)}T_{s_{2}s_{1}}
=(((q1)2Ts1s2s1+q(q1)Ts2s1)+(q(q1)Ts1s2+q2Ts1))Ts1\displaystyle=\big{(}((q-1)^{2}T_{s_{1}s_{2}s_{1}}+q(q-1)T_{s_{2}s_{1}})+(q(q-1)T_{s_{1}s_{2}}+q^{2}T_{s_{1}})\big{)}T_{s_{1}}
=((q1)3Ts1s2s1+q(q1)2Ts1s2)+(q(q1)2Ts2s1+q2(q1)Ts2)\displaystyle=((q-1)^{3}T_{s_{1}s_{2}s_{1}}+q(q-1)^{2}T_{s_{1}s_{2}})+(q(q-1)^{2}T_{s_{2}s_{1}}+q^{2}(q-1)T_{s_{2}})
+q(q1)Ts1s2s1+(q2(q1)Ts1+q3)\displaystyle\qquad+q(q-1)T_{s_{1}s_{2}s_{1}}+(q^{2}(q-1)T_{s_{1}}+q^{3})
=q31+q2(q1)Ts1+q2(q1)Ts2+q(q1)2Ts1s2+q(q1)2Ts2s1\displaystyle=q^{3}\cdot 1+q^{2}(q-1)\cdot T_{s_{1}}+q^{2}(q-1)\cdot T_{s_{2}}+q(q-1)^{2}\cdot T_{s_{1}s_{2}}+q(q-1)^{2}\cdot T_{s_{2}s_{1}}
+((q1)3+q(q1))Ts1s2s1,\displaystyle\qquad+((q-1)^{3}+q(q-1))\cdot T_{s_{1}s_{2}s_{1}},

The matrix of multiplication by Ts1s2s1T_{s_{1}s_{2}s_{1}} is

(00000q30000q2q2(q1)000q20q2(q1)00qq(q1)q(q1)q(q1)20q0q(q1)q(q1)q(q1)21q1q1(q1)2(q1)2(q1)3+q(q1))\begin{pmatrix}0&0&0&0&0&q^{3}\\ 0&0&0&0&q^{2}&q^{2}(q-1)\\ 0&0&0&q^{2}&0&q^{2}(q-1)\\ 0&0&q&q(q-1)&q(q-1)&q(q-1)^{2}\\ 0&q&0&q(q-1)&q(q-1)&q(q-1)^{2}\\ 1&q-1&q-1&(q-1)^{2}&(q-1)^{2}&(q-1)^{3}+q(q-1)\end{pmatrix}

Thus the matrix of mutliplication by qTs1+qTs2qT_{s_{1}}+qT_{s_{2}} is

(0q20000qq(q1)0000000q20000qq(q1)0000000q20000qq(q1))+(00q20000000q20q0q(q1)00000000q20q00q(q1)0000q0q(q1))\begin{pmatrix}0&q^{2}&0&0&0&0\\ q&q(q-1)&0&0&0&0\\ 0&0&0&q^{2}&0&0\\ 0&0&q&q(q-1)&0&0\\ 0&0&0&0&0&q^{2}\\ 0&0&0&0&q&q(q-1)\end{pmatrix}+\begin{pmatrix}0&0&q^{2}&0&0&0\\ 0&0&0&0&q^{2}&0\\ q&0&q(q-1)&0&0&0\\ 0&0&0&0&0&q^{2}\\ 0&q&0&0&q(q-1)&0\\ 0&0&0&q&0&q(q-1)\end{pmatrix}
=(0q2q2000qq(q1)00q20q0q(q1)q20000qq(q1)0q20q00q(q1)q2000qq2q(q1))=\begin{pmatrix}0&q^{2}&q^{2}&0&0&0\\ q&q(q-1)&0&0&q^{2}&0\\ q&0&q(q-1)&q^{2}&0&0\\ 0&0&q&q(q-1)&0&q^{2}\\ 0&q&0&0&q(q-1)&q^{2}\\ 0&0&0&q&q&2q(q-1)\end{pmatrix}

and the matrix of multiplication by D21=qTs1+qTs2+Ts1s2s1D_{21}=qT_{s_{1}}+qT_{s_{2}}+T_{s_{1}s_{2}s_{1}} is

(0q2q200q3qq(q1)002q2q2(q1)q0q(q1)2q20q2(q1)002q2q(q1)q(q1)q2+q(q1)202q0q(q1)2q(q1)q2+q(q1)21q1q1q+(q1)2q+(q1)2(q1)3+3q(q1))\begin{pmatrix}0&q^{2}&q^{2}&0&0&q^{3}\\ q&q(q-1)&0&0&2q^{2}&q^{2}(q-1)\\ q&0&q(q-1)&2q^{2}&0&q^{2}(q-1)\\ 0&0&2q&2q(q-1)&q(q-1)&q^{2}+q(q-1)^{2}\\ 0&2q&0&q(q-1)&2q(q-1)&q^{2}+q(q-1)^{2}\\ 1&q-1&q-1&q+(q-1)^{2}&q+(q-1)^{2}&(q-1)^{3}+3q(q-1)\end{pmatrix}

5 Row reduction for GL3(𝔽q)GL_{3}(\mathbb{F}_{q})

For c𝔽qc\in\mathbb{F}_{q} define

y1(c)=(c10100001),y2(c)=(1000c1010),y_{1}(c)=\begin{pmatrix}c&1&0\\ 1&0&0\\ 0&0&1\end{pmatrix},\qquad\qquad y_{2}(c)=\begin{pmatrix}1&0&0\\ 0&c&1\\ 0&1&0\end{pmatrix},
s1=y1(0)=(010100001),s2=y2(0)=(100001010),s_{1}=y_{1}(0)=\begin{pmatrix}0&1&0\\ 1&0&0\\ 0&0&1\end{pmatrix},\qquad\qquad s_{2}=y_{2}(0)=\begin{pmatrix}1&0&0\\ 0&0&1\\ 0&1&0\end{pmatrix},
x12(c)=(1c0010001),x23(c)=(10001c001),x13(c)=(10c010001),x_{12}(c)=\begin{pmatrix}1&c&0\\ 0&1&0\\ 0&0&1\end{pmatrix},\qquad\qquad x_{23}(c)=\begin{pmatrix}1&0&0\\ 0&1&c\\ 0&0&1\end{pmatrix},\qquad\qquad x_{13}(c)=\begin{pmatrix}1&0&c\\ 0&1&0\\ 0&0&1\end{pmatrix},

and for d𝔽q×d\in\mathbb{F}_{q}^{\times} define

h1(d)=(d00001001),h2(d)=(1000d0001),h3(d)=(10001000d).h_{1}(d)=\begin{pmatrix}d&0&0\\ 0&0&1\\ 0&0&1\end{pmatrix},\qquad\qquad h_{2}(d)=\begin{pmatrix}1&0&0\\ 0&d&0\\ 0&0&1\end{pmatrix},\qquad\qquad h_{3}(d)=\begin{pmatrix}1&0&0\\ 0&1&0\\ 0&0&d\end{pmatrix}.

Then, coset representatives of cosets of BB in the double cosets in B\G/BB\backslash G/B

B1B\displaystyle B1B ={B},\displaystyle=\{B\},
Bs1B\displaystyle Bs_{1}B ={y1(c)B|c𝔽q×},\displaystyle=\{y_{1}(c)B\ |\ c\in\mathbb{F}^{\times}_{q}\},
Bs2B\displaystyle Bs_{2}B ={y2(c)B|c𝔽q×},\displaystyle=\{y_{2}(c)B\ |\ c\in\mathbb{F}^{\times}_{q}\},
Bs1s2B\displaystyle Bs_{1}s_{2}B ={y1(c1)y2(c2)B|c1,c2𝔽q×},\displaystyle=\{y_{1}(c_{1})y_{2}(c_{2})B\ |\ c_{1},c_{2}\in\mathbb{F}^{\times}_{q}\},
Bs2s1B\displaystyle Bs_{2}s_{1}B ={y2(c1)y1(c2)B|c1,c2𝔽q×},\displaystyle=\{y_{2}(c_{1})y_{1}(c_{2})B\ |\ c_{1},c_{2}\in\mathbb{F}^{\times}_{q}\},
Bs1s2s1B\displaystyle Bs_{1}s_{2}s_{1}B ={y1(c1)y2(c2)y1(c1)B|c1,c2,c3𝔽q×},\displaystyle=\{y_{1}(c_{1})y_{2}(c_{2})y_{1}(c_{1})B\ |\ c_{1},c_{2},c_{3}\in\mathbb{F}^{\times}_{q}\},

and

B\displaystyle B ={h1(d1)h2(d2)h3(d3)x23(c3)x13(c2)x12(c1)|c1c2c3𝔽q,d1,d2,d3𝔽q×}\displaystyle=\{h_{1}(d_{1})h_{2}(d_{2})h_{3}(d_{3})x_{23}(c_{3})x_{13}(c_{2})x_{12}(c_{1})\ |\ c_{1}c_{2}c_{3}\in\mathbb{F}^{q},d_{1},d_{2},d_{3}\in\mathbb{F}^{\times}_{q}\}
={(d1d1c1d1c20d2d2c300d3)|c1c2c3𝔽q,d1,d2,d3𝔽q×},\displaystyle=\left\{\begin{pmatrix}d_{1}&d_{1}c_{1}&d_{1}c_{2}\\ 0&d_{2}&d_{2}c_{3}\\ 0&0&d_{3}\end{pmatrix}\ \Big{|}\ c_{1}c_{2}c_{3}\in\mathbb{F}^{q},d_{1},d_{2},d_{3}\in\mathbb{F}^{\times}_{q}\right\},

so that Card(B)=(q1)3q3\mathrm{Card}(B)=(q-1)^{3}q^{3} (or, in general, Card(B)=(q1)nq12n(n1)\mathrm{Card}(B)=(q-1)^{n}q^{\frac{1}{2}n(n-1)}).

If c10c_{1}\neq 0 and c20c_{2}\neq 0 then

(c1110)(c2110)=(c1c2+1110)=(c100c2)(c2+c11110)\begin{pmatrix}c_{1}&1\\ 1&0\end{pmatrix}\begin{pmatrix}c_{2}&1\\ 1&0\end{pmatrix}=\begin{pmatrix}c_{1}c_{2}+1&1\\ 1&0\end{pmatrix}=\begin{pmatrix}c_{1}&0\\ 0&c_{2}\end{pmatrix}\begin{pmatrix}c_{2}+c^{-1}_{1}&1\\ 1&0\end{pmatrix}

If c20c_{2}\neq 0 then

(0110)(c2110)=(11c20)=(c21110)(c2001)(1101)\begin{pmatrix}0&1\\ 1&0\end{pmatrix}\begin{pmatrix}c_{2}&1\\ 1&0\end{pmatrix}=\begin{pmatrix}1&1\\ c_{2}&0\end{pmatrix}=\begin{pmatrix}c_{2}^{-1}&1\\ 1&0\end{pmatrix}\begin{pmatrix}c_{2}&0\\ 0&-1\end{pmatrix}\begin{pmatrix}1&1\\ 0&1\end{pmatrix}

If c2=0c_{2}=0 then

(c1110)(0110)=(1c101)\begin{pmatrix}c_{1}&1\\ 1&0\end{pmatrix}\begin{pmatrix}0&1\\ 1&0\end{pmatrix}=\begin{pmatrix}1&c_{1}\\ 0&1\end{pmatrix}

Thus the reflection relation is

yi(c1)yi(c2)={yi(c11+c2)hi(c2)hi+1(c1),if c10 and c20,yi(c21)hi(c2)hi+1(1)xi,i+1(1),if c1=0 and c20,xi,i+1(c1),if c2=0.y_{i}(c_{1})y_{i}(c_{2})=\begin{cases}y_{i}(c_{1}^{-1}+c_{2})h_{i}(c_{2})h_{i+1}(c_{1}),&\hbox{if $c_{1}\neq 0$ and $c_{2}\neq 0$},\\ y_{i}(c_{2}^{-1})h_{i}(c_{2})h_{i+1}(-1)x_{i,i+1}(1),&\hbox{if $c_{1}=0$ and $c_{2}\neq 0$},\\ x_{i,i+1}(c_{1}),&\hbox{if $c_{2}=0$.}\end{cases} (5.1)

Since

(c110100001)(1000c21010)(c310100001)\displaystyle\begin{pmatrix}c_{1}&1&0\\ 1&0&0\\ 0&0&1\end{pmatrix}\begin{pmatrix}1&0&0\\ 0&c_{2}&1\\ 0&1&0\end{pmatrix}\begin{pmatrix}c_{3}&1&0\\ 1&0&0\\ 0&0&1\end{pmatrix} =(c1c3+c210c310100)\displaystyle=\begin{pmatrix}c_{1}c_{3}+c_{2}&1&0\\ c_{3}&1&0\\ 1&0&0\end{pmatrix}
=(1000c31010)(c1c3+c210100001)(1000c11010)\displaystyle=\begin{pmatrix}1&0&0\\ 0&c_{3}&1\\ 0&1&0\end{pmatrix}\begin{pmatrix}c_{1}c_{3}+c_{2}&1&0\\ 1&0&0\\ 0&0&1\end{pmatrix}\begin{pmatrix}1&0&0\\ 0&c_{1}&1\\ 0&1&0\end{pmatrix}

then the building relation is

yi(c1)yi+1(c2)yi(c3)=yi+1(c3)yi(c1c3+c2)yi+1(c1).y_{i}(c_{1})y_{i+1}(c_{2})y_{i}(c_{3})=y_{i+1}(c_{3})y_{i}(c_{1}c_{3}+c_{2})y_{i+1}(c_{1}). (5.2)

The reflection relations and the building relations are the relations for rearranging yys. Since

(1c101)(1c201)=(1c1+c201)\begin{pmatrix}1&c_{1}\\ 0&1\end{pmatrix}\begin{pmatrix}1&c_{2}\\ 0&1\end{pmatrix}=\begin{pmatrix}1&c_{1}+c_{2}\\ 0&1\end{pmatrix}

the x-interchange relations are

xij(c1)xij(c2)\displaystyle x_{ij}(c_{1})x_{ij}(c_{2}) =xij(c1+c2),\displaystyle=x_{ij}(c_{1}+c_{2}),
xij(c1)xik(c2)\displaystyle x_{ij}(c_{1})x_{ik}(c_{2}) =xik(c2)xij(c1),\displaystyle=x_{ik}(c_{2})x_{ij}(c_{1}),\qquad\qquad xik(c1)xjk(c2)\displaystyle x_{ik}(c_{1})x_{jk}(c_{2}) =xjk(c2)xik(c1),\displaystyle=x_{jk}(c_{2})x_{ik}(c_{1}),
xij(c1)xjk(c2)\displaystyle x_{ij}(c_{1})x_{jk}(c_{2}) =xjk(c2)xij(c1)xik(c1c2),\displaystyle=x_{jk}(c_{2})x_{ij}(c_{1})x_{ik}(c_{1}c_{2}),\qquad\qquad xjk(c1)xij(c2)\displaystyle x_{jk}(c_{1})x_{ij}(c_{2}) =xij(c2)xjk(c1)xik(c1c2),\displaystyle=x_{ij}(c_{2})x_{jk}(c_{1})x_{ik}(-c_{1}c_{2}),

where we assume that i<j<ki<j<k. Since

(d100d2)(c110)=(cd1d1d20)=(cd1d21110)(d200d1)\begin{pmatrix}d_{1}&0\\ 0&d_{2}\end{pmatrix}\begin{pmatrix}c&1\\ 1&0\end{pmatrix}=\begin{pmatrix}cd_{1}&d_{1}\\ d_{2}&0\end{pmatrix}=\begin{pmatrix}cd_{1}d_{2}^{-1}&1\\ 1&0\end{pmatrix}\begin{pmatrix}d_{2}&0\\ 0&d_{1}\end{pmatrix}

then the h-past-y relation is (letting h(d1,,dn)=h1(d1)hn(dn)h(d_{1},\ldots,d_{n})=h_{1}(d_{1})\cdots h_{n}(d_{n}))

h(d1,dn)yi(c)=yi(cdidi+11)h(d1,,di1,di+1,di,di+2,,dn).h(d_{1},\ldots d_{n})y_{i}(c)=y_{i}(cd_{i}d_{i+1}^{-1})h(d_{1},\ldots,d_{i-1},d_{i+1},d_{i},d_{i+2},\ldots,d_{n}). (5.3)

The h-past-x relation is

h(d1,,dn)xij(c)=xij(cdidj1)h(d1,,dn).h(d_{1},\ldots,d_{n})x_{ij}(c)=x_{ij}(cd_{i}d^{-1}_{j})h(d_{1},\ldots,d_{n}). (5.4)

The x-past-y relations are

xi,i+1(c1)yi(c2)=yi(c1+c2)xi,i+1(0),\displaystyle x_{i,i+1}(c_{1})y_{i}(c_{2})=y_{i}(c_{1}+c_{2})x_{i,i+1}(0),
xik(c1)yk(c2)\displaystyle x_{ik}(c_{1})y_{k}(c_{2}) =yk(c2)xik(c1c2)xi,k+1(c1),xi,k+1(c1)yk(c2)=yk(c2)xik(c1),\displaystyle=y_{k}(c_{2})x_{ik}(c_{1}c_{2})x_{i,k+1}(c_{1}),\qquad x_{i,k+1}(c_{1})y_{k}(c_{2})=y_{k}(c_{2})x_{ik}(c_{1}), (5.5)
xij(c1)yi(c2)\displaystyle x_{ij}(c_{1})y_{i}(c_{2}) =yi(c2)xi+1,j(c1),xi+1,j(c1)yi(c2)=yi(c2)xij(c1)xi+1,j(c1c2),\displaystyle=y_{i}(c_{2})x_{i+1,j}(c_{1}),\qquad x_{i+1,j}(c_{1})y_{i}(c_{2})=y_{i}(c_{2})x_{ij}(c_{1})x_{i+1,j}(-c_{1}c_{2}),

where i<ki<k and i+1<ji+1<j. These follow from

(1c101)(c2110)=(c1+c2110),\begin{pmatrix}1&c_{1}\\ 0&1\end{pmatrix}\begin{pmatrix}c_{2}&1\\ 1&0\end{pmatrix}=\begin{pmatrix}c_{1}+c_{2}&1\\ 1&0\end{pmatrix},
(1c10010001)(1000c21010)=(1c1c2c1010001)=(1000c21010)(1c1c20010001)(10c1010001),\begin{pmatrix}1&c_{1}&0\\ 0&1&0\\ 0&0&1\end{pmatrix}\begin{pmatrix}1&0&0\\ 0&c_{2}&1\\ 0&1&0\end{pmatrix}=\begin{pmatrix}1&c_{1}c_{2}&c_{1}\\ 0&1&0\\ 0&0&1\end{pmatrix}=\begin{pmatrix}1&0&0\\ 0&c_{2}&1\\ 0&1&0\end{pmatrix}\begin{pmatrix}1&c_{1}c_{2}&0\\ 0&1&0\\ 0&0&1\end{pmatrix}\begin{pmatrix}1&0&c_{1}\\ 0&1&0\\ 0&0&1\end{pmatrix},
(10c1010001)(1000c21010)=(1c100c21010)=(1000c21010)(1c10010001),\begin{pmatrix}1&0&c_{1}\\ 0&1&0\\ 0&0&1\end{pmatrix}\begin{pmatrix}1&0&0\\ 0&c_{2}&1\\ 0&1&0\end{pmatrix}=\begin{pmatrix}1&c_{1}&0\\ 0&c_{2}&1\\ 0&1&0\end{pmatrix}=\begin{pmatrix}1&0&0\\ 0&c_{2}&1\\ 0&1&0\end{pmatrix}\begin{pmatrix}1&c_{1}&0\\ 0&1&0\\ 0&0&1\end{pmatrix},
(10c1010001)(c210101001)=(c21c1100001)=(c210101001)(10001c1001),\begin{pmatrix}1&0&c_{1}\\ 0&1&0\\ 0&0&1\end{pmatrix}\begin{pmatrix}c_{2}&1&0\\ 1&0&1\\ 0&0&1\end{pmatrix}=\begin{pmatrix}c_{2}&1&c_{1}\\ 1&0&0\\ 0&0&1\end{pmatrix}=\begin{pmatrix}c_{2}&1&0\\ 1&0&1\\ 0&0&1\end{pmatrix}\begin{pmatrix}1&0&0\\ 0&1&c_{1}\\ 0&0&1\end{pmatrix},
(10001c1001)(c210101001)=(c21010c1001)=(c210101001)(10c1010001)(10001c1c2001).\begin{pmatrix}1&0&0\\ 0&1&c_{1}\\ 0&0&1\end{pmatrix}\begin{pmatrix}c_{2}&1&0\\ 1&0&1\\ 0&0&1\end{pmatrix}=\begin{pmatrix}c_{2}&1&0\\ 1&0&c_{1}\\ 0&0&1\end{pmatrix}=\begin{pmatrix}c_{2}&1&0\\ 1&0&1\\ 0&0&1\end{pmatrix}\begin{pmatrix}1&0&c_{1}\\ 0&1&0\\ 0&0&1\end{pmatrix}\begin{pmatrix}1&0&0\\ 0&1&-c_{1}c_{2}\\ 0&0&1\end{pmatrix}.

5.1 Transvections in GL3(𝔽2)GL_{3}(\mathbb{F}_{2})

The size of GG is

Card(G)=(q31)(q3q)(q3q2)=764=424=168.\mathrm{Card}(G)=(q^{3}-1)(q^{3}-q)(q^{3}-q^{2})=7\cdot 6\cdot 4=42\cdot 4=168.

The number of transvections is

Card(𝒞u)=(qn1)(qn11)q1=73.\mathrm{Card}(\mathcal{C}_{u})=\frac{(q^{n}-1)(q^{n-1}-1)}{q-1}=7\cdot 3.

and these should distribute among the flags as either (5,4,4,0,0,8)(5,4,4,0,0,8) or (5,2,2,0,0,1)(5,2,2,0,0,1) (which differ just by the sizes of the corresponding double cosets). Consider

Ta,v(x)=x+v(atx)so thatTa,v(ei)=ei+aiv,T_{a,v}(x)=x+v(a^{t}x)\qquad\hbox{so that}\qquad T_{a,v}(e_{i})=e_{i}+a_{i}v,

and the iith column of Ta,vT_{a,v} is aiva_{i}v except with an extra 11 added to the iith entry. So

Ta,v=(1+a1v1a2v1a3v1anv1a1v21+a2v2a3v2anv2a1vna2vn1+anvn)=1+(aivj).T_{a,v}=\begin{pmatrix}1+a_{1}v_{1}&a_{2}v_{1}&a_{3}v_{1}&\cdots&a_{n}v_{1}\\ a_{1}v_{2}&1+a_{2}v_{2}&a_{3}v_{2}&\cdots&a_{n}v_{2}\\ \vdots&&&&\vdots\\ a_{1}v_{n}&a_{2}v_{n}&&\cdots&1+a_{n}v_{n}\end{pmatrix}=1+\big{(}a_{i}v_{j}\big{)}.

Case 1: a=e1+e2a=e_{1}+e_{2} and v=e1+e2v=e_{1}+e_{2}. Then

Ta,v(e1)=e1+(e1+e2)=e2,Ta,v(e2)=e2+(e1+e2)=e1,Ta,v(e3)=e3+0(e1+e2)=e3T_{a,v}(e_{1})=e_{1}+(e_{1}+e_{2})=e_{2},\quad T_{a,v}(e_{2})=e_{2}+(e_{1}+e_{2})=e_{1},\quad T_{a,v}(e_{3})=e_{3}+0(e_{1}+e_{2})=e_{3}

which has matrix

(010100001)=y1(0).\begin{pmatrix}0&1&0\\ 1&0&0\\ 0&0&1\end{pmatrix}=y_{1}(0).

The flag

𝐅231=(001100010)B=(010100001)(100001010)B=y1(0)y2(0)B,\mathbf{F}_{231}=\begin{pmatrix}0&0&1\\ 1&0&0\\ 0&1&0\end{pmatrix}B=\begin{pmatrix}0&1&0\\ 1&0&0\\ 0&0&1\end{pmatrix}\begin{pmatrix}1&0&0\\ 0&0&1\\ 0&1&0\end{pmatrix}B=y_{1}(0)y_{2}(0)B,

and

Ta,v𝐅231=y1(0)y1(0)y2(0)B=y2(0)B.T_{a,v}\mathbf{F}_{231}=y_{1}(0)y_{1}(0)y_{2}(0)B=y_{2}(0)B.

Case 2: a=e1+e2+e3a=e_{1}+e_{2}+e_{3} and v=e1+e2v=e_{1}+e_{2}. Then

Ta,v(e1)=e1+(e1+e2)=e2,Ta,v(e2)=e2+(e1+e2)=e1,Ta,v(e3)=e3+(e1+e2)=e1+e2+e3T_{a,v}(e_{1})=e_{1}+(e_{1}+e_{2})=e_{2},\quad T_{a,v}(e_{2})=e_{2}+(e_{1}+e_{2})=e_{1},\quad T_{a,v}(e_{3})=e_{3}+(e_{1}+e_{2})=e_{1}+e_{2}+e_{3}

which has matrix

(011101001)=y1(0)x13(1)x23(1).\begin{pmatrix}0&1&1\\ 1&0&1\\ 0&0&1\end{pmatrix}=y_{1}(0)x_{13}(1)x_{23}(1).

The group GL2(𝔽2)GL_{2}(\mathbb{F}_{2}) consists of 6=(41)(42)6=(4-1)(4-2) matrices which, grouped in conjugacy classes are

{(1001)}{(1101),(1011),(0110)}{(1110),(0111)}\left\{\begin{pmatrix}1&0\\ 0&1\end{pmatrix}\right\}\sqcup\left\{\begin{pmatrix}1&1\\ 0&1\end{pmatrix},\begin{pmatrix}1&0\\ 1&1\end{pmatrix},\begin{pmatrix}0&1\\ 1&0\end{pmatrix}\right\}\sqcup\left\{\begin{pmatrix}1&1\\ 1&0\end{pmatrix},\begin{pmatrix}0&1\\ 1&1\end{pmatrix}\right\}

It is generated by s1s_{1} and x12(1)x_{12}(1) which both have order 2, and there are two elements of order 3.

The group GL3(𝔽2)GL_{3}(\mathbb{F}_{2}) consists of 168=(81)(82)(84)=764168=(8-1)(8-2)(8-4)=7\cdot 6\cdot 4 matrices. It is generated by s1,s2,x12(1),x23(1)s_{1},s_{2},x_{12}(1),x_{23}(1) which all have order 2. Let’s write the 8 elements of BB in the form

B={x12(a)x23(b)x13(c)|a,b,c{0,1}}.B=\{x_{12}(a)x_{23}(b)x_{13}(c)\ |\ a,b,c\in\{0,1\}\}.

For sanity of computation, record

x12(1)y1(0)=y1(1),x12(1)y1(1)=y1(0),x12(1)y2(0)=y2(0)x13(1),x12(1)y2(1)=y2(1)x12(1)x13(1),x23(1)y1(0)=y1(0)x13(1),x23(1)y1(1)=y1(1)x13(1)x23(1),x23(1)y2(0)=y2(1),x23(1)y2(1)=y2(0),x13(1)y1(0)=y1(0)x23(1),x13(1)y1(1)=y1(1)x23(1),x13(1)y2(0)=y2(0)x12(1),x13(1)y2(1)=y2(1)x12(1),\begin{array}[]{ll}x_{12}(1)y_{1}(0)=y_{1}(1),&x_{12}(1)y_{1}(1)=y_{1}(0),\\ x_{12}(1)y_{2}(0)=y_{2}(0)x_{13}(1),&x_{12}(1)y_{2}(1)=y_{2}(1)x_{12}(1)x_{13}(1),\\ \\ x_{23}(1)y_{1}(0)=y_{1}(0)x_{13}(1),&x_{23}(1)y_{1}(1)=y_{1}(1)x_{13}(1)x_{23}(1),\\ x_{23}(1)y_{2}(0)=y_{2}(1),&x_{23}(1)y_{2}(1)=y_{2}(0),\\ \\ x_{13}(1)y_{1}(0)=y_{1}(0)x_{23}(1),&x_{13}(1)y_{1}(1)=y_{1}(1)x_{23}(1),\\ x_{13}(1)y_{2}(0)=y_{2}(0)x_{12}(1),&x_{13}(1)y_{2}(1)=y_{2}(1)x_{12}(1),\end{array}

Letting a\stackrel{{\scriptstyle a}}{{\to}} denote conjugation by aa, Then

y1(0)s1y1(0),y1(1)s1y1(0)y1(1)y1(0)=y1(0)x12(1)=y1(1),y2(0)s1y1(0)y2(0)y1(0),y2(1)s1y1(0)y2(1)y1(0),y1(0)s2y1(0)y2(0)y1(0),y1(1)s2y1(0)y2(1)y1(0)y2(0)s2y2(0),y2(1)s2y2(0)x23(1),\displaystyle\begin{array}[]{l}y_{1}(0)\stackrel{{\scriptstyle s_{1}}}{{\to}}y_{1}(0),\\ y_{1}(1)\stackrel{{\scriptstyle s_{1}}}{{\to}}y_{1}(0)y_{1}(1)y_{1}(0)=y_{1}(0)x_{12}(1)=y_{1}(1),\\ y_{2}(0)\stackrel{{\scriptstyle s_{1}}}{{\to}}y_{1}(0)y_{2}(0)y_{1}(0),\\ y_{2}(1)\stackrel{{\scriptstyle s_{1}}}{{\to}}y_{1}(0)y_{2}(1)y_{1}(0),\end{array}\qquad\qquad\begin{array}[]{l}y_{1}(0)\stackrel{{\scriptstyle s_{2}}}{{\to}}y_{1}(0)y_{2}(0)y_{1}(0),\\ y_{1}(1)\stackrel{{\scriptstyle s_{2}}}{{\to}}y_{1}(0)y_{2}(1)y_{1}(0)\\ y_{2}(0)\stackrel{{\scriptstyle s_{2}}}{{\to}}y_{2}(0),\\ y_{2}(1)\stackrel{{\scriptstyle s_{2}}}{{\to}}y_{2}(0)x_{23}(1),\end{array}
y1(0)x12(1)x12(1)y1(0)x12(1)=y1(1)x12(1),y1(1)x12(1)x12(1)y1(1)x12(1)=y1(0)x12(1),y2(0)x12(1)x12(1)y2(0)x12(1)=y2(0)x12(1)x13(1),y2(1)x12(1)x12(1)y2(1)x12(1)=y2(1)x13(1),y1(0)x23(1)x23(1)y1(0)x23(1)=y1(0)x23(1)x13(1),y1(1)x23(1)x23(1)y1(1)x23(1)=y1(1)x13(1),y2(0)x23(1)x23(1)y2(0)x23(1)=y2(1)x23(1),y2(1)x23(1)x23(1)y2(1)x23(1)=y2(0)x23(1),\displaystyle\begin{array}[]{l}y_{1}(0)\stackrel{{\scriptstyle x_{12}(1)}}{{\to}}x_{12}(1)y_{1}(0)x_{12}(1)=y_{1}(1)x_{12}(1),\\ y_{1}(1)\stackrel{{\scriptstyle x_{12}(1)}}{{\to}}x_{12}(1)y_{1}(1)x_{12}(1)=y_{1}(0)x_{12}(1),\\ y_{2}(0)\stackrel{{\scriptstyle x_{12}(1)}}{{\to}}x_{12}(1)y_{2}(0)x_{12}(1)=y_{2}(0)x_{12}(1)x_{13}(1),\\ y_{2}(1)\stackrel{{\scriptstyle x_{12}(1)}}{{\to}}x_{12}(1)y_{2}(1)x_{12}(1)=y_{2}(1)x_{13}(1),\end{array}\qquad\begin{array}[]{l}y_{1}(0)\stackrel{{\scriptstyle x_{23}(1)}}{{\to}}x_{23}(1)y_{1}(0)x_{23}(1)=y_{1}(0)x_{23}(1)x_{13}(1),\\ y_{1}(1)\stackrel{{\scriptstyle x_{23}(1)}}{{\to}}x_{23}(1)y_{1}(1)x_{23}(1)=y_{1}(1)x_{13}(1),\\ y_{2}(0)\stackrel{{\scriptstyle x_{23}(1)}}{{\to}}x_{23}(1)y_{2}(0)x_{23}(1)=y_{2}(1)x_{23}(1),\\ y_{2}(1)\stackrel{{\scriptstyle x_{23}(1)}}{{\to}}x_{23}(1)y_{2}(1)x_{23}(1)=y_{2}(0)x_{23}(1),\end{array}
x12(1)s1y1(1)x12(1),x23(1)s1x13(1),x13(1)s1x23(1),x12(1)s2x13(1),x23(1)s2y2(1)x23(1),x13(1)s2x12(1),\displaystyle\begin{array}[]{l}x_{12}(1)\stackrel{{\scriptstyle s_{1}}}{{\to}}y_{1}(1)x_{12}(1),\\ x_{23}(1)\stackrel{{\scriptstyle s_{1}}}{{\to}}x_{13}(1),\\ x_{13}(1)\stackrel{{\scriptstyle s_{1}}}{{\to}}x_{23}(1),\end{array}\qquad\qquad\begin{array}[]{l}x_{12}(1)\stackrel{{\scriptstyle s_{2}}}{{\to}}x_{13}(1),\\ x_{23}(1)\stackrel{{\scriptstyle s_{2}}}{{\to}}y_{2}(1)x_{23}(1),\\ x_{13}(1)\stackrel{{\scriptstyle s_{2}}}{{\to}}x_{12}(1),\end{array}
x12(1)x12(1)x12(1),x23(1)x12(1)x12(1)x23(1)x12(1)=x23(1)x13(1)x13(1)x12(1)x12(1)x13(1)x12(1)=x13(1),x12(1)x23(1)x23(1)x12(1)x23(1)=x12(1)x13(1),x23(1)x23(1)x23(1),x13(1)x23(1)x23(1)x13(1)x23(1)=x13(1),\displaystyle\begin{array}[]{l}x_{12}(1)\stackrel{{\scriptstyle x_{12}(1)}}{{\to}}x_{12}(1),\\ x_{23}(1)\stackrel{{\scriptstyle x_{12}(1)}}{{\to}}x_{12}(1)x_{23}(1)x_{12}(1)=x_{23}(1)x_{13}(1)\\ x_{13}(1)\stackrel{{\scriptstyle x_{12}(1)}}{{\to}}x_{12}(1)x_{13}(1)x_{12}(1)=x_{13}(1),\end{array}\qquad\begin{array}[]{l}x_{12}(1)\stackrel{{\scriptstyle x_{23}(1)}}{{\to}}x_{23}(1)x_{12}(1)x_{23}(1)=x_{12}(1)x_{13}(1),\\ x_{23}(1)\stackrel{{\scriptstyle x_{23}(1)}}{{\to}}x_{23}(1),\\ x_{13}(1)\stackrel{{\scriptstyle x_{23}(1)}}{{\to}}x_{23}(1)x_{13}(1)x_{23}(1)=x_{13}(1),\end{array}

Let 𝒞\mathcal{C} be the conjugacy class of x12(1)x_{12}(1). Then 𝒞B\mathcal{C}\cap B is

x12(1)x13(1)x23(1)x12(1)s2x23(1)s1x23(1)x12(1)x23(1)x13(1)\begin{array}[]{ccccccccc}x_{12}(1)x_{13}(1)\stackrel{{\scriptstyle x_{23}(1)}}{{\to}}&x_{12}(1)&\stackrel{{\scriptstyle s_{2}}}{{\to}}&x_{23}(1)&\stackrel{{\scriptstyle s_{1}}}{{\to}}&x_{23}(1)&\stackrel{{\scriptstyle x_{12}(1)}}{{\to}}&x_{23}(1)x_{13}(1)\end{array}

Then 𝒞Bs1B\mathcal{C}\cap Bs_{1}B is

y1(1)x12(1)x12(1)y1(0)x23(1)y1(0)x23(1)x13(1)x12(1)y1(1)x12(1)x23(1)\begin{array}[]{ccccccccc}y_{1}(1)x_{12}(1)&\stackrel{{\scriptstyle x_{12}(1)}}{{\to}}&y_{1}(0)&\stackrel{{\scriptstyle x_{23}(1)}}{{\to}}&y_{1}(0)x_{23}(1)x_{13}(1)&\stackrel{{\scriptstyle x_{12}(1)}}{{\to}}&y_{1}(1)x_{12}(1)x_{23}(1)\end{array}

Next, 𝒞Bs2B\mathcal{C}\cap Bs_{2}B is

y2(1)x23(1)x23(1)y2(0)x12(1)y2(0)x12(1)x13(1)x23(1)y2(1)x12(1)x23(1)\begin{array}[]{ccccccccc}y_{2}(1)x_{23}(1)&\stackrel{{\scriptstyle x_{23}(1)}}{{\to}}&y_{2}(0)&\stackrel{{\scriptstyle x_{12}(1)}}{{\to}}&y_{2}(0)x_{12}(1)x_{13}(1)&\stackrel{{\scriptstyle x_{23}(1)}}{{\to}}&y_{2}(1)x_{12}(1)x_{23}(1)\end{array}

Finally 𝒞Bs1s2s1B\mathcal{C}\cap Bs_{1}s_{2}s_{1}B is

y1(0)y2(0)y1(0)x12(1)y1(1)y2(0)y1(0)x12(1)x23(1)y1(1)y2(1)y1(1)x12(1)x23(1)\begin{array}[]{ccccccccc}y_{1}(0)y_{2}(0)y_{1}(0)&\stackrel{{\scriptstyle x_{12}(1)}}{{\to}}&y_{1}(1)y_{2}(0)y_{1}(0)x_{12}(1)&\stackrel{{\scriptstyle x_{23}(1)}}{{\to}}&y_{1}(1)y_{2}(1)y_{1}(1)x_{12}(1)x_{23}(1)\end{array}
x12(1)y1(0)y2(1)y1(1)x13(1)x13(1)x23(1)y1(0)y2(1)y1(0)x13(1)x12(1)y1(1)y2(1)y1(0)x12(1)x13(1)\begin{array}[]{ccccccccc}\stackrel{{\scriptstyle x_{12}(1)}}{{\to}}&y_{1}(0)y_{2}(1)y_{1}(1)x_{13}(1)x_{13}(1)&\stackrel{{\scriptstyle x_{23}(1)}}{{\to}}&y_{1}(0)y_{2}(1)y_{1}(0)x_{13}(1)&\stackrel{{\scriptstyle x_{12}(1)}}{{\to}}&y_{1}(1)y_{2}(1)y_{1}(0)x_{12}(1)x_{13}(1)\end{array}
x23(1)y1(1)y2(0)y1(1)x12(1)x23(1)x13(1)x12(1)y1(0)y2(0)y1(1)x23(1)\begin{array}[]{ccccccccc}\stackrel{{\scriptstyle x_{23}(1)}}{{\to}}y_{1}(1)y_{2}(0)y_{1}(1)x_{12}(1)x_{23}(1)x_{13}(1)\stackrel{{\scriptstyle x_{12}(1)}}{{\to}}y_{1}(0)y_{2}(0)y_{1}(1)x_{23}(1)\end{array}