This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Transport of Zariski density in compatible collections of GG-representations

Jake Huryn and Yifei Zhang
Abstract

Let XX be a connected normal scheme of finite type over 𝐙\mathbf{Z}, let GG be a connected reductive group over 𝐐\mathbf{Q}, and let {ρ:π1(X[1/])G(𝐐)}\{\rho_{\ell}\colon\pi_{1}(X[1/\ell])\to G(\mathbf{Q}_{\ell})\}_{\ell} be a Frobenius-compatible collection of continuous homomorphisms indexed by the primes. Assume Img(ρ)\mathrm{Img}(\rho_{\ell}) is Zariski-dense in G𝐐G_{\mathbf{Q}_{\ell}} for all \ell in a nonempty finite set \mathcal{R}. We prove that, under certain hypotheses on \mathcal{R} (depending only on GG), Img(ρ)\operatorname{Img}(\rho_{\ell}) is Zariski-dense in G𝐐G_{\mathbf{Q}_{\ell}} for all \ell in a set of Dirichlet density 11. As an application, we combine this result with a version of Hilbert’s irreducibility theorem and recent work of Klevdal–Patrikis to obtain new information about the “canonical” local systems attached to Shimura varieties not of Abelian type.

1. Introduction

See §1.4 for a summary of the notation used throughout.

         1.1. Motivic background

1.1.1.

In this item, let us assume all the standard conjectures on pure motives. Let XX be a connected normal scheme of finite type over 𝐙\mathbf{Z}. Consider a collection {ρ:π1(X𝐙[1/])GLn(𝐐)}\{\rho_{\ell}\colon\pi_{1}(X_{\mathbf{Z}[1/\ell]})\to\operatorname{GL}_{n}(\mathbf{Q}_{\ell})\}_{\ell} of (continuous) representations of the étale fundamental group of XX. Suppose {ρ}\{\rho_{\ell}\}_{\ell} is of geometric origin, e.g. ρ\rho_{\ell} arises as the monodromy representation of the \ell-adic local system Rif𝐐R^{i}f_{*}\mathbf{Q}_{\ell} for a fixed smooth proper family ff over XX. Tate’s conjecture then has the following consequence: the algebraic monodromy groups MImg(ρ)¯ZarM_{\ell}\coloneqq\overline{\operatorname{Img}(\rho_{\ell})}{}^{\mathrm{Zar}} are independent of \ell in the sense that MG𝐐M_{\ell}\cong G_{\mathbf{Q}_{\ell}} for some algebraic group GG over 𝐐\mathbf{Q} [And04, Proposition 7.3.2.1]. This GG is the “motivic Galois group” of the family ff,111 More precisely, of the pure numerical motive over the function field of XX defined by ff. and a theorem of Jannsen [Jan92] predicts that GG is a (possibly non-connected) reductive group.

On the other hand, by the Riemann hypothesis for varieties over finite fields, {ρ}\{\rho_{\ell}\}_{\ell} is compatible in the sense that for any closed point ss of XX, the characteristic polynomial of ρ(Frobs)\rho_{\ell}(\operatorname{Frob}_{s}), an element of 𝐐[t]\mathbf{Q}_{\ell}[t], lives in 𝐐[t]\mathbf{Q}[t] and is independent of \ell when char(κs)\ell\neq\operatorname{char}(\kappa_{s}).

Assuming Tate’s conjecture, the Tannakian formalism allows one to upgrade {ρ}\{\rho_{\ell}\}_{\ell} to a collection {ρ~:π1(X𝐙[1/])G(𝐐)}\{\widetilde{\rho}_{\ell}\colon\pi_{1}(X_{\mathbf{Z}[1/\ell]})\to G(\mathbf{Q}_{\ell})\}_{\ell} of GG-representations all having Zariski-dense image which is compatible in the sense that {ξρ~}\{\xi\circ\widetilde{\rho}_{\ell}\}_{\ell} is compatible for any 𝐐\mathbf{Q}-representation ξ:GGLr\xi\colon G\to\operatorname{GL}_{r}. If GG is connected, this is equivalent to the following apparently stronger form of compatibility: For each closed point ss of XX, there exists an element gG(𝐐¯)g\in G(\overline{\mathbf{Q}}) whose conjugacy class is defined over 𝐐\mathbf{Q} (i.e. Gal𝐐\operatorname{Gal}_{\mathbf{Q}}-stable) such that the semisimple part of ρ(Frobs)\rho_{\ell}(\operatorname{Frob}_{s}) is conjugate in G(𝐐¯)G(\overline{\mathbf{Q}_{\ell}}) to gg.222 We have to fix some embeddings 𝐐¯𝐐¯\overline{\mathbf{Q}}\hookrightarrow\overline{\mathbf{Q}_{\ell}}, but nothing will depend on them. Note that, in general, a conjugacy class defined over 𝐐\mathbf{Q} will not contain an element defined over 𝐐\mathbf{Q}, i.e. we cannot take gG(𝐐)g\in G(\mathbf{Q}). The equivalence stated here is an immediate consequence of the facts that the ring of class functions on a connected reductive group is generated by the characters of irreducible representations, separates semisimple conjugacy classes, and detects the field of definition of a semisimple conjugacy class. An alternative statement of compatibility uses the variety G//GG/\!\!/G of semisimple conjugacy classes, defined as the GIT quotient Spec(𝒪(G)G)\operatorname{Spec}(\mathcal{O}(G)^{G}) with respect to the conjugation action. For an algebraically closed field FF, the map []:GG//G[-]\colon G\to G/\!\!/G induces a bijection between (G//G)(F)(G/\!\!/G)(F) and the set of semisimple conjugacy classes in G(F)G(F). The compatibility of {ρ~}\{\widetilde{\rho}_{\ell}\}_{\ell} means that the elements [ρ~(Frobs)](G//G)(𝐐)[\widetilde{\rho}_{\ell}(\operatorname{Frob}_{s})]\in(G/\!\!/G)(\mathbf{Q}_{\ell}), for char(κs)\ell\neq\operatorname{char}(\kappa_{s}), arise from a common element of (G//G)(𝐐)(G/\!\!/G)(\mathbf{Q}).

In an attempt to verify some consequences of these conjectures about pure motives, this paper considers the following question:

1.1.2. Question.

Given an “abstract” compatible collection {ρ:ΓG(𝐐)}\{\rho_{\ell}\colon\Gamma\to G(\mathbf{Q}_{\ell})\}_{\ell} (a notion formalized in Definition 3.1.1 below), to what extent are its algebraic monodromy groups MImg(ρ)¯ZarM_{\ell}\coloneqq\overline{\operatorname{Img}(\rho_{\ell})}{}^{\mathrm{Zar}} independent of \ell?

Work of Serre implies that the rank and component group of MM_{\ell} are independent of \ell [Ser13a, §2], [Ser13b, 2.2.3]. By delicate group theoretic arguments, Larsen–Pink obtained various other partial results in [LP92]. For example, they prove that the dimension and Weyl group of MM_{\ell} depend, for \ell from a set of Dirichlet density 11, only on the Frobenius conjugacy class of \ell in a fixed number field. When Γ\Gamma is the absolute Galois group of a number field, more is known, e.g. [Ser98, Chapter 3], [Hui13], as well as when Γ\Gamma is the étale fundamental group of a smooth variety over a finite field, e.g. [Chi04], [Dri18].

We do not approach Question 1.1.2 in complete generality, but rather focus on the following special case:

1.1.3. Question.

If M0=G𝐐0M_{\ell_{0}}=G_{\mathbf{Q}_{\ell_{0}}} for one 0\ell_{0}, can we conclude that M=G𝐐M_{\ell}=G_{\mathbf{Q}_{\ell}} for all \ell in a set of Dirichlet density 11? (From [LP92, Counterexample 10.4] we see that, in this abstract setting, the answer is “no” if we ask that M=G𝐐M_{\ell}=G_{\mathbf{Q}_{\ell}} for all but finitely many \ell.)

         1.2. First main result

Our first result gives a partial positive answer to Question 1.1.3, the caveat being that in many situations, we must replace 0\ell_{0} by a finite set of primes.

1.2.1. Definition.

Let GG be a connected reductive group over 𝐐\mathbf{Q}, and let E|𝐐E|\mathbf{Q} be the minimal extension such that GalE\operatorname{Gal}_{E} acts trivially on the Dynkin diagram of GG. Let’s say that a finite set \mathcal{R} of primes is GG-good if for each conjugacy class CC of Gal(E|𝐐)\operatorname{Gal}(E|\mathbf{Q}), there exists C\ell_{C}\in\mathcal{R} such that

  1. (a)

    C\ell_{C} is unramified in E|𝐐E|\mathbf{Q}.

  2. (b)

    the Frobenius conjugacy class of C\ell_{C} in Gal(E|𝐐)\operatorname{Gal}(E|\mathbf{Q}) is CC.

  3. (c)

    G𝐐CG_{\mathbf{Q}_{\ell_{C}}} is quasisplit. (It is well known that G𝐐G_{\mathbf{Q}_{\ell}} is quasisplit for all but finitely many \ell.)

Theorem A (Theorem 3.2.1 below).

Let GG be a connected reductive group over 𝐐\mathbf{Q}, and let {ρ:ΓG(𝐐)}\{\rho_{\ell}\colon\Gamma\to G(\mathbf{Q}_{\ell})\}_{\ell\in\mathcal{L}} be an abstract compatible collection of GG-representations such that \mathcal{L} is a set of Dirichlet density 11. For each \ell\in\mathcal{L}, let MImg(ρ)¯ZarM_{\ell}\coloneqq\overline{\operatorname{Img}(\rho_{\ell})}{}^{\mathrm{Zar}}. If there exists a GG-good set \mathcal{R}\subseteq\mathcal{L} such that M=G𝐐M_{\ell}=G_{\mathbf{Q}_{\ell}} for each \ell\in\mathcal{R}, then {:M=G𝐐}\{\ell\in\mathcal{L}\colon M_{\ell}=G_{\mathbf{Q}_{\ell}}\} has Dirichlet density 11.

1.2.2. Remark.

  1. (a)

    In particular, when the Gal𝐐\operatorname{Gal}_{\mathbf{Q}}-action on the Dynkin diagram is trivial, the conclusion of Theorem A becomes nicer: If M=G𝐐M_{\ell}=G_{\mathbf{Q}_{\ell}} for a single prime 0\ell_{0} for which G𝐐0G_{\mathbf{Q}_{\ell_{0}}} is quasisplit, then {:M=G𝐐}\{\ell\in\mathcal{L}\colon M_{\ell}=G_{\mathbf{Q}_{\ell}}\} has Dirichlet density 11.

  2. (b)

    Since Theorem A applies to any reductive GG over 𝐐\mathbf{Q}, we can use a restriction-of-scalars argument to deduce a version with “coefficients in any number field”. Specifically, let {ρλ:ΓG(Kλ)}λ\{\rho_{\lambda}\colon\Gamma\to G(K_{\lambda})\}_{\lambda\in\mathcal{L}} be an abstract compatible collection, where KK is a number field, GG is a connected reductive group over KK, and \mathcal{L} is a set of primes of KK. Then we obtain a collection {ρ:ΓG0(𝐐)}0\{\rho_{\ell}\colon\Gamma\to G_{0}(\mathbf{Q}_{\ell})\}_{\ell\in\mathcal{L}_{0}}, where G0ResK|𝐐(G)G_{0}\coloneqq\operatorname{Res}_{K|\mathbf{Q}}(G) (Weil’s restriction of scalars) and 0\mathcal{L}_{0} is the set of rational primes all of whose prime divisors in KK live in \mathcal{L}. It is easily checked that {ρ}0\{\rho_{\ell}\}_{\ell\in\mathcal{L}_{0}} is again compatible. So Theorem A may be invoked: If 0\mathcal{L}_{0} has Dirichlet density 11, and there exists a G0G_{0}-good set \mathcal{R} such that Mλ=GKλM_{\lambda}=G_{K_{\lambda}} for all λ\lambda dividing an element of \mathcal{R}, then there exists a set 00\mathcal{L}_{0}^{\prime}\subseteq\mathcal{L}_{0} of Dirichlet density 11 such that Mλ=GKλM_{\lambda}=G_{K_{\lambda}} for all λ\lambda dividing an element of 0\mathcal{L}_{0}^{\prime}.

  3. (c)

    When GG is semisimple, Serre has shown, using an argument with Lie algebras, that a Zariski-dense subgroup of G(𝐐)G(\mathbf{Q}_{\ell}) must be open for the \ell-adic topology [Ser67, Corollary to Proposition 2]. In the setting of Theorem A, we can use the compatibility of {ρ}\{\rho_{\ell}\}_{\ell} to invoke [Lar95, Theorem 3.17] and obtain more: for all \ell in a set of Dirichlet density 11, Img(ρ)\operatorname{Img}(\rho_{\ell}) is not just open in G(𝐐)G(\mathbf{Q}_{\ell}) but “close” to being a maximal compact subgroup in the following sense. Consider the natural maps

    G𝜎G/R(G)𝜏Gsc,G\xrightarrow{\sigma}G/\mathrm{R}(G)\xleftarrow{\tau}G^{\mathrm{sc}},

    where R(G)\mathrm{R}(G) is the radical of GG and GscG^{\mathrm{sc}} is the simply connected cover of G/R(G)G/\mathrm{R}(G); then τ1(σ(Img(ρ)))\tau^{-1}(\sigma(\operatorname{Img}(\rho_{\ell}))) is a hyperspecial subgroup of Gsc(𝐐)G^{\mathrm{sc}}(\mathbf{Q}_{\ell}), meaning that G𝐐scG^{\mathrm{sc}}_{\mathbf{Q}_{\ell}} spreads out to a reductive group over 𝐙\mathbf{Z}_{\ell}, and τ1(σ(Img(ρ)))=Gsc(𝐙)\tau^{-1}(\sigma(\operatorname{Img}(\rho_{\ell})))=G^{\mathrm{sc}}(\mathbf{Z}_{\ell}) for some such spreading-out.

  4. (d)

    Let {ρ:ΓG(𝐐)}\{\rho_{\ell}\colon\Gamma\to G(\mathbf{Q}_{\ell})\}_{\ell\in\mathcal{L}} be any abstract compatible collection of GG-representations, where GG is semisimple, and assume that MM_{\ell} is of maximal rank in G𝐐G_{\mathbf{Q}_{\ell}} for one \ell\in\mathcal{L}. Also, fix a faithful 𝐐\mathbf{Q}-representation ξ:GGLr\xi\colon G\to\operatorname{GL}_{r}. By the result of Serre mentioned above [Ser13a, §3], MM_{\ell} is then of maximal rank in G𝐐G_{\mathbf{Q}_{\ell}} for all \ell\in\mathcal{L}. It follows from [Dyn52, Theorem 7.1] that if ξ\xi is absolutely irreducible, then ξρ\xi\circ\rho_{\ell} is absolutely irreducible precisely when M=G𝐐M_{\ell}=G_{\mathbf{Q}_{\ell}}. Thus Theorem A can be interpreted as a “transport of irreducibility” result for the very special class of compatible collections of GLr\operatorname{GL}_{r}-representations of the form {ξρ}\{\xi\circ\rho_{\ell}\}_{\ell}.

  5. (e)

    On the proof: We rely heavily on the ideas developed in [LP92] and can think of no better introduction to them than the first three pages of loc. cit., which in particular walks the reader through the proof of Theorem A for G=SL2G=\operatorname{SL}_{2}.

         1.3. Second main result and application to Shimura varieties

Our second result is a straightforward application of Theorem A. In the statement, we write ρ,x\rho_{\ell,x} for the restriction of ρ\rho_{\ell} to π1({x})\pi_{1}(\{x\}) (see (d) of §1.4 below) and M,xImg(ρ,x)¯ZarM_{\ell,x}\coloneqq\overline{\operatorname{Img}(\rho_{\ell,x})}{}^{\mathrm{Zar}}.

Theorem B (Theorem 4.2.2 below).

Let XX be a connected normal scheme of finite type over 𝐙\mathbf{Z} such that dim(X𝐐)1\dim(X_{\mathbf{Q}})\geq 1, and let {ρ:π1(X𝐙[1/])G(𝐐)}\{\rho_{\ell}\colon\pi_{1}(X_{\mathbf{Z}[1/\ell]})\to G(\mathbf{Q}_{\ell})\}_{\ell\in\mathcal{L}} be a compatible collection of GG-representations, where GG is a connected reductive group over 𝐐\mathbf{Q} and \mathcal{L} is a set of Dirichlet density 11. Assume that M=G𝐐M_{\ell}=G_{\mathbf{Q}_{\ell}} for each \ell\in\mathcal{L}.

Suppose xx is a closed point of X𝐐X_{\mathbf{Q}} with the following property: There exists a positive integer NN such that xx extends to an element of X(𝐙¯[1/N])X(\overline{\mathbf{Z}}[1/N]) and a GG-good set \mathcal{R}\subseteq\mathcal{L} of primes not dividing NN such that M,x=G𝐐M_{\ell,x}=G_{\mathbf{Q}_{\ell}} for each \ell\in\mathcal{R}. Then {:M,x=G𝐐}\{\ell\in\mathcal{L}\colon M_{\ell,x}=G_{\mathbf{Q}_{\ell}}\} has Dirichlet density 11.

Moreover, there exists a positive integer dd and infinitely many xx satisfying the hypotheses of the previous paragraph and also satisfying [κx:𝐐]d[\kappa_{x}:\mathbf{Q}]\leq d.

1.3.1. Remark.

  1. (a)

    The bound on the residue degree is explicit: If X𝐐X_{\mathbf{Q}} admits a finite morphism to 𝐀𝐐n\mathbf{A}^{n}_{\mathbf{Q}} of degree dd, then this number works in the final sentence of the statement of Theorem B. In particular, if X𝐐X_{\mathbf{Q}} admits the structure of a rational kk-variety, where kk is a number field, then we may take κx=k\kappa_{x}=k. Moreover, if X𝐐𝐀𝐐nX_{\mathbf{Q}}\to\mathbf{A}^{n}_{\mathbf{Q}} spreads out to a finite map X𝐙[1/N]𝐀𝐙[1/N]nX_{\mathbf{Z}[1/N]}\to\mathbf{A}^{n}_{\mathbf{Z}[1/N]}, then we can ask that xx extend to an element of X(𝐙¯[1/N])X(\overline{\mathbf{Z}}[1/N]).

  2. (b)

    On the proof: The first part of Theorem B is an immediate consequence of Theorem A. The second part, the abundance of specializations with “big monodromy”, follows from a variant of Serre’s version of Hilbert’s irreducibility theorem for profinite groups [Ser89, §10.6].

1.3.2. Corollary.

Let (G,X)(G,X) be a Shimura datum such that rank𝐑(Gad)2\operatorname{rank}_{\mathbf{R}}(G^{\mathrm{ad}})\geq 2, let SS be a geometrically connected component (defined over a number field) of a Shimura variety attached to (G,X)(G,X), and let {ρ:π1(S)Gad(𝐐)}\{\rho_{\ell}\colon\pi_{1}(S)\to G^{\mathrm{ad}}(\mathbf{Q}_{\ell})\}_{\ell} be the adjoint projections of the “canonical” \ell-adic local systems on SS, defined as in [CK16, §4] or [KP24, §§3.1–3.2]. Then there exists a positive integer dd and infinitely many closed points xx of SS satisfying [κx:𝐐]d[\kappa_{x}:\mathbf{Q}]\leq d such that {:M,x=G𝐐}\{\ell\colon M_{\ell,x}=G_{\mathbf{Q}_{\ell}}\} has Dirichlet density 11.

Proof.

By recent work of Klevdal–Patrikis [KP24, Theorem 1.3], the ρ\rho_{\ell} extend to an integral model of SS, and the extensions are compatible in the sense described above, allowing us to invoke Theorem B. \blacksquare

1.3.3.

Due to versions of Tate’s conjecture for Abelian varieties proven by Faltings, much stronger results are known for (G,X)(G,X) of Abelian type; see e.g. the work of Cadoret–Kret [CK16, Theorem A]. Thus Corollary 1.3.2 is novel only when (G,X)(G,X) is not of Abelian type, in which case the ρ\rho_{\ell} are not known, but conjectured, to be of geometric origin. As a concrete example, we obtain from these “non-Abelian Shimura varieties” compatible collections of representations {GalFG(𝐐)}\{\operatorname{Gal}_{F}\to G(\mathbf{Q}_{\ell})\}, where FF is a number field and GG is an adjoint group of type E6(14)\mathrm{E}_{6(-14)} or E7(25)\mathrm{E}_{7(-25)}, with Zariski-dense image along a set of primes of Dirichlet density 11.

         1.4. Notation

Generalities:

  1. (a)

    If KK is a field, KsK^{\mathrm{s}} denotes a separable closure of KK, and GalK\operatorname{Gal}_{K} always means the absolute Galois group of KK, i.e. Gal(Ks|K)\operatorname{Gal}(K^{\mathrm{s}}|K).

  2. (b)

    Given a scheme XX over a ring AA and a ring morphism ABA\to B, we write XBX×Spec(A)Spec(B)X_{B}\coloneqq X\times_{\operatorname{Spec}(A)}\operatorname{Spec}(B).

Algebraic groups:

  1. (c)

    If Γ\Gamma is a profinite group and GG is an algebraic group over 𝐐\mathbf{Q}_{\ell}, then by a “GG-representation” we mean a homomorphism ΓG(𝐐)\Gamma\to G(\mathbf{Q}_{\ell}) which is continuous for the profinite topology on Γ\Gamma and the \ell-adic topology on G(𝐐)G(\mathbf{Q}_{\ell}). (When G=GLnG=\operatorname{GL}_{n}, we may omit “GG” from the terminology.)

  2. (d)

    Given an algebraic group GG over 𝐐\mathbf{Q}_{\ell} and SG(𝐐)S\subseteq G(\mathbf{Q}_{\ell}), we write S¯Zar\overline{S}{}^{\mathrm{Zar}} for the Zariski closure of SS (a closed subscheme of GG which itself is an algebraic group).

  3. (e)

    Given a reductive group GG, we write GadG/Z(G)G^{\mathrm{ad}}\coloneqq G/\mathrm{Z}(G) for the adjoint group attached to GG and GAbG/[G,G]G^{\mathrm{Ab}}\coloneqq G/[G,G] the Abelianization. Given an element gG(K)g\in G(K), we let gssg_{\mathrm{ss}} denote the semisimple part of gg in its Jordan decomposition.

Fundamental groups of schemes:

  1. (f)

    For XX a connected scheme, we denote by π1(X)\pi_{1}(X) the étale fundamental group of XX, leaving the basepoint implicit. Given a point xXx\in X, we get a homomorphism ψx:Galκxπ1(X)\psi_{x}\colon\operatorname{Gal}_{\kappa_{x}}\to\pi_{1}(X) by identifying Galκx\operatorname{Gal}_{\kappa_{x}} with the étale fundamental group of the scheme {x}\{x\}; this ψx\psi_{x} is, of course, well defined only up to conjugation by Galκx\operatorname{Gal}_{\kappa_{x}}.

  2. (g)

    Given a group homomorphism ρ:π1(X)Π\rho\colon\pi_{1}(X)\to\Pi and a point xXx\in X, let κx\kappa_{x} denote the residue field of xx and ρx:GalκxΠ\rho_{x}\colon{\operatorname{Gal}_{\kappa_{x}}}\to\Pi the composition ρψx\rho\circ\psi_{x}.

  3. (h)

    When ss is a point of XX with finite residue field, we let Frobs\operatorname{Frob}_{s} be the conjugacy class of ψs(Frobκs)\psi_{s}(\operatorname{Frob}_{\kappa_{s}}) in π1(X)\pi_{1}(X), where Frobκs\operatorname{Frob}_{\kappa_{s}} is the Frobenius automorphism of κs\kappa_{s}; the elements of Frobs\operatorname{Frob}_{s} are the “Frobenius elements of ss in π1(X)\pi_{1}(X)”.

         1.5. Outline of the paper

In §2, we provide the necessary background on reductive groups and their maximal tori. In §3.1, we define and study “abstract” compatible collections of GG-representations. This allows us to state and prove Theorem A in §3.2. Finally, we give a version of Hilbert’s irreducibility theorem in §4.1 and discuss Theorem B in §4.2.

         1.6. Acknowledgements

We are very happy to thank our PhD advisor Stefan Patrikis for his persistent generosity and encouragement and for sharing with us many useful references. Among these, we are particularly indebted to Michael Larsen and Richard Pink for the results and ideas contained in their marvelous paper [LP92]. We are also grateful Christian Klevdal and Stefan Patrikis for their paper [KP24], which gave birth to this one. Finally, we thank Ishan Banerjee for his interest in the project and helpful comments on the manuscript.

This material is based upon work supported by the National Science Foundation under Grant No. DMS-2231565.

2. Group-theoretic background

         2.1. Classification of quasisplit reductive groups and their maximal tori

In this §2.1 we essentially summarize [LP92, 3.1–3.6]. Let KK be a field with a fixed separable closure Ks{K^{\mathrm{s}}}.

2.1.1.

Fix a connected reductive333In fact, with the exception of Lemma 2.3.5, the final arguments will reduce immediately to the case when GG is semisimple, so the reader loses little in assuming this to be so for all of §2 and replacing all root data with root systems. group GG over KK and a maximal torus T0T_{0} of GKsG_{{K^{\mathrm{s}}}} (which need not be defined over KK, though we will later assume it to be). Let Ψ0\Psi_{0} be the root datum attached to T0T_{0}. Denote by W(Ψ0)\operatorname{W}(\Psi_{0}) and Aut(Ψ0)\operatorname{Aut}(\Psi_{0}), respectively, the Weyl and automorphism groups of Ψ0\Psi_{0} in the sense of root data, and by Out(Ψ0)\operatorname{Out}(\Psi_{0}) the quotient Aut(Ψ0)/W(Ψ0)\operatorname{Aut}(\Psi_{0})/{\operatorname{W}(\Psi_{0})}. Finally, for any subset ΩAut(Ψ0)\Omega\subseteq\operatorname{Aut}(\Psi_{0}) stable under conjugation by W(Ψ0)\operatorname{W}(\Psi_{0}), we will denote by [Ω][\Omega] the set of orbits of the conjugaction action of W(Ψ0)\operatorname{W}(\Psi_{0}) on Ω\Omega.

2.1.2.

Let TT be any maximal torus of GG. The Galois action on TKsT_{K^{\mathrm{s}}} induces a homomorphism φT:GalKGL(X(TKs))\varphi_{T}\colon{\operatorname{Gal}_{K}}\to\operatorname{GL}(\mathrm{X}^{*}(T_{K^{\mathrm{s}}})). If we fix an element aG(Ks)a\in G({K^{\mathrm{s}}}) satisfying aTKsa1=T0aT_{K^{\mathrm{s}}}a^{-1}=T_{0}, it induces an isomorphism θa:GL(X(TKs))GL(X(T0))\theta_{a}\colon{\operatorname{GL}(\mathrm{X}^{*}(T_{K^{\mathrm{s}}}))}\overset{\sim}{\to}\operatorname{GL}(\mathrm{X}^{*}(T_{0})), and the image of θaφT\theta_{a}\circ\varphi_{T} lands in Aut(Ψ0)\operatorname{Aut}(\Psi_{0}). The isomorphism θa\theta_{a} depends on aa only up to W(Ψ0)\operatorname{W}(\Psi_{0})-conjugation, so the W(Ψ0)\operatorname{W}(\Psi_{0})-conjugacy class [φT][\varphi_{T}] of θaφT\theta_{a}\circ\varphi_{T} depends only on TT (and the fixed objects GG and T0T_{0}). Below, we will conflate [φT][\varphi_{T}] with the function GalK[Aut(Ψ0)]\operatorname{Gal}_{K}\to[\operatorname{Aut}(\Psi_{0})] valued in the set of W(Ψ0)\operatorname{W}(\Psi_{0})-conjugacy classes of Aut(Ψ0)\operatorname{Aut}(\Psi_{0}).

The composition

GalKθaφTAut(Ψ0)Out(Ψ0)\operatorname{Gal}_{K}\xrightarrow{\theta_{a}\circ\varphi_{T}}\operatorname{Aut}(\Psi_{0})\mathrel{\mathrlap{\rightarrow}\mkern-2.25mu\rightarrow}\operatorname{Out}(\Psi_{0})

is therefore also well defined, and one checks that it is independent of TT. Denote it by φG\varphi_{G}. (This keeps track of action on GAbG^{\mathrm{Ab}} and the “*-action” on the Dynkin diagram induced by GalK\operatorname{Gal}_{K}.) Thus each maximal torus of GG corresponds to a W(Ψ0)\operatorname{W}(\Psi_{0})-conjugacy class of lifts of φG\varphi_{G}.

2.1.3.

If TT and TT^{\prime} are maximal tori of GG which are conjugate by an element of G(K)G(K), then [φT]=[φT][\varphi_{T}]=[\varphi_{T^{\prime}}]. Indeed, we have θbφT=φT\theta_{b}\circ\varphi_{T^{\prime}}=\varphi_{T} for any bG(K)b\in G(K) satisfying bTb1=TbT^{\prime}b^{-1}=T.

2.1.4.

Given an abstract root datum Ψ\Psi and a homomorphism GalKOut(Ψ)\operatorname{Gal}_{K}\to\operatorname{Out}(\Psi), there exists a quasisplit connected reductive group over KK, unique up to isomorphism, realizing this data in the sense of (2.1.12.1.2).

The following key result rests ultimately on Steinberg’s theorem that every rational conjugacy class in a quasisplit simply connected reductive group contains a rational element.

2.1.5. Lemma ([LP92, Lemma 3.6]).

Let GG be a quasisplit reductive group over KK. Then for any W(Ψ0)\operatorname{W}(\Psi_{0})-conjugacy class [φ][\varphi] of lifts of φG\varphi_{G}, there is a maximal torus TT of GG such that [φT]=[φ][\varphi_{T}]=[\varphi].

         2.2. Splitting field of a conjugacy class

2.2.1.

Let gG(Ks)g\in G({K^{\mathrm{s}}}) be an element whose G(Ks)G({K^{\mathrm{s}}})-conjugacy class [g][g] is defined over KK (i.e. stable under the GalK\operatorname{Gal}_{K}-action on G(Ks)G({K^{\mathrm{s}}})). For any KK-representation ξ:GGLd\xi\colon G\to\operatorname{GL}_{d}, the GLd(Ks)\operatorname{GL}_{d}({K^{\mathrm{s}}})-conjugacy class of ξ(g)\xi(g) is defined over KK, so the characteristic polynomial PP of ξ(g)\xi(g) has coefficients in KK. If ξ\xi is faithful, we will call the splitting field FF of PP over KK the splitting field of [g][g] over KK. It is well defined because if TT is a maximal torus of GKsG_{K^{\mathrm{s}}} containing the semisimple part gssg_{\mathrm{ss}} of gg, then FF is the subfield of Ks{K^{\mathrm{s}}} generated by the values χ(gss)\chi(g_{\mathrm{ss}}) where χX(T)\chi\in\mathrm{X}^{*}(T).

2.2.2.

We now describe the action of GalK\operatorname{Gal}_{K} on the roots of PP in a way intrinsic to GG. To do so, we may assume (after conjugating gg and replacing it by gssg_{\mathrm{ss}}) that it is contained in a maximal torus TT defined over KK. For simplicity, we will consider the case when GG is an adjoint group (i.e. has trivial center), ξ\xi is its adjoint representation, and the values χ1(g),,χm(g)\chi_{1}(g),\dots,\chi_{m}(g) are distinct, where χ1,,χm\chi_{1},\dots,\chi_{m} are the nontrivial characters of TKsT_{K^{\mathrm{s}}} making up ξ|T\xi|_{T}. (Such gg are called strongly regular.)

In this case, the values χ1(g),,χm(g)\chi_{1}(g),\dots,\chi_{m}(g) are the roots of PP different from 11, so the Galois action on the roots of PP permutes the set of characters {χ1,,χm}\{\chi_{1},\dots,\chi_{m}\}.

2.2.3. Lemma.

Assume GG is adjoint and gG(Ks)g\in G({K^{\mathrm{s}}}) is a strongly regular element contained in T(Ks)T({K^{\mathrm{s}}}) for a maximal torus TT of GG. Then the GalK\operatorname{Gal}_{K}-action on {χ1,,χm}\{\chi_{1},\dots,\chi_{m}\} as in (2.2.2) extends uniquely to a homomorphism φT,g:GalKGL(X(TKs))\varphi_{T,g}\colon{\operatorname{Gal}_{K}}\to\operatorname{GL}(\mathrm{X}^{*}(T_{K^{\mathrm{s}}})) given by σχ=χσinn(aσ)\sigma\cdot\chi={}^{\sigma\!}\chi\circ\operatorname{inn}(a_{\sigma}) for some aσNG(T)(Ks)a_{\sigma}\in\operatorname{N}_{G}(T)({K^{\mathrm{s}}}).

Proof.

Uniqueness presents no trouble, because the characters χ1,,χm\chi_{1},\dots,\chi_{m} span X(TKs)\mathrm{X}^{*}(T_{K^{\mathrm{s}}}) by the hypothesis on GG. Now fix σGalK\sigma\in\operatorname{Gal}_{K}, and find aσG(Ks)a_{\sigma}\in G({K^{\mathrm{s}}}) such that σ(g)=aσgaσ1\sigma(g)=a_{\sigma}ga_{\sigma}^{-1}. Then if χX(TKs)\chi\in\mathrm{X}^{*}(T_{K^{\mathrm{s}}}), we have σ(χ(g))=χσ(σ(g))=χσ(aσgaσ1)\sigma(\chi(g))={}^{\sigma\!}\chi(\sigma(g))={}^{\sigma\!}\chi(a_{\sigma}ga_{\sigma}^{-1}). Now aσNG(T)(Ks)a_{\sigma}\in\operatorname{N}_{G}(T)({K^{\mathrm{s}}}) because aσTKsaσ1a_{\sigma}T_{K^{\mathrm{s}}}a_{\sigma}^{-1} is the unique maximal torus of GKsG_{K^{\mathrm{s}}} containing aσgaσ1=σ(g)a_{\sigma}ga_{\sigma}^{-1}=\sigma(g) by the regularity of σ(g)\sigma(g), but TKsT_{K^{\mathrm{s}}} already contains σ(g)\sigma(g) because TT is defined over KK. Finally, χχσinn(aσ)\chi\mapsto{}^{\sigma\!}\chi\circ\operatorname{inn}(a_{\sigma}) must permute the set {χ1,,χm}\{\chi_{1},\dots,\chi_{m}\} because these are the roots of GG relative to TT; thus if σ(χi(g))=χj(g)\sigma(\chi_{i}(g))=\chi_{j}(g), then χiσinn(aσ)=χj{}^{\sigma\!}\chi_{i}\circ\operatorname{inn}(a_{\sigma})=\chi_{j} by the strong regularity of gg, so φT,g\varphi_{T,g} extends the desired GalK\operatorname{Gal}_{K}-action. \blacksquare

2.2.4.

Two easy observations about the φT,g\varphi_{T,g} of Lemma 2.2.3:

  1. (a)

    Since φT,g(σ)\varphi_{T,g}(\sigma) differs from φT(σ)\varphi_{T}(\sigma) by inn(aσ)\operatorname{inn}(a_{\sigma}), the projection of θaφT,g\theta_{a}\circ\varphi_{T,g} to Out(Ψ0)\operatorname{Out}(\Psi_{0}) is again equal to φG\varphi_{G} for any aG(Ks)a\in G({K^{\mathrm{s}}}) satisfying aTKsa1=T0aT_{K^{\mathrm{s}}}a^{-1}=T_{0}.

  2. (b)

    If gG(K)g\in G(K), then φT,g=φT\varphi_{T,g}=\varphi_{T}.

Following the notation of (2.1.2), we write [φT,g][\varphi_{T,g}] for the W(Ψ0)\operatorname{W}(\Psi_{0})-conjugacy class of θaφT,g\theta_{a}\circ\varphi_{T,g}.

The following easy property of the φT,g\varphi_{T,g} generalizes (2.1.3) and will be crucial later on.

2.2.5. Lemma.

Assume GG is adjoint and g,gG(Ks)g,g^{\prime}\in G({K^{\mathrm{s}}}) are strongly regular elements contained, respectively, in maximal tori T,TT,T^{\prime} of GG. Suppose bG(Ks)b\in G({K^{\mathrm{s}}}) satisfies bgb1=gbg^{\prime}b^{-1}=g. Then θbφT,g=φT,g\theta_{b}\circ\varphi_{T^{\prime},g^{\prime}}=\varphi_{T,g}.

Proof.

Let σGalK\sigma\in\operatorname{Gal}_{K} and χX(TKs)\chi\in\mathrm{X}^{*}(T_{K^{\mathrm{s}}}). Then φT,g(σ)(χ)=χσinn(aσ)\varphi_{T,g}(\sigma)(\chi)={}^{\sigma\!}\chi\circ\operatorname{inn}(a_{\sigma}), while

(θbφT,g)(σ)(χ)\displaystyle(\theta_{b}\circ\varphi_{T^{\prime},g^{\prime}})(\sigma)(\chi) =φT,g(σ)(χinn(b))inn(b1)\displaystyle=\varphi_{T^{\prime},g^{\prime}}(\sigma)(\chi\circ\operatorname{inn}(b))\circ\operatorname{inn}(b^{-1})
=χσinn(σ(b)aσb1).\displaystyle={}^{\sigma\!}\chi\circ\operatorname{inn}(\sigma(b)a_{\sigma}^{\prime}b^{-1}).

But (σ(b)aσb1)g(σ(b)aσb1)1=aσgaσ(\sigma(b)a_{\sigma}^{\prime}b^{-1})g(\sigma(b)a_{\sigma}^{\prime}b^{-1})^{-1}=a_{\sigma}ga_{\sigma}, so inn(σ(b)aσb1)\operatorname{inn}(\sigma(b)a_{\sigma}^{\prime}b^{-1}) and inn(aσ)\operatorname{inn}(a_{\sigma}) induce the same automorphism of GL(X(TKs))\operatorname{GL}(\mathrm{X}^{*}(T_{K^{\mathrm{s}}})) by the regularity of gg. \blacksquare

         2.3. Setup of the main theorems (case K=𝐐𝐐𝐐𝐐𝐐𝐐K=\mathbf{Q}\mathbf{Q}\mathbf{Q}\mathbf{Q}\mathbf{Q}\mathbf{Q})

We continue with the notation of §§2.12.2, but this time with K=𝐐K=\mathbf{Q}.

2.3.1.

Fix an algebraic closure 𝐐¯\overline{\mathbf{Q}} of 𝐐\mathbf{Q}. As above we have a connected reductive group GG, and from now on we (for convenience) assume T0T_{0} is a maximal torus of GG rather than G𝐐¯G_{\overline{\mathbf{Q}}} (so Ψ0\Psi_{0} is now the root datum attached to T0,𝐐¯T_{0,\overline{\mathbf{Q}}}, etc.). Let E|𝐐E|\mathbf{Q} be the splitting extension of φG\varphi_{G}, i.e. the extension for which Ker(φG)=GalE\operatorname{Ker}(\varphi_{G})=\operatorname{Gal}_{E}.

2.3.2.

For each prime \ell, fix an algebraic closure 𝐐¯\overline{\mathbf{Q}_{\ell}} of 𝐐\mathbf{Q}_{\ell}. Let ι\iota_{\ell} be a field embedding 𝐐¯𝐐¯\overline{\mathbf{Q}}\hookrightarrow\overline{\mathbf{Q}_{\ell}}. It induces an embedding Gal𝐐Gal𝐐\operatorname{Gal}_{\mathbf{Q}_{\ell}}\hookrightarrow\operatorname{Gal}_{\mathbf{Q}}, and given a torus TT over 𝐐\mathbf{Q}, maps X(T𝐐¯)X(T𝐐¯)\mathrm{X}^{*}(T_{\overline{\mathbf{Q}}})\to\mathrm{X}^{*}(T_{\overline{\mathbf{Q}_{\ell}}}) and GL(X(T𝐐¯))GL(X(T𝐐¯)){\operatorname{GL}(\mathrm{X}^{*}(T_{\overline{\mathbf{Q}}}))\to\operatorname{GL}(\mathrm{X}^{*}(T_{\overline{\mathbf{Q}_{\ell}}}))} via base change. By choosing an isomorphism T𝐐¯𝐆mrT_{\overline{\mathbf{Q}}}\cong\mathbf{G}_{\mathrm{m}}^{r}, one sees that the latter are isomorphisms (but depend on ι\iota_{\ell}). If TT is a maximal torus of GG, then ι\iota_{\ell} induces isomorphisms

Aut(Ψ)Aut(Ψ)andW(Ψ)W(Ψ),\operatorname{Aut}(\Psi)\overset{\sim}{\to}\operatorname{Aut}(\Psi_{\ell})\quad\text{and}\quad\operatorname{W}(\Psi)\overset{\sim}{\to}\operatorname{W}(\Psi_{\ell}), (2.3.2.1)

where Ψ\Psi and Ψ\Psi_{\ell} are, respectively, the root data attached to T𝐐¯T_{\overline{\mathbf{Q}}} and T𝐐¯T_{\overline{\mathbf{Q}_{\ell}}}.

Having picked a embedding ι\iota_{\ell}, we are safe to forget it in the notation and identify all the 𝐐\mathbf{Q}- and 𝐐\mathbf{Q}_{\ell}-versions of the above objects, because of (2.3.2.1) and because the following diagrams commute:

Gal𝐐{\operatorname{Gal}_{\mathbf{Q}_{\ell}}}GL(X(T𝐐¯)){\operatorname{GL}(\mathrm{X}^{*}(T_{\overline{\mathbf{Q}_{\ell}}}))}Gal𝐐{\operatorname{Gal}_{\mathbf{Q}}}GL(X(T𝐐¯)){\operatorname{GL}(\mathrm{X}^{*}(T_{\overline{\mathbf{Q}}}))}φT𝐐\scriptstyle{\varphi_{T_{\mathbf{Q}_{\ell}}}}\scriptstyle{\sim}φT\scriptstyle{\varphi_{T}}

where TT is any torus over 𝐐\mathbf{Q},

Gal𝐐{\operatorname{Gal}_{\mathbf{Q}_{\ell}}}GL(X(T𝐐¯)){\operatorname{GL}(\mathrm{X}^{*}(T_{\overline{\mathbf{Q}_{\ell}}}))}Gal𝐐{\operatorname{Gal}_{\mathbf{Q}}}GL(X(T𝐐¯)){\operatorname{GL}(\mathrm{X}^{*}(T_{\overline{\mathbf{Q}}}))}φT𝐐,ι(h)\scriptstyle{\varphi_{T_{\mathbf{Q}_{\ell}},\iota_{\ell}(h)}}\scriptstyle{\sim}φT,h\scriptstyle{\varphi_{T,h}} (2.3.2.2)

where TT is any maximal torus of GG and hT(𝐐¯)h\in T(\overline{\mathbf{Q}}) any regular semisimple element, and

GL(X(T𝐐¯)){\operatorname{GL}(\mathrm{X}^{*}(T^{\prime}_{\overline{\mathbf{Q}_{\ell}}}))}GL(X(T𝐐¯)){\operatorname{GL}(\mathrm{X}^{*}(T_{\overline{\mathbf{Q}_{\ell}}}))}GL(X(T𝐐¯)){\operatorname{GL}(\mathrm{X}^{*}(T^{\prime}_{\overline{\mathbf{Q}}}))}GL(X(T𝐐¯)){\operatorname{GL}(\mathrm{X}^{*}(T_{\overline{\mathbf{Q}}}))}θι(a)\scriptstyle{\theta_{\iota_{\ell}(a)}}\scriptstyle{\sim}\scriptstyle{\sim}θa\scriptstyle{\theta_{a}} (2.3.2.3)

where T,TT,T^{\prime} are any maximal tori of GG and aG(𝐐¯)a\in G(\overline{\mathbf{Q}}) is any element satisfying aT𝐐¯a1=T𝐐¯aT^{\prime}_{\overline{\mathbf{Q}}}a^{-1}=T_{\overline{\mathbf{Q}}}. Thus, for example, if TT_{\ell} is a maximal torus of G𝐐G_{\mathbf{Q}_{\ell}}, then (via ι\iota_{\ell}) we view [φT][\varphi_{T_{\ell}}] as a function Gal𝐐[Aut(Ψ0)]\operatorname{Gal}_{\mathbf{Q}_{\ell}}\to[\operatorname{Aut}(\Psi_{0})] and its domain as a subgroup of Gal𝐐\operatorname{Gal}_{\mathbf{Q}}.

2.3.3.

Given a prime \ell, we will let FrobGal𝐐\operatorname{Frob}_{\ell}\subseteq\operatorname{Gal}_{\mathbf{Q}_{\ell}} denote the Frobenius coset of 𝐐\mathbf{Q}_{\ell}. In accordance with (2.3.2), if ι\iota_{\ell} has been chosen, we view Frob\operatorname{Frob}_{\ell} as a subset of Gal𝐐\operatorname{Gal}_{\mathbf{Q}}. Then for a finite Galois extension F|𝐐F|\mathbf{Q} unramified at \ell, there is a Frobenius element in Gal(F|𝐐)\operatorname{Gal}(F|\mathbf{Q}) defined by Frob\operatorname{Frob}_{\ell}. Moreover if σ\sigma is any element of the Frobenius conjugacy class of \ell in Gal(F|𝐐)\operatorname{Gal}(F|\mathbf{Q}), one can pick ι\iota_{\ell} so that the image of Frob\operatorname{Frob}_{\ell} in Gal(F|𝐐)\operatorname{Gal}(F|\mathbf{Q}) is {σ}\{\sigma\}.

2.3.4.

Fix a prime \ell unramified in E|𝐐E|\mathbf{Q} and an embedding ι\iota_{\ell}. Let Ω\Omega be the preimage of φG(Frob)\varphi_{G}(\operatorname{Frob}_{\ell}) in Aut(Ψ0)\operatorname{Aut}(\Psi_{0}); it is a coset of W(Ψ0)\operatorname{W}(\Psi_{0}). If TT is an unramified maximal torus of G𝐐G_{\mathbf{Q}_{\ell}}, i.e. φT\varphi_{T} factors through the Galois group of the maximal unramified extension of 𝐐\mathbf{Q}_{\ell}, then [φT](Frob)[\varphi_{T}](\operatorname{Frob}_{\ell}) is a well defined element ω[Ω]\omega\in[\Omega].444 Recall that [Ω][\Omega] is the set of orbits under the action of W(Ψ0)\operatorname{W}(\Psi_{0}) on Ω\Omega by conjugation. This makes sense because W(Ψ0)\operatorname{W}(\Psi_{0}) is normal in Aut(Ψ0)\operatorname{Aut}(\Psi_{0}). Say, in this case, that the torus TT corresponds to ω\omega.

2.3.5. Lemma.

In the context of (2.3.4), suppose MM is a reductive subgroup of G𝐐G_{\mathbf{Q}_{\ell}} such that for each ω[Ω]\omega\in[\Omega], there exists an unramified maximal torus of G𝐐G_{\mathbf{Q}_{\ell}} which is included in MM and corresponds to ω\omega. Then M=G𝐐M=G_{\mathbf{Q}_{\ell}}.

Proof.

The hypothesis remains true after conjugating the torus T0T_{0}, so we may assume that T0,𝐐MT_{0,\mathbf{Q}_{\ell}}\subseteq M. Let Ψ0\Psi_{0}^{\prime} be the root datum attached to the pair (T0,𝐐¯,M𝐐¯)(T_{0,\overline{\mathbf{Q}_{\ell}}},M_{\overline{\mathbf{Q}_{\ell}}}), and let Ω\Omega^{\prime} be the preimage of {φM(Frob)}\{\varphi_{M}(\operatorname{Frob}_{\ell})\} in Aut(Ψ0)\operatorname{Aut}(\Psi_{0}^{\prime}). Then W(Ψ0)W(Ψ0)\operatorname{W}(\Psi_{0}^{\prime})\subseteq\operatorname{W}(\Psi_{0}) and ΩΩ\Omega^{\prime}\subseteq\Omega, and the hypothesis implies that Ω\Omega^{\prime} meets every element of [Ω][\Omega]. In particular, the set

{characteristic polynomial of α on X(T0,𝐐¯):αΩ}\{\text{characteristic polynomial of $\alpha$ on $\mathrm{X}^{*}(T_{0,\overline{\mathbf{Q}_{\ell}}})$}\colon\alpha\in\Omega\}

equals the corresponding set with Ω\Omega^{\prime} in place of Ω\Omega. Thus by [LP92, Theorem 2.1], the Weyl group of MM is isomorphic to that of GG. Since the Weyl group and character lattice together determine the roots up to rational multiples [Bou82, Chapter IV, 1.5, Theorem 2(iv)], every root of GG is also a root of MM, hence M=G𝐐M=G_{\mathbf{Q}_{\ell}}. \blacksquare

2.3.6. Remark.

In the previous proof, we passed from W(Ψ0)\operatorname{W}(\Psi_{0})-conjugacy classes in Ω\Omega to the much coarser characteristic polynomials of Frobenius acting on character lattices. Thus one expects that we should be able to avoid the use of [LP92, Theorem 2.1], whose proof is somewhat complicated and relies on very explicit computations with semisimple groups (ultimately resorting to data tabulated in the Atlas of Finite Groups). Indeed, when Gal𝐐\operatorname{Gal}_{\mathbf{Q}} acts on the Dynkin diagram of GG only by permuting its connected components (e.g. if GG is split or has no factors of type An\mathrm{A}_{n} (n2n\geq 2), Dn\mathrm{D}_{n}, or E6\mathrm{E}_{6}), one can replace loc. cit. by a short abstract argument, but we did not find one that works in general. (In fact, when the action on the Dynkin diagram is trivial, one has only to observe that the only subgroup of W(Ψ0)\operatorname{W}(\Psi_{0}) which meets every conjugacy class of W(Ψ0)\operatorname{W}(\Psi_{0}) is W(Ψ0)\operatorname{W}(\Psi_{0}) itself.)

3. Theorem A

We will freely use the notation of §2.

         3.1. Compatible collections

The following definition generalizes [LP92, Definition 6.5], in which G=GLrG=\operatorname{GL}_{r}.

3.1.1. Definition.

An F-group is a pair (Γ,)(\Gamma,\mathcal{F}), where Γ\Gamma is a profinite group and \mathcal{F} is a dense subset of Γ\Gamma. A set {ρ:ΓG(𝐐)}\{\rho_{\ell}\colon\Gamma\to G(\mathbf{Q}_{\ell})\}_{\ell\in\mathcal{L}} of GG-representations, where \mathcal{L} is a set of primes, is compatible (relative to \mathcal{F}) if there exists a function 𝔣𝒮𝔣\mathfrak{f}\mapsto\mathcal{S}_{\mathfrak{f}} from \mathcal{F} to the set of finite subsets of \mathcal{L} with the following properties:

  1. (a)

    for each 𝔣\mathfrak{f}\in\mathcal{F}, there exists gG(𝐐¯)g\in G(\overline{\mathbf{Q}}) whose conjugacy class [g][g] is defined over 𝐐\mathbf{Q} (i.e. Gal𝐐\operatorname{Gal}_{\mathbf{Q}}-stable) such that ρ(𝔣)ss\rho_{\ell}(\mathfrak{f})_{\mathrm{ss}} is conjugate to gg in G(𝐐¯)G(\overline{\mathbf{Q}_{\ell}}) for each 𝒮𝔣\ell\in\mathcal{L}\smallsetminus\mathcal{S}_{\mathfrak{f}}. (This property of gg does not depend on the choice of embeddings ι\iota_{\ell}.)

  2. (b)

    for each 1,,n\ell_{1},\dots,\ell_{n}\in\mathcal{L}, the set (1,,n){𝔣:1,,n𝒮𝔣}\mathcal{F}^{(\ell_{1},\dots,\ell_{n})}\coloneqq\{\mathfrak{f}\in\mathcal{F}\colon\ell_{1},\dots,\ell_{n}\notin\mathcal{S}_{\mathfrak{f}}\} is dense in Γ\Gamma.

Before proving the main theorem, we transform the ρ\rho_{\ell} into information about maximal tori of the MM_{\ell}, analogously to [LP92, 7.4–7.5], at least in a special case. This lemma will be instrumental in the proof of the main theorem, and the use of the functions [φ𝔗][\varphi_{\mathfrak{T}}] constructed herein is a key difference between the arguments of this paper and those of [LP92].

3.1.2. Lemma.

Let {ρ:ΓG(𝐐)}\{\rho_{\ell}\colon\Gamma\to G(\mathbf{Q}_{\ell})\}_{\ell\in\mathcal{L}} a compatible collection of GG-representations of an F-group, where GG is an adjoint group over 𝐐\mathbf{Q}. For each \ell\in\mathcal{L}, let MImg(ρ)¯ZarM_{\ell}\coloneqq\overline{\operatorname{Img}(\rho_{\ell})}{}^{\mathrm{Zar}}, and assume MM_{\ell} is reductive and of maximal rank in G𝐐G_{\mathbf{Q}_{\ell}}. Fix ι\iota_{\ell} for each \ell as in (2.3.2).

Let 𝔗{(1,T1),,(n,Tn)}\mathfrak{T}\coloneqq\{(\ell_{1},T_{1}),\dots,(\ell_{n},T_{n})\} be a set of pairs consisting of distinct primes 1,,n\ell_{1},\dots,\ell_{n}\in\mathcal{L} and a maximal torus TiT_{i} of MiM_{\ell_{i}} for each ii. Then there exist a W(Ψ0)\operatorname{W}(\Psi_{0})-conjugacy class [φ𝔗][\varphi_{\mathfrak{T}}] of maps Gal𝐐Aut(Ψ0){\operatorname{Gal}_{\mathbf{Q}}}\to\operatorname{Aut}(\Psi_{0}) lifting φG\varphi_{G} and a maximal torus T𝔗,T_{\mathfrak{T},\ell} of MM_{\ell} for all but finitely many \ell\in\mathcal{L} such that [φT𝔗,]=[φ𝔗]|Gal𝐐[\varphi_{T_{\mathfrak{T},\ell}}]=[\varphi_{\mathfrak{T}}]|_{\operatorname{Gal}_{\mathbf{Q}_{\ell}}} for every such \ell and T𝔗,i=TiT_{\mathfrak{T},\ell_{i}}=T_{i} for each ii. Moreover, [φ𝔗][\varphi_{\mathfrak{T}}] and the T𝔗,T_{\mathfrak{T},\ell} do not depend on the ι\iota_{\ell}.

Proof.

By [LP92, Proposition 7.3], we can find 𝔣(1,,n)\mathfrak{f}\in\mathcal{F}^{(\ell_{1},\dots,\ell_{n})} such that ρi(𝔣)ss\rho_{\ell_{i}}(\mathfrak{f})_{\mathrm{ss}} is, for each ii, conjugate in G(𝐐i)G(\mathbf{Q}_{\ell_{i}}) to an element of Ti(𝐐i)T_{i}(\mathbf{Q}_{\ell_{i}}) and is strongly regular in the sense of (2.2.4). Therefore, letting T𝔗,T_{\mathfrak{T},\ell} be the unique maximal torus of MM_{\ell} containing ρ(𝔣)ss\rho_{\ell}(\mathfrak{f})_{\mathrm{ss}} for each 𝒮𝔣\ell\in\mathcal{L}\smallsetminus\mathcal{S}_{\mathfrak{f}}, we have [φT𝔗,]=[φTi][\varphi_{T_{\mathfrak{T},\ell}}]=[\varphi_{T_{i}}] for each ii by (2.1.3). Using (3.1.1.a), find an element gG(𝐐¯)g\in G(\overline{\mathbf{Q}}) whose conjugacy class [g][g] is defined over 𝐐\mathbf{Q} and such that gg is conjugate in G(𝐐¯)G(\overline{\mathbf{Q}_{\ell}}) to ρ(𝔣)ss\rho_{\ell}(\mathfrak{f})_{\mathrm{ss}} for each 𝒮𝔣\ell\in\mathcal{L}\smallsetminus\mathcal{S}_{\mathfrak{f}}. After replacing gg by a conjugate, we may assume it is contained in T(𝐐¯)T(\overline{\mathbf{Q}}) for a unique maximal torus TT of GG (defined over 𝐐\mathbf{Q}!). By Lemma 2.2.5, [φT𝔗,]=[φT,g]|Gal𝐐[\varphi_{T_{\mathfrak{T},\ell}}]=[\varphi_{T,g}]|_{\operatorname{Gal}_{\mathbf{Q}_{\ell}}}, so [φ𝔗][φT,g][\varphi_{\mathfrak{T}}]\coloneqq[\varphi_{T,g}] works.

Let us explain the preceding sentence in full details. Consider the following diagram, where aG(𝐐¯)a\in G(\overline{\mathbf{Q}}) and aG(𝐐¯)a_{\ell}\in G(\overline{\mathbf{Q}_{\ell}}) are any elements which make sense in the diagram, and bG(𝐐¯)b\in G(\overline{\mathbf{Q}_{\ell}}) satisfies bρ(𝔣)ssb1=gb\cdot\rho_{\ell}(\mathfrak{f})_{\mathrm{ss}}\cdot b^{-1}=g:

Gal𝐐{\operatorname{Gal}_{\mathbf{Q}_{\ell}}}GL(X(T𝔗,,𝐐¯)){\operatorname{GL}(\mathrm{X}^{*}(T_{\mathfrak{T},\ell,\overline{\mathbf{Q}_{\ell}}}))}GL(X(T0,𝐐¯)){\operatorname{GL}(\mathrm{X}^{*}(T_{0,\overline{\mathbf{Q}_{\ell}}}))}GL(X(T𝐐¯)){\operatorname{GL}(\mathrm{X}^{*}(T_{\overline{\mathbf{Q}_{\ell}}}))}Gal𝐐{\operatorname{Gal}_{\mathbf{Q}}}GL(X(T𝐐¯)){\operatorname{GL}(\mathrm{X}^{*}(T_{\overline{\mathbf{Q}}}))}GL(X(T0,𝐐¯)).{\operatorname{GL}(\mathrm{X}^{*}(T_{0,\overline{\mathbf{Q}}})).}φT𝐐,g\scriptstyle{\smash{\varphi_{T_{\mathbf{Q}_{\ell}},g}}}φT𝔗,\scriptstyle{\varphi_{T_{\mathfrak{T},\ell}}}θb\scriptstyle{\theta_{b}}θa\scriptstyle{\theta_{a_{\ell}}}\scriptstyle{\sim}\scriptstyle{\sim}θa\scriptstyle{\smash{\theta_{a}}}φT,g\scriptstyle{\varphi_{T,g}}θa\scriptstyle{\theta_{a}}

It suffices to prove that the outer square commutes up to conjugation by W(Ψ0)\operatorname{W}(\Psi_{0}). By (2.3.2.22.3.2.3), the bottom squares commute on the nose, and the upper-right triangle certainly commutes up to conjugation by the Weyl group. Finally, the upper-left triangle commutes by Lemma 2.2.5. \blacksquare

3.1.3.

We will denote by F𝔗F_{\mathfrak{T}} the splitting field of the map φ𝔗\varphi_{\mathfrak{T}} of Lemma 3.1.2 (φ𝔗\varphi_{\mathfrak{T}} being a representative of conjugacy class [φ𝔗][\varphi_{\mathfrak{T}}]), i.e. the field such that φ𝔗\varphi_{\mathfrak{T}} factors through an injective map Gal(F𝔗|𝐐)Aut(Ψ0)\operatorname{Gal}(F_{\mathfrak{T}}|\mathbf{Q})\hookrightarrow\operatorname{Aut}(\Psi_{0}). By construction, EF𝔗E\subseteq F_{\mathfrak{T}}, and F𝔗𝐐F_{\mathfrak{T}}\mathbf{Q}_{\ell} is the splitting field of T𝔗,T_{\mathfrak{T},\ell} for each \ell, and [F𝔗:𝐐]#Aut(Ψ0)[F_{\mathfrak{T}}:\mathbf{Q}]\leq\#{\operatorname{Aut}(\Psi_{0})}.

         3.2. Statement and proof

3.2.1. Theorem.

Let {ρ:ΓG(𝐐)}\{\rho_{\ell}\colon\Gamma\to G(\mathbf{Q}_{\ell})\}_{\ell\in\mathcal{L}} be a compatible collection of GG-representations of an F-group, where GG is a connected reductive group over 𝐐\mathbf{Q} and \mathcal{L} is a set of Dirichlet density 11. Let E|𝐐E|\mathbf{Q} be the splitting extension of φGad\varphi_{G^{\mathrm{ad}}} as in (2.3.1), and suppose for each conjugacy class CC of Gal(E|𝐐)\operatorname{Gal}(E|\mathbf{Q}), there exists C\ell_{C}\in\mathcal{L} such that

  1. (a)

    C\ell_{C} is unramified in E|𝐐E|\mathbf{Q}.

  2. (b)

    the Frobenius conjugacy class of C\ell_{C} in Gal(E|𝐐)\operatorname{Gal}(E|\mathbf{Q}) is CC.

  3. (c)

    G𝐐CG_{\mathbf{Q}_{\ell_{C}}} is quasisplit.

  4. (d)

    Img(ρC)¯=ZarG𝐐C\overline{\operatorname{Img}(\rho_{\ell_{C}})}{}^{\mathrm{Zar}}=G_{\mathbf{Q}_{\ell_{C}}}.

Then the set {:Img(ρ)¯=ZarG𝐐}\{\ell\in\mathcal{L}\colon\overline{\operatorname{Img}(\rho_{\ell})}{}^{\mathrm{Zar}}=G_{\mathbf{Q}_{\ell}}\} has Dirichlet density 11.

Proof.

As before, we set MImg(ρ)¯ZarM_{\ell}\coloneqq\overline{\operatorname{Img}(\rho_{\ell})}{}^{\mathrm{Zar}} for each \ell\in\mathcal{L}. Let us abuse notation by writing “M=GM_{\ell}=G” to mean that M=G𝐐M_{\ell}=G_{\mathbf{Q}_{\ell}}. We will proceed in three steps:

  1. 1.

    First, reduce to the case when G=GadG=G^{\mathrm{ad}} and each MM_{\ell} is reductive and of maximal rank in GG. (Then, in particular, the hypotheses of Lemma 3.1.2 are satisfied.)

  2. 2.

    Next, find infinitely many \ell\in\mathcal{L} completely split in E|𝐐E|\mathbf{Q} such that M=GM_{\ell}=G.

  3. 3.

    Finally, pick an arbitrary conjugacy class CC of Gal(E|𝐐)\operatorname{Gal}(E|\mathbf{Q}) and show that for a set 𝒵C\mathcal{Z}_{C} of Dirichlet density 0, all 𝒵C\ell\in\mathcal{L}\smallsetminus\mathcal{Z}_{C} which are unramified in E|𝐐E|\mathbf{Q} and whose Frobenius conjugacy class in Gal(E|𝐐)\operatorname{Gal}(E|\mathbf{Q}) is CC satisfy M=GM_{\ell}=G. \blacksquare

Step 1.

Consider the projections of the ρ\rho_{\ell} to GAbG^{\mathrm{Ab}} and GadG^{\mathrm{ad}}. The resulting collections of, respectively, GAbG^{\mathrm{Ab}}- and GadG^{\mathrm{ad}}-representations remain compatible, and the hypotheses (a)–(d) of the present theorem hold true for them. Assume for a moment that the conclusion holds for these two compatible collections. Then MM_{\ell}, for \ell in a density-1 set, surjects onto the codomain of the map G𝐐G𝐐ad×G𝐐AbG_{\mathbf{Q}_{\ell}}\to G_{\mathbf{Q}_{\ell}}^{\mathrm{ad}}\times G_{\mathbf{Q}_{\ell}}^{\mathrm{Ab}}. On the other hand, this map has finite kernel, so MM_{\ell} is a finite-index subgroup of the connected group G𝐐G_{\mathbf{Q}_{\ell}} for such \ell, hence M=GM_{\ell}=G.

Thus it suffices to prove the theorem in the cases when GG is a torus or an adjoint group. The former is trivial because the rank of MM_{\ell} is independent of \ell by [Ser13a, §3] (see also [LP92, Proposition 6.12]), so we henceforth assume G=GadG=G^{\mathrm{ad}}.

Now we pass to the GG-semisimplifications; see [Ser05, §§3.2 and 4.1]. Specifically, for each \ell\in\mathcal{L}, let PP_{\ell} be a parabolic subgroup of G𝐐G_{\mathbf{Q}_{\ell}} minimal among those which contain MM_{\ell}, and let LL_{\ell} be a Levi subgroup of PP_{\ell}. Finally, let ρss\rho_{\ell}^{\mathrm{ss}} be the composition ΓρP(𝐐)L(𝐐)G(𝐐)\Gamma\xrightarrow{\rho_{\ell}}P_{\ell}(\mathbf{Q}_{\ell})\mathrel{\mathrlap{\rightarrow}\mkern-2.25mu\rightarrow}L_{\ell}(\mathbf{Q}_{\ell})\hookrightarrow G(\mathbf{Q}_{\ell}). Then ρss(γ)ss=ρ(γ)ss\rho_{\ell}^{\mathrm{ss}}(\gamma)_{\mathrm{ss}}=\rho_{\ell}(\gamma)_{\mathrm{ss}} for any γΓ\gamma\in\Gamma, so the ρss\rho_{\ell}^{\mathrm{ss}} again form a compatible collection of GG-representations. Moreover, M=GM_{\ell}=G if and only if Img(ρss)¯=ZarG\overline{\operatorname{Img}(\rho_{\ell}^{\mathrm{ss}})}{}^{\mathrm{Zar}}=G, so by replacing each ρ\rho_{\ell} with ρss\rho_{\ell}^{\mathrm{ss}}, we may and do assume each MM_{\ell} is a reductive subgroup of G𝐐G_{\mathbf{Q}_{\ell}}. And MM_{\ell} is of maximal rank in G𝐐G_{\mathbf{Q}_{\ell}} again by the \ell-independence of the rank. This completes step 1. \blacksquare

A preparatory remark on the rest of the proof: the embeddings ι\iota_{\ell} are going to be chosen in the course of the following arguments. Doing so is not necessary for the proof but will allow us to use less notation—what we do use will be already quite a burden—at the cost of making what is actually happening somewhat less scrutable.

Step 2.

Fix an embedding ι{1}\iota_{\ell_{\{1\}}}. By [LP92, Lemma 3.6] (stated as Lemma 2.1.5 above), for each conjugacy class ξ\xi of W(Ψ0)\operatorname{W}(\Psi_{0}), there exists an unramified maximal torus TξT_{\xi} of M{1}=GM_{\ell_{\{1\}}}=G such that [φTξ](Frob{1})=ξ[\varphi_{T_{\xi}}](\operatorname{Frob}_{\ell_{\{1\}}})=\xi. Let F𝔗ξF_{\mathfrak{T}_{\xi}} be the field attached to 𝔗ξ{({1},Tξ)}\mathfrak{T}_{\xi}\coloneqq\{(\ell_{\{1\}},T_{\xi})\} as in (3.1.3), and let FF be the composite of all F𝔗ξF_{\mathfrak{T}_{\xi}}. Then for all but finitely many \ell\in\mathcal{L} unramified in FF and such that \ell and {1}\ell_{\{1\}} have the same Frobenius conjugacy class in Gal(F|𝐐)\operatorname{Gal}(F|\mathbf{Q}), if we pick ι\iota_{\ell} such that the elements defined by Frob\operatorname{Frob}_{\ell} and Frob{1}\operatorname{Frob}_{\ell_{\{1\}}} are equal in Gal(F|𝐐)\operatorname{Gal}(F|\mathbf{Q}), then MM_{\ell} possesses an unramified maximal torus corresponding to each conjugacy class ξ\xi of W(Ψ0)\operatorname{W}(\Psi_{0}), namely T𝔗ξ,T_{\mathfrak{T}_{\xi},\ell}. So M=GM_{\ell}=G for any such \ell by Lemma 2.3.5, and step 2 is done. \blacksquare

Step 3.

Fix a conjugacy class CC of Gal(E|𝐐)\operatorname{Gal}(E|\mathbf{Q}) and an embedding ιC\iota_{\ell_{C}}, and let Ω\Omega be the preimage of φG(FrobC)\varphi_{G}(\operatorname{Frob}_{\ell_{C}}) in Aut(Ψ0)\operatorname{Aut}(\Psi_{0}). Fix n1n\geq 1, and for each i{1,,n}i\in\{1,\dots,n\}, each ω[Ω]\omega\in[\Omega], and each conjugacy class ξ\xi of W(Ψ0)\operatorname{W}(\Psi_{0}), find a prime i,ω,ξ\ell_{i,\omega,\xi}\in\mathcal{L} completely split in E|𝐐E|\mathbf{Q}. Assume all such i,ω,ξ\ell_{i,\omega,\xi} are distinct from each other and from C\ell_{C} and (by step 2) satisfy Mi,ω,ξ=GM_{\ell_{i,\omega,\xi}}=G. Fix an embedding for each such prime. For each i{1,,n}i\in\{1,\dots,n\} and ω[Ω]\omega\in[\Omega], let 𝔗i,ω{(C,Tω)}{(i,ω,ξ,T(i,ω),(i,ω,ξ))}i,ω,ξ\mathfrak{T}_{i,\omega}\coloneqq\{(\ell_{C},T_{\omega})\}\cup\{(\ell_{i^{\prime},\omega^{\prime},\xi},T_{(i,\omega),(i^{\prime},\omega^{\prime},\xi)})\}_{i^{\prime},\omega^{\prime},\xi}, where the tori are unramified and satisfy [φTω](FrobC)=ω[\varphi_{T_{\omega}}](\operatorname{Frob}_{\ell_{C}})=\omega and

[φT(i,ω),(i,ω,ξ)](Frobi,ω,ξ)={ξ,(i,ω)=(i,ω){1},(i,ω)(i,ω).[\varphi_{T_{(i,\omega),(i^{\prime},\omega^{\prime},\xi)}}](\operatorname{Frob}_{\ell_{i^{\prime},\omega^{\prime},\xi}})=\begin{cases}\xi,&(i^{\prime},\omega^{\prime})=(i,\omega)\\ \{1\},&(i^{\prime},\omega^{\prime})\neq(i,\omega).\end{cases} (3.2.1.1)

Finally, let FiF_{i} be the composite of all F𝔗i,ωF_{\mathfrak{T}_{i,\omega}} as ω\omega varies. We claim the FiF_{i} are linearly disjoint over EE. Granted this, we finish step 3 as follows. For all but finitely many \ell\in\mathcal{L} unramified in FiF_{i} and such that \ell and C\ell_{C} have the same Frobenius conjugacy class in Gal(Fi|𝐐)\operatorname{Gal}(F_{i}|\mathbf{Q}), if we pick ι\iota_{\ell} such that Frob\operatorname{Frob}_{\ell} and FrobC\operatorname{Frob}_{\ell_{C}} define the same element of Gal(Fi|𝐐)\operatorname{Gal}(F_{i}|\mathbf{Q}), then M=GM_{\ell}=G as in step 2 by Lemma 2.3.5. Now by the claim and Chebotarev’s density theorem, the set of all rational primes \ell which have Frobenius conjugacy class CC in Gal(E|𝐐)\operatorname{Gal}(E|\mathbf{Q}) and are either ramified in some FiF_{i} or such that \ell and C\ell_{C} have a different Frobenius conjugacy class in Gal(Fi|𝐐)\operatorname{Gal}(F_{i}|\mathbf{Q}) for each ii is of Dirichlet density

#C[E:𝐐]i=1n(11[Fi:E])#C[E:𝐐](11#W(Ψ0)#[Ω])n,\leq\frac{\#C}{[E:\mathbf{Q}]}\prod_{i=1}^{n}\left(1-\frac{1}{[F_{i}:E]}\right)\leq\frac{\#C}{[E:\mathbf{Q}]}\left(1-\frac{1}{\#{\operatorname{W}(\Psi_{0})\cdot\#[\Omega]}}\right)^{n}, (3.2.1.2)

and taking nn to infinity, we see that the set of \ell which have Frobenius conjugacy class CC in Gal(E|𝐐)\operatorname{Gal}(E|\mathbf{Q}) but MGM_{\ell}\neq G is of Dirichlet density 0. To prove (3.2.1.2), we estimate the size of

Σ{σGal(F𝐐):σ|FiCi for each i, but σ|EC},\Sigma\coloneqq\{\sigma\in\operatorname{Gal}(F|\mathbf{Q})\colon\sigma|_{F_{i}}\notin C_{i}\text{ for each }i\text{, but }\sigma|_{E}\in C\},

where CiC_{i} is the Frobenius conjugacy class of C\ell_{C} in Gal(Fi|𝐐)\operatorname{Gal}(F_{i}|\mathbf{Q}). Considering Gal(F|𝐐)\operatorname{Gal}(F|\mathbf{Q}) as a subgroup of i=1nGal(Fi|𝐐)\prod_{i=1}^{n}\operatorname{Gal}(F_{i}|\mathbf{Q}) in the natural way, and letting pi:Gal(Fi|𝐐)Gal(E|𝐐)p_{i}\colon{\operatorname{Gal}(F_{i}|\mathbf{Q})}\to\operatorname{Gal}(E|\mathbf{Q}) denote the restriction map, there is (by linear disjointness) a bijection

ΣτC{(σ1,,σn)i=1nGal(Fi𝐐):σipi1{τ}Ci}.\Sigma\cong\bigsqcup_{\tau\in C}\left\{(\sigma_{1},\dots,\sigma_{n})\in\prod_{i=1}^{n}\operatorname{Gal}(F_{i}|\mathbf{Q})\colon\sigma_{i}\in p_{i}^{-1}\{\tau\}\smallsetminus C_{i}\right\}.

As pi1{τ}p_{i}^{-1}\{\tau\} intersects nontrivially with CiC_{i}, we have #Σ#Ci=1n([Fi:E]1).\#\Sigma\leq\#C\prod_{i=1}^{n}([F_{i}:E]-1). Combining this with the equality [F:𝐐]=[E:𝐐]i=1n[Fi:E][F:\mathbf{Q}]=[E:\mathbf{Q}]\prod_{i=1}^{n}[F_{i}:E] and Chebotarev’s density theorem yields the desired upper bound on Dirichlet density.

Finally, we prove the claim of the previous paragraph. In fact, we will show that the F𝔗i,ωF_{\mathfrak{T}_{i,\omega}} are linearly disjoint over EE. Fix (i,ω)(i,\omega), and let F(i,ω)F^{(i,\omega)} be the composite of all F𝔗i1,ω1F_{\mathfrak{T}_{i_{1},\omega_{1}}} for (i1,ω1)(i,ω)(i_{1},\omega_{1})\neq(i,\omega); we must show that F𝔗i,ωF(i,ω)=EF_{\mathfrak{T}_{i,\omega}}\cap F^{(i,\omega)}=E. Let φ𝔗i,ω:Gal(F𝔗i,ω|𝐐)Aut(Ψ0)\varphi_{\mathfrak{T}_{i,\omega}}\colon{\operatorname{Gal}(F_{\mathfrak{T}_{i,\omega}}|\mathbf{Q})}\to\operatorname{Aut}(\Psi_{0}) be a representative of the conjugacy class [φ𝔗i,ω][\varphi_{\mathfrak{T}_{i,\omega}}], and consider the diagram

1{1}Gal(F𝔗i,ω|E){\operatorname{Gal}(F_{\mathfrak{T}_{i,\omega}}|E)}Gal(F𝔗i,ω|𝐐){\operatorname{Gal}(F_{\mathfrak{T}_{i,\omega}}|\mathbf{Q})}Gal(E|𝐐){\operatorname{Gal}(E|\mathbf{Q})}1{1}1{1}W(Ψ0){\operatorname{W}(\Psi_{0})}Aut(Ψ0){\operatorname{Aut}(\Psi_{0})}Out(Ψ0){\operatorname{Out}(\Psi_{0})}1,{1,}φ𝔗i,ω\scriptstyle{\varphi_{\mathfrak{T}_{i,\omega}}}φG\scriptstyle{\varphi_{G}}

whose rows are exact. Fix any conjugacy class ξ\xi of W(Ψ0)\operatorname{W}(\Psi_{0}), and let σGal(F𝔗i,ω|𝐐)\sigma\in\operatorname{Gal}(F_{\mathfrak{T}_{i,\omega}}|\mathbf{Q}) be the image of Frobi,ω,ξ\operatorname{Frob}_{\ell_{i,\omega,\xi}}. By construction, we have φ𝔗i,ω(σ)ξ\varphi_{\mathfrak{T}_{i,\omega}}(\sigma)\in\xi, but since i,ω,ξ\ell_{i,\omega,\xi} splits completely in E|𝐐E|\mathbf{Q}, it is also the case that σGal(F𝔗i,ω|E)\sigma\in\operatorname{Gal}(F_{\mathfrak{T}_{i,\omega}}|E). Since ξ\xi may be chosen arbitrarily, the image of Gal(F𝔗i,ω|E)\operatorname{Gal}(F_{\mathfrak{T}_{i,\omega}}|E) in W(Ψ0)\operatorname{W}(\Psi_{0}) hits every conjugacy class, hence is all of W(Ψ0)\operatorname{W}(\Psi_{0}), and in particular the conjugacy classes of Gal(F𝔗i,ω|E)\operatorname{Gal}(F_{\mathfrak{T}_{i,\omega}}|E) are in bijection with those of W(Ψ0)\operatorname{W}(\Psi_{0}). On the other hand, i,ω,ξ\ell_{i,\omega,\xi} splits completely in each F𝔗i1,ω1|𝐐F_{\mathfrak{T}_{i_{1},\omega_{1}}}|\mathbf{Q} by (3.2.1.1), hence in F(i,ω)|𝐐F^{(i,\omega)}|\mathbf{Q}, so σ\sigma becomes trivial in Gal(F𝔗i,ωF(i,ω)|E)\operatorname{Gal}(F_{\mathfrak{T}_{i,\omega}}\cap F^{(i,\omega)}\,|\,E), which proves (again since ξ\xi is arbitrary) that F𝔗i,ωF(i,ω)=EF_{\mathfrak{T}_{i,\omega}}\cap F^{(i,\omega)}=E. \blacksquare

4. Theorem B

         4.1. Hilbert’s irreducibility theorem for profinite groups

Recall that, if Π\Pi is a profinite group, its Frattini subgroup Φ(Π)\Phi(\Pi) is defined to be the intersection of all maximal proper closed subgroups of Π\Pi. The following result is a slight refinement of [CK16, Fact 3.3.1.1]; its proof is essentially extracted from those of [Ser89, §9.2, Proposition 2 and §10.6, Theorem].

4.1.1. Proposition.

Let XX be a connected normal scheme of finite type over 𝐙\mathbf{Z} such that dim(X𝐐)1\dim(X_{\mathbf{Q}})\geq 1. Then there are positive integers NN and dd with the following property: For any continuous surjective homomorphism ρ:π1(X)Π\rho\colon\pi_{1}(X)\mathrel{\mathrlap{\rightarrow}\mkern-2.25mu\rightarrow}\Pi where Π\Pi is a profinite group with open Frattini subgroup, there exist infinitely many closed points xx of X𝐐X_{\mathbf{Q}} such that

  1. (a)

    [κx:𝐐]d[\kappa_{x}:\mathbf{Q}]\leq d.

  2. (b)

    Img(ρx)=Π\operatorname{Img}(\rho_{x})=\Pi.

  3. (c)

    xx extends to an element of X(𝐙¯[1/N])X(\overline{\mathbf{Z}}[1/N]).

Proof.

By the surjectivity of π1(U)π1(X)\pi_{1}(U)\to\pi_{1}(X) for open UXU\subseteq X [sta24, Lemma 0BQI], we may assume XX is affine. Pick a finite map π:X𝐐𝐀𝐐n\pi\colon X_{\mathbf{Q}}\to\mathbf{A}^{n}_{\mathbf{Q}} of degree dd, and let NN be a positive integer such that π\pi spreads out to a finite morphism X𝐙[1/N]𝐀𝐙[1/N]nX_{\mathbf{Z}[1/N]}\to\smash{\mathbf{A}^{n}_{\mathbf{Z}[1/N]}}. We claim that these NN and dd work.

Fix ρ:π1(X)Π\rho\colon\pi_{1}(X)\mathrel{\mathrlap{\rightarrow}\mkern-2.25mu\rightarrow}\Pi as in the statement, and let ρ¯\overline{\rho} be the composition

π1(X𝐐)π1(X)ΠΠ/Φ(Π),\pi_{1}(X_{\mathbf{Q}})\mathrel{\mathrlap{\rightarrow}\mkern-2.25mu\rightarrow}\pi_{1}(X)\mathrel{\mathrlap{\rightarrow}\mkern-2.25mu\rightarrow}\Pi\mathrel{\mathrlap{\rightarrow}\mkern-2.25mu\rightarrow}\Pi/\Phi(\Pi),

the first arrow being surjective by loc. cit. If xX𝐐x\in X_{\mathbf{Q}} satisfies Img(ρ¯x)=Π/Φ(Π)\operatorname{Img}(\overline{\rho}_{x})=\Pi/\Phi(\Pi), then Img(ρx)Φ(Π)=Π\operatorname{Img}(\rho_{x})\cdot\Phi(\Pi)=\Pi, hence Img(ρx)=Π\operatorname{Img}(\rho_{x})=\Pi by the definition of Φ(Π)\Phi(\Pi). In the following paragraph, we produce such xx.

Since, by hypothesis, Π/Φ(Π)\Pi/\Phi(\Pi) is finite, the map ρ¯\overline{\rho} corresponds to a finite étale cover YX𝐐Y\mathrel{\mathrlap{\rightarrow}\mkern-2.25mu\rightarrow}X_{\mathbf{Q}} which is Galois with group Π/Φ(Π)\Pi/\Phi(\Pi). For each maximal proper subgroup Σ\Sigma of Π/Φ(Π)\Pi/\Phi(\Pi), let πΣ\pi_{\Sigma} denote the composition Y/ΣX𝐐𝜋𝐀𝐐nY/\Sigma\mathrel{\mathrlap{\rightarrow}\mkern-2.25mu\rightarrow}X_{\mathbf{Q}}\xrightarrow{\pi}\mathbf{A}^{n}_{\mathbf{Q}}. Since XX is normal, Y/ΣY/\Sigma is irreducible [sta24, Lemma 0BQL], so by [Ser89, §9.2, Proposition 1], there is a thin set ΩΣ𝐀n(𝐐)\Omega_{\Sigma}\subseteq\mathbf{A}^{n}(\mathbf{Q}) such that if x0𝐀n(𝐐)ΩΣx_{0}\in\mathbf{A}^{n}(\mathbf{Q})\smallsetminus\Omega_{\Sigma}, then the 𝐐¯\overline{\mathbf{Q}}-points of the fiber πΣ1{x0}\pi_{\Sigma}^{-1}\{x_{0}\} consist of deg(πΣ)\deg(\pi_{\Sigma}) points of Y/ΣY/\Sigma all conjugate over 𝐐\mathbf{Q}. Put ΩΣΩΣ\Omega\coloneqq\bigcup_{\Sigma}\Omega_{\Sigma}. By [Ser89, §9.6, Theorem], 𝐀n(𝐙[1/N])Ω\mathbf{A}^{n}(\mathbf{Z}[1/N])\smallsetminus\Omega is an infinite set; let x0x_{0} be an element and xπ1{x0}x\in\pi^{-1}\{x_{0}\}. Then xx is a closed point of X𝐐X_{\mathbf{Q}} satisfying [κx:𝐐]d[\kappa_{x}:\mathbf{Q}]\leq d. Since x0Ωx_{0}\notin\Omega and deg(πΣ)>d\deg(\pi_{\Sigma})>d, the point xx does not lift to (Y/Σ)(κx)(Y/\Sigma)(\kappa_{x}) for any Σ\Sigma, so Img(ρ¯x)\operatorname{Img}(\overline{\rho}_{x}) cannot be a subset of Σ\Sigma, i.e. Img(ρ¯x)=Π/Φ(Π)\operatorname{Img}(\overline{\rho}_{x})=\Pi/\Phi(\Pi).

Finally, since X𝐙[1/N]𝐀𝐙[1/N]nX_{\mathbf{Z}[1/N]}\to\mathbf{A}^{n}_{\mathbf{Z}[1/N]} is finite and 𝐙¯[1/N]\overline{\mathbf{Z}}[1/N] is the integral closure of 𝐙[1/N]\mathbf{Z}[1/N] in 𝐐¯\overline{\mathbf{Q}}, the point xx extends to an element of X(𝐙¯[1/N])X(\overline{\mathbf{Z}}[1/N]), as desired. \blacksquare

Next, we describe many well-known examples of profinite groups having open Frattini subgroup (cf. [Ser89, §10.6, Example 1]).

4.1.2. Lemma.

Let 1,,n\ell_{1},\dots,\ell_{n} be primes, Π\Pi a compact subgroup of GLd1(𝐐1)××GLdn(𝐐n)\operatorname{GL}_{d_{1}}(\mathbf{Q}_{\ell_{1}})\times\cdots\times\operatorname{GL}_{d_{n}}(\mathbf{Q}_{\ell_{n}}). Then the Frattini subgroup Φ(Π)\Phi(\Pi) is open in Π\Pi.

Proof.

We assume the i\ell_{i} are distinct and ΠiGLdi(𝐙i)\Pi\subseteq\prod_{i}\operatorname{GL}_{d_{i}}(\mathbf{Z}_{\ell_{i}}). Then Π\Pi has an open subgroup of the form Π1××Πn\Pi_{1}\times\cdots\times\Pi_{n}, such that for each ii, the group Πi\Pi_{i} is pro-i\ell_{i}. Furthermore, each Πi\Pi_{i} is topologically finitely generated (see e.g. [DdSMS99, Theorem 5.2]). This verifies criterion (iv) of [Ser89, §10.6, Proposition]. \blacksquare

         4.2. Statement and proof

4.2.1.

Let XX be a connected normal scheme of finite type over 𝐙\mathbf{Z}. By Chebotarev’s density theorem [Ser65, §2.7, Theorem 7], the set of Frobenius elements is dense in π1(X)\pi_{1}(X). Together with the surjectivity of π1(X𝐐)π1(X)\pi_{1}(X_{\mathbf{Q}})\to\pi_{1}(X) [sta24, Lemma 0BQI], this implies that (π1(X𝐐),X)(\pi_{1}(X_{\mathbf{Q}}),\mathcal{F}_{X}) is an F-group in the sense of Definition 3.1.1, where X\mathcal{F}_{X} is the preimage of the set of Frobenius elements under the map π1(X𝐐)π1(X)\pi_{1}(X_{\mathbf{Q}})\to\pi_{1}(X).

We will say that a collection {ρ:π1(X𝐙[1/])G(𝐐)}\{\rho_{\ell}\colon\pi_{1}(X_{\mathbf{Z}[1/\ell]})\to G(\mathbf{Q}_{\ell})\}_{\ell\in\mathcal{L}} of GG-representations, where \mathcal{L} is a set of primes, is compatible if the induced collection {π1(X𝐐)G(𝐐)}\{\pi_{1}(X_{\mathbf{Q}})\to G(\mathbf{Q}_{\ell})\}_{\ell\in\mathcal{L}} is compatible relative to X\mathcal{F}_{X} in the sense of Definition 3.1.1. (This agrees with the notion of compatibility described in (1.1.1).)

4.2.2. Theorem.

Let XX be a connected normal scheme of finite type over 𝐙\mathbf{Z} such that dim(X𝐐)1\dim(X_{\mathbf{Q}})\geq 1, and let {ρ:π1(X𝐙[1/])G(𝐐)}\{\rho_{\ell}\colon\pi_{1}(X_{\mathbf{Z}[1/\ell]})\to G(\mathbf{Q}_{\ell})\}_{\ell\in\mathcal{L}} be a compatible collection of GG-representations, where GG is a connected reductive group over 𝐐\mathbf{Q} and \mathcal{L} is a set of Dirichlet density 11. Assume that Img(ρ)¯=ZarG𝐐\overline{\operatorname{Img}(\rho_{\ell})}{}^{\mathrm{Zar}}=G_{\mathbf{Q}_{\ell}} for each \ell\in\mathcal{L}. Let E|𝐐E|\mathbf{Q} denote the splitting extension of φGad\varphi_{G^{\mathrm{ad}}} as in (2.3.1).

Let xx be a closed point of X𝐐X_{\mathbf{Q}}. Assume there exists a positive integer NN such that xx extends to an element of X(𝐙¯[1/N])X(\overline{\mathbf{Z}}[1/N]) and a finite set \mathcal{R}\subseteq\mathcal{L} with the following property: For each conjugacy class CC of Gal(E|𝐐)\operatorname{Gal}(E|\mathbf{Q}) there exists \ell\in\mathcal{R} such that

  1. (a)

    \ell is unramified in E|𝐐E|\mathbf{Q}.

  2. (b)

    the Frobenius conjugacy class of \ell in Gal(E|𝐐)\operatorname{Gal}(E|\mathbf{Q}) is CC.

  3. (c)

    G𝐐G_{\mathbf{Q}_{\ell}} is quasisplit.

  4. (d)

    N\ell\nmid N.

  5. (e)

    Img(ρ,x)¯=ZarG𝐐\overline{\operatorname{Img}(\rho_{\ell,x})}{}^{\mathrm{Zar}}=G_{\mathbf{Q}_{\ell}}.

Then the set {:Img(ρ,x)¯=ZarG𝐐}\{\ell\in\mathcal{L}\colon\overline{\operatorname{Img}(\rho_{\ell,x})}{}^{\mathrm{Zar}}=G_{\mathbf{Q}_{\ell}}\} has Dirichlet density 11.

Moreover, there exists a positive integer dd and infinitely many xx as in the previous paragraph satisfying [κx:𝐐]d[\kappa_{x}:\mathbf{Q}]\leq d.

Proof.

If (x,N,)(x,N,\mathcal{R}) is as in the statement of the present theorem, the collection {ρ,x:GalκxG(𝐐)}\{\rho_{\ell,x}\colon{\operatorname{Gal}_{\kappa_{x}}}\to G(\mathbf{Q}_{\ell})\}_{\ell\in\mathcal{L}} is compatible relative to Spec(𝒪κx[1/N])\mathcal{F}_{\operatorname{Spec}(\mathcal{O}_{\kappa_{x}}[1/N])}, hence satisfies the hypotheses of Theorem 3.2.1, which gives the statement about Dirichlet density.

We now explain how to find such (x,N,)(x,N,\mathcal{R}). Let NN be as Proposition 4.1.1, and let \mathcal{R}\subseteq\mathcal{L} be any set such that for each CC as above there exists \ell\in\mathcal{R} satisfying (a)–(d). Considering the product map

ρ:π1(X𝐐)G(𝐐),\rho_{\mathcal{R}}\colon\pi_{1}(X_{\mathbf{Q}})\to\prod_{\ell\in\mathcal{R}}G(\mathbf{Q}_{\ell}),

use Proposition 4.1.1 and Lemma 4.1.2 to find a closed point xx of X𝐐X_{\mathbf{Q}} such that Img(ρ,x)=Img(ρ)\operatorname{Img}(\rho_{\mathcal{R},x})=\operatorname{Img}(\rho_{\mathcal{R}}) and xx extends to an element of X(𝐙¯[1/N])X(\overline{\mathbf{Z}}[1/N]). Then (x,N,)(x,N,\mathcal{R}) has all the desired properties. \blacksquare

References

  • [And04] Yves André, Une Introduction aux Motifs (Motifs Purs, Motifs Mixtes, Périodes), Panoramas et Synthèses [Panoramas and Syntheses], vol. 17, Société Mathématique de France, Paris, 2004. MR 2115000
  • [Bou82] Nicolas Bourbaki, Éléments de Mathématique: Groupes et Algèbres de Lie, Masson, Paris, 1982.
  • [Chi04] CheeWhye Chin, Independence of \ell of monodromy groups, J. Amer. Math. Soc. 17 (2004), no. 3, 723–747. MR 2053954
  • [CK16] Anna Cadoret and Arno Kret, Galois-generic points on Shimura varieties, Algebra Number Theory 10 (2016), no. 9, 1893–1934. MR 3576114
  • [DdSMS99] J. D. Dixon, M. P. F. du Sautoy, A. Mann, and D. Segal, Analytic Pro-pp Groups, second ed., Cambridge Studies in Advanced Mathematics, vol. 61, Cambridge University Press, Cambridge, 1999. MR 1720368
  • [Dri18] Vladimir Drinfeld, On the pro-semisimple completion of the fundamental group of a smooth variety over a finite field, Adv. Math. 327 (2018), 708–788. MR 3762002
  • [Dyn52] E. B. Dynkin, Semisimple subalgebras of semisimple Lie algebras, Mat. Sbornik N.S. 30/72 (1952), 349–462 (3 plates). MR 47629
  • [Hui13] Chun Yin Hui, Monodromy of Galois representations and equal-rank subalgebra equivalence, Math. Res. Lett. 20 (2013), no. 4, 705–728. MR 3188028
  • [Jan92] Uwe Jannsen, Motives, numerical equivalence, and semi-simplicity, Invent. Math. 107 (1992), no. 3, 447–452. MR 1150598
  • [KP24] Christian Klevdal and Stefan Patrikis, Compatibility of canonical \ell-adic local systems on adjoint Shimura varieties, arXiv preprint 2303.03863v2 (2024).
  • [Lar95] M. Larsen, Maximality of Galois actions for compatible systems, Duke Math. J. 80 (1995), no. 3, 601–630. MR 1370110
  • [LP92] M. Larsen and R. Pink, On \ell-independence of algebraic monodromy groups in compatible systems of representations, Invent. Math. 107 (1992), no. 3, 603–636. MR 1150604
  • [Ser65] Jean-Pierre Serre, Zeta and LL functions, Arithmetical Algebraic Geometry (Proc. Conf. Purdue Univ., 1963), Harper & Row, New York, 1965, pp. 82–92. MR 194396
  • [Ser67]  , Sur les groupes de Galois attachés aux groupes pp-divisibles, Proc. Conf. Local Fields (Driebergen, 1966), Springer, Berlin-New York, 1967, pp. 118–131. MR 242839
  • [Ser89]  , Lectures on the Mordell-Weil Theorem, Aspects of Mathematics, vol. E15, Friedr. Vieweg & Sohn, Braunschweig, 1989. MR 1002324
  • [Ser98]  , Abelian \ell-Adic Representations and Elliptic Curves, Research Notes in Mathematics, vol. 7, A K Peters, Ltd., Wellesley, MA, 1998, With the collaboration of Willem Kuyk and John Labute, Revised reprint of the 1968 original. MR 1484415
  • [Ser05]  , Complète réductibilité, Séminaire Bourbaki Vol. 2003/2004, no. 299, Société Mathématique de France, 2005, pp. 195–217. MR 2167207
  • [Ser13a]  , Lettres à Ken Ribet du 1/1/81 et du 29/1/81, Oeuvres - Collected Papers IV 1985–1998, Springer Collected Works in Mathematics, Springer, Heidelberg, 2013, Reprint of the 2000 edition [MR1730973], pp. 1–20. MR 3185222
  • [Ser13b]  , Résumé des cours de 1984-1985, Oeuvres - Collected Papers IV 1985–1998, Springer Collected Works in Mathematics, Springer, Heidelberg, 2013, Reprint of the 2000 edition [MR1730973], pp. 27–33. MR 3185222
  • [sta24] The Stacks project authors, The Stacks project, https://stacks.math.columbia.edu, 2024.